WorldWideScience

Sample records for coal pyrite technical

  1. Semiconductor electrochemistry of coal pyrite. Final technical report, September 1990--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Wei, D.

    1996-01-01

    This project is concerned with the physiochemical processes occuring at the pyrite/aqueous interface, in the context of coal cleaning, desulfurization, and acid mine drainage. The use of synthetic particles of pyrite as model electrodes to investigate the semiconductor electrochemistry of pyrite is employed.

  2. Comparison Analysis of Coal Biodesulfurization and Coal's Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    Science.gov (United States)

    Hong, Fen-Fen; He, Huan; Liu, Jin-Yan; Tao, Xiu-Xiang; Zheng, Lei; Zhao, Yi-Dong

    2013-01-01

    Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal's pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal's pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal's pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32%) and jarosite (18.99%) were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34%) and elemental sulfur (50.72%) but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process. PMID:24288464

  3. Semiconductor electrochemistry of coal pyrite. Final technical report, September 1990--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Wei, Dawei

    1996-01-01

    This project seeks to advance the fundamental understanding of the physico-chemical processes occurring at the pyrite/aqueous interface, in the context of coal cleaning, coal desulfurization, and acid mine drainage. Central to this research is the use of synthetic microsize particles of pyrite as model microelectrodes to investigate the semiconductor electrochemistry of pyrite. The research focuses on: (a) the synthesis of microsize particles of pyrite in aqueous solution at room temperature, (b) the formation of iron sulfide complex, the precursor of FeS or FeS{sub 2}, and (c) the relationship between the semiconductor properties of pyrite and its interfacial electrochemical behavior in the dissolution process. In Chapter 2, 3 and 4, a suitable protocol for preparing microsize particles of pyrite in aqueous solution is given, and the essential roles of the precursors elemental sulfur and ``FeS`` in pyrite formation are investigated. In Chapter 5, the formation of iron sulfide complex prior to the precipitation of FeS or FeS{sub 2} is investigated using a fast kinetics technique based on a stopped-flow spectrophotometer. The stoichiometry of the iron sulfide complex is determined, and the rate and formation constants are also evaluated. Chapter 6 provides a summary of the semiconductor properties of pyrite relevant to the present study. In Chapters 7 and 8, the effects of the semiconductor properties on pyrite dissolution are investigated experimentally and the mechanism of pyrite dissolution in acidic aqueous solution is examined. Finally, a summary of the conclusions from this study and suggestions for future research are presented in Chapter 9.

  4. Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion, Inst. of Coal Chemistry

    2000-10-01

    The thermal behaviour of pure pyrite was studied under nitrogen and hydrogen atmospheres in a pressurized thermal balance. The transfer of pyrite in coal during pyrolysis and hydropyrolysis was investigated in a fixed-bed reactor. The results suggest that the indigenous hydro-carbon with hydrogen donor ability in coal can promote the reduction of pyrite in pyrolysis. At low temperatures, organic sulfur removal is almost the same in pyrolysis and hydropyrolysis of two coals. It is likely that indigenous hydrogen in coal is the dominant factor in organic sulfur elimination in the low-temperature stage. An increase of organic sulfur in pyrolysis of Hongmiao coal indicates that the lack of the indigenous hydrogen may be the key factor determining the transformation of pyritic sulfur into organic sulfur. Oxygen affects the conversion of pyrite into organic sulfur through the competitive consumption of hydrogen. 12 refs., 5 figs., 1 tab.

  5. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  6. Waste pyritic coal as a raw material for energetic industry

    Energy Technology Data Exchange (ETDEWEB)

    Gasiorek, J. [Institute of Inorganic Chemistry, Poznan (Poland). Dept. of Research and Technology

    1997-11-01

    Results are presented of large laboratory studies on coal desulphurisation with foam flotation method improved by application of bioadsorption of Thiobacillus ferrooxidans bacteria to the modification of superficial properties of pyrite particulates from hydrophobic to hydrophillic ones. Results of coal desulfurization with and without bioadsorption have been compared. Bioadsorption improved pyritic sulfur removal by 30% (for coal from `Sierza mine`, coal size 0.3 to 0.102 mm, S pyritic content 1.69%) after 6-week adaptation of bacteria and 30 min of bioadsorption. Bacteria concentration in 5% water suspension of coal reached 22 {mu}g of biomass cm{sup -3}. 12 refs., 4 figs., 1 tab.

  7. Comparison Analysis of Coal Biodesulfurization and Coal’s Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Fen-Fen Hong

    2013-01-01

    Full Text Available Acidithiobacillus ferrooxidans (A. ferrooxidans was applied in coal biodesulfurization and coal’s pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal’s pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal’s pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32% and jarosite (18.99% were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34% and elemental sulfur (50.72% but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process.

  8. A dynamic mathematical model for microbial removal of pyritic sulfur from coal.

    Science.gov (United States)

    Kargi, F; Weissman, J G

    1984-06-01

    A dynamic mathematical model has been developed to describe microbial desulfurization of coal by Thiobacillus ferrooxidans. The model considers adsorption and desorption of cells on coal particles and microbial oxidation of pyritic sulfur on particle surfaces. The influence of certain parameters, such as microbial growth rate constants, adsorption-description constants, pulp density, coal particle size, initial cell and solid phase substrate concentration on the maximum rate of pyritic sulfur removal, have been elucidated. The maximum rate of pyritic sulfur removal was strongly dependent upon the number of attached cells per coal particle. At sufficiently high initial cell concentrations, the surfaces of coal particles are nearly saturated by the cells and the maximum leaching rate is limited either by total external surface area of coal particles or by the concentration of pyritic sulfur in the coal phase. The maximum volumetric rate of pyritic sulfur removal (mg S/h cm(3) mixture) increases with the pulp density of coal and reaches a saturation level at high pulp densities (e.g. 45%). The maximum rate also increases with decreasing particle diameter in a hyperbolic form. Increases in adsorption coefficient or decreases in the desorption coefficient also result in considerable improvements in this rate. The model can be applied to other systems consisting of suspended solid substrate particles in liquid medium with microbial oxidation occurring on the particle surfaces (e.g., bacterial ore leaching). The results obtained from this model are in good agreement with published experimental data on microbial desulfurization of coal and bacterial ore leaching.

  9. Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    1999-07-01

    The thermal decomposition and reduction behaviour of pure pyrite crystals were studied under nitrogen and hydrogen atmospheres. Decomposition of pyrite in coal during pyrolysis and hydropyrolysis, and the behaviour of organic sulphur, are discussed. Temperature and pressure effects are considered. 7 refs., 6 figs., 1 tab.

  10. Source and Enrichment of Toxic Elements in Coal Seams around Mafic Intrusions: Constraints from Pyrites in the Yuandian Coal Mine in Anhui, Eastern China

    Directory of Open Access Journals (Sweden)

    Yanfei An

    2018-04-01

    Full Text Available Pyrite, a mineral that can cause potential environmental issues in coal mining, is commonly found in coal seams around intrusions. In this paper, pyrites from the Yuandian Coal Mine (Huaibei Coalfield, Anhui, Eastern China were studied using SEM, Raman and LA-ICP-MS. The pyrite morphologic and geochemical data suggest that (1 four pyrite generations are present (framboidal sedimentary pyrites (Py I in the original coal, coarse-grained magmatic pyrites (Py II in the intruding diabase, fine-grained metamorphic pyrites (Py III in the intrusive contact aureole, and spheroid/vein hydrothermal pyrites (Py IV in the cokeite; and (2 concentrations of cobalt, nickel, arsenic, selenium, lead and copper in the metamorphic pyrites are much higher than the other pyrite generations. We propose that mafic magmatism is the main contributor of the toxic elements to the intrusion-related cokeite at Yuandian.

  11. Distribution of sulfur and pyrite in coal seams from Kutai Basin (East Kalimantan, Indonesia): Implications for paleoenvironmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Widodo, Sri [Department of Mining Engineering, Moslem University of Indonesia, Jln. Urip Sumoharjo, Makassar (Indonesia); Oschmann, Wolfgang [Institute of Geosciece, J.W. Goethe-University, Altenhoeferallee 1, D-60438 Frankfurt a.M. (Germany); Bechtel, Achim; Sachsenhofer, Reinhard F. [Department of Applied Geoscience and Geophysics, University of Leoben, Peter-Tunner-Str.5, A-8700 Leoben (Austria); Anggayana, Komang [Department of Mining Engineering, Bandung Institute of Technology, Jln. Ganesa 10, I-40132 Bandung (Indonesia); Puettmann, Wilhelm [Institute of Atmospheric and Environmental Sciences, Dapartment of Analytical Enviromental Chemistry, J.W. Goethe-University, Altenhoeferallee 1, D-60438 Frankfurt a.M. (Germany)

    2010-03-01

    Thirteen Miocene coal samples from three active open pit and underground coal mines in the Kutai Basin (East Kalimantan, Indonesia) were collected. According to our microscopical and geochemical investigations, coal samples from Sebulu and Centra Busang coal mines yield high sulfur and pyrite contents as compared to the Embalut coal mine. The latter being characterized by very low sulfur (< 1%) and pyrite contents. The ash, mineral, total sulfur, iron (Fe) and pyrite contents of most of the coal samples from the Sebulu and Centra Busang coal mines are high and positively related in these samples. Low contents of ash, mineral, total sulfur, iron (Fe) and pyrite have been found only in sample TNT-32 from Centra Busang coal mine. Pyrite was the only sulfur form that we could recognize under reflected light microscope (oil immersion). Pyrite occurred in the coal as framboidal, euhedral, massive, anhedral and epigenetic pyrite in cleats/fractures. High concentration of pyrite argues for the availability of iron (Fe) in the coal samples. Most coal samples from the Embalut coal mine show lower sulfur (< 1 wt.%) and pyrite contents as found within Centra Busang and Sebulu coals. One exception is the coal sample KTD-38 from Embalut mine with total sulfur content of 1.41 wt.%. The rich ash, mineral, sulfur and pyrite contents of coals in the Kutai Basin (especially Centra Busang and Sebulu coals) can be related to the volcanic activity (Nyaan volcanic) during Tertiary whereby aeolian material was transported to the mire during or after the peatification process. Moreover, the adjacent early Tertiary deep marine sediment, mafic igneous rocks and melange in the center of Kalimantan Island might have provided mineral to the coal by uplift and erosion. The inorganic matter in the mire might also originate from the ground and surface water from the highland of central Kalimantan. (author)

  12. Use of the Moessbauer effect for determining pyritic sulfur content in coal

    Energy Technology Data Exchange (ETDEWEB)

    Czerw, B; Sikora, T

    1986-10-01

    This paper discusses investigations into resonance absorption of gamma radiation. Standard equipment for measuring the Moessbauer effect in black coal consisting of a measuring head, the SM-4T spectrometer, a multichannel analyzer, the Standard electronic unit and a printer is evaluated. The MSP measuring system developed jointly by the EMAG Mine Automation Company and the Nuclear Research Institute in Swierk is described. The MSP equipment is used for measuring content of pyritic sulfur in coal. Its accuracy is satisfactory. Results of measuring pyritic and total sulfur content by means of quantitative chemical analysis and by the MSP resonance absorption method (Moessbauer effect) are compared. The mean standard deviation for pyritic sulfur is 0.14% and for total sulfur content 0.21%. 11 refs.

  13. Oxidation of pyrite: Consequences and significance

    Directory of Open Access Journals (Sweden)

    Dimitrijević Mile D.

    2002-01-01

    Full Text Available This paper presents the most important studies on the oxidation of pyrite particularly in aqueous solutions. The consequences of pyrite oxidation was examined, as well as its importance, from both the technical-technological and environmental points of view. The oxidation of pyrite was considered in two parts. The spontaneous oxidation of pyrite in nature was described in the first part, with this part comprising pyrite oxidation in deposits depots and mines. It is explained how way natural electrochemical processes lead to the decomposition of pyrite and other minerals associated with pyrite. The oxidation of pyrite occurring during technological processes such as grinding, flotation and leaching, was shown in the second part. Particular emphasis was placed on the oxidation of pyrite during leaching. This part includes the leaching of sulphide and oxide ores, the leaching of pyrite coal and the leaching of refractory gold-bearing ores (pressure oxidation, bacterial oxidation, oxidation by means of strong oxidants and the electrolysis of pyrite suspensions. Various mechanisms of pyrite oxidation and of the galvanic interaction of pyrite with other sulphide minerals are shown.

  14. Role of non-ferrous coal minerals and by-product metallic wastes in coal liquefaction. Technical progress report, December 1, 1980-February 28, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Garg, D.; Givens, E.N.; Schweighardt, F.K.; Curtis, C.W.; Guin, J.A.; Huang, W.J.; Shridharani, K.

    1981-04-01

    Results from screening studies showed that the pyrite samples separated from various coal seams had similar catalytic activity. The addition of all the pyrite samples to feed slurry increased conversion of coal and production of oil. A sample of fusinite was also tested for its liquefaction behavior with and without added pyrite. The addition of pyrite increased the conversion of fusinite and production of oil. These results show that pyrite catalyzes the conversion of fusinite and therefore improves overall coal conversion. Conversion of coal and oil production increased by impregnating coal with iron and molybdenum compounds. Coal conversion and oil production also increased with increasing concentration of both iron and molybdenum impregnated on coal. Addition of various transition metal sulfides increased coal conversion and oil production. Dramatic improvements were noted with nickel, vanadium, and tin sulfides. Addition of transition metal naphthenates produced mixed results; some of them improved coal conversion and others had no effect. The effect of metal concentration on coal conversion was also not clear. Deep cleaning of coal did not affect coal conversion, but it significantly reduced oil production. Addition of pyrite separated from coal to deep cleaned coal sample regained the oil production to the original value, i.e., oil produced from liquefaction of raw coal.Coal cleaned by oil agglomeration gave highest coal conversion and oil production. Basic and non-basic nitrogen compounds reduced the naphthalene hydrogenation activity of both Co-Mo-Al and sulfided Fe/sub 2/O/sub 3/. Sulfided Fe/sub 2/O/sub 3/ was inactive for denitrogenation of quinoline, and the reaction product mainly consisted of hydrogenated and hydrocracked quinoline. On the contrary, Co-Mo-Al was active for denitrogenation of quinoline, resulting in lower quinoline poisoning.

  15. Investigation of pyrite as a contributor to slagging in eastern bituminous coals. Quarterly progress report 9, October 1-December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Bryers, R.W.

    1984-06-01

    The objective of this program is to examine slags formed as a result of firing coals with varying concentration levels, size distribution, and orientation of pyrite with regard to mineral matter in the coal in a laboratory furnace. The program tasks are: (1) selection of eight candidate coals; (2) chemical characterization of the coal samples and identification of the pyrite size, distribution, and orientation with respect to other mineral matter and concentration levels; (3) testing of the candidate coals in a laboratory furnace; (4) chemical and physical characterization of the slag and fly ash samples created by the impurities in the coal sample; (5) influence of coal beneficiation on furnace slagging; and (6) analysis of data and identification of parameters influencing the contribution of pyrite to slagging problems. Washing of the Upper Freeport coal from Indiana County, Pennsylvania, was completed by the last quarter of 1983. The washed product was characterized for mineral content, and a combustion test was performed. Kentucky No. 9 from Henderson County, Kentucky, selected as the sixth coal to be investigated, was characterized using size and gravity fractionation techniques and was combusted in the laboratory furnace to evaluate its slagging and fouling potential. The remaining two coals to be characterized and combusted were identified as Illinois No. 5 and Lower Kittanning from Clarion County, Pennsylvania. 80 figures, 27 tables.

  16. Role of non-ferrous coal minerals and by-product metallic wastes in coal liquefaction. Technical progress report, June 1, 1980-August 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Garg, D; Givens, E N; Schweighardt, F K; Clinton, J H; Tarrer, A R; Guin, J A; Curtis, C W; Huang, W J; Shridharani, K

    1980-09-01

    Additional data on the pyrite catalysis of liquefaction of Elkhorn number 3 coal are presented. The liquefaction of Elkhorn number 3 coal was significantly catalyzed by the presence of pyrite. Coal conversion, oil yield and preasphaltene conversion all increased when pyrite was added. An increase in hydrocarbon gas make accompanied by a higher hydrogen consumption were also observed. The higher activity in the presence of pyrite could be utilized by running the liquefaction step at milder conditions which would mean a lower gas make. Although we had heard reports that sulfur elimination from the SRC was improved by use of pyrite, our data showed only very small changes. Nitrogen removal from the solvent, however, was definitely observed. At 850/sup 0/F nitrogen in the oil product went from 1.61 to 1.12 on adding pyrite. This increased nitrogen removal was also seen in the added ammonia yields. Kentucky number 9 coal also responded very well to the presence of pyrite. Conversions and oil yields increased while the hydrocarbon yields decreased at both temperatures that were tested, i.e., 825 and 850/sup 0/F. Hydrogen consumptions also increased. In the screening program the results from testing a number of materials are reported. None of the zeolites gave any significant improvement over coal itself. The iron, molybdenum, nickel, and cobalt rich materials had significant activity, all 85 to 90% conversion with high oil yields.Among materials specifically reported this period the clays failed to show any significant catalytic effect.

  17. Role of non-ferrous coal minerals and by-product metallic wastes in coal liquefaction. Technical progress report, September 1, 1980-November 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Garg, D.; Givens, E.N.; Schweighardt, F.K.; Curtis, C.W.; Guin, J.A.; Shridharani, K.; Huang, W.J.

    1981-02-01

    The effects of minerals and inexpensive ores or by-products (pyrites, red mud, flue dust, speculites, zinc sulfides, calcium oxide, dolomites, mica, molybdenite) in catalysing coal liquefaction or the hydrogenation of process solvents was studied with different cokes and solvents. Improved results were obtained in several cokes and th results are given in terms of oil fields, hydrogen consumption, desulfurization of SRC, etc. The addition of pyrite resulted in increased production of oils and increased conversion of coal; however, the effects varied from coal to coal. Dolomite, mica and molybdenite had insignificant catalytic activity. The reduction of pyrite, Fe/sub 2/O/sub 3/ and Fe/sub 3/O/sub 4/ at process conditions was studied. (LTN)

  18. Mössbauer study of the effect of gamma irradiation on the removal of pyrite from Colombian coals

    International Nuclear Information System (INIS)

    Mejía, J A; Palacio, C A; Caballero, F Reyes; Dávila, H Olaya; Ovalle, S A Martínez; De Grave, E

    2014-01-01

    The removal of sulfur from the coals is necessary before using it. It is due to the environmental and technological problems that it causes. In this work, the results of the study by Mössbauer spectroscopy of the gamma-irradiation effect on the pyrite in three Colombian coals are analyzed. They were exposed to different gamma-irradiation doses using a 60 Co source

  19. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Akan-Etuk, A.; Diaz, R.; Niksa, S.

    1991-10-01

    The objective of the present work is to introduce an experimental program that will eventually lead to time-resolved iron ash composition over the technological operating domain. The preceding literature survey suggests two important stipulations on any such experimental program. The first stipulation is that good control must be established over the operating conditions, to accurately quantify their effects. The other is that data must be obtained rapidly, to thoroughly cover the important operating domain. This work presents a series of studies that has characterized the desulfurization of pyrite during the early stages of combustion. An experimental system was established and used to monitor the effects of oxygen, temperature, and residence time on the evolution of condensed phase products of the combustion of pure pyrite. (VC)

  20. Tellurium Enrichment in Jurassic Coal, Brora, Scotland

    Directory of Open Access Journals (Sweden)

    Liam Bullock

    2017-11-01

    Full Text Available Mid-Jurassic pyritic coals exposed at the village of Brora, northern Scotland, UK, contain a marked enrichment of tellurium (Te relative to crustal mean, average world coal compositions and British Isles Carboniferous coals. The Te content of Brora coal pyrite is more than one order of magnitude higher than in sampled pyrite of Carboniferous coals. The Te enrichment coincides with selenium (Se and mercury (Hg enrichment in the rims of pyrite, and Se/Te is much lower than in pyrites of Carboniferous coals. Initial pyrite formation is attributed to early burial (syn-diagenesis, with incorporation of Te, Se, Hg and lead (Pb during later pyrite formation. The source of Te may have been a local hydrothermal system which was responsible for alluvial gold (Au in the region, with some Au in Brora headwaters occurring as tellurides. Anomalous Te is not ubiquitous in coal, but may occur locally, and is detectable by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS.

  1. Role of non-ferrous coal minerals and by-product metallic wastes in coal liquefaction. Technical progress report, March 1, 1981-May 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Garg, D.; Givens, E.N.; Schweighardt, F.K.; Curtis, C.W.; Guin, J.A.; Huang, W.J.; Shridharani, K.

    1981-06-01

    This report covers results from both tubing-bomb experiments and continuous PDU runs. The following materials were evaluated in the PDU on Elkhorn No. 2 coal from Floyd County, Kentucky: Molybdic oxides; iron oxide; pyrite; pyrite/iron oxide mixture, and iron sulfate impregnation. A base case liquefaction run was also made for direct comparison. All of the above materials were examined at both 825 and 850/sup 0/F. Tubing-bomb experiments are reported on pyrite, red mud, sodium sulfide and organic compounds of cobalt, nickel, molybdenum, zinc, chromium and lead. Significant conclusions were drawn on the catalysis by different materials. Especially significant was the higher level of activity resulting from impregnation versus particle incorporation of the catalyst in the system. Impregnation of coal decreased the hydrocarbon gases yield and increased oil yield. Hydrogen consumption was significantly reduced by impregnation. Addition of molybdic oxide containing 90% MoO/sub 3/ and 10% silica to coal liquefaction reaction mixture had the following effect: coal conversion increased, oil yield increased by more than a factor of two at both temperatures, hydrogen consumption increased, solvent/oil fraction showed substantial increase in hydrogen content, and molybdenum in the resulting liquefaction residue was apparently transformed into an amorphous material. A more thorough evaluation of completely sulfided molybdenum will be made to see if its activity increases. In the tubing-bomb experiments organic compound of molybdenum showed the highest activity for coal conversion and oil production. Significant synergism was noted between red mud and sodium sulfide in the coal liquefaction reaction.

  2. Application of Acidithiobacillus Ferrooxidans in coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Amini, E.; Hosseini, T.R.; Oliazadeh, M.; Kolahdoozan, M. [University of Queensland, Brisbane, Qld. (Australia)

    2009-07-01

    Bioflotation is a potential method for removing pyritic sulphur from coal. Sodium cyanide is a well-known depressant for pyrite in flotation of sulphide minerals; however, for coal this reagent is unacceptable from the environmental point of view. This study investigates an alternate to sodium cyanide, Acidithiobacillus Ferrooxidans, a nonharmful bacterial reagent as a pyrite depressant. The flotation behavior of pyrite and other gangue particles using the sodium cyanide and the Ferrooxidans is compared by applying the general first-order flotation model. The kinetic parameters extracted from the model demonstrated that the modified flotation rate of pyrite was reduced, and the selectivity between coal and gangue was improved using the bacteria. These results indicate that Acidithiobacillus Ferrooxidans has potential in removing pyritic sulfur from coal.

  3. Self-scrubbing coal

    International Nuclear Information System (INIS)

    Kindig, J.K.

    1992-01-01

    More than 502 million tons - 65 percent of all coal shipped to utilities in 1990 - were above 1.2 pounds of sulfur dioxide per million Btu. Most of the coal, even though cleaned in conventional coal preparation plants, still does not meet the emission limitation the Clean Air Act Amendments mandate for the year 2000. To cope with this fact, most utilities plan to switch to low sulfur (western U.S. or Central Appalachian) coal or install scrubbers. Both solutions have serous drawbacks. Switching puts local miners out of work and weakens the economy in the utility's service territory. Scrubbing requires a major capital expenditure by the utility. Scrubbers also increase the operating complexity and costs of the generating station and produce yet another environmental problem, scrubber sludge. Employing three new cost-effective technologies developed by Customer Coals International (CCl), most non-compliance coals east of the Mississippi River can be brought into year-2000 compliance. The compliance approach employed, depends upon the characteristics of the raw coal. Three types of raw coal are differentiated, based upon the amount of organic sulfur in the coals and the ease (or difficultly) of liberating the pyrite. They are: Low organic sulfur content and pyrite that liberates easily. Moderate organic sulfur content and pyrite that liberates easily. High organic sulfur content or the pyrite liberates with difficulty. In this paper examples of each type of raw coal are presented below, and the compliance approach employed for each is described. The names of the beneficiated coal products produced from each type of raw coal give above are: Carefree Coal, Self-Scrubbing Coal and Dry-Scrubbing Coal

  4. Desulphurization of coal: bioleaching versus bioconditioning and flotation

    Energy Technology Data Exchange (ETDEWEB)

    M. Zeki Dogan; Gulhan Ozbayoglu [Istanbul Technical University, Istanbul (Turkey). Faculty of Mining

    2007-07-01

    There are two bio-desulphurization methods for the removal of pyritic sulphur, namely, bacterial leaching and bacterial conditioning for pyrite depression followed by flotation of coal. Bacterial leaching is a slow process, consequently, microbial desulphurization is focused on conditioning coal by bacteria for a short time, followed by flotation. The application of Acidithiobacillus ferrooxidans in bioconditioning followed by flotation process help the oxidation of pyrite surface and enhance its depression during the flotation of coal. By bacterial conditioning for 4 hours followed by flotation, almost 78 % pyritic sulphur removal was attained with the yield of 78 % in the floated coal, whereas bacterial leaching resulted in pyritic sulphur removal of 56.60 % in 10 days. 17 refs., 5 tabs.

  5. Biochemical removal of HAP precursors from coal. Quarterly technical progress report, April--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Analytical methods were finalized and all analyses completed on shake flask tests with Indiana No. 5 and Pittsburgh No. 8 coal. A column leaching-rotating biological contractor (RBC) unit was used to bioleach pyrite and hazardous air pollutant precursors from Pittsburgh No. 8 coal. Shake flask tests with Rosebud subbituminous coal were begun. In connection with upcoming slurry column reactor tests, coal was prepared and shipped to INEL, and a detailed work plan was developed for operation and sampling for the tests. A manuscript and poster was prepared for presentation at the PETC contractors conference.

  6. Studies on the effect of coal particle size on biodepyritization of high sulfur coal in batch bioreactor

    Directory of Open Access Journals (Sweden)

    Singh Sradhanjali

    2015-03-01

    Full Text Available The moderate thermophilic mix culture bacteria were used to depyritize the Illinois coal of varying particle sizes (-100 μm, 100-200 μm, +200 μm. Mineral libration analysis showed the presence of pyrite along with other minerals in coal. Microbial depyritization of coal was carried out in stirred tank batch reactors in presence of an iron-free 9K medium. The results indicate that microbial depyritization of coal using moderate thermophiles is an efficient process. Moreover, particle size of coal is an important parameter which affects the efficiency of microbial depyritization process. At the end of the experiment, a maximum of 75% pyrite and 66% of pyritic sulphur were removed from the median particle size. The XRD analysis showed the absence of pyrite mineral in the treated coal sample. A good mass balance was also obtained with net loss of mass ranging from 5-9% showing the feasibility of the process for large scale applications.

  7. Kinetic comparison of biological and conventional flotation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Amini, E.; Oliazadeh, M.; Kolahdoozan, M. [University of Queensland, Brisbane, Qld. (Australia)

    2009-03-15

    Froth flotation is commonly used in coal processing to selectively recover the organic material (coal) from inorganic waste material. Tabas coal, located in east Iran, contains fine disseminated pyrite which is floated with coal during flotation, and hence decreasing the quality of the final concentrate. Reagents, such as sodium cyanide, are typically added to depress pyrite. Due to the toxicity of cyanide, alternative strategies for depressing pyrite flotation are being investigated. In this paper the metallurgical performance of Tabas coal treated with sodium cyanide is compared to that of Tabas coal which has undergone bacterial treatment using Acidithiobacillus ferrooxidans. Results indicate that bacterial treatment decreases the flotation rate of pyrite and improves the selectivity between coal and gangue. The possibility of using bacteria in place of toxic chemicals such as cyanide has significant environmental benefit.

  8. Biochemical Removal of HAP Precursors from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Gregory J

    1997-05-12

    Column biooxidation tests with Kentucky coal confirmed results of earlier shake flask tests showing significant removal from the coal of arsenic, selenium, cobalt, manganese, nickel and cadmium. Rates of pyrite biooxidation in Kentucky coal were only slightly more than half the rates found previously for Indiana and Pittsburgh coals. Removal of pyrite from Pittsburgh coal by ferric ion oxidation slows markedly as ferrous ions accumulate in solution, requiring maintenance of high redox potentials in processes designed for removal of pyrite and hazardous air pollutant (HAP) precursors by circulation of ferric solutions through coal. The pyrite oxidation rates obtained in these tests were used by Unifield Engineering to support the conceptual designs for alternative pyrite and HAP precursor bioleaching processes for the phase 2 pilot plant. Thermophilic microorganisms were tested to determine if mercury could be mobilized from coal under elevated growth temperatures. There was no evidence for mercury removal from coal under these conditions. However, the activity of the organisms may have liberated mercury physically. It is also possible that the organisms dissolved mercury and it readsorbed to the clay preferentially. Both of these possibilities are undergoing further testing. The Idaho National Engineering and Environmental Laboratory's (INEEL) slurry column reactor was operated and several batches of feed coal, product coal, waste solids and leach solutions were submitted to LBL for HAP precursor analysis. Results to date indicate significant removal of mercury, arsenic and other HAP precursors in the combined physical-biological process.

  9. Pyrite Iron Sulfide Solar Cells Made from Solution Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Law, Matt [Univ. of California, Irvine, CA (United States)

    2017-03-21

    This document summarizes research done under the SunShot Next Generation PV II project entitled, “Pyrite Iron Sulfide Solar Cells Made from Solution,” award number DE-EE0005324, at the University of California, Irvine, from 9/1/11 thru 11/30/16. The project goal was to develop iron pyrite (cubic FeS2) as an absorber layer for solution-processible p-n heterojunction solar cells with a pathway to >20% power conversion efficiency. Project milestones centered around seven main Tasks: (1) make device-quality pyrite thin-films from solar ink; (2) develop an ohmic bottom contact with suitable low resistivity; (3) produce a p-n heterojunction with VOC > 400 mV; (4) make a solar cell with >5% power conversion efficiency; (5) use alloying to increase the pyrite band gap to ~1.2-1.4 eV; (6) produce a p-n heterojunction with VOC > 500 mV; and finally (7) make a solar cell with >10% power conversion efficiency. In response to project findings, the Tasks were amended midway through the project to focus particular effort on passivating the surface of pyrite in order to eliminate excessively-strong surface band bending believed to be responsible for the low VOC of pyrite diodes. Major project achievements include: (1) development and detailed characterization of several new solution syntheses of high-quality thin-film pyrite, including two “molecular ink” routes; (2) demonstration of Mo/MoS2 bilayers as good ohmic bottom contacts to pyrite films; (3) fabrication of pyrite diodes with a glass/Mo/MoS2/pyrite/ZnS/ZnO/AZO layer sequence that show VOC values >400 mV and as high as 610 mV at ~1 sun illumination, although these high VOC values ultimately proved irreproducible; (4) established that ZnS is a promising n-type junction partner for pyrite; (5) used density functional theory to show that the band gap of pyrite can be increased from ~1.0 to a more optimal 1.2-1.3 eV by alloying with oxygen; (6) through extensive measurements of ultrahigh

  10. Exploratory research on solvent refined coal liquefaction. Annual technical progress report, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This report summarizes the progress of the Exploratory Research on Solvent Refined Coal Liquefaction project by The Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory during 1979. In a series of experiments with varying feed gas composition, low levels (5 to 10 mole %) of carbon monoxide had little effect on the SRC II processing of Pittsburgh Seam coal (Powhatan No. 5 Mine) while higher levels (20 to 40 mole %) resulted in a general degradation of operability and reduced oil yields. Addition of finely divided (approx. 1 ..mu..m) pyrite to the reactive Powhatan coal had little effect on oil yields although the molecular weight of the distillation residue was apparently decreased. When finely divided pyrite and magnetite were added to the less reactive coals from the Loveridge and Blacksville No. 1 Mines (also Pittsburgh Seam), however, substantial increases in oil yields and product quality were obtained. In a comparison of upflow and downflow dissolver configurations with Powhatan coal in the SRC II mode, there was no difference in yields or product quality. A study characterizing specific reactors revealed a significantly higher conversion in the SRC I mode with a reactor approximating plug flow conditions compared to a completely backmixed reactor. In the SRC II mode there was only a slightly higher oil yield with the plug flow reactor.

  11. Gasifier feed: Tailor-made from Illinois coals. Technical report, September 1, 1991--November 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlinger, H.P. III

    1991-12-31

    The purpose of this research is to develop a coal slurry from waste streams using Illinois coal that is ideally suited for a gasification feed. The principle items to be studied are (1) methods of concentrating pyrite and decreasing other ash forming minerals into a high grade gasification feed using froth flotation and gravity separation techniques; (2) chemical and particle size analyses of coal slurries; (3) determination of how that slurry can be densified and to what degree of densification is optimum from the pumpability and combustibility analyses; and (4) reactivity studies.

  12. Mode of occurrence of arsenic in four US coals

    Science.gov (United States)

    Kolker, A.; Huggins, Frank E.; Palmer, C.A.; Shah, N.; Crowley, S.S.; Huffman, G.P.; Finkelman, R.B.

    2000-01-01

    An integrated analytical approach has been used to determine the mode of occurrence of arsenic in samples of four widely used US coals: the Pittsburgh, Illinois #6, Elkhorn/Hazard, and Wyodak. Results from selective leaching, X-ray absorption fine structure (XAFS) spectroscopy, and electron microprobe analysis show that pyrite is the principal source of arsenic in the three bituminous coals, but the concentration of As in pyrite varies widely. The Wyodak sample contains very little pyrite; its arsenic appears to be primarily associated with organics, as As3+, or as arsenate. Significant (10-40%) fractions of arsenate, derived from pyrite oxidation, are also present in the three bituminous coal samples. This information is essential in developing predictive models for arsenic behavior during coal combustion and in other environmental settings.

  13. Characterization of Egyptian coal from Sinai using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Eissa, N.A.; Abdel Meguid, M.M.; Deriu, A.; Albanese, G.

    1983-08-01

    The presence of iron bearing minerals in coal makes the Moessbauer Spectroscopy (MS) extremely useful for characterization of coals from different localities. In this paper the MS has been applied to characterize Egyptian coal from Sinai (Maghara). The chemical analysis of this coal is given. The MS results showed that pyritic sulphur (pyrite and marcasite) is the only bearing mineral in Egyptian coal. A review is given for the iron bearing minerals in coals from different countries measured by MS. (author)

  14. Trace element geochemistry and mineralogy of coal from Samaleswari open cast coal block (S-OCB), Eastern India

    Science.gov (United States)

    Saha, Debasree; Chatterjee, Debashis; Chakravarty, Sanchita; Mazumder, Madhurina

    2018-04-01

    Coal samples of Samaleswari open cast coal block (S-OCB) are high ash (Aad, mean value 35.43%) and low sulphur content (St, on dry basis, mean value 0.91% analysis. The work is further supported by the use of chemical fractionation experiment that reveals the multi mode of occurrence of several environmentally concern and interested trace elements (Sb, As, Be, Cd, Cr, Co, Cu, Pb, Mn, Ni, Zn). Among the analysed trace elements Co, Mn and Zn have major silicate association along with significant carbonate/oxide/monosulfide association. Whereas As, Cd, Cu, Pb and Ni have dominant pyritic association with notable silicate and carbonate/oxide/monosulfide association. The rest three elements (Sb, Be, Cr) have principally organic association with minor silicate and carbonate/oxide/monosulfide association. The stratigraphic variation of organo-mineral matrix content and detrital-authigenic mineral ratio are primarily related to coal rank. Geochemical character of coal also reflects a light towards proper utilisation of S-OCB coal from technical and environmental view point.

  15. Technological and economic aspects of coal biodesulfurisation.

    Science.gov (United States)

    Klein, J

    1998-01-01

    The sulfur found in coal is either part of the molecular coal structure (organically bound sulfur), is contained in minerals such as pyrite (FeS2), or occurs in minor quantities in the form of sulfate and elemental sulfur. When pyrite crystals are finely distributed within the coal matrix, mechanical cleaning can only remove part of the pyrite. It can, however, be removed by microbial action requiring only mild conditions. The process involves simple equipment, almost no chemicals, but relatively long reaction times, and treatment of iron sulfate containing process water. Different process configurations are possible, depending on the coal particle size. Coal with particle sizes of less than 0.5 mm is preferably desulfurised in slurry reactors, while lump coal (> 0.5 mm) should be treated in heaps. Investment and operating costs are estimated for different process configurations on an industrial scale. Concerning the organically bound sulfur in coal there is up to now no promising biochemical pathway for the degradation and/or desulfurisation of such compounds.

  16. 57Fe NGR studies on three-stage hydroliquefaction of coals

    International Nuclear Information System (INIS)

    Jamond, M.; Bacaud, R.; Bussiere, P.; Charcosset, H.; Nickel-Pepin-Donat, B.

    1990-01-01

    Iron Moessbauer spectroscopy has been performed on liquefaction residues of two different French coals. In a three-stage liquefaction of high volatile bituminous coal (Freyming), without an added catalyst, the coal pyrite is not entirely converted into pyrrhotites, whereas in the presence of an added catalyst, coal pyrite is totally transformed into more dispersed pyrrhotites than those from the sample without an added catalyst; furthermore, the whole added catalyst precursor is reduced into pyrrhotites. In the case of liquefaction of subbituminous coal (Gardanne), full conversion of coal pyrite into pyrrhotites (even without an added catalyst) occurs. In addition, in the presence of the added catalyst, besides pyrrhotites, FeS is evidenced. When molybdenum-iron oxide is added as a catalyst precursor, no mixed Fe-Mo phase is detected. (orig.)

  17. Distribution of trace elements in selected pulverized coals as a function of particle size and density

    Science.gov (United States)

    Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.

    2000-01-01

    Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.

  18. Carrier-microencapsulation using Si-catechol complex for suppressing pyrite floatability

    Energy Technology Data Exchange (ETDEWEB)

    Jha, R.K.T.; Satur, J.; Hiroyoshi, N.; Ito, M.; Tsunekawa, M. [Hokkaido University, Hokkaido (Japan). Graduate School of Engineering

    2008-11-15

    Pyrite (FeS{sub 2}) is a common sulfide mineral associated with valuable metal minerals and coal, and it is rejected as a gangue mineral using physical separation techniques such as froth flotation and discharged into tailing pond. In the flotation, pyrite is frequently entrapped in the froth due to its hydrophobic nature. Formation of acid mine drainage due to the air-oxidation of pyrite in the tailing pond is also a serious problem. The authors have proposed carrier-microencapsulation (CME) as a method for suppressing both the floatability and oxidation of pyrite. In this method, pyrite is coated with a thin layer of metal oxide or hydroxide using catechol solution as a carrier combined with metal ions. The layer converts the pyrite surface from hydrophobic to hydrophilic and acts as a protective coating against oxidation. The present study demonstrates the effect of CME using Si-catechol complex to suppress the pyrite floatability: The bubble pick-up experiments showed that attachment of pyrite particles to air bubble is suppressed by the CME treatment at pH 4-10, Si-catechol complex concentration over 0.5 mol m{sup -3} and treatment time within 2 min. The Hallimond tube flotation experiments showed that the pyrite floatability is suppressed by the CME treatment even in the presence of typical flotation collectors such as kerosene and xanthate. SEM-EDX analysis confirmed that Si present on the pyrite surface treated by Si-catechol complex, implying that SiO{sub 2} or SiOH{sub 4} layer formed by the CME treatment convert the pyrite surface hydrophobic to hydrophilic.

  19. Technical and economic aspects of brown coal gasification and liquefaction

    International Nuclear Information System (INIS)

    Speich, P.

    1980-01-01

    A number of gasification and liquefaction processes for Rhenish brown coal are investigated along with the technical and economic aspects of coal beneficiation. The status of coal beneficiation and the major R + D activities are reviewed. (orig.) [de

  20. Treatment of Egyptian Maghara coal by plasma ozone synthesized by silent discharge

    CERN Document Server

    Salem, M A; Garamoon, A A; Hassouba, M A

    2003-01-01

    A sample of pyrite rich bituminous coal collected from the main coal seam of Maghara mine, northern sinai, was treated by ozone plasma. The latter was synthesized using silent discharge method (10 kv a.c. and 50 hz). The room temperature Moessbauer spectra of untreated coal sample was easily fitted to two doublet, whose parameters matched those of pyrite (FeS sub 2) and sulfate (FeSO sub 4.H sub 2 O) in addition to hematite. After treatment by ozone plasma, a doublet ascribed to pyrite was observed. The extent of pyrite oxidation to jarosite (Fe sub 2 (SO sub 4) sub 3. nH sub 2 O) was monitored by their relative spectral areas, the incomplete oxidation of pyrite may be attributed to the presence of calcium sulfate layer which acts a screen of ozone.

  1. Rapid pyrolysis of Serbian soft brown coals

    Directory of Open Access Journals (Sweden)

    Jankes Goran

    2009-01-01

    Full Text Available Soft brown coals of the open coal fields of Kolubara and Kostolac are the main domestic energy sources of Serbia. This paper presents the results of investigations on rapid devolatilization of these two coals which have covered kinetics of devolatilization (based on total volatile yield, forms of sulphur and petrographic analysis of coal and char. Experiments of devolatilization were performed in inert gas (N2 at atmospheric pressure and in batch-type hot-wire screen reactor. The mass-loss values of both coals at selected final reaction temperatures (300-900°C and retention times (3-28 s were obtained. Anthony and Howard's kinetic model was applied over two temperature ranges (300-500 and 700-900°C. The types of sulphur as monosulphide, sulphate, pyritic, and organic sulphur were determined for chars and original coals. Strong transformation of pyrite was evident even at low temperatures (300°C. Devolatilization of all types of sulphur has started over 600 and at 900°C the content of sulphur in char remained only 66% of total sulphur in original coal. Microscopic investigations were carried out on samples prepared for reflected light measurements. The petrographic analysis included: the ratio of unchanged and changed coal, maceral types, the share of cenosferes, isotropic mixed carbonized grains, mixed grains, small fragments, clay, and pyrite. The change of the structure of devolatilized coal was also observed.

  2. Mercury concentration in coal - Unraveling the puzzle

    Science.gov (United States)

    Toole-O'Neil, B.; Tewalt, S.J.; Finkelman, R.B.; Akers, D.J.

