WorldWideScience

Sample records for coal pyrite technical

  1. Control of pyrite addition in coal liquefaction process

    Science.gov (United States)

    Schmid, Bruce K.; Junkin, James E.

    1982-12-21

    Pyrite addition to a coal liquefaction process (22, 26) is controlled (118) in inverse proportion to the calcium content of the feed coal to maximize the C.sub.5 --900.degree. F. (482.degree. C.) liquid yield per unit weight of pyrite added (110). The pyrite addition is controlled in this manner so as to minimize the amount of pyrite used and thus reduce pyrite contribution to the slurry pumping load and disposal problems connected with pyrite produced slag.

  2. A study of the interfacial chemistry of pyrite and coal in fine coal cleaning using flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chengliang [Univ. of Kentucky, Lexington, KY (United States)

    1993-01-01

    Surface oxidation, surface charge, and flotation properties have been systematically studied for coal, coal-pyrite and ore-pyrite. Electrochemical studies show that coal-pyrite exhibits much higher and more complex surface oxidation than ore-pyrite and its oxidation rate depends strongly on the carbon/coal content. Flotation studies indicate that pyrites have no self-induced floatability. Fuel oil significantly improves the floatability of coal and induces considerable flotation for coal-pyrite due to the hydrophobic interaction of fuel oil with the carbon/coal inclusions on the pyrite surface. Xanthate is a good collector for ore-pyrite but a poor collector for coal and coal-pyrite. The results from thermodynamic calculations, flotation and zeta potential measurements show that iron ions greatly affect the flotation of pyrite with xanthate and fuel oil. Various organic and inorganic chemicals have been examined for depressing coal-pyrite. It was found, for the first time, that sodium pyrophosphate is an effective depressant for coal-pyrite. Solution chemistry shows that pyrophosphate reacts with iron ions to form stable iron pyrophosphate complexes. Using pyrophosphate, the complete separation of pyrite from coal can be realized over a wide pH range at relatively low dosage.

  3. Waste pyritic coal as a raw material for energetic industry

    Energy Technology Data Exchange (ETDEWEB)

    Gasiorek, J. [Institute of Inorganic Chemistry, Poznan (Poland). Dept. of Research and Technology

    1997-11-01

    Results are presented of large laboratory studies on coal desulphurisation with foam flotation method improved by application of bioadsorption of Thiobacillus ferrooxidans bacteria to the modification of superficial properties of pyrite particulates from hydrophobic to hydrophillic ones. Results of coal desulfurization with and without bioadsorption have been compared. Bioadsorption improved pyritic sulfur removal by 30% (for coal from `Sierza mine`, coal size 0.3 to 0.102 mm, S pyritic content 1.69%) after 6-week adaptation of bacteria and 30 min of bioadsorption. Bacteria concentration in 5% water suspension of coal reached 22 {mu}g of biomass cm{sup -3}. 12 refs., 4 figs., 1 tab.

  4. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  5. Comparison Analysis of Coal Biodesulfurization and Coal's Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    Science.gov (United States)

    Hong, Fen-Fen; He, Huan; Liu, Jin-Yan; Tao, Xiu-Xiang; Zheng, Lei; Zhao, Yi-Dong

    2013-01-01

    Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal's pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal's pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal's pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32%) and jarosite (18.99%) were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34%) and elemental sulfur (50.72%) but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process. PMID:24288464

  6. Surface electrochemical control for fine coal and pyrite separation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, M.E.; Bodily, D.M.; Hu, Weibai; Chen, Wanxiong; Huang, Qinping; Liang, Jun; Riley, A.M.; Li, Jun; Wann, Jyi-Perng; Zhong, Tingke; Zhu, Ximeng

    1993-01-20

    Laboratory flotation tests were carried out on three coals and on coal pyrite. Floatability measurements included natural floatability, flotation with a xanthate collector and salt flotation. The ranking of the floatability of the three coals were: Upper Freeport > Pittsburgh > Illinois. The floatability of mineral pyrite and coal pyrite increased markedly with xanthate concentration, but decreased with increased pH. In general, coal pyrite was more difficult to float than mineral pyrite. This was attributed to the presence of surface carbonaceous and mineral matter, since floatability of coal pyrite improved by acid pretreatment. Flotation tests demonstrated that the floatability of coal and mineral pyrite was greatly enhanced by the presence of an electrolyte. Flotation was also enhanced by the addition of modifiers such as CuSO{sub 4}, Na{sub 2}S, CO{sub 2} and EDTA. Lime additions markedly reduced the floatability of coal pyrite. Enhanced floatability of coal pyrite resulted when the pyrite was anodically oxidized in a specially constructed electrochemical flotation cell Pretreatment in potential ranges previously observed for polysulfide and sulfur film formation resulted in the enhanced floatability. While interesting trends and influences, both chemical and electrochemical, markedly improved the floatability of coal, there is little hope for reverse flotation as an effective technology for coal/coal-pyrite separations. The effects of poor liberation and entrainment appear overriding.

  7. Further studies of the effects of oxidation on the surface properties of coal and coal pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Miguel Nicolas [Univ. of California, Berkeley, CA (United States)

    1994-01-01

    The objective of this research was to investigate the oxidation behavior of coal and coal pyrite and to correlate the changes in the surface properties induced by oxidation, along with the intrinsic physical and chemical properties of these organic and inorganic materials, with the behavior in physical coal cleaning processes. This provide more fundamental knowledge for understanding the way in which different factors interact in a medium as heterogeneous as coal. Fourteen coal samples of different ranks ranging from high to medium sulfur content were studied by dry oxidation tests at different temperatures and humidities, and by wet oxidation tests using different oxidizing agents. The concentration of surface oxygen functional groups was determined by ion-exchange methods. The changes in the coal composition with oxidation were analyzed by spectroscopic techniques. The wettability of as-received and oxidized coal and coal pyrite samples was assessed by film flotation tests. The electrokinetic behavior of different coals and coal pyrite samples was studied by electrokinetic tests using electrophoresis. Possible oxidation mechanisms have been proposed to explain the changes on the coal surface induced by different oxidation treatments.

  8. Flash pyrolysis of coal, coal maceral, and coal-derived pyrite with on-line characterization of volatile sulfur compounds

    Science.gov (United States)

    Chou, I.-Ming; Lake, M.A.; Griffin, R.A.

    1988-01-01

    A Pyroprobe flash pyrolysis-gas chromatograph equipped with a flame photometric detector was used to study volatile sulfur compounds produced during the thermal decomposition of Illinois coal, coal macerals and coal-derived pyrite. Maximum evolution of volatile organic sulfur compounds from all coal samples occurred at a temperature of approximately 700??C. At this temperature, the evolution of thiophene, its alkyl isomers, and short-chain dialkyl sulfide compounds relative to the evolution of benzothiophene and dibenzothiophene compounds was greater from coal high in organic sulfur than from coal low in organic sulfur. The variation in the evolution of sulfur compounds observed for three separate coal macerals (exinite, vitrinite, and inertinite) was similar to that observed for whole coal samples. However, the variation trend for the macerals was much more pronounced. Decomposition of coal-derived pyrite with the evolution of elemental sulfur was detected at a temperature greater than 700??C. The results of this study indicated that the gas chromotographic profile of the volatile sulfur compounds produced during flash pyrolysis of coals and coal macerals varied as a function of the amount of organic sulfur that occurred in the samples. Characterization of these volatile sulfur compounds provides a better understanding of the behavior of sulfur in coal during the thermolysis process, which could be incorporated in the design for coal cleaning using flash pyrolysis techniques. ?? 1988.

  9. Control of pyrite surface chemistry in physical coal cleaning. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Luttrell, G.H.; Yoon, R.H.; Richardson, P.E.

    1993-05-19

    In Part I, Surface Chemistry of Coal Pyrite the mechanisms responsible for the inefficient rejection of coal pyrite were investigated using a number of experimental techniques. The test results demonstrate that the hydrophobicity of coal pyrite is related to the surface products formed during oxidation in aqueous solutions. During oxidation, a sulfur-rich surface layer is produced in near neutral pH solutions. This surface layer is composed mainly of sulfur species in the form of an iron-polysulfide along with a smaller amount of iron oxide/hydroxides. The floatability coal pyrite increases dramatically in the presence of frothers and hydrocarbon collectors. These reagents are believed to absorb on the weakly hydrophobic pyrite surfaces as a result of hydrophobic interaction forces. In Part III, Developing the Best Possible Rejection Schemes, a number of pyrite depressants were evaluated in column and conventional flotation tests. These included manganese (Mn) metal, chelating agents quinone and diethylenetriamine (DETA), and several commercially-available organic depressants. Of these, the additives which serve as reducing agents were found to be most effective. Reducing agents were used to prevent pyrite oxidation and/or remove oxidation products present on previously oxidized surfaces. These data show that Mn is a significantly stronger depressant for pyrite than quinone or DETA. Important factors in determining the pyrite depression effect of Mn include the slurry solid content during conditioning, the addition of acid (HCl), and the amount of Mn. The acid helps remove the oxide layer from the surface of Mn and promotes the depression of pyrite by Mn.

  10. A dynamic mathematical model for microbial removal of pyritic sulfur from coal.

    Science.gov (United States)

    Kargi, F; Weissman, J G

    1984-06-01

    A dynamic mathematical model has been developed to describe microbial desulfurization of coal by Thiobacillus ferrooxidans. The model considers adsorption and desorption of cells on coal particles and microbial oxidation of pyritic sulfur on particle surfaces. The influence of certain parameters, such as microbial growth rate constants, adsorption-description constants, pulp density, coal particle size, initial cell and solid phase substrate concentration on the maximum rate of pyritic sulfur removal, have been elucidated. The maximum rate of pyritic sulfur removal was strongly dependent upon the number of attached cells per coal particle. At sufficiently high initial cell concentrations, the surfaces of coal particles are nearly saturated by the cells and the maximum leaching rate is limited either by total external surface area of coal particles or by the concentration of pyritic sulfur in the coal phase. The maximum volumetric rate of pyritic sulfur removal (mg S/h cm(3) mixture) increases with the pulp density of coal and reaches a saturation level at high pulp densities (e.g. 45%). The maximum rate also increases with decreasing particle diameter in a hyperbolic form. Increases in adsorption coefficient or decreases in the desorption coefficient also result in considerable improvements in this rate. The model can be applied to other systems consisting of suspended solid substrate particles in liquid medium with microbial oxidation occurring on the particle surfaces (e.g., bacterial ore leaching). The results obtained from this model are in good agreement with published experimental data on microbial desulfurization of coal and bacterial ore leaching.

  11. Hydrometallurgical-UV process to produce ferrous sulfate from the pyrite present in coal tailings

    Energy Technology Data Exchange (ETDEWEB)

    Viganico, E.M.; Silva, R.A. [South Rio Grande Federal Univ., Porto Alegre (Brazil).Graduate Program in Mining, Metallurgical and Materials Technology Center

    2010-07-01

    The oxidation of pyrite can promote acid mine drainage (AMD). This study developed a hydrometallurgical-UV route for the production of ferrous sulfate. The laboratory study was conducted using a pyrite concentrate obtained from a processed coal tailing. Leaching of the tailing was performed in packed bed columns in an oxidizing environment with an aqueous medium. Recirculation of the liquor produced an Fe{sup 3+} iron rich extract. Ultraviolet irradiation was then used to convert the Fe{sup 3+} to Fe{sup 2+}. Heat provided by the UV lamps caused the ferrous sulfate to crystallize. X-ray diffraction (XRD) studies of the crystals demonstrated that it is possible to produce commercial-grade ferrous sulfate heptahydrate crystals from the pyrite present in coal tailings. The crystals are used to treat anemia in humans and animals, and are also used as reagents for waste and waste water treatment. 7 refs., 2 tabs., 2 figs.

  12. Oxidation of pyrite: Consequences and significance

    Directory of Open Access Journals (Sweden)

    Dimitrijević Mile D.

    2002-01-01

    Full Text Available This paper presents the most important studies on the oxidation of pyrite particularly in aqueous solutions. The consequences of pyrite oxidation was examined, as well as its importance, from both the technical-technological and environmental points of view. The oxidation of pyrite was considered in two parts. The spontaneous oxidation of pyrite in nature was described in the first part, with this part comprising pyrite oxidation in deposits depots and mines. It is explained how way natural electrochemical processes lead to the decomposition of pyrite and other minerals associated with pyrite. The oxidation of pyrite occurring during technological processes such as grinding, flotation and leaching, was shown in the second part. Particular emphasis was placed on the oxidation of pyrite during leaching. This part includes the leaching of sulphide and oxide ores, the leaching of pyrite coal and the leaching of refractory gold-bearing ores (pressure oxidation, bacterial oxidation, oxidation by means of strong oxidants and the electrolysis of pyrite suspensions. Various mechanisms of pyrite oxidation and of the galvanic interaction of pyrite with other sulphide minerals are shown.

  13. Technical and economic aspects of brown coal gasification and liquefaction

    International Nuclear Information System (INIS)

    Speich, P.

    1980-01-01

    A number of gasification and liquefaction processes for Rhenish brown coal are investigated along with the technical and economic aspects of coal beneficiation. The status of coal beneficiation and the major R + D activities are reviewed. (orig.) [de

  14. Testing of pyrite flotation techniques on selected Ohio coals: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, B. J.; Torak, E. R.

    1989-05-01

    The project was conceived to demonstrate the combining of conventional physical coal cleaning with emerging advanced physical coal cleaning technologies in a cost-effective manner. The objectives of the program were to demonstrate that conventional coal cleaning followed by advanced coal cleaning of a crushed mid-gravity portion of the run-of-mine coal would produce a clean coal, suitable for use as a thermal coal, having a lower ash content and a lower sulfur dioxide emission potential than a coal cleaned only be current conventional cleaning technologies. As part of this program a number of advanced flotation techniques were tested to determine the feasibility of including them in the design of their Advanced Coal Preparation Facility. The program consisted of testing the Pittsburgh seam, the Middle Kittanning seam, and the Meigs Creek seam coals in the pilot flotation circuit at EPRI's Coal Quality Development Center (CQDC) in Homer City, Pennsylvania. This report contains all the data from OCDO's pilot flotation test program at the CQDC and the test data from the Middle Kittanning and Meigs Creek reverse flotation tests. 13 figs., 40 tabs.

  15. Pyrite Iron Sulfide Solar Cells Made from Solution Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Law, Matt [Univ. of California, Irvine, CA (United States)

    2017-03-21

    This document summarizes research done under the SunShot Next Generation PV II project entitled, “Pyrite Iron Sulfide Solar Cells Made from Solution,” award number DE-EE0005324, at the University of California, Irvine, from 9/1/11 thru 11/30/16. The project goal was to develop iron pyrite (cubic FeS2) as an absorber layer for solution-processible p-n heterojunction solar cells with a pathway to >20% power conversion efficiency. Project milestones centered around seven main Tasks: (1) make device-quality pyrite thin-films from solar ink; (2) develop an ohmic bottom contact with suitable low resistivity; (3) produce a p-n heterojunction with VOC > 400 mV; (4) make a solar cell with >5% power conversion efficiency; (5) use alloying to increase the pyrite band gap to ~1.2-1.4 eV; (6) produce a p-n heterojunction with VOC > 500 mV; and finally (7) make a solar cell with >10% power conversion efficiency. In response to project findings, the Tasks were amended midway through the project to focus particular effort on passivating the surface of pyrite in order to eliminate excessively-strong surface band bending believed to be responsible for the low VOC of pyrite diodes. Major project achievements include: (1) development and detailed characterization of several new solution syntheses of high-quality thin-film pyrite, including two “molecular ink” routes; (2) demonstration of Mo/MoS2 bilayers as good ohmic bottom contacts to pyrite films; (3) fabrication of pyrite diodes with a glass/Mo/MoS2/pyrite/ZnS/ZnO/AZO layer sequence that show VOC values >400 mV and as high as 610 mV at ~1 sun illumination, although these high VOC values ultimately proved irreproducible; (4) established that ZnS is a promising n-type junction partner for pyrite; (5) used density functional theory to show that the band gap of pyrite can be increased from ~1.0 to a more optimal 1.2-1.3 eV by alloying with oxygen; (6) through extensive measurements of ultrahigh

  16. Technical problems of coal-liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Sakabe, T.

    1974-10-01

    A discussion based partly on the author's experience with a 60 kg/day pilot plant for coal paste liquefaction operated by the Japan National Research Institute for Pollution and Resources from 1956 to 1961 covers the hydrogenation technology developed by I.G. Farbenindustrie in the 1930's, including composition and properties of the coal and the coal/oil/catalyst paste, heat exchange and energy requirement, and reaction conditions, catalysts, and products of the German industrial plants of the 1930's and 1940's, the demonstration plant of the U.S. Bureau of Mines (1949 to 1952), and the Japanese test plant; and brief surveys of the process developed by Carbide and Carbon Chem. Co., the CSF method by Consolidated Coal Co., and the H-Coal process by Hydrocarbon Research, Inc.

  17. Final Technical Report. Reactivity of Iron-Bearing Minerals and CO2 Sequestration and Surface Chemistry of Pyrite. An Interdisciplinary Approach

    Energy Technology Data Exchange (ETDEWEB)

    Strongin, Daniel [Temple Univ., Philadelphia, PA (United States)

    2014-12-31

    adsorption of phospholipid on the surface to selectively suppress the reactivity of these sites could of potential importance for suppressing acid mine drainage in the environment (a problem common to coal-mining sites). Biotic studies showed that microbial activity that promotes the oxidation of pyrite to produce AMD could also be suppressed by the adsorption of phospholipid.

  18. Biochemical removal of HAP precursors from coal. Quarterly technical progress report, April--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Analytical methods were finalized and all analyses completed on shake flask tests with Indiana No. 5 and Pittsburgh No. 8 coal. A column leaching-rotating biological contractor (RBC) unit was used to bioleach pyrite and hazardous air pollutant precursors from Pittsburgh No. 8 coal. Shake flask tests with Rosebud subbituminous coal were begun. In connection with upcoming slurry column reactor tests, coal was prepared and shipped to INEL, and a detailed work plan was developed for operation and sampling for the tests. A manuscript and poster was prepared for presentation at the PETC contractors conference.

  19. Pyritic waste from precombustion coal cleaning: Amelioration with oil shale retort waste and sewage sludge for growth of soya beans

    International Nuclear Information System (INIS)

    Lewis, B.G.; Gnanapragasam, N.; Stevens, M.L.

    1994-01-01

    Solid residue from fossil fuel mining and utilization generally present little hazard to human health. However, because of the high volumes generated, they do pose unique disposal problems in terms of land use and potential degradation of soil and water. In the specific case of wastes from precombustion coal cleaning, the materials include sulfur compounds that undergo oxidation when exposed to normal atmospheric conditions and microbial action and then produce sulfuric acid. The wastes also contain compounds of metals and nonmetals at concentrations many times those present in the original raw coal. Additionally, the residues often contain coal particles and fragments that combust spontaneously if left exposed to the air, thus contributing to the air pollution that the coal cleaning process was designed to prevent. Federal and state efforts in the United States to ameliorate the thousands of hectares covered with these wastes have focused on neutralizing the acidity with limestone and covering the material with soil. The latter procedure creates additional degraded areas, which were originally farmland or wildlife habitat. It would seem preferable to reclaim the coal refuse areas without earth moving. The authors describe here experiments with neutralization of coal waste acidity using an alkaline waste derived from the extraction of oil from oil shale to grow soya beans (Glycine max. [L]) on a mixture of wastes and sewage sludge. Yield of plant material and content of nutrients an potentially toxic elements in the vegetation and in the growth mixtures were determined; results were compared with those for plants grown on an agricultural soil, with particular focus on boron

  20. The use of mixed pyrrhotite/pyrite catalysts for co-liquefaction of coal and waste rubber tires

    Energy Technology Data Exchange (ETDEWEB)

    Dadyburjor, D.B.; Zondlo, J.W.; Sharma, R.K. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1995-12-31

    The overall objective of this research program is to determine the optimum processing conditions for tire/coal co-liquefaction. The catalysts used will be a ferric-sulfide-based materials, as well as promising catalysts from other consortium laboratories. The intent here is to achieve the maximum coal+tire conversion at the mildest conditions of temperature and pressure. Specific objectives include an investigation of the effects of time, temperature, pressure, catalyst and co-solvent on the conversion and product slate of the co-liquefaction. Accomplishments and conclusions are discussed.

  1. The chemical enhancement of the triboelectric separation of coal from pyrite and ash: A novel approach for electrostatic separation of mineral matter from coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, R.M.; DiMare, S.; Sabatini, J.

    1992-02-01

    Arthur D. Little, Inc., under contract to the US DOE Pittsburgh Energy Technology Center, has developed a triboelectric separation device for coal beneficiation, that employs an entrained-flow, rotating-cylinder concept. The described apparatus has been used to test the efficacy of chemical pretreatment and in-situ treatment of coal on separation efficiency. Coal particle entrainment is achieved with gaseous carbon dioxide and particle collection is accomplished by an electrostatic plate separator. The triboelectric separation device incorporates instrumentation for the direct measurement of charge in the dilute-phase particle stream. Some of the pretreatment materials investigated under this project to modify the surface charging characteristics of the coal included oleic acid, sodium oleate, quinoline and dicyclohexylamine. Ammonia and sulfur dioxide at a concentration up to 1000 ppM was used for in-situ treatment of the coal, with carbon dioxide as the carrier/inerting gas. Nitrogen was used earlier in the test program as the carrier/inerting gas for the coal, but a severe arcing problem was encountered in the electrostatic collector with nitrogen as the carrier gas. This problem did not occur when carbon dioxide was used. The report covers the chemical treatment employed, and summarizes and interprets the results achieved. In addition, an economic analysis of a full scale system based on this concept is presented.

  2. The chemical enhancement of the triboelectric separation of coal from pyrite and ash: A novel approach for electrostatic separation of mineral matter from coal

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, R.M.; DiMare, S.; Sabatini, J.

    1992-02-01

    Arthur D. Little, Inc., under contract to the US DOE Pittsburgh Energy Technology Center, has developed a triboelectric separation device for coal beneficiation, that employs an entrained-flow, rotating-cylinder concept. The described apparatus has been used to test the efficacy of chemical pretreatment and in-situ treatment of coal on separation efficiency. Coal particle entrainment is achieved with gaseous carbon dioxide and particle collection is accomplished by an electrostatic plate separator. The triboelectric separation device incorporates instrumentation for the direct measurement of charge in the dilute-phase particle stream. Some of the pretreatment materials investigated under this project to modify the surface charging characteristics of the coal included oleic acid, sodium oleate, quinoline and dicyclohexylamine. Ammonia and sulfur dioxide at a concentration up to 1000 ppM was used for in-situ treatment of the coal, with carbon dioxide as the carrier/inerting gas. Nitrogen was used earlier in the test program as the carrier/inerting gas for the coal, but a severe arcing problem was encountered in the electrostatic collector with nitrogen as the carrier gas. This problem did not occur when carbon dioxide was used. The report covers the chemical treatment employed, and summarizes and interprets the results achieved. In addition, an economic analysis of a full scale system based on this concept is presented.

  3. Costs of coal liquefaction: influences of technical/economic risk

    Energy Technology Data Exchange (ETDEWEB)

    Tillman, D.A.

    1987-02-01

    Despite the recent declines in the world price of oil, the potential for manufacturing synthetic liquids from coal remains a significant economic force. Consequently, it is important to determine the approximate costs of synthetic liquid fuels from coal. Further, it is important to evaluate how those costs relate to crude oil prices, and at what world oil price synthetic fuels will be introduced. Finally, it is important to evaluate the influences of technical and financial risk on the cost of coal liquids, and whether experience can reduce the cost of manufacturing such coal-based fuels. This paper focuses on the risk issue as it relates to the discount rate, and then estimates the cost of synthetic fuels from solvent extraction and coal-to-methanol processes. At the point of introduction the cost of syncrude is about 8.60 dollars per million Btu and the cost of coal based methanol is about 11.90 dollars per million Btu. The price of crude oil required to achieve introduction of syncrude is about 10.70 dollars per million (or over 62 dollars per barrel). Building pioneer plants can reduce the cost of coal liquids, however. It is estimated that reducing the economic risk by experience can bring about a reduction in syncrude costs of about 1.70 million dollars Btu, and can bring about a reduction in methanol costs of about 2.30 dollars per million Btu. Such savings achieved by experience are equivalent to dramatic improvements in capital cost, operating cost, or fuel cost. 12 references.

  4. Effects of selective handling of pyritic, acid-forming materials on the chemistry of pore gas and ground water at a reclaimed surface coal mine in Clarion County, PA, USA

    Science.gov (United States)

    Cravotta,, Charles A.; Dugas, Diana L.; Brady, Keith; Kovalchuck, Thomas E.

    1994-01-01

    A change from dragline to “selective handling” mining methods at a reclaimed surface coal mine in western Pennsylvania did not significantly affect concentrations of metals in ground water because oxidation of pyrite and dissolution of siderite were not abated. Throughout the mine, placement of pyritic material near the land surface facilitated the oxidation of pyrite, causing the consumption of oxygen (O2) and release of acid, iron, and sulfate ions. Locally in the unsaturated zone, water sampled within or near pyritic zones was acidic, with concentrations of sulfate exceeding 3,000 milligrams per liter (mg/L). However, acidic conditions generally did not persist below the water table because of neutralization by carbonate minerals. Dissolution of calcite, dolomite, and siderite in unsaturated and saturated zones produced elevated concentrations of carbon dioxide (CO2), alkalinity, calcium, magnesium, iron, and manganese. Alkalinity concentrations of 600 to 800 mg/L as CaCO3 were common in water samples from the unsaturated zone in spoil, and alkalinities of 100 to 400 mg/L as CaCO3 were common in ground-water samples from the underlying saturated zone in spoil and bedrock. Saturation indices indicated that siderite could dissolve in water throughout the spoil, but that calcite dissolution or precipitation could occur locally. Calcite dissolution could be promoted as a result of pyrite oxidation, gypsum precipitation, and calcium ion exchange for sodium. Calcite precipitation could be promoted by evapotranspiration and siderite dissolution, and corresponding increases in concentrations of alkalinity and other solutes. Partial pressures of O2 (Po2) and CO2 (Pco2) in spoil pore gas indicated that oxidation of pyrite and precipitation of ferric hydroxide, coupled with dissolution of calcite, dolomite, and siderite were the primary reactions affecting water quality. Highest vertical gradients in Po2, particularly in the near-surface zone (0-1 m), did not correlate

  5. Exploratory research on solvent refined coal liquefaction. Annual technical progress report, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This report summarizes the progress of the Exploratory Research on Solvent Refined Coal Liquefaction project by The Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory during 1979. In a series of experiments with varying feed gas composition, low levels (5 to 10 mole %) of carbon monoxide had little effect on the SRC II processing of Pittsburgh Seam coal (Powhatan No. 5 Mine) while higher levels (20 to 40 mole %) resulted in a general degradation of operability and reduced oil yields. Addition of finely divided (approx. 1 ..mu..m) pyrite to the reactive Powhatan coal had little effect on oil yields although the molecular weight of the distillation residue was apparently decreased. When finely divided pyrite and magnetite were added to the less reactive coals from the Loveridge and Blacksville No. 1 Mines (also Pittsburgh Seam), however, substantial increases in oil yields and product quality were obtained. In a comparison of upflow and downflow dissolver configurations with Powhatan coal in the SRC II mode, there was no difference in yields or product quality. A study characterizing specific reactors revealed a significantly higher conversion in the SRC I mode with a reactor approximating plug flow conditions compared to a completely backmixed reactor. In the SRC II mode there was only a slightly higher oil yield with the plug flow reactor.

  6. Total Factor Productivity Growth, Technical Progress & Efficiency Change in Vietnam Coal Industry - Nonparametric Approach

    Science.gov (United States)

    Phuong, Vu Hung

    2018-03-01

    This research applies Data Envelopment Analysis (DEA) approach to analyze Total Factor Productivity (TFP) and efficiency changes in Vietnam coal mining industry from 2007 to 2013. The TFP of Vietnam coal mining companies decreased due to slow technological progress and unimproved efficiency. The decadence of technical efficiency in many enterprises proved that the coal mining industry has a large potential to increase productivity through technical efficiency improvement. Enhancing human resource training, technology and research & development investment could help the industry to improve efficiency and productivity in Vietnam coal mining industry.

  7. Reaction mechanism of coal liquefaction: hydrogenolysis of model compound using synthetic pyrite as catalysts. 7. Property change of synthetic pyrite catalyst with the time after production; Sekitan ekika hanno kiko (model kagobutsu no hanno). 7. Gosei ryukatetsu shokubai no keiji henka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H.; Meno, H.; Uemaki, O.; Shibata, T.; Tsuji, T. [Hokkaido University, Sapporo (Japan)

    1996-10-28

    Reactions of various model compounds were investigated using synthetic pyrites for coal liquefaction. In this study, successive changes of the catalysts were investigated from the reactions of model compounds by using three different synthetic pyrites with the lapse of time after production. Benzyl phenyl ether, dibenzyl, and n-octylbenzene were used as model compounds. Reactions were conducted in an autoclave, into which sample, catalyst, decalin as solvent, and initial hydrogen pressure 10 MPa were charged. The autoclave was held at 450 or 475{degree}C of reaction temperature for 1 hour. The catalyst with a shorter lapse of time after production acted to hydrogen transfer, and inhibited the formation of condensation products due to the stabilization of decomposed fragment. It also acted to isomerization of materials by cutting alkyl side chains. When adding sulfur to the catalyst with longer lapse of time after production under these reaction conditions, it inhibited the formation of condensation products for the reaction of benzyl phenyl ether. However, it did not provide the effect for the reaction of n-octylbenzene. 5 refs., 3 figs.

  8. Thermal decomposition of pyrite

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Popovic, S.

    1992-01-01

    Thermal decomposition of natural pyrite (cubic, FeS 2 ) has been investigated using X-ray diffraction and 57 Fe Moessbauer spectroscopy. X-ray diffraction analysis of pyrite ore from different sources showed the presence of associated minerals, such as quartz, szomolnokite, stilbite or stellerite, micas and hematite. Hematite, maghemite and pyrrhotite were detected as thermal decomposition products of natural pyrite. The phase composition of the thermal decomposition products depends on the terature, time of heating and starting size of pyrite chrystals. Hematite is the end product of the thermal decomposition of natural pyrite. (author) 24 refs.; 6 figs.; 2 tabs

  9. TECHNICAL AND ECONOMICAL ANALYSIS OF THE DEVELOPMENT OF NORTH-SOSVINSK BROWN-COAL FINDINGS

    Directory of Open Access Journals (Sweden)

    S.V. Fedorov

    2007-06-01

    Full Text Available In 2006, the company of "Uralgiproshaht" produced a work "based on the investing of the development and acquiring North-Sosvinsk coal findings". The article brings forth the results of technical and economical findings based on the open development of Liulinskiy, Otorinskiy, and Toliinskiy brown-coal findings.

  10. Use of hard coal tailings for landfill construction with particular consideration to pyrite decay and to suitability of tailings as a geochemical barrier; Die Verwendung von Steinkohlebergematerialien im Deponiebau im Hinblick auf die Pyritverwitterung und die Eignung als geochemische Barriere

    Energy Technology Data Exchange (ETDEWEB)

    Schuering, J.

    1996-10-01

    The purpose of the present paper was to determine the hazard potential of acid formation during oxidation of the pyrite naturally contained in hard coal tailings and the efficacy of such tailings as a barrier against pollutants. The results were intended to show to what extent tailings can be recycled as a valuable material. This would not only offer an alternative to the land-consuming practice of dumping, which upon exhaustion of buffering capacity also gives rise to the problems associated with acid pit water, but would also allow the conservation of natural resources otherwise consumed in the sealing of landfills. (orig./HS) [Deutsch] Ziel dieser Arbeit war zum einen die Erfassung des Gefaehrdungspotentials durch die Saeurebildung bei der Oxidation des geogen im Bergmaterial enthaltenen Pyrits und zum anderen die Wirksamkeit als Barriere gegenueber Schadstoffen. Die Ergebnisse sollten aufzeigen, inwieweit das Bergematerial als Werkstoff eine weitere Verwendung finden kann. Von Bedeutung ist dabei nicht nur die Alternative zur flaechenintensiven Aufhaldung und den, bei Erschoepfung der Pufferkapazitaet, unter Umstaenden verbundenen Problemen bei der Bildung Saurer Grubenwaesser, sondern auch die Schonung natuerlicher Ressourcen bei der Verwendung in Deponieabdichtungen. (orig./HS)

  11. Technical note: Guide to groundwater monitoring for the coal industry

    African Journals Online (AJOL)

    It is well established in literature that the environmental impacts associated with the coal industry are numerous. In respect of South Africa's groundwater resources the major impact of the coal industry is a reduction in groundwater quantity and quality. There is therefore a need to proactively prevent or minimise these ...

  12. Controlling incipient oxidation of pyrite for improved rejection. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Richardson, P.E.; Tao, D.P.

    1996-04-01

    It is well known that superficial oxidation of pyrite produces a hydrophobic sulfur-rich surface and creates problems in separating the mineral from coal using surface-based processes such as flotation and agglomeration. Numerous studies of pyrite oxidation have been conducted but most of them were concerned with the advanced stages of oxidation, and as a result it was not possible to establish a relationship between oxidation and flotation behavior. A better understanding of the mechanisms and kinetics of the incipient oxidation reactions, which may vary with the origin, morphology, texture, and solid state properties of pyrite, can lead to the development of new processes that can improve pyrite rejection from coal. This project is aimed at better understanding of the mechanisms involved during the initial stages of pyrite oxidation to foster the development of advanced coal cleaning technologies. Studies were conducted by fracturing pyrite electrodes in-situ in an electrochemical cell to create virgin surfaces. Electrochemical and photoelectrochemical techniques were employed to characterize the incipient oxidation of pyrite in aqueous solutions. Microflotation tests were conducted to obtain information on the hydrophobicity of pyrite under controlled E{sub h} and pH conditions, and the results were correlated with electrochemical studies.

  13. Fundamental research on surface science of coal in support of physical beneficiation of coal: Quarterly technical progress report, January 1--March 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Good, R. J.; Keller, Jr., D. V.

    1989-01-01

    Research on coal surfaces continued. Our contact angle study of the decane-water-coal system has been extended using various ranks of coal. The study of the effect of surface oxidation on contact angles has also been extended to Upper Freeport, Illinois No. 6 and Kentucky No. 9 coals. Measurements of contact angles of liquid-air interfaces, on polished surfaces of coal of two different ranks, have been made using the captive drop technique. The data have been analyses using the acid/base theory. Some preliminary contact angle measurements have been made on rock pyrite, using the microscopic technique. The measurements were carried out for decane-water interfaces. A study of laboratory-scale agglomeration has been undertaken, using an Osterizer blender. The coals used were Illinois No. 6 and Kentucky No. 9. The effect of CO/sub 2/ on the agglomeration process has been looked into. Finally, the adsorption alcohols (cyclohexanol and n-octanol) from both aqueous and non-aqueous solutions, onto coal, has been measured. Two ranks of coal were used: Upper Freeport (mvb) and Illinois No. 6 (hvcb). 9 refs., 6 figs., 17 tabs.

  14. Engineering Development of Advanced Physical Fine Coal Cleaning Technologies: Froth flotation. Quarterly technical progress report No. 21, October 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing, other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate.

  15. Joseph Conrad and the spontaneous combustion of coal - Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Walters, A.D. [Kilborn Engineering Pacific Ltd., Vancouver, BC (Canada)

    1996-12-31

    Joseph Conrad`s novel `Youth` described an on-board fire and explosion from transported coal between Sumatra and Bangka Island. This incident is based on Conrad`s experience as a mariner transporting coal, and displays a detailed knowledge of the technical issues and preventative actions involved in the spontaneous combustion of coal cargoes at sea. The coal concerned was West Hartley coal, and in this article the author examines the combustion characteristics of this coal, and the historical information available on the explosion on board the `Palestine`. The reasons for spontaneous combustion are examined, with particular attention paid to oxidation, moisture content and pyrite oxidation. West Hartley coal was a high volatile bituminous coal, with high self-heating tendencies, and so likely to undergo spontaneous combustion in the right conditions. Self-heating in ships is now well researched as a result of the international maritime coal trade. 21 refs., 3 figs., 7 tabs.

  16. Development of a Coal Quality Expert. Technical progress report No. 6, [July 1--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-20

    This is the sixth Technical Progress Report, describing work performed under DOE Contract No. DE-FC22-90PC89663, ``Development of a Coal Quality Expert.`` The contract is a Cooperative Agreement between the US Department of Energy, CQ Inc., and Combustion Engineering, Inc. This report covers the period from July 1 through September 30, 1991. Four companies and seven host utilities have teamed with CQ Inc. and C-E to perform the work on this project. The work falls under DOE`s Clean Coal Technology Program category of ``Advanced Coal Cleaning.`` The 45-month project will provide the utility industry with a PC expert system to confidently and inexpensively evaluate the potential for coal cleaning, blending, and switching options to reduce emissions while producing lowest cost electricity. Specifically, this project will: Enhance the existing Coal Quality Information System (CQIS) database and Coal Quality Impact Model (CQIM) to allow confident assessment of the effects of cleaning on specific boiler cost and performance; and develop and validate a methodology, Coal Quality Expert (CQE) which allows accurate and detailed predictions of coal quality impacts on total power plant capital cost, operating cost, and performance based upon inputs from inexpensive bench-scale tests. The project consists of the following seven tasks: Project management; coal cleanability characterization; pilot-scale combustion testing; utility boiler field testing; CQIM completion and development of CQE specification; develop CQE and CQE workstation testing and Validation.

  17. Development of a Coal Quality Expert. Final technical progress report No. 9

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-08

    This is the ninth Technical Progress Report, describing work performed under DOE Contract No. (DE-FC2290PC896631) ``Development of a Coal Quality Expert.`` The contract is a Cooperative Agreement between the US Department of Energy, CQ Inc., and ABB Combustion Engineering, Inc. This report covers the period from April 1, through June 30, 1992. Four companies and seven host utilities have teamed with CQ Inc. and ABB/CE to perform the work on this project. The work falls under DOE`s Clean Coal Technology Program category of ``Advanced Coal Cleaning.`` The 45-month project will provide the utility industry with a PC expert system to confidently and inexpensively evaluate the potential for coal cleaning blending, and switching options to reduce emissions while producing lowest cost electricity. Specifically, this project will: (1) Enhance the existing Coal Quality Information System (CQIS) database and. Coal Quality Impact Model (CQIM) to allow confident assessment of the effects of cleaning on specific boiler cost and performance. (2) Develop and validate a methodology, Coal Quality Expert (CQE) which allows accurate and detailed predictions of coal quality impacts on total power plant capital cost, operating cost, and performance based upon inputs from inexpensive bench-scale tests.

  18. Linked-cone DEA profit ratios and technical efficiency with application to Illinois coal mines

    International Nuclear Information System (INIS)

    Thompson, R.G.; Dharmapala, P.S.; Thrall, R.M.

    1995-01-01

    The authors develop a theory stating that Data Envelopment Analysis (DEA) profit ratios and technical efficiency measures require separate treatment. This point is illustrated by analysis of an example problem; showing that DEA technical efficiency does not necessarily imply a DEA maximum profit ratio; and that a DEA maximum profit ratio does not necessarily imply DEA technical efficiency. The mathematical framework underlying this argument is provided. Application of the concepts to Illinois coal mining data lends support to the need for separate treatment of DEA technical efficiency and DEA profit ratios. 31 refs., 4 figs., 9 tabs

  19. Linked-cone DEA profit ratios and technical efficiency with application to Illinois coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, R.G.; Dharmapala, P.S.; Thrall, R.M. [University of Houston, Houston, TX (United States). Dept. of Decision and Information Sciences

    1995-04-01

    The authors develop a theory stating that Data Envelopment Analysis (DEA) profit ratios and technical efficiency measures require separate treatment. This point is illustrated by analysis of an example problem; showing that DEA technical efficiency does not necessarily imply a DEA maximum profit ratio; and that a DEA maximum profit ratio does not necessarily imply DEA technical efficiency. The mathematical framework underlying this argument is provided. Application of the concepts to Illinois coal mining data lends support to the need for separate treatment of DEA technical efficiency and DEA profit ratios. 31 refs., 4 figs., 9 tabs.

  20. Enhancement of surface properties for coal beneficiation

    Energy Technology Data Exchange (ETDEWEB)

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  1. Technical, environmental, and economic assessment of deploying advanced coal power technologies in the Chinese context

    International Nuclear Information System (INIS)

    Zhao Lifeng; Xiao Yunhan; Gallagher, Kelly Sims; Wang Bo; Xu Xiang

    2008-01-01

    The goal of this study is to evaluate the technical, environmental, and economic dimensions of deploying advanced coal-fired power technologies in China. In particular, we estimate the differences in capital cost and overall cost of electricity (COE) for a variety of advanced coal-power technologies based on the technological and economic levels in 2006 in China. This paper explores the economic gaps between Integrated Gasification Combined Cycle (IGCC) and other advanced coal power technologies, and compares 12 different power plant configurations using advanced coal power technologies. Super critical (SC) and ultra super critical (USC) pulverized coal (PC) power generation technologies coupled with pollution control technologies can meet the emission requirements. These technologies are highly efficient, technically mature, and cost-effective. From the point of view of efficiency, SC and USC units are good choices for power industry. The net plant efficiency for IGCC has reached 45%, and it has the best environmental performance overall. The cost of IGCC is much higher, however, than that of other power generation technologies, so the development of IGCC is slow throughout the world. Incentive policies are needed if IGCC is to be deployed in China

  2. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  3. Operation of a semi-technical pilot plant for nuclear aided steam gasification of coal

    International Nuclear Information System (INIS)

    Kirchhoff, R.; Heek, K.H. van; Juentgen, H.; Peters, W.

    1984-01-01

    After intensive investigations on a small scale, the principle of the process has been tested in a semi-technical pilot plant. In its gasifier a fluidized bed of approx. 1 m 2 cross-section and of up to 4 m height is operated at 40 bar. Heat is supplied to the bed from an immersed heat exchanger with helium flowing through it, which is heated electrically. The plant was commissioned in 1976 and has been in hot operation for approx. 23000 h, over 13000 h whereof account for coal gasification. Roughly 1600 t of coal have been put through. During recent years the processing of German caking long-flame gas coal and the marked improvement of the process by the use of catalysts have been demonstrated successfully. (orig.)

  4. Pyrite footprinting of RNA

    International Nuclear Information System (INIS)

    Schlatterer, Jörg C.; Wieder, Matthew S.; Jones, Christopher D.; Pollack, Lois; Brenowitz, Michael

    2012-01-01

    Highlights: ► RNA structure is mapped by pyrite mediated · OH footprinting. ► Repetitive experiments can be done in a powdered pyrite filled cartridge. ► High · OH reactivity of nucleotides imply dynamic role in Diels–Alderase catalysis. -- Abstract: In RNA, function follows form. Mapping the surface of RNA molecules with chemical and enzymatic probes has revealed invaluable information about structure and folding. Hydroxyl radicals ( · OH) map the surface of nucleic acids by cutting the backbone where it is accessible to solvent. Recent studies showed that a microfluidic chip containing pyrite (FeS 2 ) can produce sufficient · OH to footprint DNA. The 49-nt Diels–Alder RNA enzyme catalyzes the C–C bond formation between a diene and a dienophile. A crystal structure, molecular dynamics simulation and atomic mutagenesis studies suggest that nucleotides of an asymmetric bulge participate in the dynamic architecture of the ribozyme’s active center. Of note is that residue U42 directly interacts with the product in the crystallized RNA/product complex. Here, we use powdered pyrite held in a commercially available cartridge to footprint the Diels–Alderase ribozyme with single nucleotide resolution. Residues C39 to U42 are more reactive to · OH than predicted by the solvent accessibility calculated from the crystal structure suggesting that this loop is dynamic in solution. The loop’s flexibility may contribute to substrate recruitment and product release. Our implementation of pyrite-mediated · OH footprinting is a readily accessible approach to gleaning information about the architecture of small RNA molecules.

  5. Pyrite footprinting of RNA

    Energy Technology Data Exchange (ETDEWEB)

    Schlatterer, Joerg C., E-mail: joerg.schlatterer@einstein.yu.edu [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY (United States); Wieder, Matthew S. [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY (United States); Jones, Christopher D.; Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, NY (United States); Brenowitz, Michael [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY (United States)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer RNA structure is mapped by pyrite mediated {sup {center_dot}}OH footprinting. Black-Right-Pointing-Pointer Repetitive experiments can be done in a powdered pyrite filled cartridge. Black-Right-Pointing-Pointer High {sup {center_dot}}OH reactivity of nucleotides imply dynamic role in Diels-Alderase catalysis. -- Abstract: In RNA, function follows form. Mapping the surface of RNA molecules with chemical and enzymatic probes has revealed invaluable information about structure and folding. Hydroxyl radicals ({sup {center_dot}}OH) map the surface of nucleic acids by cutting the backbone where it is accessible to solvent. Recent studies showed that a microfluidic chip containing pyrite (FeS{sub 2}) can produce sufficient {sup {center_dot}}OH to footprint DNA. The 49-nt Diels-Alder RNA enzyme catalyzes the C-C bond formation between a diene and a dienophile. A crystal structure, molecular dynamics simulation and atomic mutagenesis studies suggest that nucleotides of an asymmetric bulge participate in the dynamic architecture of the ribozyme's active center. Of note is that residue U42 directly interacts with the product in the crystallized RNA/product complex. Here, we use powdered pyrite held in a commercially available cartridge to footprint the Diels-Alderase ribozyme with single nucleotide resolution. Residues C39 to U42 are more reactive to {sup {center_dot}}OH than predicted by the solvent accessibility calculated from the crystal structure suggesting that this loop is dynamic in solution. The loop's flexibility may contribute to substrate recruitment and product release. Our implementation of pyrite-mediated {sup {center_dot}}OH footprinting is a readily accessible approach to gleaning information about the architecture of small RNA molecules.

  6. Coal

    International Nuclear Information System (INIS)

    Muir, D.A.

    1991-01-01

    The international coal market trends are outlined and the place of Australian coal industry is discussed. It is shown that while the world supply and demand for coal has begun to tighten, the demand for coal is expected to remain strong in both Asia and Europe. Consequently, in 1991-1992 Australian black coal production and export returns are forecast to rise by 4% and 7% respectively. 1 fig

  7. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 1, Final technical report, October 1, 1991--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., (United States)

    1994-12-31

    The overall objective of this project was to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrated coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. Heterofunctional solvents were the most effective in swelling coals. Also solvent blends such as isopropanol/water were more effective than pure solvents alone. Impregnating slurry catalysts simultaneously during coal swelling showed that better uptake was achieved with nonswelling solvent and higher impregnation temperature. Some enhancement in initial coal conversion was seen liquefying SO{sub 2}-treated Black Thunder coal with slurry catalysts, and also when hydrogen donor liquefaction solvents were used. Noncatalytic reactions showed no benefit from SO{sub 2} treatment. Coupling coal swelling and SO{sub 2} treatment with slurry catalysts was also not beneficial, although high conversion was seen with continuous operation and long residence time, however, similar high conversion was observed with untreated coal. SO{sub 2} treatment is not economically attractive unless it provides about 17% increase in coal reactivity. In most cases, the best results were obtained when the coal was untreated and the slurry catalyst was added directly into the reactor. Foster Wheeler`s ASCOT process had better average liquid yields than either Wilsonville`s vacuum tower/ROSE combination or delayed coking process. This liquid product also had good quality.

  8. Technical measures and engineering management measures for radiation protection in underground uraniferous coal mine

    International Nuclear Information System (INIS)

    Wang Kaihua; Ding Dexin; Zhang Zhijun; Li Guangyue

    2006-01-01

    The reserves of uraniferous coal resource account for a certain proportion of all uranium resources in China. China began to mine the uraniferous coal deposits in late 1960s. In the process of mining, much research was conducted on the control and reduction of the radiation hazards in underground uraniferous coal mine. However, such mining practice was stopped for many reasons in late 1980s. During recent years, electricity shortages have taken place from time to time. In order to alleviate the shortages, the Chinese government has decided to further develop nuclear electricity. Under such circumstances, underground mining of uraniferous coal deposits will be restarted. In order to make sure that the radiation protection will be stressed and the radiation hazards will be controlled effectively in the underground uraniferous mine, this paper gives the basic knowledge of radiation protection, describes the radiation hazards to the miners and our national dosage standards implemented in the underground mine, and, on the basis of summing-up of the past experience in mine radiation protection, presents the technical and management measures for controlling and reducing radiation hazards. (authors)

  9. Enhancement of surface properties for coal beneficiation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  10. Coal

    International Nuclear Information System (INIS)

    Teissie, J.; Bourgogne, D. de; Bautin, F.

    2001-12-01

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  11. Coal to SNG: Technical progress, modeling and system optimization through exergy analysis

    International Nuclear Information System (INIS)

    Li, Sheng; Ji, Xiaozhou; Zhang, Xiaosong; Gao, Lin; Jin, Hongguang

    2014-01-01

    Highlights: • Technical progresses of coal to SNG technologies are reported. • The entire coal to SNG system is modeled. • Coupling between SNG production and power generation is investigated. • Breakthrough points for further energy saving are determined. • System performance is optimized based on the first and second laws of thermodynamics. - Abstract: For both energy security and CO 2 emission reduction, synthetic natural gas (SNG) production from coal is an important path to implement clean coal technologies in China. In this paper, an overview of the progress of coal to SNG technologies, including the development of catalysts, reactor designs, synthesis processes, and systems integration, is provided. The coal to SNG system is modeled, the coupling between SNG production and power generation is investigated, the breakthrough points for further energy savings are determined, and the system performance is optimized based on the first and the second laws of thermodynamics. From the viewpoint of the first law of thermodynamics, the energy conversion efficiency of coal to SNG system can reach 59.8%. To reduce the plant auxiliary power, the breakthrough points are the development of low-energy-consumption oxygen production technology and gas purification technology or seeking new oxidants for coal gasification instead of oxygen. From the viewpoint of the second law of thermodynamics, the major exergy destruction in a coal to SNG system occurs in the coal gasification unit, SNG synthesis unit and the raw syngas cooling process. How to reduce the exergy destruction in these units is the key to energy savings and system performance enhancement. The conversion ratio of the first SNG synthesis reactor and the split ratio of the recycle gas are key factors that determine the performance of both the SNG synthesis process and the whole plant. A “turning point” phenomenon is observed: when the split ratio is higher than 0.90, the exergy destruction of the SNG

  12. Selection of an Appropriate Mechanized Mining Technical Process for Thin Coal Seam Mining

    Directory of Open Access Journals (Sweden)

    Chen Wang

    2015-01-01

    Full Text Available Mechanized mining technical process (MMTP related to the control method of the shearer is a vital process in thin coal seam mining operations. An appropriate MMTP is closely related to safety, productivity, labour intensity, and efficiency. Hence, the evaluation of alternative MMTP is an important part of the mining design. Several parameters should be considered in MMTP evaluation, so the evaluation is complex and must be compliant with a set of criteria. In this paper, two multiple criteria decision-making (MCDM methods, Analytic Hierarchy Process (AHP and Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE, were adopted for this evaluation. Then, the most appropriate MMTP for a thin coal seam working face was selected in China.

  13. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, April--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States)

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  14. Pulverized coal firing of aluminum melting furnaces. First annual technical progress report, May 1978-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    West, C.E.; Hines, J.E.; Stewart, D.L. Jr.; Yu, H.

    1979-10-01

    The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has begun with the design and construction of a 350 lb/h (coal) staged slagging cyclone combustor (SSCC) attached to a 7-ft dia aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 lb capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time. A major design subcontract for assistance in the design of the SSCC is 80% completed.

  15. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, January 1--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-08-01

    This is the tenth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Process oils from Wilsonville Run 262 were analyzed to provide information on process performance. Run 262 was operated from July 10 through September 30, 1991, in the thermal/catalytic Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) configuration with ash recycle. The feed coal was Black Thunder Mine subbituminous coal. The high/low temperature sequence was used. Each reactor was operated at 50% of the available reactor volume. The interstage separator was in use throughout the run. The second-stage reactor was charged with aged Criterion 324 catalyst (Ni/Mo on 1/16 inch alumina extrudate support). Slurry catalysts and sulfiding agent were fed to the first-stage reactor. Molyvan L is an organometallic compound which contains 8.1% Mo, and is commercially available as an oil-soluble lubricant additive. It was used in Run 262 as a dispersed hydrogenation catalyst precursor, primarily to alleviate deposition problems which plagued past runs with Black Thunder coal. One test was made with little supported catalyst in the second stage. The role of phenolic groups in donor solvent properties was examined. In this study, four samples from direct liquefaction process oils were subjected to O-methylation of the phenolic groups, followed by chemical analysis and solvent quality testing.

  16. Desulfurizing Coal By Chlorinolysis and Hydrogenation

    Science.gov (United States)

    Kalvinskas, J. J.; Rohatgi, N. K.

    1983-01-01

    85 percent of organic and pyritic sulfur in coal removed by combination of chlorinolysis and hydrogeneration. Coal is fed to hydrogenator after chlorination. Coal flows against hydrogen current increasing mixing and reducing hydrogen consumption. Excess hydrogen is recovered from gaseous reaction products. Product coal contained 62.5 percent less total sulfur than same coal after chlorination.

  17. Plant response to FBC waste-coal slurry solid mixtures. [Quarterly] technical report, September 1--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Darmody, R.G.; Dunker, R.E. [Illinois Univ., Urbana, IL (United States); Dreher, G.B.; Roy, W.R.; Steel, J.D. [Illinois State Geological Survey, Urbana, IL (United States)

    1994-03-01

    The goal of this project is to test the feasibility of stabilizing coal slurry solids (CSS) wastes by directly seeding plants into the waste. This is not done conventionally because the waste can generate toxic amounts of sulfuric acid. Our approach is to neutralize the potential acidity by mixing fluidized bed combustion (FBC) waste into the slurry. If successful, this approach would both help dispose of FBC wastes while providing a more economical slurry stabilization technique. The project involves growing forage plants in CSS-FBC mixtures in the greenhouse. This is the first quarter of the project. We have designed the experiment, secured greenhouse space, purchased the seeds, collected and dried the FBC and CSS samples. The samples represent a typical range of properties. We retrieved two FBC and two CSS samples. One CSS sample appears to have a higher pyrite content than the other.

  18. Coal

    International Nuclear Information System (INIS)

    Muir, D.A.

    1991-01-01

    It is estimated that World coal trade remained strong during the second quarter of 1991, with contributing factors including unseasonally large shipments to Japan for power generation, sustained Japanese steel production at around 112 Mt and some buildup in stocks in that country. Purchases by North Asian and European consumers also remained high. At the same time Soviet output and exports declined because of strikes and political unrest. In addition, exportable supplies in Poland fell. As a result the demand for Indonesian coal increased, and Australia exported larger than previously expected quantities of coal. ills

  19. Self-scrubbing coal

    International Nuclear Information System (INIS)

    Kindig, J.K.

    1992-01-01

    More than 502 million tons - 65 percent of all coal shipped to utilities in 1990 - were above 1.2 pounds of sulfur dioxide per million Btu. Most of the coal, even though cleaned in conventional coal preparation plants, still does not meet the emission limitation the Clean Air Act Amendments mandate for the year 2000. To cope with this fact, most utilities plan to switch to low sulfur (western U.S. or Central Appalachian) coal or install scrubbers. Both solutions have serous drawbacks. Switching puts local miners out of work and weakens the economy in the utility's service territory. Scrubbing requires a major capital expenditure by the utility. Scrubbers also increase the operating complexity and costs of the generating station and produce yet another environmental problem, scrubber sludge. Employing three new cost-effective technologies developed by Customer Coals International (CCl), most non-compliance coals east of the Mississippi River can be brought into year-2000 compliance. The compliance approach employed, depends upon the characteristics of the raw coal. Three types of raw coal are differentiated, based upon the amount of organic sulfur in the coals and the ease (or difficultly) of liberating the pyrite. They are: Low organic sulfur content and pyrite that liberates easily. Moderate organic sulfur content and pyrite that liberates easily. High organic sulfur content or the pyrite liberates with difficulty. In this paper examples of each type of raw coal are presented below, and the compliance approach employed for each is described. The names of the beneficiated coal products produced from each type of raw coal give above are: Carefree Coal, Self-Scrubbing Coal and Dry-Scrubbing Coal

  20. The use of FBC wastes in the reclamation of coal slurry solids. Final technical report, September 1, 1991--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Dreher, G.B.; Roy, W.R.; Steele, J.D. [Illinois State Geological Survey, Champaign, IL (United States)

    1992-12-31

    Because the hydrogen peroxide oxidation technique underestimated the amount of pyrite in the CSS-2 samples, the amount of FBC waste or sized Ag LS used in each mixture with CSS-2 were less than necessary to satisfy the stoichiometric amount of acid that could be generated by complete oxidation of the pyrite in the CSS samples. However, the leaching experiments demonstrated that FBC waste is as effective as Ag LS in neutralizing the generated acid, and that the leachate pH would be approximately the same as that from Ag LS/CSS mixtures. In fact, the calcium hydroxide from the original hydrated FBC waste was converted to calcium carbonate in a short period of time, as indicated by chemical and mineralogical data. If the laboratory leaching experiments had continued for a long enough term, the alkaline materials present either in the unleached CSS-2, or added to the FBC wastes would have been consumed before all the pyrite had been oxidized, because of the deficiency of FBC waste in the mixtures. There is some concern, because of the concentrations of sodium and chloride in the initial leachates, over the toxicity of the leachates to plants. Although both these solutes were flushed quickly from the laboratory and outdoor weathering solids, this might not be the case in a coal slurry pond. Therefore, salt-tolerant plants might have to be selected for revegetation of the amended coal slurry solids.

  1. EDS coal liquefaction process development. Phase V. Quarterly technical progress report, July 1-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-02-01

    This report is the tenth Quarterly Technical Progress Report for US Department of Energy Cooperative Agreement No. DE-FC01-77ET10069 (formerly EF-77-A-01-2893) for Exxon Donor Solvent (EDS) Coal Liquefaction Process Development - Phase V. The Laboratory Process Research and Development studies were conducted at various Exxon Research and Engineering Co. (ER and E) facilities: Research and Development Division at Baytown, Texas; Products Research Division at Linden, New Jersey; and the Exxon Research and Development Laboratories at Baton Rouge, Louisiana. The Engineering Research and Development studies were performed at the Synthetic Fuels Engineering and Exxon Engineering Technology Departments of ER and E at Florham Park, New Jersey. The information dealing with the Management, Detailed Engineering, and Procurement activities related to revamp of the FLEXICOKING Prototype Unit was generated at Exxon Company, USA, Houston, Texas, and Exxon Engineering - Project Management Department of ER and E, Florham Park, New Jersey. The information dealing with operation of the 250 T/D Exxon Coal Liquefaction Pilot Plant (ECLP) was generated at Exxon Company, USA, Houston, Texas.

  2. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, April 1--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Lancet, M.S.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1992-11-01

    This is the eleventh Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: (1) The results of a study designed to determine the effects of the conditions employed at the Wilsonville slurry preheater vessel on coal conversion is described. (2) Stable carbon isotope ratios were determined and used to source the carbon of three product samples from Period 49 of UOP bench-scale coprocessing Run 37. The results from this coprocessing run agree with the general trends observed in other coprocessing runs that we have studied. (3) Microautoclave tests and chemical analyses were performed to ``calibrate`` the reactivity of the standard coal used for determining donor solvent quality of process oils in this contract. (4) Several aspects of Wilsonville Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) resid conversion kinetics were investigated; results are presented. Error limits associated with calculations of deactivation rate constants previously reported for Runs 258 and 261 are revised and discussed. A new procedure is described that relates the conversions of 850{degrees}F{sup +} , 1050{degrees}F{sup +}, and 850 {times} 1050{degrees}F material. Resid conversions and kinetic constants previously reported for Run 260 were incorrect; corrected data and discussion are found in Appendix I of this report.

  3. Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  4. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 260 with Black Thunder Mine subbituminous coal: Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This report presents the results of Run 260 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville. The run was started on July 17, 1990 and continued until November 14, 1990, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). Both thermal/catalytic and catalytic/thermal tests were performed to determine the methods for reducing solids buildup in a subbituminous coal operation, and to improve product yields. A new, smaller interstage separator was tested to reduce solids buildup by increasing the slurry space velocity in the separator. In order to obtain improved coal and resid conversions (compared to Run 258) full-volume thermal reactor and 3/4-volume catalytic reactor were used. Shell 324 catalyst, 1/16 in. cylindrical extrudate, at a replacement rate of 3 lb/ton of MF coal was used in the catalytic stage. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run. (TNPS was the sulfiding agent.)

  5. Potential for thermal coal and Clean Coal Technology (CCT) in the Asia-Pacific. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.J.; Long, S.

    1991-11-22

    The Coal Project was able to make considerable progress in understanding the evolving energy situation in Asia and the future role of coal and Clean Coal Technologies. It is clear that there will be major growth in consumption of coal in Asia over the next two decades -- we estimate an increase of 1.2 billion metric tons. Second, all governments are concerned about the environmental impacts of increased coal use, however enforcement of regulations appears to be quite variable among Asian countries. There is general caution of the part of Asian utilities with respect to the introduction of CCT`s. However, there appears to be potential for introduction of CCT`s in a few countries by the turn of the century. It is important to emphasize that it will be a long term effort to succeed in getting CCT`s introduced to Asia. The Coal Project recommends that the US CCT program be expanded to allow the early introduction of CCT`s in a number of countries.

  6. Influence of high-energy impact on the physical and technical characteristics of coal fuels

    Science.gov (United States)

    Mal'tsev, L. I.; Belogurova, T. P.; Kravchenko, I. V.

    2017-08-01

    Currently, in the world's large-scale coal-fired power industry, the combustion of pulverized coal is the most widely spread technology of combusting the coals. In recent years, the micropulverization technology for preparation and combustion of the coal has been developed in this field. As applied to the small-scale power industry, the method of combusting the coal in the form of a coal-water slurry has been explored for years. Fine coal powders are produced and used in the pulverized-coal gasification. Therefore, the coal preparation methods that involve high-dispersion disintegration of coals attract the greatest interest. The article deals with the problems of high-energy impact on the coal during the preparation of pulverized-coal fuels and coal-water slurries, in particular, during the milling of the coal in ball drum mills and the subsequent regrinding in disintegrators or the cavitation treatment of the coal-water slurries. The investigations were conducted using samples of anthracite and lignite from Belovskii open-pit mine (Kuznetsk Basin). It is shown that both the disintegration and the cavitation treatment are efficient methods for controlling the fuel characteristics. Both methods allow increasing the degree of dispersion of the coal. The content of the small-sized particles reground by cavitation considerably exceeds the similar figure obtained using the disintegrator. The specific surface area of the coal is increased by both cavitation and disintegration with the cavitation treatment producing a considerably greater effect. Being subjected to the cavitation treatment, most coal particles assume the form of a split characterized by the thermodynamically nonequilibrium state. Under external action, in particular, of temperature, the morphological structure of such pulverized materials changes faster and, consequently, the combustion of the treated coal should occur more efficiently. The obtained results are explained from the physical point of view.

  7. Coal plasticity at high heating rates and temperatures. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1995-05-01

    Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

  8. Carrier-microencapsulation using Si-catechol complex for suppressing pyrite floatability

    Energy Technology Data Exchange (ETDEWEB)

    Jha, R.K.T.; Satur, J.; Hiroyoshi, N.; Ito, M.; Tsunekawa, M. [Hokkaido University, Hokkaido (Japan). Graduate School of Engineering

    2008-11-15

    Pyrite (FeS{sub 2}) is a common sulfide mineral associated with valuable metal minerals and coal, and it is rejected as a gangue mineral using physical separation techniques such as froth flotation and discharged into tailing pond. In the flotation, pyrite is frequently entrapped in the froth due to its hydrophobic nature. Formation of acid mine drainage due to the air-oxidation of pyrite in the tailing pond is also a serious problem. The authors have proposed carrier-microencapsulation (CME) as a method for suppressing both the floatability and oxidation of pyrite. In this method, pyrite is coated with a thin layer of metal oxide or hydroxide using catechol solution as a carrier combined with metal ions. The layer converts the pyrite surface from hydrophobic to hydrophilic and acts as a protective coating against oxidation. The present study demonstrates the effect of CME using Si-catechol complex to suppress the pyrite floatability: The bubble pick-up experiments showed that attachment of pyrite particles to air bubble is suppressed by the CME treatment at pH 4-10, Si-catechol complex concentration over 0.5 mol m{sup -3} and treatment time within 2 min. The Hallimond tube flotation experiments showed that the pyrite floatability is suppressed by the CME treatment even in the presence of typical flotation collectors such as kerosene and xanthate. SEM-EDX analysis confirmed that Si present on the pyrite surface treated by Si-catechol complex, implying that SiO{sub 2} or SiOH{sub 4} layer formed by the CME treatment convert the pyrite surface hydrophobic to hydrophilic.

  9. [Characterization and supply of coal based fuels]. Quarterly technical report, February 1, 1988--April 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-31

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements; Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is described.

  10. Development of a coal quality expert. Technical progress report No. 6, [July 1--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-20

    The project will provide the utility industry with a PC expert system to confidently and inexpensively evaluate the potential for coal cleaning, blending, and switching options to reduce emissions while producing lowest cost electricity. Specifically, this project will: (1) Enhance the existing Coal Quality Information System (CQIS) database and Coal Quality Impact Model (CQIM) to allow confident assessment of the effects of cleaning on specific boiler cost and performance; (2) Develop and validate a methodology, Coal Quality Expert (CQE) which allows accurate and detailed predictions of coal quality impacts on total power plant capital cost, operating cost, and performance based upon inputs from inexpensive bench-scale tests.

  11. Deashing of coal liquids with ceramic membrane microfiltration and diafiltration. Final technical report, August 4, 1992--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Removal of mineral matter from liquid hydrocarbons derived from the direct liquefaction of coal is required for product acceptability. Current methods include critical solvent Deashing and filtration, both of which produce an ash reject stream containing up to 15% of the liquid hydrocarbon product. This program was directed towards development of an improved process for deashing and recovery of coal-derived residual oil: the use of ceramic membranes for high-temperature microfiltration and diafiltration. Using laboratory scale ceramic membrane modules, samples of a coal-derived residual oil containing ash were processed by crossflow microfiltration, followed by solvent addition and refiltration (diafiltration). Excellent recovery of deashed residual oil was demonstrated. Data from this program were used to develop preliminary estimates for production system capital and operating costs that will be used to assess economic feasibility. The first objective of this program was to demonstrate technical feasibility of crossflow microfiltration (MF) for removal of mineral matter from a coal derived residual oil. A second objective was to demonstrate technical feasibility of diafiltration of W concentrate using a hydrocarbon diluent.

  12. Cooperative research in coal liquefaction. Technical progress report, May 1, 1993--April 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1994-10-01

    Accomplishments for the past year are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts some of the highlights are: very promising results have been obtained from the liquefaction of plastics, rubber tires, paper and other wastes, and the coliquefaction of wastes with coal; a number of water soluble coal liquefaction catalysts, iron, cobalt, nickel and molybdenum, have been comparatively tested; mossbauer spectroscopy, XAFS spectroscopy, TEM and XPS have been used to characterize a variety of catalysts and other samples from numerous consortium and DOE liquefaction projects and in situ ESR measurements of the free radical density have been conducted at temperatures from 100 to 600{degrees}C and H{sub 2} pressures up to 600 psi.

  13. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This report discusses the effects on SRC yields of seven process variables (reactor temperature, SRT, hydrogen partial pressure, recycle ash and coal concentrations, gas velocity and coal type) predicted by second-order regression models developed from a data base containing pilot plant data with both Kentucky and Powhatan coals. The only effect of coal type in the model is a shift in each yield by a constant factor. Although some differences were found between the models developed from the Kentucky data base (1) (which we call Kentucky models) and the pooled coal models, the general conclusions of the previous report are confirmed by the new models and the assumption of similar behavior of the two coals appears to be justified. In some respects the dependence of the yields (MAF coal basis) on variables such as pressure and temperature are clearer than in the previous models. The principal trends which emerge are discussed.

  14. Inhibition of retrogressive reactions in coal/petroleum co-processing. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.; Tomic, J.

    1993-05-25

    The objective of this study was to examine the processes in coal/petroleum coprocessing systems which led to coke formation. Specifically, the interactions between the petroleum residue and coal, leading to retrogressive products, were investigated. Five coals were reacted with five model compounds in order to investigate the coal conversions in a variety of solvents and to determine the role of the solvent in promoting or inhibiting coal conversion. The selected model compounds range from paraffinic to fully aromatic and were chosen as representative of types of compounds that are found in petroleum residua. Coprocessing experiments were conducted using the five coals and three petroleum residua. The effect of temperature on coal conversions was crucial. The coal conversions at 350 and 400{degree}C seem to be governed by the nature of the coal and to a lesser extent by the petroleum residua. Negative coal conversions were observed above 400{degree}C indicating that retrogressive processes had occurred. At temperatures higher than 400{degree}C, the petroleum residua undergo physical and chemical transformations and the influence of the petroleum residua on coal conversions is significant. The structural features of the residues indicated that the residues were predominately coal-derived. An overall increase in aromaticity was observed with increasing temperature which was also accompanied by loss of oxygen functional groups. The retrogressive reactions with non-caking coals involve carbonyl and carboxyl group leading to a final solid characterized by a cross-linked structure. In the case of caking coal, these reactions are governed by loss of aromatic oxygen groups and loss of alkyl groups.

  15. Development of decision- making mechanism in engineering design of phased coal mines technical upgrade

    Science.gov (United States)

    Kulak, V. Yu; Petrova, T. V.; Novichikhin, A. V.

    2017-09-01

    The approach to a choice of a new mine design and technical upgrade of operating coal mines is substantiated. The choice of the option is made in the following way: the elements of the mine technological system are defined, for each element of the system two levels of costs are allocated - capital and operational; a graph of alternative options of the system is formed by matrix enumeration taking into account the possibility of simultaneous application of different elements, up to 10 000 scenarios are formed; capital and operating costs of options are estimated in the form of coefficients as the cost-to-cost ratio in the base variant, which has already been implemented and the costs of which are already known; ranking of the options at the level of costs and the definition of the 10 preferred are performed. It is established that the application of partial enumeration allows the costs relative to the base variant to be reduced by 10 %; the main constraint of costs reduction is the need to comply with all conditions that ensure industrial safety.

  16. Plant response to FBC waste-coal slurry solid mixtures. [Quarterly] technical report, December 1--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Darmody, R.G. [Illinois Univ., Urbana, IL (United States); Dunker, R.E. [Illinois Univ., Urbana, IL (United States). Dept. of Agronomy; Dreher, G.B.; Roy, W.R.; Steel, J.D. [Illinois State Geological Survey, Champaign, IL (United States)

    1994-06-01

    The goal of this project is to test the feasibility of stabilizing coal slurry solids (CSS) wastes by directly seeding plants into the waste. This is not done conventionally because the waste can generate toxic amounts of sulfuric acid. Our approach is to neutralize the potential acidity by mixing fluidized bed combustion (FBC) waste into the slurry. If successful this approach would both help dispose of FBC wastes while providing a more economical slurry stabilization technique. The project involves growing forage plants in CSS-FBC mixtures in the greenhouse. This is the second quarter of the project. We have designed the experiment, secured greenhouse space, purchased the seeds, collected, dried, and are analyzing the FBC and CSS samples. The samples represent a typical range of properties. We retrieved two FBC and two CSS samples. One CSS sample had a relatively high CaCO{sub 3} content relative to the pyrite content and will require no FBC to neutralize the potential acidity. The other CSS sample will require from 4.2 to 2.7% FBC material to neutralize its potential acidity.

  17. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, October 1--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  18. Pyritized ooids from the Arabian Sea basin

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.S.; Rao, Ch.M.; Reddy, N.P.C.

    . Occurrence of pyrite at turbidite intervals suggests that pyritization in high organic carbon and H2S abundant environments was mainly controlled by the supply of reactive iron. From the distribution of pyrite in the core it is inferred that reactive iron...

  19. Technical report on NEDO-conducted Western US steam coal (for power generation and boiler) survey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    The New Energy and Industrial Technology Development Organization (NEDO) conducted studies covering Wyoming, Utah, Colorado, New Mexico, and North Dakota, all in the West. Illinois and Gulf-Texas are also included. The bituminous coal of Utah and Colorado is given the highest priority as coal to be exported to Japan. It is feared, however, that the price of the bituminous coal from these areas may soar if demand increases. As for sub-bituminous coal, its price is far more stable because its reserves are basically limitless. The sub-bituminous coal, however, is not expected to be imported to Japan in the very near future because it is low in calorific power and fails to meet the conditions prerequisite to Japan's boiler fuel. Illinois can receive large orders but its coal contains more sulfur than the Western coal and a longer distance has to be covered for its transportation. As for transportation to the West Cost, freight cars are available and the port capacity can be enlarged dependent on the magnitude of demand for coal. Loading a deep draft bulk ship off shore with coarse coal slurry by pipeline is an attractive scheme. (NEDO)

  20. Microbially augmented ash and pyrite physical separation (MAAPPS): Quarterly report, September 1, 1986-November 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    The overall objective of this research is to optimize the MAAPPS process to clean finely ground coal to less than or equal to 1% ash and less than or equal to 0.5% pyritic sulfur. The MAAPPS process uses a microbial surfactant which selectively increases the hydrophilicity of ash and pyrite, thereby enhancing separation and removal of these contaminants during flotation. In experiment No. 3, good cleaning of the coal was achieved without pretreatment of the coal. Sulfur and ash levels were generally equivalent to those obtained following pretreatment in experiment No. 2. Results of experiment No. 4 confirm the results obtained in experiment No. 2. Significant decreases in sulfur and ash were noted when the coal was pretreated with the ''cell-free'' media. Yields were good, with Btu recoveries near 80%, with pyritic sulfur decreases of about 60%, and with ash reduction of 67%. Results of these experiments are preliminary and do not represent optimized conditions for ash and sulfur removal. The lack of enhanced rejection of ash and sulfur in coal pretreated with concentrated microrganisms could be the direct result of bacterial stress or injury during concentration or, more likely, the result of separating the microbial surfactant from the biomass. The enhanced rejection of ash and pyrite following treatment with the surfactant (no microbes) indicates that this surfactant may be the active material producing the desired MAAPPS effect during flotation. 10 tabs.

  1. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits

    Science.gov (United States)

    Deditius, Artur P.; Reich, Martin; Kesler, Stephen E.; Utsunomiya, Satoshi; Chryssoulis, Stephen L.; Walshe, John; Ewing, Rodney C.

    2014-09-01

    The ubiquity of Au-bearing arsenian pyrite in hydrothermal ore deposits suggests that the coupled geochemical behaviour of Au and As in this sulfide occurs under a wide range of physico-chemical conditions. Despite significant advances in the last 20 years, fundamental factors controlling Au and As ratios in pyrite from ore deposits remain poorly known. Here we explore these constraints using new and previously published EMPA, LA-ICP-MS, SIMS, and μ-PIXE analyses of As and Au in pyrite from Carlin-type Au, epithermal Au, porphyry Cu, Cu-Au, and orogenic Au deposits, volcanogenic massive sulfide (VHMS), Witwatersrand Au, iron oxide copper gold (IOCG), and coal deposits. Pyrite included in the data compilation formed under temperatures from ∼30 to ∼600 °C and in a wide variety of geological environments. The pyrite Au-As data form a wedge-shaped zone in compositional space, and the fact that most data points plot below the solid solubility limit defined by Reich et al. (2005) indicate that Au1+ is the dominant form of Au in arsenian pyrite and that Au-bearing ore fluids that deposit this sulfide are mostly undersaturated with respect to native Au. The analytical data also show that the solid solubility limit of Au in arsenian pyrite defined by an Au/As ratio of 0.02 is independent of the geochemical environment of pyrite formation and rather depends on the crystal-chemical properties of pyrite and post-depositional alteration. Compilation of Au-As concentrations and formation temperatures for pyrite indicates that Au and As solubility in pyrite is retrograde; Au and As contents decrease as a function of increasing temperature from ∼200 to ∼500 °C. Based on these results, two major Au-As trends for Au-bearing arsenian pyrite from ore deposits are defined. One trend is formed by pyrites from Carlin-type and orogenic Au deposits where compositions are largely controlled by fluid-rock interactions and/or can be highly perturbed by changes in temperature and

  2. PULVERIZATION INDUCED CHARGE: IN-LINE DRY COAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    John M. Stencel

    1999-11-12

    The technical feasibility of separating mineral matter and pyrite from coal as it is transported from pulverizers to burners in pulverized coal combustion units is examined. The charge imparted on coal during pulverization and transport to pulverized coal (PC) burners in a utility boiler is quantified. In addition to field charge measurements, an existing computational model is extended to numerically simulate charged particle motion in a turbulent gas through coal transport pipes and triboelectrostatic separation zone. Results from the field tests and numerical modeling are employed in a conceptual design and a 4--40 kg/hr laboratory-scale separator is constructed and tested. This laboratory unit is used to quantify the magnitude and differential charge imparted on coals during pulverization and transport typical in utility PC units. An electrostatic separator, designed for in-line operation between pulverizers and PC boilers, will be used to clean prepulverized coals. Theoretical and experimental data are to be used in preparing a preliminary and conceptual design for a 15 ton/hr, in-line, electrostatic coal cleaning device. Finally, the economic potential for applications to PC units is assessed.

  3. Biochemical Removal of HAP Precursors from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Gregory J

    1997-05-12

    Column biooxidation tests with Kentucky coal confirmed results of earlier shake flask tests showing significant removal from the coal of arsenic, selenium, cobalt, manganese, nickel and cadmium. Rates of pyrite biooxidation in Kentucky coal were only slightly more than half the rates found previously for Indiana and Pittsburgh coals. Removal of pyrite from Pittsburgh coal by ferric ion oxidation slows markedly as ferrous ions accumulate in solution, requiring maintenance of high redox potentials in processes designed for removal of pyrite and hazardous air pollutant (HAP) precursors by circulation of ferric solutions through coal. The pyrite oxidation rates obtained in these tests were used by Unifield Engineering to support the conceptual designs for alternative pyrite and HAP precursor bioleaching processes for the phase 2 pilot plant. Thermophilic microorganisms were tested to determine if mercury could be mobilized from coal under elevated growth temperatures. There was no evidence for mercury removal from coal under these conditions. However, the activity of the organisms may have liberated mercury physically. It is also possible that the organisms dissolved mercury and it readsorbed to the clay preferentially. Both of these possibilities are undergoing further testing. The Idaho National Engineering and Environmental Laboratory's (INEEL) slurry column reactor was operated and several batches of feed coal, product coal, waste solids and leach solutions were submitted to LBL for HAP precursor analysis. Results to date indicate significant removal of mercury, arsenic and other HAP precursors in the combined physical-biological process.

  4. Integrated coal preparation and CWF processing plant: Conceptual design and costing. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    McHale, E.T.; Paul, A.D.; Bartis, J.T. [Science Applications International Corp., McLean, VA (United States); Korkmaz, M. [Roberts and Schaefer Co., Salt Lake City, UT (United States)

    1992-12-01

    At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m{mu} for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

  5. Solvent Refined Coal (SRC) process. Quarterly technical progress report, January 1979-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    This report summarizes the progress of the Solvent Refined Coal (SRC) Project by the Pittsburg and Midway Coal Mining Co. for the Department of Energy for the period January 1, 1979 to March 31, 1979. Activities included the operation and modification of the Solvent Refined Coal Pilot Plant at Fort Lewis, Washington; the Process Development Unit P-99 at Harmarville, Pennsylvania; and research at Merriam Laboratory in Merriam, Kansas. The Pilot Plant processed Powhatan No. 5 Coal in the SRC-II mode of operation studying the effect of coal particle size and system temperature on coal slurry blending and the effect of carbon monoxide concentration in the reaction feed gas on process yields. January and February were spent completing installation of a fourth High Pressure Separator on Process Development Unit P-99 to better simulate operating conditions for the proposed Demonstration Plant. During March, one run was completed at P-99 feeding Pittsburgh Seam Coal from the Powhatan No. 5 Mine. Merriam investigations included a study of the effect of iron containing additives on SRC-I operation, the addition of carbon monoxide to the feed gas, utilization of a hydrogenated solvent (Cresap process solvent) in the SRC-I mode under both normal and short residence time operating conditions, and development of a simulated distillation technique to determine the entire boiling range distribution of product oils.

  6. The effect of selective solvent absorption on coal conversion. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.

    1993-11-01

    Using a pair of different recycle oils from Wilsonville and {sup 1}H NMR, {sup 13}C NMR, gel permeation (GPC) chromatography, high pressure liquid chromatography (HPLC), and elemental analysis, no significant differences were observed between the composition of the recycle oil and that portion of the oil not absorbed by the coal. For these complex mixtures, coals are not selective absorbants. Since most of the heteroatoms responsible for most of the specific interactions have been removed by hydrogenolyses, this is perhaps not surprising. To address the issue of the role of hydrogen bond donors in the reused as hydrogen donor coal, tetralin and 2-t-butyltetralin were used as hydrogen donor solvents. This work is reported in detail in Section 2. The basic idea is that the presence of the t-butyl group on the aromatic ring will hinder or block diffusion of the hydrogen donor into the coal resulting in lower conversions and less hydrogen transferred with 2-t-butyltetralin than with tetralin. Observed was identical amounts of hydrogen transfer and nearly identical conversions to pyridine solubles for both hydrogen donors. Diffusion of hydrogen donors into the coal does not seem to play a significant role in coal conversion. Finally, in Section 3 is discussed the unfavorable impact on conversion of the structural rearrangements which occur when Illinois No. 6 coal is swollen with a solvent. We believe this rearrangement results in a more strongly associated solid leading to the diminution of coal reactions. Hydrogen donor diffusion does not seem to be a major factor in coal conversion while the structural rearrangement does. Both areas warrant further exploration.

  7. Characterization of organic nitrogen in IBCSP coals. Final technical report, September 1, 1990--August 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Kruge, M.A.

    1991-12-31

    The overall objective of this study was to determine the content and distribution of organic nitrogen in a series of IBCSP coals and their isolated macerals. The specific objectives were: to determine the bulk nitrogen contents for coals, isolated macerals, oxidation products and residues, solvent extracts and their liquid chromatographic fractions, and pyrolyzates; to determine the distribution of organic nitrogen in all coal derivatives enumerated in Objective 1 which are Gas Chromatography (GC)-amenable. This will be accomplished by GC-Thermionic Specific Detectors; to determine the molecular structure of the major nitrogen compounds detected in Objective 2, using mass spectrometry.

  8. Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

  9. Superacid Catalyzed Coal Conversion Chemistry. Final Technical Report, September 1, 1983-September 1, 1986

    Science.gov (United States)

    Olah, G. A.

    1986-01-01

    This research project involved the study of a raw comparatively mild coal conversion process. The goal of the project was to study model systems to understand the basic chemistry involved and to provide a possible effective pretreatment of coal which significantly improves liquefaction-depolymerization under mild conditions. The conversion process operates at relatively low temperatures (170 degrees C) and pressures and uses an easily recyclable, stable superacid catalysts (HF-BF{sub 3}). It consequently offers an attractive alternative to currently available processes. From the present studies it appears that the modification of coal structure by electrophilic alkylation and subsequent reaction of alkylated coal with HF-BF{sub 3}-H{sub 2} system under mild conditions considerably improves the extractability of coal in pyridine and cyclohexane. On the other hand, nitration of coal and its subsequent reaction with HF-BF{sub 3}H{sub 2} decreases the pyridine and cyclohexane extractability. Study of model compounds under conditions identical with the superacidic HF/BF{sub 3}/H{sub 2} system provided significant information about the basic chemistry of the involved cleavage-hydrogenation reactions.

  10. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

  11. Plant response to FBC waste-coal slurry solid mixtures. Technical report, 1 March--31 May 1994

    Energy Technology Data Exchange (ETDEWEB)

    Darmody, R.G.; Dunker, R.E. [Univ. of Illinois, Urbana, IL (United States); Dreher, G.B.; Roy, W.R.; Steel, J.D. [Illinois State Geological Survey, Champaign, IL (United States)

    1994-09-01

    The goal of this project is to test the feasibility of stabilizing coal slurry solids (CSS) wastes by directly seeding plants into the waste. This is not done conventionally because the waste can generate toxic amounts of sulfuric acid. The approach is to neutralize the potential acidity by mixing fluidized bed combustion (FBC) waste into the slurry. If successful, this approach would both help dispose of FBC wastes while providing a more economical slurry stabilization technique. The project involves growing forage plants in CSS-FBC mixtures in the greenhouse. In the first two quarters the authors designed the experiment, secured greenhouse space, purchased the seeds, collected, dried, analyzed the FBC and CSS samples. The samples represent a typical range of properties. They retrieved two FBC and two CSS samples. One CSS sample had a relatively high CaCO{sub 3} content relative to the pyrite content and required no FBC to neutralize the potential acidity. The other CSS sample required from 4.2 to 2.7% FBC material to neutralize its potential acidity. This report covers the third quarter of the project. The authors produced the CSS-FBC mixtures, analyzed the soil fertility parameters of the mixtures,, planted the crops, and monitored their growth. All mixtures support at least some plant growth, although some plants did better than others. It is too early to analyze the results statistically. Next quarter the plants will be harvested, yields calculated, mineral uptake evaluated, and a final report will be written on plant response to CSS-FBC mixtures.

  12. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.

    1995-06-30

    The work on this project was initiated on September 1, 1991. The project consisted of two different tasks: (1) Development of a model to compute viscosities of coal derived liquids, and (2) Investigate new models for estimation of thermodynamic properties of solid and liquid compounds of the type that exist in coal, or are encountered during coal processing. As for task 1, a model for viscosity computation of coal model compound liquids and coal derived liquids has been developed. The detailed model is presented in this report. Two papers, the first describing the pure liquid model and the second one discussing the application to coal derived liquids, are expected to be published in Energy & Fuels shortly. Marginal progress is reported on task 2. Literature review for this work included compilation of a number of data sets, critical investigation of data measurement techniques available in the literature, investigation of models for liquid and solid phase thermodynamic computations. During the preliminary stages it was discovered that for development of a liquid or solid state equation of state, accurate predictive models for a number of saturation properties, such as, liquid and solid vapor pressures, saturated liquid and solid volumes, heat capacities of liquids and solids at saturation, etc. Most the remaining time on this task was spent in developing predictive correlations for vapor pressures and saturated liquid volumes of organic liquids in general and coal model liquids in particular. All these developments are discussed in this report. Some recommendations for future direction of research in this area are also listed.

  13. Conceptual design of a coal-fired MHD retrofit. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    Coal-fired magnetohydrodynamics (MHD) technology is ready for its next level of development - an integrated demonstration at a commercial scale. The development and testing of MHD has shown its potential to be the most efficient, least costly, and cleanest way to burn coal. Test results have verified a greater than 99% removal of sulphur with a potential for greater than 60% efficiency. This development and testing, primarily funded by the U.S. Department of Energy (DOE), has progressed through the completion of its proof-of-concept (POC) phase at the 50 MWt Component Development and Integration Facility (CDIF) and 28 MWt Coal Fired Flow Facility (CFFF), thereby, providing the basis for demonstration and further commercial development and application of the technology. The conceptual design of a retrofit coal-fired MHD generating plant was originally completed by the MHD Development Corporation (MDC) under this Contract, DE-AC22-87PC79669. Thereafter, this concept was updated and changed to a stand-alone MHD demonstration facility and submitted by MDC to DOE in response to the fifth round of solicitations for Clean Coal Technology. Although not selected, that activity represents the major interest in commercialization by the developing industry and the type of demonstration that would be eventually necessary. This report updates the original executive summary of the conceptual design by incorporating the results of the POC program as well as MDC`s proposed Billings MHD Demonstration Project (BMDP) and outlines the steps necessary for commercialization.

  14. Conspray dynamic sleeve piston coal feeder. Phase II. Verification tests. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-26

    This report details the performance of Phase II: Verification Tests of the Conspray dynamic sleeve piston coal feeder. The machine performed for 200 hours at 700 psi backpressure, utilizing a 70% to 200 mesh Utah bituminous coal as feedstock. All test work was satisfactorily completed. A post-test inspection was performed. A report of component wear and failures incurred in testing is included as well as suggestions for machine upgrades. The overall conclusion is that the dynamic sleeve piston feeder has proven its ability to operate safely and reliably. When problems have occurred, the machine has demonstrated inherent safety by shutting down without endangering process or personnel. With the recommended improvements incorporated into the feeder, the unit will be ready for installation on a pilot scale coal gasifier. 9 figures, 11 tables.

  15. Projected configuration of a coal-fired district heating source on the basis of comparative technical-economical optimization analysis

    Directory of Open Access Journals (Sweden)

    Tańczuk Mariusz

    2017-01-01

    Full Text Available District heating technologies should be efficient, effective and environmentally friendly. The majority of the communal heating systems in Poland produce district hot water in coal-fired boilers. A large number of them are considerably worn out, low-efficient in the summer time and will not comply with forthcoming regulations. One of the possible solution for such plants is repowering with new CHP systems or new boilers fuelled with fuels alternative to coal. Optimisation analysis of the target configuration of municipal heat generating plant is analysed in the paper. The work concerns repowering the existing conventional heat generating plant according to eight different scenarios of the plant configuration meeting technical and environmental requirements forecasted for the year of 2035. The maximum demand for heat of the system supplied by the plant is 185 MW. Taking into account different technical configurations on one side, and different energy and fuel prices on the other side, the comparative cost-benefits analysis of the assumed scenarios has been made. The basic economical index NPV (net present value has been derived for each analysed scenario and the results have been compared and discussed. It was also claimed that the scenario with CHP based on ICE engines is optimal.

  16. Projected configuration of a coal-fired district heating source on the basis of comparative technical-economical optimization analysis

    Science.gov (United States)

    Tańczuk, Mariusz; Radziewicz, Wojciech; Olszewski, Eligiusz; Skorek, Janusz

    2017-10-01

    District heating technologies should be efficient, effective and environmentally friendly. The majority of the communal heating systems in Poland produce district hot water in coal-fired boilers. A large number of them are considerably worn out, low-efficient in the summer time and will not comply with forthcoming regulations. One of the possible solution for such plants is repowering with new CHP systems or new boilers fuelled with fuels alternative to coal. Optimisation analysis of the target configuration of municipal heat generating plant is analysed in the paper. The work concerns repowering the existing conventional heat generating plant according to eight different scenarios of the plant configuration meeting technical and environmental requirements forecasted for the year of 2035. The maximum demand for heat of the system supplied by the plant is 185 MW. Taking into account different technical configurations on one side, and different energy and fuel prices on the other side, the comparative cost-benefits analysis of the assumed scenarios has been made. The basic economical index NPV (net present value) has been derived for each analysed scenario and the results have been compared and discussed. It was also claimed that the scenario with CHP based on ICE engines is optimal.

  17. Comprehensive Technical Support for High-Quality Anthracite Production: A Case Study in the Xinqiao Coal Mine, Yongxia Mining Area, China

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-12-01

    Full Text Available The effective production of high-quality anthracite has attracted increasing global attention. Based on the coal occurrence in Yongxia Mining Area and mining conditions of a coalface in Xinqiao Coal Mine, we proposed a systematic study on the technical support for the production of high-quality anthracite. Six key steps were explored, including coal falling at the coalface, transport, underground bunker storage, main shaft hoisting, coal preparation on the ground, and railway wagon loading. The study resulted in optimized running parameters for the shearers, and the rotating patterns of the shearer drums was altered (one-way cutting was employed. Mining height and roof supporting intensity were reduced. Besides, loose presplitting millisecond blasting and mechanized mining were applied to upgrade the coal quantity and the lump coal production rate. Additionally, the coalface end transloading, coalface crush, transport systems, underground storage, and main shaft skip unloading processes were improved, and fragmentation-prevention techniques were used in the washing and railway wagon loading processes. As a result, the lump coal production rate was maintained at a high level and fragmentation was significantly reduced. Because of using the parameters and techniques determined in this research, high-quality coal production and increased profits were achieved. The research results could provide theoretical guidance and methodology for other anthracite production bases.

  18. Development of optimal terrace pit coal mining systems. Technical progress report, October 1- October 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, D. G.

    1979-11-19

    A bibliography on various aspects of optimal terrace pit coal mining systems is included. Relevant federal and state legislation and regulations have been identified. Mines of interest to the project have been identified and listed for field visits. Seven regions of different climates, hydrology, geology, etc., are being studied individually. (LTN)

  19. Solvent refined coal (SRC) process. Quarterly technical progress report, January 1980-March 1980. [In process streams

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This report summarizes the progress of the Solvent Refined Coal (SRC) project at the SRC Pilot Plant in Fort Lewis, Wahsington, and the Process Development Unit (P-99) in Harmarville, Pennsylvania. After the remaining runs of the slurry preheater survey test program were completed January 14, the Fort Lewis Pilot Plant was shut down to inspect Slurry Preheater B and to insulate the coil for future testing at higher rates of heat flux. Radiographic inspection of the coil showed that the welds at the pressure taps and the immersion thermowells did not meet design specifications. Slurry Preheater A was used during the first 12 days of February while weld repairs and modifications to Slurry Preheater B were completed. Two attempts to complete a material balance run on Powhatan No. 6 Mine coal were attempted but neither was successful. Slurry Preheater B was in service the remainder of the quarter. The start of a series of runs at higher heat flux was delayed because of plugging in both the slurry and the hydrogen flow metering systems. Three baseline runs and three slurry runs of the high heat flux program were completed before the plant was shut down March 12 for repair of the Inert Gas Unit. Attempts to complete a fourth slurry run at high heat flux were unsuccessful because of problems with the coal feed handling and the vortex mix systems. Process Development Unit (P-99) completed three of the four runs designed to study the effect of dissolver L/D ratio. The fourth was under way at the end of the period. SRC yield correlations have been developed that include coal properties as independent variables. A preliminary ranking of coals according to their reactivity in PDU P-99 has been made. Techniques for studying coking phenomenona are now in place.

  20. Pyrite oxidation at circumneutral pH

    Science.gov (United States)

    Moses, Carl O.; Herman, Janet S.

    1991-02-01

    Previous studies of pyrite oxidation kinetics have concentrated primarily on the reaction at low pH, where Fe(III) has been assumed to be the dominant oxidant. Studies at circumneutral pH, necessitated by effective pH buffering in some pyrite oxidation systems, have often implicitly assumed that the dominant oxidant must be dissolved oxygen (DO), owing to the diminished solubility of Fe(III). In fact, Fe(III)(aq) is an effective pyrite oxidant at circumneutral pH, but the reaction cannot be sustained in the absence of DO. The purpose of this experimental study was to ascertain the relative roles of Fe(III) and DO in pyrite oxidation at circumneutral pH. The rate of pyrite oxidation was first-order with respect to the ratio of surface area to solution volume. Direct determinations of both Fe(II) (aq)> and Fe(III) (aq) demonstrated a dramatic loss of Fe(II) from the solution phase in excess of the loss for which oxidation alone could account. Based on rate data, we have concluded that Fe(II) is adsorbed onto the pyrite surface. Furthermore, Fe(II) is preferred as an adsorbate to Fe(III), which we attribute to both electrostatic and acid-base selectivity. We also found that the rate of pyrite oxidation by either Fe(III) (aq) or DO is reduced in the presence of aqueous Fe(II), which leads us to conclude that, under most natural conditions, neither Fe(III) (aq) nor DO directly attacks the pyrite surface. The present evidence suggests a mechanism for pyrite oxidation that involves adsorbed Fe( II ) giving up electrons to DO and the resulting Fe(III) rapidly accepting electrons from the pyrite. The adsorbed Fe is, thus, cyclically oxidized and reduced, while it acts as a conduit for electrons traveling from pyrite to DO. Oxygen is transferred from the hydration sphere of the adsorbed Fe to pyrite S. The cycle of adsorbed Fe oxidation and reduction and the successive addition of oxygen to pyrite S continues until a stable sulfoxy species dissociates from the surface. Prior

  1. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    A set of statistically designed experiments was used to study the effects of several important operating variables on coal liquefaction product yield structures. These studies used a Continuous Stirred-Tank Reactor to provide a hydrodynamically well-defined system from which kinetic data could be extracted. An analysis of the data shows that product yield structures can be adequately represented by a correlative model. It was shown that second-order effects (interaction and squared terms) are necessary to provide a good model fit of the data throughout the range studied. Three reports were issued covering the SRC-II database and yields as functions of operating variables. The results agree well with the generally-held concepts of the SRC reaction process, i.e., liquid phase hydrogenolysis of liquid coal which is time-dependent, thermally activated, catalyzed by recycle ash, and reaction rate-controlled. Four reports were issued summarizing the comprehensive SRC reactor thermal response models and reporting the results of several studies made with the models. Analytical equipment for measuring SRC off-gas composition and simulated distillation of coal liquids and appropriate procedures have been established.

  2. Evaluation of an Automated Reflectance Microscope system for coal characterization. Technical report 18

    Energy Technology Data Exchange (ETDEWEB)

    Liscinsky, D. S.; Vastola, F.

    1980-01-01

    The potential of an Automated Reflectance Microscope (ARM) system to determine the petrographic composition of a coal has been examined. The analysis involves the automatic scanning of a polished coal surface with a reflectance microscope. The reflectivity of consecutive 4-square-micrometer spots on the surface is measured by a photomultiplier tube and recorded by a microcomputer. This study was aimed at making the interpretation of a reflectogram more straightforward, that is, increasing the ability to discriminate among species. Although hardware improvements to decrease the spot size and the error associated with each reading would allow some increase in the ability to discriminate among species, the heterogeneous nature of the surface still limits the qualitative and quantitative information that can be derived from a reflectogram. Therefore a real-time data processing algorithm was implemented during data acquisition to study the effects that processing can have on a reflectogram. By measuring connectivity, it was found that edge readings could be indirectly eliminated. This greatly improved the ability to discriminate among species. Further investigation led to the conclusion that physical particle size has a major effect on a reflectogram. The concentration of coal in a pellet also has an effect on the ability to discriminate among species. A bonus of using processing to enhance the data was the ability to simultaneously gather information on particle size distributions. Based on the results the potential of an ARM system is improved by algorithm enhancement. The processing of the data allows some of the inherent limitations to be reduced.

  3. Molecular biological enhancement of coal biodesulfurization. Quarterly technical report, September 1, 1993--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II [Institute of Gas Technology, Chicago, IL (United States)

    1993-12-31

    IGT has developed a microbial culture of Rhodococcus rhodochrous, designated as IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum without significantly sacrificing the calorific value of the fuel. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strains of microorganisms that possess higher levels of desulfurization activity and therefore will permit more favorable biodesulfurization process conditions: faster rates, more complete removal, and smaller reactor size. strain improvement is the single most important aspect to the development of a practical coal biodesulfurization process and accordingly is the focus of research in this project. During this quarter the promoter probe vectors that were constructed last quarter were found to be unstable in E. coli. Fragments of R. rhodochrous IGTS8 chromosomal DNA were cloned into pRCAT3 and pRCM1 (previously described in final ICCI report 1993). Many derivatives of pRCM1 and pRCAT3 receiving inserts that regulated the expression of chloramphenicol resistance in Rhodococcus rhodochrous IGTS8 proved to be unstable in E. coli frequently yielding plasmids containing deletions. Stable inserts have been observed ranging from 100 bp to 2.0 kb that regulated expression in Rhodococcus rhodochrous IGTS8. Subtractive hybridization studies continue, several candidates have been isolated and are being confirmed for inducible promoters. Primer extension analysis of the Rhodococcus rhodochrous IGTS8 16S RNA promoter region was initiated this quarter.

  4. Assessment of ether and alcohol fuels from coal. Volume 2. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    A unique route for the indirect liquefaction of coal to produce transportation fuel has been evaluated. The resultant fuel includes alkyl tertiary alkyl ethers and higher alcohols, all in the gasoline boiling range. When blended into gasoline, the ether fuel provides several advantages over the lower alcohols: (1) lower chemical oxygen content, (2) less-severe water-separation problems, and (3) reduced front-end volatility effects. The ether fuel also has high-octane quality. Further, it can be utilized as a gasoline substitute in all proportions. Production of ether fuel combines several steps, all of which are or have been practiced on an industrial scale: (1) coal gasification, (2) gas cleanup and shift to desired H/sub 2/:CO ratio, (3) conversion of synthesis gas to isobutanol, methanol, and higher alcohols, (4) separation of alcohols, (5) chemical dehydration of isobutanol to isobutylene, and (6) etherification of isobutylene with methanol. A pilot-plant investigation of the isobutanol synthesis step was performed. Estimates of ether-fuel manufacturing costs indicate this process route is significantly more costly than synthesis of methanol. However, the fuel performance features provide incentive for developing the necessary process and catalyst improvements. Co-production of higher-molecular-weight co-solvent alcohols represents a less-drastic form of methanol modification to achieve improvement in the performance of methanol-gasoline blends. Costs were estimated for producing several proportions of methanol plus higher alcohols from coal. Estimated fuel selling price increases regularly but modestly with higher alcohol content.

  5. Technical assessment of subsequent burdens due to hard coal mining; Technische Abschaetzung von Folgelasten des Steinkohlenbergbaus

    Energy Technology Data Exchange (ETDEWEB)

    Preusse, A.; Kraemer, J. [RWTH Aachen (Germany). Inst. fuer Markscheidewesen, Bergschadenkunde und Geophysik im Bergbau; Sroka, A. [TU Bergakademie Freiberg (Germany). Inst. fuer Markscheidewesen und Geodaesie

    2007-10-15

    On the basis of a political agreement, the subsidized German hard coal mining will be socially acceptable terminated by end of 2018. In 2012, this decision will be reassessed. Even after the abandonment of all mining activities subsequent burdens are inevitable. In this article, the long-term effects resulting from a mining industry history, which is spanning over more than 200 years, and their possible consequences are pointed out in particular in connection with the economically long-term meaningful cessation of mine dewatering measures. Furthermore, a frame of action within possibly concerned ranges is developed for this case. (orig.)

  6. DOE Coal Gasification Multi-Test Facility: fossil fuel processing technical/professional services

    Energy Technology Data Exchange (ETDEWEB)

    Hefferan, J.K.; Lee, G.Y.; Boesch, L.P.; James, R.B.; Rode, R.R.; Walters, A.B.

    1979-07-13

    A conceptual design, including process descriptions, heat and material balances, process flow diagrams, utility requirements, schedule, capital and operating cost estimate, and alternative design considerations, is presented for the DOE Coal Gasification Multi-Test Facility (GMTF). The GMTF, an engineering scale facility, is to provide a complete plant into which different types of gasifiers and conversion/synthesis equipment can be readily integrated for testing in an operational environment at relatively low cost. The design allows for operation of several gasifiers simultaneously at a total coal throughput of 2500 tons/day; individual gasifiers operate at up to 1200 tons/day and 600 psig using air or oxygen. Ten different test gasifiers can be in place at the facility, but only three can be operated at one time. The GMTF can produce a spectrum of saleable products, including low Btu, synthesis and pipeline gases, hydrogen (for fuel cells or hydrogasification), methanol, gasoline, diesel and fuel oils, organic chemicals, and electrical power (potentially). In 1979 dollars, the base facility requires a $288 million capital investment for common-use units, $193 million for four gasification units and four synthesis units, and $305 million for six years of operation. Critical reviews of detailed vendor designs are appended for a methanol synthesis unit, three entrained flow gasifiers, a fluidized bed gasifier, and a hydrogasifier/slag-bath gasifier.

  7. Novel technique for coal pyrolysis and hydrogenation product analysis. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, L.D.; Boyle, J.

    1993-03-15

    A microjet reactor coupled to a VUV photoionization time-of-flight mass spectrometer has been used to obtain species measurements during high temperature pyrolysis and oxidation of a wide range of hydrocarbon compounds ranging from allene and acetylene to cyclohexane, benzene and toluene. Initial work focused on calibration of the technique, optimization of ion collection and detection and characterization of limitations. Using the optimized technique with 118 nm photoionization, intermediate species profiles were obtained for analysis of the hydrocarbon pyrolysis and oxidation mechanisms. The ``soft`` ionization, yielding predominantly molecular ions, allowed the study of reaction pathways in these high temperature systems where both sampling and detection challenges are severe. Work has focused on the pyrolysis and oxidative pyrolysis of aliphatic and aromatic hydrocarbon mixtures representative of coal pyrolysis and hydropyrolysis products. The detailed mass spectra obtained during pyrolysis and oxidation of hydrocarbon mixtures is especially important because of the complex nature of the product mixture even at short residence times and low primary reactant conversions. The combustion community has advanced detailed modeling of pyrolysis and oxidation to the C4 hydrocarbon level but in general above that size uncertainties in rate constant and thermodynamic data do not allow us to a priori predict products from mixed hydrocarbon pyrolyses using a detailed chemistry model. For pyrolysis of mixtures of coal-derived liquid fractions with a large range of compound structures and molecular weights in the hundreds of amu the modeling challenge is severe. Lumped models are possible from stable product data.

  8. Technical note: Vetiver can grow on coal fly ash without DNA damage.

    Science.gov (United States)

    Chakraborty, Rajarshi; Mukherjee, Anita

    2011-02-01

    Fly ash is a by-product of coal-fired electricity generation plants. The prevalent practice of disposal is as slurry of ash and water to open lands or ash ponds located near power plants and this has lain to waste thousands of hectares all over the world. Wind and leaching are often the causes of off-site contamination from fly ash dumpsites. Vetiver (Vetiveria zizanioides) grown on fly ash for three months showed massive, mesh-like growth of roots which could have a phytostabilizing effect. The plant achieved this without any damage to its nuclear DNA as shown by comet assay done on the root nuclei, which implies the long-term survival of the plant on the remediation site. Also, when Vetiver is used for phytoremediation of coal fly ash, its shoots can be safely grazed by animals as very little of heavy metals in fly ash were found to be translocated to the shoots. These features make planting of Vetiver a practical and environmentally compatible method for restoration of fly ash dumpsites. Lack of DNA damage in Vetiver has been compared to that in a sensitive plant i.e. Allium cepa. Our results suggested that apart from traditional end-points viz. growth parameters like root length, shoot length and dry weight, comet assay could also be included in a battery of tests for initial, rapid and effective selection of plants for restoration and phytoremediation of polluted sites.

  9. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  10. Production and screening of carbon products precursors from coal. Quarterly technical progress report and key personnel staffing report No. 6, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The main goal of this program is to demonstrate the utility of coal extracts from the West Virginia University (WVU) extraction process as suitable base raw materials for the carbon products encompassed by the Carbon Products Consortium (CPC) team. This quarterly report covers activities during the period from April 1, 1996 through June 30, 1996. The first year of the project ended in February, 1996; however, the WVU research effort has continued on a no-cost extension of the original contract. Samples have been supplied to CPC participants so they could conduct their portions of the project as contracted through ORNL. Progress reports are presented for the following tasks: project planning and administration; consortium administration and reporting; coal extraction; technical/economic evaluation of WVU extraction process; and technology transfer. Previous work has shown that the WVU coal extraction process coupled with hydrotreatment, does have the potential for producing suitable base raw materials for carbon products. Current effort, therefore, involved the screening and evaluation of extracts produced by the WVU Group and recommending appropriate materials for scaleup for subsequent evaluation by Consortium Team members. As part of this program, the activation of the coal extraction residues was investigated for the purpose of producing a useful active carbon. A further task, which was started towards the end of the program, was to fabricate a small graphite artifact using Coke derived from coal extract as the filler and the coal extract itself as a binder. The results of these studies are summarized in this report.

  11. Magnetic relaxation--coal swelling, extraction, pore size. Technical progress report, October 1, 1991--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Doetschman, D.C.

    1991-12-31

    The grant activities during this period fall into four categories: (1) Completion of preparatory work, (2) Procedure refinement and actual preparation of whole coal, coal residue, coal extract and swelled coal samples for NMR studies, (3) Related studies of coal photolysis that employ materials from preliminary extractions and that examine the u.v.-visible and mass spectra of the extracts and (4) Continued investigations of the pulsed EPR characteristics of the whole coal samples that were prepared in the first quarter of the grant.

  12. Genesis of some tertiary Indian coals from the chemical composition ...

    Indian Academy of Sciences (India)

    Baruah. 2008) that in northeast Indian coals, the major minerals (wt% >5) identified in the crystalline matter of coal are quartz, kaolin, illite, feldspar, calcite, pyrite, and gypsum. Vassilev et al. (2010a, b) reported that the rank of the coal increases with.

  13. Coal desulfurization by bacterial treatment and column flotation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kawatra, S.K. [Michigan Technological Univ., Houghton, MI (United States)

    1994-06-01

    A review of the literature showed that bacterial leaching, using the microorganism Thiobacillus ferrooxidans, was a very effective technique for removing pyrite from coal, as it could dissolve even the finest pyrite particles without the need for expensive reagents or extreme processing conditions. Unfortunately, bacterial leaching is also rather slow, and so the initial goal of this research was to decrease the leaching time as much as possible. However, this still left the bacteria needing approximately a week to remove half of the pyritic sulfur, and so a faster technique was sought. Since it had been reported in the literature that T. ferrooxidans could be used to depress the flotation of pyrite during froth flotation of coal, this was investigated further. By studying the recovery mechanisms of coal-pyrite in froth flotation, it was found that pyrite was being recovered by entrainment and by locking to coal particles, not by true flotation of hydrophobic pyrite. Therefore, no pyrite depressant could be of any significant benefit for keeping pyrite out of the coal froth product, and it was much more important to prevent entrainment from occurring. Countercurrent flotation columns were invented to essentially eliminate entrainment effects, by washing the froth and reducing mixing of the froth and tailings products. Existing flotation columns tend to be quite simple, and in order to give reasonable product quality they must be very tall (typically 30--45 feet). As a result, they have difficulty in handling the high froth volumes which occur in coal flotation, and are awkward to install in existing plants. The bulk of this project therefore concentrated on developing an improved coal flotation column, and testing it under actual plant conditions.

  14. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  15. Attenuation of pyrite oxidation with a fly ash pre-barrier: Reactive transport modelling of column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, R.; Cama, J.; Nieto, J.M.; Ayora, C.; Saaltink, M.W. [University of Huelva, Huelva (Spain). Dept. of Geology

    2009-09-15

    Conventional permeable reactive barriers (PRBs) for passive treatment of groundwater contaminated by acid mine drainage (AMD) use limestone as reactive material that neutralizes water acidity. However, the limestone-alkalinity potential ceases as inevitable precipitation of secondary metal-phases on grain surfaces occurs, limiting its efficiency. In the present study, fly ash derived from coal combustion is investigated as an alternative alkalinity generating material for the passive treatment of AMD using solution-saturated column experiments. Unlike conventional systems, the utilization of fly ash in a pre-barrier to intercept the non-polluted recharge water before this water reacts with pyrite-rich wastes is proposed. Chemical variation in the columns was interpreted with the reactive transport code RETRASO. In parallel, kinetics of fly ash dissolution at alkaline pH were studied using flow-through experiments and incorporated into the model. In a saturated column filled solely with pyritic sludge-quartz sand (1: 10), oxidation took place at acidic conditions (pH 3.7). According to SO{sub 4}{sup 2-} release and pH, pyrite dissolution occurred favourably in the solution-saturated porous medium until dissolved O{sub 2} was totally consumed. In a second saturated column, pyrite oxidation took place at alkaline conditions (pH 10.45) as acidity was neutralized by fly ash dissolution in a previous level. At this pH Fe release from pyrite dissolution was immediately depleted as Fe-oxy(hydroxide) phases that precipitated on the pyrite grains, forming Fe-coatings (microencapsulation). With time, pyrite microencapsulation inhibited oxidation in practically 97% of the pyritic sludge. Rapid pyrite-surface passivation decreased its reactivity, preventing AMD production in the relatively short term.

  16. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, April 1983-June 1983

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, Jr., G. A.

    1983-01-01

    Progress reports are presented for the following tasks: (1) gasification wastewater treatment and reuse; (2) fine coal cleaning; (3) coal-water slurry preparation; (4) low-rank coal liquefaction; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization; (8) combustion research and ash fowling; (9) fluidized-bed combustion of low-rank coals; (10) ash and slag characterization; (11) organic structure of coal; (12) distribution of inorganics in low-rank coals; (13) physical properties and moisture of low-rank coals; (14) supercritical solvent extraction; and (15) pyrolysis and devolatilization.

  17. The development of coal-based technologies for Department of Defense facilities. Volume 1, Technical report. Semiannual technical progress report, September 28, 1994--March 27, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Bartley, D.A.; Hatcher, P. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1996-10-15

    This program is being conducted as a cooperative agreement between the Consortium for Coal Water Mixture Technology and the U.S. Department of Energy. Activities this reporting period are summarized by phase. Phase I is nearly completed. During this reporting period, coal beneficiation/preparation studies, engineering designs and economics for retrofitting the Crane, Indiana boiler to fire coal-based fuels, and a 1,000-hour demonstration of dry, micronized coal were completed. In addition, a demonstration-scale micronized-coal water mixture (MCWM) preparation circuit was constructed and a 1,000-hour demonstration firing MCWM began. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations involved literature surveys of NO{sub x}, SO{sub 2}, trace metals, volatile organic compounds, and fine particulate matter capture. In addition, vendors and engineering firms were contacted to identify the appropriate emissions technologies for the installation of commercial NO{sub x} and SO{sub 2} removal systems on the demonstration boiler. Information from the literature surveys and engineering firms will be used to identify, design, and install a control system(s). Work continued on the refinement and optimization of coal grinding and MCWM preparation procedures, and on the development of advanced processes for beneficiating high ash, high sulfur coals. Work also continued on determining the basic cost estimation of boiler retrofits, and evaluating environmental, regulatory, and regional economic impacts. In addition, the feasibility of technology adoption, and the public`s perception of the benefits and costs of coal usage was studied. A coal market analysis was completed. Work in Phase III focused on coal preparation studies, emissions reductions and economic analyses of coal use.

  18. Technical support to the Solvent Refined Coal (SRC) demonstration projects: assessment of current research and development

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, M.S.; Rodgers, B.R.; Brown, C.H.; Carlson, P.K.; Gambill, W.R.; Gilliam, T.M.; Holmes, J.M.; Krishnan, R.P.; Parsly, L.F.

    1980-12-01

    A program to demonstrate Solvent Refined Coal (SRC) technology has been initiated by the US Department of Energy (DOE) in partnership with two industrial groups. Project management responsibility has been assigned to the Oak Ridge Operations Office (ORO) of DOE. ORO requested that the Oak Ridge National Laboratory assess current research and development (R and D) activities and develop recommendations for those activities that might contribute to successful completion of the SRC demonstration plant projects. The objectives of this final report are to discuss in detail the problem areas in SRC; to discuss the current and planned R and D investigations relevant to the problems identified; and to suggest appropriate R and D activities in support of designs for the SRC demonstration plants. Four types of R and D activities are suggested: continuation of present and planned activities; coordination of activities and results, present and proposed; extension/redirection of activities not involving major equipment purchase or modifications; and new activities. Important examples of the first type of activity include continuation of fired heater, slurry rheology, and slurry mixing studies at Ft. Lewis. Among the second type of activity, coordination of data acquisition and interpretation is recommended in the areas of heat transfer, vapor/liquid equilibria, and physical properties. Principal examples of recommendations for extension/redirection include screening studies at laboratory scale on the use of carbonaceous precoat (e.g., anthracite) infiltration, and 15- to 30-day continuous tests of the Texaco gasifier at the Texaco Montebello facility (using SRC residues).

  19. MHD Coal-Fired Flow Facility. Quarterly/annual technical progress report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Dicks, J. B.; Chapman, J. N.; Crawford, L. W.

    1980-02-01

    In this Fourth Quarterly/Annual Report submitted under DOE contracts EX-76-C-01-1760 and DE-AC02-79ET10815, the University of Tennessee Space Institute (UTSI) reports on significant activity, task status, planned research, testing, and development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Research and Development Laboratory. Work on the CFFF progressed with only minor problems. Total construction activity for all site work presently awarded is nearly 98% complete. Water analysis shows that Woods Reservoir baseline conditions are within EPA or Tennessee drinking water standards. For the primary combustor, the vitiation heater and primary combustor fabrication drawings were completed and the nozzle design was completed. The drum module for the radiant slagging furnace was awarded. On the MHD Power Generator, development continued in several areas of advanced analysis including development of time-dependent models for use with the one-dimensional code. For seed regeneration, the tentative determination is that the Tomlinson Tampella is the most economically viable method. With regard to capped electrode erosion, investigations have shown that the major degradation of the cladding still present is at the leading edge of the capped anode. To alleviate this, plans are to hot work the noble metal in the bending operation. In resolving another problem, a system employing the modified line-reversal method has been assembled and successfully tested to measure absolute plasma temperatures.

  20. Effects of long-term coal supply contracts on technology adoption and improvements in the mining of coal. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D.R.; Hawkins, S.A.; Webb, P.F.; Kauffman, P.W.

    1979-08-01

    The relationship between long-term coal supply contracts and the adoption of new technology in the coal mining industry is a complex one. From this study certain conclusions can be drawn. New technologies and improvements in the mining of coal can be logically categorized into three areas: evolutionary technology, transitional technology, or innovative technology. Evolutionary improvements in technology can be categorized as improvements, or increased production capacities, in existing equipment. Transitional technology involves the adoption of existing or proven technologies into new conditions, or, proceeding from one technology type to a newer type for the same function. Innovative technology includes equipment, concepts, and systems not readily available, or untried, in the existing mining environment (seam conditions, etc.). Technology adoption is an economic decision. This point was repeatedly emphasized by industry representatives contacted during the study. The long-term coal supply contract influences the decision to adopt new technology and mining improvements in several ways depending on the technology type (i.e., evolutionary, transitional, or innovative), and also the coal supplier type (i.e., captive or independent producer). Several examples of the adoption of new technologies in mines under long-term coal supply contracts are discussed. (LTN)

  1. Novel catalysts for upgrading coal-derived liquids. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.T.; Savage, P.E.; Briggs, D.E.

    1995-03-31

    Research described in this report was aimed at synthesizing and evaluating supported Mo oxynitrides and oxycarbides for the selective removal of nitrogen, sulfur and oxygen from model and authentic coal-derived liquids. The Al{sub 2}O{sub 3}-supported oxynitrides and oxycarbides were synthesized via the temperature programmed reaction of supported molybdenum oxides or hydrogen bronzes with NH{sub 3} or an equimolar mixture of CH{sub 4} and H{sub 2}. Phase constituents and composition were determined by X-ray diffraction, CHN analysis, and neutron activation analysis. Oxygen chemisorption was used to probe the surface structure of the catalysts. The reaction rate data was collected using specially designed micro-batch reactors. The Al{sub 2}O{sub 3}-supported Mo oxynitrides and oxycarbides were competitively active for quinoline hydrodenitrogenation (HDN), benzothiophene hydrodesulfurization (HDS) and benzofuran hydrodeoxygenation (HDO). In fact, the HDN and HDO specific reaction rates for several of the oxynitrides and oxycarbides were higher than those of a commercial Ni-Mo/Al{sub 2}O{sub 3} hydrotreatment catalyst. Furthermore, the product distributions indicated that the oxynitrides and oxycarbides were more hydrogen efficient than the sulfide catalysts. For HDN and HDS the catalytic activity was a strong inverse function of the Mo loading. In contrast, the benzofuran hydrodeoxygenation (HDO) activities did not appear to be affected by the Mo loading but were affected by the heating rate employed during nitridation or carburization. This observation suggested that HDN and HDS occurred on the same active sites while HDO was catalyzed by a different type of site.