    1999-01-01

    Based on data from the US Geological Survey's COALQUAL database, the mean concentration of mercury in coal is approximately 0.2 ??gg-1. Assuming the database reflects in-ground US coal resources, values for conterminous US coal areas range from 0.08 ??gg-1 for coal in the San Juan and Uinta regions to 0.22 ??gg-1 for the Gulf Coast lignites. Recalculating the COALQUAL data to an equal energy basis unadjusted for moisture differences, the Gulf Coast lignites have the highest values (36.4 lb of Hg/1012 Btu) and the Hams Fork region coal has the lowest value (4.8 lb of Hg/1012Btu). Strong indirect geochemical evidence indicates that a substantial proportion of the mercury in coal is associated with pyrite occurrence. This association of mercury and pyrite probably accounts for the removal of mercury with the pyrite by physical coal cleaning procedures. Data from the literature indicate that conventional coal cleaning removes approximately 37% of the mercury on an equal energy basis, with a range of 0% to 78%. When the average mercury reduction value is applied to in-ground mercury values from the COALQUAL database, the resulting 'cleaned' mercury values are very close to mercury in 'as-shipped' coal from the same coal bed in the same county. Applying the reduction fact or for coal cleaning to eastern US bituminous coal, reduces the mercury input load compared to lower-rank non-deaned western US coal. In the absence of analytical data on as-shipped coal, the mercury data in the COALQUAL database, adjusted for deanability where appropriate, may be used as an estimator of mercury contents of as-shipped coal. ?? 1998 Published by Elsevier Science Ltd. All rights reserved.

  3. SULPHIDE MINERALIZATION IN UPPER WESTPHALIAN COAL SEAMS FROM THE EASTERN PART OF THE UPPER SILESIAN COAL BASIN

    Directory of Open Access Journals (Sweden)

    Lipiarski Ireneusz

    1997-10-01

    Full Text Available Morphologically diversified sulphide mineralization has been found in No. 301 and 302 coal seams (Westphalian B. The main sulphide is pyrite which forms veinlets cross-cutting the sedimentary fabrics of the coal, encrusts the cellular structures and intergrowths with oxysulphides. Two generations of pyrites were observed: the preceding and the following the oxysulphides. Pyrite composition is stoichiometric, rare admixtures are up to(in wt.%: Mn - 0.19, Co - 0.48, Ni - 0.42 and As - 1.41. Iron oxysulphides contain up to 35.06 wt.% oxygen. Their composition varies between FeS2O and FeS2O3. Increased contents of As (up to 1.46 wt.% and Pb (up to 0.96 wt.% were detected.

  4. Solvent extraction of elemental sulfur from coal and a determination of its source using stable sulfur isotopes

    Science.gov (United States)

    Hackley, Keith C.; Buchanan, D.H.; Coombs, K.; Chaven, C.; Kruse, C.W.

    1990-01-01

    Hot tetrachloroethene (perchloroethylene, PCE) extracts significant amounts of elemental sulfur (So) from weathered coals but not from pristine coals. The objective of this study was to determine whether So extracted by PCE is an oxidation product of pyrite or whether it originates in some way from unstable, organically-bound sulfur. The isotopic composition of the PCE-extracted So was compared to the isotopic compositions of the pyritic and the organic sulfur in a coal. The So was shown to have an isotopic signature similar to the pyritic sulfur. Additionally, the isotopic differences observed between the pyritic, So and sulfatic sulfur were consistent with bacterial mediated oxidation of sulfide sulfur (pyrite) as the source of both the sulfatic and elemental sulfur. ?? 1990.

  5. Use of stable sulphur isotopes to monitor directly the behaviour of sulphur in coal during thermal desulphurization

    Science.gov (United States)

    Liu, Chao-Li; Hackley, Keith C.; Coleman, D.D.

    1987-01-01

    A method has been developed using stable sulphur isotope analyses to monitor the behaviour of sulphur forms in a coal during thermal desulphurization. In this method, the natural stable isotopic composition of the pyritic and organic sulphur in coal is used as a tracer to follow their mobility during the desulphurization process. This tracer method is based on the fact that the isotopic compositions of pyritic and organic sulphur are significantly different in some coals. Isotopic results of pyrolysis experiments at temperatures ranging from 350 to 750 ??C indicate that the sulphur released with the volatiles is predominantly organic sulphur. The pyritic sulphur is evolved in significant quantities only when pyrolysis temperatures exceed 500 ??C. The presence of pyrite seems to have no effect on the amount of organic sulphur evolved during pyrolysis. The chemical and isotopic mass balances achieved from three different samples of the Herrin (No. 6) coal of the Illinois Basin demonstrate that this stable isotope tracer method is quantitative. The main disadvantage of this tracing technique is that not all coals contain isotopically distinct organic and pyritic sulphur. ?? 1987.

  6. Review biodepyritisation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, C.; Sukla, L.B.; Misra, V.N. [Regional Research Lab., Orissa (India)

    2004-01-01

    This review provides a detailed summary of the recent and past research activities in the area of biodesulfurisation of coal. It provides information about microorganisms important for biodesulfurisation of coal, with the emphasis on Thiobacillus ferrooxidans. The review presents an insight into various methods of desulfurisation of coal combining physical and biological methods. Also, there are discussions on coal structure, distribution, mechanism and kinetics of pyrite oxidation and jarosite precipitation. Finally, areas requiring further research are identified.

  7. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Akan-Etuk, A.; Diaz, R.; Niksa, S.

    1991-10-01

    The objective of the present work is to introduce an experimental program that will eventually lead to time-resolved iron ash composition over the technological operating domain. The preceding literature survey suggests two important stipulations on any such experimental program. The first stipulation is that good control must be established over the operating conditions, to accurately quantify their effects. The other is that data must be obtained rapidly, to thoroughly cover the important operating domain. This work presents a series of studies that has characterized the desulfurization of pyrite during the early stages of combustion. An experimental system was established and used to monitor the effects of oxygen, temperature, and residence time on the evolution of condensed phase products of the combustion of pure pyrite. (VC)

  8. Solvent extraction of elemental sulfur from coal and a determination of its source using stable sulfur isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, K.C.; Buchanan, D.H.; Coombs, K.; Chaven, C.; Kruse, C.W. (Eastern Illinois University, Charleston, IL (USA). Chemistry Dept.)

    1990-01-01

    Hot tetrachloroethene (perchloroethylen PCE) extracts significant amounts of elemental sulfur (S{sup o}) from weathered coals but not from pristine coals. The objective of this study was to determine whether S{sup o} extracted by PCE is an oxidation product of pyrite or whether it originates in some way from unstable, organically-bound sulfur. The isotopic composition of the PCE-extracted S{sup o} was compared to the isotopic compositions of the pyritic and the organic sulfur in a coal. The S{sup o} was shown to have an isotopic signature similar to the pyritic sulfur. Additionally, the isotopic differences observed between the pyritic, S{sup o} and sulfatic sulfur were consistent with bacterial mediated oxidation of sulfide sulfur (pyrite) as the source of both the sulfatic and elemental sulfur. 21 refs., 2 tabs.

  9. Sumpor u ugljenu (Sulphur in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2004-12-01

    Full Text Available The presence of sulphur in coal possesses important environmetal problems in its usage. The sulphur dioxide (S02 emissions produced during coal combustion account for a significant proportion of the total global output of anthropogenic SO2. The extent of sulphur separation depends on several variables such as the form of sulphur in coal, intimacy of contact between minerals and the products of devolatilization. The total sulphur in coal varies in the range of 0.2 - 11 wt %, although in most cases it is beetwen 1 and 3 wt %. Sulphur occurs in a variety of both inorganic and organic forms. Inorganic sulphur is found mainly as iron pyrite, marcasite, pyrrhotite, sphalerite, galena, chalcopirite and as sulphates (rarely exceeds w = 0,1 %. Organic sulphur is found in aromatic rings and aliphatic functionalities usually as mercaptans, aliphatic and aryl sulfides, disulfides and thiophenes. Organic and pyritic sulphur quantities depend on coal rank. Higher rank coals tend to have a high proportion of labile sulphur. All the organic sulphur is bivalent and it is spread throughout the organic coal matrix. Sulphur occurs in all the macerals and most minerals. Vitrinite contains the major part of organic sulphur and metals. Elemental sulphur is produced during coal weathering. The depolymerization methods as pyrolysis and hydrogenation are very drastic methods wich change the structure of the coal and the sulphur groups. In the case of pyrolysis, high levels of desulphurization, in chars and additional production of liquid hydrocarbon can be achieved. Thiophenes and sulphides were the major sulphur components of tars from coal pyrolysis. Hyrdogen sulphide and the lower mercaptans and sulphides were found in the volatile matters. Hydrogen sulphide and thiophenes are practically the only sulphur products of coal hydrogenation. H2S is produced in char hydrodesulphurization. A number of options are available for reducing sulphur emissions including the

  10. Study of catalytic effects of mineral matter level on coal reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Mazzocco, Nestor J.; Klunder, Edgar B.; Krastman, Donald

    1981-03-01

    Coal liquefaction experiments using a 400-lb/day bubble-column reactor tested the catalytic effects of added mineral matter level on coal conversion, desulfurization, and distillate yields in continuous operation under recycle conditions, with specific emphasis on the use of a disposable pyrite catalyst indigenous to the feed coal. Western Kentucky No. 11 run-of-mine (ROM) and washed coals were used as feedstocks to determine the effects of levels of mineral matter, specifically iron compounds. Liquefaction reactivity as characterized by total distillate yield was lower for washed coal, which contained less mineral matter. Liquefaction reactivity was regained when pyrite concentrate was added as a disposable catalyst to the washed coal feed in sufficient quantity to match the feed iron concentration of the run-of-mine coal liquefaction test run.

  11. Drainage from coal mines: Chemistry and environmental problems

    International Nuclear Information System (INIS)

    Wildeman, T.

    1991-01-01

    Much of the research on coal-mine drainage chemistry was conducted a decade ago, and now increased environmental awareness has brought about renewed interest in the findings. Consideration of the trace minerals and elements in coal points to the possible generation of acidic waters upon weathering, especially when pyrite is present. When pyrite weathers, it produces H + and Fe 3+ which catalyze the incongruent weathering of other carbonates and sulfides. In this weathering mechanism, catalysis by bacteria is important. Of the environmental problems in coal mine drainage, the mineral acidity of the water is the most serious. This is caused not only by the H + , but also by Mn 4+ , Fe 3+ , and Al 3+ that are found or generated within the drainage. Case studies in Kentucky, Pennsylvania, Illinois, and Colorado show that the abundance and form of pyrite in the deposit and in the overburden determines the level of acidity and the concentration of heavy metal pollutants in the drainage. Recent trends in environmental enforcement that emphasize integrated stream water standards and biotoxicity assays point to the possibility that the concentrations of heavy metals in coal mine drainages may cause environmental concern

  12. Total Factor Productivity Growth, Technical Progress & Efficiency Change in Vietnam Coal Industry - Nonparametric Approach

    Science.gov (United States)

    Phuong, Vu Hung

    2018-03-01

    This research applies Data Envelopment Analysis (DEA) approach to analyze Total Factor Productivity (TFP) and efficiency changes in Vietnam coal mining industry from 2007 to 2013. The TFP of Vietnam coal mining companies decreased due to slow technological progress and unimproved efficiency. The decadence of technical efficiency in many enterprises proved that the coal mining industry has a large potential to increase productivity through technical efficiency improvement. Enhancing human resource training, technology and research & development investment could help the industry to improve efficiency and productivity in Vietnam coal mining industry.

  13. Cross flow cyclonic flotation column for coal and minerals beneficiation

    Science.gov (United States)

    Lai, Ralph W.; Patton, Robert A.

    2000-01-01

    An apparatus and process for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophillic tailings.

  14. Genesis of some tertiary Indian coals from the chemical composition ...

    Indian Academy of Sciences (India)

    Baruah. 2008) that in northeast Indian coals, the major minerals (wt% >5) identified in the crystalline matter of coal are quartz, kaolin, illite, feldspar, calcite, pyrite, and gypsum. Vassilev et al. (2010a, b) reported that the rank of the coal increases with.

  15. Study on feasible technical potential of coal to electricity in china

    Science.gov (United States)

    Jia, Dexiang; Tan, Xiandong

    2017-01-01

    The control of bulk coal is one of the important work of air pollution control in China’s future. Existing research mainly focuses on the adaptability, economy, construction and renovation plan, and operation optimization of specific energy substitution utilization, and lacks the strategy research of long-term layout of energy substitution utilization in large area. This paper puts forward a technical potential prediction method of coal to electricity based on the thermal equivalent method, which is based on the characteristics of regional coal consumption, and combined with the trend of adaptability and economy of energy substitution utilization. Also, the paper calculates the comprehensive benefit of coal to electricity according to the varieties of energy consumption and pollutant emission level of unit energy consumption in China’s future. The research result shows that the development technical potential of coal to electricity in China is huge, about 1.8 trillion kWh, including distributed electric heating, heat pump and electric heating boiler, mainly located in North China, East China, and Northeast China. The implementation of coal to electricity has remarkable comprehensive benefits in energy conservation and emission reduction, and improvement of energy consumption safety level. Case study shows the rationality of the proposed method.

  16. Advanced physical fine coal cleaning spherical agglomeration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  17. Removal of organic and inorganic sulfur from Ohio coal by combined physical and chemical process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Attia, Y.A.; Zeky, M.El.; Lei, W.W.; Bavarian, F.; Yu, S. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1989-04-28

    This project consisted of three sections. In the first part, the physical cleaning of Ohio coal by selective flocculation of ultrafine slurry was considered. In the second part, the mild oxidation process for removal of pyritic and organic sulfur.was investigated. Finally, in-the third part, the combined effects of these processes were studied. The physical cleaning and desulfurization of Ohio coal was achieved using selective flocculation of ultrafine coal slurry in conjunction with froth flotation as flocs separation method. The finely disseminated pyrite particles in Ohio coals, in particular Pittsburgh No.8 seam, make it necessary to use ultrafine ({minus}500 mesh) grinding to liberate the pyrite particles. Experiments were performed to identify the ``optimum`` operating conditions for selective flocculation process. The results indicated that the use of a totally hydrophobic flocculant (FR-7A) yielded the lowest levels of mineral matters and total sulfur contents. The use of a selective dispersant (PAAX) increased the rejection of pyritic sulfur further. In addition, different methods of floc separation techniques were tested. It was found that froth flotation system was the most efficient method for separation of small coal flocs.

  18. Experimental study of desulfurization of Zhong Liang Shau high sulfur coal by flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Z.; Huang, B.; Cao, J. [China University of Mining and Technology (China). Beijing Graduate School

    1994-12-01

    Emission of large amount of SO{sub 2} from combustion of high sulfur coal causes serious environmental pollution. Pre-combustion desulfurization of high sulfur coal has become a necessity. This paper reports test results of fine coal desulfurization with different flotation technology and the effect of pyrite depressant. Test work showed that when the coal sample from Zhong Liang Shau was processed with a Free Jet Flotation Column its pyritic sulfur content was reduced from 3.08% to 0.84%, with 72.22% recovery of combustible matter in clean coal. The concept of Desulfurization Efficiency Index E{sub ds} for comprehensive evaluation of desulfurization process is proposed, which is defined as the product of the ratio of sulfur content reduction of clean coal and the recovery of combustible matters. 6 refs., 4 figs., 3 tabs.

  19. Bioprocessing of coal - 10 - an application of microbial flotation to mineral processing

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, T. [and others] [CRIEPI, Abiko-shi (Japan). Abiko Research Lab.

    1996-09-01

    Microbial flotation for coal desulfurization is being developed. Pyrite in coal is removed by bacterial adhesion by changing the surface property of pyrite. The bacterial adhesion of Thiobacillus ferrooxidans to sulfide minerals (pyrite, galena, molybdenite, chalcocite and millerite), and pyrite removal from the mixture of these sulfide minerals by microbial flotation was investigated. To compare the adhesion of T. ferrooxidans to pyrite with that to the other four minerals mentioned, the surface areas of the minerals, where the bacterium could adhere, was measured. It was observed that the roughness on the mineral surfaces was much smaller than the size of the bacterial cells. Hence, it was suggested that the roughness did not affect the bacterial adhesion to mineral surfaces. Bacterial adhesion to pyrite was compared with that to the other minerals. The amount of adhering bacterium was estimated on the basis of the adherable surface area measured with microscopic method. The amount of adhering cells to pyrite was 421.6 x 10{sup 8} cells/cm{sup 2}. On the other hand, the amounts of adhering cells to the minerals, except for pyrite were in a range of 77.1 to 160.8 x 10{sup 8} cells/cm{sup 2}. The bacterium adheres more to pyrite than to the other minerals, and only adheres to pyrite even if the pyrite is mixed with other minerals. Hence, T. ferrooxidans could adhere selectively to pyrite. Pyrite removal from the mineral mixtures was investigated with microbial flotation. Pyrite removal was in a range of 83.7% to 95.1% and mineral recovery was 72.9% to 100%. The grade of recovered minerals was in a range of 79.2 to 86.0% and that of rejected pyrite was in a range of 78.7 to 90.0%. These results suggest that microbial flotation can be a novel technology for mineral processing.

  20. Microbiological desulfurization and conversion of coal

    International Nuclear Information System (INIS)

    Quigley, D.R.; Stoner, D.L.; Dugan, P.R.

    1991-01-01

    Bio processing of coal is a young and emerging technology. Until the early 1980's it consisted primarily of coal depyritization using Thiobacillus ferro oxidans to either oxidize pyritic sulfur or to alter particle wettability or floatation properties by binding to exposed pyrite inclusions. Since then, other major avenues of research have been pursued. One of these is the microbiologically mediated liquefaction of coal. Initial work indicated that microorganisms were able to transform low rank coal into a black liquid that was later identified as water solubilized by alkaline substances produced by the microbes and could be enhanced by the removal of multi valent cations from coal. Current work at the INEL involves of the identification and characterization of microorganisms that are able to alter the structure of polymeric desulfurization of coal. This work initially focused on the ability of microorganisms to oxidatively remove organic sulfur from model compounds that were representative of those sulfur containing moieties identified as being in coals (e.g., dibenzo thiophene). The work also focused on those organisms that were could remove the organic sulfur without degrading the carbon structure. While some organisms that are able to perform such these reactions will effectively remove organo sulfur from coal. These concerns stem from steric hindrance considerations and the thermodynamically unfavourable nature of reaction. Current work at the INEL involves the isolation and biochemical characterization of microorganisms that are able to desulfurize and solubilized coals that have high organic sulfur contents. (author)

  1. Reaction mechanism of coal liquefaction: hydrogenolysis of model compound using synthetic pyrite as catalysts. 7. Property change of synthetic pyrite catalyst with the time after production; Sekitan ekika hanno kiko (model kagobutsu no hanno). 7. Gosei ryukatetsu shokubai no keiji henka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H.; Meno, H.; Uemaki, O.; Shibata, T.; Tsuji, T. [Hokkaido University, Sapporo (Japan)

    1996-10-28

    Reactions of various model compounds were investigated using synthetic pyrites for coal liquefaction. In this study, successive changes of the catalysts were investigated from the reactions of model compounds by using three different synthetic pyrites with the lapse of time after production. Benzyl phenyl ether, dibenzyl, and n-octylbenzene were used as model compounds. Reactions were conducted in an autoclave, into which sample, catalyst, decalin as solvent, and initial hydrogen pressure 10 MPa were charged. The autoclave was held at 450 or 475{degree}C of reaction temperature for 1 hour. The catalyst with a shorter lapse of time after production acted to hydrogen transfer, and inhibited the formation of condensation products due to the stabilization of decomposed fragment. It also acted to isomerization of materials by cutting alkyl side chains. When adding sulfur to the catalyst with longer lapse of time after production under these reaction conditions, it inhibited the formation of condensation products for the reaction of benzyl phenyl ether. However, it did not provide the effect for the reaction of n-octylbenzene. 5 refs., 3 figs.

  2. Technical project of complex fast cycle heat treatment of hydrogenous coal preparation

    OpenAIRE

    Moiseev, V. A.; Andrienko, V. G.; Pileckij, V. G.; Urvancev, A. I.; Gvozdyakov, Dmitry Vasilievich; Gubin, Vladimir Evgenievich; Matveev, Aleksandr Sergeevich; Savostiyanova, Ludmila Viktorovna

    2015-01-01

    Problems of heat-treated milled hydrogenous coal preparation site creation in leading fast cycle heat treatment complex were considered. Conditions for effective use of electrostatic methods of heat-treated milled hydrogenous coal preparation were set. Technical project of heat treatment of milled hydrogenous coal preparation site was developed including coupling of working equipment complex on fast heat treatment and experimental samples of equipment being designed for manufacturing. It was ...

  3. Thermal dynamic analysis of sulfur removal from coal by electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Gao, J.; Meng, F. [Qinghua University, Beijing (China). Dept. of Thermal Engineering

    2002-06-01

    The electrolytic reactions about sulfur removal from coal were studied by using chemical thermal dynamic analysis. According to the thermodynamical data, the Gibbs free energy value of the electrolytic reactions of pyritic and organic sulfur removal from coal is higher than zero. So, these electrolytic reactions are not spontaneous chemical reactions. In order to carry out desulfurisation by electrolysis, a certain voltage is necessary and important. Because theoretic decomposition voltage of pyrite and some parts of organic sulfur model compound is not very high, electrolysis reactions are easily to be carried out by using electrolysis technology. Mn ion and Fe ion are added into electrolysis solutions to accelerate the desulfurisation reaction. The electrolytic decomposition of coal is discussed. Because the theoretical decomposition voltage of some organic model compound is not high, the coal decomposition might happen. 17 refs., 4 tabs.

  4. Thermal decomposition of pyrite

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Popovic, S.

    1992-01-01

    Thermal decomposition of natural pyrite (cubic, FeS 2 ) has been investigated using X-ray diffraction and 57 Fe Moessbauer spectroscopy. X-ray diffraction analysis of pyrite ore from different sources showed the presence of associated minerals, such as quartz, szomolnokite, stilbite or stellerite, micas and hematite. Hematite, maghemite and pyrrhotite were detected as thermal decomposition products of natural pyrite. The phase composition of the thermal decomposition products depends on the terature, time of heating and starting size of pyrite chrystals. Hematite is the end product of the thermal decomposition of natural pyrite. (author) 24 refs.; 6 figs.; 2 tabs

  5. Chemistry and phase evolution during roasting of toxic thallium-bearing pyrite.

    Science.gov (United States)

    Lopez-Arce, Paula; Garcia-Guinea, Javier; Garrido, Fernando

    2017-08-01

    In the frame of a research project on microscopic distribution and speciation of geogenic thallium (Tl) from contaminated mine soils, Tl-bearing pyrite ore samples from Riotinto mining district (Huelva, SW Spain) were experimentally fired to simulate a roasting process. Concentration and volatility behavior of Tl and other toxic heavy metals was determined by quantitative ICP-MS, whereas semi-quantitative mineral phase transitions were identified by in situ thermo X-Ray Diffraction (HT-XRD) and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS) analyses after each firing temperature. Sample with initial highest amount of quartz (higher Si content), lowest quantity of pyrite and traces of jarosite (lower S content) developed hematite and concentrated Tl (from 10 up to 72 mg kg -1 ) after roasting at 900 °C in an oxidizing atmosphere. However, samples with lower or absent quartz content and higher pyrite amount mainly developed magnetite, accumulating Tl between 400 and 500 °C and releasing Tl from 700 up to 900 °C (from 10-29 mg kg -1 down to 4-1 mg kg -1 ). These results show the varied accumulative, or volatile, behaviors of one of the most toxic elements for life and environment, in which oxidation of Tl-bearing Fe sulfides produce Fe oxides wastes with or without Tl. The initial chemistry and mineralogy of pyrite ores should be taken into account in coal-fired power stations, cement or sulfuric acid production industry involving pyrite roasting processes, and steel, brick or paint industries, which use iron ore from roasted pyrite ash, where large amounts of Tl entail significant environmental pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Biodesulphurisation of high sulphur coal by heap leaching

    Energy Technology Data Exchange (ETDEWEB)

    J. Cara; M.T. Carballo; A. Moran; D. Bonilla; O. Escolano; F.J. Garcia Frutos [Universidad de Leon, Leon (Spain). Departamento de Ingenieria Quimica

    2005-10-01

    The biodesulphurisation of coal carried out in pile could be an interesting option to clean coal. In view of the good results obtained in biodesulphurisation test column at lab scale on a sample of semianthracite coal that proceed of an industrial plant with a high sulphur content, mainly pyritic sulphur, the feasibility of the process at pilot plant scale was studied. The pile was formed with 6 ton of gravity middlings coal sample with a grain size -12+0.5 mm from S.A. Hullera Vasco-Leonesa industrial plant. The coal has a total sulphur content of 3.78% and a pyritic sulphur content of 2.88%, the rest of sulphur is organic sulphur. The biodesulphurisation process in pilot plant follows three stages: stabilization of the pile, biodesulphurisation and washing. Heap was sampled twice during stabilisation stage, at the end of desulphurisation process and finally once washed. A pyritic sulphur removal of 39% and total sulphur removal of 23% was obtained. To complete the bioleaching process, the treatment of purge of leachate was carried out with the objective to recycling to head of process. The best treatment was a pre-treatment of the leachate until pH 4, and further treatment by reverse osmosis of the clarified water. Comparing this process with conventional precipitation to reach disposal limits, the reagents consumption and sludges were reduced considerably and due to the high quality of permeate it permits to recycle it to head of process. 18 refs., 6 figs., 6 tabs.

  7. Attenuation of pyrite oxidation with a fly ash pre-barrier: Reactive transport modelling of column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, R.; Cama, J.; Nieto, J.M.; Ayora, C.; Saaltink, M.W. [University of Huelva, Huelva (Spain). Dept. of Geology

    2009-09-15

    Conventional permeable reactive barriers (PRBs) for passive treatment of groundwater contaminated by acid mine drainage (AMD) use limestone as reactive material that neutralizes water acidity. However, the limestone-alkalinity potential ceases as inevitable precipitation of secondary metal-phases on grain surfaces occurs, limiting its efficiency. In the present study, fly ash derived from coal combustion is investigated as an alternative alkalinity generating material for the passive treatment of AMD using solution-saturated column experiments. Unlike conventional systems, the utilization of fly ash in a pre-barrier to intercept the non-polluted recharge water before this water reacts with pyrite-rich wastes is proposed. Chemical variation in the columns was interpreted with the reactive transport code RETRASO. In parallel, kinetics of fly ash dissolution at alkaline pH were studied using flow-through experiments and incorporated into the model. In a saturated column filled solely with pyritic sludge-quartz sand (1: 10), oxidation took place at acidic conditions (pH 3.7). According to SO{sub 4}{sup 2-} release and pH, pyrite dissolution occurred favourably in the solution-saturated porous medium until dissolved O{sub 2} was totally consumed. In a second saturated column, pyrite oxidation took place at alkaline conditions (pH 10.45) as acidity was neutralized by fly ash dissolution in a previous level. At this pH Fe release from pyrite dissolution was immediately depleted as Fe-oxy(hydroxide) phases that precipitated on the pyrite grains, forming Fe-coatings (microencapsulation). With time, pyrite microencapsulation inhibited oxidation in practically 97% of the pyritic sludge. Rapid pyrite-surface passivation decreased its reactivity, preventing AMD production in the relatively short term.

  8. Bugs and coal: processing fuels with biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, M

    1987-06-01

    Bioprocessing of coal is developing along several fronts, each of potential significance to utilities. Researchers have found a fungus, polyporous versicolor, which can liquefy certain kinds of coal and scientists have genetically engineered bacteria that remove sulfur and ash-forming metal impurities from coal. Research programs are being undertaken to find organisms that will convert lignite into gaseous methane to produce gaseous fuel more economically than the current coal gasification methods. Researchers looking for ways to remove sulfur from coal before it is burned are evaluating the use of a bacterium called thiobacillus ferroxidans to enhance the physical removal of pyrite. 2 refs.

  9. Development of enhanced sulfur rejection processes

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.; Richardson, P.E.

    1996-03-01

    Research at Virginia Tech led to the development of two complementary concepts for improving the removal of inorganic sulfur from many eastern U.S. coals. These concepts are referred to as Electrochemically Enhanced Sulfur Rejection (EESR) and Polymer Enhanced Sulfur Rejection (PESR) processes. The EESR process uses electrochemical techniques to suppress the formation of hydrophobic oxidation products believed to be responsible for the floatability of coal pyrite. The PESR process uses polymeric reagents that react with pyrite and convert floatable middlings, i.e., composite particles composed of pyrite with coal inclusions, into hydrophilic particles. These new pyritic-sulfur rejection processes do not require significant modifications to existing coal preparation facilities, thereby enhancing their adoptability by the coal industry. It is believed that these processes can be used simultaneously to maximize the rejection of both well-liberated pyrite and composite coal-pyrite particles. The project was initiated on October 1, 1992 and all technical work has been completed. This report is based on the research carried out under Tasks 2-7 described in the project proposal. These tasks include Characterization, Electrochemical Studies, In Situ Monitoring of Reagent Adsorption on Pyrite, Bench Scale Testing of the EESR Process, Bench Scale Testing of the PESR Process, and Modeling and Simulation.

  10. Relation of ash composition to the uses of coal

    Energy Technology Data Exchange (ETDEWEB)

    Fieldner, A C; Selvig, W A

    1926-02-01

    The effects of coal ash and ash components on the utilization of coal for coke and gas production, steam generation, water gas production, smithing, and domestic uses were described in a review of literature. Calcite, gypsum, and pyrite which occur in high amounts in coal, increase the ash fusibility of the coal and render it unsuitable for many industrial and domestic uses. As a rule, coal ash of high Si content and low Fe content would not be readily fusible. High amounts of ash in coal also have the effect of reducing the heating value of the coal.

  11. Mineral identification in Colombian coals using Moessbauer spectroscopy and X-ray diffraction

    International Nuclear Information System (INIS)

    Fajardo, M.; Mojica, J.; Barraza, J.; Perez Alcazar, G.A.; Tabares, J.A.

    1999-01-01

    Minerals were identified in three Colombian coal samples from the Southwest of the country using Moessbauer spectroscopy and X-ray diffraction. Original and sink separated coal fractions of specific gravity 1.40 and 1.60 with particle size less than 600 μm were used in the study. Using Moessbauer spectroscopy, the minerals identified in the original coal samples were pyrite jarosite, ankerite, illite and ferrous sulfate, whereas by means of X-ray diffraction, minerals identified were kaolinite, quartz, pyrite, and jarosite. Differences in mineral composition were found in the original and sink separated fractions using both techniques. Moessbauer spectra show that the mineral phases in low concentrations such as illite, ankerite and ferrous sulfate do not always appear in the spectra of sink coals, despite of those minerals occurring in the original coal, due to the fact that they are associated with the organic matter and not liberated in the grinding process. X-ray results show that the peak intensity grows as the specific gravity is increased indicating that the density separation method could be an effective process to clean coal

  12. Technical devices of powered roof support for the top coal caving as automation objects

    Science.gov (United States)

    Nikitenko, M. S.; Kizilov, S. A.; Nikolaev, P. I.; Kuznetsov, I. S.

    2018-05-01

    In the paper technical devices for the top coal caving as automation objects in the composition of the longwall mining complex (LTCC) are considered. The proposed concept for automation of the top coal caving process allows caving efficiency to be ensured, coal dilution to be prevented, conveyor overloading to be prevented, the shearer service personnel to be unloaded, the influence of the “human factor” to be reduced.

  13. Mercury and trace element contents of Donbas coals and associated mine water in the vicinity of Donetsk, Ukraine

    Science.gov (United States)

    Kolker, A.; Panov, B.S.; Panov, Y.B.; Landa, E.R.; Conko, K.M.; Korchemagin, V.A.; Shendrik, T.; McCord, J.D.

    2009-01-01

    Mercury-rich coals in the Donets Basin (Donbas region) of Ukraine were sampled in active underground mines to assess the levels of potentially harmful elements and the potential for dispersion of metals through use of this coal. For 29 samples representing c11 to m3 Carboniferous coals, mercury contents range from 0.02 to 3.5 ppm (whole-coal dry basis). Mercury is well correlated with pyritic sulfur (0.01 to 3.2 wt.%), with an r2 of 0.614 (one outlier excluded). Sulfides in these samples show enrichment of minor constituents in late-stage pyrite formed as a result of interaction of coal with hydrothermal fluids. Mine water sampled at depth and at surface collection points does not show enrichment of trace metals at harmful levels, indicating pyrite stability at subsurface conditions. Four samples of coal exposed in the defunct open-cast Nikitovka mercury mines in Gorlovka have extreme mercury contents of 12.8 to 25.5 ppm. This coal was formerly produced as a byproduct of extracting sandstone-hosted cinnabar ore. Access to these workings is unrestricted and small amounts of extreme mercury-rich coal are collected for domestic use, posing a limited human health hazard. More widespread hazards are posed by the abandoned Nikitovka mercury processing plant, the extensive mercury mine tailings, and mercury enrichment of soils extending into residential areas of Gorlovka.

  14. Modes of occurrence of potentially hazardous elements in coal: levels of confidence

    Science.gov (United States)

    Finkelman, R.B.

    1994-01-01

    The modes of occurrence of the potentially hazardous elements in coal will be of significance in any attempt to reduce their mobilization due to coal combustion. Antimony and selenium may be present in solid solution in pyrite, as minute accessory sulfides dispersed throughout the organic matrix, or in organic association. Because of these modes of occurrence it is anticipated that less than 50% of these elements will be routinely removed by conventional coal cleaning procedures. Arsenic and mercury occur primarily in late-stage coarse-grained pyrite therefore physical coal cleaning procedures should be successful in removing substantial proportions of these elements. Cadmium occurs in sphalerite and lead in galena. Both of these minerals exhibit a wide range of particle sizes and textural relations. Depending on the particle size and textural relations, physical coal cleaning may remove as little as 25% of these elements or as much as 75%. Manganese in bituminous coal occurs in carbonates, especially siderite. Physical coal cleaning should remove a substantial proportion of this element. More information is needed to elucidate the modes of occurrence of beryllium, chromium, cobalt, and nickel. ?? 1994.

  15. Prospects for coal: technical developments

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, W G; Peirce, T J

    1983-07-01

    This article summarises the reasons for predicting an increase in the use of coal as an industrial energy source in the United Kingdom. The development of efficient and reliable coal-burning techniques is therefore of great importance. Various techniques are then discussed, including conventional combustion systems, fluidised bed combustion systems, fluidised bed boilers and furnaces, coal and ash handling, coal-liquid mixtures, coal gasification and coal liquefaction. (4 refs.)

  16. Gasifier feed: Tailor-made from Illinois coals

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlinger, H.P. III.

    1991-01-01

    The purpose of this research is to develop a coal slurry from waste streams using Illinois coal that is ideally suited for a gasification feed. The principle items to be studied are (1) methods of concentrating pyrite and decreasing other ash forming minerals into a high grade gasification feed using froth flotation and gravity separation techniques; (2) chemical and particle size analyses of coal slurries; (3) determination of how that slurry can be densified and to what degree of densification is optimum from the pumpability and combustibility analyses; and (4) reactivity studies.

  17. Investigation of virgin coals and coals subjected to a mild acid treatment

    Energy Technology Data Exchange (ETDEWEB)

    Clark, T.M.; Evans, B.J.; Wynter, C.; Pollak, H.; Taole, S.; Radcliffe, D. [University of Michigan, Ann Arbor, MI (United States). Dept. of Chemistry

    1998-06-01

    A quantitative determination of the relative marcasite/pyrite contents in virgin coals is possible by means of {sup 57}Fe Moessbauer spectroscopy. Complications arise however, when iron-containing silicates, carbonates, or other salts are present. The application of a mild chemical treatment involving hydrofluoric acid has been employed to remove these Fe-containing phases while leaving the iron-disulfide phases unaffected. Several South African coal samples with non-iron disulfide, Fe-containing phases ranging from 18 to 30 weight percent were subjected to a hydrofluoric acid leaching at room temperature. The loss of mineral matter with HF leaching correlates well with the mineral matter residue following low temperature ashing. The {sup 57}Fe Moessbauer spectra of the resulting coal samples indicate that only FeS{sub 2} phases are present and the absence of appreciable quantities of marcasite in the coals.

  18. Using X-ray methods to evaluate the combustion sulfur minerals and graphitic carbon in coals and ashes

    International Nuclear Information System (INIS)

    Wertz, D.L.; Collins, L.W.

    1988-01-01

    Coals are complex mixtures of vastly different materials whose combustion kinetics may well exhibit symbiotic effects. Although the sulfur oxide gases produced during the combustion of coals may have a variety of sources, they are frequently caused by the thermal degradation of inorganic minerals to produce ''acid rain''. Since many of the minerals involved either as reactants or products in coal combustion produce well defined x-ray power diffraction (XRPD) patterns, the fate of these minerals may be followed by measuring the XRPD patterns of combustion products. Coal 1368P, a coal with an unusually high pyrite (FeS/sub 2/) fraction, has been the subject materials in our investigations of the fate of the inorganic minerals during combustion. These studies include measuring the fate of pyrite and of graphitic carbon in coal 1368P under varying combustion conditions. The results discussed in this paper were obtained by standard XRPD methods

  19. Environmental Geochemistry and Acid Mine Drainage Evaluation of an Abandoned Coal Waste Pile at the Alborz-Sharghi Coal Washing Plant, NE Iran

    Energy Technology Data Exchange (ETDEWEB)

    Jodeiri Shokri, Behshad, E-mail: b.jodeiri@hut.ac.ir [Hamedan University of Technology (HUT), Department of Mining Engineering (Iran, Islamic Republic of); Doulati Ardejani, Faramarz [University of Tehran, School of Mining, College of Engineering (Iran, Islamic Republic of); Ramazi, Hamidreza [Amirkabir University of Technology (Tehran Polytechnic), Department of Mining and Metallurgical Engineering (Iran, Islamic Republic of)

    2016-09-15

    In this paper, an abandoned waste coal pile, which is resulted from Alborz-Sharghi coal washing plant, NE of Iran was mineralogically and geochemically characterized to evaluate pyrite oxidation, acid mine drainage (AMD) generation, and trace element mobility. After digging ten trenches and vertical sampling, a quantitative method including the atomic absorption test, and the quality-based methods including optical study were carried out for determination of pyrite fractions in the waste pile. The geochemical results revealed that the fraction of remaining pyrite increased with depth, indicating that pyrite oxidation is limited to the shallower depths of the pile which were confirmed by variations of sulfate, pH, EC, and carbonate with depth of the pile. To evaluate the trend of trace elements and mineralogical constituents of the waste particles, the samples were analyzed by using XRD, ICP-MS, and ICP-OES methods. The results showed the secondary and neutralizing minerals comprising gypsum have been formed below the oxidation zone. Besides, positive values of net neutralization potential indicated that AMD generation has not taken in the waste pile. In addition, variations of trace elements with depth reveal that Pb and Zn exhibited increasing trends from pile surface toward the bottom sampling trenches while another of them such as Cu and Ni had decreasing trends with increasing depth of the waste pile.

  20. The geochemistry of environmentally important trace elements in UK coals, with special reference to the Parkgate coal in the Yorkshire-Nottinghamshire Coalfield, UK

    Science.gov (United States)

    Spears, D.A.; Tewalt, S.J.

    2009-01-01

    The Parkgate coal of Langsettian age in the Yorkshire-Nottinghamshire coalfield is typical of many coals in the UK in that it has a high sulphur (S) content. Detailed information on the distribution of the forms of S, both laterally and vertically through the seam, was known from previous investigations. In the present work, 38 interval samples from five measured sections of the coal were comprehensively analysed for major, minor and trace elements and the significance of the relationships established using both raw and centered log transformed data. The major elements are used to quantify the variations in the inorganic and organic coal components and determine the trace element associations. Pyrite contains nearly all of the Hg, As, Se, Tl and Pb and is also the major source of the Mo, Ni, Cd and Sb. The clays contain the following elements in decreasing order of association: Rb, Cs, Li, Ga, U, Cr, V, Sc, Y, Bi, Cu, Nb, Sn, Te and Th. Nearly all of the Rb is present in the clay fraction, whereas for elements such as V, Cu and U, a significant amount is thought to be present in the organic matter, based on the K vs trace element regression equations. Only Ge, and possibly Be, would appear to have a dominant organic source. The trace element concentrations are calculated for pyrite, the clay fraction and organic matter. For pyrite it is noted that concentrations agree with published data from the Yorkshire-Nottinghamshire coalfield and also that Tl concentrations (median of 0.33 ppm) in the pyrite are greater than either Hg or Cd. Unlike these elements, Tl has attracted less attention and possibly more information is needed on its anthropogenic distribution and impacts on man and the environment. A seawater source is thought to be responsible for the high concentrations of S, Cl and the non-detrital trace elements in the Parkgate coal. Indicative of the seawater control is the Th/U ratio, which expresses the detrital to non-detrital element contributions. Using

  1. Bioenergetic studies of coal sulfur oxidation by extremely thermophilic bacteria. Final report, September 15, 1992--August 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.M.; Han, C.J.

    1997-12-31

    Thermoacidophilic microorganisms have been considered for inorganic sulfur removal from coal because of expected improvements in rates of both biotic and abiotic sulfur oxidation reactions with increasing temperature. In this study, the bioenergetic response of the extremely thermoacidophilic archaeon, Metallosphaera sedula, to environmental changes have been examined in relation to its capacity to catalyze pyrite oxidation in coal. Given an appropriate bioenergetic challenge, the metabolic response was to utilize additional amounts of energy sources (i.e., pyrite) to survive. Of particular interest were the consequences of exposing the organism to various forms of stress (chemical, nutritional, thermal, pH) in the presence of coal pyrite. Several approaches to take advantage of stress response to accelerate pyrite oxidation by this organism were examined, including attempts to promote acquired thermal tolerance to extend its functional range, exposure to chemical uncouplers and decouplers, and manipulation of heterotrophic and chemolithotrophic tendencies to optimize biomass concentration and biocatalytic activity. Promising strategies were investigated in a continuous culture system. This study identified environmental conditions that promote better coupling of biotic and abiotic oxidation reactions to improve biosulfurization rates of thermoacidophilic microorganisms.

  2. Pyrite oxidation at circumneutral pH

    Science.gov (United States)

    Moses, Carl O.; Herman, Janet S.