  2. The development of coal-based technologies for Department of Defense facilities. Technical progress report, September 1995 - March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Pisupati, S.V.; Scaroni, A.W. [and others

    1996-10-01

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Activities this reporting period are summarized by phase. During this reporting period, the Phase I final report was completed. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included completing a study to identify appropriate SO{sub 2} and NO{sub x} control technologies for coal-fired industrial boilers. In addition, work continued on the design of a ceramic filtering device for installation on the demonstration boiler. The ceramic filtering device will be used to demonstrate a smaller and more efficient filtering device for retrofit applications. Work related to coal preparation and utilization, and the economic analysis was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies and economic analyses of coal use. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. The economic study focused on community sensitivity to coal usage, regional economic impacts of new coal utilization technologies, and constructing a national energy portfolio.

  3. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, April 1--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.

    1997-03-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of chemical analyses to direct coal liquefaction process development. Independent analyses by well-established methods are obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, new analytical instruments and techniques to examine coal-derived samples are being evaluated. The data obtained form this study are used to guide process development and to develop an improved data base on coal and coal liquids properties. A sample bank, established and maintained for use in this project, is available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) is being examined. From the literature and experimental data, a kinetic model of resid conversion will be constructed. Such a model will provide insights to improve process performance and the economics of direct coal liquefaction.

  4. Chemistry and phase evolution during roasting of toxic thallium-bearing pyrite.

    Science.gov (United States)

    Lopez-Arce, Paula; Garcia-Guinea, Javier; Garrido, Fernando

    2017-08-01

    In the frame of a research project on microscopic distribution and speciation of geogenic thallium (Tl) from contaminated mine soils, Tl-bearing pyrite ore samples from Riotinto mining district (Huelva, SW Spain) were experimentally fired to simulate a roasting process. Concentration and volatility behavior of Tl and other toxic heavy metals was determined by quantitative ICP-MS, whereas semi-quantitative mineral phase transitions were identified by in situ thermo X-Ray Diffraction (HT-XRD) and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS) analyses after each firing temperature. Sample with initial highest amount of quartz (higher Si content), lowest quantity of pyrite and traces of jarosite (lower S content) developed hematite and concentrated Tl (from 10 up to 72 mg kg -1 ) after roasting at 900 °C in an oxidizing atmosphere. However, samples with lower or absent quartz content and higher pyrite amount mainly developed magnetite, accumulating Tl between 400 and 500 °C and releasing Tl from 700 up to 900 °C (from 10-29 mg kg -1 down to 4-1 mg kg -1 ). These results show the varied accumulative, or volatile, behaviors of one of the most toxic elements for life and environment, in which oxidation of Tl-bearing Fe sulfides produce Fe oxides wastes with or without Tl. The initial chemistry and mineralogy of pyrite ores should be taken into account in coal-fired power stations, cement or sulfuric acid production industry involving pyrite roasting processes, and steel, brick or paint industries, which use iron ore from roasted pyrite ash, where large amounts of Tl entail significant environmental pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Operating experiences with heat-exchanging components of a semi-technical pilot plant for steam gasification of coal using heat from HTR

    International Nuclear Information System (INIS)

    Kirchhoff, R.; Heek, K.H. van

    1984-01-01

    within the framework of the PNP- Project, a semi-technical plant for the development of a process of coal gasification by means of nuclear heat was operated. Here gasification is for the first time implemented in a fluidized bed using heat of an electrically heated helium cycle at pressure up to 40 bar and temperatures normal for HTR. The plant serves for testing and developing various components as immersion heater, insulations, dosing devices, and for compiling sound data for further planning

  6. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, July--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States)

    1992-12-31

    The experimental study of coal swelling ratios have been determined with a wide variety of solvents. Only marginal levels of coal swelling were observed for the hydrocarbon solvents, but high levels were found with solvents having heteroatom functionality. Blends were superior to pure solvents. The activity of various catalyst precursors for pyrene hydrogenation and coal conversion was measured. Higher coal conversions were observed for the S0{sub 2}-treated coal than the raw coal, regardless of catalyst type. Coal conversions were highest for Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively. Bottoms processing consists of a combination of the ASCOT process coupling solvent deasphalting with delayed coking. Initial results indicate that a blend of butane and pentane used near the critical temperature of butane is the best solvent blend for producing a yield/temperature relationship of proper sensitivity and yet retaining an asphalt phase of reasonable viscosity. The literature concerning coal swelling, both alone and in combination with coal liquefaction, and the use of dispersed or unsupported catalysts in coal liquefaction has been updated.

  7. Rapid pyrolysis of Serbian soft brown coals

    Directory of Open Access Journals (Sweden)

    Jankes Goran

    2009-01-01

    Full Text Available Soft brown coals of the open coal fields of Kolubara and Kostolac are the main domestic energy sources of Serbia. This paper presents the results of investigations on rapid devolatilization of these two coals which have covered kinetics of devolatilization (based on total volatile yield, forms of sulphur and petrographic analysis of coal and char. Experiments of devolatilization were performed in inert gas (N2 at atmospheric pressure and in batch-type hot-wire screen reactor. The mass-loss values of both coals at selected final reaction temperatures (300-900°C and retention times (3-28 s were obtained. Anthony and Howard's kinetic model was applied over two temperature ranges (300-500 and 700-900°C. The types of sulphur as monosulphide, sulphate, pyritic, and organic sulphur were determined for chars and original coals. Strong transformation of pyrite was evident even at low temperatures (300°C. Devolatilization of all types of sulphur has started over 600 and at 900°C the content of sulphur in char remained only 66% of total sulphur in original coal. Microscopic investigations were carried out on samples prepared for reflected light measurements. The petrographic analysis included: the ratio of unchanged and changed coal, maceral types, the share of cenosferes, isotropic mixed carbonized grains, mixed grains, small fragments, clay, and pyrite. The change of the structure of devolatilized coal was also observed.

  8. The determination of uranium in pyrite samples

    International Nuclear Information System (INIS)

    Jacobs, J.J.

    1979-01-01

    An existing method for the determination of uranium in rocks and minerals is examined for the determination of uranium in materials containing pyrite. The results are comparable with those obtained by a spectrophotometric method, the precision (relative standard deviation) of the method for standards with U 3 O 8 contents of 1500 and 300 p.p.m. being 0,03 and 0,08 respectively when prepared in pyrite, and 0,15 and 0,06 respectively when made up with inert diluent. Full details of the procedure are given in accompanying appendices [af

  9. The development of coal-based technologies for Department of Defense facilities: Phase 1 final report. Volume 1: Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Morrison, J.L.; Pisupati, S.V. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1997-01-31

    The first phase of a three-phase project investigating the development of coal-based technologies for Department of Defense facilities has been completed. The objectives of the project are to: decrease DOD`s dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase 1 activities were focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water mixtures (MCWMs) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. The specific objective in Phase 1 was to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWM or DMC. This was achieved through a project consisting of fundamental, pilot-sale, and demonstration-scale activities investigating coal beneficiation and preparation, and MCWM and DMC combustion performance. In addition, detailed engineering designs and an economic analysis were conducted for a boiler located at the Naval Surface Warfare Center, near Crane, Indiana. Results are reported on MCWM and DMC combustion performance evaluation; engineering design; and cost/economic analysis.

  10. Air-Sparged Hydrocyclone/Advanced Froth Flotation fine coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Stoessner, R.D. (Pennsylvania Electric Co., Johnstown, PA (USA)); Shirey, G.A.; Zawadzki, E.A. (Management and Technical Systems, McMurray, PA (USA)); Welsh, C.F. (Davy Dravo (USA)); Miller, J.D. (Utah Univ., Salt Lake City, UT (USA)); Shell, W.P. (Ebasco Services, Inc., New York, NY (USA))

    1990-05-27

    In May 1988, the Pennsylvania Electric Company (Penelec) and New York State Electric and Gas Corporation (NYSEG) were awarded a contract from the Department of Energy's Pittsburgh Energy and Technology Center (DOE-PETC) to evaluate the performance of a two-inch Air-Sparged Hydrocyclone (ASH) for cleaning fine minus-100-mesh coal. A 24-month study was successfully completed, optimizing the performance of the ASH for cleaning raw classified, naturally-occurring minus-100-mesh Upper Freeport coal, and comparing its performance with Advanced Froth Flotation (AFF), a procedure utilizing conventional flotation equipment operated in an advanced manner (low impeller speeds, starvation float, multiple-stage cleaning, etc.) with highly selective reagents to optimize ash and pyritic sulfur rejection. The economics of cleaning fine coal by both processes at commercial scale, for retrofit and greenfield applications were found to be comparable within the accuracy of the study. Technical performance of the two processes were also found to be essentially identical. Thus, the ASH would be the best choice for a retrofit installation into an existing plant because of requiring less space. Both processes were successful in achieving excellent separations when cleaning the Upper Freeport coal. Both the ASH and AFF circuits were able to produce a clean-coal product of yield (65--80 percent weight recovery) and quality (5--6 percent ash) equivalent to that as theoretically determined by float-sink washability analyses. Combining either of the two fine coal flotation processes with a classifying cyclone circuit resulted in pyritic sulfur rejection values of about 85 percent. 47 refs., 109 figs., 75 tabs.

  11. Coal surface control for advanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  12. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, October 1--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-05-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. During this quarter, analyses were completed on 65 process samples from representative periods of HRI Run POC-2 in which coal, coal/plastics, and coal/rubber were the feedstocks. A sample of the oil phase of the oil/water separator from HRI Run POC-1 was analyzed to determine the types and concentrations of phenolic compounds. Chemical analyses and microautoclave tests were performed to monitor the oxidation and measure the reactivity of the standard coal (Old Ben Mine No. 1) which has been used for the last six years to determine solvent quality of process oils analyzed in this and previous DOE contracts.

  13. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Final technical report, October 1990--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Boakye, E.; Vittal, M. [and others

    1995-04-01

    This report described the synthesis of Molybdenum Sulfides in microemulsions by acidification of ammonium tetrathiomolybdate. Molybdenum Sulfides have been shown to be potential coal liquefaction catalysts. The importance of particle size, temperature effects, and coal surface chemistry to impregnation are discussed.

  14. Genesis of uranium-gold pyritic conglomerates

    International Nuclear Information System (INIS)

    Myers, W.B.

    1981-01-01

    The ancient pyritic ore conglomerates have a common origin best exemplified by the Witwatersrand deposits. All contain detrital pyrite and uraninite, which are unstable in modern oxygenated environments and were deposited in a reducing atmosphere. The Rand reefs are not similar to modern gold placers. Placers result from the near incapacity of streams and currents to transport coarse gold. Placers as rich as Rand reef occur only in narrow paystreaks within 15 kilometers of a coarse-gold source. The board dispersion of gold in the reefs is due to solution transport of metal complexed as aurous sulfide, leached anoxygenically from crustal rocks, probably from sea-floor basalt, and precipitated by a slow reaction driven by the radioactive decay of detrital uraninite. Radiolysis of water on shallow marine unconformities resulted in diffusion of hydrogen to the atmosphere and a slight excess of hydroxyl free radical in the reef environment. The mild oxidizing tendency slowly dissolved uranium, precipitated gold, and oxygenated thucholite. These actions define a maturing process. A uraninite placer accumulating on an unconformity becomes progressively converted to a gold reef with little residual uraninite. The most mature reefs tend to grade toward the thucholite-seam type, very thin but exceedingly rich in gold. A combination of chemical attack and physical reworking accounts for the general thinness of mature reefs. Pyrite, like uraninite, decreases in abundance with increasing maturity; buffering by pyrite moderated the oxidative depletion of uranium. Where pyrite was scanty or absent, uraninite was completely dissolved by the effects of radiolysis and no ore formed

  15. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, July 1--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-12-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Some of the contract activities for this quarter are: We completed many of the analyses on the 81 samples received from HTI bench-scale run CMSL-9, in which coal, coal/mixed plastics, and coal/high density polyethylene were fed; Liquid chromatographic separations of the 15 samples in the University of Delaware sample set were completed; and WRI completed CP/MAS {sup 13}C-NMR analyses on the Delaware sample set.

  16. Fabrication and characterization of PDLLA/pyrite composite bone ...

    Indian Academy of Sciences (India)

    ... mechanical properties of the PDLLA scaffold were significantly enhanced after the addition of pyrite. The osteoblastic ROS17/2.8 cell line was used and seeded on the PDLLA/pyrite scaffold to study its potential to support the growth of osteoblastic cells and to estimate the optimal dose of pyrite for bone tissue engineering.

  17. Fabrication and characterization of PDLLA/pyrite composite bone ...

    Indian Academy of Sciences (India)

    pyrite (Zi-Ran-Tong, FeS2) scaffold containing 5–20% of pyrite was fabricated by particle leaching combined with the thermal-induced phase separation method. Pyrite (FeS2, named as Zi-Ran-Tong in Chinese medicine), as a traditional ...

  18. The effects of trace element content on pyrite oxidation rates

    Science.gov (United States)

    Gregory, D. D.; Lyons, T.; Cliff, J. B.; Perea, D. E.; Johnson, A.; Romaniello, S. J.; Large, R. R.

    2017-12-01

    Pyrite acts as both an important source and sink for many different metals and metalloids in the environment, including many that are toxic. Oxidation of pyrite can release these elements while at the same time producing significant amounts of sulfuric acid. Such issues are common in the vicinity of abandoned mines and smelters, but, as pyrite is a common accessory mineral in many different lithologies, significant pyrite oxidation can occur whenever pyritic rocks are exposed to oxygenated water or the atmosphere. Accelerated exposure to oxygen can occur during deforestation, fracking for petroleum, and construction projects. Geochemical models for pyrite oxidation can help us develop strategies to mitigate these deleterious effects. An important component of these models is an accurate pyrite oxidation rate; however, current pyrite oxidation rates have been determined using relatively pure pyrite. Natural pyrite is rarely pure and has a wide range of trace element concentrations that may affect the oxidation rate. Furthermore, the position of trace elements within the mineral lattice can also affect the oxidation rate. For example, elements such as Ni and Co, which substitute into the pyrite lattice, are thought to stabilize the lattice and thus prevent pyrite oxidation. Alternatively, trace elements that are held within inclusions of other minerals could form a galvanic cell with the surrounding pyrite, thus enhancing pyrite oxidation rates. In this study, we present preliminary analyses from three different pyrite oxidation experiments each using natural pyrite with different trace element compositions. These results show that the pyrite with the highest trace element concentration has approximately an order of magnitude higher oxidation rate compared to the lowest trace element sample. To further elucidate the mechanisms, we employed microanalytical techniques to investigate how the trace elements are held within the pyrite. LA-ICPMS was used to determine the

  19. Coal combustion: Effect of process conditions on char reactivity. Final technical report, September 1, 1991--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Zygourakis, K.

    1996-02-01

    Coal utilization involves two major stages: coal pyrolysis and char combustion. Figure 1.1 summarizes the steps of these processes. During the pyrolysis stage, heated particles from plastic coals soften, swell and release their volatiles before resolidifying again. During the combustion or gasification stage, char particles may ignite and fragment as the carbon is consumed leaving behind a solid ash residue. Process conditions such as pyrolysis heating rate, heat treatment temperature, pyrolysis atmosphere, and particle size are shown to chemically and physically affect the coal during pyrolysis and the resulting char. Consequently, these pyrolysis conditions as well as the combustion conditions such as the oxygen concentration and combustion temperature affect the char reactivity and ignition phenomena during the combustion stage. Better understanding of the fundamental mechanisms of coal pyrolysis and char combustion is needed to achieve greater and more efficient utilization of coal. Furthermore, this knowledge also contributes to the development of more accurate models that describe the transient processes involved in coal combustion. The project objectives were to investigate the effect of pyrolysis conditions on the macropore structure and subsequent reactivity of chars.

  20. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, January 1, 1996--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1996-07-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. This project builds on work performed in DOE Contract No. DE-AC22-89PC89883. Independent analyses by well-established methods are obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently under utilized for the purpose of examining coal-derived samples are being evaluated. The data obtained from this study is used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank, established and maintained for use in this project, is available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) is being examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction.

  1. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, October 1--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1996-05-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. During this reporting period, CONSOL completed analyses of 81 feed and process stream samples from HTI bench Run CMSL-9. HTI liquefaction bench unit Run CMSL-9 (227-87) was operated with all-dispersed catalyst and Black Thunder Mine (Wyodak and Anderson seam) coal, with and without mixed plastics or high density polyethylene (HDPE) as coprocessing feedstocks. The dispersed catalysts used were Molyvan A and HTI`s iron catalyst, a sulfated iron hydroxide. Results are discussed in this report.

  2. Treatment of Egyptian Maghara coal by plasma ozone synthesized by silent discharge

    CERN Document Server

    Salem, M A; Garamoon, A A; Hassouba, M A

    2003-01-01

    A sample of pyrite rich bituminous coal collected from the main coal seam of Maghara mine, northern sinai, was treated by ozone plasma. The latter was synthesized using silent discharge method (10 kv a.c. and 50 hz). The room temperature Moessbauer spectra of untreated coal sample was easily fitted to two doublet, whose parameters matched those of pyrite (FeS sub 2) and sulfate (FeSO sub 4.H sub 2 O) in addition to hematite. After treatment by ozone plasma, a doublet ascribed to pyrite was observed. The extent of pyrite oxidation to jarosite (Fe sub 2 (SO sub 4) sub 3. nH sub 2 O) was monitored by their relative spectral areas, the incomplete oxidation of pyrite may be attributed to the presence of calcium sulfate layer which acts a screen of ozone.

  3. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 5, October 1, 1992--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Two base case flow sheets have now been prepared. In the first, which was originally presented in TPR4, a Texaco gasifier is used. Natural gas is also burned in sufficient quantity to increase the hydrogen to carbon monoxide ratio of the synthesis gas to the required value of 1. 1 for alcohol synthesis. Acid gas clean up and sulfur removal are accomplished using the Rectisol process followed by the Claus and Beavon processes. About 10% of the synthesis gas is sent to a power generation unit in order to produce electric power, with the remaining 90% used for alcohol synthesis. For this process, the estimated installed cost is $474.2 mm. The estimated annual operating costs are $64.5 MM. At a price of alcohol fuels in the vicinity of $1. 00/gal, the pay back period for construction of this plant is about four years. The details of this case, called Base Case 1, are presented in Appendix 1. The second base case, called Base Case 2, also has a detailed description and explanation in Appendix 1. In Base Case 2, a Lurgi Gasifier is used. The motivation for using a Lurgi Gasifier is that it runs at a lower temperature and pressure and, therefore, produces by-products such as coal liquids which can be sold. Based upon the economics of joint production, discussed in Technical Progress Report 4, this is a necessity. Since synthesis gas from natural gas is always less expensive to produce than from coal, then alcohol fuels will always be less expensive to produce from natural gas than from coal. Therefore, the only way to make coal- derived alcohol fuels economically competitive is to decrease the cost of production of coal-derived synthesis gas. one method for accomplishing this is to sell the by-products from the gasification step. The details of this strategy are discussed in Appendix 3.

  4. Technical properties of biomass and solid recovered fuel (SRF) co-fired with coal: Impact on multi-dimensional resource recovery value.

    Science.gov (United States)

    Iacovidou, Eleni; Hahladakis, John; Deans, Innes; Velis, Costas; Purnell, Phil

    2018-03-01

    The power plant sector is adopting the co-firing of biomass and solid recovered fuel (SRF) with coal in an effort to reduce its environmental impact and costs. Whereas this intervention contributes to reducing carbon emissions and those of other pollutants related with the burning of fossil fuel, it may also result in hidden impacts that are often overlooked. When co-firing, the physical and chemical properties of the mixed fuels and the subsequent technical implications on the process performance and by-products are significant. Interconnections between multiple values nested within four domains of value, i.e. environmental, economic, technical and social, mean that changes in the one domain (in the co-firing case, the technical one) can have considerable implications in the other domains as well. In this study, using a systematic and flexible approach to conceptualising multi-dimensional aspects associated with the co-firing of biomass and SRF with coal, we unveil examples of such interconnections and implications on overall value delivered through the use and recovery of waste resources. Such an analysis could underpin the selection of useful metrics (quantitative or semi-quantitative descriptors) for enabling a systemic multi-dimensional value assessment, and value's distribution amongst interconnected parts of resource recovery systems; key in enabling sound analysis and decision-making. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. Development of coal petrography applied in technical processes at the Bergbau-Forschung/DMT during the last 50 years

    Energy Technology Data Exchange (ETDEWEB)

    Steller, Monika; Arendt, Paul; Kuehl, Helmut [Deutsche Montan Technologie GmbH ? Mining Service Division?Essen (Germany)

    2006-06-06

    The paper deals with the activities of the Bergbau-Forschung Coal Petrography Laboratory in Essen (Germany), which, under the influence of Marie-Therese Mackowsky, developed into a stronghold of the industrial application of coal petrology. In 1979, the formerly independent Section for Mineralogy and Petrology was merged with the Chemistry Section. This synergy has widened the research limits and resulted in higher efficiency of projects being carried out within both units. Since 1990, after transforming Bergbau-Forschung into DMT GmbH, a worldwide competition within hard coal and hard coal-based coke markets, together with the switch of the industry towards alternative energy sources, have significantly lowered the importance of the domestic coal mining industry. This in turn resulted in reduction of coal research programs. However, it is stressed that, in spite of transformations of the applied coal petrology experienced during the past 50 years, some achievements are still as applicable as ever. Among them, the method of predicting coke strength using maceral analysis and coal types, published by Mackowsky and Simonis [Mackowsky, M.-Th., Simonis, W., 1969. Die Kennzeichnung von Kokskohlen fur die mathematische Beschreibung der Hochtemperaturverkokung im Horizontalkammerofen bei Schuttbetrieb durch Ergebnisse mikroskopischer Analysen. Gluckauf-Forschungshefte 30, 25-27], is still in use today. The second part of this paper presents some examples of coal petrography applications, which are still important in carbonization processes. Mackowsky discovered that the pyrolytic components were influencing the coke homogeneity in coke ovens and affected coke quality parameters such as CRI and CSR. These highly graphitic layers and lenses prevent gasification of the inner zones of coke lumps, thus lowering the reactivity of metallurgical coke. Moreover, it also seems possible to predict wall load and maximum internal gas pressure as to prevent coke ovens from damage

  6. Development of coal petrography applied in technical processes at the Bergbau-Forschung/DMT during the last 50 years

    International Nuclear Information System (INIS)

    Steller, Monika; Arendt, Paul; Kuehl, Helmut

    2006-01-01

    The paper deals with the activities of the Bergbau-Forschung Coal Petrography Laboratory in Essen (Germany), which, under the influence of Marie-Therese Mackowsky, developed into a stronghold of the industrial application of coal petrology. In 1979, the formerly independent Section for Mineralogy and Petrology was merged with the Chemistry Section. This synergy has widened the research limits and resulted in higher efficiency of projects being carried out within both units. Since 1990, after transforming Bergbau-Forschung into DMT GmbH, a worldwide competition within hard coal and hard coal-based coke markets, together with the switch of the industry towards alternative energy sources, have significantly lowered the importance of the domestic coal mining industry. This in turn resulted in reduction of coal research programs. However, it is stressed that, in spite of transformations of the applied coal petrology experienced during the past 50 years, some achievements are still as applicable as ever. Among them, the method of predicting coke strength using maceral analysis and coal types, published by Mackowsky and Simonis [Mackowsky, M.-Th., Simonis, W., 1969. Die Kennzeichnung von Kokskohlen fur die mathematische Beschreibung der Hochtemperaturverkokung im Horizontalkammerofen bei Schuttbetrieb durch Ergebnisse mikroskopischer Analysen. Gluckauf-Forschungshefte 30, 25-27], is still in use today. The second part of this paper presents some examples of coal petrography applications, which are still important in carbonization processes. Mackowsky discovered that the pyrolytic components were influencing the coke homogeneity in coke ovens and affected coke quality parameters such as CRI and CSR. These highly graphitic layers and lenses prevent gasification of the inner zones of coke lumps, thus lowering the reactivity of metallurgical coke. Moreover, it also seems possible to predict wall load and maximum internal gas pressure as to prevent coke ovens from damage

  7. Sumpor u ugljenu (Sulphur in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2004-12-01

    Full Text Available The presence of sulphur in coal possesses important environmetal problems in its usage. The sulphur dioxide (S02 emissions produced during coal combustion account for a significant proportion of the total global output of anthropogenic SO2. The extent of sulphur separation depends on several variables such as the form of sulphur in coal, intimacy of contact between minerals and the products of devolatilization. The total sulphur in coal varies in the range of 0.2 - 11 wt %, although in most cases it is beetwen 1 and 3 wt %. Sulphur occurs in a variety of both inorganic and organic forms. Inorganic sulphur is found mainly as iron pyrite, marcasite, pyrrhotite, sphalerite, galena, chalcopirite and as sulphates (rarely exceeds w = 0,1 %. Organic sulphur is found in aromatic rings and aliphatic functionalities usually as mercaptans, aliphatic and aryl sulfides, disulfides and thiophenes. Organic and pyritic sulphur quantities depend on coal rank. Higher rank coals tend to have a high proportion of labile sulphur. All the organic sulphur is bivalent and it is spread throughout the organic coal matrix. Sulphur occurs in all the macerals and most minerals. Vitrinite contains the major part of organic sulphur and metals. Elemental sulphur is produced during coal weathering. The depolymerization methods as pyrolysis and hydrogenation are very drastic methods wich change the structure of the coal and the sulphur groups. In the case of pyrolysis, high levels of desulphurization, in chars and additional production of liquid hydrocarbon can be achieved. Thiophenes and sulphides were the major sulphur components of tars from coal pyrolysis. Hyrdogen sulphide and the lower mercaptans and sulphides were found in the volatile matters. Hydrogen sulphide and thiophenes are practically the only sulphur products of coal hydrogenation. H2S is produced in char hydrodesulphurization. A number of options are available for reducing sulphur emissions including the

  8. The use of FBC wastes in the reclamation of coal slurry solids. Final technical report, September 1, 1991--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Dreher, G.B.; Roy, W.R.; Steele, J.D. [Illinois State Geological Survey, Champaign, IL (United States)

    1992-12-31

    Five fluidized bed combustion (FBC) wastes, one agricultural limestone (Ag LS), and two coal slurry solids (CSS) samples were characterized chemically and mineralogically. Mixtures of the materials (FBC waste or Ag LS and CSS) were prepared and subjected to leaching with deionized water in laboratory experiments and with meteoric water in outdoor weathering experiments. The major cations in the leachates were calcium and sodium, with minor concentrations of magnesium and potassium. The major anions were chloride and sulfate, with minor amounts of fluoride and bicarbonate. The major minerals in the unleached FBC wastes were calcium oxide and calcium sulfate (anhydrite). The calcium oxide was hydrated upon wetting to calcium hydroxide, which was converted to calcium carbonate (calcite) upon exposure to atmospheric carbon dioxide, or carbon dioxide from the neutralization reaction of acid with calcite. The calcium hydroxide controlled the pH of leachates in the early leaching period, whereas calcite controlled the pH in the later leaching period. The alkaline calcium species in the FBC wastes effectively neutralized the acid generated by pyrite oxidation. In extracts generated by the Toxicity Characteristic Leaching Procedure (TCLP), selenium was found to be above the US EPA primary drinking water maximum contaminant level (MCL) in extracts from each of the FBC wastes and CSS samples. Mercury was above its MCL in the extract of FBC-2. The other six constituents (As, Ba, Cd, Cr, Pb, and Ag) were below their corresponding MCLS. Hence, these FBC wastes would not be classified as hazardous under the Resource Conservation and Recovery Act.

  9. 40Ar/39Ar dating of pyrite

    International Nuclear Information System (INIS)

    York, D.; Masliwec, A.; Kuybida, P.; Hanes, J.A.; Hall, C.M.; Kenyon, W.J.; Spooner, E.T.C.; Scott, S.D.

    1982-01-01

    To overcome difficulties encountered in the customary method of determining the age of mineralization of sulphide ore deposits by analysing silicate material, the sulphide minerals themselves have been examined to see if they contained sufficient potassium and argon for 40 Ar/ 39 Ar age determination. Initial results indicate that this is the case for pyrite from the Geco ore body in northwestern Ontario, Canada. (U.K.)

  10. Bacterial leaching of pyritic gold ores

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Cashion, J.D.; Brown, J.; Jay, W.H.

    1998-01-01

    Full text: Pyritic ores (pyrite and arsenopyrite) containing gold concentrations in excess of 50g Au/t can be processed to recover the gold by the removal of the sulphur from the ore. This may be achieved by roasting (producing sulphur dioxide emissions), pressure oxidation (expensive and suitable for large high grade deposits), pressure leaching (still currently being developed) or bacterial oxidation. The bacterial oxidation process is a well known process in nature but has only recently come under investigation as a economically viable and relatively clean method of gold recovery from deep low grade sulphidic ores. Samples were obtained from the Wiluna Gold Mine in Western Australia consisting of the original ore, six successive bacterial reactors and the final products. Moessbauer experiments have been performed at room temperature, liquid nitrogen and liquid helium temperatures, and in applied magnetic fields. The main components of the iron phases which were present during the bacterial treatment were pyrite and arsenopyrite which were readily oxidised by the bacteria. Ferric sulfates and ferric arsenates were identified as by-products of the process with a small amount of the oxyhydroxide goethite. These results are in contrast to the similar study of the Fairview Mine in South Africa where principally Fe(II) species were observed

  11. Proceedings of the Clean and Efficient Use of Fossil Energy for Power Generation in Thailand. The Joint Eighth APEC Clean Fossil Energy Technical Seminar and the Seventh APEC Coal Flow Seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-30

    The convention named above held jointly by the two seminars also named above took place in Bangkok, Thailand, in the period October 30 through November 3. Open remarks were delivered by Mr. Piromsakdi Laparojkit, Secretary General of National Energy Policy Council, Thailand; Mr. Yoshito Yoshimura, Ministry of International Trade and Industry, Japan; Mr. Paul Toghe, Embassy of Australia in Bangkok; and Mr. Robert Gee, Department of Energy, U.S.A. There were ten technical sessions, in which presentations were made and discussion was held over coal in the APEC (Asia-Pacific Economic Cooperation Conference) economy, important role of coal and natural gas in developing economies, coal and environmental situation in Thailand, coal fired power plant related environmental issues, commercially available CCTs (clean coal technologies) in the APEC region, emerging technologies for reducing GHG (greenhouse gas) emissions, clean fuels in the APEC region, growing importance of IPPs (independent power producers) in the APEC region, cooperation among APEC economies, and the like. (NEDO)

  12. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  13. Superacid Catalyzed Coal Conversion Chemistry. 1st and 2nd Quarterly Technical Progress Reports, September 1, 1983-March 30, 1984.

    Science.gov (United States)

    Olah, G. A.

    1984-01-01

    In our laboratories we have previously developed a mild coal conversion process. This involves the use of a superacid system consisting of HF and BF{sub 3} in presence of hydrogen and/or a hydrogen donor solvent. In order to understand the chemistry involved in the process of depolymerization of coal by the HF:BF{sub 3}:H{sub 2} system we are carrying out a systematic study of a number of coal model compounds. The model compounds selected for present study have two benzene rings connected with various bridging units such as alkylidene, ether, sulfide etc. From studies so far carried out it appears that high pyridine extractibilities achieved by treating coal at temperature below 100 degrees C results from the cleavage of bridges such as present in bibenzyl, diphenyl methane, dibenzyl ether, dibenzyl sulfide etc. On the other hand the increased cyclohexane extractibility and distillability observed at relatively higher temperatures and hydrogen pressures reflects the hydrogenation and cleavage of the aromatic backbone in coal structure similar to what is seen in the conversion of model compounds such as biphenyl, diphenyl ether, diphenyl sulfide, anthracene, etc.

  14. A novel coal feeder for production of low sulfur fuel. Annual technical progress report, October 1, 1990--October 1, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Khang, S.J.; Lin, L.; Keener, T.C.; Yeh, P.

    1991-12-31

    A dual-screw feeder was designed for desulfurization of coal. This reactor contains two screw tubes, the inner tube acting as a coal pyrolizer and the outer tube acting as a desulfurizer with hot calcined lime pellets or other renewable sorbent pellets. The objectives of this project is to study the feasibility of an advanced concept of desulfurization and possibly some denitrification in this coal feeder. In this year, two basic studies have been performed: (1) the desulfurization and (2) the denitrification due to mild pyrolysis. Specifically, the following tasks have been performed: (1) Setting up the Dual-Screw reactor, (2) Determination of the pyrolysis product and the sulfur distribution in char, tar and gas based on experimental data, (3) Study of the devolatilization, the desulfurization kinetics and the denitrification kinetics and obtaining the basic kinetic parameters, (4) Study of the sulfur removal efficiency of lime pellets fed into the outer tube of the dual-feeder reactor, (5) Study of the effect of the coal particle size on pyrolysis and desulfurization, (6) Study of the coal pyrolysis and desulfurization using a TGA(Thermal Gravimetric Analyzer).

  15. Determination of the Content of Heavy Metals in Pyrite Contaminated Soil and Plants

    Directory of Open Access Journals (Sweden)

    Miroslava Marić

    2008-09-01

    Full Text Available Determination of a pyrite contaminated soil texture, content of heavy metals in the soil and soil pH, was the aim in the investigation. Acidification of damaged soil was corrected by calcium carbonate. Mineral nutrients and organic matter (NPK, dung, earthworm cast, straw and coal dust were added to damaged soil. Afterwards, the soil was used for oat production. Determination of total heavy metal contents (Cu, Pb, Zn, Fe in soil was performed by atomic absorption spectrofotometry. Plant material (stems, seeds was analysed, too. Total concentration of the heavy metals in the plant material were greater than in crop obtained in unaffected soil.

  16. Technical and economic evaluation of retrofitting and repowering oil-fired boilers with gas from coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Canela, F.; Huang, J.; Ibe, A.P.; Padgett, S.C.; Rao, A.D.; Smelser, S.C.

    1983-02-01

    Fluor studied the feasibility of substituting fuel gas produced from coal for oil fuel at a modern oil-fired boiler plant and of repowering the same boiler plant using fuel gas from coal as the combustion turbine fuel as well as boiler fuel in some cases. Several cases were investigated, including cases with the fuel gas plant connected to the boiler plant with a 50-mile gas delivery pipeline. The Texaco, Inc., coal gasifier was used for the fuel gas production. This gasifier is still under development, and the study results are highly dependent on development of the gasifier to the commercial configuration and cost used in the study. It appears that some savings might be universally available since fuel price differentials of the magnitudes tabulated can be expected in most areas of the United States. When a boiler plant is repowered, a considerable additional quantity of electricity can be produced at relatively low cost through the conversion of the boiler plant to a more efficient combined-cycle type of operation. If the boiler plant is repowered with fuel gas, plant capacity can be increased by up to 73%, and levelized cost of total electricity can be reduced by up to 7.2 mills per kWh (1980 $) below the cost when gas is simply substituted for oil. The boiler plant could be replaced with a new conventional coal-fired plant of the same capacity or a new conventional coal-fired plant of the same capacity as a repowered boiler plant could be installed. In either case, no clear advantage was found with respect to either new capital requirements or cost of electricity if a gas-from-coal system were to be employed. However, a fuel gas system does present an opportunity to reduce capital requirements considerably because fuel gas could be purchased over-the-fence from a second party. Capital requirements for fuel gas substitution would amount to only about $5/kW.

  17. Surface magnetic enhancement for coal cleaning. Quarterly technical progress report no. 4, November 1, 1988--January 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J.Y.

    1989-12-31

    The progress achieved during this quarter includes the ten months shelf life study of magnetizing reagent, the effect of cation regulators on minerals and coals, the combination effect of depressant and activator on the adsorption of magnetizing reagent, optimum magnetite size for magnetizing reagent, and the magnetic field strength for separating magnetic enhanced minerals. The work is generally on schedule with the original plan. The Phase I study (a fundamental study) is nearly completed. Selective conditions for adsorbing magnetizing reagent on minerals have been identified. The work for the next quarter will be mainly on the Phase II study. Coal will be selected, procured, characterized, and processed.

  18. 57Fe NGR studies on three-stage hydroliquefaction of coals

    International Nuclear Information System (INIS)

    Jamond, M.; Bacaud, R.; Bussiere, P.; Charcosset, H.; Nickel-Pepin-Donat, B.

    1990-01-01

    Iron Moessbauer spectroscopy has been performed on liquefaction residues of two different French coals. In a three-stage liquefaction of high volatile bituminous coal (Freyming), without an added catalyst, the coal pyrite is not entirely converted into pyrrhotites, whereas in the presence of an added catalyst, coal pyrite is totally transformed into more dispersed pyrrhotites than those from the sample without an added catalyst; furthermore, the whole added catalyst precursor is reduced into pyrrhotites. In the case of liquefaction of subbituminous coal (Gardanne), full conversion of coal pyrite into pyrrhotites (even without an added catalyst) occurs. In addition, in the presence of the added catalyst, besides pyrrhotites, FeS is evidenced. When molybdenum-iron oxide is added as a catalyst precursor, no mixed Fe-Mo phase is detected. (orig.)

  19. Technical assessment of the long-term effects of coal mining; Technische Abschaetzung von Folgelasten des Steinkohlenbergbaus

    Energy Technology Data Exchange (ETDEWEB)

    Preusse, A.; Kraemer, J. [Technische Hochschule Aachen (Germany). Lehrstuhl und Inst. fuer Markscheidewesen, Bergschadenkunde und Geophysik im Bergbau; Sroka, A. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Markscheidewesen und Geodaesie

    2007-12-15

    The long-term effects of more than 200 years of coal mining are a challenge to engineers, especially the water retention measures taken during mine operation. The actions that must be taken cover a wide range of R + D activities. (orig.)

  20. Biochemical Removal of HAP Precursors From Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE`s interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals.

  1. Biochemical Removal of HAP Precursors From Coal

    International Nuclear Information System (INIS)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE's interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals

  2. Microbiological desulfurization and conversion of coal

    International Nuclear Information System (INIS)

    Quigley, D.R.; Stoner, D.L.; Dugan, P.R.

    1991-01-01

    Bio processing of coal is a young and emerging technology. Until the early 1980's it consisted primarily of coal depyritization using Thiobacillus ferro oxidans to either oxidize pyritic sulfur or to alter particle wettability or floatation properties by binding to exposed pyrite inclusions. Since then, other major avenues of research have been pursued. One of these is the microbiologically mediated liquefaction of coal. Initial work indicated that microorganisms were able to transform low rank coal into a black liquid that was later identified as water solubilized by alkaline substances produced by the microbes and could be enhanced by the removal of multi valent cations from coal. Current work at the INEL involves of the identification and characterization of microorganisms that are able to alter the structure of polymeric desulfurization of coal. This work initially focused on the ability of microorganisms to oxidatively remove organic sulfur from model compounds that were representative of those sulfur containing moieties identified as being in coals (e.g., dibenzo thiophene). The work also focused on those organisms that were could remove the organic sulfur without degrading the carbon structure. While some organisms that are able to perform such these reactions will effectively remove organo sulfur from coal. These concerns stem from steric hindrance considerations and the thermodynamically unfavourable nature of reaction. Current work at the INEL involves the isolation and biochemical characterization of microorganisms that are able to desulfurize and solubilized coals that have high organic sulfur contents. (author)

  3. Thermal behaviors of mechanically activated pyrites by thermogravimetry (TG)

    International Nuclear Information System (INIS)

    Hu Huiping; Chen Qiyuan; Yin Zhoulan; Zhang Pingmin

    2003-01-01

    The thermal decompositions of mechanically activated and non-activated pyrites were studied by thermogravimetry (TG) at the heating rate of 10 K min -1 in argon. Results indicate that the initial temperature of thermal decomposition (T di ) in TG curves for mechanically activated pyrites decreases gradually with increasing the grinding time. The specific granulometric surface area (S G ), the structural disorder of mechanically activated pyrites were analyzed by X-ray diffraction laser particle size analyzer, and X-ray powder diffraction analysis (XRD), respectively. The results show that the S G of mechanically activated pyrites remains almost constant after a certain grinding time, and lattice distortions (ε) rise but the crystallite sizes (D) decrease with increasing the grinding time. All these results imply that the decrease of T di in TG curves of mechanically activated pyrites is mainly caused by the increase of lattice distortions ε and the decrease of the crystallite sizes D of mechanically activated pyrite with increasing the grinding time. The differences in the reactivity between non-activated and mechanically activated pyrites were observed using characterization of the products obtained from 1 h treatment of non-activated and mechanically activated pyrites at 713 K under inert atmosphere and characterization of non-activated and mechanically activated pyrites exposed to ambient air for a certain period

  4. Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. [California Univ., Berkeley, CA (United States); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. [Columbia Univ., New York, NY (United States); Hu, W.; Zou, Y.; Chen, W. [Utah Univ., Salt Lake City, UT (United States); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. [Praxis Engineers, Inc., Milpitas, CA (United States)

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  5. Thin film preparation of semiconducting iron pyrite

    Science.gov (United States)

    Smestad, Greg P.; Ennaoui, Ahmed; Fiechter, Sebastian; Hofmann, Wolfgang; Tributsch, Helmut; Kautek, Wolfgang

    1990-08-01

    Pyrite (Fe52) has been investigated as a promising new absorber material for thin film solar cell applications because of its high optical absorption coefficient of 1OL cm1, and its bandgap of 0.9 to 1.0 eV. Thin layers have been prepared by Metal Organic Chemical Vapor Deposition, MOCVD, Chemical Spray Pyrolysis, CSP, Chemical Vapor Transport, CVT, and Sulfurization of Iron Oxide films, 510. It is postulated that for the material FeS2, if x is not zero, a high point defect concentration results from replacing 2 dipoles by single S atoms. This causes the observed photovoltages and solar conversion efficiencies to be lower than expected. Using the Fe-O-S ternary phase diagram and the related activity plots, a thermodynamic understanding is formulated for the resulting composition of each of these types of films. It is found that by operating in the oxide portion of the phase diagram, the resulting oxidation state favors pyrite formation over FeS. By proper orientation of the grains relative to the film surface, and by control of pinholes and stoichiometry, an efficient thin film photovolatic solar cell material could be achieved.

  6. Bacterial leaching of pyritic gold ores

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, F.M.; Cashion, J.D.; Brown, L.J. [Monash Univ., Clayton, VIC (Australia). Dept. of Physics; Jay, W.H. [Monash Univ., Clayton, VIC (Australia). Chemical Engineering Department

    1996-12-31

    The bacterial oxidation process is well known in nature but has only recently come under investigation as a viable and relatively clean method of gold recovery from ores. However there is currently little information about the process at an atomic scale. It is known that the bacterial attack progresses preferentially along grain boundaries which is precisely where the gold has been deposited from aqueous infiltration. Samples have been obtained from the Wiluna mine in Western Australia consisting of the original ore, 2 pre-treatments, and from six successive bacterial reactors. {sup 57}Fe Moessbauer spectra taken at room temperature show only two quadrupole split doublets which can be ascribed to pyrite, FeS{sub 2}, and arsenopyrite, FeAsS. However, the presence of any superparamagnetic oxide or oxyhydroxide species would be expected to give a spectrum very similar to that of pyrite and would be undetectable in small quantities. At a temperature of 5K, a broad magnetically split sextet is observable with a mean hyperfine field of approximately 50T. This field is characteristic of magnetically ordered ferric iron surrounded by an octahedron of oxygens. The intensity and characteristics of this subspectrum alters through the series and interpretations will be given on the oxidation products of the bacterial leaching

  7. Bacterial leaching of pyritic gold ores

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Cashion, J.D.; Brown, L.J.; Jay, W.H.

    1996-01-01

    The bacterial oxidation process is well known in nature but has only recently come under investigation as a viable and relatively clean method of gold recovery from ores. However there is currently little information about the process at an atomic scale. It is known that the bacterial attack progresses preferentially along grain boundaries which is precisely where the gold has been deposited from aqueous infiltration. Samples have been obtained from the Wiluna mine in Western Australia consisting of the original ore, 2 pre-treatments, and from six successive bacterial reactors. 57 Fe Moessbauer spectra taken at room temperature show only two quadrupole split doublets which can be ascribed to pyrite, FeS 2 , and arsenopyrite, FeAsS. However, the presence of any superparamagnetic oxide or oxyhydroxide species would be expected to give a spectrum very similar to that of pyrite and would be undetectable in small quantities. At a temperature of 5K, a broad magnetically split sextet is observable with a mean hyperfine field of approximately 50T. This field is characteristic of magnetically ordered ferric iron surrounded by an octahedron of oxygens. The intensity and characteristics of this subspectrum alters through the series and interpretations will be given on the oxidation products of the bacterial leaching

  8. The release of iron during coal combustion. Milestone report

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility

    1995-06-01

    Iron plays an important role in the formation of both fly ash and deposits in many pulverized-coal-fired boilers. Several authors indicate that iron content is a significant indicator of the slagging propensity of a majority of US bituminous coals, in particular eastern bituminous coals. The pyritic iron content of these coals is shown to be a particularly relevant consideration. A series of investigations of iron release during combustion is reported for a suite of coals ranging in rank from lignite to low-volatile bituminous coal under combustion conditions ranging from oxidizing to inert. Experimental measurements are described in which, under selected conditions, major fractions of the iron in the coal are released within a 25 ms period immediately following coal devolatilization. Mechanistic interpretation of the data suggest that the iron is released as a consequence of oxygen attack on porous pyrrhotite particles. Experimental testing of the proposed mechanism reveals that the release is dependent on the presence of both pyrite in the raw coal and oxygen in the gas phase, that slow preoxidation (weathering) of the pyrite significantly inhibits the iron release, and that iron loss increases as oxygen penetration of the particle increases. Each observation is consistent with the postulated mechanism.

  9. Surface magnetic enhancement for coal cleaning. Quarterly technical progress report no. 3, August 1, 1988--October 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J.Y.

    1988-12-31

    The progress achieved during this quarter includes the reagent shelf life study, the evaluation and selection of magnetizing reagents, an experimental database for activating and depressing the adsorption of magnetizing reagents in the presence of various chemicals, an adsorption regulator investigation, the establishment of a coal surface controlling theory, and a magnetite size effect study for the separation of magnetic enhanced minerals. The work is on schedule with the original plan. Modifications include the addition of a regulator study to help proving the selectivity controlling theory. The fundamentals for applying the magnetizing reagent technology on coal cleaning are generally established during this quarter. Selective magnetic enhancement of minerals through the adsorption of magnetizing reagents has been experimentally proved. The work for the next quarter will be mainly on optimizing the selective adsorption conditions and the continuation on magnetite size effect study.

  10. Determination of local radiative properties in coal-fired flames. Technical progress report, September 15, 1987--September 15, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Menguec, M.P.; Agarwal, B.; Bush, M.; Dsa, D.; Subramaniam, S.

    1988-12-31

    Recently, an extensive, in-depth review of the modeling of radiation heat transfer in combustion chambers has been prepared (Viskanta and Menguc, 1987); therefore, there is no need to repeat that material here. It is already known that the most important missing link in the prediction of radiation heat transfer in combustion systems is the lack of detailed information about the optical and physical properties of combustion products (Viskanta and Menguc, 1987). The purpose of this research is to determine the radiative properties of coal particles. Considering the uncertainty in the fundamental optical and physical properties of coal particles, such as complex index of refraction, size, size distribution, and shape, it is difficult to predict the radiative properties of particles using available analytical methods, such as Lorenz-Mie theory. For a better understanding of radiation and radiation/combustion or radiation/turbulence interactions, it is preferable to determine the radiative properties in situ.

  11. Pyrolysis and gasification of coal at high temperatures. Final technical report, September 15, 1987--September 14, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Zygourakis, K.

    1992-02-10

    The macropore structure of chars is a major factor in determining their reactivity during the gasification stage. The major objectives of this contract were to (a) quantify by direct measurements the effect of pyrolysis conditions of the macropore structure, and (b) establish how the macropores affected the reactivity pattern, the ignition behavior and the fragmentation of the char particles during gasification in the regime of strong diffusional limitations. Results from this project provide much needed information on the factors that affect the quality of the solid products (chars) of coal utilization processes (for example, mild gasification processes). The reactivity data will also provide essential parameters for the optimal design of coal gasification processes. (VC)

  12. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October 1995--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Cooke, W.S.; Schmidt, E.; Schobert, H.H.

    1996-02-01

    Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting polycyclic aromatic units and the reactions of various oxygen functional groups. Here in this quarterly, we report on the catalytic effects of several molybdenum-, cobalt-, and iron-containing compounds in the reactions of dibenzothiophene (DBT) with hydrogen under conditions related to coal liquefaction. The catalytic effects of several molybdenum-, cobalt-, and iron-containing compounds have been examined in the hydrogenation and hydrodesulfurization reactions of dibenzothiophene (DBT) under conditions related to coal liquefaction. The metal compounds are candidate catalyst precursors for direct coal liquefaction. The reactions were carried out in batch microautoclave reactors at 400{degrees}C for 30 minutes with 6.9 MPa (cold) hydrogen pressure, and tridecane solvent. A metal loading of 0.5 mol% resulted in low conversion and only hydrogenation. Addition of sulfur in 4:1 molar ratio led only to a minor increase in conversion and hydrodesulfurization. The use of a higher boiling solvent (octadecane vs. tridecane) was beneficial in providing increased conversion, hydrodesulfurization, and hydrogenation. An increase in metal compound loading to 36.2 mol% led to a dramatic increase in conversion, hydrodesulfurization, and hydrocracking. Molybdenum hexacarbonyl at 36 mol% loading, with added sulfur at 6:1 ratio and octadecane solvent, gave 100% conversion of dibenzothiophene to other products with 100% hydrodesulfurization. Ammonium tetrathiomolybdate and molybdenum(III) chloride are less active under similar conditions. A cobalt-molybdenum thiocubane complex gave unexpectedly low conversions. Iron and cobalt carbonyls also provided very low conversions, even with added sulfur.

  13. Evaluation of AFBC co-firing of coal and hospital wastes. Technical report, January 1989--August 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    The purpose of this program is to expand the use of coal by utilizing CFB (circulating fluidized bed) technology to provide an environmentally safe method for disposing of waste materials. Hospitals are currently experiencing a waste management crisis. In many instances, they are no longer permitted to burn pathological and infectious wastes in incinerators. Older hospital incinerators are not capable of maintaining the stable temperatures and residence times necessary in order to completely destroy toxic substances before release into the atmosphere. In addition, the number of available landfills which can safely handle these substances is decreasing each year. The purpose of this project is to conduct necessary research investigating whether the combustion of the hospital wastes in a coal-fired circulating fluidized bed boiler will effectively destroy dioxins and other hazardous substances before release into the atmosphere. If this is proven feasible, in light of the quantity of hospital wastes generated each year, it would create a new market for coal -- possibly 50 million tons/year.

  14. Technical, economic and environmental potential of co-firing of biomass in coal and natural gas fired power plants in the Netherlands

    International Nuclear Information System (INIS)

    Van Ree, R.; Korbee, R.; Eenkhoorn, S.; De Lange, T.; Groenendaal, B.

    2000-01-01

    In this paper the technical, economic, and environmental potential of co-firing of biomass in existing Dutch coal and natural gas fired power plants, and industrial combined-cycles (CC), is addressed. Main criteria that are considered are: the availability and contractibility of biomass for energy purposes; the (technical) operation of the conventional fossil fuel based processes may not be disturbed; the gaseous and liquid plant emissions have to comply to those applicable for power plants/CCs, the commercial applicability of the solid residues may not be negatively influenced; applicable additional biomass conversion technologies must be commercially available; the necessary additional investment costs must be acceptable from an economic point of view, and the co-firing option must result in a substantial CO 2 -emission reduction. The main result of the study described in the paper is the presentation of a clear and founded indication of the total co-firing potential of biomass in existing power plants and industrial CCs in the Netherlands. This potential is determined by considering both technical, economic, and environmental criteria. In spite of the fact that the co-firing potential for the specific Dutch situation is presented, the results of the criteria considered are more generally applicable, and therefore are also very interesting for potential co-firing initiatives outside of the Netherlands

  15. Minor element distribution in iron disulfides in coal: a geochemical review

    Science.gov (United States)

    Kolker, Allan

    2012-01-01

    Electron beam microanalysis of coal samples in U.S. Geological Survey (USGS) labs confirms that As is the most abundant minor constituent in Fe disulfides in coal and that Se, Ni, and other minor constituents are present less commonly and at lower concentrations than those for As. In nearly all cases, Hg occurs in Fe disulfides in coal at concentrations below detection by electron beam instruments. Its presence is shown by laser ablation ICP-MS, by selective leaching studies of bulk coal, and by correlation with Fe disulfide proxies such as total Fe and pyritic sulfur. Multiple generations of Fe disulfides are present in coal. These commonly show grain-to-grain and within-grain minor- or trace element compositional variation that is a function of the early diagenetic, coalification, and post-coalification history of the coal. Framboidal pyrite is almost always the earliest Fe disulfide generation, as shown by overgrowths of later Fe disulfides which may include pyrite or marcasite. Cleat- (or vein) pyrite (or marcasite) is typically the latest Fe disulfide generation, as shown by cross-cutting relations. Cleat pyrite forms by fluid migration within a coal basin and consequently may be enriched in elements such as As by deposition from compaction-driven fluids, metal enriched basinal brines or hydrothermal fluids. In some cases, framboidal pyrite shows preferential Ni enrichment with respect to co-occurring pyrite forms. This is consistent with bacterial complexing of metals in anoxic sediments and derivation of framboidal pyrite from greigite (Fe3S4), an Fe monosulfide precursor to framboidal pyrite having the thio-spinel structure which accommodates transition metals. Elements such as As, Se, and Sb substitute for S in the pyrite structure whereas metals, including transition metals, Hg and Pb, are thought to substitute for Fe. Understanding the distribution of minor and trace elements in Fe disulfides in coal has important implications for their availability to

  16. Coal -98

    International Nuclear Information System (INIS)

    Sparre, C.

    1998-01-01

    The following report deals with the use of coal and coke during 1997. Some information about technic, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from SCB have also been used. The use of steam coal for heating purposes during 1997 was 730 000 tons and about 500 000 tons lower than in 1996. The extremely high figures of 1996 were due to twice the production of electricity because of lack of hydro power. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. Some foreign analysts, however, estimate a doubled use of coal for energy use after 2020 because of the plans to phase out the nuclear power. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. 1997 these figures are 2 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1997 was 1.6 mill tons like the year before. 1.2 mill tons coke were produced. The coke consumption in the industry was 1.5 Mill tons. 0.3 mill tons of coke were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has plans to build a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has taken a fluid bed boiler for different fuels in operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm

  17. Development and testing of a commercial-scale coal-fired combustion system, Phase 3. Quarterly technical progress report No. 1, September 26, 1990--December 31, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Litka, A.F.; Breault, R.W.

    1991-03-01

    Within the commercial sector, oil and natural gas are the predominant fuels used to meet the space-heating needs of schools, office buildings, apartment complexes, and other similar structures. In general, these buildings require firing rates of 1 to 10 million Btu/hr. The objective of this program is to demonstrate the technical and economic viability of a coal-fired combustion system for this sector. The commercial-scale coal-water slurry (CWS)-fired space heating system will be a scale-up of a CWS-fired residential warm-air heating system developed by Tecogen under contract to the Department of Energy, Pittsburgh Energy Technology Center. This system included a patented nonslagging combustor known as IRIS, for Inertial Reactor with Internal Separation. This combustion technology, which has demonstrated high combustion efficiency using CWS fuels at input rates of 100,000 Btu/hr, will be scaled to operate at 2 to 5 millon Btu/hr. Along with the necessary fuel storage and delivery, heat recovery, and control equipment, the system will include pollution control devices to meet targeted values of NO{sub x}, S0{sub 2}, and particulate emissions. In general, the system will be designed to match the reliability, safety, turndown, and ignition performance of gas or oil-fired systems.

  18. Thallium isotopes in early diagenetic pyrite - A paleoredox proxy?

    NARCIS (Netherlands)

    Nielsen, S.G.; Goff, M.; Hesselbo, S.P.; Jenkyns, H.C.; LaRowe, D.E.; Lee, C.T.A.

    2011-01-01

    This paper presents the first study of Tl isotopes in early diagenetic pyrite. Measurements from two sections deposited during the Toarcian Ocean Anoxic Event (T-OAE, ∼183 Ma) are compared with data from Late Neogene (<10 Ma) pyrite samples from ODP legs 165 and 167 that were deposited in relatively

  19. Fabrication and characterization of PDLLA/pyrite composite bone ...

    Indian Academy of Sciences (India)

    Keywords. Polylactic acid; Chinese herbal medicine; pyrite; scaffold; bone regeneration; cell culture. ... Pyrite (FeS2, named as Zi-Ran-Tong in Chinese medicine), as a traditional Chinesemedicine, has been used in the Chinese population to treat bone diseases and to promote bone healing. The mechanical properties of ...

  20. Studies on the effect of coal particle size on biodepyritization of high sulfur coal in batch bioreactor

    Directory of Open Access Journals (Sweden)

    Singh Sradhanjali

    2015-03-01

    Full Text Available The moderate thermophilic mix culture bacteria were used to depyritize the Illinois coal of varying particle sizes (-100 μm, 100-200 μm, +200 μm. Mineral libration analysis showed the presence of pyrite along with other minerals in coal. Microbial depyritization of coal was carried out in stirred tank batch reactors in presence of an iron-free 9K medium. The results indicate that microbial depyritization of coal using moderate thermophiles is an efficient process. Moreover, particle size of coal is an important parameter which affects the efficiency of microbial depyritization process. At the end of the experiment, a maximum of 75% pyrite and 66% of pyritic sulphur were removed from the median particle size. The XRD analysis showed the absence of pyrite mineral in the treated coal sample. A good mass balance was also obtained with net loss of mass ranging from 5-9% showing the feasibility of the process for large scale applications.

  1. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 2, appendices. Final technical report, October 1, 1991--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., College Park, PA (United States); Gutterman, C.

    1995-04-01

    Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than did relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.

  2. Ambient pyrite in precambrian chert: new evidence and a theory.

    Science.gov (United States)

    Knoll, A H; Barghoorn, E S

    1974-06-01

    Ambient pyrites of two distinct types were described from middle Precambrian rocks of the Lake Superior area. A new class of this phenomenon is here described from middle Precambrian chert from western Australia. The newly found ambient pyrites are quite minute and characteristically occur in groups forming a "starburst" pattern. All three types of ambient pyrite may be explained in terms of pressure solution initiated by gas evolution from organic material attached to the pyrite. Thermal degradation of the kerogen produces the gases which, due to the impermeability of the encompassing chert, build up the pressures necessary to initiate solution. Pyrite appendages bear a striking resemblance to micro-organisms and, thus, constitute the smallest pseudofossils known.

  3. Production of carbon molecular sieves from Illinois coal. Final technical report, 1 September, 1992--31 August 1993

    Energy Technology Data Exchange (ETDEWEB)

    Lizzio, A.A.; Rostam-Abadi, M. [Illinois State Geological Survey, Champaign, IL (United States)

    1993-12-31

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recovery processes. The overall objective of this project is to determine whether Illinois Basin coals are a suitable feedstock for the production of CMS and to evaluate the potential application of these products in commercial gas separation processes. In Phase 1 of this project, gram quantities of char were prepared from Illinois coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. Chars having surface areas of 1,500--2,100 m{sup 2}/g were produced by chemical activation using potassium hydroxide (KOH) as the chemical activant. These high surface area (HSA) chars had more than twice the adsorption capacity of commercial molecular sieves. The kinetics of adsorption of various gases, e.g., O{sub 2}, N{sub 2}, CO{sub 2}, CH{sub 4}, and H{sub 2}, on these chars at 25 C was determined. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4} and CH{sub 4}/H{sub 2} separation. In Phase 2 of this project, larger quantities of char are being prepared from Illinois coal in a batch fluidized-bed reactor and in a continuous rotary tube kiln. The ability of these chars to separate binary gas mixtures is tested in an adsorption column/gas chromatography system. Oxygen and nitrogen breakthrough curves obtained for selected chars were compared to those of a commercial zeolite. Selected chars were subjected to a nitric acid oxidation treatment. The air separation capability of nitric acid treated char was strongly dependent on the outgassing conditions used prior to an O{sub 2}/N{sub 2} adsorption experiment. An outgassing temperature of 130--160 C produced chars with the most favorable air separation properties. 61 refs.

  4. Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou province, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junying; Zheng, Chuguang; Liu, Jing [National Laboratory of Coal Combustion, Institute of Energy Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan (China); Ren, Deyi [China University of Mining and Technology, 100083 Beijing (China); Zeng, Rongshu [Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029 Beijing (China); Chou, Chen-Lin [Illinois State Geological Survey, 615 East Peabody Drive, 61820 Champaign, IL (United States)

    2002-12-01

    Fourteen samples of minerals were separated by handpicking from Late Permian coals in southwestern Guizhou province, China. These 14 minerals were nodular pyrite, massive recrystallized pyrite, pyrite deposited from low-temperature hydrothermal fluid and from ground water; clay minerals; and calcite deposited from low-temperature hydrothermal fluid and from ground water. The mineralogy, elemental composition, and distribution of 33 elements in these samples were studied by optical microscopy, scanning electron microscope equipped with energy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), cold-vapor atomic absorption spectrometry (CV-AAS), atomic fluorescence spectrometry (AFS), inductively coupled-plasma mass spectrometry (ICP-MS), and ion-selective electrode (ISE). The results show that various minerals in coal contain variable amounts of trace elements. Clay minerals have high concentrations of Ba, Be, Cs, F, Ga, Nb, Rb, Th, U, and Zr. Quartz has little contribution to the concentration of trace elements in bulk coal. Arsenic, Mn, and Sr are in high concentrations in calcite. Pyrite has high concentrations of As, Cd, Hg, Mo, Sb, Se, Tl, and Zn. Different genetic types of calcite in coal can accumulate different trace elements; for example Ba, Co, Cr, Hg, Ni, Rb, Sn, Sr, and Zn are in higher concentrations in calcite deposited from low-temperature hydrothermal fluid than in that deposited from ground water. Furthermore, the concentrations of some trace elements are quite variable in pyrite; different genetic types of pyrites (Py-A, B, C, D) have different concentrations of trace elements, and the concentrations of trace elements are also different in pyrite of low-temperature hydrothermal origin collected from different locations. The study shows that elemental concentration is rather uniform in a pyrite vein. There are many micron and submicron mosaic pyrites in a pyrite vein, which is enriched in some trace elements, such as As and Mo. The

  5. Deashing of coal liquids with ceramic membrane microfiltration and diafiltration. Final quarterly technical progress report, July 1--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    This program is directed towards development of an improved process for de-ashing and recovery of coal-derived residual oil by the use of ceramic membranes for high-temperature microfiltration and diafiltration. Using laboratory-scale ceramic membrane modules, samples of a coal-derived residual oil containing ash will be processed by crossflow microfiltration, followed by solvent addition and refiltration (diafiltration). Recovery of de-ashed residual oil will be demonstrated. Data from this program will be used to develop a preliminary engineering design and cost estimate for a demonstration pilot plant incorporating full-scale membrane modules. In addition, estimates for production system capital and operating costs will be developed to assess process economic feasibility. The five program tasks include (1) ceramic membrane fabrication, (2) membrane test system assembly, (3) testing of the ceramic membranes, (4) design of a demonstration system using full scale membrane modules, and (5) development of estimates for microfiltration capital and operating costs and assessment of process economic feasibility.

  6. Evaluation of the effect of macerals on coal permeability in Tazareh and Parvadeh mines

    Directory of Open Access Journals (Sweden)

    Farhang Sereshki

    2016-08-01

    Full Text Available In recent decades, the subject of gas emission in underground coal mines in many countries is an important subject. Many factors affect in gas emissions in coal seams. Geological and physical structures of coal are affecting on gas emissions'. Also, composition and mineralization of coal, affect in coal permeability for different gases. In this study, the relationship between maceral composition and coal permeability in Tazareh and Parvadeh mines has been studied. Accordingly, a laboratory studies to investigate the relationship between coal composition and coal permeability was done. In coal samples, with MFORR equipment the permeability test was done. With microscopic analysis, the maceral contents of coal such as Inertinite and Vitrinite have been measured. Accordingly, many coal samples of Parvadeh and Tazareh coal mines have the pyrite as the dominant mineral matter. Parvadeh coal samples has the average percentage of Vitrinite equal 81.34% and 10.52% Inertinite. Also, in the Tazareh coal samples in Eastern Alborz coal mines, the average percentage of Vitrinite is 69.31% and inertinite is 22.47%. The average percentage of Pyrite content in Parvadeh coal samples in Tabas coal mines is 2.38% and in the Tazareh coal samples in Eastern Alborz coal mines is 2.62%.  The permeability test results have been shown, which, with increase of Inertinite contents, the permeability of coal is increasing. Also, test results have been shown, there was a reduction in the coal permeability with increasing of mineral contents and carbonate contents of the coal. So, the coal permeability in Tabas coal samples is more than Eastern Alborz coal samples.

  7. Flotation machine and process for removing impurities from coals

    Science.gov (United States)

    Szymocha, K.; Ignasiak, B.; Pawlak, W.; Kulik, C.; Lebowitz, H.E.

    1995-12-05

    The present invention is directed to a type of flotation machine that combines three separate operations in a single unit. The flotation machine is a hydraulic separator that is capable of reducing the pyrite and other mineral matter content of a coal. When the hydraulic separator is used with a flotation system, the pyrite and certain other mineral particles that may have been entrained by hydrodynamic forces associated with conventional flotation machines and/or by the attachment forces associated with the formation of microagglomerates are washed and separated from the coal. 4 figs.

  8. Novel electrochemical process for coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Farooque, M.

    1989-07-01

    The feasibility of two distinctly different routes to coal conversion at low severity conditions was investigated. An electrochemical approach utilizing both the electro-oxidation and electro-reduction routes was employed. The electro-oxidation route consists of an electrochemical reaction involving H{sub 2}O and coal, leading to the breakup of coal molecules. The observed reaction rate has been explained as a combination of the coal and pyrite electro-oxidation currents. Organic sulfur has been identified as the contributing factor for the observation of more than 100% H{sub 2} production current efficiency with several coal samples. Also, an attractive coal pre-treatment process has been identified which results in production of useful products and simultaneous upgrading of the coal. Electrochemical oxidation of coal with H{sub 2}O leads to the production of hydrogen, CO{sub 2}, simultaneous removal of pyritic sulfur, and significant reduction of ash content. There is also indirect evidence that the organic sulfur may be removed in the process. A preliminary economic evaluation of this process has projected a cost advantage of > $8 per ton of Illinois {number sign}2 coal. A lab-scale cell has been successfully employed in this study for generating process data useful for future design calculations. This study also explored the electro-reduction route of coal conversion and has successfully demonstrated production of liquid products from different coal types at low severity conditions. A variety of aliphatic and aromatic compounds have been identified in the products. Coal type appeared to be the most important parameter affecting the product spectrum. 32 refs., 26 figs., 19 tabs.

  9. Bioconversion of coal-derived synthesis gas to liquid fuels. Quarterly technical progress report, April 1, 1993--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.; Worden, R.M.; Grethlein, H.

    1993-07-16

    The overall objective of the project is to develop two stage fermentation process for conversion of coal-derived synthesis gas to a mixture of alcohols. This is achieved in two steps. In the first step, B .methylotrophicum converts carbon monoxide (CO) to butyric and acetic acids. Subsequent fermentation of the acids by Clostridium acetobutylicum leads to the production of butanol and ethanol. The tasks for this quarter were: Development/isolation of superior strains for fermentation of syn gas; optimization of process conditions for fermentation of syn gas; evaluation of bioreactor configuration for improved mass transfer of syn gas; and optimization of process conditions for reducing carbon and electron loss by H{sub 2}-CO{sub 2} fermentation.

  10. [Engineering development of advanced coal-fired low-emission boiler systems]. Technical progress report, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wesnor, J.D.; Bakke, E. [ABB Environmental Systems, Birmingham, AL (United States); Bender, D.J.; Kaminski, R.S. [Raytheon Engineers and Constructors, Inc., Philadelphia, PA (United States)

    1995-12-31

    The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emisssion boiler systems. The primary objectives are: NO{sub x} emissions, lb/million Btu; SO{sub 2} emissions, lb/million Btu; particulate emissions, lb/million Btu; and net plant efficiency, not less than 42%. The secondary objectives are: improved ash disposability; reduced waste generation; and reduced air toxics emissions. Accomplishments to date are summarized for the following tasks: task 1, project planning and management; task 7, component development and optimization; task 8, preliminary POC test facility design; task 9, subsystem test design and plan; task 10, subsystem test unit construction; and task 11, subsystem test operation and evaluation.

  11. Coal combustion: Effect of process conditions on char reactivity. Ninth quarterly technical report, September 1, 1992--December 1, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Zygourakis, K.

    1993-12-31

    Our efforts during the past quarter focused on the development of an image processing technique for characterizing the macropore structure of chars produced from Illinois No. 6 coal. Pyrolysis experiments were carried out in a microscope-stage reactor in inert and reacting atmospheres and at various pyrolysis heating rates. Particles from several pyrolysis runs were embedded in an epoxy resin block and polished sections . were prepared. Digital images of char particle cross-sections were acquired and analyzed to measure the structural properties of the chars. The macropore analysis procedure is presented here in detail. Future reports will present the data showing the effects of pyrolysis conditions on the macropore structure of Illinois No. 6 chars.

  12. Deashing of coal liquids with ceramic membrane microfiltration and diafiltration. Final quarterly technical progress report, October 1--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Diafiltration experiments were done to determine how much particulate- free oil could be extracted from the solids-containing stream. The 0. 05 {mu}m titania membrane was used for the concentration/diafiltration process runs at 270 C, 80 psig inlet pressure, and 6 gpm crossflow. Five concentration process runs were conducted. After the initial run, the concentrated material was diluted with hydrotreated start-up oil from the final solids back to 10% solids. The concentration was limited by increased pressure drop with increased solids content and plugged membrane module channels. Solids retention was greater than 99.5% for all samples. Attempts to clean membranes with solvent failed due to lack of time. Samples of the permeate and concentrate streams were taken for analysis; the diluent had a similar bp range to the coal liquids in the atmospheric bottoms; thus, distillation could not be used to separate the bottoms from the diluent.

  13. Coal geopolitics

    International Nuclear Information System (INIS)

    Giraud, P.N.; Suissa, A.; Coiffard, J.; Cretin, D.

    1991-01-01

    This book divided into seven chapters, describes coal economic cycle. Chapter one: coals definition; the principle characteristics and properties (origin, calorific power, international classification...) Chapter two: the international coal cycle: coal mining, exploration, coal reserves estimation, coal handling coal industry and environmental impacts. Chapter three: the world coal reserves. Chapter four: the consumptions, productions and trade. Chapter five: the international coal market (exporting mining companies; importing companies; distributors and spot market operators) chapter six: the international coal trade chapter seven: the coal price formation. 234 refs.; 94 figs. and tabs [fr

  14. Greigite: a true intermediate on the polysulfide pathway to pyrite

    Directory of Open Access Journals (Sweden)

    Benning Liane G

    2007-03-01

    Full Text Available Abstract The formation of pyrite (FeS2 from iron monosulfide precursors in anoxic sediments has been suggested to proceed via mackinawite (FeS and greigite (Fe3S4. Despite decades of research, the mechanisms of pyrite formation are not sufficiently understood because solid and dissolved intermediates are oxygen-sensitive and poorly crystalline and therefore notoriously difficult to characterize and quantify. In this study, hydrothermal synchrotron-based energy dispersive X-ray diffraction (ED-XRD methods were used to investigate in situ and in real-time the transformation of mackinawite to greigite and pyrite via the polysulfide pathway. The rate of formation and disappearance of specific Bragg peaks during the reaction and the changes in morphology of the solid phases as observed with high resolution microscopy were used to derive kinetic parameters and to determine the mechanisms of the reaction from mackinawite to greigite and pyrite. The results clearly show that greigite is formed as an intermediate on the pathway from mackinawite to pyrite. The kinetics of the transformation of mackinawite to greigite and pyrite follow a zero-order rate law indicating a solid-state mechanism. The morphology of greigite and pyrite crystals formed under hydrothermal conditions supports this conclusion and furthermore implies growth of greigite and pyrite by oriented aggregation of nanoparticulate mackinawite and greigite, respectively. The activation enthalpies and entropies of the transformation of mackinawite to greigite, and of greigite to pyrite were determined from the temperature dependence of the rate constants according to the Eyring equation. Although the activation enthalpies are uncharacteristic of a solid-state mechanism, the activation entropies indicate a large increase of order in the transition state, commensurate with a solid-state mechanism.

  15. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  16. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  17. Desulphurisation of coal pyrolysis and magnetic separation. Desulfuracion de carbones mediante pirolisis y separacion magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, J.C.; Ayala, N.; Ibarra, J.V.; Moliner, R.; Miranda, J.L.; Vazquez, A. (CENIM, Madrid (Spain))

    1991-07-01

    The desulphurisation of coal intended for use inthermal power stations is a priority issue in the national strategy for the reduction of acid rain. This article studies the feasibility of eliminating pyritic sulphur from coal by physical methods using high intensity pyrolysis and magnetic separation. 6 refs., 9 figs., 4 tabs.

  18. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lili [Pennsylvania State Univ., University Park, PA (United States); Schobert, Harold H. [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    1998-01-01

    The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. For convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.

  19. Development of coal-based technologies for Department of Defense Facilities. Semiannual technical progress report, March 28, 1997--September 27, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Miller, S.F.; Morrison, J.L. [and others

    1998-01-06

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of developing technologies which can potentially decrease DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Phase I was completed on November 1, 1995. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included performing pilot-scale air toxics (i.e., trace elements and volatile organic compounds) testing and evaluating a ceramic filtering device on the demonstration boiler. Also, a sodium bicarbonate duct injection system was installed on the demonstration boiler. An economic analysis was conducted which investigated the benefits of decreased dependence on imported oil by using new coal combustion technologies. Work related to coal preparation and utilization was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies, pilot-scale NO{sub x} reduction studies, economic analyses of coal use, and evaluation of deeply-cleaned coal as boiler fuel. Coal preparation studies were focused on continuing activities on particle size control, physical separations, and surface-based separation processes. The evaluation of deeply-cleaned coal as boiler fuel included receiving three cleaned coals from Cyprus-Amax.

  20. Practical considerations of pyrite oxidation control in uranium tailings

    International Nuclear Information System (INIS)

    1984-05-01

    The problems posed by the oxidation of pyrite in uranium tailings include the generation of sulfuric acid and acid sulfate metal salts. These have substantial negative impacts on watercourse biota by themselves, and the lowered pH levels tend to mobilize heavy metals present in the tailings the rate of oxidation of pyrite at lower pH levels is catalyzed by sulfur and iron oxidizing bacteria present in soils. No single clear solution to the problems came from this study. Exclusion of air is a most important preventative of bacterial catalysis of oxidation. Bactericides, chemically breaking the chain of integrated oxidation reactions, maintaining anaerobic conditions, or maintaining a neutral or alkaline pH all reduce the oxidation rate. Removal of pyrite by flotation will reduce but not eliminate the impact of pyrite oxidation. Controlled oxidation of the remaining sulfide in the flotation tails would provide an innocuous tailing so far as acidity generation is concerned

  1. Bioconversion of coal derived synthesis gas to liquid fuels. Final quarterly technical progress report, July 1, 1993--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.; Worden, R.M.; Grethlein, H.

    1993-10-25

    The overall objective of the project is to develop an integrated two stage fermentation process for conversion of coal-derived synthesis gas to a mixture of alcohols. This is achieved in two steps. In the first step, Butyribacterium methylotrophicum converts carbon monoxide (CO) to butyric and acetic acids. Subsequent fermentation of the acids by Clostridium acetobutylicum leads to the production of butanol and ethanol. The tasks for this quarter were: (1) development/isolation of superior strains for fermentation of syngas, (2) optimization of process conditions for fermentation of syngas, (3) evaluation of bioreactor configuration for improved mass transfer of syngas, (4) development of a membrane-based pervaporation system, (5) optimization of process conditions for reducing carbon and electron loss by H{sub 2}-CO{sub 2} fermentation, and (6) synthesis gas fermentation in single-stage by co-culture. Progress is reported in isolation of CO utilizing anaerobic strains; investigating the product profile for the fermentation of syngas by B. methylotrophicum; and determining the effect of carbon monoxide on growth of C. acetobutylicum.

  2. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 5, [October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1995-11-30

    Studies involving the tubular furnace are in the process of identifying the ideal experimental coal-to-refuse derived fuel(RDF) ratio for use in the AFBC system. A series of experiments with this furnace has been performed to determine the possible chemical pathway for formation of chlorinated organic compounds during the combustion of various RDF sources. Phenol and chlorine appear to be likely reactants necessary for the formation of these compounds. The main goal of these experiment is to determine the exact experimental conditions for the formation of chlorinated organic compounds, as well as methods to inhibit their development. Work on the fluidized bed combustor has involved five combustion runs, in which a combustion efficiency of greater than 96% and with a consistent CO{sub 2} concentration of approximately 13% was obtained. Modifications responsible for these improvements include the addition of the underbed fuel feed system and revision of the flue gas sampling system. New methods of determining combustion efficiency and percentage of SO{sub 2} capture using TG techniques to analyze combustion products are being developed. The current outlook using this TGA/FTIR method is very promising, since previously obscured reactions are being studied. the analysis of combustion products is revealing a more complete picture of the combustion process within the AFBC system.

  3. Development of coal-based technologies for Department of Defense Facilities. Semiannual technical progress report, September 28, 1996--March 27, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Miller, S.F.; Pisupati, S.V. [and others

    1997-07-22

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of developing technologies which can potentially decrease DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Work in Phase III focused on coal preparation studies, pilot-scale NO{sub x} reduction studies, economic analyses of coal use, and evaluation of deeply-cleaned coal as boiler fuel. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. Preliminary pilot-scale NO{sub x} reduction catalyst tests were conducted when firing natural gas in Penn State`s down-fired combustor. This is the first step in the scale-up of bench-scale results obtained in Phase II to the demonstration boiler scale when firing coal. The economic study focused on community sensitivity to coal usage, regional/national economic impacts of new coal utilization technologies, and constructing a national energy portfolio. The evaluation of deeply-cleaned coal as boiler fuel included installing a ribbon mixer into Penn State`s micronized coal-water mixture circuit for reentraining filter cake. In addition, three cleaned coals were received from CQ Inc. and three cleaned coals were received from Cyprus-Amax.

  4. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, May 9, 1992--August 8, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Olson, E.S.

    1995-10-01

    An investigation of new methods for the production of mixed pillared clay catalysts and clay-supported catalysts and determination of their catalytic activities were continued in this quarter. To demonstrate the reproducibility of the preparative method for high activity iron/alumina-pillared montmorillonite catalysts, a new batch of the catalyst was prepared and tested for hydrocracking activity with bibenzyl. This preparation gave conversion and product distribution similar to that reported previously. The mixed iron/alumina-pillared clay was also prepared using a pillaring solution that was aged for longer period of time. To determine the importance of the type of pillaring support in hydrocracking activity, iron/zirconia-pillared montmorillonite was prepared using the same technique as that for iron/alumina-pillared montmorillonite. The reaction of bibenzyl with the sulfided iron/zirconia-pillared catalyst gave a lower hydrocracking conversion than the iron/alumina-pillared catalyst. Addition of a second catalytic metal to the clay support was attempted to determine if a synergistic effect could improve liquefaction. Ferric nitrate and stannous chloride were added to the clay, but the resulting catalyst was relatively poor for hydrocracking and hydrogenation compared with ferric nitrate supported on the clay. New disposable iron catalysts with high acidity and surface area are desired for coal liquefaction. Synthetic iron aluminosilicates were prepared by methods similar to those used for the nickel-substituted synthetic mica montmorillonite (NiSMM) catalysts, which are very effective for hydrogenation and reforming of hydrocarbons. The iron aluminosilicate catalysts were tested for hydrocracking and hydrogenation of bibenzyl, naphthalene and pyrene. Pyrene hydrogenation was effectively catalyzed by the sulfided synthetic iron catalyst.

  5. Preparation of Direct Reduction Sponge Iron (DRI) Using Pyrite Cinder Containing Nonferrous Metals

    Science.gov (United States)

    Chun, Tiejun; Long, Hongming; Di, Zhanxia; Meng, Qingmin; Wang, Ping

    2017-10-01

    Pyrite cinder is a solid waste generated by the sulfuric acid industry and is considered environmentally hazardous. It contains abundant iron, such as Fe2O3 and Fe3O4, and nonferrous metals, such as zinc, lead and copper. In order to try and recycle this material as a source of Fe units, preparation of direct reduction iron (DRI) using pyrite cinder was investigated by coal-based grate rotary kiln process. This process includes chloridizing and reduction roasting. The results show that 97 % lead was removed after the chloridizing process. Copper was only detached in chloridizing process with the removal rate of 78.49 %. Furthermore, the removal of zinc was carried out in both chloridizing and reduction process, and the removal rate of 96.76 % was achieved after reduction roasting. The final product representing a metallization degree of 93.36 % with compressive strength of 1,198 N/pellet was obtained after the oxidized pellets were reduced at 1,050 °C for 80 min.

  6. Chemical Interactions of Hydraulic Fracturing Biocides with Natural Pyrite

    Science.gov (United States)

    Consolazio, Nizette A.

    In conjunction with horizontal drilling, hydraulic fracturing or fracking has enabled the recovery of natural gas from low permeable shale formations. In addition to water, these fracking fluids employ proppants and up to 38 different chemical additives to improve the efficiency of the process. One important class of additives used in hydraulic fracturing is biocides. When applied appropriately, they limit the growth of harmful microorganisms within the well, saving energy producers 4.5 billion dollars each year. However, biocides or their harmful daughter products may return to the surface in produced water, which must then be appropriately stored, treated and disposed of. Little is known about the effect of mineral-fluid interactions on the fate of the biocides employed in hydraulic fracturing. In this study, we employed laboratory experiments to determine changes in the persistence and products of these biocides under controlled environments. While many minerals are present in shale formations, pyrite, FeS2(s) is particularly interesting because of its prevalence and reactivity. The FeII groups on the face of pyrite may be oxidized to form FeIII phases. Both of these surfaces have been shown to be reactive with organic compounds. Chlorinated compounds undergo redox reactions at the pyrite-fluid interface, and sulfur-containing compounds undergo exceptionally strong sorption to both pristine and oxidized pyrite. This mineral may significantly influence the degradation of biocides in the Marcellus Shale. Thus, the overall goal of this study was to understand the effect of pyrite on biocide reactivity in hydraulic fracturing, focusing on the influence of pyrite on specific functional groups. The first specific objective was to demonstrate the effect of pyrite and pyrite reaction products on the degradation of the bromine-containing biocide, DBNPA. On the addition of pyrite to DBNPA, degradation rates of the doubly brominated compound were found to increase

  7. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, first and second quarters 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involve injecting ammonia into the flue gas generated from coal combustion in a boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The project is being conducted in the following three phases: permitting, environmental monitoring plan and preliminary engineering; detailed design engineering and construction; and operation, testing, disposition and final report. The project was in the operation and testing phase during this reporting period. Accomplishments for this period are described.

  8. SULPHIDE MINERALIZATION IN UPPER WESTPHALIAN COAL SEAMS FROM THE EASTERN PART OF THE UPPER SILESIAN COAL BASIN

    Directory of Open Access Journals (Sweden)

    Lipiarski Ireneusz

    1997-10-01

    Full Text Available Morphologically diversified sulphide mineralization has been found in No. 301 and 302 coal seams (Westphalian B. The main sulphide is pyrite which forms veinlets cross-cutting the sedimentary fabrics of the coal, encrusts the cellular structures and intergrowths with oxysulphides. Two generations of pyrites were observed: the preceding and the following the oxysulphides. Pyrite composition is stoichiometric, rare admixtures are up to(in wt.%: Mn - 0.19, Co - 0.48, Ni - 0.42 and As - 1.41. Iron oxysulphides contain up to 35.06 wt.% oxygen. Their composition varies between FeS2O and FeS2O3. Increased contents of As (up to 1.46 wt.% and Pb (up to 0.96 wt.% were detected.

  9. Advanced physical fine coal cleaning spherical agglomeration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  10. Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment. Quarterly technical progress report, March--May 1990

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Miller, R.L.

    1990-12-31

    The objectives of the project are to investigate various coal pretreatment techniques and to determine the effect of these pretreatment procedures on the reactivity of the coal. Reactivity enhancement will be evaluated under both direct hydroliquefaction and co-processing conditions. Coal conversion utilizing low rank coals and low severity conditions (reaction temperatures generally less than 350{degrees}C) are the primary focus of the liquefaction experiments, as it is expected that the effect of pretreatment conditions and the attendant reactivity enhancement will be greatest for these coals and at these conditions. This document presents a comprehensive report summarizing the findings on the effect of mild alkylation pretreatment on coal reactivity under both direct hydroliquefaction and liquefaction co-processing conditions. Results of experiments using a dispersed catalyst system (chlorine) are also presented for purposes of comparison. IN general, mild alkylation has been found to be an effective pretreatment method for altering the reactivity of coal. Selective (oxygen) methylation was found to be more effective for high oxygen (subbituminous) coals compared to coals of higher rank. This reactivity enhancement was evidenced under both low and high severity liquefaction conditions, and for both direct hydroliquefaction and liquefaction co-processing reaction environments. Non-selective alkylation (methylation) was also effective, although the enhancement was less pronounced than found for coal activated by O-alkylation. The degree of reactivity enhancement was found to vary with both liquefaction and/or co-processing conditions and coal type, with the greatest positive effect found for subbituminous coal which had been selectively O-methylated and subsequently liquefied at low severity reaction conditions. 5 refs., 18 figs., 9 tabs.

  11. The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, March 28, 1995--September 27, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Hatcher, P.; Knicker, H. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1996-10-21

    The U.S. Department of Defense (DOD), through the Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Mixture Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Activities this reporting period are summarized by phase. During this reporting period, preparation of the Phase I final report continued. Work on Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included initiating a study to identify appropriate SO{sub 2} and NO{sub x} control technologies for coal-fired industrial boilers. In addition, work started on the design of a ceramic filtering device for installation on the demonstration boiler. The ceramic filter device will be used to demonstrate a more compact and efficient filtering device for retrofit applications. Coal preparation and utilization activities, and the economic analysis were completed and work focused on preparing the final report. Work on Phase III focused on coal preparation studies and economic analyses of coal use. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. The economic study focused on selecting incentives for commercialization of coal using technologies, community sensitivity to coal usage, regional economic impacts of new coal utilization technologies, and constructing a national energy portfolio.

  12. The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, March 28, 1994--September 27, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Bartley, D.A.; Morrison, J.L. [and others

    1995-04-14

    The US Department of Defense (DOD), through an Interagency Agreement with the US Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first two phases of the program are underway. Activities this reporting period included performing coal beneficiation/preparation studies, conducting combustion performance evaluations, preparing retrofit engineering designs, determining retrofit economics, and installing a micronized coal-water mixture (MCWM) circuit.

  13. Large scale solubilization of coal and bioconversion to utilizable energy. Eighth quarterly technical progress report, July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, N.C.

    1996-02-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  14. Pyrite oxidation under simulated acid rain weathering conditions.

    Science.gov (United States)

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou

    2017-09-01

    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  15. Hydrogeologic and environmental impact of amjhore pyrite mines, India

    Science.gov (United States)

    Choubey, Vishnu D.; Rawat, Rajendra K.

    1991-01-01

    Drainage from active and inactive pyrite mines has produced chemical and physical pollution of both ground- and surface water in Amjhore region. In the present case, chemical pollution is caused by exposing pyrite minerals to oxidation or leaching, resulting in undesirable concentrations of dissolved materials. Pyrite mining suddenly exposed large quantities of sulfides to direct contact with oxygen, and oxidation proceeds rapidly, resulting in acidity and release of metal (Fe) and sulfates to the water system, eventually resulting in water pollution in the region. The magnitude and impact of the problem is just being recognized and, as the present and the future projected demand for clean water is of top priority, the present studies were undertaken. Mine drainage includes water flowing from the surface and underground mines and runoff or seepage from the pyrite mines. This article describes the various hydrologic factors that control acid water formation and its transport. The mine drainage is obviously a continuing source of pollution and, therefore, remedial measures mainly consisting of a double-stage limestone-lime treatment technique have been suggested. The present results will be used to develop an alternative and more effective abatement technology to mitigate acid production at the source, namely, the technique of revegetation of the soil cover applied to the waste mine dump material. Water quality change is discussed in detail, with emphasis on acidity formed from exposed pyrite material and on increase in dissolved solids. Preventive and treatment measures are recommended.

  16. Method selection for mercury removal from hard coal

    Directory of Open Access Journals (Sweden)

    Dziok Tadeusz

    2017-01-01

    Full Text Available Mercury is commonly found in coal and the coal utilization processes constitute one of the main sources of mercury emission to the environment. This issue is particularly important for Poland, because the Polish energy production sector is based on brown and hard coal. The forecasts show that this trend in energy production will continue in the coming years. At the time of the emission limits introduction, methods of reducing the mercury emission will have to be implemented in Poland. Mercury emission can be reduced as a result of using coal with a relatively low mercury content. In the case of the absence of such coals, the methods of mercury removal from coal can be implemented. The currently used and developing methods include the coal cleaning process (both the coal washing and the dry deshaling as well as the thermal pretreatment of coal (mild pyrolysis. The effectiveness of these methods various for different coals, which is caused by the diversity of coal origin, various characteristics of coal and, especially, by the various modes of mercury occurrence in coal. It should be mentioned that the coal cleaning process allows for the removal of mercury occurring in mineral matter, mainly in pyrite. The thermal pretreatment of coal allows for the removal of mercury occurring in organic matter as well as in the inorganic constituents characterized by a low temperature of mercury release. In this paper, the guidelines for the selection of mercury removal method from hard coal were presented. The guidelines were developed taking into consideration: the effectiveness of mercury removal from coal in the process of coal cleaning and thermal pretreatment, the synergy effect resulting from the combination of these processes, the direction of coal utilization as well as the influence of these processes on coal properties.

  17. Seventh symposium on coal mine drainage research. NCA/BCR coal conference and Expo IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Seventh Symposium on Coal Mine Drainage Research, sponsored by the National Coal Association and Bituminous Coal Research, Inc., was held at the Kentucky Fair and Exposition Center, Louisville, Kentucky, October 18-20, 1977. Seventeen papers from the proceedings have been entered individually into EDB and ERA. Topics covered include chemical reactions of pyrite oxidation and acid formation in spoil banks, abandoned mines, etc., formation of small acid lakes from the drainage and their neutralization by natural and other neutralization measures, trace elements in acid mine drainage, ground water contamination, limnology, effects of surface mined ground reclamation and neutralization, water purification and treatment, mining and coal preparation plant waste disposal, ash and fly ash disposal (to minimize leaching from the wastes), runoff from large coal storage stockpiles during storms (prevention of environmental effects by collection and neutralization by passing through an ash pond). (LTN)

  18. Green-House-Gas-Reduced Coal-and-Biomass-to-Liquid-Based Jet Fuel (GHGR-CBTL) Process - Final Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth [Altex Technologies Corporation, Sunnyvale, CA (United States); Imam, Thamina [Altex Technologies Corporation, Sunnyvale, CA (United States); Chevanan, Nehru [Altex Technologies Corporation, Sunnyvale, CA (United States); Namazian, Mehdi [Altex Technologies Corporation, Sunnyvale, CA (United States); Wang, Xiaoxing [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    2017-11-03

    This Final Technical Report describes the work and accomplishments of the project entitled, “Green-House-Gas-Reduced Coal-and-Biomass-to-Liquid-Based Jet Fuel (GHGR-CBTL) Process”. The main objective of the project was to raise the Technology Readiness Level (TRL) of the GHGR-CBTL fuel-production technology from TRL 4 to TRL 5 by producing a drop-in synthetic Jet Propellant 8 (JP-8) with a greenhouse-gas footprint less than or equal to petroleum-based JP-8 by utilizing mixtures of coal and biomass as the feedstock. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. While the system was not fabricated and tested, major efforts were expended to design the 1-TPD and a full-scale plant. The system was designed, a Block-Flow Diagram (BFD), a Process-Flow Diagram (PFD), and Piping-and-Instrumentation Diagrams (P&IDs) were produced, a Bill of Materials (BOM) and associated spec sheets were produced, commercially available components were selected and procured, custom components were designed and fabricated, catalysts were developed and screened for performance, and permitting activities were conducted. Optimization tests for JP-8 production using C2 olefin as the feed were performed over a range of temperatures, pressures and WHSVs. Liquid yields of between 63 to 65% with 65% JP-8 fraction (41-42% JP-8 yield) at 50 psig were achieved. Life-Cycle Analysis (LCA) was performed by Argonne National Laboratory (ANL), and a GHGR-CBTL module was added to the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. Based upon the experimental results, the plant design was reconfigured for zero natural-gas imports and minimal electricity imports. The LCA analysis of the reconfigured process utilizing the GREET model showed that if the char from the process was utilized to produce combined heat and power (CHP) then a feed containing 23 wt% biomass and

  19. The flotation of gold, uranium, and pyrite from Witwatersrand ores

    International Nuclear Information System (INIS)

    Lloyd, P.J.D.

    1981-01-01

    The Witwatersrand reefs contain gold, uranium, and pyrite in the following average concentrations: 0,001 per cent, 0,02 per cent, and 1,7 per cent respectively. The paper discusses the flotation of pyrite to produce a sulphide concentrate, reviews work done on the production of gold concentrates, discusses attempts to produce maximum concentrates, and closes with a review of processes for the simultaneous flotation of these three species. It is concluded that high recoveries of all three species can be achieved only if a rougher concentrate of perhaps 20 per cent of the feed (by mass) is produced, and it is suggested that reverse leaching (leaching before cyanidation) of this concentrate, followed by a cleaning flotation step for the recovery of the pyrite, would be more efficient than the routes employed at present [af

  20. The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, September 28, 1992--March 27, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Scaroni, A.W.; Hogg, R. [and others

    1993-05-13

    The US Department of Defense (DOD), through an Interagency Agreement with the US Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first phase of the program is underway. Phase I activities are focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water mixtures (MCWMs) and dry, micronized coal (MC) in fuel oil-designed industrial boilers. Phase II research and development activities will continue to focus on industrial boiler retrofit technologies by addressing emissions control and pre-combustion (i.e., slagging combustion and/or gasification) strategies for the utilization of high ash and high sulfur coals. Phase III activities will examine coal-based fuel combustion systems that cofire wastes. Each phase includes an engineering cost analysis and technology assessment. The activities and status of Phase I are described below. The objective in Phase I is to deliver fully engineered retrofit options for a fuel oil- designed watertube boiler located on a DOD installation to fire either MCWM or MC. This will be achieved through a program consisting of the following five tasks: (1) Coal Beneficiation and Preparation; (2) Combustion Performance Evaluation; (3) Engineering Design; (4) Engineering and Economic Analysis; (5) Final Report/Submission of Design Package.

  1. Cost estimating relationships for coal conversion process units. Volume 1. Technical report. [Includes in some cases dependence on capacity and data references from which estimates were derived

    Energy Technology Data Exchange (ETDEWEB)

    Dodson, E.N.; Carden, H.W.; Curtis, R.L.; Heidler, L.M.; Roppel, J.D.

    1981-04-01

    Cost estimating relationships for commercial-scale coal conversion process units are developed in this study. The specific units include: coal preparation, oxygen plant, gasification, shift conversion, acid gas/CO/sub 2/ removal, sulfur recovery, and the dissolver. Also set forth is a detailed Cost Chart of Accounts, together with a discussion of cost analysis procedures and problems.

  2. Degradation of Diclofenac by sonosynthesis of pyrite nanoparticles.

    Science.gov (United States)

    Khabbaz, M; Entezari, M H

    2017-02-01

    The aim of this work is to evaluate the ability of synthesized pyrite nanoparticles (NPs) on the degradation of Diclofenac (DCF) as a model pharmaceutical pollutant. Pyrite NPs were synthesized by sonication with 20 kHz apparatus under optimum conditions. The effects of pyrite loading (0.02-0.20 g/L), DCF concentration (10-50 mg/L) and initial pH (2-10) on the degradation were investigated. The results revealed that the NPs have a great activity in the degradation of DCF with 25 mg/L concentration. A first-order kinetic model was found to match the experimental data. Complete degradation (100%) of DCF was achieved by pyrite within 3 min and 20 min in acidic and natural pH, respectively. To gain an understanding of the degradation mechanism and the role of pyrite, a UV-Vis spectrophotometer was employed to follow the DCF concentration. In addition, the Chemical Oxygen Demand (COD) and the amounts of ammonium and chloride ions verified complete degradation of DCF in both pH values. The results demonstrated that Fe 2+ ions were generated by the pyrite surface and the hydroxyl radical (OH) was formed by Fe 2+ ions through the Fenton reaction. Based on using radical scavengers in the degradation process, OH was mainly responsible for the fast degradation of DCF. COD measurements confirmed that DCF finally degraded to further oxidized forms (NH 4 + , Cl - ). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Influence of heterotrophic microbial growth on biological oxidation of pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, E.A.; Silverstein, J. [University of Nevada, Reno, NV (United States). Dept. of Civil Engineering

    2002-12-15

    Experiments were carried out to examine the possibility that enhanced growth of heterotrophic (non-iron-oxidising) bacteria would inhibit pyrite oxidation by Acidithiobacillus ferroxidans by out-competing the more slowly growing autotrophs for oxygen, nutrients or even attachment sites on the mineral surface. Glucose was added to microcosms containing pyrite, acidic mineral solution and cultures of A-ferrooxidans and Acidiphilium acidophilus under various experimental conditions. Results suggest that encouraging the growth of heterotrophic microorganisms under acid mine drainage conditions may be a feasible strategy for decreasing both the rate and the extent of sulfide mineral oxidation. 43 refs., 8 figs., 3 tabs.

  4. Quality aspects of thermal coal marketing

    International Nuclear Information System (INIS)

    Dunstone, D.

    1998-01-01

    Australia's thermal coal industry is under increasing competition. A successful marketing strategy must distinguish the product from that of Australian competitors, leaving the buyer in no doubt as to its value. The marketing of thermal coal is a very different experience and encompasses an interesting commercial and technical mix. The technical merits of a coal may be effectively used to prepare the way for a sale. However, once the technical hurdle is passed (i.e. the coal is classified as acceptable), the three factors which influence the sale are price, price and price. The other aspect of marketing is that marketing, especially technical market support, must realize that the buyer often has no experience in using the coals purchased. This is particularly true with thermal coals. Virtually no thought is given as to how the coal performs or how much is used. Consequently, it is not uncommon for cheap, low quality coals to be purchased, even though it is not the choice that will result in the lowest power generation cost when all other factors are taken into consideration. The author has developed a model which allows to differentiate between coals for a range of properties relative to the use of the coal, so that a coal company can calculate the break-even price in term of cost per kWh of electricity generated and enable a more valid cost comparison between coals to be made

  5. Application of laser microprobe (LAMMA 1000) to "fingerprinting" of coal constituents in bituminous coal

    Science.gov (United States)

    Lyons, P.C.; Hercules, D.M.; Morelli, J.J.; Sellers, G.A.; Mattern, D.; Thompson-Rizer, C. L.; Brown, F.W.; Millay, M.A.

    1987-01-01

    A laser microprobe (LAMMA-1000) microchemical analysis of vitrinites of different morphologies but similar reflectances within the same bituminous coal bed indicates distinct "fingerprint" spectra. The banded form of vitrinite contains Li, Ti, Ba, Sr, F, and Cl which were not detected in the nonbanded vitrinite. These differences may indicate a different plant source or the introduction of these elements from fluids mobilized during diagenesis. The nonbanded vitrinite (called corpocollinite), which was contained in a pyrite coal-ball seed fern permineralization of Myeloxylon, may have been protected from influx of these elements due to entrapment by pyrite during an early peat stage. An ion at M/Z 65, which is characteristic of the banded vitrinite, may indicate C5H5+ and, perhaps a difference in the chemical structure of the two vitrinites. These results demonstrate that "fingerprint" spectra can be obtained from vitrinite macerals by LAMMA and that these "fingerprints" have genetic implications. ?? 1987.

  6. Mercury distribution in coals influenced by magmatic intrusions, and surface waters from the Huaibei Coal Mining District, Anhui, China

    International Nuclear Information System (INIS)

    Yan, Zhicao; Liu, Guijian; Sun, Ruoyu; Wu, Dun; Wu, Bin; Zhou, Chuncai

    2013-01-01

    Highlights: • Hg concentrations in coal and surface water samples were determined. • Hg is enriched in the Huaibei coals. • Magmatic activities imparted influences on Hg content and distribution. • Hg contents in surface waters are relative low at the present status. - Abstract: The Hg concentrations in 108 samples, comprising 81 coal samples, 1 igneous rock, 2 parting rock samples and 24 water samples from the Huaibei Coal Mining District, China, were determined by cold-vapor atomic fluorescence spectrometry. The abundance and distribution of Hg in different coal mines and coal seams were studied. The weighted average Hg concentration for all coal samples in the Huaibei Coalfield is 0.42 mg/kg, which is about twice that of average Chinese coals. From southwestern to northeastern coalfield, Hg concentration shows a decreasing trend, which is presumably related to magmatic activity and fault structures. The relatively high Hg levels are observed in coal seams Nos. 6, 7 and 10 in the southwestern coal mines. Correlation analysis indicates that Hg in the southwestern and southernmost coals with high Hg concentrations is associated with pyrite. The Hg concentrations in surface waters in the Huaibei Coal Mining District range from 10 to 60 ng/L, and display a decreasing trend with distance from a coal waste pile but are lower than the regulated levels for Hg in drinking water

  7. Critical paths to coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    Hill, G.R.

    1977-01-01

    The present dilemma of energy producers, converters, and policy decision makers is presented. The consequences of environmental control regulations, coupled with the need for conservation and energy, and of energy resources on the increased utilization of coal, are discussed. Several recent technical accomplishments that make possible increased utilization of coal for power generation are described. Groundwork is laid for discussion of the technical development that must occur if the United States is to retain its energy viability.

  8. The production of high load coal-water mixtures on the base of Kansk-Achinsk Coal Basin

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, Y.; Bruer, G.; Kolesnikova, S. [Research and Design Institute for Problems of Development of Kansk-Achinsk Coal Basin (KATEKNilugol), Krasnoyarsk (Russian Federation)

    1995-12-01

    The results of the {open_quotes}KATEKNIIugol{close_quotes} work on the problems of high load coal-water mixtures are given in this article. General principles of the mixture production, short characteristics of Kansk-Achinsk coals, the experimental results of the coal mixture production on a test-industrial scale, the suspension preparation on the base of coal mixtures, technical-economical indexes of tested coal pipeline variants based on Kansk-Achinsk coals are described.

  9. Evidence From Pyrite Microstructure For Earlier Higher Temperature Deformation History In SAFOD

    Science.gov (United States)

    Boyle, A. P.; Hadizadeh, J.

    2011-12-01

    Pyrite is commonly found in SAFOD gouge samples as diagenetic framboids in relict sedimentary clasts as well as deformed and undeformed clusters of secondary pyrite grains. We investigated the forms, distribution and deformation mechanisms of pyrite in a core sample from 3194m measured depth (T 112±2 °C) consisting of foliated shale-siltstone cataclasites to constrain the deformation history of the gouge. The gouge-pyrite microstructures were studied using HR-SEM, and pyrite deformation was characterized by EBSD, which provided orientation contrast and band contrast images, Euler angle maps and crystallographic data for pole figures. The secondary pyrite appears mostly as foliation-parallel, elongated, mm-scale clusters of small grains (~0.5-4 μm and contact with the gouge. The pyrite domains between these brittle fractures preserve evidence of plastic deformation, as do pyrite domains adjacent to cataclasis zones. Pole figures and misorientation sub-grain boundaries indicate a broad range of pyrite grain-scale dislocation creep activity, including deformation via sub-grain rotation mechanisms, as evidenced by core-mantle textures and clumps of similarly oriented smaller pyrite grains. The latter evidence suggests the presence of previously larger pyrite grains. Recently revised pyrite deformation mechanisms map (Barrie et al. 2011) suggests T ~260 °C for the onset of dislocation creep in pyrite under high stress regimes at 10-10s-1 to 10-12s-1 (higher T at lower stresses), over twice the temperature measured at the sample depth. Secondary pyrite also locally replaces/overprints calcite veins in fractured quartz. In some cases this pyrite preserves evidence of having been subsequently deformed plastically and/or brittlely. However, in other cases, invariant pole figures and lack of misorientation sub grain boundaries or fractures indicate that some late replacive pyrite is unaffected by any subsequent deformation. The following may be inferred from the results

  10. COAL SLAGGING AND REACTIVITY TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

    2003-10-01

    conditions, resulting in unburned carbon as well as slagging. A second phase of the project involved advanced analysis of the baseline coal along with an Australian coal fired at the plant. These analysis results were used in equilibrium thermodynamic modeling along with a coal quality model developed by the EERC to assess slagging, fouling, and opacity for the coals. Bench-scale carbon conversion testing was performed in a drop-tube furnace to assess the reactivity of the coals. The Australian coal had a higher mineral content with significantly more clay minerals present than the baseline coal. The presence of these clay minerals, which tend to melt at relatively low temperatures, indicated a higher potential for problematic slagging than the baseline coal. However, the pyritic minerals, comprising over 25% of the baseline mineral content, may form sticky iron sulfides, leading to severe slagging in the burner region if local areas with reducing conditions exist. Modeling results indicated that neither would present significant fouling problems. The Australian coal was expected to show slagging behavior much more severe than the baseline coal except at very high furnace temperatures. However, the baseline coal was predicted to exhibit opacity problems, as well as have a higher potential for problematic calcium sulfate-based low-temperature fouling. The baseline coal had a somewhat higher reactivity than the Australian coal, which was consistent with both the lower average activation energy for the baseline coal and the greater carbon conversion at a given temperature and residence time. The activation energy of the baseline coal showed some effect of oxygen on the activation energy, with E{sub a} increasing at the lower oxygen concentration, but may be due to the scatter in the baseline coal kinetic values at the higher oxygen level tested.

  11. Data base for the analysis of compositional characteristics of coal seams and macerals. Quarterly technical progress report, May-July 1980

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Alan; Suhr, N. H.; Spackman, W.; Painter, P. C.; Walker, P. L.; Given, P. H.

    1980-10-01

    The basic objectives of this new program are, firstly, to understand the systematic relationships between the properties of coals and macerals, and, secondly, to determine the lateral and vertical variability in the properties of a single seam imposed by varying environmental conditions at the time of coal formation. Thirty-four coal samples were collected during the quarter from Pennsylvania and Illinois. To date, 54 vitrinite concentrates have been hand picked and will be studied by a range of physical and chemical techniques. One hundred and forty coal samples and 53 printouts of coal data were provided on request to the coal research community. The Lower Kittanning seam has been selected for the study of the variability in chemical, petrographic, mineralogic, fluid, and conversion properties of a single seam. A description of the structural and stratigraphic settings of the important coal seam as they relate to this investigation is given. Bivariate plots of data from the Lower Kittanning seam are presented. The fluid temperature range as measured with the Gieseler plastometer reaches a maximum at a reflectance of 1.10 to 1.15% and carbon content of 87 to 88% dmmf. Liquefaction conversion in a tubing-bomb reactor with tetralin shows a linear decrease with rank (reflectance). The problems associated with the application Fourier Transform Infrared Spectroscopy to the characterization of coal structure are critically discussed. The micropore surface areas and micropore volumes of three selected coals and a vitrinite concentrate, as measured from uptake of CO/sub 2/ at 25/sup 0/C, increased with decreasing particle size. Work on measurements of apparent densities and uptake of methanol and water is in progress.

  12. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, February 15, 1991--August 15, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Morrison, J.L.; Xie, Jiangyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1991-10-01

    Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less that 3.0% ash and 0.9% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  13. A Silica/Fly Ash-Based technology for Controlling Pyrite Oxidation.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-21

    The overall objective of this project is to develop methodologies by which sodium metasilicate or fly ash may produce an effective coating on pyrite surfaces for inhibiting pyrite oxidation. Milestones for the following periods include: First six-months - (1) Characterize pyrite surface reactions for understanding pyrite coating establishment. (2) Start a preliminary outdoor leaching - column experiment using 10 kg mine pyritic spoil treated with silicates to evaluate potential application of coatings on a large scale. Second six-months - (1) Characterize silicate - iron reactions in solution and on pyrite surface for understanding pyrite silica - coating formation. Third six-months - (1) Evaluate pyrite surface deposition of silicate having Na - silicate or fly ash as source. Fourth six- months - (1) Evaluate silicate coating durability in large outdoor columns.

  14. Chemical and sulphur isotope compositions of pyrite in the ...

    Indian Academy of Sciences (India)

    ground uranium mine in India. Besides uranium;. Cu, Mo and Ni have previously been recovered and presently magnetite is being recovered as a by-product. Similar to other deposits in the. SSZ, the Jaduguda deposit is hosted by strongly. Keywords. Pyrite; minor element; sulphur isotope; evolution; Jaduguda; Singhbhum; ...

  15. Fabrication and characterization of PDLLA/pyrite composite bone ...

    Indian Academy of Sciences (India)

    potentially used as a scaffold for bone tissue engineering. Keywords. Polylactic acid; Chinese herbal medicine; pyrite; scaffold; bone regeneration; cell culture. 1. Introduction. Bone scaffolds are designed to regenerate natural bone tis- sues or to create biological substitutes for defective bone tissues through the use of cells.

  16. Nannobacteria and the formation of framboidal pyrite: Textural ...

    Indian Academy of Sciences (India)

    This applies to all the examples studied, from modern to Proterozoic. These spheroids are interpreted as the pyritized corpses of nannobacterial cells; if correct, this indicates that precipitation of iron sulfide was performed by these dwarf forms of bacteria, often associated with decaying organic matter. 1. Introduction.

  17. Flint and pyrite : Making fire in the Stone Age

    NARCIS (Netherlands)

    Stapert, D; Johansen, L

    1999-01-01

    Flint implements with rounded ends, excavated at several Upper Palaeolithic sites in Denmark and Holland, are interpreted as strike-a-lights used in combination with pyrites. Experimental flints employed int his way show use-wear traces similar to those on the prehistoric specimens. It is suggested

  18. A model of pyritic oxidation in waste rock dumps

    International Nuclear Information System (INIS)

    Davis, G.B.; Ritchie, A.I.M.

    1983-01-01

    The oxidation of pyrite can lead to high acid levels and high concentrations of trace metals in the water that runs off and percolates through pyritic material. This is the situation at the abandoned uranium mine at Rum Jungle in the Northern Territory of Australia, where pyritic oxidation in the waste rock dumps resulting from open cut mining of the uranium orebody has led to pollution of the nearby East Branch of the Finniss River, with trace metals such as copper, manganese and zinc. Mathematical equations are formulated which describe a model of pyritic oxidation within a waste rock dump, where it is assumed that oxygen transport is the rate limiting step in the oxidation process and that oxygen is transported by gaseous diffusion through the pore space of the dump, followed by diffusion into oxidation sites within the particles that comprise the dump. The equations have been solved numerically assuming values for such parameters as porosity, sulphur density and oxygen diffusion coefficients which are applicable to the waste rock dumps at Rum Jungle. An approximate solution to the equations is also presented. Calculations of the heat source distribution and the total SO 4 production rate are presented for both single size particles and for a range of particle sizes in the dump. The usefulness of the approximate solution, and of calculations based on single size particles in the dump in assessing the effectiveness of strategies to reduce pollution from such waste rock dumps are discussed

  19. Sulfidation behavior and mechanism of zinc silicate roasted with pyrite

    Science.gov (United States)

    Ke, Yong; Peng, Ning; Xue, Ke; Min, Xiaobo; Chai, Liyuan; Pan, Qinglin; Liang, Yanjie; Xiao, Ruiyang; Wang, Yunyan; Tang, Chongjian; Liu, Hui

    2018-03-01

    Sulfidation roasting followed by flotation is widely known as a possible generic technology for enriching valuable metals in low-grade Zn-Pb oxide ores. Zn2SiO4 is the primary Zn phase in willemite. Zn4Si2O7(OH)2(H2O), the main Zn phase in hemimorphite, transforms into Zn2SiO4 at temperatures above 600 °C. To enrich the Zn in willemite and hemimorphite, the Zn species should first be converted to ZnS. Therefore, a thorough understanding of the sulfidation reaction of Zn2SiO4 during roasting with pyrite is of vital important. In this study, the sulfidation behavior and reaction mechanisms of a Zn2SiO4-pyrite roasting system were determined using HSC 5.0 software, TG-FTIR spectroscopy, XRD, XPS and SEM-EDS. The results indicate that the sulfidation process can be divided into three steps: the decomposition of pyrite and formation of a sulfur-rich environment, the sulfur-induced migration of O2- and transformation of sulfur vapor, and the sulfidation reaction via oxygen-sulfur exchange. During the sulfidation roasting process, pyrite was converted to loose and porous Fe3O4, whereas Zn2SiO4 was transformed into ZnS and SiO2 in situ. These findings provide theoretical support for controlling the sulfidation roasting process of willemite and hemimorphite.

  20. The development of coal-based technologies for Department of Defense facilities. Volume 2, Appendices. Semiannual technical progress report, September 28, 1994--March 27, 1995

    International Nuclear Information System (INIS)

    Miller, B.G.; Bartley, D.A.; Hatcher, P.

    1996-01-01

    This semiannual progress report contains the following appendices: description of the 1,000 lb steam/h watertube research boiler; the Pennsylvania CGE model; Phase II, subtask 3.9 coal market analysis; the CGE model; and sector definition

  1. The development of coal-based technologies for Department of Defense facilities. Volume 2, Appendices. Semiannual technical progress report, September 28, 1994--March 27, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Bartley, D.A.; Hatcher, P. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1996-10-15

    This semiannual progress report contains the following appendices: description of the 1,000 lb steam/h watertube research boiler; the Pennsylvania CGE model; Phase II, subtask 3.9 coal market analysis; the CGE model; and sector definition.

  2. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 16, July--September, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Shields, G.L.; Moro, N.; Smit, F.J.; Jha, M.C.

    1996-10-30

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. 28 refs., 13 figs., 19 tabs.

  3. The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, September 28, 1993--March 27, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Morrison, J.L.; Sharifi, R.; Shepard, J.F.; Scaroni, A.W.; Hogg, R.; Chander, S.; Cho, H.; Ityokumbul, M.T.; Klima, M.S. [and others

    1994-11-30

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first two phases of the program are underway. To achieve the objectives of the program, a team of researchers was assembled. Phase I activities are focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water slurry fuels (MCWSFS) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. Phase II research and development activities will continue to focus on industrial boiler retrofit technologies by addressing emissions control and precombustion (i.e., slagging combustion and/or gasification) strategies for the utilization of high ash, high sulfur coals. Phase III activities will examine coal-based fuel combustion systems that cofire wastes. Each phase includes an engineering cost analysis and technology assessment. The activities and status of Phases I and II are described below. The objective in Phase I is to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWSF or DMC. This will be achieved through a program consisting of the following five tasks: (1) Coal Beneficiation and Preparation; (2) Combustion Performance Evaluation; (3) Engineering Design; (4) Engineering and Economic Analysis; and (5) Final Report/Submission of Design Package.

  4. The development of coal-based technologies for Department of Defense Facilities. Semiannual technical progress report, March 28, 1993--September 27, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Morrison, J.L.; Sharifi, R. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1993-12-17

    The US DOD, through an Interagency Agreement with the US DOE, has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first phase of the program is underway. A team of researchers has been assembled from Penn State, ABB Combustion Engineering Systems (CE), AMAX Research and Development Center (AMAX), and Energy and Environmental Research Corporation (EER). These four organizations are the current members of the Consortium. Phase 1 activities are focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water slurry fuels (MCWSFs) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. Phase 2 research and development activities will continue to focus on industrial boiler retrofit technologies by addressing emissions control and pre-combustion strategies for the utilization of high ash, high sulfur coals. Phase 3 activities will examine coal-based fuel combustion systems that cofire wastes. Each phase includes an engineering cost analysis and technology assessment. The activities and status of Phase 1 are described in this report. The objective of Phase 1 is to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWSF or DMC. This will be achieved through a program of the following tasks: (1) Coal Beneficiation and Preparation; (2) Combustion Performance Evaluation; (3) Engineering Design; (4) Engineering and Economic Analysis; and (5) Final Report/Submission of Design Package. Miscellaneous activities are reported. Activities planned for the next semiannual period are listed. The project schedule, with a description of milestones, is included.

  5. Coal-92

    International Nuclear Information System (INIS)

    Hillring, B.; Sparre, C.

    1992-11-01

    Swedish consumption of coal and coke during 1991 and trends in technology, environment and market aspects of coal use are reported. Steam coal use in the heating sector was unchanged from 1991, 1.2 Mtons. Reduced consumption in smaller district heating units (due to conversion to biofuels and gas) was compensated by increased use for power generation in cogeneration plants. Coal consumption in industry fell 0.10 Mton to 0.84 Mton due to lower production in one industry branch. Import of steam coal was 1.1 Mton (down 0.5 Mton from 1990) since new rules for strategic reserves allowed a reduction of stocks. During the last five years stocks have been reduced by 2 Mtons. Import of metallurgical coal was 1.6 Mton, unchanged from 1990. The report also gives statistics for the coal using plants in Sweden, on coal R and D, and on emission laws for coal firing. (9 tabs., 2 figs.)

  6. Modes of occurrence of mercury and other trace elements in coals from the warrior field, Black Warrior Basin, Northwestern Alabama

    Science.gov (United States)

    Diehl, S.F.; Goldhaber, M.B.; Hatch, J.R.

    2004-01-01

    The mineralogic residence and abundance of trace metals is an important environmental issue. Data from the USGS coal quality database show that potentially toxic elements, including Hg, As, Mo, Se, Cu, and Tl are enriched in a subset of coal samples in the Black Warrior Basin of Alabama, USA. Although the coal as-mined typically is low in these elements, localized enrichments occur in high-pyrite coals and near faults. Microscopic analyses demonstrate that the residence of these elements is dominantly in a late-stage pyrite associated with structurally disrupted coal. Further, our data suggest addition of Hg to the coal matrix as well. The source of these trace elements was hydrothermal fluids driven into the Black Warrior Basin by Alleghanian age tectonism. ?? 2004 Published by Elsevier B.V.

  7. Extraction of low rank coals by coal derived oils at 350 degrees C for producing clean fuels

    Energy Technology Data Exchange (ETDEWEB)

    Miura, K.; Mae, K.; Shindo, H.; Ashida, R.; Ihara, T. [Kyoto University, Kyoto (Japan). Dept. of Chemistry

    2003-07-01

    The authors have recently presented a new coal solvent extraction method that enhances the extraction yield dramatically. The method extracts coal using a flowing stream of either tetralin or 1-methylnaphthalene under 10 MPa at 200 to 400{sup o}C. The extract yield reached 65 to 80% for bituminous coals at 350{sup o}C, and the extract was almost free from mineral matter. Thus, this method was found to be effective to recover clean fuels from bituminous coals under rather mild conditions. To extend the extraction method to low rank coals and to make the method practically applicable, coal derived oils, carbol oil and creosote oil, were used in addition to tetralin in this study. Twenty kinds of coals were subjected to the extraction by tetralin and the coal derived oils at 350{sup o}C. Almost all sub-bituminous coals and brown coals examined were surprisingly extracted by 80% in the carbol oil at 350{sup o}C. It was also found that the extract was almost free from mineral matter and that most of sulfur was retained in the coal through the extraction by tetralin, whereas most of sulfur including pyritic sulfur was transferred into the soluble fraction through the extraction by the carbol oil. Thus, it was clarified that the proposed method was effective to produce a large amount of clean fuels from low rank coals under rather mild conditions.