    1991-02-01

    Previous studies of pyrite oxidation kinetics have concentrated primarily on the reaction at low pH, where Fe(III) has been assumed to be the dominant oxidant. Studies at circumneutral pH, necessitated by effective pH buffering in some pyrite oxidation systems, have often implicitly assumed that the dominant oxidant must be dissolved oxygen (DO), owing to the diminished solubility of Fe(III). In fact, Fe(III)(aq) is an effective pyrite oxidant at circumneutral pH, but the reaction cannot be sustained in the absence of DO. The purpose of this experimental study was to ascertain the relative roles of Fe(III) and DO in pyrite oxidation at circumneutral pH. The rate of pyrite oxidation was first-order with respect to the ratio of surface area to solution volume. Direct determinations of both Fe(II) (aq)> and Fe(III) (aq) demonstrated a dramatic loss of Fe(II) from the solution phase in excess of the loss for which oxidation alone could account. Based on rate data, we have concluded that Fe(II) is adsorbed onto the pyrite surface. Furthermore, Fe(II) is preferred as an adsorbate to Fe(III), which we attribute to both electrostatic and acid-base selectivity. We also found that the rate of pyrite oxidation by either Fe(III) (aq) or DO is reduced in the presence of aqueous Fe(II), which leads us to conclude that, under most natural conditions, neither Fe(III) (aq) nor DO directly attacks the pyrite surface. The present evidence suggests a mechanism for pyrite oxidation that involves adsorbed Fe( II ) giving up electrons to DO and the resulting Fe(III) rapidly accepting electrons from the pyrite. The adsorbed Fe is, thus, cyclically oxidized and reduced, while it acts as a conduit for electrons traveling from pyrite to DO. Oxygen is transferred from the hydration sphere of the adsorbed Fe to pyrite S. The cycle of adsorbed Fe oxidation and reduction and the successive addition of oxygen to pyrite S continues until a stable sulfoxy species dissociates from the surface. Prior

  3. Seventh symposium on coal mine drainage research. NCA/BCR coal conference and Expo IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Seventh Symposium on Coal Mine Drainage Research, sponsored by the National Coal Association and Bituminous Coal Research, Inc., was held at the Kentucky Fair and Exposition Center, Louisville, Kentucky, October 18-20, 1977. Seventeen papers from the proceedings have been entered individually into EDB and ERA. Topics covered include chemical reactions of pyrite oxidation and acid formation in spoil banks, abandoned mines, etc., formation of small acid lakes from the drainage and their neutralization by natural and other neutralization measures, trace elements in acid mine drainage, ground water contamination, limnology, effects of surface mined ground reclamation and neutralization, water purification and treatment, mining and coal preparation plant waste disposal, ash and fly ash disposal (to minimize leaching from the wastes), runoff from large coal storage stockpiles during storms (prevention of environmental effects by collection and neutralization by passing through an ash pond). (LTN)

  4. Political and technical issues of coal fire extinction in the Kyoto framework

    Science.gov (United States)

    Meyer, U.; Chen-Brauchler, D.; Rüter, H.; Fischer, C.; Bing, K.

    2009-04-01

    It is a highly desirable effort to extinguish as much coal fires as possible in short time to prevent large losses of energy resources and to minimise CO2 and other exhaust gas releases from such sources. Unfortunately, extinguishing coal fires needs massive financial investments, skilled man power, suited technology and a long time. Even mid to small scale coal fires need several months of extinguishing measures and of monitoring time after extinction resulting in expenditures of a minimum of several hundred thousand Euros. Large companies might be willing to spend money for coal fire extinction measures but smaller holdings or regional governments might not have the monetary resources for it. Since there is no law in China that demands coal fire extinction, measures under the Kyoto framework may be applied to sell CO2 certificates for prevented emissions from extinguished coal fires and thus used as a financial stimulus for coal fire extinction activities. The set-up for methodologies and project designs is especially complex for coal fire extinction measures and thus for necessary exploration, evaluation and monitoring using geophysical and remote sensing methods. A brief overview of most important formal and technical aspects is given to outline the conditions for a potentially successful CDM application on coal fires based on geophysical observations and numerical modelling.

  5. Biochemical Removal of HAP Precursors From Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE`s interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals.

  6. Biochemical Removal of HAP Precursors From Coal

    International Nuclear Information System (INIS)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE's interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals

  7. Technical, environmental, and economic assessment of deploying advanced coal power technologies in the Chinese context

    International Nuclear Information System (INIS)

    Zhao Lifeng; Xiao Yunhan; Gallagher, Kelly Sims; Wang Bo; Xu Xiang

    2008-01-01

    The goal of this study is to evaluate the technical, environmental, and economic dimensions of deploying advanced coal-fired power technologies in China. In particular, we estimate the differences in capital cost and overall cost of electricity (COE) for a variety of advanced coal-power technologies based on the technological and economic levels in 2006 in China. This paper explores the economic gaps between Integrated Gasification Combined Cycle (IGCC) and other advanced coal power technologies, and compares 12 different power plant configurations using advanced coal power technologies. Super critical (SC) and ultra super critical (USC) pulverized coal (PC) power generation technologies coupled with pollution control technologies can meet the emission requirements. These technologies are highly efficient, technically mature, and cost-effective. From the point of view of efficiency, SC and USC units are good choices for power industry. The net plant efficiency for IGCC has reached 45%, and it has the best environmental performance overall. The cost of IGCC is much higher, however, than that of other power generation technologies, so the development of IGCC is slow throughout the world. Incentive policies are needed if IGCC is to be deployed in China

  8. Distribution and mode of occurrence of selenium in US coals

    Science.gov (United States)

    Coleman, L.; Bragg, L.J.; Finkelman, R.B.

    1993-01-01

    Selenium excess and deficiency have been established as the cause of various health problems in man and animals. Combustion of fossil fuels, especially coal, may be a major source of the anthropogenic introduction of selenium in the environment. Coal is enriched in selenium relative to selenium's concentration in most other rocks and relative to selenium in the Earth's crust. Data from almost 9,000 coal samples have been used to determine the concentration and distribution of selenium in US coals. The geometric mean concentration of selenium in US coal is 1.7 ppm. The highest mean selenium value (geometric mean 4.7 ppm) is in the Texas Region. Atlantic Coast (Virginia and North Carolina) and Alaska coals have the lowest geometric means (0.2 and 0.42 ppm, respectively). All western coal regions have mean selenium concentrations of less than 2.0 ppm. In contrast, all coal basins east of the Rocky Mountains (except for several small basins in Rhode Island, Virginia, and North Carolina) have mean selenium values of 1.9 or greater. Generally, variations in selenium concentration do not correlate with variations in ash yield, pyritic sulphur, or organic sulphur concentrations. This may be the result of multiple sources of selenium; however, in some non-marine basins with restricted sources of selenium, selenium has positive correlations with other coal quality parameters. Selenium occurs in several forms in coal but appears to be chiefly associated with the organic fraction, probably substituting for organic sulphur. Other important forms of selenium in coal are selenium-bearing pyrite, selenium-bearing galena, and lead selenide (clausthalite). Water-soluble and ion-exchangeable selenium also have been reported. ?? 1993 Copyright Science and Technology Letters.

  9. Evaluation of the effect of macerals on coal permeability in Tazareh and Parvadeh mines

    Directory of Open Access Journals (Sweden)

    Farhang Sereshki

    2016-08-01

    Full Text Available In recent decades, the subject of gas emission in underground coal mines in many countries is an important subject. Many factors affect in gas emissions in coal seams. Geological and physical structures of coal are affecting on gas emissions'. Also, composition and mineralization of coal, affect in coal permeability for different gases. In this study, the relationship between maceral composition and coal permeability in Tazareh and Parvadeh mines has been studied. Accordingly, a laboratory studies to investigate the relationship between coal composition and coal permeability was done. In coal samples, with MFORR equipment the permeability test was done. With microscopic analysis, the maceral contents of coal such as Inertinite and Vitrinite have been measured. Accordingly, many coal samples of Parvadeh and Tazareh coal mines have the pyrite as the dominant mineral matter. Parvadeh coal samples has the average percentage of Vitrinite equal 81.34% and 10.52% Inertinite. Also, in the Tazareh coal samples in Eastern Alborz coal mines, the average percentage of Vitrinite is 69.31% and inertinite is 22.47%. The average percentage of Pyrite content in Parvadeh coal samples in Tabas coal mines is 2.38% and in the Tazareh coal samples in Eastern Alborz coal mines is 2.62%.  The permeability test results have been shown, which, with increase of Inertinite contents, the permeability of coal is increasing. Also, test results have been shown, there was a reduction in the coal permeability with increasing of mineral contents and carbonate contents of the coal. So, the coal permeability in Tabas coal samples is more than Eastern Alborz coal samples.

  10. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  11. A high-pyrite semianthracite of Late Permian age in the Songzao Coalfield, southwestern China: Mineralogical and geochemical relations with underlying mafic tuffs

    Science.gov (United States)

    Dai, S.; Wang, X.; Chen, W.; Li, D.; Chou, C.-L.; Zhou, Y.; Zhu, Chen; Li, H.; Zhu, Xudong; Xing, Y.; Zhang, W.; Zou, J.

    2010-01-01

    The No. 12 Coal (Late Permian) in the Songzao Coalfield, Chongqing, southwestern China, is characteristically high in pyrite and some trace elements. It is uniquely deposited directly above mafic tuff beds. Samples of coal and tuffs have been studied for their mineralogy and geochemistry using inductively coupled plasma-mass spectrometry, X-ray fluorescence, plasma low-temperature ashing plus powder X-ray diffraction, and scanning electron microscopy equipped with energy-dispersive X-ray analysis.The results show that the minerals of the No. 12 Coal are mainly composed of pyrite, clay minerals (kaolinite, chamosite, and illite), ankerite, calcite, and trace amounts of quartz and boehmite. Kaolinite and boehmite were mainly derived from sediment source region of mafic tuffs. Chamosite was formed by the reaction of kaolinite with Fe-Mg-rich fluids during early diagenesis. The high pyrite (Sp,d=8.83%) in the coal was related to marine transgression over peat deposits and abundant Fe derived from the underlying mafic tuff bed. Ankerite and calcite were precipitated from epigenetic fluids.Chemical compositions of incompatible elements indicate that the tuffs were derived from enriched mantle and the source magmas had an alkali-basalt character. Compared to other coals from the Songzao Coalfield and common Chinese coals, the No. 12 Coal has a lower SiO2/Al2O3 (1.13) but a higher Al2O3/Na2O (80.1) value and is significantly enriched in trace elements including Sc (13.5??g/g), V (121??g/g), Cr (33.6??g/g), Co (27.2??g/g), Ni (83.5??g/g), Cu (48.5??g/g), Ga (17.3??g/g), Y (68.3??g/g), Zr (444??g/g), Nb (23.8??g/g), and REE (392??g/g on average). Above mineralogical compositions, as well as similar ratios of selected elements (e.g., SiO2/Al2O3 and Al2O3/Na2O) and similar distribution patterns of incompatible elements (e.g., the mantle-normalized diagram for incompatible elements and chondrite-normalized diagram for rare earth elements) of coal and tuff, indicated that

  12. A high-pyrite semianthracite of Late Permian age in the Songzao Coalfield, southwestern China: Mineralogical and geochemical relations with underlying mafic tuffs

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shifeng; Wang, Xibo; Chen, Wenmei [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, (China); Li, Dahua [Research Center of State Key Laboratory of Coal Resources and Safe Mining, Chongqing 400042, (China); Chou, Chen-Lin [Illinois State Geological Survey (Emeritus), 615 East Peabody Drive, Champaign, IL 61820, (United States); Zhou, Yiping [Yunnan Institute of Coal Geology Prospection, Kunming 650218, (China); Zhu, Changsheng; Li, Hang [Research Center of State Key Laboratory of Coal Resources and Safe Mining, Chongqing 400042, (China); Zhu, Xingwei; Xing, Yunwei; Zhang, Weiguo; Zou, Jianhua [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, (China)

    2010-09-01

    The No. 12 Coal (Late Permian) in the Songzao Coalfield, Chongqing, southwestern China, is characteristically high in pyrite and some trace elements. It is uniquely deposited directly above mafic tuff beds. Samples of coal and tuffs have been studied for their mineralogy and geochemistry using inductively coupled plasma-mass spectrometry, X-ray fluorescence, plasma low-temperature ashing plus powder X-ray diffraction, and scanning electron microscopy equipped with energy-dispersive X-ray analysis. The results show that the minerals of the No. 12 Coal are mainly composed of pyrite, clay minerals (kaolinite, chamosite, and illite), ankerite, calcite, and trace amounts of quartz and boehmite. Kaolinite and boehmite were mainly derived from sediment source region of mafic tuffs. Chamosite was formed by the reaction of kaolinite with Fe-Mg-rich fluids during early diagenesis. The high pyrite (S{sub p,d} 8.83%) in the coal was related to marine transgression over peat deposits and abundant Fe derived from the underlying mafic tuff bed. Ankerite and calcite were precipitated from epigenetic fluids. Chemical compositions of incompatible elements indicate that the tuffs were derived from enriched mantle and the source magmas had an alkali-basalt character. Compared to other coals from the Songzao Coalfield and common Chinese coals, the No. 12 Coal has a lower SiO{sub 2}/Al{sub 2}O{sub 3} (1.13) but a higher Al{sub 2}O{sub 3}/Na{sub 2}O (80.1) value and is significantly enriched in trace elements including Sc (13.5 {mu}g/g), V (121 {mu}g/g), Cr (33.6 {mu}g/g), Co (27.2 {mu}g/g), Ni (83.5 {mu}g/g), Cu (48.5 {mu}g/g), Ga (17.3 {mu}g/g), Y (68.3 {mu}g/g), Zr (444 {mu}g/g), Nb (23.8 {mu}g/g), and REE (392 {mu}g/g on average). Above mineralogical compositions, as well as similar ratios of selected elements (e.g., SiO{sub 2}/Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}/Na{sub 2}O) and similar distribution patterns of incompatible elements (e.g., the mantle-normalized diagram for

  13. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  14. Soil amendments promote vegetation establishment and control acidity in coal combustion waste

    Science.gov (United States)

    R.M. Danker; D.C. Adriano; Bon-Jun Koo; C.D. Barton

    2003-01-01

    The effects of adding various soil amendments and a pyrite oxidation inhibitor to aid in the establishment of vegetation and to reduce acid drainage (AD) from coal fly ash and coal reject (FA + CR*) were assessed in an outdoor mesocosm study. Preliminary greenhouse experiments and field observations at the U.S. Department of Energy's Savannah River Site (SRS)...

  15. The Adsorption of Cu Species onto Pyrite Surface and Its Effect on Pyrite Flotation

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2016-01-01

    Full Text Available The adsorption of Cu species onto pyrite surface and its effect on flotation were investigated by using microflotation tests, first-principle calculations, and XPS surface analysis. The results indicated that the flotation of pyrite appears to be activated with CuSO4 only at alkaline pH, while being depressed at acidic and neutral pH. The adsorption of copper ions on pyrite surface was pH-dependent, and the adsorption magnitude of copper ions at alkaline pH is higher than that at acidic and neutral pH due to a strong interaction between O atom in Cu(OH2 and surface Fe atom except for the interaction between Cu atom and surface S atom. At acidic and neutral pH, there is only an interaction between Cu atom and surface S atom. The adsorption was relatively weak, and more copper ions in solution precipitated the collector and depressed the flotation of pyrite. XPS analysis confirmed that more copper ionic species (Cu(I and Cu(II are adsorbed on the pyrite surface at alkaline pH than that at acidic and neutral pH.

  16. Pyrite in the Mesoarchean Witwatersrand Supergroup, South Africa

    OpenAIRE

    2012-01-01

    Ph.D. Petrographic, chemical and multiple sulfur isotope analyses were conducted on pyrite from argillaceous, arenaceous and rudaceous sedimentary rocks from the Mesoarchean Witwatersrand Supergroup. Following detailed petrographic analyses, four paragenetic associations of pyrite were identified. These include: 1) Detrital pyrite (derived from an existing rock via weathering and/or erosion). 2) Syngenetic pyrite (formed at the same time as the surrounding sediment). 3) Diagenetic pyrite (...

  17. The influence of reagent type on the kinetics of ultrafine coal flotation

    Science.gov (United States)

    Read, R.B.; Camp, L.R.; Summers, M.S.; Rapp, D.M.

    1989-01-01

    A kinetic study has been conducted to determine the influence of reagent type on flotation rates of ultrafine coal. Two ultrafine coal samples, the Illinois No. 5 (Springfield) and Pittsburgh No. 8, have been evaluated with various reagent types in order to derive the rate constants for coal (kc), ash (ka), and pyrite (kc). The reagents used in the study include anionic surfactants, anionic surfactant-alcohol mixtures, and frothing alcohols. In general, the surfactant-alcohol mixtures tend to float ultrafine coal at a rate three to four times faster than either pure alcohols or pure anionic surfactants. Pine oil, a mixture of terpene alcohols and hydrocarbons, was an exception to this finding; it exhibited higher rate constants than the pure aliphatic alcohols or other pure anionic surfactants studied; this may be explained by the fact that the sample of pine oil used (70% alpha-terpineol) acted as a frother/collector system similar to alcohol/kerosene. The separation efficiencies of ash and pyrite from coal, as evidenced by the ratios of kc/ka or kc/kp, tend to indicate, however, that commercially available surfactant-alcohol mixtures are not as selective as pure alcohols such as 2-ethyl-1-hexanol or methylisobutylcarbinol. Some distinct differences in various rate constants, or their ratios, were noted between the two coals studied, and are possibly attributable to surface chemistry effects. ?? 1989.

  18. Desulphurisation of coal pyrolysis and magnetic separation. Desulfuracion de carbones mediante pirolisis y separacion magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, J.C.; Ayala, N.; Ibarra, J.V.; Moliner, R.; Miranda, J.L.; Vazquez, A. (CENIM, Madrid (Spain))

    1991-07-01

    The desulphurisation of coal intended for use inthermal power stations is a priority issue in the national strategy for the reduction of acid rain. This article studies the feasibility of eliminating pyritic sulphur from coal by physical methods using high intensity pyrolysis and magnetic separation. 6 refs., 9 figs., 4 tabs.

  19. THE DEPRESSION OF PYRITE FLOTATION BY THIOBACILLUS FERROOXIDANS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The experimental studies on the microbial flotation of a pure pyrite sample using Thiobacillus ferrooxidans was conducted in the laboratory. The results indicate that Thiobacillus ferrooaidans has strong depression effect on the flotation of pyrite. Thiobacillus f errooxidans can adsorb on the surface of pyrite in a very short time (a few min. ), changing the surface from hydrophobic into hydrophilic and making the pyrite particles to lose their floatability. Therefore, Thiobacillus ferrooxidans is an effective microbial depressant of pyrite. It has also been pointed out that the depression of pyrite by Thiobacillus ferrooxidans is caused by the adsorption of the microbial colloids, but not by the oxidation effect.

  20. Method of synthesizing pyrite nanocrystals

    Science.gov (United States)

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  1. Pyrite footprinting of RNA

    International Nuclear Information System (INIS)

    Schlatterer, Jörg C.; Wieder, Matthew S.; Jones, Christopher D.; Pollack, Lois; Brenowitz, Michael

    2012-01-01

    Highlights: ► RNA structure is mapped by pyrite mediated · OH footprinting. ► Repetitive experiments can be done in a powdered pyrite filled cartridge. ► High · OH reactivity of nucleotides imply dynamic role in Diels–Alderase catalysis. -- Abstract: In RNA, function follows form. Mapping the surface of RNA molecules with chemical and enzymatic probes has revealed invaluable information about structure and folding. Hydroxyl radicals ( · OH) map the surface of nucleic acids by cutting the backbone where it is accessible to solvent. Recent studies showed that a microfluidic chip containing pyrite (FeS 2 ) can produce sufficient · OH to footprint DNA. The 49-nt Diels–Alder RNA enzyme catalyzes the C–C bond formation between a diene and a dienophile. A crystal structure, molecular dynamics simulation and atomic mutagenesis studies suggest that nucleotides of an asymmetric bulge participate in the dynamic architecture of the ribozyme’s active center. Of note is that residue U42 directly interacts with the product in the crystallized RNA/product complex. Here, we use powdered pyrite held in a commercially available cartridge to footprint the Diels–Alderase ribozyme with single nucleotide resolution. Residues C39 to U42 are more reactive to · OH than predicted by the solvent accessibility calculated from the crystal structure suggesting that this loop is dynamic in solution. The loop’s flexibility may contribute to substrate recruitment and product release. Our implementation of pyrite-mediated · OH footprinting is a readily accessible approach to gleaning information about the architecture of small RNA molecules.

  2. Behavior of catalyst and mineral matter in coal liquefaction; Sekitan ekika hannochu no kobusshitsu to shokubai no kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, K.; Wang, J.; Tomita, A. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    Mineral matter in coals is important in various senses for coal liquefaction. It is possible that the catalytic activity is affected by the interaction between catalyst and mineral matter. Iron-based catalyst forms pyrrhotite in the process of liquefaction, but the interaction between it and mineral matter is not known in detail. In this study, the interaction between mineral matter and catalyst and the selective reaction between them were investigated. Tanito Harum coal was used for this study. This coal contains a slight amount of siderite and jarosite besides pyrite as iron compounds. Liquefaction samples were obtained from the 1 t/d NEDOL process PSU. The solid deposits in the reactor mainly contained pyrrhotite and quartz. A slight amount of kaolinite was observed, and pyrite was little remained. It was found that the catalyst (pyrrhotite) often coexisted with quartz, clay and calcite. 8 figs., 2 tabs.

  3. Linked-cone DEA profit ratios and technical efficiency with application to Illinois coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, R.G.; Dharmapala, P.S.; Thrall, R.M. [University of Houston, Houston, TX (United States). Dept. of Decision and Information Sciences

    1995-04-01

    The authors develop a theory stating that Data Envelopment Analysis (DEA) profit ratios and technical efficiency measures require separate treatment. This point is illustrated by analysis of an example problem; showing that DEA technical efficiency does not necessarily imply a DEA maximum profit ratio; and that a DEA maximum profit ratio does not necessarily imply DEA technical efficiency. The mathematical framework underlying this argument is provided. Application of the concepts to Illinois coal mining data lends support to the need for separate treatment of DEA technical efficiency and DEA profit ratios. 31 refs., 4 figs., 9 tabs.

  4. Linked-cone DEA profit ratios and technical efficiency with application to Illinois coal mines

    International Nuclear Information System (INIS)

    Thompson, R.G.; Dharmapala, P.S.; Thrall, R.M.

    1995-01-01

    The authors develop a theory stating that Data Envelopment Analysis (DEA) profit ratios and technical efficiency measures require separate treatment. This point is illustrated by analysis of an example problem; showing that DEA technical efficiency does not necessarily imply a DEA maximum profit ratio; and that a DEA maximum profit ratio does not necessarily imply DEA technical efficiency. The mathematical framework underlying this argument is provided. Application of the concepts to Illinois coal mining data lends support to the need for separate treatment of DEA technical efficiency and DEA profit ratios. 31 refs., 4 figs., 9 tabs

  5. Application of Moessbauer spectroscopy for: (1) characterization of Egyptian Maghara coal; (2) evaluating the efficiency of different methods for coal desulphurization

    International Nuclear Information System (INIS)

    Eissa, N.A.; Sheta, N.H.; Ahmed, M.A.

    1992-01-01

    Coal has been recently discovered in Maghara mine at Northern Sinai, Egypt. Coal samples have been collected from different depths and were measured by XRD, XRF, and MS, in order to characterize this type of coal. It has been found that the iron bearing minerals are mainly pyrite and different sulphates depending on the depth of the sample. The second part contains the application of desulphurization techniques to Egyptian coal which are: floatation (one step and two steps), chemical [(HCl+HNO 3 ), and Fe 2 (SO 4 ) 3 ] and bacterial methods (Chromatium and Chlorobium species). The efficiency of each technique was calculated. A comparative discussion is given of each desulphurization method, from which the bacterial method has proved to be the most efficient one. (orig.)

  6. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  7. Engineering development of advanced physical fine coal cleaning technologies - froth flotation

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, D.D.; Bencho, J.R. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)

    1995-11-01

    In 1988, ICF Kaiser Engineers was awarded DOE Contract No. DE-AC22-88PC88881 to research, develop, engineer and design a commercially acceptable advanced froth flotation coal cleaning technology. The DOE initiative is in support of the continued utilization of our most abundant energy resource. Besides the goal of commercialability, coal cleaning performance and product quality goals were established by the DOE for this and similar projects. primary among these were the goals of 85 percent energy recovery and 85 percent pyrite rejection. Three nationally important coal resources were used for this project: the Pittsburgh No. 8 coal, the Upper Freeport coal, and the Illinois No. 6 coal. Following is a summary of the key findings of this project.

  8. Biodesulfurization techniques: Application of selected microorganisms for organic sulfur removal from coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, B.B.

    1993-08-01

    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating a potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.

  9. The effects of trace element content on pyrite oxidation rates

    Science.gov (United States)

    Gregory, D. D.; Lyons, T.; Cliff, J. B.; Perea, D. E.; Johnson, A.; Romaniello, S. J.; Large, R. R.

    2017-12-01

    Pyrite acts as both an important source and sink for many different metals and metalloids in the environment, including many that are toxic. Oxidation of pyrite can release these elements while at the same time producing significant amounts of sulfuric acid. Such issues are common in the vicinity of abandoned mines and smelters, but, as pyrite is a common accessory mineral in many different lithologies, significant pyrite oxidation can occur whenever pyritic rocks are exposed to oxygenated water or the atmosphere. Accelerated exposure to oxygen can occur during deforestation, fracking for petroleum, and construction projects. Geochemical models for pyrite oxidation can help us develop strategies to mitigate these deleterious effects. An important component of these models is an accurate pyrite oxidation rate; however, current pyrite oxidation rates have been determined using relatively pure pyrite. Natural pyrite is rarely pure and has a wide range of trace element concentrations that may affect the oxidation rate. Furthermore, the position of trace elements within the mineral lattice can also affect the oxidation rate. For example, elements such as Ni and Co, which substitute into the pyrite lattice, are thought to stabilize the lattice and thus prevent pyrite oxidation. Alternatively, trace elements that are held within inclusions of other minerals could form a galvanic cell with the surrounding pyrite, thus enhancing pyrite oxidation rates. In this study, we present preliminary analyses from three different pyrite oxidation experiments each using natural pyrite with different trace element compositions. These results show that the pyrite with the highest trace element concentration has approximately an order of magnitude higher oxidation rate compared to the lowest trace element sample. To further elucidate the mechanisms, we employed microanalytical techniques to investigate how the trace elements are held within the pyrite. LA-ICPMS was used to determine the

  10. Coal flotation technical review

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, N. [C. Clarkson & Associates Pty. Ltd., Brisbane, Qld. (Australia)

    1996-10-01

    The Australian Coal Association Research Program (ACARP) recently commissioned a study into the status of flotation in coal preparation, in order to direct limited funds to areas of maximum benefit. The primary purpose of the study was the assessment of new flotation technologies, including those commercially available and those still under development. Technologies examined included: the Jameson Cell, Microcel, and Ekof cell. Problems and advantages are discussed, with suggestions for future areas of research. 3 figs.

  11. Moessbauer investigation of gold-bearing pyrite-rich concentrates

    International Nuclear Information System (INIS)

    Wagner, F.E.; Harris, D.C.

    1994-01-01

    A gold-bearing pyrite-rich concentrate of a refractory ore from the Golden Bear mine, northwestern British Columbia, and a pyrite-rich concentrate from Newhawk's west zone, Brucejack Lake area, northern British Columbia, containing 38 and 316 ppm Au and 0.57% and 0.19% As, respectively, have been investigated using 197 Au and 57 Fe Moessbauer spectroscopy. In the Golden Bear sample, the gold is mainly chemically bound in the pyrite with minor amounts present as an Au-Ag alloy, whereas in the Newhawk sample, the gold occurs mainly as an Au-Ag alloy with a composition close to Au 0.5 Ag 0.5 and is only partly bound in the pyrite. Having mean isomer shifts of +3.2 and +4.0 mm/s with respect to a Pt metal source, the gold in pyrite exhibits shifts similar to those observed for gold in arsenopyrite. The nature of the lattice sites occupied by the gold in pyrite is discussed. (orig.)

  12. Mercury distribution in coals influenced by magmatic intrusions, and surface waters from the Huaibei Coal Mining District, Anhui, China

    International Nuclear Information System (INIS)

    Yan, Zhicao; Liu, Guijian; Sun, Ruoyu; Wu, Dun; Wu, Bin; Zhou, Chuncai

    2013-01-01

    Highlights: • Hg concentrations in coal and surface water samples were determined. • Hg is enriched in the Huaibei coals. • Magmatic activities imparted influences on Hg content and distribution. • Hg contents in surface waters are relative low at the present status. - Abstract: The Hg concentrations in 108 samples, comprising 81 coal samples, 1 igneous rock, 2 parting rock samples and 24 water samples from the Huaibei Coal Mining District, China, were determined by cold-vapor atomic fluorescence spectrometry. The abundance and distribution of Hg in different coal mines and coal seams were studied. The weighted average Hg concentration for all coal samples in the Huaibei Coalfield is 0.42 mg/kg, which is about twice that of average Chinese coals. From southwestern to northeastern coalfield, Hg concentration shows a decreasing trend, which is presumably related to magmatic activity and fault structures. The relatively high Hg levels are observed in coal seams Nos. 6, 7 and 10 in the southwestern coal mines. Correlation analysis indicates that Hg in the southwestern and southernmost coals with high Hg concentrations is associated with pyrite. The Hg concentrations in surface waters in the Huaibei Coal Mining District range from 10 to 60 ng/L, and display a decreasing trend with distance from a coal waste pile but are lower than the regulated levels for Hg in drinking water

  13. Operation of a semi-technical pilot plant for nuclear aided steam gasification of coal

    International Nuclear Information System (INIS)

    Kirchhoff, R.; Heek, K.H. van; Juentgen, H.; Peters, W.

    1984-01-01

    After intensive investigations on a small scale, the principle of the process has been tested in a semi-technical pilot plant. In its gasifier a fluidized bed of approx. 1 m 2 cross-section and of up to 4 m height is operated at 40 bar. Heat is supplied to the bed from an immersed heat exchanger with helium flowing through it, which is heated electrically. The plant was commissioned in 1976 and has been in hot operation for approx. 23000 h, over 13000 h whereof account for coal gasification. Roughly 1600 t of coal have been put through. During recent years the processing of German caking long-flame gas coal and the marked improvement of the process by the use of catalysts have been demonstrated successfully. (orig.)

  14. Geochemistry of Toxic Elements and Their Removal via the Preparation of High-Uranium Coal in Southwestern China

    Directory of Open Access Journals (Sweden)

    Piaopiao Duan

    2018-02-01

    Full Text Available High-uranium (U coal is the dominant form of coal in Southwestern China. However, directly utilizing this resource can also harm the environment because this element is radioactive; it is, therefore, necessary to clean this kind of coal before burning. This research studied the geochemistry of toxic elements and their partitioning during the preparation of high-U coal in China. The results show that high-U coals are mainly distributed in Southwestern China and are characterized by a high organic sulfur (S content and vanadium (V-chromium (Cr-molybdenum (Mo-U element assemblage. These elements are well-correlated with one another, but are all negatively related to ash yield, indicating that all four are syngenetic in origin and associated with organic materials. A mineralogical analysis shows that U in Ganhe and Rongyang coal occurs within fine-grained anatase, clay minerals, guadarramite, and pyrite, while V occurs in clay minerals, pyrite, and dolomite, and Cr occurs in dolomite. Other elements, such as fluorine (F, lead (Pb, selenium (Se, and mercury (Hg, mainly occur in pyrite. By applying a gravity separation method to separate minerals from coal, the content of the enrichment element assemblage of V-Cr-Mo-U in Rongyang coal is still shown to be higher than, or close to, that of the original feed because this element assemblage is derived from hydrothermal fluids during syngenetic or early diagenetic phases, but other elements (beryllium [Be], F, manganese [Mn], zinc [Zn], Pb, arsenic [As], Se, Hg can be efficiently removed. Once cleaned, the coal obtained by gravity separation was subject to a flotation test to separate minerals; these results indicate that while a portion of V and Cr can be removed, Mo and U remain difficult to extract. It is evident that the two most commonly utilized industrialized coal preparation methods, gravity separation and flotation, cannot effectively remove U from coal where this element occurs in large

  15. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques.

    Science.gov (United States)

    Fantauzzi, Marzia; Licheri, Cristina; Atzei, Davide; Loi, Giovanni; Elsener, Bernhard; Rossi, Giovanni; Rossi, Antonella

    2011-10-01

    In this work, a multi-technical bulk and surface analytical approach was used to investigate the bioleaching of a pyrite and arsenopyrite flotation concentrate with a mixed microflora mainly consisting of Acidithiobacillus ferrooxidans. X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and X-ray-induced Auger electron spectroscopy mineral surfaces investigations, along with inductively coupled plasma-atomic emission spectroscopy and carbon, hydrogen, nitrogen and sulphur determination (CHNS) analyses, were carried out prior and after bioleaching. The flotation concentrate was a mixture of pyrite (FeS(2)) and arsenopyrite (FeAsS); after bioleaching, 95% of the initial content of pyrite and 85% of arsenopyrite were dissolved. The chemical state of the main elements (Fe, As and S) at the surface of the bioreactor feed particles and of the residue after bioleaching was investigated by X-ray photoelectron and X-ray excited Auger electron spectroscopy. After bioleaching, no signals of iron, arsenic and sulphur originating from pyrite and arsenopyrite were detected, confirming a strong oxidation and the dissolution of the particles. On the surfaces of the mineral residue particles, elemental sulphur as reaction intermediate of the leaching process and precipitated secondary phases (Fe-OOH and jarosite), together with adsorbed arsenates, was detected. Evidence of microbial cells adhesion at mineral surfaces was also produced: carbon and nitrogen were revealed by CHNS, and nitrogen was also detected on the bioleached surfaces by XPS. This was attributed to the deposition, on the mineral surfaces, of the remnants of a bio-film consisting of an extra-cellular polymer layer that had favoured the bacterial action. © Springer-Verlag 2011

  16. Pyrite-coated granite cobbles at Lee Bay, Stewart Island

    International Nuclear Information System (INIS)

    Brathwaite, R.L.; Skinner, D.N.B.; Faure, K.; Edwards, E.

    2014-01-01

    On the west side of Lee Bay on the northeast coast of Stewart Island, ventifact cobbles of pyrite-coated granite occur on the beach near the high tide mark and appear to be derived from a sand-cemented gravel deposit that forms a low bank at the back of the beach. The pyrite coat (up to 1 mm thick) completely covers the granitic cobbles and is zoned, with an inner zone of fine-grained colloform pyrite and an outer framboidal zone. Framboidal pyrite is typically formed in anoxic sedimentary environments. Subrounded grains of hematite, ilmenite with hematite blebs, magnetite, feldspar, biotite, quartz and zircon are present in the outer framboidal zone, with some ilmenite and hematite grains being partially replaced by pyrite. The assemblage of ilmenite-hematite-magnetite-biotite-zircon is similar both in mineralogy and size range to that found in heavy mineral beach sands. Sulphur isotope values of the pyrite coat are consistent with formation of the pyrite by microbial sulphate reduction of seawater sulphate. The framboidal texture together with the presence of grains of beach sand in the pyrite coating indicate that it was deposited in a low-temperature sedimentary environment. (author)

  17. Thermal behaviors of mechanically activated pyrites by thermogravimetry (TG)

    International Nuclear Information System (INIS)

    Hu Huiping; Chen Qiyuan; Yin Zhoulan; Zhang Pingmin

    2003-01-01

    The thermal decompositions of mechanically activated and non-activated pyrites were studied by thermogravimetry (TG) at the heating rate of 10 K min -1 in argon. Results indicate that the initial temperature of thermal decomposition (T di ) in TG curves for mechanically activated pyrites decreases gradually with increasing the grinding time. The specific granulometric surface area (S G ), the structural disorder of mechanically activated pyrites were analyzed by X-ray diffraction laser particle size analyzer, and X-ray powder diffraction analysis (XRD), respectively. The results show that the S G of mechanically activated pyrites remains almost constant after a certain grinding time, and lattice distortions (ε) rise but the crystallite sizes (D) decrease with increasing the grinding time. All these results imply that the decrease of T di in TG curves of mechanically activated pyrites is mainly caused by the increase of lattice distortions ε and the decrease of the crystallite sizes D of mechanically activated pyrite with increasing the grinding time. The differences in the reactivity between non-activated and mechanically activated pyrites were observed using characterization of the products obtained from 1 h treatment of non-activated and mechanically activated pyrites at 713 K under inert atmosphere and characterization of non-activated and mechanically activated pyrites exposed to ambient air for a certain period

  18. Arsenic, copper and zinc occurrence at the Wangaloa coal mine, southeast Otago, New Zealand

    International Nuclear Information System (INIS)

    Black, A.; Craw, D.

    2001-01-01

    Waste piles, created from open cast coal mining activities at the abandoned Wangaloa mine in SE Otago, have exposed pyrite (FeS 2 ) to atmospheric conditions. This has led to the acidification of the surface tailings and nearby drainage waters (acid mine drainage, AMD). Mobilisation of trace metals arsenic (As), copper (Cu), and zinc (Zn) has occurred, partly as a result of the low pH levels (ca. pH 2-4), leading to elevated concentrations of these metals in receiving waters. Authigenic pyrite deposited in a marginal marine coal-forming environment is enriched in As with levels reaching up to 100 ppm. Copper and Zn in solid solution are not elevated above background levels in either coal measures or associated pyrite. Water discharges, sediments, waste rock and background samples were sampled and analysed during the driest (summer) and wettest (winter) seasons of 1998 and 1999. During the winter season, water discharging from the waste piles contained up to 0.7 ppm (mg/kg) As, as measured in 1998. During the 1999 wettest season, no such levels of As were observed, with the highest level attaining 0.07 ppm As. Copper and Zn were locally elevated in waters, with Zn concentrations reaching 1 ppm. During the summer season of 1999, only one sampling site recorded elevated metal concentrations. Adverse effects from the remnant waste piles appear to be highly localised due to downstream natural remediation processes occurring in a wetland area. The absence of strongly elevated metal concentrations during the drier season is a result of strongly depressed water levels within the waste piles. Flushing of acid and metals occurs when the water levels increase with the onset of the winter season. During the summer season, pyrite within the waste piles has been readily decomposing from the increased availability and transport of atmospheric oxygen

  19. Research on desulfurisation of fine coal under compounding the physics force field

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Y.; Fu, D.; Tao, D.; Liu, J.; Zhao, Y. [China University of Mining and Technology, Xuzhou (China)

    2005-08-15

    Desulphurization experiment carried on under compounding the physics force field was described for -0.5 mm fine particle of high sulphur coal. The experiment factorial plan of desulphurization on centrifugal gravity Falcon separator was designed and its results were analyzed by using Design-Expert 6.0 software. The 2-reactor interaction relation model between comprehensive desulphurization efficiency of pyrite sulphur and different operation variable was drawn, i.e. 2 FI model, and the 2-factor interaction on pyrite desulphurization efficiency of the operation factors differently was analyzed. The interaction on pyrite desulphurization efficiency of feed rate and feed concentration is significant. The optimization test condition for desulphurization was proposed by Design-Expert 6.0, and comprehensive desulphurization efficiency of 86.90% can be achieved. 5 refs., 3 figs., 7 tabs.

  20. Selection of an Appropriate Mechanized Mining Technical Process for Thin Coal Seam Mining

    Directory of Open Access Journals (Sweden)

    Chen Wang

    2015-01-01

    Full Text Available Mechanized mining technical process (MMTP related to the control method of the shearer is a vital process in thin coal seam mining operations. An appropriate MMTP is closely related to safety, productivity, labour intensity, and efficiency. Hence, the evaluation of alternative MMTP is an important part of the mining design. Several parameters should be considered in MMTP evaluation, so the evaluation is complex and must be compliant with a set of criteria. In this paper, two multiple criteria decision-making (MCDM methods, Analytic Hierarchy Process (AHP and Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE, were adopted for this evaluation. Then, the most appropriate MMTP for a thin coal seam working face was selected in China.

  1. Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

  2. Determination of the Content of Heavy Metals in Pyrite Contaminated Soil and Plants

    Directory of Open Access Journals (Sweden)

    Miroslava Marić

    2008-09-01

    Full Text Available Determination of a pyrite contaminated soil texture, content of heavy metals in the soil and soil pH, was the aim in the investigation. Acidification of damaged soil was corrected by calcium carbonate. Mineral nutrients and organic matter (NPK, dung, earthworm cast, straw and coal dust were added to damaged soil. Afterwards, the soil was used for oat production. Determination of total heavy metal contents (Cu, Pb, Zn, Fe in soil was performed by atomic absorption spectrofotometry. Plant material (stems, seeds was analysed, too. Total concentration of the heavy metals in the plant material were greater than in crop obtained in unaffected soil.

  3. Rosebud syncoal partnership SynCoal{sup {reg_sign}} demonstration technology development update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Company, Billings, MT (United States); Heintz, S.J. [Department of Energy, Pittsburgh, PA (United States)

    1995-12-01

    Rosebud SynCoal{reg_sign} Partnership`s Advanced Coal Conversion Process (ACCP) is an advanced thermal coal upgrading process coupled with physical cleaning techniques to upgrade high moisture, low-rank coals to produce a high-quality, low-sulfur fuel. The coal is processed through two vibrating fluidized bed reactors where oxygen functional groups are destroyed removing chemically bound water, carboxyl and carbonyl groups, and volatile sulfur compounds. After thermal upgrading, the SynCoal{reg_sign} is cleaned using a deep-bed stratifier process to effectively separate the pyrite rich ash. The SynCoal{reg_sign} process enhances low-rank western coals with moisture contents ranging from 2555%, sulfur contents between 0.5 and 1.5 %, and heating values between 5,500 and 9,000 Btu/lb. The upgraded stable coal product has moisture contents as low as 1 %, sulfur contents as low as 0.3%, and heating values up to 12,000 Btu/lb.

  4. Quality aspects of thermal coal marketing

    International Nuclear Information System (INIS)

    Dunstone, D.

    1998-01-01

    Australia's thermal coal industry is under increasing competition. A successful marketing strategy must distinguish the product from that of Australian competitors, leaving the buyer in no doubt as to its value. The marketing of thermal coal is a very different experience and encompasses an interesting commercial and technical mix. The technical merits of a coal may be effectively used to prepare the way for a sale. However, once the technical hurdle is passed (i.e. the coal is classified as acceptable), the three factors which influence the sale are price, price and price. The other aspect of marketing is that marketing, especially technical market support, must realize that the buyer often has no experience in using the coals purchased. This is particularly true with thermal coals. Virtually no thought is given as to how the coal performs or how much is used. Consequently, it is not uncommon for cheap, low quality coals to be purchased, even though it is not the choice that will result in the lowest power generation cost when all other factors are taken into consideration. The author has developed a model which allows to differentiate between coals for a range of properties relative to the use of the coal, so that a coal company can calculate the break-even price in term of cost per kWh of electricity generated and enable a more valid cost comparison between coals to be made

  5. Selective separation of pyrite and chalcopyrite by biomodulation.

    Science.gov (United States)

    Chandraprabha, M N; Natarajan, K A; Modak, Jayant M

    2004-09-01

    Selective separation of pyrite from other associated ferrous sulphides at acidic and neutral pH has been a challenging problem. This paper discusses the utility of Acidithiobacillus ferrooxidans for the selective flotation of chalcopyrite from pyrite. Consequent to interaction with bacterial cells, pyrite remained depressed even in the presence of potassium isopropyl xanthate collector while chalcopyrite exhibited significant flotability. However, when the minerals were conditioned together, the selectivity achieved was poor due to the activation of pyrite surface by the copper ions in solution. The selectivity was improved when the sequence of conditioning with bacterial cells and collector was reversed, since the bacterial cells were able to depress collector interacted pyrite effectively, while having negligible effect on chalcopyrite. The observed behaviour is analysed and discussed in detail. The separation obtained was significant both at acidic and alkaline pH. This selectivity achieved was retained when the minerals were interacted with both bacterial cells and collector simultaneously.

  6. Technical review of coal gasifiers for production of synthetic natural gas

    International Nuclear Information System (INIS)

    Lee, Geun Woo; Shin, Yong Seung

    2012-01-01

    Because of the increasing cost of oil and natural gas, energy production technologies using coal, including synthetic natural gas (SNG) and integrated gasification combined cycle (IGCC), have attracted attention because of the relatively low cost of coal. During the early stage of a project, the developer or project owner has many options with regard to the selection of a gasifier. In particular, from the viewpoint of feasibility, the gasifier is a key factor in the economic evaluation. This study compares the technical aspects of gasifiers for a real SNG production project in an early stage. A fixed bed slagging gasifier, wet type entrained gasifier, and dry type entrained gasifier, all of which have specific advantages, can be used for the SNG production project. Base on a comparison of the process descriptions and performances of each gasifier, this study presents a selection guideline for a gasifier for an SNG production project that will be beneficial to project developers and EPC (Engineering, Procurement, Construction) contractors

  7. Retention and reduction of uranium on pyrite surface

    International Nuclear Information System (INIS)

    Eglizaud, N.

    2006-12-01

    In the hypothesis of a storage of the spent fuel in a deep geological formation, understanding the uranium dispersion in the environment is important. Pyrite is a reducing mineral present in the Callovo-Oxfordian argilites, the geological formation actually studied for such a storage. However, pyrite impact on uranium migration has already been poorly studied. The aim of the study was to understand the mechanisms of uranium(VI) retention and reduction on the pyrite surface (FeS 2 ). Solution chemistry was therefore coupled with solid spectroscopic studies (XPS and Raman spectroscopy). All uranium-pyrite interactions experiments were performed under an anoxic atmosphere, in a glove box. Pyrite dissolution under anoxic conditions releases sulfoxy-anions and iron(II), which can then be adsorbed on the pyrite surface. This adsorption was confirmed by interaction experiments using iron(II) isotopic dilution. Uranium(VI) is retained by an exchange reaction with iron(II) adsorbed on sulphur sites, with a maximal amount of sorbed uranium at pH ≥ 5.5. Cobalt(II) and europium(III) are also adsorbed on the pyrite surface above pH 5.5 confirming then that reduction is not required for species to adsorb on pyrite. When the concentration of uranium retained is lower than 4 x 10 -9 mol g -1 , an oxidation-reduction reaction leads to the formation of a uranium (VI) (IV) mixed oxide and to solid sulphur (d.o. ≥ -I). During this reaction, iron remains mostly at the +II oxidation degree. The reaction products seem to passivate the pyrite surface: at higher amounts of retained uranium, the oxidation-reduction reaction is no longer observed. The surface is saturated by the retention of (3.4 ± 0.8) x 10 -7 mol L -1 of uranium(VI). Modelling of uranium sorption at high surface coverage (≥ 4 x 10 -9 mol g -1 ) by the Langmuir model yields an adsorption constant of 8 x 10 7 L mol -1 . Finally, a great excess of uranium(VI) above the saturation concentration allows the observation of

  8. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  9. Chemical Interactions of Hydraulic Fracturing Biocides with Natural Pyrite

    Science.gov (United States)

    Consolazio, Nizette A.

    In conjunction with horizontal drilling, hydraulic fracturing or fracking has enabled the recovery of natural gas from low permeable shale formations. In addition to water, these fracking fluids employ proppants and up to 38 different chemical additives to improve the efficiency of the process. One important class of additives used in hydraulic fracturing is biocides. When applied appropriately, they limit the growth of harmful microorganisms within the well, saving energy producers 4.5 billion dollars each year. However, biocides or their harmful daughter products may return to the surface in produced water, which must then be appropriately stored, treated and disposed of. Little is known about the effect of mineral-fluid interactions on the fate of the biocides employed in hydraulic fracturing. In this study, we employed laboratory experiments to determine changes in the persistence and products of these biocides under controlled environments. While many minerals are present in shale formations, pyrite, FeS2(s) is particularly interesting because of its prevalence and reactivity. The FeII groups on the face of pyrite may be oxidized to form FeIII phases. Both of these surfaces have been shown to be reactive with organic compounds. Chlorinated compounds undergo redox reactions at the pyrite-fluid interface, and sulfur-containing compounds undergo exceptionally strong sorption to both pristine and oxidized pyrite. This mineral may significantly influence the degradation of biocides in the Marcellus Shale. Thus, the overall goal of this study was to understand the effect of pyrite on biocide reactivity in hydraulic fracturing, focusing on the influence of pyrite on specific functional groups. The first specific objective was to demonstrate the effect of pyrite and pyrite reaction products on the degradation of the bromine-containing biocide, DBNPA. On the addition of pyrite to DBNPA, degradation rates of the doubly brominated compound were found to increase

  10. Coal to SNG: Technical progress, modeling and system optimization through exergy analysis

    International Nuclear Information System (INIS)

    Li, Sheng; Ji, Xiaozhou; Zhang, Xiaosong; Gao, Lin; Jin, Hongguang

    2014-01-01

    Highlights: • Technical progresses of coal to SNG technologies are reported. • The entire coal to SNG system is modeled. • Coupling between SNG production and power generation is investigated. • Breakthrough points for further energy saving are determined. • System performance is optimized based on the first and second laws of thermodynamics. - Abstract: For both energy security and CO 2 emission reduction, synthetic natural gas (SNG) production from coal is an important path to implement clean coal technologies in China. In this paper, an overview of the progress of coal to SNG technologies, including the development of catalysts, reactor designs, synthesis processes, and systems integration, is provided. The coal to SNG system is modeled, the coupling between SNG production and power generation is investigated, the breakthrough points for further energy savings are determined, and the system performance is optimized based on the first and the second laws of thermodynamics. From the viewpoint of the first law of thermodynamics, the energy conversion efficiency of coal to SNG system can reach 59.8%. To reduce the plant auxiliary power, the breakthrough points are the development of low-energy-consumption oxygen production technology and gas purification technology or seeking new oxidants for coal gasification instead of oxygen. From the viewpoint of the second law of thermodynamics, the major exergy destruction in a coal to SNG system occurs in the coal gasification unit, SNG synthesis unit and the raw syngas cooling process. How to reduce the exergy destruction in these units is the key to energy savings and system performance enhancement. The conversion ratio of the first SNG synthesis reactor and the split ratio of the recycle gas are key factors that determine the performance of both the SNG synthesis process and the whole plant. A “turning point” phenomenon is observed: when the split ratio is higher than 0.90, the exergy destruction of the SNG

  11. Retention and reduction of uranium on pyrite surface; Retention et reduction de l'uranium a la surface de la pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Eglizaud, N

    2006-12-15

    In the hypothesis of a storage of the spent fuel in a deep geological formation, understanding the uranium dispersion in the environment is important. Pyrite is a reducing mineral present in the Callovo-Oxfordian argilites, the geological formation actually studied for such a storage. However, pyrite impact on uranium migration has already been poorly studied. The aim of the study was to understand the mechanisms of uranium(VI) retention and reduction on the pyrite surface (FeS{sub 2}). Solution chemistry was therefore coupled with solid spectroscopic studies (XPS and Raman spectroscopy). All uranium-pyrite interactions experiments were performed under an anoxic atmosphere, in a glove box. Pyrite dissolution under anoxic conditions releases sulfoxy-anions and iron(II), which can then be adsorbed on the pyrite surface. This adsorption was confirmed by interaction experiments using iron(II) isotopic dilution. Uranium(VI) is retained by an exchange reaction with iron(II) adsorbed on sulphur sites, with a maximal amount of sorbed uranium at pH {>=} 5.5. Cobalt(II) and europium(III) are also adsorbed on the pyrite surface above pH 5.5 confirming then that reduction is not required for species to adsorb on pyrite. When the concentration of uranium retained is lower than 4 x 10{sup -9} mol g{sup -1}, an oxidation-reduction reaction leads to the formation of a uranium (VI) (IV) mixed oxide and to solid sulphur (d.o. {>=} -I). During this reaction, iron remains mostly at the +II oxidation degree. The reaction products seem to passivate the pyrite surface: at higher amounts of retained uranium, the oxidation-reduction reaction is no longer observed. The surface is saturated by the retention of (3.4 {+-} 0.8) x 10{sup -7} mol L{sup -1} of uranium(VI). Modelling of uranium sorption at high surface coverage ({>=} 4 x 10{sup -9} mol g{sup -1}) by the Langmuir model yields an adsorption constant of 8 x 10{sup 7} L mol{sup -1}. Finally, a great excess of uranium(VI) above the

  12. Genesis of uranium-gold pyritic conglomerates

    International Nuclear Information System (INIS)

    Myers, W.B.

    1981-01-01

    The ancient pyritic ore conglomerates have a common origin best exemplified by the Witwatersrand deposits. All contain detrital pyrite and uraninite, which are unstable in modern oxygenated environments and were deposited in a reducing atmosphere. The Rand reefs are not similar to modern gold placers. Placers result from the near incapacity of streams and currents to transport coarse gold. Placers as rich as Rand reef occur only in narrow paystreaks within 15 kilometers of a coarse-gold source. The board dispersion of gold in the reefs is due to solution transport of metal complexed as aurous sulfide, leached anoxygenically from crustal rocks, probably from sea-floor basalt, and precipitated by a slow reaction driven by the radioactive decay of detrital uraninite. Radiolysis of water on shallow marine unconformities resulted in diffusion of hydrogen to the atmosphere and a slight excess of hydroxyl free radical in the reef environment. The mild oxidizing tendency slowly dissolved uranium, precipitated gold, and oxygenated thucholite. These actions define a maturing process. A uraninite placer accumulating on an unconformity becomes progressively converted to a gold reef with little residual uraninite. The most mature reefs tend to grade toward the thucholite-seam type, very thin but exceedingly rich in gold. A combination of chemical attack and physical reworking accounts for the general thinness of mature reefs. Pyrite, like uraninite, decreases in abundance with increasing maturity; buffering by pyrite moderated the oxidative depletion of uranium. Where pyrite was scanty or absent, uraninite was completely dissolved by the effects of radiolysis and no ore formed

  13. Variation in mineral composition of coal during enrichment and coking

    Energy Technology Data Exchange (ETDEWEB)

    M.L. Ulanovskii; A.N. Likhenko [Ukrkoks Coke Producers' Association, Dnepropetrovsk (Ukraine)

    2009-06-15

    The parameters I{sub b} and B{sub b} used in developing an optimal coking-batch composition are determined from data on the chemical composition of the ash in Donetsk Basin and other coal. It is found that, when the ash content is reduced in deeper enrichment of coal with an increased content of fine pyrite, there will be accompanying increase in the Fe{sub 2}O{sub 3} content and decrease in the SiO{sub 2} content of the ash in lighter fractions. This increases I{sub b}. In other words, reducing the ash content of the coal is an unpromising means of increasing CRI and CSR of the coke produced. Three ash-containing elements (silicon, aluminum, and iron) are experimentally proven to transfer from coal to coke. Specific behavior of calcium, magnesium, alkali metals, and sulfur during coking.

  14. Enhancement of Biofilm Formation on Pyrite by Sulfobacillus thermosulfidooxidans

    Directory of Open Access Journals (Sweden)

    Qian Li

    2016-07-01

    Full Text Available Bioleaching is the mobilization of metal cations from insoluble ores by microorganisms. Biofilms can enhance this process. Since Sulfobacillus often appears in leaching heaps or reactors, this genus has aroused attention. In this study, biofilm formation and subsequent pyrite dissolution by the Gram-positive, moderately thermophilic acidophile Sulfobacillus thermosulfidooxidans were investigated. Five strategies, including adjusting initial pH, supplementing an extra energy source or ferric ions, as well as exchanging exhausted medium with fresh medium, were tested for enhancement of its biofilm formation. The results show that regularly exchanging exhausted medium leads to a continuous biofilm development on pyrite. By this way, multiply layered biofilms were observed on pyrite slices, while only monolayer biofilms were visible on pyrite grains. In addition, biofilms were proven to be responsible for pyrite leaching in the early stages.

  15. Petrology, Palynology, and Geochemistry of Gray Hawk Coal (Early Pennsylvanian, Langsettian in Eastern Kentucky, USA

    Directory of Open Access Journals (Sweden)

    James C. Hower

    2015-09-01

    Full Text Available This study presents recently collected data examining the organic petrology, palynology, mineralogy and geochemistry of the Gray Hawk coal bed. From the Early Pennsylvanian, Langsettian substage, Gray Hawk coal has been mined near the western edge of the eastern Kentucky portion of the Central Appalachian coalfield. While the coal is thin, rarely more than 0.5-m thick, it has a low-ash yield and a low-S content, making it an important local resource. The Gray Hawk coal palynology is dominated by Lycospora spp., and contains a diverse spectrum of small lycopods, tree ferns, small ferns, calamites, and gymnosperms. The maceral assemblages show an abundance of collotelinite, telinite, vitrodetrinite, fusinite, and semifusinite. Fecal pellet-derived macrinite, albeit with more compaction than is typically seen in younger coals, was observed in the Gray Hawk coal. The minerals in the coal are dominated by clay minerals (e.g., kaolinite, mixed-layer illite/smectite, illite, and to a lesser extent, pyrite, quartz, and iron III hydroxyl-sulfate, along with traces of chlorite, and in some cases, jarosite, szomolnokite, anatase, and calcite. The clay minerals are of authigenic and detrital origins. The occurrence of anatase as cell-fillings also indicates an authigenic origin. With the exception of Ge and As, which are slightly enriched in the coals, the concentrations of other trace elements are either close to or much lower than the averages for world hard coals. Arsenic and Hg are also enriched in the top bench of the coal and probably occur in pyrite. The elemental associations (e.g., Al2O3/TiO2, Cr/Th-Sc/Th indicate a sediment-source region with intermediate and felsic compositions. Rare metals, including Ga, rare earth elements and Ge, are highly enriched in the coal ashes, and the Gray Hawk coals have a great potential for industrial use of these metals. The rare earth elements in the samples are weakly fractionated or are characterized by heavy

  16. Geochemical Characteristics of Trace Elements in the No. 6 Coal Seam from the Chuancaogedan Mine, Jungar Coalfield, Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Lin Xiao

    2016-03-01

    Full Text Available Fourteen samples of No. 6 coal seam were obtained from the Chuancaogedan Mine, Jungar Coalfield, Inner Mongolia, China. The samples were analyzed by optical microscopic observation, X-ray diffraction (XRD, scanning electron microscope equipped with an energy-dispersive X-ray spectrometer (SEM-EDS, inductively coupled plasma mass spectrometry (ICP-MS and X-ray fluorescence spectrometry (XRF methods. The minerals mainly consist of kaolinite, pyrite, quartz, and calcite. The results of XRF and ICP-MS analyses indicate that the No. 6 coals from Chuancaogedan Mine are higher in Al2O3, P2O5, Zn, Sr, Li, Ga, Zr, Gd, Hf, Pb, Th, and U contents, but have a lower SiO2/Al2O3 ratio, compared to common Chinese coals. The contents of Zn, Sr, Li, Ga, Zr, Gd, Hf, Pb, Th, and U are higher than those of world hard coals. The results of cluster analyses show that the most probable carrier of strontium in the coal is gorceixite; Lithium mainly occurs in clay minerals; gallium mainly occurs in inorganic association, including the clay minerals and diaspore; cadmium mainly occurs in sphalerite; and lead in the No. 6 coal may be associated with pyrite. Potentially valuable elements (e.g., Al, Li, and Ga might be recovered as byproducts from coal ash. Other harmful elements (e.g., P, Pb, and U may cause environmental impact during coal processing.

  17. Fabrication and characterization of PDLLA/pyrite composite bone ...

    Indian Academy of Sciences (India)

    Polylactic acid; Chinese herbal medicine; pyrite; scaffold; bone regeneration; cell culture. 1. Introduction ... research focuses on the direct cellular level effect of pyrite on bone cells. ..... optimal scaffold from the results of this paper. Although the.

  18. Nucleic acid interactions with pyrite surfaces

    International Nuclear Information System (INIS)

    Mateo-Marti, E.; Briones, C.; Rogero, C.; Gomez-Navarro, C.; Methivier, Ch.; Pradier, C.M.; Martin-Gago, J.A.

    2008-01-01

    The study of the interaction of nucleic acid molecules with mineral surfaces is a field of growing interest in organic chemistry, origin of life, material science and biotechnology. We have characterized the adsorption of single-stranded peptide nucleic acid (ssPNA) on a natural pyrite surface, as well as the further adsorption of ssDNA on a PNA-modified pyrite surface. The characterization has been performed by means of reflection absorption infrared spectroscopy (RAIRS), atomic force microscopy (AFM) and X-ray photoemission spectroscopy (XPS) techniques. The N(1s) and S(2p) XPS core level peaks of PNA and PNA + DNA have been decomposed in curve-components that we have assigned to different chemical species. RAIRS spectra recorded for different concentrations show the presence of positive and negative adsorption bands, related to the semiconducting nature of the surface. The combination of the information gathered by these techniques confirms that PNA adsorbs on pyrite surface, interacting through nitrogen-containing groups of the nucleobases and the iron atoms of the surface, instead of the thiol group of the molecule. The strong PNA/pyrite interaction inhibits further hybridization of PNA with complementary ssDNA, contrary to the behavior reported on gold surfaces

  19. Nucleic acid interactions with pyrite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mateo-Marti, E. [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejon de Ardoz, Madrid (Spain)], E-mail: mateome@inta.es; Briones, C.; Rogero, C. [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejon de Ardoz, Madrid (Spain); Gomez-Navarro, C. [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049-Madrid (Spain); Methivier, Ch.; Pradier, C.M. [Laboratoire de Reactivite de Surface, UMR CNRS 7609. Universite Pierre et Marie Curie, 4, Pl Jussieu, 75005-Paris (France); Martin-Gago, J.A. [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, Km. 4, 28850-Torrejon de Ardoz, Madrid (Spain); Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049-Madrid (Spain)

    2008-09-03

    The study of the interaction of nucleic acid molecules with mineral surfaces is a field of growing interest in organic chemistry, origin of life, material science and biotechnology. We have characterized the adsorption of single-stranded peptide nucleic acid (ssPNA) on a natural pyrite surface, as well as the further adsorption of ssDNA on a PNA-modified pyrite surface. The characterization has been performed by means of reflection absorption infrared spectroscopy (RAIRS), atomic force microscopy (AFM) and X-ray photoemission spectroscopy (XPS) techniques. The N(1s) and S(2p) XPS core level peaks of PNA and PNA + DNA have been decomposed in curve-components that we have assigned to different chemical species. RAIRS spectra recorded for different concentrations show the presence of positive and negative adsorption bands, related to the semiconducting nature of the surface. The combination of the information gathered by these techniques confirms that PNA adsorbs on pyrite surface, interacting through nitrogen-containing groups of the nucleobases and the iron atoms of the surface, instead of the thiol group of the molecule. The strong PNA/pyrite interaction inhibits further hybridization of PNA with complementary ssDNA, contrary to the behavior reported on gold surfaces.

  20. Source of arsenic-bearing pyrite in southwestern Vermont, USA: Sulfur isotope evidence

    Energy Technology Data Exchange (ETDEWEB)

    Mango, Helen, E-mail: helen.mango@castleton.edu [Department of Natural Sciences, Castleton State College, 233 South Street, Castleton, VT 05735 (United States); Ryan, Peter, E-mail: pryan@middlebury.edu [Department of Geology, Middlebury College, 276 Bicentennial Way, Middlebury, VT 05753 (United States)

    2015-02-01

    Arsenic-bearing pyrite is the source of arsenic in groundwater produced in late Cambrian and Ordovician gray and black slates and phyllites in the Taconic region of southwestern Vermont, USA. The aim of this study is to analyze the sulfur isotopic composition of this pyrite and determine if a relationship exists between pyrite δ{sup 34}S and arsenic content. Pyrite occurs in both sedimentary/diagenetic (bedding-parallel layers and framboids) and low-grade metamorphic (porphyroblast) forms, and contains up to > 2000 ppm As. The sulfur isotopic composition of arsenic-bearing pyrite ranges from − 5.2‰ to 63‰. In the marine environment, the sulfur in sedimentary pyrite becomes increasingly enriched in {sup 34}S as the geochemical environment becomes increasingly anoxic. There is a positive correlation between δ{sup 34}S and arsenic content in the Taconic pyrite, suggesting that uptake of arsenic by pyrite increased as the environment became more reducing. This increased anoxia may have been due to a rise in sea level and/or tectonic activity during the late Cambrian and Ordovician. Low-grade metamorphism appears to have little effect on sulfur isotope composition, but does correlate with lower arsenic content in pyrite. New groundwater wells drilled in this region should therefore avoid gray and black slates and phyllites that contain sedimentary/diagenetic pyrite with heavy δ{sup 34}S values. - Highlights: • Pyrite is the source of arsenic in groundwater in the Taconic region of Vermont, USA. • As-bearing pyrite δ{sup 34}S = – 5.2 to 63‰ with higher {sup 34}S as environment becomes more anoxic. • High sea level, tectonic activity create anoxia, with incorporation of As into pyrite. • New wells should avoid slate/phyllite containing sedimentary pyrite with heavy δ{sup 34}S.

  1. Source of arsenic-bearing pyrite in southwestern Vermont, USA: Sulfur isotope evidence

    International Nuclear Information System (INIS)

    Mango, Helen; Ryan, Peter

    2015-01-01

    Arsenic-bearing pyrite is the source of arsenic in groundwater produced in late Cambrian and Ordovician gray and black slates and phyllites in the Taconic region of southwestern Vermont, USA. The aim of this study is to analyze the sulfur isotopic composition of this pyrite and determine if a relationship exists between pyrite δ 34 S and arsenic content. Pyrite occurs in both sedimentary/diagenetic (bedding-parallel layers and framboids) and low-grade metamorphic (porphyroblast) forms, and contains up to > 2000 ppm As. The sulfur isotopic composition of arsenic-bearing pyrite ranges from − 5.2‰ to 63‰. In the marine environment, the sulfur in sedimentary pyrite becomes increasingly enriched in 34 S as the geochemical environment becomes increasingly anoxic. There is a positive correlation between δ 34 S and arsenic content in the Taconic pyrite, suggesting that uptake of arsenic by pyrite increased as the environment became more reducing. This increased anoxia may have been due to a rise in sea level and/or tectonic activity during the late Cambrian and Ordovician. Low-grade metamorphism appears to have little effect on sulfur isotope composition, but does correlate with lower arsenic content in pyrite. New groundwater wells drilled in this region should therefore avoid gray and black slates and phyllites that contain sedimentary/diagenetic pyrite with heavy δ 34 S values. - Highlights: • Pyrite is the source of arsenic in groundwater in the Taconic region of Vermont, USA. • As-bearing pyrite δ 34 S = – 5.2 to 63‰ with higher 34 S as environment becomes more anoxic. • High sea level, tectonic activity create anoxia, with incorporation of As into pyrite. • New wells should avoid slate/phyllite containing sedimentary pyrite with heavy δ 34 S

  2. Degradation of Diclofenac by sonosynthesis of pyrite nanoparticles.

    Science.gov (United States)

    Khabbaz, M; Entezari, M H

    2017-02-01

    The aim of this work is to evaluate the ability of synthesized pyrite nanoparticles (NPs) on the degradation of Diclofenac (DCF) as a model pharmaceutical pollutant. Pyrite NPs were synthesized by sonication with 20 kHz apparatus under optimum conditions. The effects of pyrite loading (0.02-0.20 g/L), DCF concentration (10-50 mg/L) and initial pH (2-10) on the degradation were investigated. The results revealed that the NPs have a great activity in the degradation of DCF with 25 mg/L concentration. A first-order kinetic model was found to match the experimental data. Complete degradation (100%) of DCF was achieved by pyrite within 3 min and 20 min in acidic and natural pH, respectively. To gain an understanding of the degradation mechanism and the role of pyrite, a UV-Vis spectrophotometer was employed to follow the DCF concentration. In addition, the Chemical Oxygen Demand (COD) and the amounts of ammonium and chloride ions verified complete degradation of DCF in both pH values. The results demonstrated that Fe 2+ ions were generated by the pyrite surface and the hydroxyl radical (OH) was formed by Fe 2+ ions through the Fenton reaction. Based on using radical scavengers in the degradation process, OH was mainly responsible for the fast degradation of DCF. COD measurements confirmed that DCF finally degraded to further oxidized forms (NH 4 + , Cl - ). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Pyrite oxidation under simulated acid rain weathering conditions.

    Science.gov (United States)

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou

    2017-09-01

    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  4. Characterization of a coal tailing deposit for zero waste mine in the Brazilian coal field of Santa Catarina

    International Nuclear Information System (INIS)

    Amaral Filho, J.R.; Schneider, I.A.H.; Tubino, R.M.C.; Brum de, I.A.S.; Miltzarek, G.; Sampaio, C.H.

    2010-01-01

    Coal tailings deposits in Brazil are occupying large areas of land while also generating acid mine drainage (AMD) that includes heavy metals. This paper described an analytical study of a typical coal tailings deposit. The study objective was to separate low density, intermediate density, and high density fractions for future reuse. Particle size analysis, disymmetric studies, X-ray diffraction, and tests conducted to determine ash, total sulphur, and acid bases were conducted in order to characterize the coal tailings samples. Results of the study demonstrated a size distribution of 67 percent coarse, 14 percent fine, and 19 percent ultra-fine particles. The gravimetric concentration method was used to recover 34.2 percent of the total deposit for future energy use. Approximately 9.2 percent of the remaining deposit was a pyrite concentrate. The acid generating potential of the remaining materials was reduced by approximately 60 percent. 9 refs., 1 tab., 2 figs.

  5. Pyritic ash-flow tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Castor, S.B.; Tingley, J.V.; Bonham, H.F. Jr.

    1994-01-01

    The Yucca Mountain site is underlain by a 1,500-m-thick Miocene volcanic sequence that comprises part of the southwestern Nevada volcanic field. Rocks of this sequence, which consists mainly of ash-flow tuff sheets with minor flows and bedded tuff, host precious metal mineralization in several areas as near as 10 km from the site. In two such areas, the Bullfrog and Bare Mountain mining districts, production and reserves total over 60 t gold and 150 t silver. Evidence of similar precious metal mineralization at the Yucca Mountain site may lead to mining or exploratory drilling in the future, compromising the security of the repository. The authors believe that most of the pyrite encountered by drilling at Yucca Mountain was introduced as pyroclastic ejecta, rather than by in situ hydrothermal activity. Pyritic ejecta in ash-flow tuff are not reported in the literature, but there is no reason to believe that the Yucca Mountain occurrence is unique. The pyritic ejecta are considered by us to be part of a preexisting hydrothermal system that was partially or wholly destroyed during eruption of the tuff units. Because it was introduced as ejecta in tuff units that occur at depths of about 1,000 m, such pyrite does not constitute evidence of shallow mineralization at the proposed repository site; however, the pyrite may be evidence for mineralization deep beneath Yucca Mountain or as much as tens of kilometers from it

  6. Coal Corporation of Victoria annual report 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Information is presented on operations, strategic planning, brown coal production and finance. Divisional reports are presented for the following divisions of the Coal Corporation of Victoria: marketing, technical marketing and special projects, research and development, and corporate services. The activities of the technical marketing and special projects division are discussed under the following headings: the coal for industry programme, the Brown Coal Liquefaction (Victoria) Pty. Ltd. project, dried brown coal activities, and resource development planning and policy activities. The corporation is currently conducting research into the following areas: ion exchange materials, activated carbons, and horticultural and agricultural applications of brown coal.

  7. Method selection for mercury removal from hard coal

    Directory of Open Access Journals (Sweden)

    Dziok Tadeusz

    2017-01-01

    Full Text Available Mercury is commonly found in coal and the coal utilization processes constitute one of the main sources of mercury emission to the environment. This issue is particularly important for Poland, because the Polish energy production sector is based on brown and hard coal. The forecasts show that this trend in energy production will continue in the coming years. At the time of the emission limits introduction, methods of reducing the mercury emission will have to be implemented in Poland. Mercury emission can be reduced as a result of using coal with a relatively low mercury content. In the case of the absence of such coals, the methods of mercury removal from coal can be implemented. The currently used and developing methods include the coal cleaning process (both the coal washing and the dry deshaling as well as the thermal pretreatment of coal (mild pyrolysis. The effectiveness of these methods various for different coals, which is caused by the diversity of coal origin, various characteristics of coal and, especially, by the various modes of mercury occurrence in coal. It should be mentioned that the coal cleaning process allows for the removal of mercury occurring in mineral matter, mainly in pyrite. The thermal pretreatment of coal allows for the removal of mercury occurring in organic matter as well as in the inorganic constituents characterized by a low temperature of mercury release. In this paper, the guidelines for the selection of mercury removal method from hard coal were presented. The guidelines were developed taking into consideration: the effectiveness of mercury removal from coal in the process of coal cleaning and thermal pretreatment, the synergy effect resulting from the combination of these processes, the direction of coal utilization as well as the influence of these processes on coal properties.

  8. Greigite: a true intermediate on the polysulfide pathway to pyrite

    Directory of Open Access Journals (Sweden)

    Benning Liane G

    2007-03-01

    Full Text Available Abstract The formation of pyrite (FeS2 from iron monosulfide precursors in anoxic sediments has been suggested to proceed via mackinawite (FeS and greigite (Fe3S4. Despite decades of research, the mechanisms of pyrite formation are not sufficiently understood because solid and dissolved intermediates are oxygen-sensitive and poorly crystalline and therefore notoriously difficult to characterize and quantify. In this study, hydrothermal synchrotron-based energy dispersive X-ray diffraction (ED-XRD methods were used to investigate in situ and in real-time the transformation of mackinawite to greigite and pyrite via the polysulfide pathway. The rate of formation and disappearance of specific Bragg peaks during the reaction and the changes in morphology of the solid phases as observed with high resolution microscopy were used to derive kinetic parameters and to determine the mechanisms of the reaction from mackinawite to greigite and pyrite. The results clearly show that greigite is formed as an intermediate on the pathway from mackinawite to pyrite. The kinetics of the transformation of mackinawite to greigite and pyrite follow a zero-order rate law indicating a solid-state mechanism. The morphology of greigite and pyrite crystals formed under hydrothermal conditions supports this conclusion and furthermore implies growth of greigite and pyrite by oriented aggregation of nanoparticulate mackinawite and greigite, respectively. The activation enthalpies and entropies of the transformation of mackinawite to greigite, and of greigite to pyrite were determined from the temperature dependence of the rate constants according to the Eyring equation. Although the activation enthalpies are uncharacteristic of a solid-state mechanism, the activation entropies indicate a large increase of order in the transition state, commensurate with a solid-state mechanism.

  9. Petrography and geochemistry of Oligocene bituminous coal from the Jiu Valley, Petrosani basin (southern Carpathian Mountains), Romania

    Energy Technology Data Exchange (ETDEWEB)

    Belkin, Harvey E.; Tewalt, Susan J. [U.S. Geological Survey, 956 National Center, Reston, VA 20192 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); Stucker, J.D. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); University of Kentucky Department of Earth and Environmental Sciences, Lexington, KY 40506 (United States); O' Keefe, Jennifer M.K. [Morehead State University, Morehead, KY, 40351 (United States); Tatu, Calin A. [University of Medicine and Pharmacy, Department of Immunology, Clinical Laboratory No. 1, Pta. E. Murgu No. 2, RO-1900 Timisoara (Romania); Buia, Grigore [University of Petrosani, Department of Geology, University St. 20, RO-2675 Petrosani (Romania)

    2010-05-01

    Belt samples of Oligocene (Chattian) bituminous coal from 10 underground mines located in the Jiu Valley, Hunedoara County, Petrosani basin, Romania, have been examined and analyzed for proximate and ultimate analysis, major-, minor- and trace-element chemistry, organic petrography, and vitrinite reflectance. The mineral chemistry and mode of occurrence of trace elements also have been investigated using SEM and electron microprobe techniques. Twenty coal beds occur in the Jiu Valley and most of the samples are from bed no. 3, the most productive bed of the Dilja-Uricani Formation of Oligocene age. The Petrosani basin, oriented SW-NE, is 48-km long, 10-km wide at the eastern part and 2-km wide at the western part. The coal mines are distributed along the center of the valley generally following the Jiu de Vest River. Reflectance measurements indicate that the rank of the coals ranges from high-volatile B to high-volatile A bituminous. Overall, rank decreases from the southwest to the northeast. In bed no. 3, R{sub max} varies from 0.75% in the northeast to 0.93% in the southwest. Although, most Oligocene coals in Romania and adjacent countries are lignite in rank, the Jiu Valley bituminous coals have been affected by regional metamorphism and attending hydrothermal fluids related to the Alpine orogenic event. The coals are all dominated by vitrinite; resinite and funginite are important minor macerals in most of the coals. Pyrite and carbonate generally dominate the mineral assemblages with carbonate more abundant in the northwest. Siderite occurs as nodules and masses within the macerals (generally vitrinite). Dolomite and calcite occur as fracture fillings, plant-cell fillings, and in other authigenic forms. Late-stage fracture fillings are siderite, dolomite, calcite, and ankerite. In one instance, two populations of siderite ({proportional_to} 35 and {proportional_to} 45 wt.% FeO) plus ankerite fill a large fracture. Late-stage pyrite framboid alteration is Ni

  10. Content of arsenic, selenium, mercury in the coal, food, clay and drinking water on the Zhaotong fluorosis area, eastern Yunnan Province

    Energy Technology Data Exchange (ETDEWEB)

    Luo Kun-li; Li Hui-jie; Chen Tong-bin (and others) [Chinese Academy of Sciences, Beijing (China). Institute of Geographic Sciences and Natural Resources Research

    2008-03-15

    About 160 samples of coal, corn, capsicum and drinking water were collected from the endemic fluorosis area of Zhenxiong and Weixin County, Zhaotong City of Yunnan Province, to determine the arsenic (As), selenium (Se) and mercury (Hg) content by AAF-800. The study found that the As content in the main coal seam from the Late Permian coal mines in Zhaotong City is 8.84 mg/kg and some civil coal can reach 89.09 mg/kg. The Se and Hg in the coal samples of Late Permian is lower, but Se and Hg are more concentrated in the pyritic coal balls and the pyritic gangue of the coal seam. The As content in corn and capsicum dried by coal-burning is more than 0.7 mg/kg, the natural standard amount of arsenic content permitted in food by China. The Se and Hg content in corn dried by coal-burning is lower than the natural standard of Se and Hg content in food in China but the Se and Hg content of capsicum dried by coal-burning exceeds the amount permitted by the natural standard for food in China. Clay, used as an additive for the coal-burning process and as a binder in making briquettes, contains a high content of As, generally more than 16 mg/kg. However, the Se and Hg content of clay itself are low. The As, Se and Hg content of drinking water are lower than the natural standard of As, Se and Hg content in the drinking water. So, there is high-As content coal and high-As content dried corn and capsicum in the endemic fluorosis area of Zhaotong City of Yunnan Province. The high As content of the dried corn and capsicum might have originated from the high arsenic content of burnt coal and clay. 30 refs., 4 tabs.

  11. Use of hard coal tailings for landfill construction with particular consideration to pyrite decay and to suitability of tailings as a geochemical barrier; Die Verwendung von Steinkohlebergematerialien im Deponiebau im Hinblick auf die Pyritverwitterung und die Eignung als geochemische Barriere

    Energy Technology Data Exchange (ETDEWEB)

    Schuering, J.

    1996-10-01

    The purpose of the present paper was to determine the hazard potential of acid formation during oxidation of the pyrite naturally contained in hard coal tailings and the efficacy of such tailings as a barrier against pollutants. The results were intended to show to what extent tailings can be recycled as a valuable material. This would not only offer an alternative to the land-consuming practice of dumping, which upon exhaustion of buffering capacity also gives rise to the problems associated with acid pit water, but would also allow the conservation of natural resources otherwise consumed in the sealing of landfills. (orig./HS) [Deutsch] Ziel dieser Arbeit war zum einen die Erfassung des Gefaehrdungspotentials durch die Saeurebildung bei der Oxidation des geogen im Bergmaterial enthaltenen Pyrits und zum anderen die Wirksamkeit als Barriere gegenueber Schadstoffen. Die Ergebnisse sollten aufzeigen, inwieweit das Bergematerial als Werkstoff eine weitere Verwendung finden kann. Von Bedeutung ist dabei nicht nur die Alternative zur flaechenintensiven Aufhaldung und den, bei Erschoepfung der Pufferkapazitaet, unter Umstaenden verbundenen Problemen bei der Bildung Saurer Grubenwaesser, sondern auch die Schonung natuerlicher Ressourcen bei der Verwendung in Deponieabdichtungen. (orig./HS)

  12. The effect of lizardite surface characteristics on pyrite flotation

    International Nuclear Information System (INIS)

    Feng Bo; Feng Qiming; Lu Yiping

    2012-01-01

    Highlights: ► Two kinds of lizardite samples have different effect on the flotation of pyrite. ► Acid leaching changed the surface characteristics of lizardite mineral. ► The leached lizardite has less magnesium on its surface. ► The electro-kinetic behavior of lizardite aqueous suspensions is mainly a function of the Mg/Si atomic ratio on mineral surface. - Abstract: The effect of lizardite surface characteristics on pyrite flotation has been investigated through flotation tests, adsorption tests, zeta potential measurements, FTIR study, X-ray photoelectron spectroscopy (XPS) and sedimentation tests. The flotation results show that at pH value 9, where flotation of nickel sulfide ores is routinely performed, two kinds of lizardite samples (native lizardite and leached lizardite) have different effects on the flotation of pyrite. The native lizardite adheres to the surface of pyrite and reduces pyrite flotation recovery while the leached lizardite does not interfere with pyrite flotation. Infrared analyses and XPS tests illustrate that acid leaching changed the surface characteristics of lizardite mineral and the leached lizardite has less magnesium on its surface. It has been determined that the electro-kinetic behavior of lizardite aqueous suspensions is mainly a function of the Mg/Si atomic ratio on lizardite surface. So, the low isoelectric point observed in the leached sample has been linked to values of this ratio lower than that of the native lizardite.

  13. Dressing coals, shales, and the like

    Energy Technology Data Exchange (ETDEWEB)

    Osawa, H

    1938-12-28

    A process for dressing coals, shales, and like carbonaceous substances with the use of floating and sinking phenomena caused by differences in the specific gravities of the substances to be separated in the dressing operation is characterized by the use as the dressing medium of an aqueous suspension of clay and finely ground pyrite or iron ore cinder, or finely ground easily pulverizable iron ore, such as earthy or granular limonite. The aqueous suspension has a low viscosity and a specific gravity between 1.35 and 1.70.

  14. Fabrication and characterization of PDLLA/pyrite composite bone ...

    Indian Academy of Sciences (India)

    Keywords. Polylactic acid; Chinese herbal medicine; pyrite; scaffold; bone regeneration; cell culture. ... Pyrite (FeS2, named as Zi-Ran-Tong in Chinese medicine), as a traditional Chinesemedicine, has been used in the Chinese population to treat bone diseases and to promote bone healing. The mechanical properties of ...

  15. Spectral Induced Polarization of Disseminated Pyrite Particles in Soil

    Science.gov (United States)

    Slater, L. D.; Kessouri, P.; Seleznev, N. V.

    2017-12-01

    Disseminated metallic particles in soil, particularly pyrite, occur naturally or are enhanced by anthropogenic activities. Detecting their presence and quantifying their concentration and location is of interest for numerous applications such as remediation of hydrocarbon contamination, mine tailings assessment, detection of oil traps, and archaeological studies. Because pyrite is a semiconductor, spectral induced polarization (SIP) is a promising geophysical method for sensing it in porous media. Previous studies have identified relations between pyrite properties (e.g., volumetric content, grain size) and SIP parameters (e.g., chargeability, relaxation time). However, the effect of pyrite grains in porous media on the SIP response is not fully understood over the entire low-frequency range. We tested the relationship between the presence of pyrite grains and the change in electrical properties of the medium through an extended series of laboratory measurements: (1) variation of grain size, (2) variation of grain concentration, (3) variation of electrolyte conductivity, (4) change in the diffusion properties of the host medium. For the fourth set of measurements, we compared sand columns to agar gel columns. Our experimental design included more than 20 different samples with multiple repeats to ensure representative results. We confirm the strong relation between grain size and relaxation time and that between grain concentration and chargeability in both the sand and agar gel samples. Furthermore, our results shed light on the significance of the diffusion coefficient and the recently hypothesized role of pyrite grains as resistors at frequencies lower than the relaxation frequency.

  16. Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue

    Science.gov (United States)

    Rolison, John M.; Stirling, Claudine H.; Middag, Rob; Gault-Ringold, Melanie; George, Ejin; Rijkenberg, Micha J. A.

    2018-04-01

    The chemical response of the Precambrian oceans to rising atmospheric O2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shift in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the 'Great Oxidation Event' around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in parallel with the permanent rise

  17. Coal conversion. 1977 technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The status and progress in US DOE's projects in coal gasification, liquefaction, and fluidized-bed combustion are reviewed with financing, flowsheets, history, progress and status of each (57 projects). (LTN)

  18. Mineralogical and geochemical characterization of the Jurassic coal from Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Baioumy, H.M. [Central Metallurgical Research and Development Institute, Cairo (Egypt)

    2009-06-15

    The Jurassic coal deposit in the Maghara area, Sinai, Egypt contains at least 11 coal seams of lenticular shape. The thickness of the main coal seams ranges from 130 cm to 2 m and are underlain and overlain by thin black shale beds. Mineralogical analysis indicated that this coal is characterized by low mineral matter with traces of quartz in some samples. However, coal ash is made up of quartz with traces of calcite, anhydrite, and hematite. Analysis of coal rank parameters indicated that the Maghara coal can be classified as medium volatile bituminous coal. The high sulfur contents and the relatively high proportion of pyritic sulfur suggest a possible marine transgression after the deposition of precursor peat. This interpretation is supported by the relatively high B contents. The relatively high Ge in the Maghara coal could be attributed to an infiltration of Ge enriched water from the surrounding siliceous sediments probably during diagenesis. The high Au contents were contributed to an Au-rich provenance of the ash contents of this coal. Rare earth elements geochemistry indicated low concentrations of these elements with slight enrichment of light rare earth elements (LREEs), slight negative Eu anomaly, and relatively flat heavy rare earth elements (HREEs) patterns. The low contents of trace and rare earth elements, particularly those with environmental relevance, compared to the usual concentration ranges in worldwide coal gives an advantage for this coal.