  8. A high-pyrite semianthracite of Late Permian age in the Songzao Coalfield, southwestern China: Mineralogical and geochemical relations with underlying mafic tuffs

    Science.gov (United States)

    Dai, S.; Wang, X.; Chen, W.; Li, D.; Chou, C.-L.; Zhou, Y.; Zhu, Chen; Li, H.; Zhu, Xudong; Xing, Y.; Zhang, W.; Zou, J.

    2010-01-01

    The No. 12 Coal (Late Permian) in the Songzao Coalfield, Chongqing, southwestern China, is characteristically high in pyrite and some trace elements. It is uniquely deposited directly above mafic tuff beds. Samples of coal and tuffs have been studied for their mineralogy and geochemistry using inductively coupled plasma-mass spectrometry, X-ray fluorescence, plasma low-temperature ashing plus powder X-ray diffraction, and scanning electron microscopy equipped with energy-dispersive X-ray analysis.The results show that the minerals of the No. 12 Coal are mainly composed of pyrite, clay minerals (kaolinite, chamosite, and illite), ankerite, calcite, and trace amounts of quartz and boehmite. Kaolinite and boehmite were mainly derived from sediment source region of mafic tuffs. Chamosite was formed by the reaction of kaolinite with Fe-Mg-rich fluids during early diagenesis. The high pyrite (Sp,d=8.83%) in the coal was related to marine transgression over peat deposits and abundant Fe derived from the underlying mafic tuff bed. Ankerite and calcite were precipitated from epigenetic fluids.Chemical compositions of incompatible elements indicate that the tuffs were derived from enriched mantle and the source magmas had an alkali-basalt character. Compared to other coals from the Songzao Coalfield and common Chinese coals, the No. 12 Coal has a lower SiO2/Al2O3 (1.13) but a higher Al2O3/Na2O (80.1) value and is significantly enriched in trace elements including Sc (13.5??g/g), V (121??g/g), Cr (33.6??g/g), Co (27.2??g/g), Ni (83.5??g/g), Cu (48.5??g/g), Ga (17.3??g/g), Y (68.3??g/g), Zr (444??g/g), Nb (23.8??g/g), and REE (392??g/g on average). Above mineralogical compositions, as well as similar ratios of selected elements (e.g., SiO2/Al2O3 and Al2O3/Na2O) and similar distribution patterns of incompatible elements (e.g., the mantle-normalized diagram for incompatible elements and chondrite-normalized diagram for rare earth elements) of coal and tuff, indicated that

  9. A proposed origin for fossilized Pennsylvanian plant cuticles by pyrite oxidation (Sydney Coalfield, Nova Scotia, Canada)

    Science.gov (United States)

    Zodrow, E.L.; Mastalerz, Maria

    2009-01-01

    Fossilized cuticles, though rare in the roof rocks of coal seam in the younger part of the Pennsylvanian Sydney Coalfield, Nova Scotia, represent nearly all of the major plant groups. Selected for investigation, by methods of Fourier transform infrared spectroscopy (FTIR) and elemental analysis, are fossilized cuticles (FCs) and cuticles extracted from compressions by Schulze's process (CCs) of Alethopteris ambigua. These investigations are supplemented by FTIR analysis of FCs and CCs of Cordaites principalis, and a cuticle-fossilized medullosalean(?) axis. The purpose of this study is threefold: (1) to try to determine biochemical discriminators between FCs and CCs of the same species using semi-quantitative FTIR techniques; (2) to assess the effects chemical treatments have, particularly Schulze's process, on functional groups; and most importantly (3) to study the primary origin of FCs. Results are equivocal in respect to (1); (2) after Schulze's treatment aliphatic moieties tend to be reduced relative to oxygenated groups, and some aliphatic chains may be shortened; and (3) a primary chemical model is proposed. The model is based on a variety of geological observations, including stratal distribution, clay and pyrite mineralogies associated with FCs and compressions, and regional geological structure. The model presupposes compression-cuticle fossilization under anoxic conditions for late authigenic deposition of sub-micron-sized pyrite on the compressions. Rock joints subsequently provided conduits for oxygen-enriched ground-water circulation to initiate in situ pyritic oxidation that produced sulfuric acid for macerating compressions, with resultant loss of vitrinite, but with preservation of cuticles as FCs. The timing of the process remains undetermined, though it is assumed to be late to post-diagenetic. Although FCs represent a pathway of organic matter transformation (pomd) distinct from other plant-fossilization processes, global applicability of the

  10. The technology and method of coal mining in the Czechoslovakia in 1918-1938

    OpenAIRE

    Jureková, Dominika

    2012-01-01

    The content of this thesis is an analysis of coal mining in Czechoslovakia in 1918-1938. The accent is focused on technical and technological aspects of coal through to economic, political, mining law and other conditions that influence it. The technical part of mining has been for better visibility of work is divided into several stages. The thesis presents a summary of the regions of coal mining, the quantity of extracted coal and methods of coal mining. Keywords: The Czechoslovakia, coal m...

  11. Coal slurries: An environmental bonus?

    International Nuclear Information System (INIS)

    Basta, N.; Moore, S.; Ondrey, G.

    1994-01-01

    Developers and promoters of coal-water slurries and similar CWF (coal-water fuel) technologies have had a hard time winning converts since they unveiled their first commercial processes in the 1970s. The economic appeal of such processes, marginal at best, varies with the price of oil. Nevertheless, the technology is percolating, as geopolitics and environmental pressures drive new processes. Such fuels are becoming increasingly important to coal-rich, oil-poor nations such as China, as they attempt to build an onshore fuel supply. Meanwhile, improvements are changing the way coal-fired processes are viewed. Where air pollution regulations once discouraged the use of coal fuels, new coal processes have been developed that cut nitrous oxides (NOx) emissions and provide a use for coal fines, previously viewed as waste. The latest developments in the field were all on display at the 19th International Technical Conference on Coal Utilization and Fuel Systems, held in Clearwater, Fla., on March 21--24. At this annual meeting, sponsored by the Coal and Slurry Technology Association, (Washington, D.C.) and the Pittsburgh Energy Technology Center of the US Dept. of Energy (PETC), some 200 visitors from around the work gathered to discuss the latest developments in coal slurry utilization--new and improved processes, and onstream plants. This paper presents highlights from the conference

  12. The economical production of alcohol fuels from coal-derived synthesis gas. Sixth quarterly technical progress report, January 1, 1993--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    Preliminary economic investigations have focused on cost reduction measures in the production of syngas from coal. A spread sheet model has been developed which can determine the cost of syngas production based upon the cost of equipment and raw materials and the market value of energy and by-products. In comparison to natural gas derived syngas, coal derived syngas is much more expensive, suggesting a questionable economic status of coal derived alcohol fuels. While it is possible that use of less expensive coal or significant integration of alcohol production and electricity production may reduce the cost of coal derived syngas, it is unlikely to be less costly to produce than syngas from natural gas. Fuels evaluation is being conducted in three parts. First, standard ASTM tests are being used to analyze the blend characteristics of higher alcohols. Second, the performance characteristics of higher alcohols are being evaluated in a single-cylinder research engine. Third, the emissions characteristics of higher alcohols are being investigated. The equipment is still under construction and the measurement techniques are still being developed. Of particular interest is n-butanol, since the MoS{sub 2} catalyst produces only linear higher alcohols. There is almost no information on the combustion and emission characteristics of n-butanol, hence the importance of gathering this information in this research.

  13. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task 1

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal fired, closed cycle, magnetohydrodynamic power generation are detailed. These accomplishments relate to all system aspects of a CCMHD power generation system including coal combustion, heat transfer to the MHD working fluid, MHD power generation, heat and cesium seed recovery and overall systems analysis. Direct coal firing of the combined cycle has been under laboratory development in the form of a high slag rejection, regeneratively air cooled cyclone coal combustor concept, originated within this program. A hot bottom ceramic regenerative heat exchanger system was assembled and test fired with coal for the purposes of evaluating the catalytic effect of alumina on NO/sub x/ emission reduction and operability of the refractory dome support system. Design, procurement, fabrication and partial installation of a heat and seed recovery flow apparatus was accomplished and was based on a stream tube model of the full scale system using full scale temperatures, tube sizes, rates of temperature change and tube geometry. Systems analysis capability was substantially upgraded by the incorporation of a revised systems code, with emphasis on ease of operator interaction as well as separability of component subroutines. The updated code was used in the development of a new plant configuration, the Feedwater Cooled (FCB) Brayton Cycle, which is superior to the CCMHD/Steam cycle both in performance and cost. (WHK)

  14. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, February 15, 1992--August 15, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Shamanna, S.; Schobert, H.H.; Scaroni, A.W.

    1992-10-13

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits.

  15. Drainage from coal mines: Chemistry and environmental problems

    International Nuclear Information System (INIS)

    Wildeman, T.

    1991-01-01

    Much of the research on coal-mine drainage chemistry was conducted a decade ago, and now increased environmental awareness has brought about renewed interest in the findings. Consideration of the trace minerals and elements in coal points to the possible generation of acidic waters upon weathering, especially when pyrite is present. When pyrite weathers, it produces H + and Fe 3+ which catalyze the incongruent weathering of other carbonates and sulfides. In this weathering mechanism, catalysis by bacteria is important. Of the environmental problems in coal mine drainage, the mineral acidity of the water is the most serious. This is caused not only by the H + , but also by Mn 4+ , Fe 3+ , and Al 3+ that are found or generated within the drainage. Case studies in Kentucky, Pennsylvania, Illinois, and Colorado show that the abundance and form of pyrite in the deposit and in the overburden determines the level of acidity and the concentration of heavy metal pollutants in the drainage. Recent trends in environmental enforcement that emphasize integrated stream water standards and biotoxicity assays point to the possibility that the concentrations of heavy metals in coal mine drainages may cause environmental concern

  16. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes.

    Science.gov (United States)

    Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C

    2014-02-15

    The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1991--February 15, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Poe, R.L.; Morrison, J.L.; Xie, Jianyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1992-05-29

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  18. Temperature distributions in an overburden dump undergoing pyritic oxidation

    International Nuclear Information System (INIS)

    Daniel, J.A.; Harries, J.R.; Ritchie, A.I.M.

    1980-01-01

    Rum Jungle is an abandoned uranium mine. A major source of pollution is the leachate and run-off from the overburden dumps. A study of the largest overburden dump, White's dump, has been undertaken to provide an understanding of the leaching processes to evaluate the efficacy of various ways of rehabilitating the area. It has proved possible to produce heat source distributions as a function of depth from the surface of White's overburden heap by analysing measurements of the temperature distributions in it. It is reasonable to associate the heat sources with the heat released in the oxidation of pyrites. Temperature measurements should prove useful in monitoring in some post-rehabilitation phase, the effectiveness of the rehabilitation in stopping pyritic oxidation

  19. Source of arsenic-bearing pyrite in southwestern Vermont, USA: Sulfur isotope evidence

    International Nuclear Information System (INIS)

    Mango, Helen; Ryan, Peter

    2015-01-01

    Arsenic-bearing pyrite is the source of arsenic in groundwater produced in late Cambrian and Ordovician gray and black slates and phyllites in the Taconic region of southwestern Vermont, USA. The aim of this study is to analyze the sulfur isotopic composition of this pyrite and determine if a relationship exists between pyrite δ 34 S and arsenic content. Pyrite occurs in both sedimentary/diagenetic (bedding-parallel layers and framboids) and low-grade metamorphic (porphyroblast) forms, and contains up to > 2000 ppm As. The sulfur isotopic composition of arsenic-bearing pyrite ranges from − 5.2‰ to 63‰. In the marine environment, the sulfur in sedimentary pyrite becomes increasingly enriched in 34 S as the geochemical environment becomes increasingly anoxic. There is a positive correlation between δ 34 S and arsenic content in the Taconic pyrite, suggesting that uptake of arsenic by pyrite increased as the environment became more reducing. This increased anoxia may have been due to a rise in sea level and/or tectonic activity during the late Cambrian and Ordovician. Low-grade metamorphism appears to have little effect on sulfur isotope composition, but does correlate with lower arsenic content in pyrite. New groundwater wells drilled in this region should therefore avoid gray and black slates and phyllites that contain sedimentary/diagenetic pyrite with heavy δ 34 S values. - Highlights: • Pyrite is the source of arsenic in groundwater in the Taconic region of Vermont, USA. • As-bearing pyrite δ 34 S = – 5.2 to 63‰ with higher 34 S as environment becomes more anoxic. • High sea level, tectonic activity create anoxia, with incorporation of As into pyrite. • New wells should avoid slate/phyllite containing sedimentary pyrite with heavy δ 34 S

  20. Source of arsenic-bearing pyrite in southwestern Vermont, USA: Sulfur isotope evidence

    Energy Technology Data Exchange (ETDEWEB)

    Mango, Helen, E-mail: helen.mango@castleton.edu [Department of Natural Sciences, Castleton State College, 233 South Street, Castleton, VT 05735 (United States); Ryan, Peter, E-mail: pryan@middlebury.edu [Department of Geology, Middlebury College, 276 Bicentennial Way, Middlebury, VT 05753 (United States)

    2015-02-01

    Arsenic-bearing pyrite is the source of arsenic in groundwater produced in late Cambrian and Ordovician gray and black slates and phyllites in the Taconic region of southwestern Vermont, USA. The aim of this study is to analyze the sulfur isotopic composition of this pyrite and determine if a relationship exists between pyrite δ{sup 34}S and arsenic content. Pyrite occurs in both sedimentary/diagenetic (bedding-parallel layers and framboids) and low-grade metamorphic (porphyroblast) forms, and contains up to > 2000 ppm As. The sulfur isotopic composition of arsenic-bearing pyrite ranges from − 5.2‰ to 63‰. In the marine environment, the sulfur in sedimentary pyrite becomes increasingly enriched in {sup 34}S as the geochemical environment becomes increasingly anoxic. There is a positive correlation between δ{sup 34}S and arsenic content in the Taconic pyrite, suggesting that uptake of arsenic by pyrite increased as the environment became more reducing. This increased anoxia may have been due to a rise in sea level and/or tectonic activity during the late Cambrian and Ordovician. Low-grade metamorphism appears to have little effect on sulfur isotope composition, but does correlate with lower arsenic content in pyrite. New groundwater wells drilled in this region should therefore avoid gray and black slates and phyllites that contain sedimentary/diagenetic pyrite with heavy δ{sup 34}S values. - Highlights: • Pyrite is the source of arsenic in groundwater in the Taconic region of Vermont, USA. • As-bearing pyrite δ{sup 34}S = – 5.2 to 63‰ with higher {sup 34}S as environment becomes more anoxic. • High sea level, tectonic activity create anoxia, with incorporation of As into pyrite. • New wells should avoid slate/phyllite containing sedimentary pyrite with heavy δ{sup 34}S.

  1. Coal-to-liquids: Potential impact on U.S. coal reserves

    Science.gov (United States)

    Milici, R.C.

    2009-01-01

    The production of liquid fuels from coal will very likely become an important part of the hydrocarbon energy mix of the future, provided that technical and environmental obstacles are overcome economically. The coal industry should be able to handle a coal-to-liquids (CTL) industry of modest size, using 60-70 million short tons or 54-64 million metric tonnes of coal per annum, without premature depletion of the country's coal reserves. However, attempts to use CTL technology to replace all petroleum imports would deplete the nation's coal reserves by the end of the century. ?? 2009 U.S. Government.

  2. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits

    Science.gov (United States)

    Koglin, Nikola; Frimmel, Hartwig E.; Lawrie Minter, W. E.; Brätz, Helene

    2010-03-01

    A comparative in situ LA-ICP MS trace-element study on pyrite from three different, variably auriferous, Archaean to Palaeoproterozoic palaeoplacer deposits in the Ouro Fino Syncline (Quadrilátero Ferrífero; Brazil), the Elliot Lake area north of Lake Huron (SE Canada) and several deposits within the Witwatersrand Basin (South Africa) revealed systematic differences between morphologically different pyrite types and between the various palaeoplacer deposits. Especially the Ni and Au concentrations as well as Co/Ni and Mo/Ni ratios were found to be systematically different in detrital compact, detrital porous and post-sedimentary/hydrothermal pyrite grains from different source areas. High Co/Ni ratios and low Au concentrations are typical of post-sedimentary pyrite, which is hydrothermal in origin. In contrast, relatively low Co/Ni ratios and high Au contents characterise detrital porous banded and concentric pyrite grains (Au > 1 ppm), which are syn-sedimentary in origin. In the Elliot Lake area and the Witwatersrand Basin, detrital compact rounded pyrite is characterised by high Co/Ni ratios, which is in agreement with derivation from a hydrothermal source. Low Au concentrations in this pyrite type support the contention of the gold and the pyrite in these deposits coming from different source rocks. In contrast, derivation from an originally diagenetic pyrite is suggested for the detrital compact pyrite in the Ouro Fino Syncline because of low to intermediate Co/Ni ratios. High Au contents may indicate a genetic relationship between pyrite and gold there. Systematic differences exist between the three areas with respect to Au, Ni, Co, Mo and Cu distributions in detrital pyrite, which reflects differences in the provenance. A predominantly mafic/ultramafic source is indicated for the Ouro Fino, a felsic source for the Elliot Lake, and a mixed felsic-mafic provenance for the Witwatersrand pyrite populations. Independently of pyrite type, the higher Au endowment

  3. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix A, Part 1. Coal preparation and cleaning assessment study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This report evaluates the state of the art and effectiveness of physical coal cleaning as a potential strategy for controlling SO/sub x/ emissions in coal fired power generation. Coal properties which are significantly altered by physical coal cleaning were determined. The effects of the changes in properties as they relate to pulverized coal firing, fluidized bed combustion and low Btu gasification for combined cycle powered generation were studied. Available coal washability data were integrated by computer with U.S. coal reserve data. Approximately 18% of the demonstrated coal reserve were matched with washability data. Integrated data appear in the Appendix. Current coal preparation practices were reviewed. Future trends were determined. Five process flow sheets representing increasing levels of cleaning sophistication were prepared. The clean product from each flow sheet will meet U.S. EPA New Source Performance Standards. Capital and operating costs for each case were estimated. Environmental control technology and environmental impact associated with current coal preparation and cleaning operations were assessed. Physical coal cleaning is widely practiced today. Where applicable it represents the least expensive method of coal sulfur reduction. Developmental physical and chemical coal cleaning processes were studied. The chemical methods have the advantage of being able to remove both pyritic sulfur and organic sulfur present in the coal matrix. Further R and D efforts will be required before commercialization of these processes.

  4. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Speight, J.G.

    1992-12-31

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  5. State-of-the-art study of resource characterization and planning for underground coal mining. Final technical report as of June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D.; Ingham, W.; Kauffman, P.

    1980-06-01

    With the rapid developments taking place in coal mining technology and due to high investment costs, optimization of the structure of underground coal mines is crucial to the success of the mining project. The structure of a mine, once it is developed, cannot be readily changed and has a decisive influence on the productivity, safety, economics, and production capacity of the mine. The Department of Energy desires to ensure that the resource characterization and planning activity for underground coal mining will focus on those areas that offer the most promise of being advanced. Thus, this project was undertaken by Management Engineers Incorporated to determine the status in all aspects of the resource characterization and planning activities for underground coal mining as presently performed in the industry. The study team conducted a comprehensive computerized literature search and reviewed the results. From this a selection of the particularly relevant sources were annotated and a reference list was prepared, catalogued by resource characterization and mine planning activity. From this data, and discussions with industry representatives, academia, and research groups, private and federal, an assessment and evaluation was made of the state-of-the-art of each element in the resource characterization and mine planning process. The results of this analysis lead to the identifcation of areas requiring research and, specifically, those areas where DOE research efforts may be focused.

  6. Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1992--February 15, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

    1993-04-21

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

  7. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report Number 8, 1 July, 1993--30 September, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    Task 1, the preparation of catalyst materials, is proceeding actively. At WVU, catalysts based on Mo are being prepared using a variety of approaches to alter the oxidation state and environment of the Mo. At UCC and P, copper-based zinc chromite spinel catalysts will be prepared and tested. The modeling of the alcohol-synthesis reaction in a membrane reactor is proceeding actively. Under standard conditions, pressure drop in the membrane reactor has been shown to be negligible. In Task 2, base case designs had previously been completed with a Texaco gasifier. Now, similar designs have been completed using the Shell gasifier. A comparison of the payback periods or production cost of these plants shows significant differences among the base cases. However, a natural gas only design, prepared for comparison purposes, gives a lower payback period or production cost. Since the alcohol synthesis portion of the above processes is the same, the best way to make coal-derived higher alcohols more attractive economically than natural gas-derived higher alcohols is by making coal-derived syngas less expensive than natural gas-derived syngas. The maximum economically feasible capacity for a higher alcohol plant from coal-derived syngas appears to be 32 MM bbl/yr. This is based on consideration of regional coal supply in the eastern US, coal transportation, and regional product demand. The benefits of economics of scale are illustrated for the base case designs. A value for higher alcohol blends has been determined by appropriate combination of RVP, octane number, and oxygen content, using MTBE as a reference. This analysis suggests that the high RVP of methanol in combination with its higher water solubility make higher alcohols more valuable than methanol.

  8. Characterization of open-cycle coal-fired MHD generators. Quarterly technical summary report No. 6, October 1--December 31, 1977. [PACKAGE code

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, C.E.; Yousefian, V.; Wormhoudt, J.; Haimes, R.; Martinez-Sanchez, M.; Kerrebrock, J.L.

    1978-01-30

    Research has included theoretical modeling of important plasma chemical effects such as: conductivity reductions due to condensed slag/electron interactions; conductivity and generator efficiency reductions due to the formation of slag-related negative ion species; and the loss of alkali seed due to chemical combination with condensed slag. A summary of the major conclusions in each of these areas is presented. A major output of the modeling effort has been the development of an MHD plasma chemistry core flow model. This model has been formulated into a computer program designated the PACKAGE code (Plasma Analysis, Chemical Kinetics, And Generator Efficiency). The PACKAGE code is designed to calculate the effect of coal rank, ash percentage, ash composition, air preheat temperatures, equivalence ratio, and various generator channel parameters on the overall efficiency of open-cycle, coal-fired MHD generators. A complete description of the PACKAGE code and a preliminary version of the PACKAGE user's manual are included. A laboratory measurements program involving direct, mass spectrometric sampling of the positive and negative ions formed in a one atmosphere coal combustion plasma was also completed during the contract's initial phase. The relative ion concentrations formed in a plasma due to the methane augmented combustion of pulverized Montana Rosebud coal with potassium carbonate seed and preheated air are summarized. Positive ions measured include K/sup +/, KO/sup +/, Na/sup +/, Rb/sup +/, Cs/sup +/, and CsO/sup +/, while negative ions identified include PO/sub 3//sup -/, PO/sub 2//sup -/, BO/sub 2//sup -/, OH/sup -/, SH/sup -/, and probably HCrO/sub 3/, HMoO/sub 4//sup -/, and HWO/sub 3//sup -/. Comparison of the measurements with PACKAGE code predictions are presented. Preliminary design considerations for a mass spectrometric sampling probe capable of characterizing coal combustion plasmas from full scale combustors and flow trains are presented

  9. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, February 15, 1994--August 15, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Scaroni, A.W.

    1994-11-30

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. The project will also provide information to help in the design of new system specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, conducting an additional 1,000 hours of testing, and installing an advanced flue gas treatment system). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers will also be evaluated. During this reporting period, the construction of the CWSF preparation circuit (as well as a dry, micronized coal circuit) continued. The CWSF preparation circuit will be completed by November 1,1994. Additional activities included receiving a coal-designed burner and installing it on the demonstration boiler, and working with DOE in selecting pollution control systems to install on the boiler.

  10. Mercury and trace element contents of Donbas coals and associated mine water in the vicinity of Donetsk, Ukraine

    Science.gov (United States)

    Kolker, A.; Panov, B.S.; Panov, Y.B.; Landa, E.R.; Conko, K.M.; Korchemagin, V.A.; Shendrik, T.; McCord, J.D.

    2009-01-01

    Mercury-rich coals in the Donets Basin (Donbas region) of Ukraine were sampled in active underground mines to assess the levels of potentially harmful elements and the potential for dispersion of metals through use of this coal. For 29 samples representing c11 to m3 Carboniferous coals, mercury contents range from 0.02 to 3.5 ppm (whole-coal dry basis). Mercury is well correlated with pyritic sulfur (0.01 to 3.2 wt.%), with an r2 of 0.614 (one outlier excluded). Sulfides in these samples show enrichment of minor constituents in late-stage pyrite formed as a result of interaction of coal with hydrothermal fluids. Mine water sampled at depth and at surface collection points does not show enrichment of trace metals at harmful levels, indicating pyrite stability at subsurface conditions. Four samples of coal exposed in the defunct open-cast Nikitovka mercury mines in Gorlovka have extreme mercury contents of 12.8 to 25.5 ppm. This coal was formerly produced as a byproduct of extracting sandstone-hosted cinnabar ore. Access to these workings is unrestricted and small amounts of extreme mercury-rich coal are collected for domestic use, posing a limited human health hazard. More widespread hazards are posed by the abandoned Nikitovka mercury processing plant, the extensive mercury mine tailings, and mercury enrichment of soils extending into residential areas of Gorlovka.

  11. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  12. Coal-fired water pump

    Energy Technology Data Exchange (ETDEWEB)

    Zeilinger, J.E.; Kawa, W.; Lewis, P.S.; Hiteshue, R.W.

    1966-01-01

    The technical feasibility of using energy from explosive ignitions of coal dust to pump water was demonstrated in an exploratory investigation. Ignition of small amounts of pulverized coal that were dispersed in air over columns of water pumped 5.3 gallons of water per cycle when operated against a head of 30.75 feet. Water displacement was accomplished by either manual or automatic operation through a single cycle and by automatic operation through a continuous series of cycles of 1-minute duration. Operating through single cycles, slurries containing up to 3 pounds of coal and 4.6 gallons of water were also pumped. Possible uses of an efficient coal-fired pump would include pumping water for irrigation purposes, removing water from mines, transporting coal from mines in the form of a slurry, and pumping water to elevated reservoirs at electric power-plants so that it could be used to generate electricity during peak periods of demand.

  13. Advanced reclamation of coal refuse ponds

    International Nuclear Information System (INIS)

    Honaker, R.Q.; Chugh, Y.P.; Patwardhan, A.

    1998-01-01

    A vast number of coal refuse ponds represent a significant economical resource base that may also be considered to be environmentally harmful. The fine coal fraction in a preparation plant consists of the purest particles in the entire preparation plant and, thus, if recovered, could enhance the quality of the plant product. However, until recently, the ability to effectively recover fine coal has been limited due to the lack of efficient fine particle separation technologies. As a result, a large portion of the fine coal produced in the US during this century has been disposed into refuse pond along with the acid producing components of the associated gangue material. Research conducted by Southern Illinois University scientists has found that advanced fine coal cleaning technologies can be used to recover high quality coal from refuse ponds while also utilizing a novel technique for neutralizing the acid generation potential of the pyrite-rich reject stream. Various circuitry arrangements will be discussed and metallurgical results presented in this publication

  14. BLM biological assessment for T and E species for the WyCoalGas project. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project; Converse County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This volume considers the water requirements of the proposed plant and possible sources of water supply. The water requirements are 7900 acre-feet per year at full production (1720 acre-feet would be supplied by the moisture in the coal). Surface and ground water sources are described and a private reservoir would be built to store water. The priority of use from each source is considered. Also, in some cases other present water rights come first. In almost every year little or no water would be available during August and September. Endangered species in the area are considered, in particular, the effect of the increased water usage on them. (LTN)

  15. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Williams, A.; Mitchell, C.

    1993-01-01

    This paper outlines some of the problems associated with the prediction of levels of methane emission from underground and surface coal mines. Current knowledge of coal mining emissions sources is outlined. On the basis of this information the methodology proposed by the IPCC/OECD Programme on National Inventories is critically examined and alternatives considered. Finally, the technical options for emissions control are examined together with their feasibility. 8 refs., 6 figs., 2 tabs

  16. Coal weathering and the geochemical carbon cycle

    Science.gov (United States)

    Chang, Soobum; Berner, Robert A.

    1999-10-01

    The weathering rate of sedimentary organic matter in the continental surficial environment is poorly constrained despite its importance to the geochemical carbon cycle. During this weathering, complete oxidation to carbon dioxide is normally assumed, but there is little proof that this actually occurs. Knowledge of the rate and mechanisms of sedimentary organic matter weathering is important because it is one of the major controls on atmospheric oxygen level through geologic time. We have determined the aqueous oxidation rates of pyrite-free bituminous coal at 24° and 50°C by using a dual-cell flow-through method. Coal was used as an example of sedimentary organic matter because of the difficulty in obtaining pyrite-free kerogen for laboratory study. The aqueous oxidation rate obtained in the present study for air-saturated water (270 μM O2) was found to be on the order of 2 × 10-12 mol O2/m2/s at 25°C, which is fast compared to other geologic processes such as tectonic uplift and exposure through erosion. The reaction order with respect to oxygen level is 0.5 on a several thousand hour time scale for both 24° and 50°C experiments. Activation energies, determined under 24° and 50°C conditions, were ≈40 kJ/mol O2 indicating that the oxidation reaction is surface reaction controlled. The oxygen consumption rate obtained in this study is two to three orders of magnitude smaller than that for pyrite oxidation in water, but still rapid on a geologic time scale. Aqueous coal oxidation results in the formation of dissolved CO2, dissolved organic carbon (DOC), and solid oxidation products, which are all quantitatively significant reaction products.

  17. Development of enhanced sulfur rejection processes. Third quarterly technical progress report, April 1, 1993--June 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.; Richardson, P.E.

    1993-10-12

    Conclusions: Release analyses of Pittsburgh No. 8 and Illinois No. 6 coals show that the {minus}28 mesh size fraction is fine enough to liberate ash and pyrite. Galvanic coupling with sacrificial anodes such as zinc, manganese and aluminum can effectively lower the potential of pyrite. This effect is more significant at pH 4.6 than at pH 9.2. The most negative pyrite potential is achieved when the surface area ratio of anode to pyrite is approximately 4:1. When coupled with pyrite at pH 9.2, the zinc anode exhibited unique potential vs time behavior which is different from that observed with manganese and aluminum. This is believed to be related to the build- up and break-down of zinc hydroxides on the surface. Voltammograms of pyrite at pH 9.2 and 4.6 demonstrated that pyrite surfaces can be significantly changed by galvanic coupling with sacrificial anodes. In flotation tests, metal powders were used as galvanic contactors to reduce the potential and depress pyrite. The potenial may be low enough to remove sulfur species from the surface. Stirred solutions are preferred for the removal of oxidized sulfur species by galvanic coupling; oxygen in solution must to be depleted prior to the addition of sacrificial anodes to effectively lower the pyrite potential. Microflotation studies show that zinc, manganese and iron all depress pyrite. Zinc appears to be the most effective, followed by manganese and then iron. Voltammetry studies indicated that coupling pyrite with zinc, manganese and aluminum reduces and desorbs hydrophobic sulfur products on the surface of pyrite.

  18. Modeling of integrated environmental control systems for coal-fired power plants. Technical progress report, [June 1, 1989--September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.

    1989-10-01

    The general goal of this research project is to enhance, and transfer to DOE, a new computer simulation model for analyzing the performance and cost of environmental control systems for coal-fired power plants. Systems utilizing pre-combustion, combustion, or post-combustion control methods, individually or in combination, may be considered. A unique capability of this model is the probabilistic representation of uncertainty in model input parameters. This stochastic simulation capability allows the performance and cost of environmental control systems to be quantified probabilistically, accounting for the interactions among all uncertain process and economic parameters. This method facilitates more rigorous comparisons between conventional and advanced clean coal technologies promising improved cost and/or effectiveness for SO{sub 2} and NO{sub x} removal. Detailed modeling of several pre-combustion and post-combustion processes of interest to DOE/PETC have been selected for analysis as part of this project.

  19. Clean Coal Technology III (CCT III) 10 MW demonstration of gas suspension absorption. Fourth quarterly technical progress report, July 1, 1991--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-07

    The Gas Suspension Absorber (GSA) system brings coal combustion gases into contact with a suspended mixture of solids, including sulfur-absorbing lime. After the lime absorbs the sulfur pollutants, the solids are separated from the gases in a cyclone device and recirculated back into the system where they capture additional sulfur pollutant. The cleaned flue gases are sent through a dust collector before being released into the atmosphere. The key to the system`s superior economic performance with high sulfur coals is the recirculation of solids. Typically, a solid particle will pass through the system about one hundred times before leaving the system. Another advantage of the GSA system is that a single spray nozzle is used to inject fresh lime slurry. The GSA system is expected to be the answer to the need of the US industry for an effective, economic and space efficient solution to the SO{sub 2} pollution problem.

  20. Technical development of a retrofit wood burner for coal under-fed stokers in County Durham, and set up of demonstration facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N.

    2002-07-01

    Durham County Council wishes to convert its coal-burning solid fuel boilers to make use of readily-available waste wood dust. It is intended that the wood dust be converted to pelleted fuel. The emphasis was on cost-cutting rather than boiler efficiency. The experimental studies were carried out at two schools where the boilers were welded steel and cast iron sectional boilers. Factors studied were air supply to the boilers, fuel feed systems, fuel storage, fuel delivery and pelletization. The results have shown that operating costs of wood burning boilers are a little greater than coal-burning but this is slightly offset by savings elsewhere. The environmental benefits were significant in terms of lower emissions from the boilers, reduced road transport, and the wood waste is no longer sent to landfill. Further areas of study are recommended. The contractor for this study was North Energy Associates Ltd, and the study was part of the DTI Sustainable Energy Programme.

  1. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, August 15, 1994--February 15, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.

    1995-05-12

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. Penn State and DOE have entered into a cooperative agreement to determine if CWSFs prepared from cleaned coal (containing approximately 3.5 wt.% ash and 0.9 wt.% sulfur) can be burned effectively in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will also provide information to help in the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, conducting an additional 1,000 hours of testing, and installing an advanced flue gas treatment system). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and stagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers will also be evaluated. The first three phases (i.e., the first demonstration) have been completed and the combustion performance of the burner that was provided with the boiler did not meet performance goals. Consequently, the first demonstration has been concluded at 500 hours.

  2. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, August 15, 1993--February 15, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Morrison, J.L.; Poe, R.L.; Scaroni, A.W.

    1994-11-30

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program with the objective of determining the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. The project will also provide information to help in the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, conducting an additional 1,000 hours of testing, and installing an advanced flue gas treatment system). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers will also be evaluated. The first demonstrations been completed and the combustion performance of the burner that was provided with the boiler has been determined to be unacceptable. Consequently, the first demonstration has been concluded at 500 hours. The second demonstration will be conducted after a proven CWSF-designed burner is installed on the boiler. During this reporting period, the construction of the fuel preparation facility that will contain the CWSF circuit (as well as a dry, micronized coal circuit) was completed. Proposals from potential suppliers of the flue gas treatment systems were reviewed by Penn State and DOE.

  3. Coal processing plants

    Science.gov (United States)

    Bitterlich, W.; Bohn, T.; Eickhoff, H. G.; Geldmacher, H.; Mengis, W.; Oomatia, H.; Stroppel, K. G.

    1980-08-01

    The efficient design of processing plants which combine various coal based technologies in order to maximize the effectiveness of coal utilization is considered. The technical, economical and ecological virtues which compound plants for coal conversion offer are assayed. Twenty-two typical processes of coal conversion and product refinement are selected and described by a standardized method of characterization. An analysis of product market and a qualitative assessment of plant design support six different compound plant propositions. The incorporation of such coal conversion schemes into future energy supply systems was simulated by model calculations. The analysis shows that byproducts and nonconverted materials from individual processes can be processed in a compound plant in a profitable manner. This leads to an improvement in efficiencies. The product spectrum can be adapted to a certain degree to demand variations. Furthermore, the integration of fluidized bed combustion can provide an efficient method of desulfurization. Compound plants are expected to become economic in the 1990's. A necessary condition to compound technologies is high reliability in the functioning of all individual processes.

  4. Mercury in Eastern Kentucky coals: Geologic aspects and possible reduction strategies

    Science.gov (United States)

    Hower, J.C.; Eble, C.F.; Quick, J.C.

    2005-01-01

    Mercury emissions from US coal-fired power plants will be regulated by the US Environmental Protection Agency (USEPA) before the end of the decade. Because of this, the control of Hg in coal is important. Control is fundamentally based on the knowledge of the amounts of Hg in mined, beneficiated, and as-fired coal. Eastern Kentucky coals, on a reserve district level, have Hg contents similar to the USA average for coal at mines. Individual coals show greater variation at the bench scale, with Hg enrichment common in the top bench, often associated with enhanced levels of pyritic sulfur. Some of the variation between parts of eastern Kentucky is also based on the position relative to major faults. The Pine Mountain thrust fault appears to be responsible for elemental enrichment, including Hg, in coals on the footwall side of the thrust. Eastern Kentucky coals shipped to power plants in 1999, the year the USEPA requested coal quality information on coal deliveries, indicate that coals shipped from the region have 0.09 ppm Hg, compared to 0.10 ppm for all delivered coals in the USA. On an equal energy basis, and given equal concentrations of Hg, the high volatile bituminous coals from eastern Kentucky would emit less Hg than lower rank coals from other USA regions. ?? 2005 Elsevier B.V. All rights reserved.

  5. Paleoredoc and pyritization of soft-bodied fossils in the Ordovician Frankfort Shale of New York

    DEFF Research Database (Denmark)

    Farrell, Una C.; Briggs, Derek E. G.; Hammarlund, Emma U.

    2013-01-01

    Multiple beds in the Frankfort Shale (Upper Ordovician, New York State), including the original "Beecher's Trilobite Bed," yield fossils with pyritized soft-tissues. A bed-by-bed geochemical and sedimentological analysis was carried out to test previous models of soft-tissue pyritization by inves......Multiple beds in the Frankfort Shale (Upper Ordovician, New York State), including the original "Beecher's Trilobite Bed," yield fossils with pyritized soft-tissues. A bed-by-bed geochemical and sedimentological analysis was carried out to test previous models of soft-tissue pyritization......-carbonates (Fe-carb), iron-oxides (Fe-ox), magnetite (Fe-mag), and pyrite (FeP) was examined. Overall, the multi-proxy sedimentary geochemical data suggest that the succession containing pyritized trilobite beds was deposited under a dysoxic water-column, in agreement with the paleontological data. The data do...

  6. Nickel mobilization in a groundwater well field: Release by pyrite oxidation and desorption from manganese oxides

    DEFF Research Database (Denmark)

    Postma, Dieke; Larsen, Flemming

    1997-01-01

    Processes controlling the nickel concentration in groundwater have been studied in a well field of a sandy aquifer capped by clayey till. The water table in the aquifer was lowered due to groundwater abstraction, and in association with pyrite oxidation in the unsaturated zone, nickel is released...... to the groundwater in concentrations of up to 4000 nM. The nickel concentration in pyrite was determined to be 40-140 x 10(-5) mol of Ni/mol of pyrite. Groundwater nickel concentrations are particularly high in the unsaturated zone and in the recently resubmerged uppermost saturated zone. The resubmerged zone...... is furthermore characterized by enhanced Mn2+ concentrations. Apparently nickel accumulates on manganese oxides during pyrite oxidation. When the water table rises again, partially oxidized pyritic layers are resubmerged, and due to an insufficient supply of oxygen, the oxidation of Fe2+ released during pyrite...

  7. Deashing of coal liquids with ceramic membrane microfiltration and diafiltration. Final quarterly technical progress report, January 1, 1995--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Removal of mineral matter from liquid hydrocarbons derived from the direct liquefaction of coal is required for product acceptability. Current methods include critical solvent de-ashing and filtration, both of which produce an ash reject stream containing up to 15% of the liquid hydrocarbon product. This program is directed towards development of an improved process for de-ashing and recovery of coal-derived residual oil: the use of ceramic membranes for high-temperature microfiltration and diafiltration. Using laboratory-scale ceramic membrane modules, samples of a coal-derived residual oil containing ash will be processed by crossflow microfiltration, followed by solvent addition and refiltration (diafiltration). Recovery of de-ashed residual oil will be demonstrated. Data from this program will be used to develop a preliminary engineering design and cost estimate for a demonstration pilot plant incorporating full-scale membrane modules. In addition, estimates for production system capital and operating costs will be developed to assess process economic feasibility. The five program tasks include (1) ceramic membrane fabrication, (2) membrane test system assembly, (3) testing of the ceramic membranes, (4) design of a demonstration system using full scale membrane modules, and (5) development of estimates for microfiltration capital and operating costs and assessment of process economic feasibility.

  8. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [Comparison of AFB plant and pulverized coal plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The first part of this report presents a comparison of the conceptual designs of a large (570 MW(e)) pulverized coal (PC) steam generator equipped with a wet limestone flue gas desulfurization (FGD) system and two equivalent sized atmospheric fluidized bed (AFB) steam generators including balance of plants for electric-power generation. The reader is cautioned that this portion of the report compares a zero generation AFB technology to pulverized coal technology which has been operationally and economically optimized for the past half-century. This comparison is intended to be indicative of whether further development of the AFB concept as a viable alternative to the PC/FGD concept for electric-power generation is merited. In the second part, the load-following capability of a once-through subcritical atmospheric fluidized bed boiler is analyzed. Digital computer simulation predictions of the plant's response to open loop step changes in firing rate, feedwater flow, governor valve, unit load demand, etc, are made. The predicted response of throttle pressure, steam temperature, unit load, etc, are compared to the response of a conventional coal-fired, once-through, subcritical unit. The load-following capability is assessed through this qualitative comparison. Additional model response predictions are also presented for which no test data are presently available.

  9. Coal - 96

    International Nuclear Information System (INIS)

    Sparre, C.

    1996-09-01

    The report deals mainly with coal consumption, but also gives some information about technology, environmental aspects and markets. Data have been collected by questionnaires or via telephone. The use of steam coal for heating was 0.8 Mtons (down 20% from 1994). Cogeneration plants were the main users. Taxes and environmental reasons cause a reduction of the coal use that will probably continue the next years. Use of steam coal in industry has been constant at a level of 0.7 Mtons. The import of metallurgical coal rests constant at a level of 1.6 Mtons. 1.2 Mtons of coke was produced, and 0.3 Mtons imported. The PFBC-plant at Vaertan, Stockholm used 0.13 Mtons of coal, while some coal fired power plants have been converted to peat and wood fuels. The average price of steam coal imported to Sweden in 1995 was 333 SEK/ton, 6% higher than in 1994. The contract prices for delivery 1996 are about the same as at the end of 1995. All cogeneration plants have some sort of SO 2 removal system, mostly wet-dry. The largest plant, at Vaesteraas, has recently invested in a SCR system for NO x removal. Most other plants are using low NO x burners or SNCR systems, based on ammonia or urea, which reduce the emissions 50 - 70%. Some statistic about the world coal market is also given in the report

  10. SO2 REMOVAL WITH COAL SCRUBBING

    Energy Technology Data Exchange (ETDEWEB)

    Eung Ha Cho; Hari Prashanth Sundaram; Aubrey L. Miller

    2001-07-01

    This project is based on an effective removal of sulfur dioxide from flue gas with coal as the scrubbing medium instead of lime, which is used in the conventional FGD processes. A laboratory study proves that coal scrubbing is an innovative technology that can be implemented into a commercial process in place of the conventional lime scrubbing flue gas desulfurization process. SO{sub 2} was removed from a gas stream using an apparatus, which consisted of a 1-liter stirred reactor immersed in a thermostated oil bath. The reactor contained 60 g of 35-65 mesh coal in 600 ml of water. The apparatus also had 2 bubblers connected to the outlet of the reactor, each containing 1500 ml of 1 molar NaOH solution. The flow rate of the gas was 30 ml/sec, temperature was varied from 21 C to 73 C. Oxygen concentration ranged from 3 to 20% while SO{sub 2} concentration, from 500 to 2000 ppm. SO{sub 2} recovery was determined by analyzing SO{sub 2} concentration in the liquid samples taken from the bubblers. The samples taken from the reactor were analyzed for iron concentrations, which were then used to calculate fractions of coal pyrite leached. It was found that SO{sub 2} removal was highly temperature sensitive, giving 13.1% recovery at 21 C and 99.2% recovery at 73 C after 4 hours. The removal of SO{sub 2} was accomplished by the catalysis of iron that was produced by leaching of coal pyrite with combination of SO{sub 2} and O{sub 2}. This leaching reaction was found to be controlled by chemical reaction with apparent activation energy of 11.6 kcal/mole. SO{sub 2} removal increased with increasing O{sub 2} concentration up to 10% and leveled off upon further increase. The effect of SO{sub 2} concentration on its removal was minimal.

  11. Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue

    Science.gov (United States)

    Rolison, John M.; Stirling, Claudine H.; Middag, Rob; Gault-Ringold, Melanie; George, Ejin; Rijkenberg, Micha J. A.

    2018-04-01

    The chemical response of the Precambrian oceans to rising atmospheric O2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shift in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the 'Great Oxidation Event' around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in parallel with the permanent rise

  12. Production of ferric sulphate from pyrite by thiobacillus ferrooxidans. Application to uranium ore leaching

    International Nuclear Information System (INIS)

    Rouas, C.

    1988-12-01

    A process for uranium extraction by oxidizing solutions of ferric sulphate produced by T. ferrooxidans from pyrite is developed. A new counting method specific of T. ferrooxidans is designed. An uranium resistant wild strain, with oxidizing properties as high as the strain ATCC 19859, is isolated. Optimal conditions for ferric sulphate production from pyrite are defined (pH 1.8, density of the medium 1.2%, pyrite granulometry [fr

  13. Development of technical solutions on a coal-fired boiler for a power plant unit of 800 MW with steam parameters of 35 MPa and 700/720°C

    Science.gov (United States)

    Shvarts, A. L.; Verbovetsky, E. Kh.; Somova, E. V.; Smolin, A. V.

    2015-12-01

    Development of a coal-fired boiler for a power plant unit of 800 MW with advanced ultra-supercritical steam parameters of 35 MPa and 700/720°C is presented. The main technical solutions providing the reliability, profitability, and low emissions of harmful substances in the atmosphere are given. The fuel is the black coal of (Taldinskoye field, Kuznetsk basin). The gross efficiency of the boiler is 94%. The U-shaped configuration of a boiler is chosen, which allows the reduction of the capital expenditure for steam turbine piping made of expensive nickel alloys. The horizontal connection flue of the boiler, where the primary and reheat steam screens are located, is equipped with two cold funnels. The upper section of the convection shaft is separated with a vertical screen wall into two parallel "split tail" flues, which allows one to control the reheat steam temperature by redistributing the flue gas between the gas flues. The URS screens are two-stage with a lifting motion of the medium and a partial bypassing of the first stage. The lower radiant section is two-stage. To reduce the temperature of screen walls at the fire chamber outlet, the lowering motion of the working medium and combustion gases is used. The hydrodynamics of the screens with the lowering motion of the medium for preventing the aperiodic instability in the start regimes is analyzed. Besides the stepwise combustion of coal dust providing the improved environmental parameters, the boiler plant is equipped with a selective catalytic reduction (SCR) system, an ash collector (an electric filter combined with a filter bag), and a desulphurization device.

  14. Iron Pyrite Absorbers for Solar Photovoltaic Energy Conversion

    OpenAIRE

    Limpinsel, Moritz

    2015-01-01

    Iron pyrite (cubic FeS2) is an earth-abundant, non-toxic semiconductor with great potential as an absorber material in future large-scale deployment of solar photovoltaic panels.The surprisingly small photo-voltage generated by this material (< 0.2 V) has limited itssolar cell efficiency and prevented its commercial development to date. The origin of thislimitation has been discussed over the past 30 years, and is addressed here. Electrical measurements of high-purity single crystals are used...

  15. Removal of organic and inorganic sulfur from Ohio coal by combined physical and chemical process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Attia, Y.A.; Zeky, M.El.; Lei, W.W.; Bavarian, F.; Yu, S. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1989-04-28

    This project consisted of three sections. In the first part, the physical cleaning of Ohio coal by selective flocculation of ultrafine slurry was considered. In the second part, the mild oxidation process for removal of pyritic and organic sulfur.was investigated. Finally, in-the third part, the combined effects of these processes were studied. The physical cleaning and desulfurization of Ohio coal was achieved using selective flocculation of ultrafine coal slurry in conjunction with froth flotation as flocs separation method. The finely disseminated pyrite particles in Ohio coals, in particular Pittsburgh No.8 seam, make it necessary to use ultrafine ({minus}500 mesh) grinding to liberate the pyrite particles. Experiments were performed to identify the ``optimum`` operating conditions for selective flocculation process. The results indicated that the use of a totally hydrophobic flocculant (FR-7A) yielded the lowest levels of mineral matters and total sulfur contents. The use of a selective dispersant (PAAX) increased the rejection of pyritic sulfur further. In addition, different methods of floc separation techniques were tested. It was found that froth flotation system was the most efficient method for separation of small coal flocs.

  16. Recycling the slagheap of an old coal mine (Morocco)

    Energy Technology Data Exchange (ETDEWEB)

    Darmane, Y.; Alaoui, A.; Kitane, S.; Bennajah, M.; Daramy, A.; Cherkaoui, M. [ENIM, Rabat (Morocco)

    2009-06-15

    A slagheap of the Jarada coal mine (Morocco) was recycled using the following ore processing operations: sifting, gravimetry and flotation. This abandoned coal mine has greatly evolved over the years. The oxidation of its pyrite content is the most remarkable change. The only remains are iron oxides which are concentrated within the fine particles of the slagheap. This study shows that the recovery efficiency of iron(III) oxide depends on the particle size, pH and the collector concentration. When recycled under optimum conditions, a commercial product containing 35% iron(III) oxide (Fe{sub 2}O{sub 3}) used in paint and enamelling was obtained.

  17. Method and apparatus for separating materials magnetically. [Patent application; iron pyrite from coal

    Science.gov (United States)

    Hise, E.C. Jr.; Holman, A.S.; Friedlaender, F.J.

    1980-11-06

    Magnetic and nonmagnetic materials are separated by passing stream thereof past coaxial current-carrying coils which produce a magnetic field wherein intensity varies sharply with distance radially of the axis of the coils.

  18. The Environmental Impacts Of The Coal Industry

    Science.gov (United States)

    Burtsev, Sergey; Efimov, Viktor; Korchagina, Tatyana

    2017-11-01

    The article analyzes the main indicators of the Russian coal industry's impact on the environment: the atmosphere, hydrosphere and lithosphere for the year 2016 compared with 2015. It also identifies actual values of the environmental safety targets of the coal industry and the main investments in the nature protection. For prevention, restriction and minimization the negative impact on the environment, the coal industry has proposed the packages of managerial and technical measures.

  19. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, February 15--August 15, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Scaroni, A.W.

    1997-06-03

    The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, performing baseline tests firing No. 6 fuel oil, and conducting additional CWSF testing). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers is also evaluated. The first three phases have been completed and the combustion performance of the burner that was provided with the boiler did not meet performance goals. A maximum coal combustion efficiency of 95% (compared to a target of 98%) was achieved and natural gas cofiring (15% of the total thermal input) was necessary to maintain a stable flame. Consequently, the first demonstration was terminated after 500 hours. The second CWSF demonstration (Phase 4) was conducted with a proven coal-designed burner. Prior to starting the second demonstration, a CWSF preparation circuit was constructed to provide flexibility in CWSF production. The circuit initially installed involved single-stage grinding. A regrind circuit was recently installed and was evaluated. A burner was installed from ABB Combustion Engineering (ABB/CE) and was used to generate baseline data firing No. 6 fuel oil and fire CWSF. A temporary storage system for No. 6 fuel oil was installed and modifications to the existing CWSF handling and preheating system were made to accommodate No. 6 oil.

  20. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task I

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal-fired, closed-cycle MHD power generation are reported. This volume contains the following appendices: (A) user's manual for 2-dimensional MHD generator code (2DEM); (B) performance estimates for a nominal 30 MW argon segmented heater; (C) the feedwater cooled Brayton cycle; (D) application of CCMHD in an industrial cogeneration environment; (E) preliminary design for shell and tube primary heat exchanger; and (F) plant efficiency as a function of output power for open and closed cycle MHD power plants. (WHK)

  1. Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semi-annual technical progress report, 15 August 1995--15 February 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Scaroni, A.W.

    1997-06-03

    The Pennsylvania State University is conducting a coal-water slurry fuel (CWSF) program with the US Department of Energy (DOE) and the Commonwealth of Pennsylvania to determine the viability of firing CWSF in an industrial boiler designed for heavy fuel oil. Penn State and DOE have entered into a cooperative agreement to determine if CWSFs prepared from cleaned coal (containing approximately 3.5 wt.% ash and 0.9 wt.% sulfur) can be burned effectively in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. Information will also be generated to help in the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, performing baseline tests firing No. 6 fuel oil, and conducting additional CWSF testing). The first three phases (i.e., the first 1,000-hour demonstration) have been completed and the combustion performance of the burner that was provided with the boiler did not meet performance goals. A maximum coal combustion efficiency of 95% (compared to a target of 98%) was achieved and natural gas cofiring (15% of the total thermal input) was necessary to maintain a stable flame. Consequently, the first demonstration was terminated after 500 hours. The second CWSF demonstration (Phase 4) will be conducted with a proven CWSF-designed burner. Prior to starting the second demonstration, a CWSF preparation circuit was constructed to provide flexibility in CWSF production. The circuit initially installed involved single-stage grinding. A regrid circuit was recently installed and will be evaluated. A burner was installed from ABB Combustion Engineering (ABB/CE) and will be used to generate baseline data firing No. 6

  2. [Analysis of XPS in the removal of Se(IV) from groundwater with pyrite].

    Science.gov (United States)

    Liu, Hong-fang; Qian, Tian-wei; Zhang, Min-gang

    2015-02-01

    Selenium (Se) is an elementary trace nutrient element for human but there is a very narrow range between deficit and toxic levels. Furthermore, excessive intake of Selenium is harmful for human. The product species of selenite which was removal by pyrite particles was studied in the present research In the experiments, the pyrite particles were prepared by the wet ball mill method, and surface analyses of pyrite before and after contact with Se(IV) were conducted using X-ray photoelectron spectroscopy (XPS). Besides, the prepared pyrite samples were also characterized using both X-ray diffraction (XRD) and scanning electron microscope (SEM). X-ray diffraction analysis indicated that the purity of the prepared pyrite particles was above 97%, and the characteristic diffraction peaks of the particles well matched with that of FeS2 crystalline. Scanning electron microscope determination showed the shape of the particles was approximate ball and the size was range from 80 to 180 nm. And thus the pyrite particles prepared by the wet ball mill method had less particle size, larger specific surface area and higher reactive ability. The batch experiments exhibited the pyrite particles were able to remove 95% of Se(IV) (20 mg x L(-1)) from water within 12 hours. And the kinetic tests indicated reaction process between pyrite and Se(IV) fits a pseudo-first order kinetic model, which gives a pseudo-first order rate constant(kobs) of 0.26 h(-1). XPS analyses were using the XPSPEAK program which has a Gaussian Lorentzian function. The results clearly displays that Se(IV) prefer to react with the surface-bound S2(2-) rather than reacted with the surface-bound Fe2+ of pyrite particles. From XPS graph, it can be seen that the binding energy of sulfur element and iron element composed of pyrite shifted to the left a little, which means expensive state of sulfur element and iron element appeared on the pyrite surface. Analysis of the oxidation state of Se on the surface of pyrite

  3. Microbial acceleration of aerobic pyrite oxidation at circumneutral pH.

    Science.gov (United States)

    Percak-Dennett, E; He, S; Converse, B; Konishi, H; Xu, H; Corcoran, A; Noguera, D; Chan, C; Bhattacharyya, A; Borch, T; Boyd, E; Roden, E E

    2017-09-01

    Pyrite (FeS 2 ) is the most abundant sulfide mineral on Earth and represents a significant reservoir of reduced iron and sulfur both today and in the geologic past. In modern environments, oxidative transformations of pyrite and other metal sulfides play a key role in terrestrial element partitioning with broad impacts to contaminant mobility and the formation of acid mine drainage systems. Although the role of aerobic micro-organisms in pyrite oxidation under acidic-pH conditions is well known, to date there is very little known about the capacity for aerobic micro-organisms to oxidize pyrite at circumneutral pH. Here, we describe two enrichment cultures, obtained from pyrite-bearing subsurface sediments, that were capable of sustained cell growth linked to pyrite oxidation and sulfate generation at neutral pH. The cultures were dominated by two Rhizobiales species (Bradyrhizobium sp. and Mesorhizobium sp.) and a Ralstonia species. Shotgun metagenomic sequencing and genome reconstruction indicated the presence of Fe and S oxidation pathways in these organisms, and the presence of a complete Calvin-Benson-Bassham CO 2 fixation system in the Bradyrhizobium sp. Oxidation of pyrite resulted in thin (30-50 nm) coatings of amorphous Fe(III) oxide on the pyrite surface, with no other secondary Fe or S phases detected by electron microscopy or X-ray absorption spectroscopy. Rates of microbial pyrite oxidation were approximately one order of magnitude higher than abiotic rates. These results demonstrate the ability of aerobic microbial activity to accelerate pyrite oxidation and expand the potential contribution of micro-organisms to continental sulfide mineral weathering around the time of the Great Oxidation Event to include neutral-pH environments. In addition, our findings have direct implications for the geochemistry of modern sedimentary environments, including stimulation of the early stages of acid mine drainage formation and mobilization of pyrite

  4. Particulate behavior in a controlled-profile pulverized coal-fired reactor: A study of coupled turbulent particle dispersion and thermal radiation transport. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, M.; Webb, B.W.

    1996-06-01

    To aid in the evaluation and development of advanced coal-combustion models, comprehensive experimental data sets are needed containing information on both the condensed and gas phases. To address this need a series of test were initiated on a 300 kW laboratory-scale, coal-fired reactor at a single test condition using several types of instrumentation. Data collected on the reactor during the course of the test includes: gas, particle, and wall temperature profiles; radiant, total, and convective heat fluxes to the walls; particle size and velocity profiles; transmission measurements; and gas species concentrations. Solid sampling was also performed to determine carbon and total burnout. Along with the extensive experimental measurements, the particle dispersion and radiation submodels in the ACERC comprehensive 2D code were studied in detail and compared to past experimental measurements taken in the CPR. In addition to the presentation and discussion of the experimental data set, a detailed description of the measurement techniques used in collecting the data, including a discussion of the error associated with each type of measurement, is given.