  19. Geochemical evolution of acidic ground water at a reclaimed surface coal mine in western Pennsylvania

    Science.gov (United States)

    Cravotta,, Charles A.

    1991-01-01

    Concentrations of dissolved sulfate and acidity in ground water increase downflow in mine spoil and underlying bedrock at a reclaimed surface coal mine in the bituminous field of western Pennsylvania. Elevated dissolved sulfate and negligible oxygen in ground water from bedrock about 100 feet below the water table suggest that pyritic sulfur is oxidized below the water table, in a system closed to oxygen. Geochemical models for the oxidation of pyrite (FeS2) and production of sulfate (SO42-) and acid (H+) are presented to explain the potential role of oxygen (O2) and ferric iron (Fe3+) as oxidants. Oxidation of pyrite by O2 and Fe3+ can occur under oxic conditions above the water table, whereas oxidation by Fe3+ also can occur under anoxic conditions below the water table. The hydrated ferric-sulfate minerals roemerite [Fe2+Fe43+(SO4)4·14H2O], copiapite [Fe2+Fe43+(SO4)6(OH)2·20H20], and coquimbite [Fe2(SO4)3·9H2O] were identified with FeS2 in coal samples, and form on the oxidizing surface of pyrite in an oxic system above the water table. These soluble ferric-sulfate 11 salts11 can dissolve with recharge waters or a rising water table releasing Fe3+, SO42-. and H+, which can be transported along closed-system ground-water flow paths to pyrite reaction sites where O2 may be absent. The Fe3+ transported to these sites can oxidize pyritic sulfur. The computer programs WATEQ4F and NEWBAL were used to compute chemical speciation and mass transfer, respectively, considering mineral dissolution and precipitation reactions plus mixing of waters from different upflow zones. Alternative mass-balance models indicate that (a) extremely large quantities of O2, over 100 times its aqueous solubility, can generate the observed concentrations of dissolved SO42- from FeS2, or (b) under anoxic conditions, Fe3+ from dissolved ferric-sulfate minerals can oxidize FeS2 along closed-system ground-water flow paths. In a system open to O2, such as in the unsaturated zone, the aqueous

  20. Disposing of coal combustion residues in inactive surface mines: Effects on water quality

    International Nuclear Information System (INIS)

    Kim, A.G.; Ackman, T.E.

    1994-01-01

    The disposal of coal combustion residues (CCR) in surface and underground coal mines can provide a stable, low-maintenance alternative to landfills, benefiting the mining and electric power industries. The material may be able to improve water quality at acid generating abandoned or reclaimed coal mine sites. Most combustion residues are alkaline, and their addition to the subsurface environment could raise the pH, limiting the propagation of pyrite oxidizing bacteria and reducing the rate of acid generation. Many of these CCR are also pozzolanic, capable of forming cementitious grouts. Grouts injected into the buried spoil may decrease its permeability and porosity, diverting water away from the pyritic material. Both mechanisms, alkaline addition and water diversion, are capable of reducing the amount of acid produced at the disposal site. The US Bureau of Mines is cooperating in a test of subsurface injection of CCR into a reclaimed surface mine. Initially, a mixture of fly ash, lime, and acid mine drainage (AMD) sludge was injected. Lime was the source of calcium for the formation of the pozzolanic grout. Changes in water quality parameters (pH, acidity, anions, and trace metals) in water samples from wells and seeps indicate a small but significant improvement after CCR injection. Changes in the concentration of heavy metals in the water flowing across the site were apparently influenced by the presence of flyash

  1. Self-Scrubbing Coal -- an integrated approach to clean air

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, K.E. [Custom Coals Corp., Pittsburgh, PA (United States)

    1997-12-31

    Carefree Coal is coal cleaned in a proprietary dense-media cyclone circuit, using ultrafine magnetite slurries, to remove noncombustible material, including up to 90% of the pyritic sulfur. Deep cleaning alone, however, cannot produce a compliance fuel from coals with high organic sulfur contents. In these cases, Self-Scrubbing Coal will be produced. Self-Scrubbing Coal is produced in the same manner as Carefree Coal except that the finest fraction of product from the cleaning circuit is mixed with limestone-based additives and briquetted. The reduced ash content of the deeply-cleaned coal will permit the addition of relatively large amounts of sorbent without exceeding boiler ash specifications or overloading electrostatic precipitators. This additive reacts with sulfur dioxide (SO{sub 2}) during combustion of the coal to remove most of the remaining sulfur. Overall, sulfur reductions in the range of 80--90% are achieved. After nearly 5 years of research and development of a proprietary coal cleaning technology coupled with pilot-scale validation studies of this technology and pilot-scale combustion testing of Self-Scrubbing Coal, Custom Coals Corporation organized a team of experts to prepare a proposal in response to DOE`s Round IV Program Opportunity Notice for its Clean Coal Technology Program under Public Law 101-121 and Public Law 101-512. The main objective of the demonstration project is the production of a coal fuel that will result in up to 90% reduction in sulfur emissions from coal-fired boilers at a cost competitive advantage over other technologies designed to accomplish the same sulfur emissions and over naturally occurring low sulfur coals.

  2. Volcanic ash in feed coal and its influence on coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Brownfield, I.K.; Hower, J.C.; Stricker, G.D.; O' Connor, J.T.

    2000-07-01

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana Utility to determine the physical and chemical properties of feed coal and coal combustion products (CCPs) from a coal-fired power plant. The plant utilizes a low-sulfur (.23--.47 weight percent S) coal from the Powder River Basin, Wyoming. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis of feed coal samples identified two mineral suites. A primary suite (not authigenic) consisting of quartz (detrital and volcanic beta-form grains), biotite, and minor zircon and a secondary authigenic mineral suite containing calcite, alumino-phosphates (crandallite and gorceixite), kaolinite, quartz, anatase, barite, and pyrite. The authigenic minerals are attributed to air-fall and reworked volcanic ash that was deposited in peat-forming mires. The Powder River Basin feed coals contain higher amounts of Ba, Ca, Mg, Na, Sr, and P compared to other analyzed eastern coals. These elements are associated with alumino-phosphate, biotite, calcite, and clay minerals. The element associations are indicative of coal that incorporated volcanic ash during deposition. XRD analysis of CCPs revealed a predominance of glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals in the fly ash; and quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite in the bottom ash. Microprobe and SEM analysis of fly ash samples revealed quartz, zircon, monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, and rounded grains of wollastonite with periclase. The abundant Ca and Mg mineral phases in the fly ashes are related to the presence of carbonate, clay, and phosphate minerals in the feed coal. The Ca- and Mg-rich mineral phases in the CCPs can be attributed to volcanic minerals deposited in the

  3. Coal supply and transportation model (CSTM)

    International Nuclear Information System (INIS)

    1991-11-01

    The Coal Supply and Transportation Model (CSTM) forecasts annual coal supply and distribution to domestic and foreign markets. The model describes US coal production, national and international coal transportation industries. The objective of this work is to provide a technical description of the current version of the model

  4. Silane-based coatings on the pyrite for remediation of acid mine drainage.

    Science.gov (United States)

    Diao, Zenghui; Shi, Taihong; Wang, Shizhong; Huang, Xiongfei; Zhang, Tao; Tang, Yetao; Zhang, Xiaying; Qiu, Rongliang

    2013-09-01

    Acid mine drainage (AMD) resulting from the oxidation of pyrite and other metal sulfides has caused significant environmental problems, including acidification of rivers and streams as well as leaching of toxic metals. With the goal of controlling AMD at the source, we evaluated the potential of tetraethylorthosilicate (TEOS) and n-propyltrimethoxysilane (NPS) coatings to suppress pyrite oxidation. The release of total Fe and SO4(-2) from uncoated and coated pyrite in the presence of a chemical oxidizing agent (H2O2) or iron-oxidizing bacteria (Acidithiobacillus ferrooxidans) was measured. Results showed that TEOS- and NPS-based coatings reduced chemical oxidation of pyrite by as much as 59 and 96% (based on Fe release), respectively, while biological oxidation of pyrite was reduced by 69 and 95%, respectively. These results were attributed to the formation of a dense network of Fe-O-Si and Si-O-Si bonds on the pyrite surface that limited permeation of oxygen, water, and bacteria. Compared with results for TEOS-coated pyrite, higher pH and lower concentrations of total Fe and SO4(-2) were observed for oxidation of NPS-coated pyrite, which was attributed to its crack-free morphology and the presence of hydrophobic groups on the NPS-based coating surface. The silane-based NPS coating was shown to be highly effective in suppressing pyrite oxidation, making it a promising alternative for remediation of AMD at its source. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Australian coal year book 1984-1985

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, A [ed.

    1984-01-01

    The first edition of this new publication provides comprehensive data on the Australian coal industry. Apart from a mine directory which lists technical details for each mine, other subjects include; coal export facilities; annual coal statistics; buyers guide; suppliers directory; addresses of relevant organizations and an index of coal mine owners.

  6. The production of high load coal-water mixtures on the base of Kansk-Achinsk Coal Basin

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, Y.; Bruer, G.; Kolesnikova, S. [Research and Design Institute for Problems of Development of Kansk-Achinsk Coal Basin (KATEKNilugol), Krasnoyarsk (Russian Federation)

    1995-12-01

    The results of the {open_quotes}KATEKNIIugol{close_quotes} work on the problems of high load coal-water mixtures are given in this article. General principles of the mixture production, short characteristics of Kansk-Achinsk coals, the experimental results of the coal mixture production on a test-industrial scale, the suspension preparation on the base of coal mixtures, technical-economical indexes of tested coal pipeline variants based on Kansk-Achinsk coals are described.

  7. Contents and occurrence of cadmium in the coals from Guizhou province, China.

    Science.gov (United States)

    Song, Dangyu; Wang, Mingshi; Zhang, Junying; Zheng, Chuguang

    2008-10-01

    Eleven raw coal samples were collected from Liuzhi, Suicheng, Zunyi, Xingren, Xingyi, and Anlong districts in Guizhou Province, Southwest China. The content of cadmium (Cd) in coal was determined using inductively coupled plasma mass-spectrometry (ICP-MS). Cd contents ranged from 0.146 to 2.74 ppm (whole coal basis), with an average of 1.09 ppm. In comparison with the arithmetic means of Cd in Chinese coal (0.25 ppm), this is much higher. In order to find its occurrence in coal, float-sink analysis and a coal flotation test by progressive release were conducted on two raw coal samples. The content of the Cd and ash yield of the flotation products were determined. The organic matter was removed by low-temperature ashing (LTA). X-ray diffraction (XRD) was used to differentiate the main, minor, and trace minerals in the LTA from different flotation subproducts. Quartz, kaolinite, pyrite, and calcite were found to dominate the mineral matters, with a proportion of anatase, muscovite, and illite. Then quantitative analysis of minerals in LTA was conducted using material analysis using diffraction (MAUD) based on the Rietveld refinement method. Results show that Cd has a strong association with kaolinite.

  8. Contents and occurrence of cadmium in the coals from Guizhou Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Dangyu Song; Mingshi Wang; Junying Zhang; Chuguang Zheng [Henan Polytechnic University, Jiaozuo (China). Institute of Resources and Environment

    2008-10-15

    Eleven raw coal samples were collected from Liuzhi, Suicheng, Zunyi, Xingren, Xingyi, and Anlong districts in Guizhou Province, Southwest China. The content of cadmium (Cd) in coal was determined using inductively coupled plasma mass-spectrometry (ICP-MS). Cd contents ranged from 0.146 to 2.74 ppm (whole coal basis), with an average of 1.09 ppm. In comparison with the arithmetic means of Cd in Chinese coal (0.25 ppm), this is much higher. In order to find its occurrence in coal, float-sink analysis and a coal flotation test by progressive release were conducted on two raw coal samples. The content of the Cd and ash yield of the flotation products were determined. The organic matter was removed by low-temperature ashing (LTA). X-ray diffraction (XRD) was used to differentiate the main, minor, and trace minerals in the LTA from different flotation subproducts. Quartz, kaolinite, pyrite, and calcite were found to dominate the mineral matters, with a proportion of anatase, muscovite, and illite. Then quantitative analysis of minerals in LTA was conducted using material analysis using diffraction (MAUD) based on the Rietveld refinement method. Results show that Cd has a strong association with kaolinite.

  9. Modelling the reactive-path between pyrite and radioactive nuclides

    International Nuclear Information System (INIS)

    Kang Mingliang; Wu Shijun; Dou Shunmei; Chen Fanrong; Yang Yongqiang

    2008-01-01

    The mobility of redox sensitive nuclides is largely dependent on their valence state. The radionuclides that make the dominant contributions to final dose calculations are redox sensitive. Almost all the radionuclides (except 129 I) have higher mobility at high valence state, and correspond to immobilization at low valence state due to the much lower solubility. Pyrite is an ubiquitous and stable mineral in geological environment, and would be used as a low-cost long time reductant for the immobilization of radionuclides. However, pyrite oxidation is supposed to generate acid, which will enhance the mobility of nuclides. In this paper, the reaction path of the reactions between radionuclides (U, Se and Tc) and pyrite in the groundwater from Wuyi well in Beishan area of China has been simulated using geochemical modeling software. According to the results, pyrite can reduce high valence nuclides to a dinky-level effectively, with the pH slightly increasing under anaerobic condition that is common in deep nuclear waste repositories. (authors)

  10. Practical considerations of pyrite oxidation control in uranium tailings

    International Nuclear Information System (INIS)

    1984-05-01

    The problems posed by the oxidation of pyrite in uranium tailings include the generation of sulfuric acid and acid sulfate metal salts. These have substantial negative impacts on watercourse biota by themselves, and the lowered pH levels tend to mobilize heavy metals present in the tailings the rate of oxidation of pyrite at lower pH levels is catalyzed by sulfur and iron oxidizing bacteria present in soils. No single clear solution to the problems came from this study. Exclusion of air is a most important preventative of bacterial catalysis of oxidation. Bactericides, chemically breaking the chain of integrated oxidation reactions, maintaining anaerobic conditions, or maintaining a neutral or alkaline pH all reduce the oxidation rate. Removal of pyrite by flotation will reduce but not eliminate the impact of pyrite oxidation. Controlled oxidation of the remaining sulfide in the flotation tails would provide an innocuous tailing so far as acidity generation is concerned

  11. Recrystallization Experiments of Pyrite From Circulating Hydrothermal Solution by Thermal Convection

    Science.gov (United States)

    Tanaka, K.; Isobe, H.

    2005-12-01

    Pyrite is one of the most common accessory minerals in many rocks and generally occurs in hydrothermal deposit. However, pyrite morphology and association with other sulfide minerals is not well known with respect to the solution condition, especially with the hydrothermal solution under circulation. In this study, recrystallization experiments of pyrite from circulating hydrothermal solution by thermal convection were carried out. A rectangular circuit (42.6 cm by 17.3 cm) of SUS316 pressure tubing with 5 mm in inner diameter was used as a reaction vessel. The volume of the circuit is approximately 24 ml. Long sides of the rectangular circuit were held to be 20 degrees inclination. One of the long sides was heated by an electric furnace. Solution in the circuit evaporates in the high temperature tubing and the vapor condenses in room temperature tubing. The solution backs to the bottom of the high temperature tubing. Thus, thermal convection of the solution produces circulation in the circuit. Starting material was filled in the high temperature tubing. The lower half was filled with mixture of 2 g of powdered natural pyrite and 4 g of quartz grains. The upper half was filled with quartz grains only. 9 ml of 5 mol/l NH4Cl solution was sealed in the circuit with the starting material. Temperature gradient of the sample was monitored by 6 thermocouples. Maximum temperature was controlled at 350°C. Experimental durations are 3, 5, 10 and 30 days. After the experiments, the run products are fixed with resin and cut every 2 cm. Thin sections of vertical cross-sections are made and observed by microscope and SEM. Tiny pyrite crystals occurred at the upper outside of the furnace, where temperature should be much lower than 200°C. In the lower half of the starting material, pyrite decomposed and pyrrhotite formed around pyrite grains. At higher temperature area, pyrite decomposition and pyrrhotite formation is remarkable. Circulating sulfur-bearing solution provided by

  12. Enhanced bioleaching on attachment of indigenous acidophilic bacteria to pyrite surface

    Science.gov (United States)

    Wi, D. W.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    In recent years, bioleaching has been widely applied on an industrial scale due to the advantages of low cost and environment friendliness. The direct contact mechanism of bioleaching assumes the action of a metal sulfide-attached cell oxidizing the mineral by an enzyme system with oxygen to sulfate and metal cations. Fundamental surface properties of sulfide particles and leaching-bacteria in bioleaching play the key role in the efficiency of this process. The aim of this work is to investigate of direct contact bioleaching mechanism on pyrite through attachment properties between indigenous acidophilic bacteria and pyrite surfaces. The bacteria were obtained from sulfur hot springs, Hatchobaru thermal electricity plant in Japan. And pyrite was collected from mine waste from Gwang-yang abandoned gold mines, Korea. In XRD analyses of the pyrite, x-ray diffracted d-value belong to pyrite was observed. The indigenous acidophilic bacteria grew well in a solution and over the course of incubation pH decreased and Eh increased. In relation to a bacterial growth-curve, the lag phase was hardly shown while the exponential phase was very fast. Bioleaching experiment result was showed that twenty days after the indigenous acidophilic bacteria were inoculated to a pyrite-leaching medium, the bacterial sample had a greater concentration of Fe and Zn than within the control sample. In SEM-EDS analyses, rod-shaped bacteria and round-shaped microbes were well attached to the surface of pyrite. The size of the rod-shaped bacteria ranged from 1.05~1.10 ? to 4.01~5.38 ?. Round-shaped microbes were more than 3.0 ? in diameter. Paired cells of rod-shaped bacteria were attached to the surface of pyrite linearly.

  13. Phytoremediation of spoil coal dumps in Western Donbass (Ukraine)

    Science.gov (United States)

    Klimkina, Iryna; Kharytonov, Mykola; Wiche, Oliver; Heilmeier, Hermann

    2017-04-01

    At the moment, in Ukraine about 150 thousand hectares of fertile land are occupied by spoil dumps. Moreover, this figure increases every year. According to the technology used about 1500 m3 of adjacent stratum is dumped at the surface per every 1000 tons of coal mined. Apart from land amortization, waste dumps drastically change the natural landscape and pollute air, soil and water sources as the result of water and wind erosion, as well as self-ignition processes. A serious concern exists with respect to the Western Donbass coal mining region in Ukraine, where the coal extraction is made by the subsurface way and solid wastes are represented by both spoil dumps and wastes after coal processing. Sulphides, mostly pyrite (up to 4% of waste material), are widely distributed in the waste heaps freshly removed due to coal mining in Western Donbass.The oxidation of pyrite with the presence of oxygen and water is accompanied by a sharp drop in the pH from the surface layer to the spoil dumps(from 5.2-6.2 to 3.9-4.2 in soil substrates with chernozen and from 8.3-8.4 to 6.7-7.2 in soil substrates with red-brown clay, stabilizing in dump material in both cases at 2.9-3.2). Low pH generates the transformation of a number of toxic metals and other elementspresent in waste rock (e.g. Fe, Al, Mn, Zn, Mo, Co, As, Cd, Bi, Pb, U) into mobile forms. To stabilize and reduce metal mobility the most resistant plants that occur naturally in specified ecosystems can be used. On coal spoil dumpsin Western Donbas the dominant species are Bromopsis inermis, subdominant Artemisia austriaca; widespread are also Festucas pp., Lathyrus tuberosus, Inula sp., Calamagrostis epigeios, Lotus ucrainicus, and Vicias pp. Identification of plants tolerant to target metals is a key issue in phytotechnology for soil restoration. It is hypothesized that naturally occurring plants growing on coal spoil dumps can be candidates for phytostabilization, phytoextraction (phytoaccumulation) and phytomining

  14. Spectroscopic study of cystine adsorption on pyrite surface: From vacuum to solution conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arenillas, M.; Mateo-Marti, E., E-mail: mateome@cab.inta-csic.es

    2015-09-08

    Highlights: • Successful adsorption of cystine on pyrite surface under several conditions. • Detailed XPS spectroscopic characterization of cystine adsorption on pyrite surface. • Spectroscopy evidence, oxidation and anoxic conditions adjust molecular adsorption. • Molecular chemistry on pyrite is driven depending on the surrounding conditions. • The cystine/pyrite(100) model is in good agreement with Wächtershäuser’s theory. - Abstract: We characterized the adsorption of cystine molecules on pyrite surface via X-ray photoelectron spectroscopy. Anoxic conditions were simulated under ultra-high-vacuum conditions. In contrast, to simulate oxidation conditions, the molecules were adsorbed on pyrite surface from solution. A novel comparative analysis revealed remarkable differences with respect to molecular adsorption and surface chemistry induced by environmental conditions. Molecular adsorption under anoxic conditions was observed to be more favorable, concentrating a large number of molecules on the surface and two different chemical species. In contrast, the presence of oxygen induced an autocatalytic oxidation process on the pyrite surface, which facilitated water binding on pyrite surface and partially blocked molecular adsorption. Pyrite is a highly reactive surface and contains two crucial types of surface functional groups that drive molecular chemistry on the surface depending on the surrounding conditions. Therefore, the system explored in this study holds interesting implications for supporting catalyzed prebiotic chemistry reactions.

  15. Spectroscopic study of cystine adsorption on pyrite surface: From vacuum to solution conditions

    International Nuclear Information System (INIS)

    Sanchez-Arenillas, M.; Mateo-Marti, E.

    2015-01-01

    Highlights: • Successful adsorption of cystine on pyrite surface under several conditions. • Detailed XPS spectroscopic characterization of cystine adsorption on pyrite surface. • Spectroscopy evidence, oxidation and anoxic conditions adjust molecular adsorption. • Molecular chemistry on pyrite is driven depending on the surrounding conditions. • The cystine/pyrite(100) model is in good agreement with Wächtershäuser’s theory. - Abstract: We characterized the adsorption of cystine molecules on pyrite surface via X-ray photoelectron spectroscopy. Anoxic conditions were simulated under ultra-high-vacuum conditions. In contrast, to simulate oxidation conditions, the molecules were adsorbed on pyrite surface from solution. A novel comparative analysis revealed remarkable differences with respect to molecular adsorption and surface chemistry induced by environmental conditions. Molecular adsorption under anoxic conditions was observed to be more favorable, concentrating a large number of molecules on the surface and two different chemical species. In contrast, the presence of oxygen induced an autocatalytic oxidation process on the pyrite surface, which facilitated water binding on pyrite surface and partially blocked molecular adsorption. Pyrite is a highly reactive surface and contains two crucial types of surface functional groups that drive molecular chemistry on the surface depending on the surrounding conditions. Therefore, the system explored in this study holds interesting implications for supporting catalyzed prebiotic chemistry reactions

  16. Particulate Pyrite Autotrophic Denitrification (PPAD) for Remediation of Nitrate-contaminated Groundwater

    Science.gov (United States)

    Tong, S.; Rodriguez-Gonzalez, L. C.; Henderson, M.; Feng, C.; Ergas, S. J.

    2015-12-01

    The rapid movement of human civilization towards urbanization, industrialization, and increased agricultural activities has introduced a large amount of nitrate into groundwater. Nitrate is a toxic substance discharged from groundwater to rivers and leads to decreased dissolved oxygen and eutrophication. For this experiment, an electron donor is needed to convert nitrate into non-toxic nitrogen gas. Pyrite is one of the most abundant minerals in the earth's crust making it an ideal candidate as an electron donor. The overall goal of this research was to investigate the potential for pyrite to be utilized as an electron donor for autotrophic denitrification of nitrate-contaminated groundwater. Batch studies of particulate pyrite autotrophic denitrification (PPAD) of synthetic groundwater (100 mg NO3--N L-1) were set up with varying biomass concentration, pyrite dose, and pyrite particle size. Reactors were seeded with mixed liquor volatile suspended solids (VSS) from a biological nitrogen removal wastewater treatment facility. PPAD using small pyrite particles (exhibited substantial nitrate removal rate, lower sulfate accumulation (5.46 mg SO42-/mg NO3--N) and lower alkalinity consumption (1.70 mg CaCO3/mg NO3--N) when compared to SOD (7.54 mg SO42-/mg NO3--N, 4.57 mg CaCO3/mg NO3--N based on stoichiometric calculation). This research revealed that the PPAD process is a promising technique for nitrate-contaminated groundwater treatment and promoted the utilization of pyrite in the field of environmental remediation.

  17. Effect of Phospholipid on Pyrite Oxidation and Microbial Communities under Simulated Acid Mine Drainage (AMD) Conditions.

    Science.gov (United States)

    Pierre Louis, Andro-Marc; Yu, Hui; Shumlas, Samantha L; Van Aken, Benoit; Schoonen, Martin A A; Strongin, Daniel R

    2015-07-07

    The effect of phospholipid on the biogeochemistry of pyrite oxidation, which leads to acid mine drainage (AMD) chemistry in the environment, was investigated. Metagenomic analyses were carried out to understand how the microbial community structure, which developed during the oxidation of pyrite-containing coal mining overburden/waste rock (OWR), was affected by the presence of adsorbed phospholipid. Using columns packed with OWR (with and without lipid adsorption), the release of sulfate (SO4(2-)) and soluble iron (FeTot) was investigated. Exposure of lipid-free OWR to flowing pH-neutral water resulted in an acidic effluent with a pH range of 2-4.5 over a 3-year period. The average concentration of FeTot and SO4(2-) in the effluent was ≥20 and ≥30 mg/L, respectively. In contrast, in packed-column experiments where OWR was first treated with phospholipid, the effluent pH remained at ∼6.5 and the average concentrations of FeTot and SO4(2-) were ≤2 and l.6 mg/L, respectively. 16S rDNA metagenomic pyrosequencing analysis of the microbial communities associated with OWR samples revealed the development of AMD-like communities dominated by acidophilic sulfide-oxidizing bacteria on untreated OWR samples, but not on refuse pretreated with phospholipid.

  18. Tribocharging in electrostatic beneficiation of coal: Effects of surface composition on work function as measured by x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy in air

    International Nuclear Information System (INIS)

    Trigwell, S.; Mazumder, M.K.; Pellissier, R.

    2001-01-01

    The cleaning of coal by electrostatic beneficiation is based on tribocharging characteristics of pulverized coal particles with diameter smaller than 120 μm. The tribocharging process should be such that the organic coal particles must charge with a polarity opposite to that of the sulfur and the mineral containing particles so that coal can be separated from minerals by using a charge separator. However, the charge distribution of electrostatically separated coal particles indicates that coal exhibits bipolar charging. A significant fraction of the coal particles charges negatively which appears to be in conflict with expectations in that the organic coal particles should charge positively, and the mineral particles, present as impurities such as pyrite, charge negatively when tribocharged against copper. The relative work functions of the particles (coal and mineral) and that of the metal surface (copper or stainless steel) used for tribocharging predict these expected results. However, ultraviolet photoelectron spectroscopy (UPS) measurements in air on specimens of three different coal species, showed the work function to be approximately 5.4 eV, which is higher than a reported measured work function of 3.93 eV. Studies by UPS and x-ray photoelectron spectroscopy on copper, stainless steel, aluminum, and other commonly used tribocharging materials such as nylon and polytetrafluorethylene, as well as pure pyrite, showed that the work function varied considerably as a function of surface composition. Therefore, the reason for the bipolar charging of the coal particles may be the too small differences in work functions between coal powder and copper used as the charging material. The choice of a material for impaction triboelectric charging for coal or mineral separation should therefore depend upon the actual work function as modified by the ambient conditions such as moisture content and the oxidation of the surface

  19. Heterotrophic Bioleaching of Sulfur, Iron, and Silicon Impurities from Coal by Fusarium oxysporum FE and Exophiala spinifera FM with Growing and Resting Cells.

    Science.gov (United States)

    Etemadzadeh, Shekoofeh Sadat; Emtiazi, Giti; Etemadifar, Zahra

    2016-06-01

    Coal is the most abundant fossil fuel containing sulfur and other elements which promote environmental pollution after burning. Also the silicon impurities make the transportation of coal expensive. In this research, two isolated fungi from oil contaminated soil with accessory number KF554100 (Fusarium oxysporum FE) and KC925672 (Exophiala spinifera FM) were used for heterotrophic biological leaching of coal. The leaching were detected by FTIR, CHNS, XRF analyzer and compared with iron and sulfate released in the supernatant. The results showed that E. spinifera FM produced more acidic metabolites in growing cells, promoting the iron and sulfate ions removal while resting cells of F. oxysporum FE enhanced the removal of aromatic sulfur. XRF analysis showed that the resting cells of E. spinifera FM proceeded maximum leaching for iron and silicon (48.8, 43.2 %, respectively). CHNS analysis demonstrated that 34.21 % of sulfur leaching was due to the activities of resting cells of F. oxysporum FE. Also F. oxysporum FE removed organic sulfur more than E. spinifera FM in both growing and resting cells. FTIR data showed that both fungi had the ability to remove pyrite and quartz from coal. These data indicated that inoculations of these fungi to the coal are cheap and impurity removals were faster than autotrophic bacteria. Also due to the removal of dibenzothiophene, pyrite, and quartz, we speculated that they are excellent candidates for bioleaching of coal, oil, and gas.

  20. The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering

    International Nuclear Information System (INIS)

    Sasaki, K.; Tsunekawa, M.; Ohtsuka, T.; Konno, H.

    1998-01-01

    The paper investigates the role of the sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering in order to clarify the effects of the bacteria on the dissolution behavior of pyrite and the formation of secondary minerals using Raman spectroscopy and powder X-ray diffraction (XRD) in addition to solution analysis. It was found that T. thiooxidans, when present with the iron-oxidizing bacteria Thiobacillus ferrooxidans, enhanced the dissolution of Fe and S species for pyrite, whereas T. thiooxidans alone did not oxidize pyrite. Enhancement of the consumption of elemental sulfur and regeneration of Fe(II) ions were also observed with T. thiooxidans together with T. ferrooxidans, while this did not occur with T. ferrooxidans alone

  1. Mechanisms of interaction between arsenian pyrite and aqueous arsenite under anoxic and oxic conditions

    Science.gov (United States)

    Qiu, Guohong; Gao, Tianyu; Hong, Jun; Luo, Yao; Liu, Lihu; Tan, Wenfeng; Liu, Fan

    2018-05-01

    Pyrite affects the conversion and migration processes of arsenic in soils and waters. Adsorption and redox reactions of arsenite (As(III)) occur on the surface of pyrite, and the interaction processes are influenced by the arsenic incorporated into pyrite. This work examined the effects of arsenic content, pH and oxygen on the interaction between arsenian pyrite and aqueous As(III) and investigated the underlying mechanisms. The results indicated that arsenic incorporation led to a high content of Fe(III) in pyrite, and that As(III) was mainly adsorbed on pyrite surface and part of As(III) was oxidized to As(V) by the newly formed intermediates including hydroxyl radicals and hydrogen peroxide. The oxidation rate increased with increasing arsenic content in the pyrite and the presence of air (oxygen), and first decreased and then increased with increasing pH from 3.0 to 11.0. Hydroxyl radicals and hydrogen peroxide significantly contributed to the oxidation of pyrite and aqueous As(III) in acidic and alkaline solutions, respectively. Although pyrite oxidation increased with increasing arsenic content as indicated by the elevated concentrations of elemental S and SO42-, the percentage of released arsenic in total arsenic of the arsenian pyrite decreased due to the adsorption of arsenic on the surface of newly formed ferric (hydr)oxides, especially the ferric arsenate precipitate formed in high pH solutions. The present study enables a better understanding of the important interaction process of dissolved arsenite and natural pyrites in the study of groundwater contamination, arsenic migration/sequestration, and acid mine drainage formation.

  2. Environmental geochemistry of acid mine drainage water at Indus coal mine at Lakhra, Sindh Pakistan

    International Nuclear Information System (INIS)

    Siddique, I.; Shah, M.T.

    2000-01-01

    The annual coal production of Pakistan is about 3,637, 825 tones which is about 6% of the country's energy resources, out of this 1,241, 965 tones of coal was produced/ mined from the Lakhra coal field, District Dadu, Sindh which after the Thar coal field is the second largest coal field of Pakistan. At this coal field more than 58 mining companies are engaged in exploring the hidden wealth of the country. The problem of acid mine drainage, is caused by the passage or seepage of water, through mines where iron disulfides, usually pyrites, are exposed to the oxidizing action of water, air and bacteria, is the main problem faced by the mining companies. The geochemical analysis of acid mine drainage water collected from Indus coal mine no. 6 shows that beside its higher pH, total Dissolved Solids and Sulfates, it also posses higher amount of heavy metals like Cd, Cu, Pb, Co, Ni and Fe. This acid mine drainage water not only damages the mine structures but is also harmful to soil and ecology. (author)

  3. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite

    International Nuclear Information System (INIS)

    Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi

    2015-01-01

    Highlights: • An exothermic reaction occurs at about 200 °C between pyrite and ammonium nitrate (emulsion explosives). • The essence of reaction between emulsion explosives and pyrite is reaction between ammonium nitrate and pyrite. • The excellent thermal stability of emulsion explosives does not mean it was also showed when pyrite was added. • A new overall reaction has been proposed as: • 14FeS_2(s) + 91NH_4NO_3(s) → 52NO(g) + 26SO_2(g) + 6Fe_2O_3(s) + 78NH_3(g) + 26N_2O(g) + 2FeSO_4(s) + 65H_2O(g). - Abstract: The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG–DSC–MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10 K/min from room temperature to 350 °C, exothermic reactions occurred at about 200 °C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO_2, NH_3, SO_2 and N_2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals.

  4. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhi-Xiang; Wang, Qian [School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013 (China); Fu, Xiao-Qi, E-mail: xzx19820708@163.com [School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 (China)

    2015-12-30

    Highlights: • An exothermic reaction occurs at about 200 °C between pyrite and ammonium nitrate (emulsion explosives). • The essence of reaction between emulsion explosives and pyrite is reaction between ammonium nitrate and pyrite. • The excellent thermal stability of emulsion explosives does not mean it was also showed when pyrite was added. • A new overall reaction has been proposed as: • 14FeS{sub 2}(s) + 91NH{sub 4}NO{sub 3}(s) → 52NO(g) + 26SO{sub 2}(g) + 6Fe{sub 2}O{sub 3}(s) + 78NH{sub 3}(g) + 26N{sub 2}O(g) + 2FeSO{sub 4}(s) + 65H{sub 2}O(g). - Abstract: The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG–DSC–MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10 K/min from room temperature to 350 °C, exothermic reactions occurred at about 200 °C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO{sub 2}, NH{sub 3}, SO{sub 2} and N{sub 2}O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals.

  5. Pulverized coal firing of aluminum melting furnaces. First annual technical progress report, May 1978-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    West, C.E.; Hines, J.E.; Stewart, D.L. Jr.; Yu, H.

    1979-10-01

    The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has begun with the design and construction of a 350 lb/h (coal) staged slagging cyclone combustor (SSCC) attached to a 7-ft dia aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 lb capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time. A major design subcontract for assistance in the design of the SSCC is 80% completed.

  6. The determination of uranium in pyrite samples

    International Nuclear Information System (INIS)

    Jacobs, J.J.

    1979-01-01

    An existing method for the determination of uranium in rocks and minerals is examined for the determination of uranium in materials containing pyrite. The results are comparable with those obtained by a spectrophotometric method, the precision (relative standard deviation) of the method for standards with U 3 O 8 contents of 1500 and 300 p.p.m. being 0,03 and 0,08 respectively when prepared in pyrite, and 0,15 and 0,06 respectively when made up with inert diluent. Full details of the procedure are given in accompanying appendices [af

  7. Pyrite sulfur isotopes reveal glacial-interglacial environmental changes

    Science.gov (United States)

    Pasquier, Virgil; Sansjofre, Pierre; Rabineau, Marina; Revillon, Sidonie; Houghton, Jennifer; Fike, David A.

    2017-06-01

    The sulfur biogeochemical cycle plays a key role in regulating Earth’s surface redox through diverse abiotic and biological reactions that have distinctive stable isotopic fractionations. As such, variations in the sulfur isotopic composition (δ34S) of sedimentary sulfate and sulfide phases over Earth history can be used to infer substantive changes to the Earth’s surface environment, including the rise of atmospheric oxygen. Such inferences assume that individual δ34S records reflect temporal changes in the global sulfur cycle; this assumption may be well grounded for sulfate-bearing minerals but is less well established for pyrite-based records. Here, we investigate alternative controls on the sedimentary sulfur isotopic composition of marine pyrite by examining a 300-m drill core of Mediterranean sediments deposited over the past 500,000 y and spanning the last five glacial-interglacial periods. Because this interval is far shorter than the residence time of marine sulfate, any change in the sulfur isotopic record preserved in pyrite (δ34Spyr) necessarily corresponds to local environmental changes. The stratigraphic variations (>76‰) in the isotopic data reported here are among the largest ever observed in pyrite, and are in phase with glacial-interglacial sea level and temperature changes. In this case, the dominant control appears to be glacial-interglacial variations in sedimentation rates. These results suggest that there exist important but previously overlooked depositional controls on sedimentary sulfur isotope records, especially associated with intervals of substantial sea level change. This work provides an important perspective on the origin of variability in such records and suggests meaningful paleoenvironmental information can be derived from pyrite δ34S records.

  8. Comprehensive Technical Support for High-Quality Anthracite Production: A Case Study in the Xinqiao Coal Mine, Yongxia Mining Area, China

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-12-01

    Full Text Available The effective production of high-quality anthracite has attracted increasing global attention. Based on the coal occurrence in Yongxia Mining Area and mining conditions of a coalface in Xinqiao Coal Mine, we proposed a systematic study on the technical support for the production of high-quality anthracite. Six key steps were explored, including coal falling at the coalface, transport, underground bunker storage, main shaft hoisting, coal preparation on the ground, and railway wagon loading. The study resulted in optimized running parameters for the shearers, and the rotating patterns of the shearer drums was altered (one-way cutting was employed. Mining height and roof supporting intensity were reduced. Besides, loose presplitting millisecond blasting and mechanized mining were applied to upgrade the coal quantity and the lump coal production rate. Additionally, the coalface end transloading, coalface crush, transport systems, underground storage, and main shaft skip unloading processes were improved, and fragmentation-prevention techniques were used in the washing and railway wagon loading processes. As a result, the lump coal production rate was maintained at a high level and fragmentation was significantly reduced. Because of using the parameters and techniques determined in this research, high-quality coal production and increased profits were achieved. The research results could provide theoretical guidance and methodology for other anthracite production bases.

  9. Action time effect of lime on its depressive ability for pyrite

    Institute of Scientific and Technical Information of China (English)

    Tichang Sun

    2004-01-01

    Two sample groups of bulk concentrates consisting mainly of pyrite and chalcopyrite from Daye and Chenghchao Mines in Hubei Province of China were used to investigate the effect of the action time of lime on its depressive ability for pyrite. The experimental results conducted with different samples and collectors showed that the action time between lime and pyrite markedly influences the depressive ability of lime. The depressive ability of lime increased with the action time increasing. It was also proved that the depressive results obtained at a large lime dosage after a shorter action time are similar to those obtained at a small lime dosage after a longer action time. The increase of depressive ability of lime after a longer action time is because that there are different mechanisms in different action time. The composition on the surface of pyrite acted for different time with lime was studied by using ESCA (Electron Spectroscopic Chemical Analysis). The results showed that iron hydroxide and calcium sulphate formed on the pyrite surface at the presence of lime in the pulp but the amounts of iron hydroxide and calcium sulphate were different at different action time. At the beginning action time the compound formed on the pyrite surface was mainly calcium sulphate and almost no iron hydroxide formed; but with the action time increasing, iron hydroxide formed. The longer the action time, the more iron hydroxide and the less calcium sulphate formed. It was considered that the stronger depressive ability of lime after a longer action time is because more iron hydroxide forms on the pyrite surface.

  10. National Coal Utilization Assessment: a preliminary assessment of coal utilizaton in the South. [Southern USA to 2020; forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Berry, L. B.; Bjornstad, D. J.; Boercker, F. D.

    1978-01-01

    Some of the major problems and issues related to coal development and use in the South are identified and assessed assuming a base-case energy scenario for the next 45 years. This scenario assumes a midrange of coal use and a relatively high rate of nuclear use over the forecast period. The potential impacts from coal development and use are significant, particularly in the 1990-2020 time period. Practically all available sites suitable for power plant development in the assessment will be utilized by 2020. Overall, sulfur dioxide will be well below the annual primary standard; however, several local hot-spot areas were identified. In addition, sulfate concentrations will be increased significantly, particularly over Virginia, West Virginia, and northern Kentucky. Coal mining is expected to affect 6 of the 12 major ecological regions. Coal mining will lead to increased average suspended sediment concentrations in some river basins, and special measures will be required to control acid discharges from active mines in pyritic regions. The increased mining of coal and subsequent sulfur dioxide increases from its combustion may also give rise to a land-use confrontation with food and fiber production. Potential health effects from exposure to sulfur dioxide and sulfates are expected to increase rapidly in several areas, particularly in parts of Kentucky, Maryland, District of Columbia, and Georgia. Regional social costs should be relatively low, although some site-specific costs are expected to be very high. Alternative energy technologies, careful siting selection, and deployment of environmental control technologies and operating policies will be required to reduce or mitigate these potential impacts.

  11. Sulfur isotope evidence for the contemporary formation of pyrite in a coastal acid sulfate soil

    International Nuclear Information System (INIS)

    Bush, R.T.; Sullivan, L.A.; Prince, K.; White, I.

    2000-01-01

    The sulfur isotopic composition of pyrite (FeS 2 ), greigite (Fe 3 S 4 ) and pore-water sulfate was determined for a typical coastal acid sulfate soil (ASS). Greigite occurs only in the partially oxidised upper-most pyrite sediments as blackish clusters within vertical fissures and other macro-pores. The concentration of pyrite was an order of magnitude greater than greigite in this layer, continuing through the underlying reduced estuarine sediments. δ 34 S of pyrite (0.45 per mil) associated with greigite accumulations were distinctly different to the bulk average for pyrite (-3.7 per mil), but similar to greigite (0.9 per mil). Greigite is meta-stable under reducing conditions, readily transforming to pyrite. The transformation of iron monosulfides (including greigite) to pyrite is a sulfur-isotope conservative process and therefore, these observations indicate that pyrite is forming from greigite at the oxic/anoxic boundary

  12. Critical paths to coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    Hill, G R

    1977-01-01

    The present dilemma of energy producers, converters, and policy decision makers is presented. The consequences of environmental control regulations, coupled with the need for conservation and energy, and of energy resources on the increased utilization of coal, are discussed. Several recent technical accomplishments that make possible increased utilization of coal for power generation are described. Groundwork is laid for discussion of the technical development that must occur if the United States is to retain its energy viability.