  5. Distribution of inorganic and organic substances in the hydrocyclone separated Slovak sub-bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Anton Zubrik; Slavomir Hredzak; Ludmila Turcaniova; Michal Lovas; Ingo Bergmann; Klaus Dieter Becker; Maria Lukcova; Vladimir Sepelak [Slovak Academy of Sciences, Kosice (Slovakia). Institute of Geotechnics

    2010-08-15

    A low-rank Slovak sub-bituminous coal from the Handlova deposit was physically treated by washing in a water-only cyclone with the goal to find the separation effect for inorganic (mainly Fe-bearing minerals) and organic substances (humic acids, diterpanes). A high-quality coal product with the ash content in the dry matter of 9.02% and carbon content of C{sup d} = 68.12% at a mass yield of 29.51% was obtained using the water-only cyclone processing. At first, the physically treated coal samples were detailed characterized by XRD, {sup 57}Fe Moessbauer spectroscopy, FT-IR and HR-TEM. In addition to non-crystalline organic coal components, inorganic compounds belonging to silicate minerals (kaolinite, muscovite and quartz) as well as to Fe-bearing sulphide minerals (pyrite) were identified in the sub-bituminous coal by XRD. {sup 57}Fe Moessbauer spectroscopy detected the presence of iron carbonate (siderite), iron-containing clay mineral and two sulphur-containing minerals (pyrite, jarosite) in the untreated coal. On the other hand, only one Fe-bearing mineral, (pyrite) was found in the washed coal. Effect of the physical separation is also demonstrated in FT-IR spectra, where the peak at 1040 cm{sup -1} representing the silicate component in the untreated sample is not detectable in the washed coal sample. Presence of extractive organic substances, i.e. humic acids and tetracyclic diterpane (16a(H)-phyllocladane), in the hydrocyclone products is also evidenced. It was confirmed that the isolated diterpenoic compound is attendant in the washed product with the lowest ash content and it is assimilated with the organic part of coal. Surprisingly, humic acids were found in the highest concentration in the slurry that has the highest content of ash (63.14%). 54 refs., 8 figs., 5 tabs.

  6. Behavior of catalyst and mineral matter in coal liquefaction; Sekitan ekika hannochu no kobusshitsu to shokubai no kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, K.; Wang, J.; Tomita, A. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    Mineral matter in coals is important in various senses for coal liquefaction. It is possible that the catalytic activity is affected by the interaction between catalyst and mineral matter. Iron-based catalyst forms pyrrhotite in the process of liquefaction, but the interaction between it and mineral matter is not known in detail. In this study, the interaction between mineral matter and catalyst and the selective reaction between them were investigated. Tanito Harum coal was used for this study. This coal contains a slight amount of siderite and jarosite besides pyrite as iron compounds. Liquefaction samples were obtained from the 1 t/d NEDOL process PSU. The solid deposits in the reactor mainly contained pyrrhotite and quartz. A slight amount of kaolinite was observed, and pyrite was little remained. It was found that the catalyst (pyrrhotite) often coexisted with quartz, clay and calcite. 8 figs., 2 tabs.

  7. Surfactant-Assisted Hydrothermal Synthesis of Single Phase Pyrite FeS2 Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wadia, Cyrus; Wu, Yue; Gul, Sheraz; Volkman, Steven; Guo, Jinghua; Alivisatos, Paul

    2009-03-27

    Iron pyrite nanocrystals with high purity have been synthesized through a surfactant-assisted hydrothermal reaction under optimum pH value. These pyrite nanocrystals represent a new group of well-defined nanoscale structures for high-performance photovoltaic solar cells based on non-toxic and earth abundant materials.

  8. A combined physical/microbial process for the beneficiation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, G.F.; Stevens, C.J.; Noah, K.S.; McIlwain, M.E.

    1993-09-01

    A large-laboratory scale physical/microbial process was demonstrated for the removal of pyritic sulfur from coal. The process took place in an aerated-trough slurry reactor with a total slurry volume of 150 L. The reactor was divided into six sections, each of which acted as a physical separator and a bioreactor. The process objective was to physically remove the larger pyritic inclusions and to biodegrade the small inclusions (micropyrite). The process was continuously operated for 120 days, treating approximately 1 ton of Illinois {number_sign}6 coal. Ninety percent pyrite removal was achieved at a 20% slurry concentration and a reactor residence time of 5 days. Additional research should be performed to find the optimum values for reactor residence time, slurry concentration, and process hydraulic residence time (or recycle ratio). Finding these optimum values will enable a process to be developed that will maximize the amount of coal that can be processed per unit reactor volume per unit time with the desired level of pyritic sulfur removal.

  9. Mössbauer characterization of feed coal, ash and fly ash from a thermal power plant

    International Nuclear Information System (INIS)

    Reyes Caballero, F.; Martínez Ovalle, S. A.; Moreno Gutiérrez, M.

    2015-01-01

    The aim of this work was apply 57 Fe Transmission Mössbauer Spectroscopy at room temperature in order to study the occurrence of iron-containing mineral phases in: 1) feed coal; 2) coal ash, obtained in different stages of the ASTM D3174 standard method; and 3) fly ash, produced when coal is burned in the TERMOPAIPA IV thermal power plant localized in Boyacá, Colombia. According to obtained results, we can conclude the occurrence of pyrite and jarosite in the feed coal; Fe 2+ and Fe 3+ crystalline paramagnetic phases, superparamagnetic hematite and hematite in coal ash; Fe 2+ and Fe 3+ noncrystalline and crystalline phases, magnetite and hematite in fly ash. Precisely, for a basic understanding, this work discusses some the possible transformations that take place during coal combustion

  10. Engineering development of advanced physical fine coal cleaning technologies - froth flotation

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, D.D.; Bencho, J.R. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)

    1995-11-01

    In 1988, ICF Kaiser Engineers was awarded DOE Contract No. DE-AC22-88PC88881 to research, develop, engineer and design a commercially acceptable advanced froth flotation coal cleaning technology. The DOE initiative is in support of the continued utilization of our most abundant energy resource. Besides the goal of commercialability, coal cleaning performance and product quality goals were established by the DOE for this and similar projects. primary among these were the goals of 85 percent energy recovery and 85 percent pyrite rejection. Three nationally important coal resources were used for this project: the Pittsburgh No. 8 coal, the Upper Freeport coal, and the Illinois No. 6 coal. Following is a summary of the key findings of this project.

  11. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  12. Ninth annual international Pittsburgh coal conference - proceedings

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Over 200 papers are presented under the following headings: coal preparation; Clean Coal Technology Program status; pre- and post-utilization processing; advanced conversion technologies; integrated gasification combined cycle; indirect liquefaction; advanced liquefaction process development; conversion processes; coal - from a user's perspective; issues associated with coal use in heat engines; fundamentals of combustion; advanced combustion systems; low quality fuel applications/fluidised beds; combustion systems; ash and sludge disposal/utilization; developing SO 2 /NO x control technologies; technical overview of air toxics; scientific, economic and policy perspectives on global climate change; Clean Air Act compliance strategies; environmental policy/technology; spontaneous combustion; and special topics

  13. Cogasification of Coal and Biomass: A Review

    Directory of Open Access Journals (Sweden)

    J. S. Brar

    2012-01-01

    Full Text Available Recently, there has been significant research interest in cogasification of coal and various types of biomass blends to improve biomass gasification by reducing the tar content in the product gas. In addition, ash present in biomass catalyzes the gasification of coal. However, due to the fibrous nature of biomass and the large difference in gasification temperature of coal and biomass, cogasification in existing systems presents technical challenges. This paper documents research studies conducted on the cogasification of various types of coal and biomass using different types of gasifiers under various sets of operating conditions. In addition, the influence of cogasification on upstream and downstream processing is presented.

  14. Briquetting of Coke-Brown Coal Mixture

    Directory of Open Access Journals (Sweden)

    Ïurove Juraj

    1998-09-01

    Full Text Available The paper presents the results of the research of briquetting a coke-brown coal composite The operation consists of the feeding crushed coal and coke to moulds and pressing into briquettes which have been made in the Laboratories at the Mining Faculty of Technical University of Košice (Slovakia. In this research, all demands will be analyzed including the different aspects of the mechanical quality of briquettes, the proportion of fine pulverulent coal and coke in bricks, the requirements for briquetting the coke-brown coal materials.

  15. Coal competitiveness?

    International Nuclear Information System (INIS)

    Rogeaux, B.

    2006-01-01

    Will coal electrical plants be more competitive in the coming years? Answering this one cannot be limited to merely comparing estimates based on reference electricity production costs. The competitiveness of coal will indeed depend on the final product marketed, as the MWhs are not equal: is the purpose to produce base, half-base MWh? Does the electrical equipment structure require flexible MWh (for instance in the event of significant intermittent renewable energy amounts), and therefore plants able to adjust their power rapidly? But the competitiveness of coal will also depend on many factors that will correct reference cost estimates: uncertainties, risks, externalities. These factors will need to be appreciated on a case by case basis. We introduce some of the reasoning used to better appreciate the future competitiveness of coal, and the main factors conditioning it in three contrasting regions of the world: Europe, USA, china. (author)

  16. The types of data needed for assessing the environmental and human health impacts of coal

    Science.gov (United States)

    Finkelman, R.B.; Gross, P.M.K.

    1999-01-01

    Coal is one of the most important sources of energy. Its worldwide use will continue to expand during the next several decades, particularly in rapidly developing countries such as China and India. Unfortunately, coal use may bring with it environmental and human health costs. Many of the environmental and health problems attributed to coal combustion are due to mobilization of potentially toxic elements. Some of these problems could be minimized or even avoided if comprehensive databases containing appropriate coal quality information were available to decision makers so that informed decisions could be made regarding coal use. Among the coal quality parameters that should be included in these databases are: C, H, N, O, pyritic sulfur, organic sulfur, major, minor, and trace element concentrations, modes of occurrence of environmentally sensitive elements, cleanability, mineralogy, organic chemistry, petrography, and leachability.Coal is one of the most important sources of energy. Its worldwide use will continue to expand during the next several decades, particularly in rapidly developing countries such as China and India. Unfortunately, coal use may bring with it environmental and human health costs. Many of the environmental and health problems attributed to coal combustion are due to mobilization of potentially toxic elements. Some of these problems could be minimized or even avoided if comprehensive databases containing appropriate coal quality information were available to decision makers so that informed decisions could be made regarding coal use. Among the coal quality parameters that should be included in these databases are: C, H, N, O, pyritic sulfur, organic sulfur, major, minor, and trace element concentrations, modes of occurrence of environmentally sensitive elements, cleanability, mineralogy, organic chemistry, petrography, and leachability.

  17. Biodesulfurization techniques: Application of selected microorganisms for organic sulfur removal from coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, B.B.

    1993-08-01

    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating a potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.

  18. Retention and reduction of uranium on pyrite surface; Retention et reduction de l'uranium a la surface de la pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Eglizaud, N

    2006-12-15

    In the hypothesis of a storage of the spent fuel in a deep geological formation, understanding the uranium dispersion in the environment is important. Pyrite is a reducing mineral present in the Callovo-Oxfordian argilites, the geological formation actually studied for such a storage. However, pyrite impact on uranium migration has already been poorly studied. The aim of the study was to understand the mechanisms of uranium(VI) retention and reduction on the pyrite surface (FeS{sub 2}). Solution chemistry was therefore coupled with solid spectroscopic studies (XPS and Raman spectroscopy). All uranium-pyrite interactions experiments were performed under an anoxic atmosphere, in a glove box. Pyrite dissolution under anoxic conditions releases sulfoxy-anions and iron(II), which can then be adsorbed on the pyrite surface. This adsorption was confirmed by interaction experiments using iron(II) isotopic dilution. Uranium(VI) is retained by an exchange reaction with iron(II) adsorbed on sulphur sites, with a maximal amount of sorbed uranium at pH {>=} 5.5. Cobalt(II) and europium(III) are also adsorbed on the pyrite surface above pH 5.5 confirming then that reduction is not required for species to adsorb on pyrite. When the concentration of uranium retained is lower than 4 x 10{sup -9} mol g{sup -1}, an oxidation-reduction reaction leads to the formation of a uranium (VI) (IV) mixed oxide and to solid sulphur (d.o. {>=} -I). During this reaction, iron remains mostly at the +II oxidation degree. The reaction products seem to passivate the pyrite surface: at higher amounts of retained uranium, the oxidation-reduction reaction is no longer observed. The surface is saturated by the retention of (3.4 {+-} 0.8) x 10{sup -7} mol L{sup -1} of uranium(VI). Modelling of uranium sorption at high surface coverage ({>=} 4 x 10{sup -9} mol g{sup -1}) by the Langmuir model yields an adsorption constant of 8 x 10{sup 7} L mol{sup -1}. Finally, a great excess of uranium(VI) above the

  19. Coal Quality Expert: Status and software specifications

    International Nuclear Information System (INIS)

    Harrison, C.D.

    1992-01-01

    Under the Clean Coal Technology Program (Clean Coal Round 1), the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI) are funding the development and demonstration of a computer program called the Coal Quality Expert (CQE trademark). When finished, the CQE will be a comprehensive PC-based program which can be used to evaluate several potential coal cleaning, blending, and switching options to reduce power plant emissions while minimizing generation costs. The CQE will be flxible in nature and capable of evaluating various qualities of coal, available transportation options, performance issues, and alternative emissions control strategies. This allows the CQE to determine the most cost-effective coal and the least expensive emissions control strategy for a given plant. To accomplish this, the CQE will be composed of technical models to evaluate performance issues; environmental models to evaluate environmental and regulatory issues; and cost estimating models to predict costs for installations of new and retrofit coal cleaning processes, power production equipment, and emissions control systems as well as other production costs such as consumables (fuel, scrubber additive, etc.), waste disposal, operating and maintenance, and replacement energy costs. These technical, environmental, and economic models as well as a graphical user interface will be developed for the CQE. And, in addition, to take advantage of already existing capability, the CQE will rely on seamless integration of already proven and extensively used computer programs such as the EPRI Coal Quality Information Systems, Coal Quality Impact Model (CQIM trademark), and NO x Pert. 2 figs

  20. Coal 95

    International Nuclear Information System (INIS)

    Sparre, C.

    1995-01-01

    The report deals with the use of coal and coke in Sweden during 1994. Some information about technology, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used.The use of steam coal for heating purposes has been unchanged during 1994 at a level of 1 Mtons. The production in the cogeneration plants has been constant, but has increased for electricity production. The minor plants have increased their use of forest fuels. The use of steam coal will probably go down in the next years both for heat and cogeneration plants. During the top year 1987 coal was used in 18 hot water and 11 cogeneration plants. 1994 these figures are 3 and 12. Taxes and environmental reasons explain this trend. The use of steam coal in industry has been constant at the level 0.7 Mtons. The import of metallurgical coal in 1993 was 1.6 Mtons, like 1992. Import of 0.3 Mtons of coke gives the total consumption of coke in industry as 1.5 Mtons. the average price of steam coal imported to Sweden was 317 SEK/ton, 3% higher than 1993. All Swedish plants meet their emission limit of dust, SO 2 and NO x as given by county administrations or concession boards. The cogeneration plants all have some SO 2 removal system. The biggest cogeneration plant (Vaesteraas) has recently invested in a SCR NO x cleaning system. Most other plants use low NO x burners or SNR injection systems based on ammonia or urea. 2 figs, 13 tabs

  1. Cermet composite thermal spray coatings for erosion and corrosion protection in combustion environments of advanced coal-fired boilers. Semiannual technical report, January 14, 1997--August 14, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Schorr, B.S.; Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1997-08-31

    Research is presently being conducted to determine the optimum ceramic/metal combination in thermally sprayed metal matrix composite coatings for erosion and corrosion resistance in new coal-fired boilers. The research will be accomplished by producing model cermet composites using powder metallurgy and electrodeposition methods in which the effect of ceramic/metal combination for the erosion and corrosion resistance will be determined. These results will provide the basis for determining the optimum hard phase constituent size and volume percent in thermal spray coatings. Thermal spray coatings will be applied by our industrial sponsor and tested in our erosion and corrosion laboratories. Bulk powder processed Ni-Al{sub 2}O{sub 3} composites were produced at Idaho National Engineering Laboratory. The composite samples contained 0, 21, 27, 37, and 45 volume percent Al{sub 2}O{sub 3} with an average particle size of 12 um. Also, to deposit model Ni-Al{sub 2}O{sub 3} coatings, an electrodeposition technique was developed and coatings with various volume fractions (0-35%) of Al{sub 2}O{sub 3} were produced. The powder and electrodeposition processing of Ni-Al{sub 2}O{sub 3} Composites provide the ability to produce two phase microstructure without changing the microstructure of the matrix material. Therefore, the effect of hard second phase particles size and volume fraction on erosion resistance could be analyzed.

  2. Environmental Geochemistry and Acid Mine Drainage Evaluation of an Abandoned Coal Waste Pile at the Alborz-Sharghi Coal Washing Plant, NE Iran

    Energy Technology Data Exchange (ETDEWEB)

    Jodeiri Shokri, Behshad, E-mail: b.jodeiri@hut.ac.ir [Hamedan University of Technology (HUT), Department of Mining Engineering (Iran, Islamic Republic of); Doulati Ardejani, Faramarz [University of Tehran, School of Mining, College of Engineering (Iran, Islamic Republic of); Ramazi, Hamidreza [Amirkabir University of Technology (Tehran Polytechnic), Department of Mining and Metallurgical Engineering (Iran, Islamic Republic of)

    2016-09-15

    In this paper, an abandoned waste coal pile, which is resulted from Alborz-Sharghi coal washing plant, NE of Iran was mineralogically and geochemically characterized to evaluate pyrite oxidation, acid mine drainage (AMD) generation, and trace element mobility. After digging ten trenches and vertical sampling, a quantitative method including the atomic absorption test, and the quality-based methods including optical study were carried out for determination of pyrite fractions in the waste pile. The geochemical results revealed that the fraction of remaining pyrite increased with depth, indicating that pyrite oxidation is limited to the shallower depths of the pile which were confirmed by variations of sulfate, pH, EC, and carbonate with depth of the pile. To evaluate the trend of trace elements and mineralogical constituents of the waste particles, the samples were analyzed by using XRD, ICP-MS, and ICP-OES methods. The results showed the secondary and neutralizing minerals comprising gypsum have been formed below the oxidation zone. Besides, positive values of net neutralization potential indicated that AMD generation has not taken in the waste pile. In addition, variations of trace elements with depth reveal that Pb and Zn exhibited increasing trends from pile surface toward the bottom sampling trenches while another of them such as Cu and Ni had decreasing trends with increasing depth of the waste pile.

  3. Nickeliferous pyrite tracks pervasive hydrothermal alteration in Martian regolith breccia: A study in NWA 7533

    Science.gov (United States)

    Lorand, Jean-Pierre; Hewins, Roger H.; Remusat, Laurent; Zanda, Brigitte; Pont, Sylvain; Leroux, Hugues; Marinova, Maya; Jacob, Damien; Humayun, Munir; Nemchin, Alexander; Grange, Marion; Kennedy, Allen; Göpel, Christa

    2015-12-01

    Martian regolith breccia NWA 7533 (and the seven paired samples) is unique among Martian meteorites in showing accessory pyrite (up to 1% by weight). Pyrite is a late mineral, crystallized after the final assembly of the breccia. It is present in all of the lithologies, i.e., the fine-grained matrix (ICM), clast-laden impact melt rocks (CLIMR), melt spherules, microbasalts, lithic clasts, and mineral clasts, all lacking magmatic sulfides due to degassing. Pyrite crystals show combinations of cubes, truncated cubes, and octahedra. Polycrystalline clusters can reach 200 μm in maximum dimensions. Regardless of their shape, pyrite crystals display evidence of very weak shock metamorphism such as planar features, fracture networks, and disruption into subgrains. The late fracture systems acted as preferential pathways for partial replacement of pyrite by iron oxyhydroxides interpreted as resulting from hot desert terrestrial alteration. The distribution and shape of pyrite crystals argue for growth at moderate to low growth rate from just-saturated near neutral (6 FMQ + 2 log units. It is inferred from the maximum Ni contents (4.5 wt%) that pyrite started crystallizing at 400-500 °C, during or shortly after a short-duration, relatively low temperature, thermal event that lithified and sintered the regolith breccias, 1.4 Ga ago as deduced from disturbance in several isotope systematics.

  4. Particulate Pyrite Autotrophic Denitrification (PPAD) for Remediation of Nitrate-contaminated Groundwater

    Science.gov (United States)

    Tong, S.; Rodriguez-Gonzalez, L. C.; Henderson, M.; Feng, C.; Ergas, S. J.

    2015-12-01

    The rapid movement of human civilization towards urbanization, industrialization, and increased agricultural activities has introduced a large amount of nitrate into groundwater. Nitrate is a toxic substance discharged from groundwater to rivers and leads to decreased dissolved oxygen and eutrophication. For this experiment, an electron donor is needed to convert nitrate into non-toxic nitrogen gas. Pyrite is one of the most abundant minerals in the earth's crust making it an ideal candidate as an electron donor. The overall goal of this research was to investigate the potential for pyrite to be utilized as an electron donor for autotrophic denitrification of nitrate-contaminated groundwater. Batch studies of particulate pyrite autotrophic denitrification (PPAD) of synthetic groundwater (100 mg NO3--N L-1) were set up with varying biomass concentration, pyrite dose, and pyrite particle size. Reactors were seeded with mixed liquor volatile suspended solids (VSS) from a biological nitrogen removal wastewater treatment facility. PPAD using small pyrite particles (Box-Behnken design (BBD) and response surface methodology (RSM), the optimal amount of biomass concentration, pyrite dose, and pyrite particle size were 1,250 mg VSS L-1, 125 g L-1, and 0.815-1.015 mm, respectively. PPAD exhibited substantial nitrate removal rate, lower sulfate accumulation (5.46 mg SO42-/mg NO3--N) and lower alkalinity consumption (1.70 mg CaCO3/mg NO3--N) when compared to SOD (7.54 mg SO42-/mg NO3--N, 4.57 mg CaCO3/mg NO3--N based on stoichiometric calculation). This research revealed that the PPAD process is a promising technique for nitrate-contaminated groundwater treatment and promoted the utilization of pyrite in the field of environmental remediation.

  5. Microbial Oxidation of Pyrite Coupled to Nitrate Reduction in Anoxic Groundwater Sediment

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher; Elberling, Bo; Jacobsen, Ole Stig

    2009-01-01

    Although many areas in Denmark are intensively agricultured, the discharge of nitrate from groundwater aquifers to surface water is often lower than expected. In this study it is experimentally demonstrated that anoxic nitrate reduction in sandy sediment containing pyrite is a microbially mediated...... be ascribed to pyrite oxidation. The apparent zero-order denitrification rate in anoxic pyrite containing sediment at groundwater temperature has been determined to be 2-3 µmol NO3- kg-1 day-1. The in situ groundwater chemistry at the boundary between the redoxcline and the anoxic zone reveals that between 65...

  6. Coal excavation design for environmentally perspective by using multi-configuration GPR antenna

    Science.gov (United States)

    Ibrahim, Eddy; Harminuke, R. R.; Hadi, Alek Al; Hendrajaya, Lilik

    2017-11-01

    Determining coal seam total moisture, thickness and fracture planes is of vital importance for coal exploitation. Determining the thickness of shallow coal outcrops is difficult and drill data is often needed to determine lateral coal seam thickness resulting in high exploration costs. Another difficulty is the lack of information about fracture plane orientations which increases the difficulty and cost of digging operations. Ground probing radar (GPR) measurements were carried out on the vertical wall of a coal outcrop to determine the applicability of GPR in mapping the distribution and continuity of lateral coal seam thickness, total moisture variation, and fracture planes. By using multi-configuration antennas, reflected waves were recorded giving information to a depth of about 3 m on coal seam thickness, interfaces with inter-burden layers, total moisture variations and fracture planes in coal seams. By comparing the GPR records with the conditions of the visible vertical coal outcrop it was also confirmed that the electromagnetic waves were most strongly reflected by coal seam interfaces with inter-burden layers in the form of compact-clays, by total moisture content variations in coal seams and fracture planes containing conductive minerals (i.e. hematite, magnetite, clays, and pyrite) and water.

  7. Coal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kroenig, W.

    1944-02-11

    Some considerations in the selection of a catalyst for the liquid phase of coal hydrogenation are discussed. Some of the previous history of such selections is mentioned. At one stage of the development, the principal catalyst had been iron sulfate (FeSO/sub 4/.7H/sub 2/O). Later, for reasons of cost and availability of large supplies, selections had turned to mixtures of iron sulfate and one or another of some iron oxide- and aluminum oxide-containing byproducts of aluminum manufacture, namely Bayermasse, Luxamsse, or Lautamasse. Much of the discussion centered on optimal proportions for such mixtures, particularly as related to pH values of resulting coal pastes. Upper Silesian coal was more alkaline than Ruhr coal, and Bayermasse, etc., were quite alkaline. Thus, since the iron sulfate served as a partial neutralizer for the coal as well as a catalyst, it seemed necessary to increase the proportions of iron sulfate in the catalyst mixture when processing coal of greater alkalinity. A further reason for a greater proportion of iron sulfate seemed to be that most of the catalytic activity of the iron came from the ferrous iron of iron sulfate rather than from the ferric iron of the other materials. Ferrous-ferric ratios also seemed to indicate that Luxmasse or Lautamasse might be better catalyst components than Bayermasse but their water content sometimes caused handling problems, so Bayermasse had been more widely used. Formation of deposits in the preheater was more likely due to the Bayermasse than to the iron sulfate; sodium sulfide could help to prevent them.

  8. Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite

    Science.gov (United States)

    Donald, Ravin; Southam, Gordon

    1999-07-01

    In vitro enrichment cultures of dissimilatory sulfate-reducing bacteria precipitated FeS and catalyzed its transformation into FeS 2 at ambient temperature and pressure under anaerobic conditions. When compared to purely abiotic processes, the bacterially mediated transformation was shown to be more efficient in transforming FeS into FeS 2. This occurred due to the large, reactive surface area available for bacterially catalyzed diagenesis, where the biogenic FeS precursor was immobilized as a thin film (˜25 nm thick) on the μm-scale bacteria. The bacteria also contained the source(s) of sulfur for diagenesis to occur. Using a radiolabeled organic-sulfur tracer study, sulfur was released during cell autolysis and was immobilized at the bacterial cell surface forming FeS 2. The formation of FeS 2 occurred on both the inner and outer surfaces of the cell envelope and represented the first step of bacterial mineral diagenesis. Pyrite crystals, having linear dimensions of ˜1 μm, grew outward from the bacterial cell surfaces. These minerals were several orders of magnitude larger in volume than those originating abiotically.

  9. Preliminary Analysis of Pyrite Reactivity Under Venusian Temperature and Atmosphere

    Science.gov (United States)

    Radoman-Shaw, B. G.; Harvey, R. P.; Jacobson, N. S.; Costa, G. C. C.

    2015-01-01

    Measurements of Venus surface chemistry suggest a basaltic composition with a predominantly CO2 atmosphere. In order to understand the reactivity of certain possible mineral species on the surface, previous simulation chambers conduct experiments at 1 atmosphere with a simplified CO2 atmosphere. Following this procedure, pyrite (FeS2) samples are used to estimate the reactivity of sulfide minerals under a Venusian atmosphere and climate. Sulfurous gas species have been identified and quantified in the Venusian atmosphere, and sulfurous gas and mineral species are known to be created through volcanism, which is suggested to still occur on the surface of Venus. This experimentation is necessary to constrain reactions that could occur between the surface and atmosphere of Venus to understand terrestrial geology in a thick and hot greenhouse atmosphere. Quantifying this reaction can lead to approximations necessary for further experimentation in more complex environments such as those in the GEER chamber at Glenn Research Center that can simulate pressure along with temperature and a more inclusive and representative Venusian atmosphere.

  10. Atmospheric pollution and heating plants in urban area. What technical solutions for the coal and the heavy oil? For which costs?; Pollution atmospherique et chaufferies en milieu urbain. Quelles solutions techniques pour le charbon et le fioul lourd?. A quel couts?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In France, furnaces fed with coal and heavy fuel and established in urban area, are bound by many restraints: a reinforcement of the regulations on atmospheric emissions, a strong social demand bound to the urban air quality improvement and a necessary costs mastership. So buildings managers and persons responsible for district heating are confronted with technical and strategical choices. To answer their questions ADEME organized a day of information around four main themes: the urban heating in France, actions on fuels, possible technics for the smokes desulfurization and nitrogen oxides reduction, costs and financing of the solutions. (A.L.B.)

  11. Lateral variation in geochemistry, petrology, and palynology in the Elswick coal bed, Pike County, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); Ruppert, Leslie F. [U.S. Geological Survey, Reston, VA (United States); Eble, Cortland F. [Kentucky Geological Survey, Lexington, KY 40506 (United States)

    2007-02-01

    The Middle Pennsylvanian/Langsettian (Westphalian A) Elswick coal bed, correlative to the Upper Banner of Virginia, is a rare example of a mined high-sulfur (>2%) coal in Eastern Kentucky, a region known for low-sulfur coals. To characterize lateral variation in the geochemistry, petrography, and palynology of the Elswick coal bed, three sites were sampled along a southeast-northwest transect within a single mine. At the southeastern site, the lower 101 cm of the 116-cm thick coal is dull, generally dominated by durain and dull clarain. While all benches at this site fit within the previously-defined 'mixed palynoflora - moderate/low vitrinite group,' suggesting a stressed environment of deposition, the palynology of the benches of the dull interval show greater diversity than might be expected just from the petrology. Lithology is generally similar between the sites, but each site has some differences in the petrology. Overall, the coal bed shows significant lateral variation in properties at the mine scale, some of which can be attributed to the gain or loss of upper and lower lithologies, either through an actual physical merging or through the change in character of lithotypes. Sulfur content varies between the three sites examined for this study. Site 3, located in the northwestern portion of the study area is characterized by a strikingly high sulfur zone (7.45%) in the middle of the coal bed, a feature missing at the other sites. Pyrite and marcasite, in a mid-seam lithotype at the northwestern site (site 3), show signs of overgrowths, indicating multiple generations of sulfide emplacement. The high-sulfur site 3 lithologies all have massive overgrowths of euhedral and framboidal pyrite, fracture- and cleat-fill pyrite, and sulfide emplacement in fusinite lumens. Sulfur is high throughout the mine area, but variations are evident in the extent of secondary growth of sulfides. (author)

  12. Lateral variation in geochemistry, petrology, and palynology in the Elswick coal bed, Pike County, Kentucky

    Science.gov (United States)

    Hower, J.C.; Ruppert, L.F.; Eble, C.F.

    2007-01-01

    The Middle Pennsylvanian/Langsettian (Westphalian A) Elswick coal bed, correlative to the Upper Banner of Virginia, is a rare example of a mined high-sulfur (> 2%) coal in Eastern Kentucky, a region known for low-sulfur coals. To characterize lateral variation in the geochemistry, petrography, and palynology of the Elswick coal bed, three sites were sampled along a southeast-northwest transect within a single mine. At the southeastern site, the lower 101??cm of the 116-cm thick coal is dull, generally dominated by durain and dull clarain. While all benches at this site fit within the previously-defined "mixed palynoflora - moderate/low vitrinite group," suggesting a stressed environment of deposition, the palynology of the benches of the dull interval show greater diversity than might be expected just from the petrology. Lithology is generally similar between the sites, but each site has some differences in the petrology. Overall, the coal bed shows significant lateral variation in properties at the mine scale, some of which can be attributed to the gain or loss of upper and lower lithologies, either through an actual physical merging or through the change in character of lithotypes. Sulfur content varies between the three sites examined for this study. Site 3, located in the northwestern portion of the study area is characterized by a strikingly high sulfur zone (7.45%) in the middle of the coal bed, a feature missing at the other sites. Pyrite and marcasite, in a mid-seam lithotype at the northwestern site (site 3), show signs of overgrowths, indicating multiple generations of sulfide emplacement. The high-sulfur site 3 lithologies all have massive overgrowths of euhedral and framboidal pyrite, fracture- and cleat-fill pyrite, and sulfide emplacement in fusinite lumens. Sulfur is high throughout the mine area, but variations are evident in the extent of secondary growth of sulfides. ?? 2006 Elsevier B.V. All rights reserved.

  13. Geochemical Characteristics of Trace Elements in the No. 6 Coal Seam from the Chuancaogedan Mine, Jungar Coalfield, Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Lin Xiao

    2016-03-01

    Full Text Available Fourteen samples of No. 6 coal seam were obtained from the Chuancaogedan Mine, Jungar Coalfield, Inner Mongolia, China. The samples were analyzed by optical microscopic observation, X-ray diffraction (XRD, scanning electron microscope equipped with an energy-dispersive X-ray spectrometer (SEM-EDS, inductively coupled plasma mass spectrometry (ICP-MS and X-ray fluorescence spectrometry (XRF methods. The minerals mainly consist of kaolinite, pyrite, quartz, and calcite. The results of XRF and ICP-MS analyses indicate that the No. 6 coals from Chuancaogedan Mine are higher in Al2O3, P2O5, Zn, Sr, Li, Ga, Zr, Gd, Hf, Pb, Th, and U contents, but have a lower SiO2/Al2O3 ratio, compared to common Chinese coals. The contents of Zn, Sr, Li, Ga, Zr, Gd, Hf, Pb, Th, and U are higher than those of world hard coals. The results of cluster analyses show that the most probable carrier of strontium in the coal is gorceixite; Lithium mainly occurs in clay minerals; gallium mainly occurs in inorganic association, including the clay minerals and diaspore; cadmium mainly occurs in sphalerite; and lead in the No. 6 coal may be associated with pyrite. Potentially valuable elements (e.g., Al, Li, and Ga might be recovered as byproducts from coal ash. Other harmful elements (e.g., P, Pb, and U may cause environmental impact during coal processing.

  14. Copper-arsenic decoupling in an active geothermal system: A link between pyrite and fluid composition

    Science.gov (United States)

    Tardani, Daniele; Reich, Martin; Deditius, Artur P.; Chryssoulis, Stephen; Sánchez-Alfaro, Pablo; Wrage, Jackie; Roberts, Malcolm P.

    2017-05-01

    Over the past few decades several studies have reported that pyrite hosts appreciable amounts of trace elements which commonly occur forming complex zoning patterns within a single mineral grain. These chemical zonations in pyrite have been recognized in a variety of hydrothermal ore deposit types (e.g., porphyry Cu-Mo-Au, epithermal Au deposits, iron oxide-copper-gold, Carlin-type and Archean lode Au deposits, among others), showing, in some cases, marked oscillatory alternation of metals and metalloids in pyrite growth zones (e.g., of Cu-rich, As-(Au, Ag)-depleted zones and As-(Au, Ag)-rich, Cu-depleted zones). This decoupled geochemical behavior of Cu and As has been interpreted as a result of chemical changes in ore-forming fluids, although direct evidence connecting fluctuations in hydrothermal fluid composition with metal partitioning into pyrite growth zones is still lacking. In this study, we report a comprehensive trace element database of pyrite from the Tolhuaca Geothermal System (TGS) in southern Chile, a young and active hydrothermal system where fewer pyrite growth rims and mineralization events are present and the reservoir fluid (i.e. ore-forming fluid) is accessible. We combined the high-spatial resolution and X-ray mapping capabilities of electron microprobe analysis (EMPA) with low detection limits and depth-profiling capacity of secondary-ion mass spectrometry (SIMS) in a suite of pyrite samples retrieved from a ∼1 km drill hole that crosses the argillic (20-450 m) and propylitic (650-1000 m) alteration zones of the geothermal system. We show that the concentrations of precious metals (e.g., Au, Ag), metalloids (e.g., As, Sb, Se, Te), and base and heavy metals (e.g., Cu, Co, Ni, Pb) in pyrite at the TGS are significant. Among the elements analyzed, As and Cu are the most abundant with concentrations that vary from sub-ppm levels to a few wt.% (i.e., up to ∼5 wt.% As, ∼1.5 wt.% Cu). Detailed wavelength-dispersive spectrometry (WDS) X

  15. Effect of inversion layer at iron pyrite surface on photovoltaic device

    Science.gov (United States)

    Uchiyama, Shunsuke; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2018-03-01

    Iron pyrite has great potential as a thin-film solar cell material because it has high optical absorption, low cost, and is earth-abundant. However, previously reported iron pyrite solar cells showed poor photovoltaic characteristics. Here, we have numerically simulated its photovoltaic characteristics and band structures by utilizing a two-dimensional (2D) device simulator, ATLAS, to evaluate the effects of an inversion layer at the surface and a high density of deep donor defect states in the bulk. We found that previous device structures did not consider the inversion layer at the surface region of iron pyrite, which made it difficult to obtain the conversion efficiency. Therefore, we remodeled the device structure and suggested that removing the inversion layer and reducing the density of deep donor defect states would lead to a high conversion efficiency of iron pyrite solar cells.

  16. A unifying model for Neoproterozoic-Palaeozoic exceptional fossil preservation through pyritization and carbonaceous compression.

    Science.gov (United States)

    Schiffbauer, James D; Xiao, Shuhai; Cai, Yaoping; Wallace, Adam F; Hua, Hong; Hunter, Jerry; Xu, Huifang; Peng, Yongbo; Kaufman, Alan J

    2014-12-17

    Soft-tissue fossils capture exquisite biological detail and provide our clearest views onto the rise of animals across the Ediacaran-Cambrian transition. The processes contributing to fossilization of soft tissues, however, have long been a subject of debate. The Ediacaran Gaojiashan biota displays soft-tissue preservational styles ranging from pervasive pyritization to carbonaceous compression, and thus provides an excellent opportunity to dissect the relationships between these taphonomic pathways. Here geochemical analyses of the Gaojiashan fossil Conotubus hemiannulatus show that pyrite precipitation was fuelled by the degradation of labile tissues through bacterial sulfate reduction (BSR). Pyritization initiated with nucleation on recalcitrant tube walls, proceeded centripetally, decelerated with exhaustion of labile tissues and possibly continued beneath the BSR zone. We propose that pyritization and kerogenization are regulated principally by placement and duration of the decaying organism in different microbial zones of the sediment column, which hinge on post-burial sedimentation rate and/or microbial zone thickness.

  17. Pyrite: A blender plugin for visualizing molecular dynamics simulations using industry-standard rendering techniques.

    Science.gov (United States)

    Rajendiran, Nivedita; Durrant, Jacob D

    2018-05-05

    Molecular dynamics (MD) simulations provide critical insights into many biological mechanisms. Programs such as VMD, Chimera, and PyMOL can produce impressive simulation visualizations, but they lack many advanced rendering algorithms common in the film and video-game industries. In contrast, the modeling program Blender includes such algorithms but cannot import MD-simulation data. MD trajectories often require many gigabytes of memory/disk space, complicating Blender import. We present Pyrite, a Blender plugin that overcomes these limitations. Pyrite allows researchers to visualize MD simulations within Blender, with full access to Blender's cutting-edge rendering techniques. We expect Pyrite-generated images to appeal to students and non-specialists alike. A copy of the plugin is available at http://durrantlab.com/pyrite/, released under the terms of the GNU General Public License Version 3. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering

    International Nuclear Information System (INIS)

    Sasaki, K.; Tsunekawa, M.; Ohtsuka, T.; Konno, H.

    1998-01-01

    The paper investigates the role of the sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering in order to clarify the effects of the bacteria on the dissolution behavior of pyrite and the formation of secondary minerals using Raman spectroscopy and powder X-ray diffraction (XRD) in addition to solution analysis. It was found that T. thiooxidans, when present with the iron-oxidizing bacteria Thiobacillus ferrooxidans, enhanced the dissolution of Fe and S species for pyrite, whereas T. thiooxidans alone did not oxidize pyrite. Enhancement of the consumption of elemental sulfur and regeneration of Fe(II) ions were also observed with T. thiooxidans together with T. ferrooxidans, while this did not occur with T. ferrooxidans alone

  19. Thin pyrite (FeS{sub 2}) films by molecular beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bronold, M.; Kubala, S.; Pettenkofer, C.; Jaegermann, W. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Physikalische Chemie

    1997-07-30

    Polycrystalline pyrite films have been prepared by evaporation of Fe and S from separate molecular beam sources. It is shown by X-ray diffraction and by X-ray and ultraviolet photoelectron spectroscopy that at S pressures of 6-8.10{sup -5}, Pa pyrite is formed at a substrate temperature of 390 K. At higher temperatures, pyrrhotite (Fe{sub 7}S{sub 8}) is present in the films. (orig.)

  20. Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite

    International Nuclear Information System (INIS)

    Gunawan, Richard; Zhang Dongke

    2009-01-01

    The interaction between ammonium nitrate based industrial explosives and pyrite-rich minerals in mining operations can lead to the occurrence of spontaneous explosion of the explosives. In an effort to provide a scientific basis for safe applications of industrial explosives in reactive mining grounds containing pyrite, ammonium nitrate decomposition, with and without the presence of pyrite, was studied using a simultaneous Differential Scanning Calorimetry and Thermogravimetric Analyser (DSC-TGA) and a gas-sealed isothermal reactor, respectively. The activation energy and the pre-exponential factor of ammonium nitrate decomposition were determined to be 102.6 kJ mol -1 and 4.55 x 10 7 s -1 without the presence of pyrite and 101.8 kJ mol -1 and 2.57 x 10 9 s -1 with the presence of pyrite. The kinetics of ammonium nitrate decomposition was then used to calculate the critical temperatures for ammonium nitrate decomposition with and without the presence of pyrite, based on the Frank-Kamenetskii model of thermal explosion. It was shown that the presence of pyrite reduces the temperature for, and accelerates the rate of, decomposition of ammonium nitrate. It was further shown that pyrite can significantly reduce the critical temperature of ammonium nitrate decomposition, causing undesired premature detonation of the explosives. The critical temperature also decreases with increasing diameter of the blast holes charged with the explosive. The concept of using the critical temperature as indication of the thermal stability of the explosives to evaluate the risk of spontaneous explosion was verified in the gas-sealed isothermal reactor experiments.

  1. The influence of pyrite on the solubility of minjingu and panda ...

    African Journals Online (AJOL)

    A laboratory study was conducted to investigate the effect of pyrite rock on the solubility of Minjingu and Panda phosphate rocks. The rocks were ground to 100 mesh (0.045 mm) after which each phosphate rock was mixed with pyrite at P:S ratios of 1:4, 1 :3, 1:2, 1:1, 2:1, and 3: 1. The mixtures were moistened and incubated ...

  2. Coal at the crossroads

    International Nuclear Information System (INIS)

    Scaroni, A.W.; Davis, A.; Schobert, H.; Gordon, R.L.; Ramani, R.V.; Frantz, R.L.

    1992-01-01

    Worldwide coal reserves are very large but coal suffers from an image of being an environmentally unfriendly and inconvenient fuel. Aspects discussed in the article include: coal's poor image; techniques for coal analysis, in particular instrumented techniques; developments in clean coal technology e.g. coal liquefaction, fluidized bed combustion, co-generation and fuel slurries; the environmental impact of mining and land reclamation; and health aspects. It is considered that coal's future depends on overcoming its poor image. 6 photos

  3. Using proximate analysis to characterize airborne dust generation from bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Page, S.J.; Organiscak, J.A. [NIOSH, Pittsburgh, PA (United States). Pittsburgh Research Lab.

    2002-06-01

    Laboratory crushing experiments were conducted on a range of low to high volatile bituminous coals to investigate the various factors influencing airborne respirable dust generation. Bituminous coal samples from 8 mines (5 U.S. and 3 Polish) were uniformly prepared and processed through a double roll crusher located in a low air velocity wind tunnel. Experimental factors studied included inherent coal seam constituents, specific energy of crushing, product size characteristics, dust cloud electrostatic field, and specific quantity of airborne respirable dust generated. A combination of factors is associated with the generation of airborne respirable dust. One factor involved is the effect of coal rank, described by the inherent moist fuel ratio, on the product size characteristics. However, since coals of high moist fuel ratio (high rank) are generally more extensively cleated, it is suggested that the degree of cleating is directly responsible for the quantity of respirable-sized particles produced in the crushed product material for eastern U.S. coals. This is implied by the relationship of ash content and at least one mineral constituent (pyrite, determined from pyritic sulfur analysis) to the percentage of airborne respirable dust. A clear delineation of coals, based on well-known proximate analysis characteristics, that generate the most respirable dust appears to be possible. It was also shown that the dust-generating characteristics of coals could be reasonably described by both the moist fuel ratio and the Hardgrove Grindability Index (HGI). These results show a clear distinction between eastern and western U.S. coals. However, no consistent distinction for Polish coal was observed.

  4. Proceedings of the Second APEC Coal Flow Seminar Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-05

    This proceedings includes papers presented at the Second APEC Coal Flow Seminar held at Shanghai in December, 1995. Three keynote speeches were presented, and two panel discussions were held. `Medium-term outlook for coal trade,` `Energy and the environment,` and `Progress with environmental control technology and technical exchanges between economies` were presented as keynote speeches. In the panel discussions, `Achieving low environmental impact from coal production and utilization` and `How to tackle environmental issues related to coal` were discussed. The Panel 1 was divided into Part 1 and Part 2. In the Part 1, overview of current environmental protection policy measures was discussed in relation to coal production and use in economies where coal consumption has been increasing significantly. In the Part 2, overview of current environmental protection policy measures was discussed in relation to coal production and use in major coal producing and consuming economies. 38 refs., 64 figs., 31 tabs.

  5. Report on assessment of the mechanism of bacterially assisted oxidation of pyritic uranium tailings

    International Nuclear Information System (INIS)

    Halbert, B.B.; Scharer, J.M.; Knapp, R.A.

    1984-07-01

    The oxidation of pyritic minerals has been shown to be catalyzed by the presence of iron- and sulphur-oxidizing bacteria. Thiobacillus ferroxidans plays the most significant role in the formation and propagation of acidic conditions. Optimum growth conditions for the T. ferroxidans occurs at a temperature of 35 degrees C and pH of 2 to 3. Bacterially assisted oxidation of pyrite involves both direct and indirect contact mechanisms. The direct contact mechanism entails enzymatic oxidation of the insoluble sulphide moiety. The indirect mechanism involves bacterial oxidation of the dissolved ferrous component to the ferric state. The ferric iron, in turn, acts as the prime oxidant of pyrite and is reduced to ferrous iron. The re-oxidation of the dissolved ferrous component which is catalyzed by bacterial activity, completes the cyclic process. The rate of bacterial oxidation is affected by: the geochemistry and reactivity of the pyritic material; the amount of pyrite present in the waste material and the exposed surface area of the pyritic component; the availability of oxygen and carbon dioxide; the pH and temperature of the leach solution; and the presence (or absence) of organic inhibitors. Of the above factors, oxygen has been frequently identified as the rate limiting reactant in tailings

  6. Spatial Mapping for Managing Oxidized Pyrite (FeS2 in South Sumatra Wetlands, Indonesia

    Directory of Open Access Journals (Sweden)

    M. Edi Armanto

    2015-05-01

    Full Text Available The research aimed to analyze spatial mapping for managing oxidized pyrite (FeS2 in South Sumatra wetlands, Indonesia. The field observations are done by exploring several transect on land units. The field description refers to Soil Survey Staff (2014. Water and soil samples were taken from selected key areas for laboratory analysis. The vegetation data was collected by making sample plots (squares method placed on each vegetation type with plot sizes depending on the vegetation type, namely 10 x 10 m for secondary forests and 5 x 5 m for shrubs and grass. The observations of surface water level were done during the river receding with units of m above sea level (m asl. The research results showed that pyrite formation is largely determined by the availability of natural vegetation as Sulfur (S donors, climate and uncontrolled water balance and supporting fauna such as crabs and mud shrimp.  Climate and water balance as well as supporting faunas is the main supporting factors to accelerate the process of pyrite formation. Oxidized pyrite serves to increase soil acidity, becomes toxic to fish ponds and arable soils, plant growth and disturbing the water and soil nutrient balances. Oxidized pyrite is predominantly accelerated by the dynamics of river water and disturbed natural vegetation by human activities.  The pyrite oxidation management approach is divided into three main components of technologies, namely water management, land management and commodity management.

  7. Selective Attachment of Leptospirillum ferrooxidans for Separation of Chalcopyrite and Pyrite through Bio-Flotation

    Directory of Open Access Journals (Sweden)

    Belinda Bleeze

    2018-02-01

    Full Text Available The replacement of depressants used in sulfide mineral beneficiation, with bacteria and their metabolites, promises to reduce the environmental impact left by the mining industry. In this study, the attachment of Leptospirillum ferrooxidans, L.f, to chalcopyrite and pyrite was investigated through Scanning Electron Microscopy (SEM. The impact of selective attachment, bacterial growth conditions, and extracellular polymeric substances (EPS was investigated through bio-flotation. L.f exhibits selective attachment to pyrite between 0 h and 168 h exposure via an indirect contact mechanism. Separation of chalcopyrite from pyrite was achieved through exposing the minerals for 72 h with an L.f culture grown on either HH media, chalcopyrite, or pyrite. The results produced 80.4, 43.4, and 47.4% recovery of chalcopyrite, respectively. However, EPS supernatant extracted from L.f grown on chalcopyrite, conditioned for 48 h, provided the best separation efficiency by the selective depression of pyrite resulting in 95.8% Cu recovery. Polysaccharide-rich EPS selectively attaches to pyrite within 48 h, depressing its floatability and ensuring successful separation with a PIPX collector.

  8. Calorimetric investigation on mechanically activated storage energy mechanism of sphalerite and pyrite

    International Nuclear Information System (INIS)

    Xiao Zhongliang; Chen Qiyuan; Yin Zhoulan; Hu Huiping; Wu Daoxin

    2005-01-01

    The structural changes of mechanically activated sphalerite and pyrite under different grinding conditions were determined by X-ray powder diffraction (XRD), laser particle size analyzer and elemental analysis. The storage energy of mechanically activated sphalerite and pyrite was measured by a calorimetric method. A thermochemical cycle was designed so that mechanically activated and non-activated minerals reached the same final state when dissolved in the same oxidizing solvent. The results show that the storage energy of mechanically activated sphalerite and pyrite rises with increased in grinding time, and reaches a maximum after a certain grinding period. The storage energy of mechanically activated pyrite decreases when heated under inert atmosphere. The storage energy of mechanically activated sphalerite and pyrite remains constant when treated below 573 K under inert atmosphere. The percentage of the storage energy caused by surface area increase during mechanical activation decreases with increasing grinding time. These results support our opinion that the mechanically activated storage energy of sphalerite is closely related to lattice distortions, and the mechanically activated storage energy of pyrite is mainly caused by the formation of reactive sites on the surface

  9. Bioenergetic studies of coal sulfur oxidation by extremely thermophilic bacteria. Final report, September 15, 1992--August 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.M.; Han, C.J.

    1997-12-31

    Thermoacidophilic microorganisms have been considered for inorganic sulfur removal from coal because of expected improvements in rates of both biotic and abiotic sulfur oxidation reactions with increasing temperature. In this study, the bioenergetic response of the extremely thermoacidophilic archaeon, Metallosphaera sedula, to environmental changes have been examined in relation to its capacity to catalyze pyrite oxidation in coal. Given an appropriate bioenergetic challenge, the metabolic response was to utilize additional amounts of energy sources (i.e., pyrite) to survive. Of particular interest were the consequences of exposing the organism to various forms of stress (chemical, nutritional, thermal, pH) in the presence of coal pyrite. Several approaches to take advantage of stress response to accelerate pyrite oxidation by this organism were examined, including attempts to promote acquired thermal tolerance to extend its functional range, exposure to chemical uncouplers and decouplers, and manipulation of heterotrophic and chemolithotrophic tendencies to optimize biomass concentration and biocatalytic activity. Promising strategies were investigated in a continuous culture system. This study identified environmental conditions that promote better coupling of biotic and abiotic oxidation reactions to improve biosulfurization rates of thermoacidophilic microorganisms.

  10. Memorandum on coal hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Struss

    1942-10-27

    The first test facility was built in Ludwigshafen in Building 35 in 1924. During the Technical Committee meeting of February 4, 1926, Carl Bosch reported briefly for the first time on the status of coal hydrogenation and promised a comprehensive report to follow. Next, in connection with the Technical Committee meeting of July 13, 1926, Bosch arranged for the Committee to tour the test facility. Subsequently, the first industrial facility, for a yearly output of 100,000 tons, was built in Leuna with great speed and began production in April 1927. For this facility RM 26.6 million in credit was appropriated during 1926 and 1927 (the costs, including associated units, were estimated at RM 46 million; the RM 26.6 million covered only erection of the plant). A further RM 264 million was written off to hydrogenation in the years 1926 to 1931 on tests in new areas. At the end of 1929 the large scale tests at Merseburg were interrupted. On April 7, 1932, in the Nitrogen Branch discussion at Ludwigshafen, Dr. Schneider reported on the improvement in coal decomposition percentage which had meanwhile been achieved: from 60% to 95%. He proposed a last large-scale test, which was to require RM 375,000 up to the starting point and RM 170,000 per month during the six-month test period. This last test then led to definitive success in 1933.

  11. Sulfur and carbon isotope geochemistry of coal and derived coal-combustion by-products: An example from an Eastern Kentucky mine and power plant

    International Nuclear Information System (INIS)

    Elswick, Erika R.; Hower, James C.; Carmo, Ana M.; Sun, Tao; Mardon, Sarah M.

    2007-01-01

    The isotopic compositions of S (δ 34 S) and C (δ 13 C) were determined for the coal utilized by a power plant and for the fly ash produced as a by-product of the coal combustion in a 220-MW utility boiler. The coal samples analyzed represent different lithologies within a single mine, the coal supplied to the power plant, the pulverized feed coal, and the coal rejected by the pulverizer. The ash was collected at various stages of the ash-collection system in the plant. There is a notable enrichment in 34 S from the base to the top of the coal seam in the mine, with much of the variation due to an upwards enrichment in the δ 34 S values of the pyrite. Variations in δ 34 S and in the amount of pyritic S in the coal delivered to the plant show that there was a change of source of coal supplied to the plant, between week one and week two of monitoring, supporting a previous study based on metal and sulfide geochemistry for the same plant. The fly ash has a more enriched δ 34 S than the pulverized coal and, in general, the δ 34 S is more enriched in fly ashes collected at cooler points in the ash-collection system. This pattern of δ 34 S suggests an increased isotopic fractionation due to temperature, with the fly ash becoming progressively depleted in 34 S and the flue gas S-containing components becoming progressively enriched in 34 S with increasing temperatures. Substantially less variation is seen in the C isotopes compared to S isotopes. There is little vertical variation in δ 13 C in the coal bed, with δ 13 C becoming slightly heavier towards the top of the coal seam. An 83-93% loss of solid phase C occurs during coal combustion in the transition from coal to ash owing to loss of CO 2 . Despite the significant difference in total C content only a small enrichment of 0.44-0.67 per mille in 13 C in the ash relative to the coal is observed, demonstrating that redistribution of C isotopes in the boiler and convective passes prior to the arrival of the fly

  12. Mineralogy and geochemistry of a uraniferous coal from the Red Desert Area, Sweetwater County, Wyoming

    Science.gov (United States)

    Breger, Irving A.; Deul, Maurice; Meyrowitz, Robert; Rubinstein, Samuel

    1953-01-01

    A sample of subbituminous uraniferous coal from the Red Desert, Sweetwater County, Wyo., was studied mineralogically. The coal contains gypsum (6 percent), kaolinite (1 percent), quartz (0.3 percent), calcite (trace), and limonite (trace). This suite of minerals and the absence of pyrite show that the coal has been subjected to weathering and oxidation. No uranium minerals have been found; mechanical fractionation has indicated that the uranium is associated with the organic constituents of the coal. The minerals that have been isolated contain 0.0006 percent uranium, a content which is to be expected for nonuraniferous sedimentary rocks. The organic components of the coal contain approximately 0.002 percent uranium. On the basis of material balance calculations, the organic components carry 98 percent of the uranium in the coal. Fischer assays of this weathered coal from the Red Desert indicate a yield of 16.7 gallons of tar per ton on low-temperature retorting. In view of the large reserve of subbituminous coal in the Red Desert, its probable ease of mining, and its tar yield, it may be desirable to carry out further evaluation of the coal as a fuel or raw material for the manufacture of tar or chemicals. If economic factors permit utilization of the coal, the uranium, although present in small percentages, could be recovered as a byproduct.

  13. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 2 - hydrogenative and hydrothermal pretreatments and spectroscopic characterization using pyrolysis-GC-MS, CPMAS {sup 13}C NMR and FT-IR

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Hatcher, P.G.; Saini, A.K.; Wenzel, K.A.

    1998-01-01

    It has been indicated by DOE COLIRN panel that low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals. As the second volume of the final report, here we summarize our work on spectroscopic characterization of four raw coals including two subbituminous coals and two bituminous coals, tetrahydrofuran (THF)-extracted but unreacted coals, the coals (THF-insoluble parts) that have been thermally pretreated. in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent, and the coals (THF-insoluble parts) that have been catalytically pretreated in the presence of a dispersed Mo sulfide catalyst in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent.

  14. Effect of Pyrite on Thiosulfate Leaching of Gold and the Role of Ammonium Alcohol Polyvinyl Phosphate (AAPP

    Directory of Open Access Journals (Sweden)

    Xiaoliang Liu

    2017-07-01

    Full Text Available The effect of pyrite and the role of ammonium alcohol polyvinyl phosphate (AAPP during gold leaching in ammoniacal thiosulfate solutions were investigated using pure gold foils. The results showed that pyrite catalyzed the decomposition and also significantly increased the consumption of thiosulfate. This detrimental effect became more severe with increasing pyrite content. Further, the presence of pyrite also substantially slowed the gold leaching kinetics and reduced the overall gold dissolution. The reduction in gold dissolution was found to be caused primarily by the surface passivation of the gold. The negative effects of pyrite, however, can be alleviated by the addition of AAPP. Comparison of zeta potentials of pyrite with and without AAPP suggests that AAPP had adsorbed on the surface of the pyrite and weakened the catalytic effect of pyrite on the thiosulfate decomposition by blocking the contact between the pyrite and thiosulfate anions. AAPP also competed with thiosulfate anions to complex with the cupric ion at the axial coordinate sites, and thus abated the oxidation of thiosulfate by cupric ions. Moreover, the indiscriminate adsorption of AAPP on the surfaces of gold and passivation species prevented the passivation of the gold surface by surface charge and electrostatic repulsion. Therefore, AAPP effectively stabilized the thiosulfate in the solution and facilitated the gold leaching in the presence of pyrite.

  15. Computational modeling and experimental studies on NO{sub x} reduction under pulverized coal combustion conditions. Third quarterly technical progress report, July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Kumpaty, S.K.; Subramanian, K.

    1995-12-31

    An experimental plan outlining the first year`s activity was sent to Dr. Lori Gould, Project Officer/Contracting Officer`s Technical Representative on April 24, 1995. An approval was received with some questions on June 15, 1995. However, with some foresight of the director of the in-house combustion group of the PETC, Dr. Ekmann, a tentative hold-off on the purchase of the equipment was requested by the project officer on June 29, 1995. Enclosed with that request were some of Dr. Ekmann`s concerns. The research team spent the month of July in study of pertinent literature as well as in the preparation of the responses to Dr. Gould`s comments and Dr. Ekmann`s concerns. These responses included the choice of the reactor, reactor design, rate of gas heating, detailed test matrix and answers to host of other comments. Upon review of the above information submitted on July 24, 1995 by the Rust research team, the project officer called for a conference call on September 6, 1995 which involved the PI (Dr. Kumpaty), the research consultant (Mr. Subramanian), Dr. Gould and Dr. Ekmann. Dr. Ekmann insisted that further calculations be made on the rate of gas heating without taking radiation into account. Accordingly, calculations pertaining to the rate of gas heating based on convection were performed and submitted to Dr. Ekmann on September 13, 1995. This report contains the information emerged through the dialogue between the Rust College research team and the PETC represented by Dr. Gould and Dr. Ekmann during this quarter.

  16. Coal industry annual 1997

    International Nuclear Information System (INIS)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs

  17. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  18. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  19. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  20. Coal Industry Annual 1995

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995

  1. Coal and the competition

    Energy Technology Data Exchange (ETDEWEB)

    Morey, M. [RDI Consulting, Arlington, VA (United States). FT Energy

    2000-07-01

    24 overheads/viewgraphs outline a presentation on competition in the US coal industry. It discussed four main subjects: key factors driving coal demand (environmental regulations, electric utility deregulation; competition with natural gas, inter-regional coal competition, supply availability and pricing; and the export market and competition from off-shore coal sources); coal's ability to boost market share; shifts in coal distribution and the risk of more branded coal; and attempts to keep more regional sources of coal in business. State tax incentives for coal use in Arizona, Ohio, Oklahoma, Virginia and Alabama were discussed.