  13. Hydrogeologic and environmental impact of amjhore pyrite mines, India

    Science.gov (United States)

    Choubey, Vishnu D.; Rawat, Rajendra K.

    1991-01-01

    Drainage from active and inactive pyrite mines has produced chemical and physical pollution of both ground- and surface water in Amjhore region. In the present case, chemical pollution is caused by exposing pyrite minerals to oxidation or leaching, resulting in undesirable concentrations of dissolved materials. Pyrite mining suddenly exposed large quantities of sulfides to direct contact with oxygen, and oxidation proceeds rapidly, resulting in acidity and release of metal (Fe) and sulfates to the water system, eventually resulting in water pollution in the region. The magnitude and impact of the problem is just being recognized and, as the present and the future projected demand for clean water is of top priority, the present studies were undertaken. Mine drainage includes water flowing from the surface and underground mines and runoff or seepage from the pyrite mines. This article describes the various hydrologic factors that control acid water formation and its transport. The mine drainage is obviously a continuing source of pollution and, therefore, remedial measures mainly consisting of a double-stage limestone-lime treatment technique have been suggested. The present results will be used to develop an alternative and more effective abatement technology to mitigate acid production at the source, namely, the technique of revegetation of the soil cover applied to the waste mine dump material. Water quality change is discussed in detail, with emphasis on acidity formed from exposed pyrite material and on increase in dissolved solids. Preventive and treatment measures are recommended.

  14. Microprobe channeling analysis of pyrite crystals

    International Nuclear Information System (INIS)

    Jamieson, D.N.; Ryan, C.G.

    1992-01-01

    Nuclear microprobe analysis has provided much useful information about the composition of microscopic inclusions in minerals, mainly through the use of Particle Induced X-ray Emission (PIXE). However this technique, while powerful, does not provide any direct information about the chemical state, in particular the lattice location, of the elements in the mineral. This information is often of crucial importance in understanding the ore genesis. The technique of ion channeling may be used to identify lattice location, but many minerals occur as microscopic crystals. Therefore it is necessary to utilize a nuclear microprobe with the technique of Channeling Contrast Microscopy (CCM). As many minerals contain interesting trace elements, it is necessary to measure both the yield of backscattered particles and the induced x-rays to get a clear picture of the lattice location of the elements in the crystal. CCM with PIXE was used to analyse natural pyrite crystals containing a variety of substitutional and non-substitutional elements and natural pyrite crystals from a gold bearing ore. In the latter case, evidence was obtained for two habits for Au in the 400 μm crystals: one as inclusions of Au rich minerals, the other substituted on the pyrite lattice sites. 31 refs., 3 tabs., 6 figs

  15. Bacterial leaching of pyritic gold ores

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Cashion, J.D.; Brown, J.; Jay, W.H.

    1998-01-01

    Full text: Pyritic ores (pyrite and arsenopyrite) containing gold concentrations in excess of 50g Au/t can be processed to recover the gold by the removal of the sulphur from the ore. This may be achieved by roasting (producing sulphur dioxide emissions), pressure oxidation (expensive and suitable for large high grade deposits), pressure leaching (still currently being developed) or bacterial oxidation. The bacterial oxidation process is a well known process in nature but has only recently come under investigation as a economically viable and relatively clean method of gold recovery from deep low grade sulphidic ores. Samples were obtained from the Wiluna Gold Mine in Western Australia consisting of the original ore, six successive bacterial reactors and the final products. Moessbauer experiments have been performed at room temperature, liquid nitrogen and liquid helium temperatures, and in applied magnetic fields. The main components of the iron phases which were present during the bacterial treatment were pyrite and arsenopyrite which were readily oxidised by the bacteria. Ferric sulfates and ferric arsenates were identified as by-products of the process with a small amount of the oxyhydroxide goethite. These results are in contrast to the similar study of the Fairview Mine in South Africa where principally Fe(II) species were observed

  16. XAS studies on selenite reduction by pyrite

    International Nuclear Information System (INIS)

    Kang Mingliang; Liu Chunli; Chen Fanrong; Charlet, Laurnet

    2012-01-01

    The interaction of aqueous Se (IV) with pyrite were systematically investigated in light of thermodynamic calculations and X-ray Absorption Spectroscopy (XAS). The results from the speciation study reveal that the reduction product is Se (O) when natural pyrite reacts with Se (N) at pH≤5.65, while small amount of FeSeO 3 or iron selenides may be formed at pH 6.1. At pH≥6.94, due to the precipitation of Fe (Ⅲ) -oxyhydroxide, the formation of the thermodynamically most stable species, FeSe 2 , is inhibited. However, when the reactive nanopyrite-greigite was used for reaction, the thermodynamically most stable species, FeSe 2 , was found for the first time as the predominant product in the present study, suggesting that 79 Se can be immobilized in its most insoluble form, FeSe 2 , in Fe (Ⅱ) -sulfide containing environment. This study confirms that pyrite can significantly attenuate the mobility of Se by reductive precipitation, and that the reaction process does not produce protons under acidic or neutral condition when Se (O) is formed. (authors)

  17. Mathematical modelling of demineralisation of high sulphur coal by bioleaching

    Energy Technology Data Exchange (ETDEWEB)

    Weerasekara, N.S.; Frutos, F.J.G.; Cara, J.; Lockwood, F.C. [University of London Imperial College of Science Technology & Medicine, London (United Kingdom)

    2008-02-15

    During coal combustion various toxic compounds are generated from its sulphur content. Their environmental impacts are considered to be very important. While there are various conventional preparation methods to remove the sulphur in the fuel, recent work reveals that newly-isolated micro-organisms, naturally present in coal, have the ability to reduce its sulphur content. The removal of sulphur using biological leaching involving acidophilic iron oxidising bacteria like Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans are examined and a computational technique based on computational fluid dynamics is developed to model the biological leaching of sulphur from coal. The model was validated against a pack-column experiment carried out for iron separation during 60 days. The mathematical model predicted iron separation over time is similar to experimental measurements, with an average difference of 5.5%. According to the experimental results, there was an overall reduction of 33% of pyrite, whereas the model prediction was 32%. The model results shows overall good agreement with pack-column experimental data.

  18. Chalcopyrite Dissolution at 650 mV and 750 mV in the Presence of Pyrite

    Directory of Open Access Journals (Sweden)

    Yubiao Li

    2015-08-01

    Full Text Available The dissolution of chalcopyrite in association with pyrite in mine waste results in the severe environmental issue of acid and metalliferous drainage (AMD. To better understand chalcopyrite dissolution, and the impact of chalcopyrite’s galvanic interaction with pyrite, chalcopyrite dissolution has been examined at 75 °C, pH 1.0, in the presence of quartz (as an inert mineral and pyrite. The presence of pyrite increased the chalcopyrite dissolution rate by more than five times at Eh of 650 mV (SHE (Cu recovery 2.5 cf. 12% over 132 days due to galvanic interaction between chalcopyrite and pyrite. Dissolution of Cu and Fe was stoichiometric and no pyrite dissolved. Although the chalcopyrite dissolution rate at 750 mV (SHE was approximately four-fold greater (Cu recovery of 45% within 132 days as compared to at 650 mV in the presence of pyrite, the galvanic interaction between chalcopyrite and pyrite was negligible. Approximately all of the sulfur from the leached chalcopyrite was converted to S0 at 750 mV, regardless of the presence of pyrite. At this Eh approximately 60% of the sulfur associated with pyrite dissolution was oxidised to S0 and the remaining 40% was released in soluble forms, e.g., SO42−.

  19. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes.

    Science.gov (United States)

    Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C

    2014-02-15

    The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Thermal stability and mechanism of decomposition of emulsion explosives in the presence of pyrite.

    Science.gov (United States)

    Xu, Zhi-Xiang; Wang, Qian; Fu, Xiao-Qi

    2015-12-30

    The reaction of emulsion explosives (ammonium nitrate) with pyrite was studied using techniques of TG-DTG-DTA. TG-DSC-MS was also used to analyze samples thermal decomposition process. When a mixture of pyrite and emulsion explosives was heated at a constant heating rate of 10K/min from room temperature to 350°C, exothermic reactions occurred at about 200°C. The essence of reaction between emulsion explosives and pyrite is the reaction between ammonium nitrate and pyrite. Emulsion explosives have excellent thermal stability but it does not mean it showed the same excellent thermal stability when pyrite was added. Package emulsion explosives were more suitable to use in pyrite shale than bulk emulsion explosives. The exothermic reaction was considered to take place between ammonium nitrate and pyrite where NO, NO2, NH3, SO2 and N2O gases were produced. Based on the analysis of the gaseous, a new overall reaction was proposed, which was thermodynamically favorable. The results have significant implication in the understanding of stability of emulsion explosives in reactive mining grounds containing pyrite minerals. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Calorimetric investigation on mechanically activated storage energy mechanism of sphalerite and pyrite

    International Nuclear Information System (INIS)

    Xiao Zhongliang; Chen Qiyuan; Yin Zhoulan; Hu Huiping; Wu Daoxin

    2005-01-01

    The structural changes of mechanically activated sphalerite and pyrite under different grinding conditions were determined by X-ray powder diffraction (XRD), laser particle size analyzer and elemental analysis. The storage energy of mechanically activated sphalerite and pyrite was measured by a calorimetric method. A thermochemical cycle was designed so that mechanically activated and non-activated minerals reached the same final state when dissolved in the same oxidizing solvent. The results show that the storage energy of mechanically activated sphalerite and pyrite rises with increased in grinding time, and reaches a maximum after a certain grinding period. The storage energy of mechanically activated pyrite decreases when heated under inert atmosphere. The storage energy of mechanically activated sphalerite and pyrite remains constant when treated below 573 K under inert atmosphere. The percentage of the storage energy caused by surface area increase during mechanical activation decreases with increasing grinding time. These results support our opinion that the mechanically activated storage energy of sphalerite is closely related to lattice distortions, and the mechanically activated storage energy of pyrite is mainly caused by the formation of reactive sites on the surface

  2. Potential for thermal coal and Clean Coal Technology (CCT) in the Asia-Pacific. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.J.; Long, S.

    1991-11-22

    The Coal Project was able to make considerable progress in understanding the evolving energy situation in Asia and the future role of coal and Clean Coal Technologies. It is clear that there will be major growth in consumption of coal in Asia over the next two decades -- we estimate an increase of 1.2 billion metric tons. Second, all governments are concerned about the environmental impacts of increased coal use, however enforcement of regulations appears to be quite variable among Asian countries. There is general caution of the part of Asian utilities with respect to the introduction of CCT`s. However, there appears to be potential for introduction of CCT`s in a few countries by the turn of the century. It is important to emphasize that it will be a long term effort to succeed in getting CCT`s introduced to Asia. The Coal Project recommends that the US CCT program be expanded to allow the early introduction of CCT`s in a number of countries.

  3. Modelling temperature-dependent heat production over decades in High Arctic coal waste rock piles

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.

    2011-01-01

    Subsurface heat production from oxidation of pyrite is an important process that may increase subsurface temperatures within coal waste rock piles and increase the release of acid mine drainage, AMD. Waste rock piles in the Arctic are especially vulnerable to changes in subsurface temperatures...... such as heat production from coal oxidation may be equally important....... as the release of AMD normally is limited by permafrost. Here we show that temperatures within a 20 year old heat-producing waste rock pile in Svalbard (78°N) can be modelled by the one-dimensional heat and water flow model (CoupModel) with a new temperature-dependent heat-production module that includes both...

  4. Late Cretaceous coal overlying karstic bauxite deposits in the Parnassus-Ghiona Unit, Central Greece: Coal characteristics and depositional environment

    Energy Technology Data Exchange (ETDEWEB)

    Kalaitzidis, Stavros; Siavalas, George; Christanis, Kimon [Dept. of Geology, University of Patras, 26504 Rio-Patras (Greece); Skarpelis, Nikos [Dept. of Geology and Geoenvironment, University of Athens, 15784 Zografou (Greece); Araujo, Carla Viviane [Petrobras-Cenpes GEOQ/PDEXP, Rua Horacio Macedo n 950, Cidade Universitaria - Ilha do Fundao, 21941-915 Rio de Janeiro (Brazil)

    2010-04-01

    The Pera-Lakkos coal located on top of bauxite deposits in the Ghiona mining district (Central Greece), is the only known Mesozoic (Late Cretaceous) coal in the country. It was derived from herbaceous plants and algae growing in mildly brackish mires that formed behind a barrier system during a regression of the sea, on a karstified limestone partly filled in with bauxitic detritus. Petrological, mineralogical and geochemical data point to the predominance of reducing conditions and intense organic matter degradation in the palaeomires. O/C vs. H/C and OI vs. HI plots, based on elemental analysis and Rock-Eval data, characterize kerogen types I/II. This reflects the relatively high liptinite content of the coal. Besides kerogen composition, O/C vs. H/C plot for the Pera-Lakkos coals is in accordance with a catagenesis stage of maturation in contrast with vitrinite reflectance and T{sub max} from Rock-Eval pyrolysis, which indicate the onset of oil window maturation stage. Suppression of vitrinite reflectance should be considered and the high liptinite content corroborates this hypothesis. Despite some favourable aspects for petroleum generation presented by the Pera-Lakkos coal, its maximum thickness (up to 50 cm) points to a restricted potential for petroleum generation. Coal oxidation took place either during the late stage of peat formation, due to wave action accompanying the subsequent marine transgression, or epigenetically after the emergence of the whole sequence due to percolation of drainage waters. Both options are also supported by the REE shale-normalized profiles, which demonstrate an upwards depletion in the coal layer. Oxidation also affected pyrite included in the coal; this led to the formation of acidic (sulfate-rich) solutions, which percolated downwards resulting in bleaching of the upper part of the underlying bauxite. (author)

  5. Application of fuel cell for pyrite and heavy metal containing mining waste

    Science.gov (United States)

    Keum, H.; Ju, W. J.; Jho, E. H.; Nam, K.

    2015-12-01

    Once pyrite and heavy metal containing mining waste reacts with water and air it produces acid mine drainage (AMD) and leads to the other environmental problems such as contamination of surrounding soils. Pyrite is the major source of AMD and it can be controlled using a biological-electrochemical dissolution method. By enhancing the dissolution of pyrite using fuel cell technology, not only mining waste be beneficially utilized but also be treated at the same time by. As pyrite-containing mining waste is oxidized in the anode of the fuel cell, electrons and protons are generated, and electrons moves through an external load to cathode reducing oxygen to water while protons migrate to cathode through a proton exchange membrane. Iron-oxidizing bacteria such as Acidithiobacillus ferrooxidans, which can utilize Fe as an electron donor promotes pyrite dissolution and hence enhances electrochemical dissolution of pyrite from mining waste. In this study mining waste from a zinc mine in Korea containing 17 wt% pyrite and 9% As was utilized as a fuel for the fuel cell inoculated with A. ferrooxidans. Electrochemically dissolved As content and chemically dissolved As content was compared. With the initial pH of 3.5 at 23℃, the dissolved As concentration increased (from 4.0 to 13 mg/L after 20 d) in the fuel cell, while it kept decreased in the chemical reactor (from 12 to 0.43 mg/L after 20 d). The fuel cell produced 0.09 V of open circuit voltage with the maximum power density of 0.84 mW/m2. Dissolution of As from mining waste was enhanced through electrochemical reaction. Application of fuel cell technology is a novel treatment method for pyrite and heavy metals containing mining waste, and this method is beneficial for mining environment as well as local community of mining areas.

  6. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Simon, G.; Huang, H.; Penner-Hahn, J.E.; Kesler, S.E.; Kao, L.S. [Univ. of Michigan, Ann Arbor, MI (United States)

    1999-07-01

    XANES measurements on gold-bearing arsenian pyrite from the Twin Creeks Carlin-type gold deposits show that gold is present as both Au{sup 0} and Au{sup 1+} and arsenic is present as As{sup 1{minus}}. Au{sup 0} is attributed to sub-micrometer size inclusions of free gold, whereas Au{sup 1+} is attributed to gold in the lattice of the arsenian pyrite. STEM observations suggest that As{sup 1{minus}} is probably concentrated in angstrom-scale, randomly distributed layers with a marcasite or arsenopyrite structure. Ionic gold (Au{sup 1+}) could be concentrated in these layers as well, and is present in both twofold- and fourfold-coordinated forms, with fourfold-coordinated Au{sup 1+} more abundant. Twofold-coordinated Au{sup 1+} is similar to gold in Au{sub 2}S in which it is linearly coordinated to two sulfur atoms. The nature of fourfold-coordinated Au{sup 1+} is not well understood, although it might be present as an Au-As-S compound where gold is bonded in fourfold coordination to sulfur and arsenic atoms, or in vacancy positions on a cation site in the arsenian pyrite. Au{sup 1+} was probably incorporated into arsenian pyrite by adsorption onto pyrite surfaces during crystal growth. The most likely compound in the case of twofold-coordinated Au{sup 1+} was probably a tri-atomic surface complex such as S{sub pyrite}-Au{sup 1+}-S{sub bi-sulfide}H or Au{sup 1+}-S-Au{sup 1+}. The correlation between gold and arsenic might be related to the role of arsenic in enhancing the adsorption of gold complexes of this type on pyrite surfaces, possibly through semiconductor effects.

  7. Effect of inversion layer at iron pyrite surface on photovoltaic device

    Science.gov (United States)

    Uchiyama, Shunsuke; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2018-03-01

    Iron pyrite has great potential as a thin-film solar cell material because it has high optical absorption, low cost, and is earth-abundant. However, previously reported iron pyrite solar cells showed poor photovoltaic characteristics. Here, we have numerically simulated its photovoltaic characteristics and band structures by utilizing a two-dimensional (2D) device simulator, ATLAS, to evaluate the effects of an inversion layer at the surface and a high density of deep donor defect states in the bulk. We found that previous device structures did not consider the inversion layer at the surface region of iron pyrite, which made it difficult to obtain the conversion efficiency. Therefore, we remodeled the device structure and suggested that removing the inversion layer and reducing the density of deep donor defect states would lead to a high conversion efficiency of iron pyrite solar cells.

  8. Pyrite oxidation in unsaturated aquifer sediments. Reaction stoichiometry and rate of oxidation

    DEFF Research Database (Denmark)

    Andersen, Martin Søgaard; Larsen, Flemming; Postma, Diederik Jan

    2001-01-01

    The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase in the inc......The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase...... in the incubation bags became depleted in O2 and enriched in CO2 and N2 and was interpreted as due to pyrite oxidation in combination with calcite dissolution. Sediment incubation provides a new method to estimate low rates of pyrite oxidation in unsaturated zone aquifer sediments. Oxidation rates of up to 9.4â10......-10 mol FeS2/gâs are measured, and the rates are only weakly correlated with the sediment pyrite content. The reactivity of pyrite, including the inhibition by FeOOH layers formed on its surface, apparently has a major effect on the rate of oxidation. The code PHREEQC 2.0 was used to calculate...

  9. Recent trend in coal utilization technology. Coal utilization workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chon Ho; Son, Ja Ek; Lee, In Chul; Jin, Kyung Tae; Kim, Seong Soo [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The 11th Korea-U.S.A. joint workshop on coal utilization technology was held in somerset, Pennsylvania, U.S.A. from october 2 to 3, 1995. In the opening ceremony, Dr.C. Low-el Miller, associate deputy assistant secretary of office of clean coal technology, U.S.DOE, gave congratulatory remarks and Dr. Young Mok Son, president of KIER, made a keynote address. In this workshop, 30 papers were presented in the fields of emission control technology, advanced power generation systems, and advanced coal cleaning and liquid fuels. Especially, from the Korean side, not only KIER but also other private research institutes and major engineering companies including KEPCO, Daewoo Institute of Construction Technology, Jindo Engineering and Construction Co. Daewoo Institute for Advanced Engineering and universities participated in this workshop, reflecting their great interests. Attendants actively discussed about various coal utilization technologies and exchanged scientific and technical information on the state-of-art clean coal technologies under development. (author)

  10. Characterization of desulfurization, denitrogenation and process sulfur transfer during hydropyrolysis of Chinese high sulfur coals

    Energy Technology Data Exchange (ETDEWEB)

    Sun Chenggong; Li Baoqing [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion; Snape, C.E. [Strathclyde Univ., Glasgow (United Kingdom). Dept. of Pure and Applied Chemistry

    1997-12-31

    The process desulphurization and denitrogenation of Chinese high sulfur coals and the characteristics of sulfur transformation during non-catalytic hydropyrolysis were investigated by a 10 g fixed-bed reactor and a small-scaled reactor with online spectrometry respectively. It was indicated that more than 70% of the total sulfur of the two high sulfur coals and almost all pyritic sulfur are removed as H{sub 2}S, leaving the char and tar products with much less sulfur distribution. The liability of sulfur transformation to tar products is closely related to the thiophenic structure forms rather than sulfidic forms. At the same time, the formation of trace amount of sulfur dioxide indicates the presence of inherent sulfur oxidation reactions inside coal frame structures even under H{sub 2} pressure. (orig.)

  11. The use of mixed pyrrhotite/pyrite catalysts for co-liquefaction of coal and waste rubber tires

    Energy Technology Data Exchange (ETDEWEB)

    Dadyburjor, D.B.; Zondlo, J.W.; Sharma, R.K. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1995-12-31

    The overall objective of this research program is to determine the optimum processing conditions for tire/coal co-liquefaction. The catalysts used will be a ferric-sulfide-based materials, as well as promising catalysts from other consortium laboratories. The intent here is to achieve the maximum coal+tire conversion at the mildest conditions of temperature and pressure. Specific objectives include an investigation of the effects of time, temperature, pressure, catalyst and co-solvent on the conversion and product slate of the co-liquefaction. Accomplishments and conclusions are discussed.

  12. Prospects for the development of coal-steam plants in Russia

    Science.gov (United States)

    Tumanovskii, A. G.

    2017-06-01

    Evaluation of the technical state of the modern coal-fired power plants and quality of coal consumed by Russian thermal power plants (TPP) is provided. Measures aimed at improving the economic and environmental performance of operating 150-800 MW coal power units are considered. Ways of efficient use of technical methods of NO x control and electrostatic precipitators' upgrade for improving the efficiency of ash trapping are summarized. Examples of turbine and boiler equipment efficiency upgrading through its deep modernization are presented. The necessity of the development and introduction of new technologies in the coal-fired power industry is shown. Basic technical requirements for a 660-800 MW power unit with the steam conditions of 28 MPa, 600/600°C are listed. Design solutions taking into account features of Russian coal combustion are considered. A field of application of circulating fluidized bed (CFB) boilers and their effectiveness are indicated. The results of development of a new generation coal-fired TPP, including a steam turbine with an increased efficiency of the compartments and disengaging clutch, an elevated steam conditions boiler, and a highly efficient NO x /SO2 and ash particles emission control system are provided. In this case, the resulting ash and slag are not to be sent to the ash dumps and are to be used to a maximum advantage. Technical solutions to improve the efficiency of coal gasification combined cycle plants (CCP) are considered. A trial plant based on a 16 MW gas turbine plant (GTP) and an air-blown gasifier is designed as a prototype of a high-power CCP. The necessity of a state-supported technical reequipment and development program of operating coal-fired power units, as well as putting into production of new generation coal-fired power plants, is noted.

  13. Fiscal 1993 report. Coal liquefaction committee; 1993 nendo sekitan ekika iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The committee in this fiscal year had the 1st meeting in July 1993, the 2nd in December 1993, and the 3rd in March 1994, when fiscal 1993 research and development programs and results were reported and discussed. Reported and discussed at the 2nd meeting were the compilation of brown coal liquefaction technology development project results, evaluation report on the same, hydrorefining of oil from brown coal and the research and development of application technologies for the same, and an environmental safety evaluation test on the same. In selecting a standard coal for the operation of the 150 ton/day pilot plant, PSU (process supporting unit)-aided studies were made on the analytical values presented by coals, yield of the liquid, yield of the liquefaction residue, yield of the generated gas, amount of the hydrogen consumed, coal oil properties, liquefaction residue properties, operationality, etc. On-site investigations were conducted also in Indonesia, and a conclusion was reached that Tanito Harum coal would be the most suitable for the pilot plant. Concerning the liquefaction catalyst for the pilot plant, a report was given on a comparison made between the activity of a synthetic iron sulfide and that of natural pyrite. (NEDO)

  14. The mechanisms of pyrite oxidation and leaching: A fundamental perspective

    Science.gov (United States)

    Chandra, A. P.; Gerson, A. R.

    2010-09-01

    Pyrite is the earth's most abundant sulfide mineral. Its frequent undesirable association with minerals of economic value such as sphalerite, chalcopyrite and galena, and precious metals such as gold necessitates costly separation processes such as leaching and flotation. Additionally pyrite oxidation is a major contributor to the environmental problem of acid rock drainage. The surface oxidation reactions of pyrite are therefore important both economically and environmentally. Significant variations in electrical properties resulting from lattice substitution of minor and trace elements into the lattice structure exist between pyrite from different geographical locations. Furthermore the presence of low coordination surface sites as a result of conchoidal fracture causes a reduction in the band gap at the surface compared to the bulk thus adding further electrochemical variability. Given the now general acceptance after decades of research that electrochemistry dominates the oxidation process, the geographical location, elemental composition and semi-conductor type (n or p) of pyrite are important considerations. Aqueous pyrite oxidation results in the production of sulfate and ferrous iron. However other products such as elemental sulfur, polysulfides, hydrogen sulfide, ferric hydroxide, iron oxide and iron(III) oxyhydroxide may also form. Intermediate species such as thiosulfate, sulfite and polythionates are also proposed to occur. Oxidation and leach rates are generally influenced by solution Eh, pH, oxidant type and concentration, hydrodynamics, grain size and surface area in relation to solution volume, temperature and pressure. Of these, solution Eh is most critical as expected for an electrochemically controlled process, and directly correlates with surface area normalised rates. Studies using mixed mineral systems further indicate the importance of electrochemical processes during the oxidation process. Spatially resolved surface characterisation of fresh

  15. The composition of pyrite in volcanogenic massive sulfide deposits as determined with the proton microprobe

    International Nuclear Information System (INIS)

    Huston, D.L.; Sie, S.H.; Suter, G.F.; Ryan, C.G.

    1993-01-01

    Pixeprobe analysis of pyrite from Australian volcanogenic massive sulfide (VMS) deposits indicate significant levels of Cu, Zn, Pb, Ba, Ag, Sb, Bi (from inclusions), As, Tl, Mo, Au, In, Cd (from nonstoichiometric substitution), Co, Ni, Se and Te (from stoichiometric substitution). Pyrite in massive sulfide lenses is enriched in trace elements compared to that in the stringer zone owing to hydrothermal recrystallization. Metamorphic recrystallization also 'cleans' pyrite of trace elements. High Au values occur in pyrite with high As content. Pyrite in stringer zones is enriched in Se relative to the overlying massive sulfide lenses and the surrounding alteration zones. (orig.)

  16. Central Heating Plant Coal Use Handbook. Volume 1: Technical Reference.

    Science.gov (United States)

    1996-11-01

    CHUTES LIFT TRUCKS MONORAILS , TRAMWAYS J p WEIGHING, 0 MEASURING SCALES COAL METERS HOPPERS SAMPLERS 9 FIRING EQUIPMENT (Source: Power, February...Defense (DOD) installations employ coal- fired central energy plants, the U.S. Army Construction Engineering Research Laboratories (USACERL) was... fired central heat plant operations cost by improving coal quality specifications. The Handbook is tailored for military installation industrial

  17. Electrostatic beneficiation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, M.K.; Tennal, K.B.; Lindquist, D.

    1994-10-01

    Dry physical beneficiation of coal has many advantages over wet cleaning methods and post combustion flue gas cleanup processes. The dry beneficiation process is economically competitive and environmentally safe and has the potential of making vast amounts of US coal reserves available for energy generation. While the potential of the electrostatic beneficiation has been studied for many years in laboratories and in pilot plants, a successful full scale electrostatic coal cleaning plant has not been commercially realized yet. In this paper the authors review some of the technical problems that are encountered in this method and suggest possible solutions that may lead toward its full utilization in cleaning coal.

  18. Geochemistry of Early Frasnian (Late Devonian) pyrite-ammonoid level in the Kostomłoty Basin, Poland, and a new proxy parameter for assessing the relative amount of syngenetic and diagenetic pyrite

    Science.gov (United States)

    Pisarzowska, Agnieszka; Berner, Zsolt A.; Racki, Grzegorz

    2014-07-01

    Pyrite geochemistry (isotope and trace element composition, degree of pyritization, S/Corg ratio) was used in context of selected lithogeochemical parameters (major and trace elements, including sulphur, organic carbon, and δ13C of carbonate carbon) to constrain fluctuations in depositional conditions during the Early to Middle Frasnian carbon isotopic perturbation (punctata Event) in the Kostomłoty Basin, Poland. Based on the ratio between the sum of oxyanionic elements and transition metals in pyrite, a new proxy parameter (index of syngenetic pyrite, ISYP) is proposed for assessing the relative amount of syngenetic pyrite in a sample. The distribution of the ISYP along the Kostomłoty - Małe Górki section (upper Szydłówek to the basal Kostomłoty beds) is in concert with conclusions inferred from paleoecologic data and other geochemical parameters (degree of pyritization, S/Corg, δ34Spyrite). According to these, the lower segment of the Szydłówek Beds was deposited in a normally oxygenated environment, but undergoing increasing primary productivity in surface water, as indicated by an increase in δ13Ccarb and in Cu/Zr ratio in bulk rock, which triggered the periodic deposition of sediments slightly enriched in organic matter, notably within the pyrite-ammonoid level (= Goniatite Level). Fluctuating, but in general high S/Corg ratios, DOPR values and ISYP values suggest that during this time - against the background of a generally dysoxic environment - shorter or longer lasting episodes of more restricted (anoxic and possibly even euxinic) bottom water conditions developed. Low sedimentation rates enabled a continuous and practically unlimited supply of sulphate during bacterial sulphate reduction (BSR), which in turn led to a strong depletion of pyrite sulphur in 34S in this interval (constantly around -29‰). In contrast, below and above the Goniatite Level, higher δ34S values (up to + 3‰), are compatible with closed system conditions and higher

  19. Environmental assessment and nano-mineralogical characterization of coal, overburden and sediment from Indian coal mining acid drainage

    Directory of Open Access Journals (Sweden)

    Madhulika Dutta

    2017-11-01

    the presence both of pyrite and marcasite which was also confirmed in XRD and Mossbauer spectral analysis. The presented data of the minerals and ultra/nano-particles present shows their ability to control the mobility of hazardous elements, suggesting possible use in environmental management technology, including restoration of the delicate Indian coal mine areas.

  20. Scientific, technical and economic information center for the coal industry - 30 years of success in developing science and technology in the coal sector

    Energy Technology Data Exchange (ETDEWEB)

    Nemcova, A.; Bruskova, P. (PKD, Ostrava (Czechoslovakia). Rozvoj a Projektovani)

    1990-06-01

    Summarizes the 30-year history of the Center, including introduction of its first automated information system in 1969 and the organization's own suite of AUTIS programs introduced in 1979 and which now run on IBM 4331 and 4361 computers. The Center is responsible for coordinating acquisition of foreign literature, access to foreign data bases, international cooperation within the Informugol' system, AUTIS coal data base management, analytical information processing, publications and systems control. Its structure includes a directorate with secretariat, a technical library, an analysis section, an analytical information section, a publications section and a development section. The Center's publications include 4 periodicals and 5 occasional series covering many aspects of the coal industry. Briefly describes some products manufactured by Rohde and Schwarz of the FRG, with whom the Center has had a long association; these include the CMS 52 communications tester, ZWOB 6 polyscope, EZM spectrum monitor, FSAC spectrum analyzer, PSA 5 control computer, SMGU and GMHU signal generators and TIF video/timing analyzer.

  1. Lattice location of gold in natural pyrite crystals

    International Nuclear Information System (INIS)

    Besten, Jacinta den; Jamieson, David N.; Ryan, Chris G.

    1999-01-01

    The lattice location of gold atoms in naturally occurring Au-doped pyrite crystals has been investigated with a nuclear microprobe using ion channeling. The specimens consisted of 300-μm diameter pyrite crystals in veins embedded in a quartz matrix from the Emperor mine in Fiji. The specimens were prepared by standard geological specimen preparation techniques and the pyrite crystals were analysed in situ in the quartz matrix. Significant trace elements in the crystals, determined by Proton Induced X-ray Emission with a 3 MeV H + microprobe, were Cu, As, Mo, Zn, Te, Au and Pb. The Au concentration was about 0.2 wt%. By the use of 2 MeV He + ion channeling, the Miller indices of the lowest order crystal axes nearest to the normal were determined from backscattering yield maps from two-dimensional angular scanning and comparison of the resulting patterns with published gnomonic projections. Channeling angular yield curves were obtained from Fe, S, As and Au signals. The results indicate that at least 35% of the Au is substituted onto lattice sites

  2. Cu-As Decoupling in Hydrothermal Systems: A Link Between Pyrite Chemistry and Fluid Composition

    Science.gov (United States)

    Reich, M.; Tardani, D.; Deditius, A.; Chryssoulis, S.; Wrage, J.; Sanchez-Alfaro, P.; Andrea, H.; Cinthia, J.

    2016-12-01

    Chemical zonations in pyrite have been recognized in most hydrothermal ore deposit types, showing in some cases marked oscillatory alternation of metals and metalloids in pyrite growth zones (e.g., of Cu-rich, As-(Au)-depleted zones and As-(Au)-rich, Cu-depleted zones). This decoupled geochemical behavior of Cu and As has been interpreted as a result of chemical changes in ore-forming fluids, although direct evidence connecting fluctuations in hydrothermal fluid composition with metal partitioning into pyrite growth zones is still lacking. Here we report a comprehensive trace element database of pyrite from an active hydrothermal system, the Tolhuaca Geothermal System (TGS) in southern Chile. We combined high-spatial resolution and X-ray mapping capabilities of electron microprobe analysis (EMPA) with low detection limits and depth-profiling capabilities of secondary-ion mass spectrometry (SIMS) in a suite of pyrite samples retrieved from a 1 km drill hole that crosses the argillic and propylitic alteration zones of the geothermal system. We show that the concentrations of precious metals (e.g., Au, Ag), metalloids (e.g., As, Sb, Se, Te), and base and heavy metals (e.g., Cu, Co, Ni, Pb) in pyrite at the TGS are significant. Among the elements analyzed, arsenic, Cu and Co are the most abundant with concentrations that vary from sub-ppm levels to a few wt. %. Pyrites from the deeper propylitic zone do not show significant zonation and high Cu-(Co)-As concentrations correlate with each other. In contrast, well-developed zonations were detected in pyrite from the shallow argillic alteration zone, where Cu(Co)-rich, As-depleted cores alternate with Cu(Co)-depleted, As-rich rims. These microanalytical data were contrasted with chemical data of fluid inclusion in quartz veins (high Cu/Na and low As/Na) and borehole fluids (low Cu/Na and high As/Na) reported at the TGS, showing a clear correspondence between Cu and As concentrations in pyrite-forming fluids and chemical

  3. Quantification of mineral matter in commercial cokes and their parent coals

    Energy Technology Data Exchange (ETDEWEB)

    Sakurovs, Richard; French, David; Grigore, Mihaela [CRC for Coal in Sustainable Development, CSIRO Energy Technology, PO Box 330 Newcastle 2300 (Australia)

    2007-10-01

    The nature of mineral matter in coke is an important factor in determining the behaviour of coke in the blast furnace. However, there have been few quantitative determinations of the types of mineral matter in coke and the feed coal. Here we use a technique of quantitative X-ray diffraction - SIROQUANT trademark - to determine the nature and quantity of mineral matter in eleven cokes and their parent materials, using samples of coals and their cokes utilised commercially in blast furnaces around the world. In some of these coals a considerable proportion of the phosphorus was present as goyazite, an aluminium phosphate. In the cokes, most of the iron was incorporated into amorphous aluminosilicate material; metallic iron accounted for about 15% of the iron present, and a similar amount was present as sulfides. Potassium and sodium were largely present as amorphous aluminosilicate material. Most of the quartz in the coal was unaffected by the coking, but a small fraction was transformed into other minerals. Quartz is not completely inert during coking. The amount of the catalytic forms of iron in the coke - iron, iron oxides and iron sulfides - was not related to the amount of pyrite and siderite in the starting coal, indicating that estimation of catalytic iron requires investigation of the mineral matter in coke directly and cannot be estimated from the minerals in the coal. (author)

  4. Pyrite deformation and connections to gold mobility: Insight from micro-structural analysis and trace element mapping

    Science.gov (United States)

    Dubosq, R.; Lawley, C. J. M.; Rogowitz, A.; Schneider, D. A.; Jackson, S.

    2018-06-01

    The metamorphic transition of pyrite to pyrrhotite results in the liberation of lattice-bound and nano-particulate metals initially hosted within early sulphide minerals. This process forms the basis for the metamorphic-driven Au-upgrading model applied to many orogenic Au deposits, however the role of syn-metamorphic pyrite deformation in controlling the retention and release of Au and related pathfinder elements is poorly understood. The lower amphibolite facies metamorphic mineral assemblage (Act-Bt-Pl-Ep-Alm ± Cal ± Qz ± Ilm; 550 °C) of Canada's giant Detour Lake deposit falls within the range of pressure-temperature conditions (450 °C) for crystal plastic deformation of pyrite. We have applied a complementary approach of electron backscatter diffraction (EBSD) mapping and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 2D element mapping on pyrite from the Detour Lake deposit. Chemical element maps document an early generation of Au-rich sieve textured pyrite domains and a later stage of syn-metamorphic oscillatory-zoned Au-poor pyrite. Both pyrite types are cut by Au-rich fractures as a consequence of remobilization of Au with trace element enrichment of first-row transition elements, post-transition metals, chalcogens and metalloids during a late brittle deformation stage. However, similar enrichment in trace elements and Au can be observed along low-angle grain boundaries within otherwise Au-poor pyrite, indicating that heterogeneous microstructural misorientation patterns and higher strain domains are also relatively Au-rich. We therefore propose that the close spatial relationship between pyrite and Au at the microscale, features typical of orogenic Au deposits, reflects the entrapment of Au within deformation-induced microstructures in pyrite rather than the release of Au during the metamorphic transition from pyrite to pyrrhotite. Moreover, mass balance calculations at the deposit scale suggest that only a small percentage

  5. Thermoluminescence kinetics of pyrite (FeS2)

    International Nuclear Information System (INIS)

    Silverman, A.N; Levy, P.W.; Kierstead, J.A.

    1990-01-01

    Thermoluminescence of pyrite (FeS 2 ) has been investigated to study the kinetics of single peak glow curves. The material used normally exhibits one large and four small peaks. However a glow curve can be obtained with only the large single peak that is suitable for testing thermoluminescence kinetics. Glow curves from aliquots of a single natural pyrite crystal studied in detail contain two low intensity thermoluminescence (TL) peaks at ∼90 degree and ∼250 degree C, and two chemiluminescence (CL) peaks at ∼350 degree and ∼430 degree C. The CL peaks are largely removable by initially heating the sample chamber under vacuum, pumping through liquid nitrogen traps, and recording glow curves immediately after helium is introduced, procedures which reduce system contaminants that react with pyrite. The shape, the variation of the temperature of the peak maximum (T max ) with dose, and the retrapping to recombination cross section ratio σ of the large 250 degree C peak are better described by the general one trap (GOT) kinetic equation, the basic equation from which the 1st and 2nd order kinetic equations are obtained as special cases (see text), than by the 1st and 2nd order equations. 12 refs., 7 figs

  6. New method for reduction of burning sulfur of coal

    International Nuclear Information System (INIS)

    Lyutskanov, L.; Dushanov, D.

    1998-01-01

    The coal pyrolysis is key phase in the the pyrolysis-combustion cycle as it provides char for combustor. The behaviour of sulfur compounds during coal pyrolysis depends on factors as rank of coal, quantity of sulfur and sulfur forms distribution in the coal, quantity and kind of mineral matter and the process conditions. The mineral content of coal may inhibit or catalyze the formation of volatile sulfur compounds. The pyrolysis itself is a mean of removing inorganic and organic sulfur but anyway a portion of it remains in the char while the other moves into the tar and gas. The aim of this study was to determine an optimal reduction of burning sulfur at the coal pyrolysis by varying parametric conditions. The pyrolysis of different kinds of coal has been studied. The samples with size particles o C at atmospheric pressure and with a heating rate of 6-50 o C min -1 . They were treated with exhaust gas and nitrogen at an addition of steam and air. The char obtained remains up to 10 min at the final temperature. The char samples cool without a contact with air. Two methods of desulfurization-pyrolysis were studied - using 9-vertical tubular reactor and 9-horizontal turning reactor. The results obtained show that at all samples there is a decrease of burning sulfur with maximal removal efficiency 83%. For example at a pyrolysis of Maritsa Iztok lignite coal the burning sulfur is only 16% in comparison with the control sample. The remained is 90% sulfate, 10% organic and pyrite traces when a mixture 'exhaust gas-water stream-air' was used. The method of desulfurization by pyrolysis could be applied at different kinds of coal and different conditions. Char obtained as a clean product can be used for generating electric power. This innovation is in a stage of patenting

  7. Clean coal technology roadmap: issues paper

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, B. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2003-07-01

    The need for the Clean Coal Technology Roadmap is based on the climate change threat, Canada's commitment to the Kyoto protocol, and the need to keep options open in determining the future position of coal in Canada's energy mix. The current role of coal, issues facing coal-fired utilities, and greenhouse gas emission policies and environmental regulations are outlined. The IEA energy outlook (2002) and a National Energy Board draft concerning Canada's energy future are outlined. Environmental, market, and technical demands facing coal, technology options for existing facilities, screening new developments in technology, and clean coal options are considered. 13 figs. 5 tabs.

  8. Main scientific and technical development tasks for the coal industry during the 8th Five Year Plan and up to the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, M.

    1987-05-01

    A general overview is given of the Czechoslovak coal industry from 1975 to 1985, when output increased from 114.4 Mt to 126.6 Mt, with statistics given in graphs and tables covering types of mining, types of coal and types of equipment used. The scientific and technical development plan is reviewed up to the year 2000 which will include intensive geological surveys, more automation, increasing productivity and more efficient use of coking coal. The paper describes in more detail State Scientific Program P01, Extraction and Processing of Selected Types of Fuel, which is broken down into 6 sections: forecasting reserves and geotechnical problems, design problems, surface mining, underground mining, extraction of bitumen and coal processing. This is the first time in the history of the Czechoslovak mining industry that its problems have been incorporated into a State Scientific Program. 6 refs.