  2. Coal industry annual 1996

    International Nuclear Information System (INIS)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs

  3. Recent trend in coal utilization technology. Coal utilization workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chon Ho; Son, Ja Ek; Lee, In Chul; Jin, Kyung Tae; Kim, Seong Soo [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The 11th Korea-U.S.A. joint workshop on coal utilization technology was held in somerset, Pennsylvania, U.S.A. from october 2 to 3, 1995. In the opening ceremony, Dr.C. Low-el Miller, associate deputy assistant secretary of office of clean coal technology, U.S.DOE, gave congratulatory remarks and Dr. Young Mok Son, president of KIER, made a keynote address. In this workshop, 30 papers were presented in the fields of emission control technology, advanced power generation systems, and advanced coal cleaning and liquid fuels. Especially, from the Korean side, not only KIER but also other private research institutes and major engineering companies including KEPCO, Daewoo Institute of Construction Technology, Jindo Engineering and Construction Co. Daewoo Institute for Advanced Engineering and universities participated in this workshop, reflecting their great interests. Attendants actively discussed about various coal utilization technologies and exchanged scientific and technical information on the state-of-art clean coal technologies under development. (author)

  4. Recrystallization Experiments of Pyrite From Circulating Hydrothermal Solution by Thermal Convection

    Science.gov (United States)

    Tanaka, K.; Isobe, H.

    2005-12-01

    Pyrite is one of the most common accessory minerals in many rocks and generally occurs in hydrothermal deposit. However, pyrite morphology and association with other sulfide minerals is not well known with respect to the solution condition, especially with the hydrothermal solution under circulation. In this study, recrystallization experiments of pyrite from circulating hydrothermal solution by thermal convection were carried out. A rectangular circuit (42.6 cm by 17.3 cm) of SUS316 pressure tubing with 5 mm in inner diameter was used as a reaction vessel. The volume of the circuit is approximately 24 ml. Long sides of the rectangular circuit were held to be 20 degrees inclination. One of the long sides was heated by an electric furnace. Solution in the circuit evaporates in the high temperature tubing and the vapor condenses in room temperature tubing. The solution backs to the bottom of the high temperature tubing. Thus, thermal convection of the solution produces circulation in the circuit. Starting material was filled in the high temperature tubing. The lower half was filled with mixture of 2 g of powdered natural pyrite and 4 g of quartz grains. The upper half was filled with quartz grains only. 9 ml of 5 mol/l NH4Cl solution was sealed in the circuit with the starting material. Temperature gradient of the sample was monitored by 6 thermocouples. Maximum temperature was controlled at 350°C. Experimental durations are 3, 5, 10 and 30 days. After the experiments, the run products are fixed with resin and cut every 2 cm. Thin sections of vertical cross-sections are made and observed by microscope and SEM. Tiny pyrite crystals occurred at the upper outside of the furnace, where temperature should be much lower than 200°C. In the lower half of the starting material, pyrite decomposed and pyrrhotite formed around pyrite grains. At higher temperature area, pyrite decomposition and pyrrhotite formation is remarkable. Circulating sulfur-bearing solution provided by

  5. Coking coal of Checua Lenguazaque area

    International Nuclear Information System (INIS)

    Arboleda Otalora, Carlos Ariel

    1987-06-01

    In this report a summary of the main characteristics of the coal of the area of Checua-Samaca is presented. Using the main works carried out on this area, the most important geologic, physical-chemical, technological and petrographic aspects are compiled that are considered essential to carry out a technical evaluation of these coal and all the analyses they take to conclude that in this area, bituminous coal are presented with very good coking properties, on the other hand, it is demonstrated by the use that is given to the coal extracted by the small existent mining. However, keeping in mind the demands of the international market of the coking coal, it becomes necessary to improve the existent geologic information to be able to make reliable stratigraphic correlations

  6. Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report number 14, January--March, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-28

    The Project is under budget and generally on schedule. The current status is shown in the Milestone Schedule Status Report included as Appendix A. Task 7--Component Development and Optimization and Task 11--Subsystem Test Operation and evaluation are shown to be slightly behind schedule. Also, addition of Kalina technology may delay completion of Task 8. However, Phase 2 will be completed on schedule. The Project and plans for the POCTF were presented to the Richmond Power and Light Board of Directors. Technology transfer activities included delivering papers at two conferences, submitting paper abstracts for two other conferences and organizing a Technical Session for a conference. Under Task 7 the 200 acfm CeraMem filter test rig was installed at Richmond Power and Light and testing commenced. Low-NO{sub x} firing system work was essentially completed. In Task 8 integrating and optimizing the performance and design of the boiler, turbine/generator and heat exchangers of the Kalina cycle is proceeding but it has required much more time than anticipated. Preliminary designs of this equipment are nearly complete. Plant design and licensing activities will restart in April. The test designs and plan created in Task 9 were previously submitted and approved, although the plan for the 5,000 acfm CeraMem filter test will be updated following completion of the 200 acfm test. Task 10 work is nearly complete. The test rig for the 5,000 acfm CeraMem test has been shipped to the fabricator`s shop, inspected, cleaned and is being modified based on input from the 200 acfm testing. Task 11 work on the CeraMem filter was delayed and is expected to be started during the next reporting period. The second series of combustion testing of the low-NO{sub x} firing system was completed and the data is being analyzed. Early review indicates that 0.1 lb of NO{sub x}/million Btu may be achievable with reasonable stoichiometry and carbon loss.

  7. Geochemical evolution of acidic ground water at a reclaimed surface coal mine in western Pennsylvania

    Science.gov (United States)

    Cravotta,, Charles A.

    1991-01-01

    Concentrations of dissolved sulfate and acidity in ground water increase downflow in mine spoil and underlying bedrock at a reclaimed surface coal mine in the bituminous field of western Pennsylvania. Elevated dissolved sulfate and negligible oxygen in ground water from bedrock about 100 feet below the water table suggest that pyritic sulfur is oxidized below the water table, in a system closed to oxygen. Geochemical models for the oxidation of pyrite (FeS2) and production of sulfate (SO42-) and acid (H+) are presented to explain the potential role of oxygen (O2) and ferric iron (Fe3+) as oxidants. Oxidation of pyrite by O2 and Fe3+ can occur under oxic conditions above the water table, whereas oxidation by Fe3+ also can occur under anoxic conditions below the water table. The hydrated ferric-sulfate minerals roemerite [Fe2+Fe43+(SO4)4·14H2O], copiapite [Fe2+Fe43+(SO4)6(OH)2·20H20], and coquimbite [Fe2(SO4)3·9H2O] were identified with FeS2 in coal samples, and form on the oxidizing surface of pyrite in an oxic system above the water table. These soluble ferric-sulfate 11 salts11 can dissolve with recharge waters or a rising water table releasing Fe3+, SO42-. and H+, which can be transported along closed-system ground-water flow paths to pyrite reaction sites where O2 may be absent. The Fe3+ transported to these sites can oxidize pyritic sulfur. The computer programs WATEQ4F and NEWBAL were used to compute chemical speciation and mass transfer, respectively, considering mineral dissolution and precipitation reactions plus mixing of waters from different upflow zones. Alternative mass-balance models indicate that (a) extremely large quantities of O2, over 100 times its aqueous solubility, can generate the observed concentrations of dissolved SO42- from FeS2, or (b) under anoxic conditions, Fe3+ from dissolved ferric-sulfate minerals can oxidize FeS2 along closed-system ground-water flow paths. In a system open to O2, such as in the unsaturated zone, the aqueous

  8. Coal -94

    International Nuclear Information System (INIS)

    Sparre, C.

    1994-05-01

    This report deals with use of coal and coke during 1993; information about techniques, environmental questions and markets are also given. Use of steamcoal for heating purposes has been reduced about 3 % during 1993 to 1,0 mill tons. This is the case especially for the heat generating boilers. Production in co-generation plants has been constant and has increased for electricity production. Minor plants have increased their use of forest fuels, LPG and NG. Use of steamcoal will probably go down in the immediate years both in heat generating and co-generating plants. Coal-based electricity has been imported from Denmark during 1993 corresponding to about 400 000 tons of coal, when several of our nuclear plants were stopped. Use of steamcoal in the industry has been constant at 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1993 was 1,6 mill tons like the year before. 1,2 mill tons coke were produced. Coke consumption in industry was 1,4 mill tons. 0,2 mill tons of coke were imported. Average price of steamcoal imported to Sweden in 1993 was 308 SEK/ton or 13 % higher than in 1992; this can be explained by the dollar price level increasing 34% in 1993. For the world, the average import price was 50,0 USD/ton, a decrease of 6 %. The coal market during 1993 was affected by less consumption in Europe, shut downs of European mines and decreasing prices. High freight price raises in Russia has affected the Russian export and the market in northern Europe. The prices have been stabilized recently. All Swedish plants meet emission limits of dust, SO 2 and NO x . Co-generation plants all have some sort of SO 2 -removal system; the wet-dry method is mostly used. A positive effect of the recently introduced NO x -duties is a 40% reduction

  9. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  10. Coal industry annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993

  11. Mineral matter in Spanish bituminous and brown coals. Part 2: mineral matter quantification

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Tarazona, M.R.; Martinez Alonso, A.; Tascon, J.M.D. (Instituto Nacional del Carbon y sus Derivados, Oviedo (Spain))

    1993-05-01

    A number of methods for mineral matter quantification were applied to a set of Spanish coals. Bituminous coals of different rank from the Asturian Central basin and brown coals from Galician basins were studied. Normative analysis was shown to be an adequate procedure for determining the concentrations of individual mineral species. It was found that mineral constituents of Asturian bituminous coals are, in decreasing abundance order, clay minerals (muscovite, kaolinite), quartz and carbonates. In the case of Galician brown coals kaolinite is the most abundant mineral, followed by quartz and pyrite. Extraction with ammonium acetate and oxidation with hydrogen peroxide yielded equivalent values for the concentrations of alkali and alkaline-earth elements bound to organic matter in brown coals. A series of direct and indirect procedures as well as numerical methods for determining the total mineral matter content of coals were compared. Optimum methods for determining the total mineral matter contents of bituminous coals were low-temperature ashing (LTA) and acid demineralisation. The sum of the LTA yield of ammonium acetate-extracted coal and the total concentration of ion-exchanged elements provided the most reliable results for brown coals. Correction formulae from ash yield previously derived for coals from other basins yielded only slightly satisfactory results for the Spanish coals under study. Results obtained evidence the importance of correctly establishing the nature and concentration of clay minerals present in coal. Also, the convenience of carrying out more comprehensive work to unequivocally establish the mineral matter/ash factors for the various types of Spanish coals is suggested. 65 refs., 6 tabs.

  12. Oxygenation of a Cryogenian ocean (Nanhua Basin, South China) revealed by pyrite Fe isotope compositions

    Science.gov (United States)

    Zhang, Feifei; Zhu, Xiangkun; Yan, Bin; Kendall, Brian; Peng, Xi; Li, Jin; Algeo, Thomas J.; Romaniello, Stephen

    2015-11-01

    The nature of ocean redox chemistry between the Cryogenian Sturtian and Marinoan glaciations (ca. 663-654 Ma) is important for understanding the relationship between environmental conditions and the subsequent emergence and expansion of early animals. The Cryogenian-to-Ediacaran stratigraphic succession of the Nanhua Basin in South China provides a nearly complete sedimentary record of the Cryogenian, including a continuous record of interglacial sedimentation. Here, we present a high-resolution pyrite Fe isotope record for a ∼120-m-long drill-core (ZK105) through Sturtian glacial diamictites and the overlying interglacial sediments in the Nanhua Basin to explore changes in marine chemistry during the late Cryogenian. Our pyrite Fe isotope profile exhibits significant stratigraphic variation: Interval I, comprising middle to upper Tiesi'ao diamictites (correlative with the Sturtian glaciation), is characterized by light, modern seawater-like Fe isotope compositions; Interval II, comprising uppermost Tiesi'ao diamictites and the basal organic-rich Datangpo Formation, is characterized by an abrupt shift to heavier Fe isotope compositions; and Interval III, comprising organic-poor grey shales in the middle Datangpo Formation, is characterized by the return of lighter, seawater-like Fe isotope compositions. We infer that Interval I pyrite was deposited in a predominantly anoxic glacial Nanhua Basin through reaction of dissolved Fe2+ and H2S mediated by microbial sulfate reduction (MSR). The shift to heavier pyrite Fe isotope values in Interval II is interpreted as partial oxidation of ferrous iron to ferric iron and subsequent near-quantitative reduction and transformation of Fe-oxyhydroxides to pyrite through coupling with oxidation of organic matter in the local diagenetic environment. In Interval III, near-quantitative oxidation of ferrous iron to Fe-oxyhydroxides followed by near-quantitative reduction and conversion to pyrite in the local diagenetic environment

  13. Rosebud syncoal partnership SynCoal{sup {reg_sign}} demonstration technology development update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Company, Billings, MT (United States); Heintz, S.J. [Department of Energy, Pittsburgh, PA (United States)

    1995-12-01

    Rosebud SynCoal{reg_sign} Partnership`s Advanced Coal Conversion Process (ACCP) is an advanced thermal coal upgrading process coupled with physical cleaning techniques to upgrade high moisture, low-rank coals to produce a high-quality, low-sulfur fuel. The coal is processed through two vibrating fluidized bed reactors where oxygen functional groups are destroyed removing chemically bound water, carboxyl and carbonyl groups, and volatile sulfur compounds. After thermal upgrading, the SynCoal{reg_sign} is cleaned using a deep-bed stratifier process to effectively separate the pyrite rich ash. The SynCoal{reg_sign} process enhances low-rank western coals with moisture contents ranging from 2555%, sulfur contents between 0.5 and 1.5 %, and heating values between 5,500 and 9,000 Btu/lb. The upgraded stable coal product has moisture contents as low as 1 %, sulfur contents as low as 0.3%, and heating values up to 12,000 Btu/lb.

  14. Waterberg coal characteristics and SO2 minimum emissions standards in South African power plants.

    Science.gov (United States)

    Makgato, Stanford S; Chirwa, Evans M Nkhalambayausi

    2017-10-01

    Key characteristics of coal samples from the supply stock to the newly commissioned South African National Power Utility's (Eskom's) Medupi Power Station - which receives its supply coal from the Waterberg coalfield in Lephalale (Limpopo Province, South Africa) - were evaluated. Conventional coal characterisation such as proximate and ultimate analysis as well as determination of sulphur forms in coal samples were carried out following the ASTM and ISO standards. Coal was classified as medium sulphur coal when the sulphur content was detected in the range 1.15-1.49 wt.% with pyritic sulphur (≥0.51 wt.%) and organic sulphur (≥0.49 wt.%) accounted for the bulk of the total sulphur in coal. Maceral analyses of coal showed that vitrinite was the dominant maceral (up to 51.8 vol.%), whereas inertinite, liptinite, reactive semifusinite and visible minerals occurred in proportions of 22.6 vol.%, 2.9 vol.%, 5.3 vol.% and 17.5 vol.%, respectively. Theoretical calculations were developed and used to predict the resultant SO 2 emissions from the combustion of the Waterberg coal in a typical power plant. The sulphur content requirements to comply with the minimum emissions standards of 3500 mg/Nm 3 and 500 mg/Nm 3 were found to be ≤1.37 wt.% and ≤0.20 wt.%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Sulfur amino acids and alanine on pyrite (100) by X-ray photoemission spectroscopy: Surface or molecular role?

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arenillas, M.; Galvez-Martinez, S.; Mateo-Marti, E., E-mail: mateome@cab.inta-csic.es

    2017-08-31

    Highlights: • Surface annealing pretreatment on pyrite surfaces can select molecular adsorption. • Enriched monosulfide species on pyrite (100) surface favors NH{sub 2} adsorption form. • Enriching disulfide species on pyrite (100) surface promotes NH{sub 3}{sup +} adsorption form. • Unique structure of each aminoacid provides a particular fingerprint in the process. • Spectroscopy evidence, pretreatment surface processes drives molecular adsorption. - Abstract: This paper describes the first successful adsorption of the cysteine, cystine, methionine and alanine amino acids on the pyrite (100) surface under ultra-high vacuum conditions with crucial chemical adsorption parameters driving the process. We have demonstrated by X-ray photoemission spectroscopy (XPS) that the surface pretreatment annealing process on pyrite surfaces is a critical parameter driving surface reactivity. The presence of enriched monosulfide species on the pyrite (100) surface favours the amino acid NH{sub 2} chemical form, whereas a longer annealing surface pretreatment of over 3 h repairs the sulfur vacancies in the pyrite, enriching disulfide species on the pyrite surface, which promotes NH{sub 3}{sup +} adsorption due to the sulfur vacancies in the pyrite being replaced by sulfur atom dimers (S{sub 2}{sup 2−}) on the surface. Furthermore, even if the surface chemistry (monosulfide or disulfide species enrichment) is the main factor promoting a partial conversion from NH{sub 2} to NH{sub 3}{sup +} species, the unique chemical structure of each amino acid provides a particular fingerprint in the process.

  16. Geochemistry of shale and sedimentary pyrite as a proxy for gold fertility in the Selwyn basin area, Yukon

    Science.gov (United States)

    Sack, Patrick J.; Large, Ross R.; Gregory, Daniel D.

    2018-01-01

    Selwyn basin area strata contain sedimentary pyrite with Au above background levels when analyzed by laser ablation-inductively coupled mass spectrometry. Hyland Group rocks contain framboidal pyrite contents of 670 ppb Au, 1223 ppm As, and 5.3 ppm Te; the mean of all types of sedimentary pyrite in the Hyland Group is 391 ppb Au, 1489 ppm As, and 3.8 ppm Te. These levels are similar to sedimentary pyrite in host lithologies from major orogenic gold districts in New Zealand and Australia. Comparison of whole rock and pyrite data show that rocks deposited in continental slope settings with significant terrigenous input contain pyrite that is consistently enriched in Au, As, Te, Co, and Cu. Although data are limited, whole rock samples of stratigraphic units containing Au-rich pyrite also contain high Au, indicating that most of the Au is within sedimentary pyrite. Based on geologic characteristics and comparison of pyrite chemistry data with whole rock chemistry, Selwyn basin area strata have the necessary ingredients to form orogenic gold deposits: Au-enriched source rocks, metamorphic conditions permissive of forming a metamorphic ore fluid, and abundant structural preparation for channeling fluids and depositing ore.

  17. Adsorption of mercury (II) from aqueous solutions using FeS and pyrite: A comparative study.

    Science.gov (United States)

    Sun, Yue; Lv, Dan; Zhou, Jiasheng; Zhou, Xiaoxin; Lou, Zimo; Baig, Shams Ali; Xu, Xinhua

    2017-10-01

    In this study, a comparative evaluation of synthetic FeS and natural pyrite was performed to investigate their adsorptive potentials toward Hg(II) in aqueous system. Characterization analyses such as BET, SEM and TEM suggested that FeS had porous structures with abundant active sites, while pyrite with a hard and smooth surface relied mainly on surface adsorption to immobilize Hg(II). Results of batch tests revealed that FeS offered much greater Hg(II) maximum adsorption capacity (769.2 mg/g) as compared to pyrite (9.9 mg/g). Both iron sulfides showed high removal efficiency (>96%) with the initial Hg(II) concentration (1 mg/L) at pH = 7.0 ± 0.1, and the effluent could meet the permissible effluent concentration (reaction mechanisms involved in the adsorption process. In addition, it was also revealed that the structural changes of FeS before and after adsorption was much larger than pyrite. Findings from this study suggest FeS is a promising candidate for treatment of high-concentration Hg(II)-containing wastewater (<20 mg/L), while pyrite can be applied as a long-term adsorbing material in the immobilization of wastewater containing low Hg(II) concentration (<1 mg/L) due to its cost-effective property and local availability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effect of temperature and illumination on pyrite oxidation between pH 2 and 6

    Directory of Open Access Journals (Sweden)

    Schoonen Martin

    2000-07-01

    Full Text Available The effect of heat and illumination with visible light on the oxidation of pyrite with dissolved molecular oxygen in solutions between pH 2 and 6 has been investigated using a combination of surface science experiments and batch oxidation experiments. The rate of the oxidation of pyrite is strongly dependent on temperature. It is, however, not possible to cast the temperature dependence in a simple Arrhenius equation because the magnitude of the activation energy depends on the progress variable chosen. Activation energies based on proton release rate, sulfate release rate, and total iron release rate vary by as much as 40 kJ mol-1, suggesting that the oxidation mechanism of the sulfur and iron component of pyrite are largely independent of each other. This difference in mechanism can also explain why the reaction rates on the basis of these three different progress variables do not show the same pH dependence. Exposed to visible light, the rate of pyrite oxidation is under most conditions accelerated by less than a factor of two. Some of this acceleration may be accounted for by a light-induced heating of the pyrite surface. Surface science experiments employing photoelectron spectroscopy show no evidence for significant changes in the chemical composition of the surface as a function of exposure to visible light. The batch sorption experiments show, however, that the reaction stoichiometry changes somewhat, which indicates that there might be a change in reaction mechanism as a result of exposure to visible light.

  19. Development of a Coal Quality Expert

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-08

    This is the ninth Technical Progress Report, describing work performed under DOE Contract No. (DE-FC2290PC896631) Development of a Coal Quality Expert.'' The contract is a Cooperative Agreement between the US Department of Energy, CQ Inc., and ABB Combustion Engineering, Inc. This report covers the period from April 1, through June 30, 1992. Four companies and seven host utilities have teamed with CQ Inc. and ABB/CE to perform the work on this project. The work falls under DOE's Clean Coal Technology Program category of Advanced Coal Cleaning.'' The 45-month project will provide the utility industry with a PC expert system to confidently and inexpensively evaluate the potential for coal cleaning blending, and switching options to reduce emissions while producing lowest cost electricity. Specifically, this project will: (1) Enhance the existing Coal Quality Information System (CQIS) database and. Coal Quality Impact Model (CQIM) to allow confident assessment of the effects of cleaning on specific boiler cost and performance. (2) Develop and validate a methodology, Coal Quality Expert (CQE) which allows accurate and detailed predictions of coal quality impacts on total power plant capital cost, operating cost, and performance based upon inputs from inexpensive bench-scale tests.

  20. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  1. Characterization of selected Ohio coals to predict their conversion behavior relative to 104 North American Coals. [Factors correlating with liquefaction behavior

    Energy Technology Data Exchange (ETDEWEB)

    Whitacre, T. P.; Hunt, T. J.; Kneller, W. A.

    1982-02-01

    Twenty-six coal samples from Ohio were collected as washed and seam samples, and lithobodies within the seams. Characterization of these samples included determination of % maceral, % anti R/sub max/, LTA, chlorine content and proximate/ultimate and qualitative mineral analyses. These data were compared to data from a similar project by Yarzab, R.F., et al., 1980 completed at Pennsylvania State University using tetralin as the hydrogen donor solvent. The characteristics of these coals were correlated with liquefaction conversion and other data accrued on 104 North American coals by statistical analyses. Utilizing percent carbon, sulfur, volatile matter, reflectance, vitrinite and total reactive macerals, Q-mode cluster analysis demonstrated that Ohio coals are more similar to the coals of the Interior province than to those of the Appalachian province. Linear multiple regression analysis for the 104 North American coals provided a prediction equation for conversion (R = .96). The predicted conversion values for the samples range from 58.8 to 79.6%, with the Lower Kittanning (No. 5) and the Middle Kittanning (No. 6) coal seams showing the highest predicted percent conversion (respectively, 73.4 and 72.2%). The moderately low FSI values for the No. 5 and No. 6 coals (respectively, 2.5 and 3) and their moderately high alkaline earth content (respectively, 0.69 and 0.74%) suggest that these coals possess the best overall properties for conversion. Stepwise regression has indicated that the most important coal characteristics affecting conversion are, in decreasing order of importance: % volatile matter, % vitrinite and % total sulfur. Conversion processes can be expected to produce higher yields with Ohio coals due to the presence of such mineral catalysts as pyrite and kaolinite. It is believed that the presence of these disposable catalysts increases the marketability of Ohio coals.

  2. Coal atlas. Data and facts about a global fuel

    International Nuclear Information System (INIS)

    2015-06-01

    Germany is world champion. In the production of lignite. But not only the brown coal, the coal leaves traces to. A quarter of German greenhouse gas emissions are discharged from the 30 largest coal-fired plants. But with its hunger for coal Germany neither in Europe nor in the world ist not alone. The governments of the 20 largest industrial countries subsidize the search for new fossil fuels each year with many billion dollars, although these projects have no future. In addition, there is the partly dramatic damage to the air, on the environment and on humans. Above all reports the Coal Atlas. It is published at a time, in which in Germany is an intense debate in progress about the future of this energy sector. In fact, it comes to the phasing out of coal for generating elektricity. The coal Atlas shows in understandable texts with illustrative graphics: This is technically possible and necessary. [de

  3. Underground coal gasification : a promising alternative for India

    International Nuclear Information System (INIS)

    Pandey, B.P.; Singh, I.J.

    1992-01-01

    Underground coal gasification (UCG) offers a potentially economic means of extracting energy content of coals which currently cannot be recovered through conventional mining technique with least environmental pollution. The status of UCG technology and its technical and economic feasibility in the Indian context for commercial utilisation are discussed. (author). 3 refs

  4. Coal Tar and Coal-Tar Pitch

    Science.gov (United States)

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  5. Environmental and economic challenges to coal`s future in China

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.J.; Li, B.

    1994-11-01

    Coal accounts for approximately 75% of China`s total primary energy consumption, and is by far the largest contributor to air pollution. The highest growth sector for coal consumption is the power sector, accounting for about 36 percent of total coal consumption in 1993. Over the 1994--2010 period most new, large power plants are expected to be coal-fired. Therefore, the availability and price of coal, as well as environmental constraints will be critical to foreign investors evaluating coal and power projects in China. The purpose of this paper is to provide useful technical, economic and environmental information and analysis on coal and the power sectors of China. The target audiences are potential investors and government energy and environmental policy people. This paper suggests a number of important energy and environmental policy issues that need to be addressed in a timely fashion in order to promote adequate levels of investment in coal and power developments in China. Although this paper highlights problems faced by foreign investors in coal and power, it is important to balance these problems against the large investment opportunities developing in these sectors.

  6. Invisible gold and arsenic in pyrite from the high-grade Hishikari gold deposit, Japan

    International Nuclear Information System (INIS)

    Morishita, Y.; Shimada, N.; Shimada, K.

    2008-01-01

    Gold occurs as both electrum (a natural alloy of gold and silver) and invisible gold in arsenian pyrite in the Hishikari epithermal gold deposit in Japan. Microanalyses of arsenian pyrite from the deposit using secondary ion mass spectrometry (SIMS) and electron probe microanalysis (EPMA) revealed that Au concentrations (0.1-2600 ppm) are positively correlated with As concentrations (0.0-6.1%). A small (3 μm) area of pyrite was analyzed because the sample textures were fine and complicated. The Au/As ratio is high in the Sanjin ore zone, which has very high-grade veins, while the ratio is low in the Yamada ore zone, which has average-grade veins

  7. Deciphering pyritization-kerogenization gradient for fish soft-tissue preservation.

    Science.gov (United States)

    Osés, Gabriel L; Petri, Setembrino; Voltani, Cibele G; Prado, Gustavo M E M; Galante, Douglas; Rizzutto, Marcia A; Rudnitzki, Isaac D; da Silva, Evandro P; Rodrigues, Fabio; Rangel, Elidiane C; Sucerquia, Paula A; Pacheco, M L A F

    2017-05-03

    Soft-tissue preservation provides palaeobiological information that is otherwise lost during fossilization. In Brazil, the Early Cretaceous Santana Formation contains fish with integument, muscles, connective tissues, and eyes that are still preserved. Our study revealed that soft-tissues were pyritized or kerogenized in different microfacies, which yielded distinct preservation fidelities. Indeed, new data provided the first record of pyritized vertebrate muscles and eyes. We propose that the different taphonomic pathways were controlled by distinct sedimentation rates in two different microfacies. Through this process, carcasses deposited in each of these microfacies underwent different residence times in sulphate-reduction and methanogenesis zones, thus yielding pyritized or kerogenized soft-tissues, and a similar process has previously been suggested in studies of a late Ediacaran lagerstätte.

  8. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  9. Clean coal use in China: Challenges and policy implications

    International Nuclear Information System (INIS)

    Tang, Xu; Snowden, Simon; McLellan, Benjamin C.; Höök, Mikael

    2015-01-01

    Energy consumption in China is currently dominated by coal, a major source of air pollution and carbon emissions. The utilization of clean coal technologies is a likely strategic choice for China at present, however, although there have been many successes in clean coal technologies worldwide, they are not widely used in China. This paper examines the challenges that China faces in the implementation of such clean coal technologies, where the analysis shows that those drivers that have a negative bearing on the utilization of clean coal in China are mainly non-technical factors such as the low legal liability of atmospheric pollution related to coal use, and the lack of laws and mandatory regulations for clean coal use in China. Policies for the development of clean coal technologies are in their early stages in China, and the lack of laws and detailed implementation requirements for clean coal require resolution in order to accelerate China's clean coal developments. Currently, environmental pollution has gained widespread attention from the wider Chinese populace and taking advantage of this opportunity provides a space in which to regain the initiative to raise people’s awareness of clean coal products, and improve enterprises’ enthusiasm for clean coal. - Highlights: • Clean coal is not widely used in China due to many management issues. • Legal liability of pollution related with coal utilization is too low in China. • China is lack of laws and mandatory regulations for clean coal utilization. • It is difficult to accelerate clean coal utilization by incentive subsidies alone.

  10. Heterogeneously catalyzed coal hydroliquefaction: screening of catalysts and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Legarreta, J.; Arias, P.L.; Marco, I. de; Chomon, M.J.; Caballero, B.; Cambra, J.F.; Guemez, B.; Fierro, J.L.G. (Universidad del Pais Vasco, Bilbao (Spain). Escuel de Ingenieros de Bilbao)

    1994-03-01

    This project is centred upon the study of the activities of different catalysts in one-step coal liquefaction processes. A series of alumina supported catalysts was prepared by multistep impregnation, including a conventional CoMo/Al[sub 2]O[sub 3] and other preparations containing Zn as a second promoter, and the alumina was acidified with different fluorine contents. These catalysts were extensive physicochemically characterized and their hydrodesulphurization (HDS) and hydrogenation (HYD) activities were tested using a model compound (thiophene). The results obtained indicate that partial substitution of Co by Zn does not affect the HDS and HYD activities and that fluorination diminishes these activities because of textural changes of the carrier. The prepared catalysts were tested in coal liquefaction and their activities were compared to those of cheap iron containing dispersion catalysts such as red mud, Fe[sub 2]O[sub 3] aerosol, and Cottrell and pyrite ashes (by-products of the sulphur acid industry). Prior to the study and comparison of the catalyst activities and exploration of the influence of various operating conditions (temperature, tetralin/coal ratio, type of solvent and operating pressure) on catalytic and non-catalytic coal liquefaction was performed. The coal used in most of the experiments was a Spanish subbituminous A coal. Additionally, a comparison of all the catalysts was carried out with a standard high volatile bituminous coal. Supported catalysts present higher activities than iron-based catalysts. Among these catalysts, red mud proved to be the most active. Catalytic experiments using anthracene oil as solvent and CoZnMo/fluorinated alumina catalysts present maximum yields indicating that Zn as second promoter and carrier acidification to be beneficial in coal liquefaction with solvents similar to those used in real plants. 41 refs., 9 figs., 13 tabs.

  11. Evidence for microbial dissolution of pyrite from the Lower Cambrian oolitic limestone, South China

    Science.gov (United States)

    Liu, W.; Zhang, X.-L.

    2011-03-01

    The oxidative dissolution of the sulphide mineral pyrite (FeS2) has been of significant interest since it affects global geochemical cycles, generates acid mine drainage, and is used in industrial metal extraction. Several different groups of prokaryotes are known to catalyze the dissolution of pyrite and use the free energy generated from the oxidation, which may result in the dissolution of the mineral and the precipitation of the secondary ferric iron minerals either on the cell surface or is separated from the cells. However, straightforward evidence for such metabolic process in the ancient sediments is rare. Here we report pyrite crystals from the Lower Cambrian oolitic limestones that show indications of microbial erosion in various degrees. Erosion pits and tubular micro-tunnels with characteristic shapes and sizes in our samples are generally similar to those obtained from the laboratory studies on the oxidative dissolution of pyrite by iron-oxidizing bacteria. Diagenetic examination demonstrates that the bioerosion predates the consolidation of the limestone. In addition, bacillus-sized and -shaped microfossils encrusted with iron oxides are present in our samples, which are very likely to be fossilized sheaths produced by iron-oxidizing bacteria. Our findings indicate that the microbial oxidative dissolution of pyrite existed in the Cambrian shallow marine carbonate sediments. Furthermore, we suggest that characteristic pitting patterns on the pyrite crystals from ancient sediments are an important clue to trace the evolution of life, in particular, the evolution of metabolism like microbial iron oxidation in the remote past on our planet, independent of biomarkers, isotopic signals and body fossils as well.

  12. Mineralogy and geochemistry of the Jurassic coals from the Gheshlagh mine, Eastern Alborz

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Shamanian

    2015-10-01

    -bearing formation in the Ghashlagh mine belongs to the clastic unit of the Shemshak Formation, consisting mainly of about 2400 m sandstone, siltstone, shale. The middle part of this formation includes the economic coal beds. Petrographic and mineralogical investigations indicate that the dominant mineral phases of the Gheshlagh coals are quartz, kaolinite, montmorillonite, albite, muscovite, illite and pyrite. Pyrite occurs as euhedral to anhedral crystals and locally as framboids which are disseminated in the coal. Oxidation products consist mainly of iron hydrosulfate resulting from the oxidation of pyrite. The organic/inorganic affinity of elements in coal was determined using the correlation coefficient between the elements and ash yeild. Si, Al, Ti, Fe, K, Na, Ga, Zr, Rb and Nb are mainly associated with minerals. Sr, Pb and Ni have a dual association. The concentrations of most trace elements in the Gheshlagh coal samples are high when compared with the usual reported range in the world. The contents of Pb and Ni show the highest concentrations. Discussion The Gheshlagh coals are characterized by relatively low amount of sulfur indicating deposition in lacustrine and swamp environments (Goodarzi et al., 2006. The concentration of Ni, V, Sr, Ba and Ce in the Gheshlagh coals are relatively higher than the Shahroud and Lushan coals (Yazdi and Esmaeilnia, 2004. The comparison of the concentration of trace elements in the Gheshlagh coals and worldwide concentrations (Swaine, 1990 indicates the enrichment of Ni and Pb in the Gheshlagh coals. Gluskoter et al. (1977 used a value of six times the Clarke value to determine if an element is enriched in the whole coal. By these criteria, the concentration of Ni and Pb are enriched in the Gheshlagh coals when compared with the Clarke values. Generally, the distribution and abundance of reacting mineral species in the coal mines can be used to predict the extent of acidification and neutralization in particular area. In the Gheshlagh coal

  13. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    Science.gov (United States)

    Karpenko, E. I.; Karpenko, Yu. E.; Messerle, V. E.; Ustimenko, A. B.

    2009-06-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  14. Isotopic and elemental chemistry of sedimentary pyrite: A combined analytical and statistical approach to a novel planetary biosignature

    Science.gov (United States)

    Figueroa, M. C.; Gregory, D. D.; Lyons, T. W.; Williford, K. H.

    2017-12-01

    Life processes affect trace element abundances in pyrite such that sedimentary and hydrothermal pyrite have significantly different trace element signatures. Thus, we propose that these biogeochemical data could be used to identify pyrite that formed biogenetically either early in our planet's history or on other planets, particularly Mars. The potential for this approach is elevated because pyrite is common in diverse sedimentary settings, and its trace element content can be preserved despite secondary overprints up to greenschist facies, thus minimizing the concerns about remobilization that can plague traditional whole rock studies. We are also including in-situ sulfur isotope analysis to further refine our understanding of the complex signatures of ancient pyrite. Sulfur isotope data can point straightforwardly to the involvement of life, because pyrite in sediments is inextricably linked to bacterial sulfate reduction and its diagnostic isotopic expressions. In addition to analyzing pyrite of known biological origin formed in the modern and ancient oceans under a range of conditions, we are building a data set for pyrite formed by hydrothermal and metamorphic processes to minimize the risk of false positives in life detection. We have used Random Forests (RF), a machine learning statistical technique with proven efficiency for classifying large geological datasets, to classify pyrite into biotic and abiotic end members. Coupling the trace element and sulfur isotope data from our analyses with a large existing dataset from diverse settings has yielded 4500 analyses with 18 different variables. Our initial results reveal the promise of the RF approach, correctly identifying biogenic pyrite 97 percent of the time. We will continue to couple new in-situ S-isotope and trace element analyses of biogenic pyrite grains from modern and ancient environments, using cutting-edge microanalytical techniques, with new data from high temperature settings. Our ultimately goal

  15. Geochemistry of Toxic Elements and Their Removal via the Preparation of High-Uranium Coal in Southwestern China

    Directory of Open Access Journals (Sweden)

    Piaopiao Duan

    2018-02-01

    Full Text Available High-uranium (U coal is the dominant form of coal in Southwestern China. However, directly utilizing this resource can also harm the environment because this element is radioactive; it is, therefore, necessary to clean this kind of coal before burning. This research studied the geochemistry of toxic elements and their partitioning during the preparation of high-U coal in China. The results show that high-U coals are mainly distributed in Southwestern China and are characterized by a high organic sulfur (S content and vanadium (V-chromium (Cr-molybdenum (Mo-U element assemblage. These elements are well-correlated with one another, but are all negatively related to ash yield, indicating that all four are syngenetic in origin and associated with organic materials. A mineralogical analysis shows that U in Ganhe and Rongyang coal occurs within fine-grained anatase, clay minerals, guadarramite, and pyrite, while V occurs in clay minerals, pyrite, and dolomite, and Cr occurs in dolomite. Other elements, such as fluorine (F, lead (Pb, selenium (Se, and mercury (Hg, mainly occur in pyrite. By applying a gravity separation method to separate minerals from coal, the content of the enrichment element assemblage of V-Cr-Mo-U in Rongyang coal is still shown to be higher than, or close to, that of the original feed because this element assemblage is derived from hydrothermal fluids during syngenetic or early diagenetic phases, but other elements (beryllium [Be], F, manganese [Mn], zinc [Zn], Pb, arsenic [As], Se, Hg can be efficiently removed. Once cleaned, the coal obtained by gravity separation was subject to a flotation test to separate minerals; these results indicate that while a portion of V and Cr can be removed, Mo and U remain difficult to extract. It is evident that the two most commonly utilized industrialized coal preparation methods, gravity separation and flotation, cannot effectively remove U from coal where this element occurs in large

  16. Phytoremediation of spoil coal dumps in Western Donbass (Ukraine)

    Science.gov (United States)

    Klimkina, Iryna; Kharytonov, Mykola; Wiche, Oliver; Heilmeier, Hermann

    2017-04-01

    At the moment, in Ukraine about 150 thousand hectares of fertile land are occupied by spoil dumps. Moreover, this figure increases every year. According to the technology used about 1500 m3 of adjacent stratum is dumped at the surface per every 1000 tons of coal mined. Apart from land amortization, waste dumps drastically change the natural landscape and pollute air, soil and water sources as the result of water and wind erosion, as well as self-ignition processes. A serious concern exists with respect to the Western Donbass coal mining region in Ukraine, where the coal extraction is made by the subsurface way and solid wastes are represented by both spoil dumps and wastes after coal processing. Sulphides, mostly pyrite (up to 4% of waste material), are widely distributed in the waste heaps freshly removed due to coal mining in Western Donbass.The oxidation of pyrite with the presence of oxygen and water is accompanied by a sharp drop in the pH from the surface layer to the spoil dumps(from 5.2-6.2 to 3.9-4.2 in soil substrates with chernozen and from 8.3-8.4 to 6.7-7.2 in soil substrates with red-brown clay, stabilizing in dump material in both cases at 2.9-3.2). Low pH generates the transformation of a number of toxic metals and other elementspresent in waste rock (e.g. Fe, Al, Mn, Zn, Mo, Co, As, Cd, Bi, Pb, U) into mobile forms. To stabilize and reduce metal mobility the most resistant plants that occur naturally in specified ecosystems can be used. On coal spoil dumpsin Western Donbas the dominant species are Bromopsis inermis, subdominant Artemisia austriaca; widespread are also Festucas pp., Lathyrus tuberosus, Inula sp., Calamagrostis epigeios, Lotus ucrainicus, and Vicias pp. Identification of plants tolerant to target metals is a key issue in phytotechnology for soil restoration. It is hypothesized that naturally occurring plants growing on coal spoil dumps can be candidates for phytostabilization, phytoextraction (phytoaccumulation) and phytomining

  17. Environmental assessment and nano-mineralogical characterization of coal, overburden and sediment from Indian coal mining acid drainage

    Directory of Open Access Journals (Sweden)

    Madhulika Dutta

    2017-11-01

    the presence both of pyrite and marcasite which was also confirmed in XRD and Mossbauer spectral analysis. The presented data of the minerals and ultra/nano-particles present shows their ability to control the mobility of hazardous elements, suggesting possible use in environmental management technology, including restoration of the delicate Indian coal mine areas.

  18. Geochemical characteristics of n-alkanes and isoprenoids in coal seams from Zhuji coal mine, Huainan coalfield, China, and their relationship with coal-forming environment.

    Science.gov (United States)

    Wang, Shanshan; Liu, Guijian; Liu, Jingjing

    2018-01-26

    Ten coal seams in Upper Shihezi Formation, Lower Shihezi Formation, and Shanxi Formation from the Zhuji mine, Huainan coalfield, China, were analyzed for n-alkanes and isoprenoids (pristine and phytane) using gas chromatography-mass spectrometry (GC-MS), with an aim of reconstructing the coal-forming plants and depositional environments along with organic carbon isotope analyses. The total n-alkane concentrations ranged from 34.1 to 481 mg/kg. Values of organic carbon isotope (δ 13 C org ) ranged from - 24.6 to - 23.7‰. The calorific value (Q b,d ), maximum vitrinite reflectance (Ro max ), proximate, and ultimate analysis were also determined but showed no correlation with n-alkane concentrations. Carbon Preference Index (CPI) values ranged from 0.945 to 1.30, suggesting no obvious odd/even predominance of n-alkane. The predominance of C 11 and C 17 n-alkanes implied that the coal may be deposited in the fresh and mildly brackish environment. According to the contrary changing trend of pristine/phytane (Pr/Ph) ratio and boron concentrations, Pr/Ph can be used as an indicator to reconstruct the marine transgression-regression in sedimentary environment of coal formation. The influence of marine transgression may lead to the enrichment of pyrite sulfur in the coal seam 4-2. C3 plants (- 32 to - 21‰) and marine algae (- 23 to - 16‰) were probably the main coal-forming plants in the studied coal seams. No correlation of the n-alkane concentration and redox condition of the depositional environment with organic carbon isotope composition were found.

  19. A Curse of Coal? Exploring Unintended Regional Consequences of Coal Energy in The Czech Republic

    Directory of Open Access Journals (Sweden)

    Frantál Bohumil

    2014-07-01

    Full Text Available Focusing on coal energy from a geographical perspective, the unintended regional consequences of coal mining and combustion in the Czech Republic are discussed and analysed in terms of the environmental injustice and resource curse theories. The explorative case study attempts to identify significant associations between the spatially uneven distribution of coal power plants and the environmental and socioeconomic characteristics and development trends of affected areas. The findings indicate that the coal industries have contributed to slightly above average incomes and pensions, and have provided households with some technical services such as district heating. However, these positive effects have come at high environmental and health costs paid by the local populations. Above average rates of unemployment, homelessness and crime indicate that the benefits have been unevenly distributed economically. A higher proportion of uneducated people and ethnic minorities in affected districts suggest that coal energy is environmentally unjust.

  20. COAL Conference Poster

    OpenAIRE

    Brown, Taylor Alexander; McGibbney, Lewis John

    2017-01-01

    COAL Conference Poster This archive contains the COAL conference poster for the AGU Fall Meeting 2017 by Taylor Alexander Brown. The Inkscape SVG source is available at https://github.com/capstone-coal/coal-conference-poster/ under the Creative Commons Attribution-ShareAlike 4.0 International license.

  1. Late Cretaceous coal overlying karstic bauxite deposits in the Parnassus-Ghiona Unit, Central Greece: Coal characteristics and depositional environment

    Energy Technology Data Exchange (ETDEWEB)

    Kalaitzidis, Stavros; Siavalas, George; Christanis, Kimon [Dept. of Geology, University of Patras, 26504 Rio-Patras (Greece); Skarpelis, Nikos [Dept. of Geology and Geoenvironment, University of Athens, 15784 Zografou (Greece); Araujo, Carla Viviane [Petrobras-Cenpes GEOQ/PDEXP, Rua Horacio Macedo n 950, Cidade Universitaria - Ilha do Fundao, 21941-915 Rio de Janeiro (Brazil)

    2010-04-01

    The Pera-Lakkos coal located on top of bauxite deposits in the Ghiona mining district (Central Greece), is the only known Mesozoic (Late Cretaceous) coal in the country. It was derived from herbaceous plants and algae growing in mildly brackish mires that formed behind a barrier system during a regression of the sea, on a karstified limestone partly filled in with bauxitic detritus. Petrological, mineralogical and geochemical data point to the predominance of reducing conditions and intense organic matter degradation in the palaeomires. O/C vs. H/C and OI vs. HI plots, based on elemental analysis and Rock-Eval data, characterize kerogen types I/II. This reflects the relatively high liptinite content of the coal. Besides kerogen composition, O/C vs. H/C plot for the Pera-Lakkos coals is in accordance with a catagenesis stage of maturation in contrast with vitrinite reflectance and T{sub max} from Rock-Eval pyrolysis, which indicate the onset of oil window maturation stage. Suppression of vitrinite reflectance should be considered and the high liptinite content corroborates this hypothesis. Despite some favourable aspects for petroleum generation presented by the Pera-Lakkos coal, its maximum thickness (up to 50 cm) points to a restricted potential for petroleum generation. Coal oxidation took place either during the late stage of peat formation, due to wave action accompanying the subsequent marine transgression, or epigenetically after the emergence of the whole sequence due to percolation of drainage waters. Both options are also supported by the REE shale-normalized profiles, which demonstrate an upwards depletion in the coal layer. Oxidation also affected pyrite included in the coal; this led to the formation of acidic (sulfate-rich) solutions, which percolated downwards resulting in bleaching of the upper part of the underlying bauxite. (author)

  2. Moessbauer Studies of Thermal Power Plant Coal and Fly Ash

    International Nuclear Information System (INIS)

    Taneja, S. P.

    2004-01-01

    Iron-57 Moessbauer spectroscopic studies were carried out at room temperature on samples of coal, slag (bottom ash) and mechanical ash collected from Bhatinda (India) thermal power plant. Hyperfine parameters such as isomer shift, quadrupole splitting and total internal magnetic field of 57 Fe nuclei were used to characterize various iron-bearing minerals. The observed parameters indicate the presence of pyrite, siderite and ankerite in coal sample while magnetic fractions of mechanical ash and slag samples show the formation of hematite and Al-substituted magnesio-ferrite. The non-magnetic fraction of slag ash shows the dominance of Fe 2+ phases while that of mechanical ash demonstrates the formation of both Fe 2+ and Fe 3+ phases. These findings are compared with Moessbauer and magnetic susceptibility studies on fly ash samples of Panipat (India) thermal power plant reported earlier.

  3. Final Scientific/Technical Report for project “Increasing the Rate and Extent of Microbial Coal to Methane Conversion through Optimization of Microbial Activity, Thermodynamics, and Reactive Transport”

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Matthew [Montana State Univ., Bozeman, MT (United States)

    2018-01-17

    Currently, coal bed methane (CBM) wells have a limited lifetime since the rate of methane removal via the installed wells is much faster than the in situ methane production rates. Along with water issues created by large amounts of CBM production water, the short life span of CBM wells is a huge deterrent to the environmental and economic feasibility of CBM production. The process of biogenic methanogenesis can be enhanced via the stimulation of the associated microbial communities that can convert the organic fractions of coal to methane. This process is termed Microbially-Enhanced Coal Bed Methane (MECBM). However, the rates of methane production are still limited and long incubation times are necessary. We hypothesized that the elucidation of chemical and biological parameters that limited MECBM together with thermodynamic considerations would inform strategies to optimize the process under flow conditions. We incorporated microbiological, physicochemical, and engineering processes to develop a more sustainable CBM production scheme with native coal and native microorganisms. The proposed combination of microbial ecology and physiology as well as optimized engineering principles minimized key constraints that impact microbial coal conversion to methane under environmentally relevant conditions. The combined approach for bench-scale tests resulted in more effective and less environmentally burdensome coal-dependent methane production with the potential for H2O and CO2 management.

  4. Characteristics of type III kerogen in coal-bearing strata from the Pennsylvanian (Upper Carboniferous) in the Ruhr Basin, Western Germany: Comparison of coals, dispersed organic matter, kerogen concentrates and coal-mineral mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Jasper, K. [Institute of Geology and Geochemistry of Petroleum and Coal, Lochnerstr. 4-20, RWTH Aachen University, 52056 Aachen (Germany); Institute of Geology and Palaeontology, RWTH Aachen University, 52056 Aachen (Germany); Krooss, B.M.; Littke, R. [Institute of Geology and Geochemistry of Petroleum and Coal, Lochnerstr. 4-20, RWTH Aachen University, 52056 Aachen (Germany); Flajs, G. [Institute of Geology and Palaeontology, RWTH Aachen University, 52056 Aachen (Germany); Hartkopf-Froeder, C. [Geological Survey North Rhine-Westphalia, De-Greiff-Str. 195, 47803 Krefeld (Germany)

    2009-10-01

    Quality, quantity and maturity of coal and dispersed terrigenous organic matter were studied on six coal-bearing intervals in Duckmantian strata (Pennsylvanian/Upper Carboniferous) of the Ruhr Basin, Western Germany. Between 10 and 40 samples were collected from fresh drill cores of each interval typically consisting of a coal seam as well as clastic roof and floor strata (sandstone, siltstone, claystone). Coal seams constitute about 8 vol.% of the succession studied. The samples were analysed by organic petrological methods and Rock-Eval pyrolysis. Maturity expressed in terms of vitrinite reflectance is between 0.75 and 1.0 %. For the six successions studied, the total amount of dispersed organic matter in clastic rocks is about half of that stored in coal seams, both containing predominantly vitrinite. Significant differences between Rock-Eval parameters determined on whole rock samples and kerogen concentrates were observed, especially with respect to Hydrogen Index (HI) values. Thus, the HI of the coal is about twice as high as that of the dispersed organic matter, although the maceral composition is similar. The effects of minerals were further examined by Rock-Eval pyrolysis of artificial mixtures of coal (lignite) powder and different minerals. Reduced HI values are partly explained by the retention of generated hydrocarbons on mineral surfaces and partly by reactions of generated fluids with pyrite in kerogen concentrates. (author)

  5. Coal-fired diesel generator

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

  6. A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia

    Science.gov (United States)

    Ingham, Edwina S.; Cook, Nigel J.; Cliff, John; Ciobanu, Cristiana L.; Huddleston, Adam

    2014-01-01

    The common sulfide mineral pyrite is abundant throughout sedimentary uranium systems at Pepegoona, Pepegoona West and Pannikan, Lake Eyre Basin, South Australia. Combined chemical, isotopic and microstructural analysis of pyrite indicates variation in fluid composition, sulfur source and precipitation conditions during a protracted mineralization event. The results show the significant role played by pyrite as a metal scavenger and monitor of fluid changes in low-temperature hydrothermal systems. In-situ micrometer-scale sulfur isotope analyses of pyrite demonstrated broad-scale isotopic heterogeneity (δ34S = -43.9 to +32.4‰VCDT), indicative of complex, multi-faceted pyrite evolution, and sulfur derived from more than a single source. Preserved textures support this assertion and indicate a genetic model involving more than one phase of pyrite formation. Authigenic pyrite underwent prolonged evolution and recrystallization, evidenced by a genetic relationship between archetypal framboidal aggregates and pyrite euhedra. Secondary hydrothermal pyrite commonly displays hyper-enrichment of several trace elements (Mn, Co, Ni, As, Se, Mo, Sb, W and Tl) in ore-bearing horizons. Hydrothermal fluids of magmatic and meteoric origins supplied metals to the system but the geochemical signature of pyrite suggests a dominantly granitic source and also the influence of mafic rock types. Irregular variation in δ34S, coupled with oscillatory trace element zonation in secondary pyrite, is interpreted in terms of continuous variations in fluid composition and cycles of diagenetic recrystallization. A late-stage oxidizing fluid may have mobilized selenium from pre-existing pyrite. Subsequent restoration of reduced conditions within the aquifer caused ongoing pyrite re-crystallization and precipitation of selenium as native selenium. These results provide the first qualitative constraints on the formation mechanisms of the uranium deposits at Beverley North. Insights into

  7. Coal data: A reference

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  8. Technology assessment of various coal-fuel options

    International Nuclear Information System (INIS)

    Coenen, R.; Findling, B.; Klein-Vielhauer, S.; Nieke, E.; Paschen, H.; Tangen, H.; Wintzer, D.

    1991-01-01

    The technology assessment (TA) study of coal-based fuels presented in this report was performed for the Federal Ministry for Research and Technology. Its goal was to support decision-making of the Federal Ministry for Research and Technology in the field of coal conversion. Various technical options of coal liquefaction have been analyzed on the basis of hard coal as well as lignite -- direct liquefaction of coal (hydrogenation) and different possibilities of indirect liquefaction, that is the production of fuels (methanol, gasoline) by processing products of coal gasification. The TA study takes into consideration the entire technology chain from coal mining via coal conversion to the utilization of coal-based fuels in road transport. The analysis focuses on costs of the various options, overall economic effects, which include effects on employment and public budgets, and on environmental consequences compared to the use of liquid fuels derived from oil. Furthermore, requirements of infrastructure and other problems of the introduction of coal-based fuels as well as prospects for the export of technologies of direct and indirect coal liquefaction have been analyzed in the study. 14 figs., 10 tabs

  9. Synchrotron Spectroscopic Studies of the Reaction of Cleaved Pyrite ( {FeS2}) Surfaces with Cr(VI) Solutions

    Science.gov (United States)

    Doyle, C. S.; Kendelewicz, T.; Bostick, B. C.; Brown, G. E.

    2002-12-01

    Pyrite is one of the most common sulfide ores, and the separation of valuable sulfide minerals from it has been an area of considerable interest for a long time. This extraction has led to a large quantity of pyrite waste, typically remaining in mine tailings piles which can interact with oxygen and surface water. The oxidation of pyrite under these conditions leads to the commonly known environmental problem of acid mine drainage, with acidification of surface waters, and the release of potentially toxic metals remaining within the pyrite matrix. A microscopic understanding of this oxidation process is extremely important and has been the aim of a number of studies. We apply the methods of synchrotron based surface science to this problem, utilizing surface sensitive photoemission and X-ray absorption spectroscopy to study the surface species present on the pyrite surface at the initial stages of oxidation. We have reacted pyrite surfaces with solutions containing chromate. Chromium exists in solution in two principal valence states, trivalent Cr(III) and hexavalent Cr(VI). Hexavalent chromium is itself considered an environmental problem due to its high toxicity and solubility, and thus mobility, whilst trivalent chromium is much less toxic and relatively insoluble. Hexavalent chromate is a strong oxidizing agent, and will react rapidly with the pyrite surface allowing the identification of oxidized iron and sulfur surface species. The possibility of using pyrite as a means of reducing chromate, and at the same time using chromate to passivate the pyrite surface to further oxidation through the buildup of a non-reactive iron-chromium (oxy)hydroxide layer will be investigated. The work was performed on rods cut from a natural pyrite single crystal from the Logroño region of Spain. The rods were then fractured over a reaction vessel, producing a fresh (100) surface for each experiment. The pyrite surfaces were reacted with 50 μM Cr(VI) solutions for 5 minutes at

  10. Oil from coal by flash pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I.W. (and others)

    1985-12-01

    This report summarizes the final stage of the NERDDP-funded work on coal liquefaction by flash pyrolysis. A working model pyrolyser, simulating a full-scale unit, has been operated over extended periods with Liddell and Piercefield (NSW), Acland, Millmerran and Macalister (Qld), and Loy Yang (Vic) coals. For several of the coals pyrolysed process heat was generated by combustion of some of the by-product char. Tar from Millmerran, Piercefield, Loy Yang, and Yallourn coals, produced in a separate pilot-scale pyrolyser, have been hydrogenated in continuous reactors to produce synthetic crude oils. Chars from Millmerran and Macalister sub-bituminous coals have been burned in the pilot-scale furnace with results as satisfactory as for the parent coals. The report shows that the flash pyrolysis method of making oil from coal is technically feasible, but cost studies show that in the present economic environment this method produces oil some three to four times more costly than natural oil. The report includes a summary of the overall CSIRO project of which this project formed a part, with emphasis on recent work of significance: e.g. methods of control of coke lay-down on tar hydrogenation catalysts; the combustion reactivity of pyrolysis chars; and various alternative uses of the flash pyrolysis method. Also included is an outline of related work carried out in other Australian and overseas laboratories, and a complete (to end of 1985) bibliography of all publications arising from the project.

  11. Preparation of natural pyrite nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous Fenton process

    International Nuclear Information System (INIS)

    Fathinia, Siavash; Fathinia, Mehrangiz; Rahmani, Ali Akbar; Khataee, Alireza

    2015-01-01

    Graphical abstract: - Highlights: • Pyrite nanoparticles were successfully produced by planetary ball milling process. • The physical and chemical properties of pyrite nanoparticles were fully examined. • The degradation of AO7 was notably enhanced by pyrite nanoparticles Fenton system. • The influences of basic operational parameters were investigated using CCD. - Abstract: In the present study pyrite nanoparticles were prepared by high energy mechanical ball milling utilizing a planetary ball mill. Various pyrite samples were produced by changing the milling time from 2 h to 6 h, in the constant milling speed of 320 rpm. X-ray diffraction (XRD), scanning electron microscopy (SEM) linked with energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis and Brunauer–Emmett–Teller (BET) were performed to explain the characteristics of primary (unmilled) and milled pyrite samples. The average particle size distribution of the produced pyrite during 6 h milling was found to be between 20 nm and 100 nm. The catalytic performance of the different pyrite samples was examined in the heterogeneous Fenton process for degradation of C.I. Acid Orange 7 (AO7) solution. Results showed that the decolorization efficiency of AO7 in the presence of 6 h-milled pyrite sample was the highest. The impact of key parameters on the degradation efficiency of AO7 by pyrite nanoparticles catalyzed Fenton process was modeled using central composite design (CCD). Accordingly, the maximum removal efficiency of 96.30% was achieved at initial AO7 concentration of 16 mg/L, H 2 O 2 concentration of 5 mmol/L, catalyst amount of 0.5 g/L and reaction time of 25 min

  12. Surface structure-dependent pyrite oxidation in relatively dry and moist air: Implications for the reaction mechanism and sulfur evolution

    Science.gov (United States)

    Zhu, Jianxi; Xian, Haiyang; Lin, Xiaoju; Tang, Hongmei; Du, Runxiang; Yang, Yiping; Zhu, Runliang; Liang, Xiaoliang; Wei, Jingming; Teng, H. Henry; He, Hongping

    2018-05-01

    Pyrite oxidation not only is environmentally significant in the formation of acid mine (or acid rock) drainage and oxidative acidification of lacustrine sediment but also is a critical stage in geochemical sulfur evolution. The oxidation process is always controlled by the reactivity of pyrite, which in turn is controlled by its surface structure. In this study, the oxidation behavior of naturally existing {1 0 0}, {1 1 1}, and {2 1 0} facets of pyrite was investigated using a comprehensive approach combining X-ray photoelectron spectroscopy, diffuse reflectance Fourier transform infrared spectroscopy, and time-of-flight secondary-ion mass spectrometry with periodic density functional theoretical (DFT) calculations. The experimental results show that (i) the initial oxidation rates of both pyrite {1 1 1} and {2 1 0} are much greater than that of pyrite {1 0 0}; (ii) the initial oxidation rate of pyrite {2 1 0} is greater than that of pyrite {1 1 1} in low relative humidity, which is reversed in high relative humidity; and (iii) inner sphere oxygen-bearing sulfur species are originally generated from surface reactions and then converted to outer sphere species. The facet dependent rate law can be expressed as: r{hkl} =k{hkl}haP0.5(t + 1) - 0.5 , where r{hkl} is the orientation dependent reaction rate, k{hkl} is the orientation dependent rate constant, h is the relative humidity, P is the oxygen partial pressure, and t is the oxidation time in seconds. {1 1 1} is the most sensitive facet for pyrite oxidation. Combined with DFT theoretical investigations, water catalyzed electron transfer is speculated as the rate-limiting step. These findings disclose the structure-reactivity dependence of pyrite, which not only presents new insight into the mechanism of pyrite oxidation but also provides fundamental data to evaluate sulfur speciation evolution, suggesting that the surface structure sensitivity should be considered to estimate the reactivity at the mineral

  13. Investigating the formation of acid mine drainage of Toledo pyrite concentrate using column cells

    Science.gov (United States)

    Aguila, Diosa Marie

    2018-01-01

    Acid mine drainage (AMD) is an inevitable problem in mining and has adverse effects in water quality. Studying AMD formation will be valuable in controlling the composition of mine waters and in planning the rehabilitation method for a mine. In this research, kinetics of AMD formation of Toledo pyrite was studied using two column experiments. The mechanisms of AMD formation and the effects of various factors on pH drop were first studied. Another column test was done for validation and to study the role of Fe2+/Fe3+ ratio in the change of leachate pH. The first experiment revealed that time and particle size are the most significant factors. It was also observed that the sudden pH drop during the starting hours was due to cracks formed from beneficiation, and the formation of Fe(OH)3. The laddered behavior of pH thereafter was due to decrease in formation of Fe(OH)3, and the precipitates in pyrite surface that lowered the surface area available for pyrite oxidation. The results of the second experiment validated the laddered behavior of pH. It was also observed that particle size distribution and pyrite surface were affected by the change in pH. Fe2+/Fe3+ ratio of leachate generally decreased as pH dropped.

  14. Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants

    Directory of Open Access Journals (Sweden)

    Carolina Gil-Lozano

    2014-06-01

    Full Text Available The Fenton reaction is the most widely used advanced oxidation process (AOP for wastewater treatment. This study reports on the use of pyrite nanoparticles and microparticles as Fenton reagents for the oxidative degradation of copper phthalocyanine (CuPc as a representative contaminant. Upon oxidative dissolution in water, pyrite (FeS2 particles can generate H2O2 at their surface while simultaneously promoting recycling of Fe3+ into Fe2+ and vice versa. Pyrite nanoparticles were synthesized by the hot injection method. The use of a high concentration of precursors gave individual nanoparticles (diameter: 20 nm with broader crystallinity at the outer interfaces, providing a greater number of surface defects, which is advantageous for generating H2O2. Batch reactions were run to monitor the kinetics of CuPc degradation in real time and the amount of H2O2. A markedly greater degradation of CuPc was achieved with nanoparticles as compared to microparticles: at low loadings (0.08 mg/L and 20 h reaction time, the former enabled 60% CuPc removal, whereas the latter enabled only 7% removal. These results confirm that the use of low concentrations of synthetic nanoparticles can be a cost effective alternative to conventional Fenton procedures for use in wastewater treatment, avoiding the potential risks caused by the release of heavy metals upon dissolution of natural pyrites.

  15. Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone

    NARCIS (Netherlands)

    Binning, P. J.; POSTMA, D; Russell, T. F.; Wesselingh, J. A.; Boulin, P. F.

    2007-01-01

    [1] Pyrite oxidation in unsaturated mine waste rock dumps and soils is limited by the supply of oxygen from the atmosphere. In models, oxygen transport through the subsurface is often assumed to be driven by diffusion. However, oxygen comprises 23.2% by mass of dry air, and when oxygen is consumed

  16. Degradation of Anthraquinone Dye Reactive Blue 4 in Pyrite Ash Catalyzed Fenton Reaction

    Directory of Open Access Journals (Sweden)

    Milena Becelic-Tomin

    2014-01-01

    Full Text Available Pyrite ash (PA is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4 degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH=2.5; [PA]0=0.2 g L−1; [H2O2]0=5 mM and initial RB4 concentration up to 100 mg L−1. The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes.

  17. Degradation of Anthraquinone Dye Reactive Blue 4 in Pyrite Ash Catalyzed Fenton Reaction

    Science.gov (United States)

    Becelic-Tomin, Milena; Dalmacija, Bozo; Rajic, Ljiljana; Tomasevic, Dragana; Kerkez, Djurdja; Watson, Malcolm; Prica, Miljana

    2014-01-01

    Pyrite ash (PA) is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4) degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH = 2.5; [PA]0 = 0.2 g L−1; [H2O2]0 = 5 mM and initial RB4 concentration up to 100 mg L−1. The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu) content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes. PMID:24526885

  18. Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone

    DEFF Research Database (Denmark)

    Binning, Philip John; Postma, Diederik Jan; Russel, T.F.

    2007-01-01

    Pyrite oxidation in unsaturated mine waste rock dumps and soils is limited by the supply of oxygen from the atmosphere. In models, oxygen transport through the subsurface is often assumed to be driven by diffusion. However, oxygen comprises 23.2% by mass of dry air, and when oxygen is consumed...

  19. Coal information 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Coal Information (1997 edition) is the latest edition of a publication that has been produced annually by the IEA since 1983. The report is intended to provide both Member countries of the OECD and those employed in all sectors of the coal industry with information on current world coal market trends and long-term prospects. It includes information on coal prices, demand, trade, supply, production capacity, transport, environmental issues (including emission standards for coal-fired boilers), coal ports, coal-fired power stations and coal used in non -OECD countries. Part I of the publication contains a wide ranging review of world coal market developments in 1996 and current prospects to 2010. The review is based on historical data of OECD energy supply and demand, data on other world regions, projections of OECD coal supply, demand and trade and information provided by the CIAB. Part II provides, in tabular and graphical form, a more detailed and comprehensive statistical picture of coal developments and future prospects for coal in the OECD, by region and for individual Member countries. Readers interested in projections are strongly advised to read the notes for individual countries in Principles and Definitions in Part II. Coal statistics for non-OECD countries are presented in Part III of the book. Summary data are available on hard coal supply and end-use statistics for about 40 countries and regions world-wide. Data are based on official national submissions to the United Nations in Geneva and New York, national energy publications, information provided to the IEA Secretariat by national statistical offices as well as other unofficial Secretariat sources. Further information on coal used in non-OECD countries is published annually by the IEA in Energy Statistics and Balances of Non-OECD Countries. Also included in Part III are the Survey of Coal Ports world-wide and the Survey of Coal-fired Power Stations in coal-importing countries

  20. Coal use in the People's Republic of China. Volume 1: Environmental impacts

    International Nuclear Information System (INIS)

    Bhatti, N.; Tompkins, M.M.; Simbeck, D.R.

    1994-11-01

    The People's Republic of China (hereafter referred to as China) is the largest producer and consumer of coal in the world. Coal makes up 76% and 74% of China's primary energy consumption and production, respectively. This heavy dependence on coal has come at a high price for China, accounting for a large share of its environmental problems. This report examines the dominance of coal in China's energy balance, its impact on the environment, and the need for technical and financial assistance, specifically for two distinct aspects: the effect of coal use on the environment and the importance of coal to China's economy. The results of the analysis are presented in two volumes. Volume 1 focuses on full fuel cycle coal emissions and the environmental effects of coal consumption. Volume 2 provides a detailed analysis by sector of China's economy and examines the economic impact of constraints on coal use. 51 refs., 19 figs., 15 tabs

  1. Petrology, Palynology, and Geochemistry of Gray Hawk Coal (Early Pennsylvanian, Langsettian in Eastern Kentucky, USA

    Directory of Open Access Journals (Sweden)

    James C. Hower

    2015-09-01

    Full Text Available This study presents recently collected data examining the organic petrology, palynology, mineralogy and geochemistry of the Gray Hawk coal bed. From the Early Pennsylvanian, Langsettian substage, Gray Hawk coal has been mined near the western edge of the eastern Kentucky portion of the Central Appalachian coalfield. While the coal is thin, rarely more than 0.5-m thick, it has a low-ash yield and a low-S content, making it an important local resource. The Gray Hawk coal palynology is dominated by Lycospora spp., and contains a diverse spectrum of small lycopods, tree ferns, small ferns, calamites, and gymnosperms. The maceral assemblages show an abundance of collotelinite, telinite, vitrodetrinite, fusinite, and semifusinite. Fecal pellet-derived macrinite, albeit with more compaction than is typically seen in younger coals, was observed in the Gray Hawk coal. The minerals in the coal are dominated by clay minerals (e.g., kaolinite, mixed-layer illite/smectite, illite, and to a lesser extent, pyrite, quartz, and iron III hydroxyl-sulfate, along with traces of chlorite, and in some cases, jarosite, szomolnokite, anatase, and calcite. The clay minerals are of authigenic and detrital origins. The occurrence of anatase as cell-fillings also indicates an authigenic origin. With the exception of Ge and As, which are slightly enriched in the coals, the concentrations of other trace elements are either close to or much lower than the averages for world hard coals. Arsenic and Hg are also enriched in the top bench of the coal and probably occur in pyrite. The elemental associations (e.g., Al2O3/TiO2, Cr/Th-Sc/Th indicate a sediment-source region with intermediate and felsic compositions. Rare metals, including Ga, rare earth elements and Ge, are highly enriched in the coal ashes, and the Gray Hawk coals have a great potential for industrial use of these metals. The rare earth elements in the samples are weakly fractionated or are characterized by heavy

  2. Isotopic composition of pyrite: Relationship to organic matter type and iron availability in some North American cretaceous shales

    Science.gov (United States)

    Gautier, D.L.

    1987-01-01

    The S isotope composition of pyrite in Cretaceous shales from the Western Interior of North America is related to organic C abundance, kerogen type and Fe availability. Both calcareous and noncalcareous rocks show a correlation between S and C, but noncalcareous rocks are relatively enriched in S with a higher S C ratio. This higher ratio probably shows that pyrite formation was Fe limited in the calcareous rocks. Organic-carbon-rich noncalcareous shales accumulated slowly beneath anoxic bottom waters. The anoxic bottom waters allowed hydrogen-rich organic matter to be preserved. Such shales have a narrow range of 34S-depleted sulfide and have Fe S ratios like stoichiometric pyrite, suggesting that pyrite formation in organic-rich shales was also limited by Fe availability. Conversely, organic-poor shales commonly accumulated at comparatively high rates, contain hydrogen-poor and refractory organic matter, and have a wide range of pyrite-S isotopic compositions. These organic-poor shales contain post-sulfidic authigenic minerals such as siderite and have excess reactive Fe rather than pyrite stoichiometry. Evidently Fe played a large role in early diagenesis and determined the course of post-sulfidic diagenesis. Fe availability was, however, mainly controlled by provenance, by the rates of sediment accumulation, and by the oxygen content of the depositional environment. ?? 1987.

  3. Thallium-rich pyrite ores from the Apuan Alps, Tuscany, Italy:constraints for their origin and environmental concerns

    Science.gov (United States)

    D'Orazio, Massimo; Biagioni, Cristian; Dini, Andrea; Vezzoni, Simone

    2017-06-01

    The southern sector of the Apuan Alps (AA) massif, Tuscany, Italy, is characterized by the occurrence of a series of baryte-pyrite-iron oxide orebodies whose Tl-rich nature was recognized only recently. The geochemistry of the pyrite ore was investigated through inductively coupled plasma mass spectrometry. In addition, lead isotope data for selected pyrite ores from AA were collected. Pyrite ores are characterized by a complex geochemistry, with high concentrations of Tl (up to 1100 μg/g) coupled with high As and Sb contents; the Co/Ni ratio is always mining districts of Tuscany have been collected in order to compare them with those from the AA. These samples usually have very low Tl content (less than 2 μg/g) and high to very high Co/Ni and As/Sb ratios. Only some samples from the Sb-Hg ore deposits showed very high Tl concentrations (up to 3900 μg/g). Another difference is related to the lead isotope composition, with pyrite ores from AA markedly less radiogenic than those from the other deposits from Tuscany. Geochemical data of pyrite ores from AA give new insights on the genesis of the baryte-pyrite-iron oxide orebodies, relating their formation to low-temperature hydrothermal systems active during early Paleozoic; in addition, these data play a fundamental role in assessing the environmental impact of these deposits.

  4. International perspectives on coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  5. Metalliferous coals of the Westphalian A Joggins Formation, Cumberland basin, Nova Scotia, Canada: Petrology, geochemistry, and palynology

    Science.gov (United States)

    Hower, J.C.; Calder, J.H.; Eble, C.F.; Scott, A.C.; Robertson, J.D.; Blanchard, L.J.

    2000-01-01

    Five coals of Westphalian A (early Middle Pennsylvanian) age were sampled from the Joggins Formation section exposed along Chignecto Bay at Joggins, Nova Scotia. Coal beds along the bay were mined beginning in the early 17th century, yet there have been few detailed published investigation of the coal beds of this classic section. The lowermost coal, the Upper Coal 28 (Upper Fundy), is a high-vitrinite coal with a spore assemblage dominated by arboreous lycopsid spores with tree ferns subdominant. The upper portions of the coal bed have the highest ratio of well-preserved to poorly-preserved telinite of any of the coals investigated. Coal 19 ('clam coal') has 88% total vitrinite but, unlike the Fundy coal bed, the telinite has a poor preservation ratio and half the total vitrinite population comprises gelocollinite and vitrodetrinite. The latter coal bed is directly overlain by a basin-wide limestone bed. The Lower Kimberly coal shows good preservation of vitrinite with relatively abundant telinite among the total vitrinite. The Middle Kimberly coal, which underlies the tetrapod-bearing lycopsid trees found by Lyell and Dawson in 1852, exhibits an upward decrease in arboreous lycopod spores and an upward increase in the tree fern spore Punctatisporites minutus. Telinite preservation increases upwards in the Middle Kimberly but overall is well below the preservation ratio of the Upper Fundy coal bed. The coals all have high sulfur contents, yielding up to 13.7% total sulfur for the lower lithotype of the Upper Fundy coal bed. The Kimberly coals are not only high in total and pyritic sulfur, but also have high concentrations of chalcophile elements. Zinc, ranging up to 15,000 ppm (ash basis), is present as sphalerite in fusain lumens. Arsenic and lead each exceed 6000 ppm (ash basis) in separate lithotypes of the Kimberly coals. Together these data are consistent with elevated pH in planar mires. The source of the elemental enrichment in this presumed continental

  6. Micronized coal-fired retrofit system for SO{sub x} reduction: Krakow Clean Fossil Fuels and Energy Efficiency Program. Technical progress report No. 3, October 1996--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The PROJECT proposes to install a new TCS micronized coal-fired heating plant for the Produkcja I Hodowla Roslin Ogrodniczych (PHRO) Greenhouse Complex; Krzeszowice, Poland (about 20 miles west of Krakow). PHRO currently utilizes 14 heavy oil-fired boilers to produce heat for its greenhouse facilities and also home heating to several adjacent apartment housing complexes. The boilers currently burn a high-sulfur content heavy crude oil, called Mazute. For size orientation, the PHRO Greenhouse complex grows a variety of vegetables and flowers for the Southern Poland marketplace. The greenhouse area under glass is very large and equivalent to approximately 50 football fields. The new micronized coal fired boiler would: (1) provide a significant portion of the heat for PHRO and a portion of the adjacent apartment housing complexes, (2) dramatically reduce sulfur dioxide air pollution emissions, while satisfying new Polish air regulations, and (3) provide attractive savings to PHRO, based on the quantity of displaced oil. Currently, the Town of Krzeszowice is considering a district heating program that would replace some, or all, of the 40 existing small in-town heating boilers that presently burn high-sulfur content coal. Potentially the district heating system can be expanded and connected into the PHRO boiler network; so that, PHRO boilers can supply all, or a portion of, the Town`s heating demand. The new TCS micronized coal system could provide a portion of this demand.

  7. Petrological evolution of the Paleogene coal deposits of Jammu, Jammu and Kashmir, India

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.P.; Singh, G.P. [Banaras Hindu University, Varanasi (India). Dept. of Geology

    1995-03-01

    A detailed macro- and micro-petrological investigation of 8 coal seam profiles of Eocene age from the sub-Himalayan zone of Jammu was undertaken in order to characterize them petrographically and to focus on their evolution. The quantitative data suggest that these coals are vitrinite rich, with low concentrations of inertinite and rare occurrences of liptinite. According to microlithotype concentration these coals may be characterized as vitrinite rich, with minor amounts of clarite, vitrinertite and trimacerite. The dominant minerals are clay, siderite and pyrite (occurring mostly as disseminations, cavity filling and in framboidal state). These coals are vitric in type, low volatile bituminous in rank and ashy in grade. The petrographic character and the presence of teleutospores suggest that, similar to other Tertiary coal deposits in the world, the angiosperm flora contributed chiefly to the development of coal facies in the area. The maceral and microlithotype composition shows that these coals originated from the low forest and undisturbed (in situ) peat in foreland basins under limno-telmatic depositional conditions. The water was brackish with regular influxes of fresh water. 33 refs., 14 figs., 6 tabs., 5 plates.

  8. Mineralogical and Geochemical Compositions of the No. 5 Coal in Chuancaogedan Mine, Junger Coalfield, China

    Directory of Open Access Journals (Sweden)

    Ning Yang

    2015-11-01

    Full Text Available This paper reports the mineralogy and geochemistry of the Early Permian No. 5 coal from the Chuancaogedan Mine, Junger Coalfield, China, using optical microscopy, scanning electron microscopy (SEM, Low-temperature ashing X-ray diffraction (LTA-XRD in combination with Siroquant software, X-ray fluorescence (XRF, and inductively coupled plasma mass spectrometry (ICP-MS. The minerals in the No. 5 coal from the Chuancaogedan Mine dominantly consist of kaolinite, with minor amounts of quartz, pyrite, magnetite, gypsum, calcite, jarosite and mixed-layer illite/smectite (I/S. The most abundant species within high-temperature plasma-derived coals were SiO2 (averaging 16.90%, Al2O3 (13.87%, TiO2 (0.55% and P2O5 (0.05%. Notable minor and trace elements of the coal include Zr (245.89 mg/kg, Li (78.54 mg/kg, Hg (65.42 mg/kg, Pb (38.95 mg/kg, U (7.85 mg/kg and Se (6.69 mg/kg. The coal has an ultra-low sulfur content (0.40%. Lithium, Ga, Se, Zr and Hf present strongly positive correlation with ash yield, Si and Al, suggesting they are associated with aluminosilicate minerals in the No. 5 coal. Arsenic is only weakly associated with mineral matter and Ge in the No. 5 coals might be of organic and/or sulfide affinity.

  9. Electric plants to gas, influence of both Mineral Matter and Air Oxidation in coal pyrolysis

    International Nuclear Information System (INIS)

    Mondragon, F.; Jaramillo, A.; Quintero, G.

    1995-01-01

    In this work some coal samples from different Colombia's deposits are analyzed. In first stage, material matter is removed from coal by acid treatment with HF/HCl, and aerial oxidation of coal is made with air in oven to 150 Centigrade degree temperature. In second stage, pyrolysis is carried out in two different techniques: 1. Thermogravimetric Analysis (TGA) and 2. Programmed Temperature Pyrolysis (PTP) in a pyrolyzer equipped with a quadrupole mass spectrometer. In both techniques, the coal samples are heated in different rates to 650 Centigrade degree. During PTP trials the evolution of CH4, H2S, hydrocarbons (m/z=42), CO2, benzene and toluene are monitored. Studied coal samples showed: 1). A gas conversion range between 48.8% to 21.8%; 2). A decrease in the gas conversion between 2% to 4%, when oxidation it is applied; 3). The temperature at the one which is presented the maximum evolution of CH4 is similar for all coal samples; 4). The maximum evolution of H2S depends on mineral matter composition, occurs between 480 to 550 Centigrade degrees and is presented due to pyrite decomposition. 5). The evolution of CO2 occurs between 100 to 650 Centigrade degree, its production is generated in different stage of the mentioned temperature range, and in some coal samples is presented due to inorganic origin

  10. Environmental geochemistry of acid mine drainage water at Indus coal mine at Lakhra, Sindh Pakistan

    International Nuclear Information System (INIS)

    Siddique, I.; Shah, M.T.

    2000-01-01

    The annual coal production of Pakistan is about 3,637, 825 tones which is about 6% of the country's energy resources, out of this 1,241, 965 tones of coal was produced/ mined from the Lakhra coal field, District Dadu, Sindh which after the Thar coal field is the second largest coal field of Pakistan. At this coal field more than 58 mining companies are engaged in exploring the hidden wealth of the country. The problem of acid mine drainage, is caused by the passage or seepage of water, through mines where iron disulfides, usually pyrites, are exposed to the oxidizing action of water, air and bacteria, is the main problem faced by the mining companies. The geochemical analysis of acid mine drainage water collected from Indus coal mine no. 6 shows that beside its higher pH, total Dissolved Solids and Sulfates, it also posses higher amount of heavy metals like Cd, Cu, Pb, Co, Ni and Fe. This acid mine drainage water not only damages the mine structures but is also harmful to soil and ecology. (author)

  11. Chemostratigraphy and trace element pattern of authigenic pyrite in a Frasnian-Fammenian transition section (Büdesheimer bach, Germany)

    Science.gov (United States)

    Pujol, F.; Berner, Z.; Neumann, T.; Stüben, D.

    2003-04-01

    Trace element contents in authigenic pyrite were investigated in relationship to the geochemistry of host rocks in a 160 m deep drilling at Büdesheimer Bach (Prümer Mulde, Germany), in order to put constrains on possible changes in depositional conditions and seawater composition related to the Kellwasser events (Frasnian/Fammenian transition). The approach is based on the observation that the trace element pattern of authigenic pyrite is controlled by genetic conditions (Stüben et al., 2002) and that the content of elements with generally high degree of pyritization (DTMP, degree of trace metal pyritization, like As, Mo, Co, Ni, etc.) depends on their availability at the site of pyrite formation (e.g. Huerta-Diaz and Morse, 1992). The distribution of trace elements in the bulk rock essentially reflects mineralogical composition and redox conditions which are mainly controlled by the flux of organic matter entering the sediment. The lower and upper Kellwasser horizons are marked by an increase in carbonate and organic carbon content (up to 2%), coupled with an increase in the degree of pyritization of Fe (DOP: 0.4-0.8), indicating a change from normal marine to suboxic/anoxic conditions. A simultaneous drop in the Ba content of the host lithology, which usually is used as a proxy for paleoproductivity, can be explained by the removal of Ba dissolved in pore water under anoxic conditions (McManus et al., 1998). While low in the host rock, the Ba content of authigenic pyrite is high in these horizons, suggesting that pyrite may preserve the initial composition of pore water even for some elements with generally low DTMP, like Ba. Consequently, Ba content in pyrite may serve as indicator for productivity even when the Ba content of sediment can not be used due to its poor preservation. During these anoxic episodes also a significant increase in the content of As, U, V was registered in pyrite. Opposite to these, others like Ni, Co, Ag show a decrease in their

  12. Flash hydrogenation of coal

    Science.gov (United States)

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  13. Geochemistry, petrology, and palynology of the Pond Creek coal bed, northern Pike and southern Martin counties, Kentucky

    Science.gov (United States)

    Hower, J.C.; Ruppert, L.F.; Eble, C.F.; Clark, W.L.

    2005-01-01

    The geochemistry, petrology, and palynology of the Duckmantian-age Pond Creek coal bed were investigated in northern Pike and southern Martin counties, eastern Kentucky. The coal bed exhibits significant vertical variation in the investigated geochemical parameters, with many diagenetic overprints of the original geochemistry. Included in the range of geochemical signatures are the presence of elements, particularly TiO2 and Zr, suggesting the detrital influences at the time of deposition of a low-vitrinite durain; a high CaO zone with elevated B/Be, both suggesting marine influence, in a lithotype in the middle of the coal bed; and the postdepositional emplacement of pyrite in the uppermost lithotype. Individual lithotypes, each representing distinct depositional environments, all complicated to some degree by diagentic overprints, comprise the complex history of the coal bed. ?? 2004 Elsevier B.V. All rights reserved.

  14. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2005-10-01

    Low rank fuels such as subbituminous coals and lignites contain significant amounts of moisture compared to higher rank coals. Typically, the moisture content of subbituminous coals ranges from 15 to 30 percent, while that for lignites is between 25 and 40 percent, where both are expressed on a wet coal basis. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit. High fuel moisture results in fuel handling problems, and it affects heat rate, mass rate (tonnage) of emissions, and the consumption of water needed for evaporative cooling. This project deals with lignite and subbituminous coal-fired pulverized coal power plants, which are cooled by evaporative cooling towers. In particular, the project involves use of power plant waste heat to partially dry the coal before it is fed to the pulverizers. Done in a proper way, coal drying will reduce cooling tower makeup water requirements and also provide heat rate and emissions benefits. The technology addressed in this project makes use of the hot circulating cooling water leaving the condenser to heat the air used for drying the coal (Figure 1). The temperature of the circulating water leaving the condenser is usually about 49 C (120 F), and this can be used to produce an air stream at approximately 43 C (110 F). Figure 2 shows a variation of this approach, in which coal drying would be accomplished by both warm air, passing through the dryer, and a flow of hot circulating cooling water, passing through a heat exchanger located in the dryer. Higher temperature drying can be accomplished if hot flue gas from the boiler or extracted steam from the turbine cycle is used to supplement the thermal energy obtained from the circulating cooling water. Various options such as these are being examined in this investigation. This is the eleventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits

  15. Geochemistry of arsenic in low sulfide-high carbonate coal waste rock, Elk Valley, British Columbia, Canada.

    Science.gov (United States)

    Biswas, Ashis; Hendry, M Jim; Essilfie-Dughan, Joseph

    2017-02-01

    This study investigated the geochemistry of arsenic (As) in low sulfide-high carbonate coal waste rock of the Elk Valley, British Columbia, Canada. Its abundance and mineralogical associations in waste rock of different placement periods were determined in addition to its mobilization into porewater and rock-drain effluent. The mean (5.34mg/kg; 95% confidence interval: 4.95-5.73mg/kg) As concentration in the waste rock was typical of sedimentary rock. Electron microprobe and As K-edge X-ray absorption near-edge spectroscopic analyses showed the As is predominantly associated with primary pyrites in both source and freshly blasted waste rock. However, in aged waste rock the As is associated with both primary pyrites and secondary Fe oxyhydroxides. Oxidation of pyrite in waste rock dumps was reflected by the presence of high concentrations of SO 4 2- in porewater and oxidation rims of Fe oxyhydroxides around pyrite grains. Acid released from pyrite oxidation to Fe oxyhydroxides is neutralized by carbonate mineral dissolution that buffers the pH in the waste rock to circumneutral values. Adsorption of As onto secondary Fe oxyhydroxides provides an internal geochemical control on As release during pyrite oxidation and porewater flushing from the dump, resulting in the low As concentrations observed in porewater (median: 9.91μg/L) and rock-drain effluent (median: 0.31μg/L). Secondary Fe oxyhydroxides act as a long-term sink for As under present day hydrologic settings in waste rock dumps in the Elk Valley. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward K. Levy; Nenad Sarunac; Wei Zhang

    2004-10-01

    This is the seventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture, prior to firing in a pulverized coal boiler. Coal drying experiments were performed with lignite and Powder River Basin coals to determine the effects of inlet air moisture level on the equilibrium relationship between coal moisture and exit air relative humidity and temperature. The results show that, for lignite, there is a slight dependence of equilibrium moisture on inlet humidity level. However, the equilibrium relationship for PRB coal appears to be independent of inlet air humidity level. The specific equilibrium model used for computing lignite coal dryer performance has a significant effect on the prediction accuracy for exit air relative humidity; but its effects on predicted coal product moisture, exit air temperature and specific humidity are minimal. Analyses were performed to determine the effect of lignite product moisture on unit performance for a high temperature drying system. With this process design, energy for drying is obtained from the hot flue gas entering the air preheater and the hot circulating cooling water leaving the steam condenser. Comparisons were made to the same boiler operating with lignite which had been dried off-site.

  17. Australian Coal Company Risk Factors: Coal and Oil Prices

    OpenAIRE

    M. Zahid Hasan; Ronald A. Ratti

    2014-01-01

    Examination of panel data on listed coal companies on the Australian exchange over January 1999 to February 2010 suggests that market return, interest rate premium, foreign exchange rate risk, and coal price returns are statistically significant in determining the excess return on coal companies’ stock. Coal price return and oil price return increases have statistically significant positive effects on coal company stock returns. A one per cent rise in coal price raises coal company returns ...

  18. Chemical vapour transport of pyrite (FeS 2) with halogen (Cl, Br, I)

    Science.gov (United States)

    Fiechter, S.; Mai, J.; Ennaoui, A.; Szacki, W.

    1986-12-01

    A systematic study of chemical vapour transport (CVT) of pyrite with halogen, hydrogen halides and ammonium halides as transporting agents has shown that the transport with chlorine and bromine in a temperature gradient Δ T = 920-820 K yields the highest transport rates (˜6 mg/h) with crystals up to 5 mm edge length. Computing thermochemical equilibria and flux functions in the system Fe-S-Hal (Hal = Cl, Br, I) it has been confirmed that the transport velocity of pyrite is limited by the concentration of FeHal 2 in the vapour phase, the equilibrium position between FeHal 2(g) and FeHal 3(g) and the flux directions of the iron gas species.

  19. Preparation of Metallic Iron Powder from Pyrite Cinder by Carbothermic Reduction and Magnetic Separation

    Directory of Open Access Journals (Sweden)

    Hongming Long

    2016-04-01

    Full Text Available The reduction and magnetic separation procedure of pyrite cinder in the presence of a borax additive was performed for the preparation of reduced powder. The effects of borax dosage, reduction temperature, reduction time and grinding fineness were investigated. The results show that when pyrite cinder briquettes with 5% borax were pre-oxidized at 1050 °C for 10 min, and reduced at 1050 °C for 80 min, with the grinding fineness (<0.44 mm passing 81%, the iron recovery was 91.71% and the iron grade of the magnetic concentrate was 92.98%. In addition, the microstructures of the products were analyzed by optical microscope, scanning electron microscope (SEM, and mineralography, and the products were also studied by the X-ray powder diffraction technique (XRD to investigate the mechanism; the results show that the borax additive was approved as a good additive to improve the separation of iron and gangue.

  20. The Effect of Water Vapor on the Thermal Decomposition of Pyrite in N2 Atmosphere

    Directory of Open Access Journals (Sweden)

    Nesrin BOYABAT

    2009-03-01

    Full Text Available In this study, the effect of water vapor on the thermal decomposition of pyrite mineral in nitrogen atmosphere has been investigated in a horizontal tube furnace. Temperature, time and water vapor concentration were used as experimental parameters. According to the data obtained at nitrogen/ water vapor environment, it was observed that the water vapor on the decomposition of pyrite increased the decomposition rate. The decomposition reaction is well represented by the "shrinking core" model and can be divided into two regions with different rate controlling step. The rate controlling steps were determined from the heat transfer through the gas film for the low conversions, while it was determined from the mass transfer through product ash layer for the high conversions. The activation energies of this gas and ash film mechanisms were found to be 77 and 81 kJ/mol-1, respectively.

  1. Characterization of the coal resources of South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey, L.S. [CSIR, Auckland (New Zealand). Division of Mining Technology

    2005-02-01

    Estimates for South Africa's coal recoverable reserves made in 1999 range from nine to 59 billion tons; latest estimates by the Minerals Bureau suggest that 33 billion tons is a more likely figure. As much as 70% of that coal is located in the Waterberg, Witbank, and Highveld coalfields, as well as lesser amounts in the Ermelo, Free State and Springbok Flats coalfields. However, the Witbank and Highveld coalfields are approaching exhaustion (estimated 9 billion tons of recoverable coal remaining in each), while the coal quality or mining conditions in the Waterberg, Free State and Springbok Flats coalfields are significant barriers to immediate, conventional exploitation. New extraction technologies, technologies exploiting the energy content of the coal in situ, as well as suitable uses and markets for low-grade, high-ash coal are required before the country can utilize its admittedly vast coal resources. Major challenges for exploiting some Limpopo province coalfields are severe water shortages, insufficiently developed infrastructure, fragile environments and poor roof conditions due to the depth and complex geology. In the Central Basin (Witbank, Highveld and Ermelo coalfields) technical innovations for thin seam extraction, economic mining of both pillar coal and intrusion-fragmented resource blocks and the utilization of lower-grade coals are required. The success of the fluidized bed combustion technology is necessary to utilize the low-grade coals of the Free State and Molteno coalfields. Clean coal technologies, coal cost and quality, environmental considerations, sustainable development, the growth of the South African economy and Government's regulation of the electricity industry are the main challenges to the continued use of coal as South Africa's primary energy source.

  2. Coal Data: A reference

    International Nuclear Information System (INIS)

    1991-01-01

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ''Coal Terminology and Related Information'' provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  3. The Influence of Pyrite on the Solubility of Minjingu and Panda ...

    African Journals Online (AJOL)

    -+-P:S 2:1 ....... PS 3:1 -+-P:S 1:4. " Figure 2: Effect of Minjingu RPlPyrite mixture and incubationpe-. riod on pH in the' Panda phosphate rock mixtures resulted to very little extra drop in. pH. The effect of P:S ratios on pH differed in the first 49 day~ after- wards all ratios behaved the same way. The extent of pH drop in the so.,-,.

  4. Adaptation of chemical methods of analysis to the matrix of pyrite-acidified mining lakes

    International Nuclear Information System (INIS)

    Herzsprung, P.; Friese, K.

    2000-01-01

    Owing to the unusual matrix of pyrite-acidified mining lakes, the analysis of chemical parameters may be difficult. A number of methodological improvements have been developed so far, and a comprehensive validation of methods is envisaged. The adaptation of the available methods to small-volume samples of sediment pore waters and the adaptation of sensitivity to the expected concentration ranges is an important element of the methods applied in analyses of biogeochemical processes in mining lakes [de

  5. Pyrite as a proxy for the identification of former coastal lagoons in semiarid NE Brazil

    Science.gov (United States)

    Ferreira, Tiago O.; Nóbrega, Gabriel N.; Albuquerque, Antonia G. B. M.; Sartor, Lucas R.; Gomes, Irlene S.; Artur, Adriana G.; Otero, Xosé L.

    2015-10-01

    This work aimed to test the suitability of pyrite (FeS2) as a proxy for reconstructing past marine environmental conditions along the semiarid coast of Brazil. Morphological description combined with physicochemical analyses including Fe partitioning were conducted for soil depth profiles (30 and 60 cm depths) at three sites in two contrasting lagoons of the state of Ceará: a suspected former lagoon that would have been transformed into a freshwater "lake" at a site vegetated by Juncus effusus (site P1), and another lagoon with connection to the sea at sites vegetated by J. effusus (site P2) or Portulaca oleracea (site P3). Soil samples were collected in September 2010. Site P3 had more reducing conditions, reaching Eh values of -132 mV in the surface layer (0-10 cm), whereas minimum values for the P1 and P2 sites were +219 and +85 mV, respectively. Lower pyritic Fe values were found at site P1, with a degree of pyritization (DOP) ranging from 10 to 13%. At sites P2 and P3, DOP ranged from 9 to 67% and from 55 to 72%, respectively. These results are consistent with an interruption of tidal channels by eolian dune migration inducing strong changes in the hydrodynamics and physicochemical characteristics (lower salinity, oxidizing conditions) of these sites, causing the dieback of suspected former mangroves and a succession to freshwater marshes with an intermediate salt marsh stage. Together with other physicochemical signatures, pyrite can evidently serve as a useful proxy in tracking environmental changes in such ecotones, with implications for coastal management.

  6. National Coal Utilization Assessment: a preliminary assessment of coal utilizaton in the South. [Southern USA to 2020; forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Berry, L. B.; Bjornstad, D. J.; Boercker, F. D.

    1978-01-01

    Some of the major problems and issues related to coal development and use in the South are identified and assessed assuming a base-case energy scenario for the next 45 years. This scenario assumes a midrange of coal use and a relatively high rate of nuclear use over the forecast period. The potential impacts from coal development and use are significant, particularly in the 1990-2020 time period. Practically all available sites suitable for power plant development in the assessment will be utilized by 2020. Overall, sulfur dioxide will be well below the annual primary standard; however, several local hot-spot areas were identified. In addition, sulfate concentrations will be increased significantly, particularly over Virginia, West Virginia, and northern Kentucky. Coal mining is expected to affect 6 of the 12 major ecological regions. Coal mining will lead to increased average suspended sediment concentrations in some river basins, and special measures will be required to control acid discharges from active mines in pyritic regions. The increased mining of coal and subsequent sulfur dioxide increases from its combustion may also give rise to a land-use confrontation with food and fiber production. Potential health effects from exposure to sulfur dioxide and sulfates are expected to increase rapidly in several areas, particularly in parts of Kentucky, Maryland, District of Columbia, and Georgia. Regional social costs should be relatively low, although some site-specific costs are expected to be very high. Alternative energy technologies, careful siting selection, and deployment of environmental control technologies and operating policies will be required to reduce or mitigate these potential impacts.

  7. Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea

    DEFF Research Database (Denmark)

    Neretin, LN; Bottcher, ME; Jørgensen, BB

    2004-01-01

    Pyritization in late Pleistocene sediments of the Black Sea is driven by sulfide formed during anaerobic methane oxidation. A sulfidization front is formed by the opposing gradients of sulfide and dissolved iron. The sulfidization processes are controlled by the diffusion flux of sulfide from above...... and by the solid reactive iron content. Two processes of diffusion-limited pyrite formation were identified. The first process includes pyrite precipitation with the accumulation of iron sulfide precursors with the average chemical composition of FeSn (n = 1.10-1.29), including greigite. Elemental sulfur...... reduction at depth causes a progressive formation of pyrite with a delta(34)S of up to + 15.0parts per thousand. The S-isotopic composition of FeS2 evolves due to contributions of different sulfur pools formed at different times. Steady-state model calculations for the advancement of the sulfidization front...

  8. Migration of impurity level reflected in the electrical conductivity variation for natural pyrite at high temperature and high pressure

    Science.gov (United States)

    Liu, Kaixiang; Dai, Lidong; Li, Heping; Hu, Haiying; Wu, Lei; Zhuang, Yukai; Pu, Chang; Yang, Linfei

    2018-01-01

    This report presents the variations of the electrical conductivity and the migration of natural pyrite impurity levels at temperatures range from 298 to 573 K and pressures range from 1 atm. to 20.9 GPa. The electrical conductivity increases with temperature at a fixed pressure, displaying the semiconductor behavior of the sample. In spite of the positive correlations of electrical conductivity and pressure, there exists an acceleration in the rate of conductivity increase after 13 GPa. No indication of a chemical reaction or structural phase transition of pyrite was detected by Raman spectroscopy. The main trace elements that affect the electrical properties of pyrite are determined by inductively coupled plasma with mass spectrometry (ICPMS). The transport activation energy of natural pyrite is 0.045 eV at ambient pressure, which corresponds to the activation of the CoFe donor level ( 1/2 E D), and decreases with increasing pressure.

  9. CHEMICAL MAPPING OF ELEMENTAL SULFUR ON PYRITE AND ARSENOPYRITE SURFACES USING NEAR-INFRARED RAMAN IMAGING MICROSCOPY. (R826189)

    Science.gov (United States)

    AbstractNear-infrared Raman imaging microscopy (NIRIM) was used to produce chemical images of the distribution of elemental sulfur on oxidized pyrite and arsenopyrite surfaces. Analysis using Savitsky¯Golay filtering permits an unambiguous identificati...

  10. In situ remediation of hexavalent chromium with pyrite fines : bench scale demonstration

    International Nuclear Information System (INIS)

    Cathum, S.; Wong, W.P.; Brown, C.E.

    2002-01-01

    An in situ remediation technique for chromium contaminated soil with pyrite fines was presented. Past industrial activities and lack of disposal facilities have contributed to a serious problem dealing with chromium, which cannot be eliminated from the environment because it is an element. Both bench-scale and laboratory testing was conducted to confirm the efficiency of the proposed process which successfully converted Cr(VI) into Cr(III) in soil and water. Cr(III) is less toxic and immobile in the environment compared to Cr(VI) which moves freely in the soil matrix, posing a risk to the groundwater quality. pH in the range of 2.0 to 7.6 has no effect on the reactivity of pyrite towards Cr(VI). The optimization of the bench-scale treatment resulted in a large volume of chromium waste, mostly from the control experiments and column hydrology testing. These waste streams were treated according to municipal guidelines before disposal to the environment. Samples of chromium waste before and after treatment were analyzed. Cr (VI) was completely mineralized to below guideline levels. It was determined that several conditions, including contact time between pyrite and Cr(VI), are crucial for complete mineralization of Cr(VI). 13 refs., 8 tabs., 9 figs

  11. Binding of oxygen on vacuum fractured pyrite surfaces: Reactivity of iron and sulfur surface sites

    Science.gov (United States)

    Berlich, A. G.; Nesbitt, H. W.; Bancroft, G. M.; Szargan, R.

    2013-05-01

    Synchrotron radiation excited photoelectron spectroscopy (SXPS) has been used to study the interaction of oxygen with vacuum fractured pyrite surfaces. Especially valence band spectra obtained with 30 eV photon energy were analyzed to provide a mechanism of the incipient steps of pyrite oxidation. These spectra are far more sensitive to the oxidation than sulfur or iron core level spectra. It is shown that oxygen is adsorbed on Fe(II) surface sites restoring the octahedral coordination of the Fe(II) sites. This process leads to the removal of two surface states in the valence band which are located at the low and high binding energy sides of the outer valence band, respectively. The existence of these surface states which have been proposed by calculations is experimentally proven. Furthermore, it is shown, that the sulfur sites are more reactive than expected. Sulfite like species are already formed after the lowest oxygen exposure of 10 L. This oxidation occurs at sulfur sites neighboring the Fe(II) surface sites. Oxidation of the S2 - surface sites which were considered as the most reactive species in former studies is second. No iron(III) oxides are formed during oxygen exposure, supporting the assumption that water plays an important role in the oxidation mechanism of pyrite surfaces.

  12. Indonesian coal export potential

    International Nuclear Information System (INIS)

    Millsteed, Ch.; Jolly, L.; Stuart, R.

    1993-01-01

    Indonesia's coal mining sector is expanding rapidly. Much of the increase in coal production since the mid-1980s has been exported. Indonesian coal mining companies have large expansion programs and continuing strong export growth is projected for the remainder of the 1990s. The low mining costs of indonesian coal, together with proximity to Asian markets, mean that Indonesia is well placed to compete strongly with other thermal coal exporters and win market share in the large and expanding thermal coal market in Asia. However, there is significant uncertainty about the likely future level of Indonesia's exportable surplus of coal. The government's planned expansion in coal fired power generation could constrain export growth, while the ability of producers to meet projected output levels is uncertain. The purpose in this article is to review coal supply and demand developments in Indonesia and, taking account of the key determining factors, to estimate the level of coal exports from Indonesia to the year 2000. This time frame has been chosen because all currently committed mine developments are expected to be on stream by 2000 and because it is difficult to project domestic demand for coal beyond that year. 29 refs., 8 tabs., 7 figs

  13. Sedimentary pyrite δ34S differs from porewater sulfide in Santa Barbara Basin: Proposed role of organic sulfur

    Science.gov (United States)

    Raven, Morgan Reed; Sessions, Alex L.; Fischer, Woodward W.; Adkins, Jess F.

    2016-08-01

    Santa Barbara Basin sediments host a complex network of abiotic and metabolic chemical reactions that knit together the carbon, sulfur, and iron cycles. From a 2.1-m sediment core collected in the center of the basin, we present high-resolution profiles of the concentrations and isotopic compositions of all the major species in this system: sulfate, sulfide (∑H2S), elemental sulfur (S0), pyrite, extractable organic sulfur (OS), proto-kerogen S, total organic and dissolved inorganic carbon, and total and reducible iron. Below 10 cm depth, the core is characterized by low apparent sulfate reduction rates (pyrite forming in shallow sediments is ∼30‰ more 34S-depleted than coexisting ∑H2S in porewater. S0 has the same strongly 34S-depleted composition as pyrite where it forms near the sediment-water interface, though not at depth. This pattern is not easily explained by conventional hypotheses in which sedimentary pyrite derives from abiotic reactions with porewater ∑H2S or from the products of S0 disproportionation. Instead, we propose that pyrite formation in this environment occurs within sulfate reducing microbial aggregates or biofilms, where it reflects the isotopic composition of the immediate products of bacterial sulfate reduction. Porewater ∑H2S in Santa Barbara Basin may be more 34S-enriched than pyrite due to equilibration with relatively 34S-enriched OS. The difference between OS and pyrite δ34S values would then reflect the balance between microbial sulfide formation and the abundance of exchangeable OS. Both OS and pyrite δ34S records thus have the potential to provide valuable information about biogeochemical cycles and redox structure in sedimentary paleoenvironments.

  14. Isolation and characterization of bacteria on the drainage water from Ratones mine and its behaviour on pyrite

    International Nuclear Information System (INIS)

    Merino, J. L.; Saez, R. M.

    1974-01-01

    This paper describes some of the studies made about iron and sulfur oxidizing bacteria on the drainage water from Ratones mine. Different liquid and solid media were utilized as well as some energy sources, ferrous sulphate, thiosulfate and sulfur. Some experiment were al so realized on museum grade pyrite aimed at determining the possibilities of applying the mentioned bacteria on the leaching of pyrite and subsequently on the leaching of uranium ores. (Author) 27 refs

  15. Sulfur amino acids and alanine on pyrite (100) by X-ray photoemission spectroscopy: Surface or molecular role?

    Science.gov (United States)

    Sanchez-Arenillas, M.; Galvez-Martinez, S.; Mateo-Marti, E.

    2017-08-01

    This paper describes the first successful adsorption of the cysteine, cystine, methionine and alanine amino acids on the pyrite (100) surface under ultra-high vacuum conditions with crucial chemical adsorption parameters driving the process. We have demonstrated by X-ray photoemission spectroscopy (XPS) that the surface pretreatment annealing process on pyrite surfaces is a critical parameter driving surface reactivity. The presence of enriched monosulfide species on the pyrite (100) surface favours the amino acid NH2 chemical form, whereas a longer annealing surface pretreatment of over 3 h repairs the sulfur vacancies in the pyrite, enriching disulfide species on the pyrite surface, which promotes NH3+ adsorption due to the sulfur vacancies in the pyrite being replaced by sulfur atom dimers (S22-) on the surface. Furthermore, even if the surface chemistry (monosulfide or disulfide species enrichment) is the main factor promoting a partial conversion from NH2 to NH3+ species, the unique chemical structure of each amino acid provides a particular fingerprint in the process.

  16. Advanced liquefaction using coal swelling and catalyst dispersion techniques

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. (Auburn Univ., AL (United States)); Gutterman, C. (Foster Wheeler Development Corp., Livingston, NJ (United States)); Chander, S. (Pennsylvania State Univ., University Park, PA (United States))

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  17. Geological Controls on Mineralogy and Geochemistry of an Early Permian Coal from the Songshao Mine, Yunnan Province, Southwestern China

    Directory of Open Access Journals (Sweden)

    Ruixue Wang

    2016-07-01

    Full Text Available This paper discusses the content, distribution, modes of occurrence, and enrichment mechanism of mineral matter and trace elements of an Early Permian coal from Songshao (Yunnan Province, China by means of coal-petrological, mineralogical, and geochemical techniques. The results show that the Songshao coal is characterized by high total and organic sulfur contents (3.61% and 3.87%, respectively. Lithium (170.39 μg/g and Zr (184.55 μg/g are significantly enriched in the Songshao coal, and, to a lesser extent, elements such as Hg, La, Ce, Nd, Th, Sr, Nb, Sn, Hf, V, and Cr are also enriched. In addition to Hg and Se that are enriched in the roof and floor strata of the coal seam, Li, La, Ce, Pr, Nd, Sm, Gd, Y, Cd, and Sb are slightly enriched in these host rocks. Compared to the upper continental crust, rare earth elements and yttrium in the host rocks and coal samples are characterized by a light-REE enrichment type and have negative Eu, positive Ce and Gd anomalies. Major minerals in the samples of coal, roof, and floor are boehmite, clay minerals (kaolinite, illite, and mixed layer illite-smectite, pyrite, and anatase. Geochemical and mineralogical anomalies of the Songshao coal are attributed to hydrothermal fluids, seawater, and sediment-source rocks.

  18. Sequential solvent extraction for the modes of occurrence of selenium in coals of different ranks from the Huaibei Coalfield, China

    Directory of Open Access Journals (Sweden)

    Wang Lei

    2007-12-01

    Full Text Available Abstract Forms of selenium in bituminous coal, anthracite, and cokeite (natural coke from Huaibei Coalfield, Anhui, China, have been determined by sequential solvent extraction. The selenium content in bulk samples is 4.0, 2.4, and 2.0 μg/g in bituminous coal, anthracite, and cokeite, respectively. The six forms of selenium determined by six-step solvent extraction are water-leachable, ion-exchangeable, organic matter-associated, carbonate-associated, silicate-associated, and sulfide-associated. The predominant forms of selenium in bituminous coal are organic matter-associated (39.0%, sulfide-associated (21.1%, and silicate bound (31.8%; these three forms account for 92% of the total. The organic matter bound-selenium decrease dramatically from bituminous coal (39.0% to anthracite (11.6% and to cokeite (0%, indicating that organic matter bound selenium is converted to other forms during metamorphism of the coal, most likely sulfide-form. The sulfide-associated form increased remarkably from bituminous coal (21.1% to anthracite (50.4% and cokeite (54.5%, indicating the formation of selenium sulfide, possibly in pyrite during the transformation of bituminous coal to anthracite and cokeite. The silicate-associated selenium in bituminous coal (31.8% is much higher than that in anthracite (16.4% and cokeite (15.8%, indicating that silicate-associated selenium is partly converted to sulfide during metamorphism.

  19. Geologic coal assessment: The interface with economics

    Science.gov (United States)

    Attanasi, E.D.

    2001-01-01

    Geologic resource assessments describe the location, general characteristics, and estimated volumes of resources, whether in situ or technically recoverable. Such compilations are only an initial step in economic resource evaluation. This paper identifies, by examples from the Illinois and Appalachian basins, the salient features of a geologic assessment that assure its usefulness to downstream economic analysis. Assessments should be in sufficient detail to allocate resources to production units (mines or wells). Coal assessments should include the spatial distribution of coal bed characteristics and the ability to allocate parts of the resource to specific mining technologies. For coal bed gas assessment, the production well recoveries and well deliverability characteristics must be preserved and the risk structure should be specified so dryholes and noncommercial well costs are recovered by commercially successful wells. ?? 2001 International Association for Mathematical Geology.

  20. Cofiring biomass with coal: Opportunities for Malaysia

    Science.gov (United States)

    Rahman, A. A.; Shamsuddin, A. H.

    2013-06-01

    Malaysia generated 108,175 GWh of electricity in 2010 where 39.51 % was sourced from coal. Coal power generation is also planned to overtake natural gas as the main fuel for electricity generation within the next two decades. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper studies the option of cofiring biomass in existing Malaysian coal power plants to increase the nation's renewable energy mix as well as to reduce its power sector carbon dioxide emission. Benefits of cofiring to the nation were discussed and agricultural residues from palm oil and paddy was identified as a potential source of biomass for cofiring. It was also found that there is a willingness for cofiring by stakeholders but barriers existed in the form of technical issues and lack of clear direction and mechanism.

  1. Cofiring biomass with coal: Opportunities for Malaysia

    International Nuclear Information System (INIS)

    Rahman, A A; Shamsuddin, A H

    2013-01-01

    Malaysia generated 108,175 GWh of electricity in 2010 where 39.51 % was sourced from coal. Coal power generation is also planned to overtake natural gas as the main fuel for electricity generation within the next two decades. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper studies the option of cofiring biomass in existing Malaysian coal power plants to increase the nation's renewable energy mix as well as to reduce its power sector carbon dioxide emission. Benefits of cofiring to the nation were discussed and agricultural residues from palm oil and paddy was identified as a potential source of biomass for cofiring. It was also found that there is a willingness for cofiring by stakeholders but barriers existed in the form of technical issues and lack of clear direction and mechanism.

  2. Geochemistry of Early Frasnian (Late Devonian) pyrite-ammonoid level in the Kostomłoty Basin, Poland, and a new proxy parameter for assessing the relative amount of syngenetic and diagenetic pyrite

    Science.gov (United States)

    Pisarzowska, Agnieszka; Berner, Zsolt A.; Racki, Grzegorz

    2014-07-01

    Pyrite geochemistry (isotope and trace element composition, degree of pyritization, S/Corg ratio) was used in context of selected lithogeochemical parameters (major and trace elements, including sulphur, organic carbon, and δ13C of carbonate carbon) to constrain fluctuations in depositional conditions during the Early to Middle Frasnian carbon isotopic perturbation (punctata Event) in the Kostomłoty Basin, Poland. Based on the ratio between the sum of oxyanionic elements and transition metals in pyrite, a new proxy parameter (index of syngenetic pyrite, ISYP) is proposed for assessing the relative amount of syngenetic pyrite in a sample. The distribution of the ISYP along the Kostomłoty - Małe Górki section (upper Szydłówek to the basal Kostomłoty beds) is in concert with conclusions inferred from paleoecologic data and other geochemical parameters (degree of pyritization, S/Corg, δ34Spyrite). According to these, the lower segment of the Szydłówek Beds was deposited in a normally oxygenated environment, but undergoing increasing primary productivity in surface water, as indicated by an increase in δ13Ccarb and in Cu/Zr ratio in bulk rock, which triggered the periodic deposition of sediments slightly enriched in organic matter, notably within the pyrite-ammonoid level (= Goniatite Level). Fluctuating, but in general high S/Corg ratios, DOPR values and ISYP values suggest that during this time - against the background of a generally dysoxic environment - shorter or longer lasting episodes of more restricted (anoxic and possibly even euxinic) bottom water conditions developed. Low sedimentation rates enabled a continuous and practically unlimited supply of sulphate during bacterial sulphate reduction (BSR), which in turn led to a strong depletion of pyrite sulphur in 34S in this interval (constantly around -29‰). In contrast, below and above the Goniatite Level, higher δ34S values (up to + 3‰), are compatible with closed system conditions and higher

  3. A supply chain based assessment of water issues in the coal industry in China

    International Nuclear Information System (INIS)

    Pan Lingying; Liu Pei; Ma Linwei; Li Zheng

    2012-01-01

    Shortages of water and geographically uneven distribution of coal and water pose great challenges to sustainable development of the coal industry in China. In this paper, we illustrate the major challenges existing in the coal industry from a supply chain viewpoint, and propose technical and policy suggestions to address them. First, we provide quantitative information about water withdrawal, consumption, waste water recycling and treatment and pollution from coal mining, preparation, to final conversion for China's power generation and coal-to-chemical industry. We then analyze scenarios of water use in China's coal industry between 2020 and 2030. Our results show that water issues are becoming increasingly severe constraints for coal development in China, especially in North and West China, where water is more scarce and ecological systems are more vulnerable than other regions. Without implementing effective water-saving measures or regulations the water demand in the coal industry could dramatically increase and probably exceed China's water supply capacity in the near-term future, bringing substantial uncertainty to sustainable development of China's energy economy. We also illustrate that coal-fired power generation, with appropriate technical improvement and proper policy supports, has the greatest potential for water savings in the coal industry. Our conclusions also underscore the importance of expanding energy efficiency and renewable energy in China so as to limit the country's dependence on coal. - Highlights: ► We provide information of water supply and use in the coal industry in China. ► We analyze scenarios of water use in China's coal industry between 2020 and 2030. ► Water issues are becoming severe constrains for the coal industry in China. ► The water demand in the coal industry could exceed China's water supply capacity. ► Coal-fired power generation has great potential for water savings.

  4. Disposing of coal combustion residues in inactive surface mines: Effects on water quality

    International Nuclear Information System (INIS)

    Kim, A.G.; Ackman, T.E.

    1994-01-01

    The disposal of coal combustion residues (CCR) in surface and underground coal mines can provide a stable, low-maintenance alternative to landfills, benefiting the mining and electric power industries. The material may be able to improve water quality at acid generating abandoned or reclaimed coal mine sites. Most combustion residues are alkaline, and their addition to the subsurface environment could raise the pH, limiting the propagation of pyrite oxidizing bacteria and reducing the rate of acid generation. Many of these CCR are also pozzolanic, capable of forming cementitious grouts. Grouts injected into the buried spoil may decrease its permeability and porosity, diverting water away from the pyritic material. Both mechanisms, alkaline addition and water diversion, are capable of reducing the amount of acid produced at the disposal site. The US Bureau of Mines is cooperating in a test of subsurface injection of CCR into a reclaimed surface mine. Initially, a mixture of fly ash, lime, and acid mine drainage (AMD) sludge was injected. Lime was the source of calcium for the formation of the pozzolanic grout. Changes in water quality parameters (pH, acidity, anions, and trace metals) in water samples from wells and seeps indicate a small but significant improvement after CCR injection. Changes in the concentration of heavy metals in the water flowing across the site were apparently influenced by the presence of flyash

  5. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  6. Coal sector profile

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  7. A silica/fly ash-based technology for controlling pyrite oxidation. Semi-annual, March 1, 1996 - August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Evangelou, V.P. [USDOE Pittsburgh Energy Technology Center, PA (United States)

    1996-12-31

    The overall objective is to develop methodologies by which metasilicate or fly ash may produce an effective coating on pyrite surfaces for inhibiting pyrite oxidation. During the past six months, the investigators produced wet chemistry evidence demonstrating that pyrite-HCO{sub 3} complexes promote pyrite oxidation. This is an important finding for their over all strategy in controlling pyrite oxidation because it suggests that pyrite microencapsulation is important in order to control oxidation in near cirumneutral pH environments produced by addition of alkaline material, e.g., fly ash. In their previous studies, the investigators reported that pyrite microencapsulation could be carried out by reacting pyrite with a pH buffered solution and in the presence of metasilicate. The coating formed on the surface of pyrite appeared to be an amorphous iron-oxide-silicate material which inhibited pyrite oxidation. During this past six months, the investigators evaluated: the molecular mechanisms of silicate adsorption by iron oxide; the effects of silicate on the bulk and surface properties of iron oxides; and the effect of silicate on metal-cation adsorption properties by iron oxides.

  8. Liquid Tin Anode Direct Coal Fuel Cell Final Program Report

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Thomas

    2012-01-26

    This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

  9. Combustion characterization of beneficiated coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Levasseur, A.A.

    1995-11-01

    The Pittsburgh Energy Technology Center (PETC) of the U.S. Department of Energy is sponsoring the development of advanced coal-cleaning technologies aimed at expanding the use of the nation`s vast coal reserves in an environmentally and economically acceptable manner. Because of the lack of practical experience with deeply beneficiated coal-based fuels, PETC has contracted Combustion Engineering, Inc. to perform a multi-year project on `Combustion Characterization of Beneficiated Coal-Based Fuels.` The objectives of this project include: (1) the de