  9. Thermal coal utilization for the ESCAP region

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A selection of papers is presented originating from talks to coal utilization workshops for the ASEAN region in 1981. The papers cover: planning aspects - economic and technical aspects of coal usage, long term planning for fuel coal needs, planning and coal selection for coal-fired power plants, coal availability and marketing, and economic aspects of coal usage in developing countries; combustion and plant - changing from coal to oil, principles and problems of coal combustion, use of indigenous and imported coals and their effects on plant design, coal pulverizing mills, ash and dust disposal, environmental aspects of coal combustion, industrial sized coal-fired boilers; transport and storage -ocean shipment, coal receival facilities and associated operations, shipping and rail transport, coal handling and transport, environmental issue in the transport and handling of coal, coal preparation and blending; testing and properties - coal types, characterization properties and classification; training power plant operators; the cement industry and coal, the Australian black coal industry.

  10. Petrographic characteristics and depositional environment of Miocene Can coals, Canakkale-Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Guerdal, Guelbin; Bozcu, Mustafa [Canakkale Onsekiz Mart University, Engineering and Architecture Faculty (Turkey)

    2011-01-01

    In this study, petrographic examinations along with proximate, calorific value, ultimate, sulphur form and XRD analyses were performed in order to determine the coal characteristics and the depositional environment of the Miocene Can coals. Seventy coal samples were taken from cores and open pit mines. The investigated Can coals are humic coals and classified as lignite to sub-bituminous coal based on the random huminite reflectance (0.38-0.54% R{sub r}), volatile matter (45.50-62.25 wt.%, daf) and calorific value (3419-6479 kcal/kg, maf). The sulphur content of the Can coals changes from 0.30 up to 12.23 wt.%, and a broad range of ash contents was observed varying between 2.46 wt.% and 41.19 wt.%. Huminite is the most abundant maceral group (74-95 vol.% mmf) consisting of mostly humocollinite (gelinite) which is followed by relatively low liptinite (2-18 vol.% mmf) and inertinite content (2-13 vol.% mmf). In general, major mineral contents of coal samples are clay minerals, quartz, mica, pyrite and feldspar. The Can-Etili lignite basin consists of mainly volcano-clastics, fluviatile and lacustrine clastic sediments and contains only one lignite seam with 17 m average thickness. In order to assess the development of paleo-mires, coal facies diagrams were obtained from maceral composition. According to the Vegetation Index (VI) and Ground Water Index (GWI), the Can coal accumulated in inundated marsh, limnic and swamp environments under a rheotrophic hydrological regime. In general, the facies interpretations are in accordance with the observed sedimentalogical data. (author)

  11. Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite

    International Nuclear Information System (INIS)

    Gunawan, Richard; Zhang Dongke

    2009-01-01

    The interaction between ammonium nitrate based industrial explosives and pyrite-rich minerals in mining operations can lead to the occurrence of spontaneous explosion of the explosives. In an effort to provide a scientific basis for safe applications of industrial explosives in reactive mining grounds containing pyrite, ammonium nitrate decomposition, with and without the presence of pyrite, was studied using a simultaneous Differential Scanning Calorimetry and Thermogravimetric Analyser (DSC-TGA) and a gas-sealed isothermal reactor, respectively. The activation energy and the pre-exponential factor of ammonium nitrate decomposition were determined to be 102.6 kJ mol -1 and 4.55 x 10 7 s -1 without the presence of pyrite and 101.8 kJ mol -1 and 2.57 x 10 9 s -1 with the presence of pyrite. The kinetics of ammonium nitrate decomposition was then used to calculate the critical temperatures for ammonium nitrate decomposition with and without the presence of pyrite, based on the Frank-Kamenetskii model of thermal explosion. It was shown that the presence of pyrite reduces the temperature for, and accelerates the rate of, decomposition of ammonium nitrate. It was further shown that pyrite can significantly reduce the critical temperature of ammonium nitrate decomposition, causing undesired premature detonation of the explosives. The critical temperature also decreases with increasing diameter of the blast holes charged with the explosive. The concept of using the critical temperature as indication of the thermal stability of the explosives to evaluate the risk of spontaneous explosion was verified in the gas-sealed isothermal reactor experiments.

  12. Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite.

    Science.gov (United States)

    Gunawan, Richard; Zhang, Dongke

    2009-06-15

    The interaction between ammonium nitrate based industrial explosives and pyrite-rich minerals in mining operations can lead to the occurrence of spontaneous explosion of the explosives. In an effort to provide a scientific basis for safe applications of industrial explosives in reactive mining grounds containing pyrite, ammonium nitrate decomposition, with and without the presence of pyrite, was studied using a simultaneous Differential Scanning Calorimetry and Thermogravimetric Analyser (DSC-TGA) and a gas-sealed isothermal reactor, respectively. The activation energy and the pre-exponential factor of ammonium nitrate decomposition were determined to be 102.6 kJ mol(-1) and 4.55 x 10(7)s(-1) without the presence of pyrite and 101.8 kJ mol(-1) and 2.57 x 10(9)s(-1) with the presence of pyrite. The kinetics of ammonium nitrate decomposition was then used to calculate the critical temperatures for ammonium nitrate decomposition with and without the presence of pyrite, based on the Frank-Kamenetskii model of thermal explosion. It was shown that the presence of pyrite reduces the temperature for, and accelerates the rate of, decomposition of ammonium nitrate. It was further shown that pyrite can significantly reduce the critical temperature of ammonium nitrate decomposition, causing undesired premature detonation of the explosives. The critical temperature also decreases with increasing diameter of the blast holes charged with the explosive. The concept of using the critical temperature as indication of the thermal stability of the explosives to evaluate the risk of spontaneous explosion was verified in the gas-sealed isothermal reactor experiments.

  13. Flocculation of Pyrite Fines in Aqueous Suspensions with Corn Starch to Eliminate Mechanical Entrainment in Flotation

    Directory of Open Access Journals (Sweden)

    Wei Ge

    2015-10-01

    Full Text Available The hydrophilic flocculation of pyrite fines in aqueous suspensions with corn starch was studied by measuring particle size distribution, microscopy observation and micro-flotation. Furthermore, the interaction of corn starch with pyrite was investigated by determining the adsorption density and based on zeta potential measurements and X-ray photoelectron spectrometer (XPS analysis in this work. The results of the particle size distribution measurement show that corn starch can effectively aggregate pyrite fines, and the pyrite floccules (flocs are sensitive to mechanical stirring. The micro-flotation results suggest that the mechanical entrainment of pyrite fines in flotation can be effectively eliminated through the formation of large-size flocs. The zeta potential of pyrite particles decreases with the addition of corn starch. The XPS results prove that carboxyl groups are generated on the digested corn starch, and both iron hydroxyl compounds and ferrous disulfide on the pyrite surface can chemically interact with the corn starch digested by sodium hydroxide.

  14. The flotation of gold, uranium, and pyrite from Witwatersrand ores

    International Nuclear Information System (INIS)

    Lloyd, P.J.D.

    1981-01-01

    The Witwatersrand reefs contain gold, uranium, and pyrite in the following average concentrations: 0,001 per cent, 0,02 per cent, and 1,7 per cent respectively. The paper discusses the flotation of pyrite to produce a sulphide concentrate, reviews work done on the production of gold concentrates, discusses attempts to produce maximum concentrates, and closes with a review of processes for the simultaneous flotation of these three species. It is concluded that high recoveries of all three species can be achieved only if a rougher concentrate of perhaps 20 per cent of the feed (by mass) is produced, and it is suggested that reverse leaching (leaching before cyanidation) of this concentrate, followed by a cleaning flotation step for the recovery of the pyrite, would be more efficient than the routes employed at present [af

  15. Preparation of Authigenic Pyrite from Methane-bearing Sediments for In Situ Sulfur Isotope Analysis Using SIMS.

    Science.gov (United States)

    Lin, Zhiyong; Sun, Xiaoming; Peckmann, Jörn; Lu, Yang; Strauss, Harald; Xu, Li; Lu, Hongfeng; Teichert, Barbara M A

    2017-08-31

    Different sulfur isotope compositions of authigenic pyrite typically result from the sulfate-driven anaerobic oxidation of methane (SO4-AOM) and organiclastic sulfate reduction (OSR) in marine sediments. However, unravelling the complex pyritization sequence is a challenge because of the coexistence of different sequentially formed pyrite phases. This manuscript describes a sample preparation procedure that enables the use of secondary ion mass spectroscopy (SIMS) to obtain in situ δ 34 S values of various pyrite generations. This allows researchers to constrain how SO4-AOM affects pyritization in methane-bearing sediments. SIMS analysis revealed an extreme range in δ 34 S values, spanning from -41.6 to +114.8‰, which is much wider than the range of δ 34 S values obtained by the traditional bulk sulfur isotope analysis of the same samples. Pyrite in the shallow sediment mainly consists of 34 S-depleted framboids, suggesting early diagenetic formation by OSR. Deeper in the sediment, more pyrite occurs as overgrowths and euhedral crystals, which display much higher SIMS δ 34 S values than the framboids. Such 34 S-enriched pyrite is related to enhanced SO4-AOM at the sulfate-methane transition zone, postdating OSR. High-resolution in situ SIMS sulfur isotope analyses allow for the reconstruction of the pyritization processes, which cannot be resolved by bulk sulfur isotope analysis.

  16. Effect of Pyrite on Thiosulfate Leaching of Gold and the Role of Ammonium Alcohol Polyvinyl Phosphate (AAPP

    Directory of Open Access Journals (Sweden)

    Xiaoliang Liu

    2017-07-01

    Full Text Available The effect of pyrite and the role of ammonium alcohol polyvinyl phosphate (AAPP during gold leaching in ammoniacal thiosulfate solutions were investigated using pure gold foils. The results showed that pyrite catalyzed the decomposition and also significantly increased the consumption of thiosulfate. This detrimental effect became more severe with increasing pyrite content. Further, the presence of pyrite also substantially slowed the gold leaching kinetics and reduced the overall gold dissolution. The reduction in gold dissolution was found to be caused primarily by the surface passivation of the gold. The negative effects of pyrite, however, can be alleviated by the addition of AAPP. Comparison of zeta potentials of pyrite with and without AAPP suggests that AAPP had adsorbed on the surface of the pyrite and weakened the catalytic effect of pyrite on the thiosulfate decomposition by blocking the contact between the pyrite and thiosulfate anions. AAPP also competed with thiosulfate anions to complex with the cupric ion at the axial coordinate sites, and thus abated the oxidation of thiosulfate by cupric ions. Moreover, the indiscriminate adsorption of AAPP on the surfaces of gold and passivation species prevented the passivation of the gold surface by surface charge and electrostatic repulsion. Therefore, AAPP effectively stabilized the thiosulfate in the solution and facilitated the gold leaching in the presence of pyrite.

  17. Influence of the Interaction between Sphalerite and Pyrite on the Copper Activation of Sphalerite

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2018-01-01

    Full Text Available In this paper, the effect of pyrite on the activation of sphalerite was investigated by micro-flotation, copper adsorption experiments, X-ray photoelectron spectroscopy (XPS, and electrochemical measurement. The micro-flotation test results showed that the recovery and flotation rate of sphalerite with copper sulphate as activator and butyl xanthate as collector were significantly decreased with the increasing content of pyrite in pulp. Cu2+ adsorption results indicated that the adsorption of Cu2+ on the sphalerite surface were decreased when pyrite was present in the pulp. XPS surface analysis demonstrated that the proportion of Cu+ species increased in the activation products on the sphalerite surface, but the total atomic concentration of Cu atom was decreased. Linear voltammetry measurement suggested that the current density of Cu+ species oxidizing to Cu2+ species was increased when sphalerite was electrically contacted with pyrite, which confirmed the increased proportion of Cu+ species on Cu-activation sphalerite surface when contacting with pyrite. These results indicated that there is not only a competitive adsorption for cupric ions (Cu2+, but the galvanic interaction between sphalerite and pyrite also has a significant influence on the copper activation of sphalerite.

  18. Briquetting of Coke-Brown Coal Mixture

    Directory of Open Access Journals (Sweden)

    Ïurove Juraj

    1998-09-01

    Full Text Available The paper presents the results of the research of briquetting a coke-brown coal composite The operation consists of the feeding crushed coal and coke to moulds and pressing into briquettes which have been made in the Laboratories at the Mining Faculty of Technical University of Košice (Slovakia. In this research, all demands will be analyzed including the different aspects of the mechanical quality of briquettes, the proportion of fine pulverulent coal and coke in bricks, the requirements for briquetting the coke-brown coal materials.

  19. Isotopic and microbiological signatures of pyrite-driven denitrification in a sandy aquifer

    NARCIS (Netherlands)

    Zhang, Y.-C.; Slomp, C.P.; Broers, H.P.; Bostick, B.; Passier, H.F.; Böttcher, M.E.; Omoregie, E.O.; Lloyd, J.R.; Polya, D.A.; Van Cappellen, P.

    2012-01-01

    Denitrificationdriven by pyrite oxidation can play a major role in the removal of nitrate from groundwater systems. As yet, limited information is available on the interactions between the micro-organisms and aqueous and mineral phases in aquifers where pyrite oxidation is occurring. In this study,

  20. A model of pyritic oxidation in waste rock dumps

    International Nuclear Information System (INIS)

    Davis, G.B.; Ritchie, A.I.M.

    1983-01-01

    The oxidation of pyrite can lead to high acid levels and high concentrations of trace metals in the water that runs off and percolates through pyritic material. This is the situation at the abandoned uranium mine at Rum Jungle in the Northern Territory of Australia, where pyritic oxidation in the waste rock dumps resulting from open cut mining of the uranium orebody has led to pollution of the nearby East Branch of the Finniss River, with trace metals such as copper, manganese and zinc. Mathematical equations are formulated which describe a model of pyritic oxidation within a waste rock dump, where it is assumed that oxygen transport is the rate limiting step in the oxidation process and that oxygen is transported by gaseous diffusion through the pore space of the dump, followed by diffusion into oxidation sites within the particles that comprise the dump. The equations have been solved numerically assuming values for such parameters as porosity, sulphur density and oxygen diffusion coefficients which are applicable to the waste rock dumps at Rum Jungle. An approximate solution to the equations is also presented. Calculations of the heat source distribution and the total SO 4 production rate are presented for both single size particles and for a range of particle sizes in the dump. The usefulness of the approximate solution, and of calculations based on single size particles in the dump in assessing the effectiveness of strategies to reduce pollution from such waste rock dumps are discussed

  1. Relationship between pyrite Stability and arsenic mobility during aquifer storage and recovery in southwest central Florida.

    Science.gov (United States)

    Jones, Gregg W; Pichler, Thomas

    2007-02-01

    Elevated arsenic concentrations are common in water recovered from aquifer storage and recovery (ASR) systems in west-central Florida that store surface water. Investigations of the Suwannee Limestone of the Upper Floridan aquifer, the storage zone for ASR systems, have shown that arsenic is highest in pyrite in zones of high moldic porosity. Geochemical modeling was employed to examine pyrite stability in limestone during simulated injections of surface water into wells open only to the Suwannee Limestone with known mineralogy and water chemistry. The goal was to determine if aquifer redox conditions could be altered to the degree of pyrite instability. Increasing amounts of injection water were added to native storage-zone water, and resulting reaction paths were plotted on pyrite stability diagrams. Native storage-zone water plotted within the pyrite stability field, indicating that conditions were sufficiently reducing to allow for pyrite stability. Thus, arsenic is immobilized in pyrite, and its groundwater concentration should be low. This was corroborated by analysis of water samples, none of which had arsenic concentrations above 0.036 microg/L. During simulation, however, as injection/native storage-zone water ratios increased, conditions became less reducing and pyrite became unstable. The result would be release of arsenic from limestone into storage-zone water.

  2. Projected configuration of a coal-fired district heating source on the basis of comparative technical-economical optimization analysis

    Directory of Open Access Journals (Sweden)

    Tańczuk Mariusz

    2017-01-01

    Full Text Available District heating technologies should be efficient, effective and environmentally friendly. The majority of the communal heating systems in Poland produce district hot water in coal-fired boilers. A large number of them are considerably worn out, low-efficient in the summer time and will not comply with forthcoming regulations. One of the possible solution for such plants is repowering with new CHP systems or new boilers fuelled with fuels alternative to coal. Optimisation analysis of the target configuration of municipal heat generating plant is analysed in the paper. The work concerns repowering the existing conventional heat generating plant according to eight different scenarios of the plant configuration meeting technical and environmental requirements forecasted for the year of 2035. The maximum demand for heat of the system supplied by the plant is 185 MW. Taking into account different technical configurations on one side, and different energy and fuel prices on the other side, the comparative cost-benefits analysis of the assumed scenarios has been made. The basic economical index NPV (net present value has been derived for each analysed scenario and the results have been compared and discussed. It was also claimed that the scenario with CHP based on ICE engines is optimal.

  3. Projected configuration of a coal-fired district heating source on the basis of comparative technical-economical optimization analysis

    Science.gov (United States)

    Tańczuk, Mariusz; Radziewicz, Wojciech; Olszewski, Eligiusz; Skorek, Janusz

    2017-10-01

    District heating technologies should be efficient, effective and environmentally friendly. The majority of the communal heating systems in Poland produce district hot water in coal-fired boilers. A large number of them are considerably worn out, low-efficient in the summer time and will not comply with forthcoming regulations. One of the possible solution for such plants is repowering with new CHP systems or new boilers fuelled with fuels alternative to coal. Optimisation analysis of the target configuration of municipal heat generating plant is analysed in the paper. The work concerns repowering the existing conventional heat generating plant according to eight different scenarios of the plant configuration meeting technical and environmental requirements forecasted for the year of 2035. The maximum demand for heat of the system supplied by the plant is 185 MW. Taking into account different technical configurations on one side, and different energy and fuel prices on the other side, the comparative cost-benefits analysis of the assumed scenarios has been made. The basic economical index NPV (net present value) has been derived for each analysed scenario and the results have been compared and discussed. It was also claimed that the scenario with CHP based on ICE engines is optimal.

  4. Automatic coal sampling for thermoelectric power plants. Some remarks on moisture

    Energy Technology Data Exchange (ETDEWEB)

    Tanzi, M.

    1983-06-01

    The following topics are discussed: coal sampling and reference standards; coal moisture and sampling; main technical data of the coal sampling station built for the EWEL power plant in Brindisi, Italy.

  5. DFT study on the galvanic interaction between pyrite (100) and galena (100) surfaces

    International Nuclear Information System (INIS)

    Ke, Baolin; Li, Yuqiong; Chen, Jianhua; Zhao, Cuihua; Chen, Ye

    2016-01-01

    Graphical abstract: - Highlights: • Galvanic interaction is weakened with the increase of contact distance. • Electronic transfer mainly occurs on the contact layers. • Galvanic effect enhances nucleophilicity of galena and electrophilicity of pyrite. • Presence of H_2O increases the galvanic interaction. - Abstract: The galvanic interaction between pyrite and galena surface has been investigated using density functional theory (DFT) method. The calculated results show that galvanic interactions between pyrite and galena surface are decreased with the increase of contact distance. The galvanic interactions still occurs even the distance larger than the sum of two atoms radius (≈2.8 Å), and the limit distance of galvanic interaction between galena and pyrite surface is about 10 Å, which is consistent with the quantum tunneling effect. Through Mulliken charge population calculation, it is found that electrons transfer from galena to pyrite. For galena surface, Pb 6s and 6p states lose electrons and S 3p state loses a small amount of electrons, which causes the electron loss of galena. For pyrite surface, Fe 4p state obtains large numbers of electrons, resulting in the decrease of positive charge of Fe atom. However, the 3p state of S atom loses a small numbers of electrons. The reactivity of mineral surface has also been studied by calculating the frontier orbitals of minerals. Results suggest that the highest occupied molecular orbital (HOMO) coefficients of galena are increased whereas those of pyrite are decreased with the enhancing galvanic interaction, indicating that the oxidation of galena surface would be enhanced due to the galvanic interaction. The Fukui indices and dual descriptor values of surface atoms suggest that the nucleophilicity of the galena surface increases, meanwhile, the electrophilicity of pyrite surface increases with the decrease of the contact distance. In addition, the density of states (DOS) of atoms results show that the

  6. Waterberg coal characteristics and SO2 minimum emissions standards in South African power plants.

    Science.gov (United States)

    Makgato, Stanford S; Chirwa, Evans M Nkhalambayausi

    2017-10-01

    Key characteristics of coal samples from the supply stock to the newly commissioned South African National Power Utility's (Eskom's) Medupi Power Station - which receives its supply coal from the Waterberg coalfield in Lephalale (Limpopo Province, South Africa) - were evaluated. Conventional coal characterisation such as proximate and ultimate analysis as well as determination of sulphur forms in coal samples were carried out following the ASTM and ISO standards. Coal was classified as medium sulphur coal when the sulphur content was detected in the range 1.15-1.49 wt.% with pyritic sulphur (≥0.51 wt.%) and organic sulphur (≥0.49 wt.%) accounted for the bulk of the total sulphur in coal. Maceral analyses of coal showed that vitrinite was the dominant maceral (up to 51.8 vol.%), whereas inertinite, liptinite, reactive semifusinite and visible minerals occurred in proportions of 22.6 vol.%, 2.9 vol.%, 5.3 vol.% and 17.5 vol.%, respectively. Theoretical calculations were developed and used to predict the resultant SO 2 emissions from the combustion of the Waterberg coal in a typical power plant. The sulphur content requirements to comply with the minimum emissions standards of 3500 mg/Nm 3 and 500 mg/Nm 3 were found to be ≤1.37 wt.% and ≤0.20 wt.%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Copper-arsenic decoupling in an active geothermal system: A link between pyrite and fluid composition

    Science.gov (United States)

    Tardani, Daniele; Reich, Martin; Deditius, Artur P.; Chryssoulis, Stephen; Sánchez-Alfaro, Pablo; Wrage, Jackie; Roberts, Malcolm P.

    2017-05-01

    Over the past few decades several studies have reported that pyrite hosts appreciable amounts of trace elements which commonly occur forming complex zoning patterns within a single mineral grain. These chemical zonations in pyrite have been recognized in a variety of hydrothermal ore deposit types (e.g., porphyry Cu-Mo-Au, epithermal Au deposits, iron oxide-copper-gold, Carlin-type and Archean lode Au deposits, among others), showing, in some cases, marked oscillatory alternation of metals and metalloids in pyrite growth zones (e.g., of Cu-rich, As-(Au, Ag)-depleted zones and As-(Au, Ag)-rich, Cu-depleted zones). This decoupled geochemical behavior of Cu and As has been interpreted as a result of chemical changes in ore-forming fluids, although direct evidence connecting fluctuations in hydrothermal fluid composition with metal partitioning into pyrite growth zones is still lacking. In this study, we report a comprehensive trace element database of pyrite from the Tolhuaca Geothermal System (TGS) in southern Chile, a young and active hydrothermal system where fewer pyrite growth rims and mineralization events are present and the reservoir fluid (i.e. ore-forming fluid) is accessible. We combined the high-spatial resolution and X-ray mapping capabilities of electron microprobe analysis (EMPA) with low detection limits and depth-profiling capacity of secondary-ion mass spectrometry (SIMS) in a suite of pyrite samples retrieved from a ∼1 km drill hole that crosses the argillic (20-450 m) and propylitic (650-1000 m) alteration zones of the geothermal system. We show that the concentrations of precious metals (e.g., Au, Ag), metalloids (e.g., As, Sb, Se, Te), and base and heavy metals (e.g., Cu, Co, Ni, Pb) in pyrite at the TGS are significant. Among the elements analyzed, As and Cu are the most abundant with concentrations that vary from sub-ppm levels to a few wt.% (i.e., up to ∼5 wt.% As, ∼1.5 wt.% Cu). Detailed wavelength-dispersive spectrometry (WDS) X

  8. Isotopic and microbiological signatures of pyrite-driven denitrification in a sandy aquifer

    NARCIS (Netherlands)

    Zhang, Y.C.; Slomp, C.P.; Broers, H.P.; Bostick, B.; Passier, H.F.; Böttcher, M.E.; Omoregie, E.O.; Lloyd, J.R.; Polya, D.A.; Cappellen, P. van

    2012-01-01

    Denitrification driven by pyrite oxidation can play a major role in the removal of nitrate from groundwater systems. As yet, limited information is available on the interactions between the micro-organisms and aqueous and mineral phases in aquifers where pyrite oxidation is occurring. In this study,

  9. Pyrite Passivation by Triethylenetetramine: An Electrochemical Study

    Directory of Open Access Journals (Sweden)

    Yun Liu

    2013-01-01

    Full Text Available The potential of triethylenetetramine (TETA to inhibit the oxidation of pyrite in H2SO4 solution had been investigated by using the open-circuit potential (OCP, cyclic voltammetry (CV, potentiodynamic polarization, and electrochemical impedance (EIS, respectively. Experimental results indicate that TETA is an efficient coating agent in preventing the oxidation of pyrite and that the inhibition efficiency is more pronounced with the increase of TETA. The data from potentiodynamic polarization show that the inhibition efficiency (η% increases from 42.08% to 80.98% with the concentration of TETA increasing from 1% to 5%. These results are consistent with the measurement of EIS (43.09% to 82.55%. The information obtained from potentiodynamic polarization also displays that the TETA is a kind of mixed type inhibitor.

  10. Production of ferric sulphate from pyrite by thiobacillus ferrooxidans. Application to uranium ore leaching

    International Nuclear Information System (INIS)

    Rouas, C.

    1988-12-01

    A process for uranium extraction by oxidizing solutions of ferric sulphate produced by T. ferrooxidans from pyrite is developed. A new counting method specific of T. ferrooxidans is designed. An uranium resistant wild strain, with oxidizing properties as high as the strain ATCC 19859, is isolated. Optimal conditions for ferric sulphate production from pyrite are defined (pH 1.8, density of the medium 1.2%, pyrite granulometry [fr

  11. Mineral distribution in two southwest colombian coals using cyclone separation and oxidation at low temperature

    International Nuclear Information System (INIS)

    Rojas Andres F; Barraza, Juan M; Rojas, Andres F.

    2010-01-01

    It was studied the mineral distribution of two Colombian coals using a cyclone separation and oxidation at low temperature, OLT. The cyclone separation was carried out at two densities (1.3 and 1.4), three particle size (1000+ 600?m, 600+ 425?m and 425+ 250?m) and two processing stages. To determine the mineral matter, feed and under flow fractions from hydrocyclone were concentrated in mineral matter by OLT in a fluidized bed (T<300 celsius degrade). 18 minerals were identified by X Ray Diffraction, XRD. XRD results showed 13 minerals from Golondrinas and 15 minerals from Guachinte coal. It was found that kaolinite and quartz were the most abundant minerals in coal fractions from Golondrinas and Guachinte. Furthermore, it was found that mainly minerals kaolinite, quartz, dolomite, jarosite, gypsum and pyrite, exhibited affinity towards mineral matter, while siderite and valerite showed affinity towards organic matter.

  12. Report on assessment of the mechanism of bacterially assisted oxidation of pyritic uranium tailings

    International Nuclear Information System (INIS)

    Halbert, B.B.; Scharer, J.M.; Knapp, R.A.

    1984-07-01

    The oxidation of pyritic minerals has been shown to be catalyzed by the presence of iron- and sulphur-oxidizing bacteria. Thiobacillus ferroxidans plays the most significant role in the formation and propagation of acidic conditions. Optimum growth conditions for the T. ferroxidans occurs at a temperature of 35 degrees C and pH of 2 to 3. Bacterially assisted oxidation of pyrite involves both direct and indirect contact mechanisms. The direct contact mechanism entails enzymatic oxidation of the insoluble sulphide moiety. The indirect mechanism involves bacterial oxidation of the dissolved ferrous component to the ferric state. The ferric iron, in turn, acts as the prime oxidant of pyrite and is reduced to ferrous iron. The re-oxidation of the dissolved ferrous component which is catalyzed by bacterial activity, completes the cyclic process. The rate of bacterial oxidation is affected by: the geochemistry and reactivity of the pyritic material; the amount of pyrite present in the waste material and the exposed surface area of the pyritic component; the availability of oxygen and carbon dioxide; the pH and temperature of the leach solution; and the presence (or absence) of organic inhibitors. Of the above factors, oxygen has been frequently identified as the rate limiting reactant in tailings

  13. Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation.

    Science.gov (United States)

    Mitchell, Timothy K; Nguyen, Anh V; Evans, Geoffrey M

    2005-06-30

    Heterocoagulation between various fine mineral particles contained within a mineral suspension with different structural and surface chemistry can interfere with the ability of the flotation processes to selectively separate the minerals involved. This paper examines the interactions between chalcopyrite (a copper mineral) and pyrite (an iron mineral often bearing gold) as they approach each other in suspensions with added chemicals, and relates the results to the experimental data for the flotation recovery and selectivity. The heterocoagulation was experimentally studied using the electrophoretic light scattering (ELS) technique and was modelled by incorporating colloidal forces, including the van der Waals, electrostatic double layer and hydrophobic forces. The ELS results indicated that pyrite has a positive zeta potential (zeta) up to its isoelectric point (IEP) at approximately pH 2.2, while chalcopyrite has a positive zeta up to its IEP at approximately pH 5.5. This produces heterocoagulation of chalcopyrite with pyrite between pH 2.2 and pH 5.5. The heterocoagulation was confirmed by the ELS spectra measured with a ZetaPlus instrument from Brookhaven and by small-scale flotation experiments.

  14. Geochemistry of shale and sedimentary pyrite as a proxy for gold fertility in the Selwyn basin area, Yukon

    Science.gov (United States)

    Sack, Patrick J.; Large, Ross R.; Gregory, Daniel D.

    2018-01-01

    Selwyn basin area strata contain sedimentary pyrite with Au above background levels when analyzed by laser ablation-inductively coupled mass spectrometry. Hyland Group rocks contain framboidal pyrite contents of 670 ppb Au, 1223 ppm As, and 5.3 ppm Te; the mean of all types of sedimentary pyrite in the Hyland Group is 391 ppb Au, 1489 ppm As, and 3.8 ppm Te. These levels are similar to sedimentary pyrite in host lithologies from major orogenic gold districts in New Zealand and Australia. Comparison of whole rock and pyrite data show that rocks deposited in continental slope settings with significant terrigenous input contain pyrite that is consistently enriched in Au, As, Te, Co, and Cu. Although data are limited, whole rock samples of stratigraphic units containing Au-rich pyrite also contain high Au, indicating that most of the Au is within sedimentary pyrite. Based on geologic characteristics and comparison of pyrite chemistry data with whole rock chemistry, Selwyn basin area strata have the necessary ingredients to form orogenic gold deposits: Au-enriched source rocks, metamorphic conditions permissive of forming a metamorphic ore fluid, and abundant structural preparation for channeling fluids and depositing ore.

  15. Comparative study on efficiency performance of listed coal mining companies in China and the US

    International Nuclear Information System (INIS)

    Fang, Hong; Wu, Junjie; Zeng, Catherine

    2009-01-01

    Continually rising energy prices in global markets highlights a serious concern about the need to improve energy efficiency and the efficiency in energy sector in many countries. China, as one of the fastest growing countries in the world and the largest coal producer, has high coal consumption but a low recovery rate of coal utilization. Coal efficiency and the efficiency in coal industry have therefore attracted a great deal of attention from Chinese policy makers, coal firms and academics. This study attempts to compare the relative technical efficiency performance of listed coal mining companies in China and the US using CCR and BCC models in the advanced DEA linear programming. The results show that the level of relative efficiency in Chinese coal mining enterprises, regardless of total technical efficiency or decomposed pure technical and scale efficiency, is much lower than in American coal firms. The study also highlights the input resources that cause the inefficiency of Chinese coal mining companies. Furthermore, in-depth discussion and analysis of how the institutional environments of the two countries could cause the differences are provided. (author)

  16. Possibilities of employing saliferous raw brown coal for technical fodder drying

    Energy Technology Data Exchange (ETDEWEB)

    Koerdel, P; Haeusler, W

    1978-09-01

    The successful utilization of saliferous brown coal is demonstrated with a sodium oxide content greater than 0.5% in dry substance, but with high calorific value (2300 to 3000 kcal/kg) for fodder drying (sugar beets and green fodder). Details of the fodder dryer and its performance, and combustion and drying parameters of 11 dryers using saliferous coal are presented. Hot air enters the dryer with temperatures between 300 and 800 C depending on the operation, and dries the fodder to 88-92% dry substance. Chemical analysis showed no significant increase in sulfur dioxide, hydrogen sulfide, chlorine, or sodium content in the dry fodder, which is recognized as safe to feed to ruminants. The substitution of ordinary brown coal by saliferous coal led to a savings of 4.000 Marks/kt coal in drying. (8 refs.) (In German)

  17. Technical engineers exchange project (coal mine technology field). Training in China; Gijutsusha koryu jigyo (tanko gijutsu bun`ya). Chugoku no kenshu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, T. [Japan Coal Energy Center, Tokyo (Japan)

    1998-07-01

    The paper described JCOAL`s project on the exchange of technical coal engineers of China. In the project on sending of engineers to China in the first term, coal mine engineers of Japan (Taiheiyo Coal Mine, Kushiro Works, Training Center) were sent to the Daitun coal-thermal power plant, Peixuan city, Jiangsu province, in September, 1997 to introduce the production control technology in Japan. They contributed to the heightening of productivity in coal mines in China. Eighteen Chinese participated in the training. Mechanization has been comparatively well in progress, and it was 83% in coal mining and 91% in drilling. The kind of coal is mostly a raw material coal. The stuff members are 30,000, and expert engineers are 4,200. The plant has an output of 130,000 kWh, owns its railroad, is run on the general multiple management, and is largely developing. The project on sending of engineers to China in the last term was carried out in February 1998 for tracing/confirming how the results of the training conducted in September are made the most of and if or not there is something bad and for obtaining the detailed data. A certain degree of promotion and effects were able to be confirmed. A project on training of the head, sub-head, etc. who were invited to Japan to lean production/management control was also carried out in November and December 1997. 1 tab.

  18. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    Science.gov (United States)

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  19. On the genesis of pyrite-polymetallic deposits of the Rudnyi Altai

    International Nuclear Information System (INIS)

    Puchkov, E.V.; Najdenov, B.M.

    1986-01-01

    Results of lead isotope composition measurements in pyrite-polymetallic deposits of the Rudnyi Altai are presented. Porphyr dating by zirconium has shown isochronous age of 552 million years. Lead of galenites of various generations and galenite form of lead of pyrit provide similar lead-isotope values with model age of 370 million years. The isotopic-geochemical data obtained are interpreted as applied to the deposit genesis

  20. The influence of pyrite on the solubility of minjingu and panda ...

    African Journals Online (AJOL)

    A laboratory study was conducted to investigate the effect of pyrite rock on the solubility of Minjingu and Panda phosphate rocks. The rocks were ground to 100 mesh (0.045 mm) after which each phosphate rock was mixed with pyrite at P:S ratios of 1:4, 1 :3, 1:2, 1:1, 2:1, and 3: 1. The mixtures were moistened and incubated ...

  1. Evaluation of pyrite and pyrrhotite in concretes

    Directory of Open Access Journals (Sweden)

    A. P. Marcelino

    Full Text Available ABSTRACT It is well known that aggregate characteristics can intensively interfere in concrete behavior especially when sulfides are presented in the aggregates. The lack of consensus to content limit value of these deleterious sulfur compounds in concrete structures for dams has motivated several investigations worldwide. Within this scenario, this work presents a methodology to evaluate the presence of pyrite and pyrrhotite in concretes produced with aggregates containing sulfides. For the study, rock samples from the Irapé hydroelectric power plant area in Minas Gerais (Brazil were used. This plant was built in a geological site where the rock presented sulfide levels of at least 3%. These rock samples were first ground and then used as aggregates in mortars, which were, during almost one year, subjected to three different exposed conditions: temperature of 23° ± 2°C and relative humidity of 95 to 100%; calcium hydroxide solution diluted in water kept at two different temperatures: room temperature and 50° C. The presence and amount of pyrrhotite were obtained from a leaching process of the material (aggregate or mortar in a solution of hydrochloric acid. This procedure allowed also the evaluation of the pyrite content. The results showed that the amount of pyrite has remained virtually constant over time in the three exposure situations. This finding indicates that sulfur limits in aggregates should be set according to the type of iron sulfide presented and not solely by the total amount of sulfur.

  2. Moessbauer and XRD Characterization of the Mineral Matter of Coal from the Guachinte Mine in Colombia

    International Nuclear Information System (INIS)

    Reyes, F.; Perez Alcazar, G. A.; Barraza, J. M.; Bohorquez, A.; Tabares, J. A.; Speziali, N. L.

    2003-01-01

    The aim of this work was the characterization and differentiation, using Moessbauer spectroscopy (MS) and X-ray diffraction (XRD), of coal samples with different ash and sulfur contents obtained in three places corresponding at cuts in different seams from the Guachinte mine, Valle, Colombia. The mineral phases identified by XRD were in general kaolinite, quartz, pyrite and gypsum, and in particular dolomite and calcite. MS confirms the presence of pyrite and kaolinite, besides evidences the additional presence of jarosite which was not detected by the XRD results due their low amounts. In the high mineral matter ash sample quartz and hematite was identified by XRD, the last one confirmed by MS results. A second phase in this sample was detected by Moessbauer spectroscopy, which could be superparamagnetic hematite. Rietveld refinement for XRD pattern from a sample is reported.

  3. Selective separation of arsenopyrite from pyrite by biomodulation in the presence of Acidithiobacillus ferrooxidans.

    Science.gov (United States)

    Chandraprabha, M N; Natarajan, K A; Somasundaran, P

    2004-08-15

    Effective methods for selective separation using flotation or flocculation of arsenopyrite from pyrite by biomodulation using Acidithiobacillus ferrooxidans are presented here. Adhesion of the bacterium to the surface of arsenopyrite was very slow compared to that to pyrite, resulting in a difference in surface modification of the minerals subsequent to interaction with cells. The cells were able to effectively depress pyrite flotation in presence of collectors like potassium isopropyl xanthate and potassium amyl xanthate. On the other hand the flotability of arsenopyrite after conditioning with the cells was not significantly affected. The activation of pyrite by copper sulfate was reduced when the minerals were conditioned together, resulting in better selectivity. Selective separation could also be achieved by flocculation of biomodulated samples.

  4. Sulfur amino acids and alanine on pyrite (100) by X-ray photoemission spectroscopy: Surface or molecular role?

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arenillas, M.; Galvez-Martinez, S.; Mateo-Marti, E., E-mail: mateome@cab.inta-csic.es

    2017-08-31

    Highlights: • Surface annealing pretreatment on pyrite surfaces can select molecular adsorption. • Enriched monosulfide species on pyrite (100) surface favors NH{sub 2} adsorption form. • Enriching disulfide species on pyrite (100) surface promotes NH{sub 3}{sup +} adsorption form. • Unique structure of each aminoacid provides a particular fingerprint in the process. • Spectroscopy evidence, pretreatment surface processes drives molecular adsorption. - Abstract: This paper describes the first successful adsorption of the cysteine, cystine, methionine and alanine amino acids on the pyrite (100) surface under ultra-high vacuum conditions with crucial chemical adsorption parameters driving the process. We have demonstrated by X-ray photoemission spectroscopy (XPS) that the surface pretreatment annealing process on pyrite surfaces is a critical parameter driving surface reactivity. The presence of enriched monosulfide species on the pyrite (100) surface favours the amino acid NH{sub 2} chemical form, whereas a longer annealing surface pretreatment of over 3 h repairs the sulfur vacancies in the pyrite, enriching disulfide species on the pyrite surface, which promotes NH{sub 3}{sup +} adsorption due to the sulfur vacancies in the pyrite being replaced by sulfur atom dimers (S{sub 2}{sup 2−}) on the surface. Furthermore, even if the surface chemistry (monosulfide or disulfide species enrichment) is the main factor promoting a partial conversion from NH{sub 2} to NH{sub 3}{sup +} species, the unique chemical structure of each amino acid provides a particular fingerprint in the process.

  5. Pyrite-enhanced methylene blue degradation in non-thermal plasma water treatment reactor

    Energy Technology Data Exchange (ETDEWEB)

    Benetoli, Luis Otavio de Brito, E-mail: luskywalcker@yahoo.com.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Cadorin, Bruno Mena; Baldissarelli, Vanessa Zanon [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Geremias, Reginaldo [Departamento de Ciencias Rurais, Universidade Federal de Santa Catarina (UFSC), Curitibanos, SC (Brazil); Goncalvez de Souza, Ivan [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Debacher, Nito Angelo, E-mail: debacher@qmc.ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer We use O{sub 2} as the feed gas and pyrite was added to the non-thermal plasma reactor. Black-Right-Pointing-Pointer The methylene blue removal by NTP increased in the presence of pyrite. Black-Right-Pointing-Pointer The total organic carbon content decreased substantially. Black-Right-Pointing-Pointer The acute toxicity test showed that the treated solution is not toxic. Black-Right-Pointing-Pointer The dye degradation occurs via electron impact as well as successive hydroxylation. - Abstract: In this study, methylene blue (MB) removal from an aqueous phase by electrical discharge non-thermal plasma (NTP) over water was investigated using three different feed gases: N{sub 2}, Ar, and O{sub 2}. The results showed that the dye removal rate was not strongly dependent on the feed gas when the electrical current was kept the same for all gases. The hydrogen peroxide generation in the water varied according to the feed gas (N{sub 2} < Ar < O{sub 2}). Using O{sub 2} as the feed gas, pyrite was added to the reactor in acid medium resulting in an accentuated increase in the dye removal, which suggests that pyrite acts as a Fenton-like catalyst. The total organic carbon (TOC) content of the dye solution decreased slightly as the plasma treatment time increased, but in the presence of the pyrite catalyst the TOC removal increased substantially. The acute toxicity test using Artemia sp. microcrustaceans showed that the treated solution is not toxic when Ar, O{sub 2} or O{sub 2}-pyrite is employed. Electrospray ionization mass spectrometry analysis (ESI-MS) of the treated samples indicated that the dye degradation occurs via high energy electron impact as well as successive hydroxylation in the benzene rings of the dye molecules.

  6. Coal Quality Expert: Status and software specifications

    International Nuclear Information System (INIS)

    Harrison, C.D.

    1992-01-01

    Under the Clean Coal Technology Program (Clean Coal Round 1), the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI) are funding the development and demonstration of a computer program called the Coal Quality Expert (CQE trademark). When finished, the CQE will be a comprehensive PC-based program which can be used to evaluate several potential coal cleaning, blending, and switching options to reduce power plant emissions while minimizing generation costs. The CQE will be flxible in nature and capable of evaluating various qualities of coal, available transportation options, performance issues, and alternative emissions control strategies. This allows the CQE to determine the most cost-effective coal and the least expensive emissions control strategy for a given plant. To accomplish this, the CQE will be composed of technical models to evaluate performance issues; environmental models to evaluate environmental and regulatory issues; and cost estimating models to predict costs for installations of new and retrofit coal cleaning processes, power production equipment, and emissions control systems as well as other production costs such as consumables (fuel, scrubber additive, etc.), waste disposal, operating and maintenance, and replacement energy costs. These technical, environmental, and economic models as well as a graphical user interface will be developed for the CQE. And, in addition, to take advantage of already existing capability, the CQE will rely on seamless integration of already proven and extensively used computer programs such as the EPRI Coal Quality Information Systems, Coal Quality Impact Model (CQIM trademark), and NO x Pert. 2 figs

  7. Pyrite-pyrrhotite intergrowths in calcite marble from Bistriški Vintgar, Slovenia

    International Nuclear Information System (INIS)

    Zavašnik, J

    2016-01-01

    Roman marble quarry in Bistrica gorge in southern Pohorje Mt. (north-eastern Slovenia) is situated in a 20 m thick lens of layered marble, at the contact zone between granodiorite and metamorphites. Grey and yellowish non-homogenous calcite marble is heavily included by mica, quartz, feldspars, zoisite, pyrite and amphiboles. In the present research, we have studied numerous pyrite (FeS 2 ) crystals associated with yellowish-bronze non-stoichiometric pyrrhotite (Fe 1−x S), not previously reported from this locality. SEM investigation revealed unusual sequence of crystallisation: primary skeletal pyrrhotite matrix is sparsely overgrown by well-crystalline pyrite, both being overgrown by smaller, well-developed hexagonal pyrrhotite crystals of the second generation. With TEM we identify the pyrrhotite as 5T-Fe 1-x S phase, where x is about 0.1 and is equivalent to Fe 9 S 10 . The pyrite-pyrrhotite coexistence allows us a construction of fO 2 -pH diagram of stability fields, which reflects geochemical conditions at the time of marble re-crystallisation. (paper)

  8. Pyritized ooids from the Arabian Sea basin

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.S.; Rao, Ch.M.; Reddy, N.P.C.

    Pyritized ooids in association with turbidites were observed in a box core collected at a depth of 3627 m from the Arabian Sea Basin. Ooids having a shallow water origin were transported to the present depth by turbidity currents or slumping...

  9. Influence of coal mine tips on the chalk aquifer. Sampling methods for three dimensional sulphate infiltration study

    Energy Technology Data Exchange (ETDEWEB)

    Barrez, F.; Mania, J. [Polytech' Lille, Dept. Genie Civil, UMR CNRS 8107 (LML), 59 - Villeneuve d' Ascq (France); Mansy, J.L. [Lille-1 Univ., Lab. de Sedimentologie et de Geodynamique, UMR CNRS 8110 (PBDS), 59 - Villeneuve d' Ascq (France); Piwakowski, B. [Ecole Centrale de Lille, Groupe Electronique Acoustique IEMN-DOAE, UMR CNRS 8520, 59 - Villeneuve d' Ascq (France)

    2005-07-01

    The coal basin of the Nord-Pas-de-Calais region (France) shows a very strong deterioration of the Chalk aquifer quality. In order to better model the hydro-dynamism and to improve knowledge on the chemical interactions, sampling according to depth of the groundwater is undertaken. The low-flow sampling and the profiles of the in-situ physicochemical parameters allow the observation of various vertical heterogeneities of the aquifer. The areas where the coal mine tips are localised appear very interesting to study. The sulphates released by the pyrite oxidation allow a 'artificial tracing' and give a visualization of the flow as well as information on the implied chemical processes between the oxidizing and reducing zones. (authors)

  10. Influence of coal mine tips on the chalk aquifer. Sampling methods for three dimensional sulphate infiltration study

    International Nuclear Information System (INIS)

    Barrez, F.; Mania, J.; Mansy, J.L.; Piwakowski, B.

    2005-01-01

    The coal basin of the Nord-Pas-de-Calais region (France) shows a very strong deterioration of the Chalk aquifer quality. In order to better model the hydro-dynamism and to improve knowledge on the chemical interactions, sampling according to depth of the groundwater is undertaken. The low-flow sampling and the profiles of the in-situ physicochemical parameters allow the observation of various vertical heterogeneities of the aquifer. The areas where the coal mine tips are localised appear very interesting to study. The sulphates released by the pyrite oxidation allow a 'artificial tracing' and give a visualization of the flow as well as information on the implied chemical processes between the oxidizing and reducing zones. (authors)

  11. Mineralogical and Geochemical Characteristics of Late Permian Coals from the Mahe Mine, Zhaotong Coalfield, Northeastern Yunnan, China

    Directory of Open Access Journals (Sweden)

    Xibo Wang

    2015-07-01

    Full Text Available This paper reports the mineralogical and geochemical compositions of the Late Permian C2, C5a, C5b, C6a, and C6b semianthracite coals from the Mahe mine, northeastern Yunnan, China. Minerals in the coals are mainly made up of quartz, chamosite, kaolinite, mixed-layer illite/smectite (I/S, pyrite, and calcite; followed by anatase, dolomite, siderite, illite and marcasite. Similar to the Late Permian coals from eastern Yunnan, the authigenic quartz and chamosite were precipitated from the weathering solution of Emeishan basalt, while kaolinite and mixed-layer I/S occurring as lenses or thin beds were related to the weathering residual detrital of Emeishan basalt. However, the euhedral quartz and apatite particles in the Mahe coals were attributed to silicic-rock detrital input. It further indicates that there has been silicic igneous eruption in the northeastern Yunnan. Due to the silicic rock detrital input, the Eu/Eu* value of the Mahe coals is lower than that of the Late Permian coals from eastern Yunnan, where the detrital particles were mainly derived from the basalt. The high contents of Sc, V, Cr, Co, Ni, Cu, Ga, and Sn in the Mahe coals were mainly derived from the Kangdian Upland.

  12. Mineralogical and Geochemical Compositions of the No. 5 Coal in Chuancaogedan Mine, Junger Coalfield, China

    Directory of Open Access Journals (Sweden)

    Ning Yang

    2015-11-01

    Full Text Available This paper reports the mineralogy and geochemistry of the Early Permian No. 5 coal from the Chuancaogedan Mine, Junger Coalfield, China, using optical microscopy, scanning electron microscopy (SEM, Low-temperature ashing X-ray diffraction (LTA-XRD in combination with Siroquant software, X-ray fluorescence (XRF, and inductively coupled plasma mass spectrometry (ICP-MS. The minerals in the No. 5 coal from the Chuancaogedan Mine dominantly consist of kaolinite, with minor amounts of quartz, pyrite, magnetite, gypsum, calcite, jarosite and mixed-layer illite/smectite (I/S. The most abundant species within high-temperature plasma-derived coals were SiO2 (averaging 16.90%, Al2O3 (13.87%, TiO2 (0.55% and P2O5 (0.05%. Notable minor and trace elements of the coal include Zr (245.89 mg/kg, Li (78.54 mg/kg, Hg (65.42 mg/kg, Pb (38.95 mg/kg, U (7.85 mg/kg and Se (6.69 mg/kg. The coal has an ultra-low sulfur content (0.40%. Lithium, Ga, Se, Zr and Hf present strongly positive correlation with ash yield, Si and Al, suggesting they are associated with aluminosilicate minerals in the No. 5 coal. Arsenic is only weakly associated with mineral matter and Ge in the No. 5 coals might be of organic and/or sulfide affinity.

  13. Electric plants to gas, influence of both Mineral Matter and Air Oxidation in coal pyrolysis

    International Nuclear Information System (INIS)

    Mondragon, F.; Jaramillo, A.; Quintero, G.

    1995-01-01

    In this work some coal samples from different Colombia's deposits are analyzed. In first stage, material matter is removed from coal by acid treatment with HF/HCl, and aerial oxidation of coal is made with air in oven to 150 Centigrade degree temperature. In second stage, pyrolysis is carried out in two different techniques: 1. Thermogravimetric Analysis (TGA) and 2. Programmed Temperature Pyrolysis (PTP) in a pyrolyzer equipped with a quadrupole mass spectrometer. In both techniques, the coal samples are heated in different rates to 650 Centigrade degree. During PTP trials the evolution of CH4, H2S, hydrocarbons (m/z=42), CO2, benzene and toluene are monitored. Studied coal samples showed: 1). A gas conversion range between 48.8% to 21.8%; 2). A decrease in the gas conversion between 2% to 4%, when oxidation it is applied; 3). The temperature at the one which is presented the maximum evolution of CH4 is similar for all coal samples; 4). The maximum evolution of H2S depends on mineral matter composition, occurs between 480 to 550 Centigrade degrees and is presented due to pyrite decomposition. 5). The evolution of CO2 occurs between 100 to 650 Centigrade degree, its production is generated in different stage of the mentioned temperature range, and in some coal samples is presented due to inorganic origin

  14. Pyritic waste from precombustion coal cleaning: Amelioration with oil shale retort waste and sewage sludge for growth of soya beans

    International Nuclear Information System (INIS)

    Lewis, B.G.; Gnanapragasam, N.; Stevens, M.L.

    1994-01-01

    Solid residue from fossil fuel mining and utilization generally present little hazard to human health. However, because of the high volumes generated, they do pose unique disposal problems in terms of land use and potential degradation of soil and water. In the specific case of wastes from precombustion coal cleaning, the materials include sulfur compounds that undergo oxidation when exposed to normal atmospheric conditions and microbial action and then produce sulfuric acid. The wastes also contain compounds of metals and nonmetals at concentrations many times those present in the original raw coal. Additionally, the residues often contain coal particles and fragments that combust spontaneously if left exposed to the air, thus contributing to the air pollution that the coal cleaning process was designed to prevent. Federal and state efforts in the United States to ameliorate the thousands of hectares covered with these wastes have focused on neutralizing the acidity with limestone and covering the material with soil. The latter procedure creates additional degraded areas, which were originally farmland or wildlife habitat. It would seem preferable to reclaim the coal refuse areas without earth moving. The authors describe here experiments with neutralization of coal waste acidity using an alkaline waste derived from the extraction of oil from oil shale to grow soya beans (Glycine max. [L]) on a mixture of wastes and sewage sludge. Yield of plant material and content of nutrients an potentially toxic elements in the vegetation and in the growth mixtures were determined; results were compared with those for plants grown on an agricultural soil, with particular focus on boron

  15. Technical note: Guide to groundwater monitoring for the coal industry

    African Journals Online (AJOL)

    It is well established in literature that the environmental impacts associated with the coal industry are numerous. In respect of South Africa's groundwater resources the major impact of the coal industry is a reduction in groundwater quantity and quality. There is therefore a need to proactively prevent or minimise these ...

  16. Influence of high-energy impact on the physical and technical characteristics of coal fuels

    Science.gov (United States)

    Mal'tsev, L. I.; Belogurova, T. P.; Kravchenko, I. V.

    2017-08-01

    Currently, in the world's large-scale coal-fired power industry, the combustion of pulverized coal is the most widely spread technology of combusting the coals. In recent years, the micropulverization technology for preparation and combustion of the coal has been developed in this field. As applied to the small-scale power industry, the method of combusting the coal in the form of a coal-water slurry has been explored for years. Fine coal powders are produced and used in the pulverized-coal gasification. Therefore, the coal preparation methods that involve high-dispersion disintegration of coals attract the greatest interest. The article deals with the problems of high-energy impact on the coal during the preparation of pulverized-coal fuels and coal-water slurries, in particular, during the milling of the coal in ball drum mills and the subsequent regrinding in disintegrators or the cavitation treatment of the coal-water slurries. The investigations were conducted using samples of anthracite and lignite from Belovskii open-pit mine (Kuznetsk Basin). It is shown that both the disintegration and the cavitation treatment are efficient methods for controlling the fuel characteristics. Both methods allow increasing the degree of dispersion of the coal. The content of the small-sized particles reground by cavitation considerably exceeds the similar figure obtained using the disintegrator. The specific surface area of the coal is increased by both cavitation and disintegration with the cavitation treatment producing a considerably greater effect. Being subjected to the cavitation treatment, most coal particles assume the form of a split characterized by the thermodynamically nonequilibrium state. Under external action, in particular, of temperature, the morphological structure of such pulverized materials changes faster and, consequently, the combustion of the treated coal should occur more efficiently. The obtained results are explained from the physical point of view.

  17. Fiscal 1995 survey of the base arrangement promotion for foreign coal import. Investigation on the policy of coal demand stabilization using low grade coal; 1995 nendo kaigaitan yunyu kiban sokushin chosa. Teihin`itan riyo ni yoru sekitan jukyu anteika hosaku ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The paper investigated the trend of and the needs for low grade coal utilization and the seeds of low grade coal utilization technology and studied usability of low grade coal in the future. Importance of low grade coal utilization was described in consideration of features of the Asia/Pacific area in the world coal market, and the trend of production/utilization of low grade coal was examined mostly in countries holding main low grade coals in the Asia/Pacific area. The trend of the technical development contributing to the low grade coal utilization was studied to make it contribute to the extraction of technologies which are regarded as effective in the Asia/Pacific area. A study was made of applicability of the low grade coal utilization technology corresponding to the needs for low grade coal utilization, and at the same time, a study was made of the effect on the coal supply/demand in the Asia/Pacific area in case the low grade coal utilization is promoted helped by the study. Focusing on technical cooperation relating to clean coal technology, a study was conducted of the trend of international cooperation in Japan and various overseas countries and the trend of new cooperation in private sectors, and a discussion was made on how Japan should act toward promotion of low grade coal utilization. 12 figs., 91 tabs.

  18. In situ characterization of natural pyrite bioleaching using electrochemical noise technique

    Science.gov (United States)

    Chen, Guo-bao; Yang, Hong-ying; Li, Hai-jun

    2016-02-01

    An in situ characterization technique called electrochemical noise (ECN) was used to investigate the bioleaching of natural pyrite. ECN experiments were conducted in four active systems (sulfuric acid, ferric-ion, 9k culture medium, and bioleaching solutions). The ECN data were analyzed in both the time and frequency domains. Spectral noise impedance spectra obtained from power spectral density (PSD) plots for different systems were compared. A reaction mechanism was also proposed on the basis of the experimental data analysis. The bioleaching system exhibits the lowest noise resistance of 0.101 MΩ. The bioleaching of natural pyrite is considered to be a bio-battery reaction, which distinguishes it from chemical oxidation reactions in ferric-ion and culture-medium (9k) solutions. The corrosion of pyrite becomes more severe over time after the long-term testing of bioleaching.

  19. Temporal geochemical variations in above- and below-drainage coal mine discharge

    Science.gov (United States)

    Burrows, Jill E.; Peters, Stephen C.; Cravotta,, Charles A.

    2015-01-01

    Water quality data collected in 2012 for 10 above- and 14 below-drainage coal mine discharges (CMDs), classified by mining or excavation method, in the anthracite region of Pennsylvania, USA, are compared with data for 1975, 1991, and 1999 to evaluate long-term (37 year) changes in pH, SO42−, and Fe concentrations related to geochemistry, hydrology, and natural attenuation processes. We hypothesized that CMD quality will improve over time because of diminishing quantities of unweathered pyrite, decreased access of O2 to the subsurface after mine closure, decreased rates of acid production, and relatively constant influx of alkalinity from groundwater. Discharges from shafts, slopes, and boreholes, which are vertical or steeply sloping excavations, are classified as below-drainage; these receive groundwater inputs with low dissolved O2, resulting in limited pyrite oxidation, dilution, and gradual improvement of CMD water quality. In contrast, discharges from drifts and tunnels, which are nearly horizontal excavations into hillsides, are classified as above-drainage; these would exhibit less improvement in water quality over time because the rock surfaces continue to be exposed to air, which facilitates sustained pyrite oxidation, acid production, and alkalinity consumption. Nonparametric Wilcoxon matched-pair signed rank tests between 1975 and 2012 samples indicate decreases in Fe and SO42− concentrations were highly significant (p water quality presented in this paper can help prioritize CMD remediation and facilitate selection and design of the most appropriate treatment systems.

  20. Microbial Oxidation of Pyrite Coupled to Nitrate Reduction in Anoxic Groundwater Sediment

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher; Elberling, Bo; Jacobsen, Ole Stig

    2009-01-01

    denitrification process with pyrite as the primary electron donor. The process demonstrates a temperature dependency (Q10) of 1.8 and could be completely inhibited by addition of a bactericide (NaN3). Experimentally determined denitrification rates show that more than 50% of the observed nitrate reduction can...... be ascribed to pyrite oxidation. The apparent zero-order denitrification rate in anoxic pyrite containing sediment at groundwater temperature has been determined to be 2-3 µmol NO3- kg-1 day-1. The in situ groundwater chemistry at the boundary between the redoxcline and the anoxic zone reveals that between 65......-anoxic boundary in sandy aquifers thus determining the position and downward progression of the redox boundary between nitrate-containing and nitrate-free groundwater....

  1. Sulfur amino acids and alanine on pyrite (100) by X-ray photoemission spectroscopy: Surface or molecular role?

    Science.gov (United States)

    Sanchez-Arenillas, M.; Galvez-Martinez, S.; Mateo-Marti, E.

    2017-08-01

    This paper describes the first successful adsorption of the cysteine, cystine, methionine and alanine amino acids on the pyrite (100) surface under ultra-high vacuum conditions with crucial chemical adsorption parameters driving the process. We have demonstrated by X-ray photoemission spectroscopy (XPS) that the surface pretreatment annealing process on pyrite surfaces is a critical parameter driving surface reactivity. The presence of enriched monosulfide species on the pyrite (100) surface favours the amino acid NH2 chemical form, whereas a longer annealing surface pretreatment of over 3 h repairs the sulfur vacancies in the pyrite, enriching disulfide species on the pyrite surface, which promotes NH3+ adsorption due to the sulfur vacancies in the pyrite being replaced by sulfur atom dimers (S22-) on the surface. Furthermore, even if the surface chemistry (monosulfide or disulfide species enrichment) is the main factor promoting a partial conversion from NH2 to NH3+ species, the unique chemical structure of each amino acid provides a particular fingerprint in the process.

  2. Spatial Mapping for Managing Oxidized Pyrite (FeS2 in South Sumatra Wetlands, Indonesia

    Directory of Open Access Journals (Sweden)

    M. Edi Armanto

    2016-02-01

    Full Text Available The research aimed to analyze spatial mapping for managing oxidized pyrite (FeS2 in South Sumatra wetlands, Indonesia. The field observations are done by exploring several transect on land units. The field description refers to Soil Survey Staff (2014. Water and soil samples were taken from selected key areas for laboratory analysis. The vegetation data was collected by making sample plots (squares method placed on each vegetation type with plot sizes depending on the vegetation type, namely 10 x 10 m for secondary forests and 5 x 5 m for shrubs and grass. The observations of surface water level were done during the river receding with units of m above sea level (m asl. The research results showed that pyrite formation is largely determined by the availability of natural vegetation as Sulfur (S donors, climate and uncontrolled water balance and supporting fauna such as crabs and mud shrimp.  Climate and water balance as well as supporting faunas is the main supporting factors to accelerate the process of pyrite formation. Oxidized pyrite serves to increase soil acidity, becomes toxic to fish ponds and arable soils, plant growth and disturbing the water and soil nutrient balances. Oxidized pyrite is predominantly accelerated by the dynamics of river water and disturbed natural vegetation by human activities.  The pyrite oxidation management approach is divided into three main components of technologies, namely water management, land management and commodity management.

  3. Pyrite: A blender plugin for visualizing molecular dynamics simulations using industry-standard rendering techniques.

    Science.gov (United States)

    Rajendiran, Nivedita; Durrant, Jacob D

    2018-05-05

    Molecular dynamics (MD) simulations provide critical insights into many biological mechanisms. Programs such as VMD, Chimera, and PyMOL can produce impressive simulation visualizations, but they lack many advanced rendering algorithms common in the film and video-game industries. In contrast, the modeling program Blender includes such algorithms but cannot import MD-simulation data. MD trajectories often require many gigabytes of memory/disk space, complicating Blender import. We present Pyrite, a Blender plugin that overcomes these limitations. Pyrite allows researchers to visualize MD simulations within Blender, with full access to Blender's cutting-edge rendering techniques. We expect Pyrite-generated images to appeal to students and non-specialists alike. A copy of the plugin is available at http://durrantlab.com/pyrite/, released under the terms of the GNU General Public License Version 3. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Pre-Concentration of Vanadium from Stone Coal by Gravity Using Fine Mineral Spiral

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2016-08-01

    Full Text Available Due to the low grade of V2O5 in stone coal, the existing vanadium extraction technologies face challenges in terms of large handling capacity, high acid consumption and production cost. The pre-concentration of vanadium from stone coal before the extraction process is an effective method to reduce cost. In this study, detailed mineral characterization of stone coal was investigated. It has been confirmed that the vanadium mainly occurs in muscovite and illite. A significant demand for an effective pre-concentration process with simple manipulation for discarding quartz and other gangue minerals is expected. Based on the mineralogical study, a new vanadium pre-concentration process using a fine mineral spiral was investigated. The experimental results showed that the separation process, which was comprised of a rougher and scavenger, could efficiently discard quartz, pyrite and apatite. A final concentrate with V2O5 grade of 1.02% and recovery of 89.6% could be obtained, with 26.9% of the raw ore being discarded as final tailings.

  5. Technical data. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project, Converse County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    This volume includes a description of the railway to transport the coal; possible unbalance in the electrical power supply is considered in detail, as well as communications, signalling, etc. The railway will also be used to transport ashes and sludges for waste disposal. Coal fines in the coal supply will be burned to generate power. A very brief description of the coal gasification plant and its components is accompanied by a printout of the dates final engineering is to be completed. Permit applications are listed and socio-economic factors are discussed. The financing plan is discussed in some detail: basically, a loan guarantee from the Synthetic Fuels Corporation; equity provided by investment tax credit, deferred taxes, AFUDC and the sponsors; price support; and gas purchase agreement (this whole section includes several legal details.). (LTN)

  6. Adsorção de xantatos sobre pirita Adsorption of xanthate on pyrite

    Directory of Open Access Journals (Sweden)

    Fábio Garcia Penha

    2001-10-01

    Full Text Available This paper presents a study of adsorption of xanthate with alkyl chain of two (C2XK, four (C4XK and eight (C8XK atoms of carbon, on pyrite from Santa Catarina, Brazil. The results showed that pyrite surface changes from hydrophilic to hydrophobic when xanthate is adsorbed increasing the contact angle to 35º for C2XK, and to 90º for C4XK and C8XK. The rate of flotation of pyrite particles after adsorption increases with the increase of the number of carbon atoms in the alkyl chain in agreement with the results of contact angle measurements.

  7. Evaluation, engineering and development of advanced cyclone processes

    Energy Technology Data Exchange (ETDEWEB)

    Durney, T.E.; Cook, A. [Coal Technology Corporation, Bristol, VA (United States); Ferris, D.D. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)] [and others

    1995-11-01

    This research and development project is one of three seeking to develop advanced, cost-effective, coal cleaning processes to help industry comply with 1990 Clean Air Act Regulations. The specific goal for this project is to develop a cycloning technology that will beneficiate coal to a level approaching 85% pyritic sulfur rejection while retaining 85% of the parent coal`s heating value. A clean coal ash content of less than 6% and a moisture content, for both clean coal and reject, of less than 30% are targeted. The process under development is a physical, gravimetric-based cleaning system that removes ash bearing mineral matter and pyritic sulfur. Since a large portion of the Nation`s coal reserves contain significant amounts of pyrite, physical beneficiation is viewed as a potential near-term, cost effective means of producing an environmentally acceptable fuel.

  8. A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia

    Science.gov (United States)

    Ingham, Edwina S.; Cook, Nigel J.; Cliff, John; Ciobanu, Cristiana L.; Huddleston, Adam

    2014-01-01

    The common sulfide mineral pyrite is abundant throughout sedimentary uranium systems at Pepegoona, Pepegoona West and Pannikan, Lake Eyre Basin, South Australia. Combined chemical, isotopic and microstructural analysis of pyrite indicates variation in fluid composition, sulfur source and precipitation conditions during a protracted mineralization event. The results show the significant role played by pyrite as a metal scavenger and monitor of fluid changes in low-temperature hydrothermal systems. In-situ micrometer-scale sulfur isotope analyses of pyrite demonstrated broad-scale isotopic heterogeneity (δ34S = -43.9 to +32.4‰VCDT), indicative of complex, multi-faceted pyrite evolution, and sulfur derived from more than a single source. Preserved textures support this assertion and indicate a genetic model involving more than one phase of pyrite formation. Authigenic pyrite underwent prolonged evolution and recrystallization, evidenced by a genetic relationship between archetypal framboidal aggregates and pyrite euhedra. Secondary hydrothermal pyrite commonly displays hyper-enrichment of several trace elements (Mn, Co, Ni, As, Se, Mo, Sb, W and Tl) in ore-bearing horizons. Hydrothermal fluids of magmatic and meteoric origins supplied metals to the system but the geochemical signature of pyrite suggests a dominantly granitic source and also the influence of mafic rock types. Irregular variation in δ34S, coupled with oscillatory trace element zonation in secondary pyrite, is interpreted in terms of continuous variations in fluid composition and cycles of diagenetic recrystallization. A late-stage oxidizing fluid may have mobilized selenium from pre-existing pyrite. Subsequent restoration of reduced conditions within the aquifer caused ongoing pyrite re-crystallization and precipitation of selenium as native selenium. These results provide the first qualitative constraints on the formation mechanisms of the uranium deposits at Beverley North. Insights into

  9. Precombustion desulfurization using Microcel{trademark} and multi-gravity separator

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Luttrell, G.H.; Venkatraman, P. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1994-12-31

    Studies conducted at the Center for Coal and Minerals Processing (CCMP) indicate that surface-based processes such as froth flotation are inefficient in removing pyrite from fine coal. This shortcoming has been attributed to the fact that pyrite can become hydrophobic under certain conditions and to the inability of flotation to reject middling particles. To overcome these deficiencies, a new processing scheme has been developed at CCMP which involved the use of the Microcel{trademark} flotation column in combination with a centrifugal flowing-film separator, called a Multi-Gravity Separator (MGS). The flotation column removes ash-forming minerals such as clay, while the MGS is effective in removing pyrite. Preliminary test data obtained with high-sulfur coals shows that this processing scheme can nearly double the pyritic sulfur rejection with little loss in clean coal yield. This article discusses the underlying principles of the new circuit and provides test results obtained using eastern U.S. coals.

  10. Coal gasification coal by steam using process heat from high-temperature nuclear reactors

    International Nuclear Information System (INIS)

    Heek, K.H. van; Juentgen, H.; Peters, W.

    1982-01-01

    This paper outlines the coal gasification process using a high-temperature nuclear reactor as a source of the process heat needed. Compared to conventional gasification processes coal is saved by 30-40%, coal-specific emissions are reduced and better economics of gas production are achieved. The introductory chapter deals with motives, aims and tasks of the development, followed by an explanation of the status of investigations, whereby especially the results of a semi-technical pilot plant operated by Bergbau-Forschung are given. Furthermore, construction details of a full-scale commercial gasifier are discussed, including the development of suitable alloys for the heat exchanger. Moreover problems of safety, licensing and economics of future plants have been investigated. (orig.) [de

  11. Preparation of natural pyrite nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous Fenton process

    Energy Technology Data Exchange (ETDEWEB)

    Fathinia, Siavash [Department of Mining Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Fathinia, Mehrangiz [Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Rahmani, Ali Akbar [Department of Mining Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Khataee, Alireza, E-mail: a_khataee@tabrizu.ac.ir [Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-02-01

    Graphical abstract: - Highlights: • Pyrite nanoparticles were successfully produced by planetary ball milling process. • The physical and chemical properties of pyrite nanoparticles were fully examined. • The degradation of AO7 was notably enhanced by pyrite nanoparticles Fenton system. • The influences of basic operational parameters were investigated using CCD. - Abstract: In the present study pyrite nanoparticles were prepared by high energy mechanical ball milling utilizing a planetary ball mill. Various pyrite samples were produced by changing the milling time from 2 h to 6 h, in the constant milling speed of 320 rpm. X-ray diffraction (XRD), scanning electron microscopy (SEM) linked with energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis and Brunauer–Emmett–Teller (BET) were performed to explain the characteristics of primary (unmilled) and milled pyrite samples. The average particle size distribution of the produced pyrite during 6 h milling was found to be between 20 nm and 100 nm. The catalytic performance of the different pyrite samples was examined in the heterogeneous Fenton process for degradation of C.I. Acid Orange 7 (AO7) solution. Results showed that the decolorization efficiency of AO7 in the presence of 6 h-milled pyrite sample was the highest. The impact of key parameters on the degradation efficiency of AO7 by pyrite nanoparticles catalyzed Fenton process was modeled using central composite design (CCD). Accordingly, the maximum removal efficiency of 96.30% was achieved at initial AO7 concentration of 16 mg/L, H{sub 2}O{sub 2} concentration of 5 mmol/L, catalyst amount of 0.5 g/L and reaction time of 25 min.

  12. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

  13. Ninth annual international Pittsburgh coal conference - proceedings

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Over 200 papers are presented under the following headings: coal preparation; Clean Coal Technology Program status; pre- and post-utilization processing; advanced conversion technologies; integrated gasification combined cycle; indirect liquefaction; advanced liquefaction process development; conversion processes; coal - from a user's perspective; issues associated with coal use in heat engines; fundamentals of combustion; advanced combustion systems; low quality fuel applications/fluidised beds; combustion systems; ash and sludge disposal/utilization; developing SO 2 /NO x control technologies; technical overview of air toxics; scientific, economic and policy perspectives on global climate change; Clean Air Act compliance strategies; environmental policy/technology; spontaneous combustion; and special topics

  14. Thallium-rich pyrite ores from the Apuan Alps, Tuscany, Italy:constraints for their origin and environmental concerns

    Science.gov (United States)

    D'Orazio, Massimo; Biagioni, Cristian; Dini, Andrea; Vezzoni, Simone

    2017-06-01

    The southern sector of the Apuan Alps (AA) massif, Tuscany, Italy, is characterized by the occurrence of a series of baryte-pyrite-iron oxide orebodies whose Tl-rich nature was recognized only recently. The geochemistry of the pyrite ore was investigated through inductively coupled plasma mass spectrometry. In addition, lead isotope data for selected pyrite ores from AA were collected. Pyrite ores are characterized by a complex geochemistry, with high concentrations of Tl (up to 1100 μg/g) coupled with high As and Sb contents; the Co/Ni ratio is always <1. Geochemical data of pyrite and marcasite ore samples from other mining districts of Tuscany have been collected in order to compare them with those from the AA. These samples usually have very low Tl content (less than 2 μg/g) and high to very high Co/Ni and As/Sb ratios. Only some samples from the Sb-Hg ore deposits showed very high Tl concentrations (up to 3900 μg/g). Another difference is related to the lead isotope composition, with pyrite ores from AA markedly less radiogenic than those from the other deposits from Tuscany. Geochemical data of pyrite ores from AA give new insights on the genesis of the baryte-pyrite-iron oxide orebodies, relating their formation to low-temperature hydrothermal systems active during early Paleozoic; in addition, these data play a fundamental role in assessing the environmental impact of these deposits.

  15. Assessing the impact of preload on pyrite-rich sediment and groundwater quality.

    Science.gov (United States)

    Karikari-Yeboah, Ohene; Addai-Mensah, Jonas

    2017-02-01

    Pyrite-rich sediments would, invariably, undergo redox reactions which would lead to acidic aqueous environment containing solubilized toxic metal species. When such sediments are subjected to preload, a technique employed by geotechnical engineers to improve the load-bearing capacity of highly compressible formation, transient flow of pore water, accompanied by acidity transfer, would occur as a response. Despite the concomitant environmental and socio-economic significance, to date, there has been limited interdisciplinary research on the underpinning geotechnical engineering and geo-environmental science issues for pyrite-rich sediments under preload. In this study, we investigate the effect of pyrite-rich sediment pore water transfer under preload surcharge on the receiving environment and the impact on the groundwater speciation and quality. Sediment samples were obtained at close depth intervals from boreholes established within pristine areas and those subjected to the preload application. Soil and pore water samples were subjected to solid/solution speciation, moisture contents, soil pH and the Atterberg Limits' analyses using standard analytical techniques and methods. Standpipes were also installed in the boreholes for groundwater sampling and in situ monitoring of water quality parameters. It is shown that the imposition of preload surcharge over pyritic sediment created a reducing environment rich in SO 4 2- , iron oxide minerals and organic matter. This reducing environment fostered organic carbon catabolism to generate excess pyrite and bicarbonate alkalinity, which would invariably impact adversely on soil quality and plant growth. These were accompanied by increase in pH, dissolved Al, Ca, Mg and K species beneath the surcharge.

  16. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Williams, A.; Mitchell, C.

    1993-01-01

    This paper outlines some of the problems associated with the prediction of levels of methane emission from underground and surface coal mines. Current knowledge of coal mining emissions sources is outlined. On the basis of this information the methodology proposed by the IPCC/OECD Programme on National Inventories is critically examined and alternatives considered. Finally, the technical options for emissions control are examined together with their feasibility. 8 refs., 6 figs., 2 tabs

  17. Depositional setting, petrology and chemistry of Permian coals from the Parana Basin: 2. South Santa Catarina Coalfield, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Kalkreuth, W.; Mexias, A.; Balbinot, M.; Levandowski, J. [Instituto de Geociencias, UFRGS, Porto Alegre (Brazil); Holz, M. [Inst. de Geociencias, UFBA, Salvador, Bahia (Brazil); Willett, J.; Finkelman, R. [U.S. Geological Survey, Reston, VA (United States); Burger, H. [Freie Universitaet Berlin, Geoinformatik, (Germany)

    2010-12-01

    In Brazil economically important coal deposits occur in the southern part of the Parana Basin, where coal seams occur in the Permian Rio Bonito Formation, with major coal development in the states of Rio Grande de Sul and Santa Catarina. The current paper presents results on sequence stratigraphic interpretation of the coal-bearing strata, and petrological and geochemical coal seam characterization from the South Santa Catarina Coalfield, Parana Basin. In terms of sequence stratigraphic interpretation the precursor mires of the Santa Catarina coal seams formed in an estuarine-barrier shoreface depositional environment, with major peat accumulation in a high stand systems tract (Pre-Bonito and Bonito seams), a lowstand systems tract (Ponta Alta seam, seam A, seam B) and a transgressive systems tract (Irapua, Barro Branco and Treviso seams). Seam thicknesses range from 1.70 to 2.39 m, but high proportions of impure coal (coaly shale and shaley coal), carbonaceous shale and partings reduce the net coal thickness significantly. Coal lithoypes are variable, with banded coal predominant in the Barro Branco seam, and banded dull and dull coal predominantly in Bonito and Irapua seams, respectively. Results from petrographic analyses indicate a vitrinite reflectance range from 0.76 to 1.63 %Rrandom (HVB A to LVB coal). Maceral group distribution varies significantly, with the Barro Branco seam having the highest vitrinite content (mean 67.5 vol%), whereas the Irapua seam has the highest inertinite content (33.8 vol%). Liptinite mean values range from 7.8 vol% (Barro Branco seam) to 22.5 vol% (Irapua seam). Results from proximate analyses indicate for the three seams high ash yields (50.2 - 64.2 wt.%). Considering the International Classification of in-Seam Coals, all samples are in fact classified as carbonaceous rocks (> 50 wt.% ash). Sulfur contents range from 3.4 to 7.7 wt.%, of which the major part occurs as pyritic sulfur. Results of X-ray diffraction indicate the

  18. SYNTHESIS OF METHACRYLATES FROM COAL-DERIVED SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Jang, B.W.L.; Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Colberg, R.D.; Choi, G.N.

    1999-12-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel have developed a novel process for synthesis of methyl methacrylate (MMA) from coal-derived syngas, under a contract from the US Department of Energy/Fossil Energy Technology Center (DOE/FETC). This project has resulted in five US patents (four already published and one pending publication). It has served as the basis for the technical and economic assessment of the production of this high-volume intermediate from coal-derived synthesis gas. The three-step process consists of the synthesis of a propionate from ethylene carbonylation using coal-derived CO, condensation of the propionate with formaldehyde to form methacrylic acid (MAA); and esterification of MAA with methanol to yield MMA. The first two steps, propionate synthesis and condensation catalysis, are the key technical challenges and the focus of the research presented here.

  19. Coking coal of Checua Lenguazaque area

    International Nuclear Information System (INIS)

    Arboleda Otalora, Carlos Ariel

    1987-06-01

    In this report a summary of the main characteristics of the coal of the area of Checua-Samaca is presented. Using the main works carried out on this area, the most important geologic, physical-chemical, technological and petrographic aspects are compiled that are considered essential to carry out a technical evaluation of these coal and all the analyses they take to conclude that in this area, bituminous coal are presented with very good coking properties, on the other hand, it is demonstrated by the use that is given to the coal extracted by the small existent mining. However, keeping in mind the demands of the international market of the coking coal, it becomes necessary to improve the existent geologic information to be able to make reliable stratigraphic correlations

  20. Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This report discusses the effects on SRC yields of seven process variables (reactor temperature, SRT, hydrogen partial pressure, recycle ash and coal concentrations, gas velocity and coal type) predicted by second-order regression models developed from a data base containing pilot plant data with both Kentucky and Powhatan coals. The only effect of coal type in the model is a shift in each yield by a constant factor. Although some differences were found between the models developed from the Kentucky data base (1) (which we call Kentucky models) and the pooled coal models, the general conclusions of the previous report are confirmed by the new models and the assumption of similar behavior of the two coals appears to be justified. In some respects the dependence of the yields (MAF coal basis) on variables such as pressure and temperature are clearer than in the previous models. The principal trends which emerge are discussed.

  1. Isotopic and elemental chemistry of sedimentary pyrite: A combined analytical and statistical approach to a novel planetary biosignature

    Science.gov (United States)

    Figueroa, M. C.; Gregory, D. D.; Lyons, T. W.; Williford, K. H.

    2017-12-01

    Life processes affect trace element abundances in pyrite such that sedimentary and hydrothermal pyrite have significantly different trace element signatures. Thus, we propose that these biogeochemical data could be used to identify pyrite that formed biogenetically either early in our planet's history or on other planets, particularly Mars. The potential for this approach is elevated because pyrite is common in diverse sedimentary settings, and its trace element content can be preserved despite secondary overprints up to greenschist facies, thus minimizing the concerns about remobilization that can plague traditional whole rock studies. We are also including in-situ sulfur isotope analysis to further refine our understanding of the complex signatures of ancient pyrite. Sulfur isotope data can point straightforwardly to the involvement of life, because pyrite in sediments is inextricably linked to bacterial sulfate reduction and its diagnostic isotopic expressions. In addition to analyzing pyrite of known biological origin formed in the modern and ancient oceans under a range of conditions, we are building a data set for pyrite formed by hydrothermal and metamorphic processes to minimize the risk of false positives in life detection. We have used Random Forests (RF), a machine learning statistical technique with proven efficiency for classifying large geological datasets, to classify pyrite into biotic and abiotic end members. Coupling the trace element and sulfur isotope data from our analyses with a large existing dataset from diverse settings has yielded 4500 analyses with 18 different variables. Our initial results reveal the promise of the RF approach, correctly identifying biogenic pyrite 97 percent of the time. We will continue to couple new in-situ S-isotope and trace element analyses of biogenic pyrite grains from modern and ancient environments, using cutting-edge microanalytical techniques, with new data from high temperature settings. Our ultimately goal

  2. A Curse of Coal? Exploring Unintended Regional Consequences of Coal Energy in The Czech Republic

    Directory of Open Access Journals (Sweden)

    Frantál Bohumil

    2014-07-01

    Full Text Available Focusing on coal energy from a geographical perspective, the unintended regional consequences of coal mining and combustion in the Czech Republic are discussed and analysed in terms of the environmental injustice and resource curse theories. The explorative case study attempts to identify significant associations between the spatially uneven distribution of coal power plants and the environmental and socioeconomic characteristics and development trends of affected areas. The findings indicate that the coal industries have contributed to slightly above average incomes and pensions, and have provided households with some technical services such as district heating. However, these positive effects have come at high environmental and health costs paid by the local populations. Above average rates of unemployment, homelessness and crime indicate that the benefits have been unevenly distributed economically. A higher proportion of uneducated people and ethnic minorities in affected districts suggest that coal energy is environmentally unjust.

  3. Influence of heterotrophic microbial growth on biological oxidation of pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, E.A.; Silverstein, J. [University of Nevada, Reno, NV (United States). Dept. of Civil Engineering

    2002-12-15

    Experiments were carried out to examine the possibility that enhanced growth of heterotrophic (non-iron-oxidising) bacteria would inhibit pyrite oxidation by Acidithiobacillus ferroxidans by out-competing the more slowly growing autotrophs for oxygen, nutrients or even attachment sites on the mineral surface. Glucose was added to microcosms containing pyrite, acidic mineral solution and cultures of A-ferrooxidans and Acidiphilium acidophilus under various experimental conditions. Results suggest that encouraging the growth of heterotrophic microorganisms under acid mine drainage conditions may be a feasible strategy for decreasing both the rate and the extent of sulfide mineral oxidation. 43 refs., 8 figs., 3 tabs.

  4. Risk factors for the undermined coal bed mining method

    Energy Technology Data Exchange (ETDEWEB)

    Arad, V. [Petrosani Univ., Petrosani (Romania). Dept. of Mining Engineering; Arad, S. [Petrosani Univ., Petrosani (Romania). Dept of Electrical Engineering

    2009-07-01

    The Romanian mining industry has been in a serious decline and is undergoing ample restructuring. Analyses of reliability and risk are most important during the early stages of a project in guiding the decision as to whether or not to proceed and in helping to establish design criteria. A technical accident occurred in 2008 at the Petrila coal mine involving an explosion during the exploitation of a coal seam. Over time a series of technical accidents, such as explosions and ignitions of methane gas, roof blowing phenomena or self-ignition of coal and hazard combustions have occurred. This paper presented an analysis of factors that led to this accident as well an analysis of factors related to the mining method. Specifically, the paper discussed the geomechanical characteristics of rocks and coal; the geodynamic phenomenon from working face 431; the spontaneous combustion phenomenon; gas accumulation; and the pressure and the height of the undermined coal bed. It was concluded that for the specific conditions encountered in Petrila colliery, the undermined bed height should be between 5 and 7 metres, depending on the geomechanic characteristics of coal and surrounding rocks. 8 refs., 1 tab., 3 figs.

  5. Coal reserves and resources as well as potentials for underground coal gasification in connection with carbon capture and storage (CCS)

    Science.gov (United States)

    Ilse, Jürgen

    2010-05-01

    Coal is the energy source with the largest geological availability worldwide. Of all non-renewable energies coal and lignite accounting for 55 % of the reserves and some 76 % of the resources represent the largest potential. Reserves are those geological quantities of a mineral which can currently be mined under technically and economically viable conditions. Resources are those quantities which are either proven but currently not economically recoverable or quantities which can still be expected or explored on the basis of geological findings. The global availability of energy source does not only depend on geological and economic factors. The technical availability, e.g. mining and preparation capacities, the sufficient availability of land and sea-borne transportation as well as transloading capacities and also a political availability are required likewise. The latter may be disturbed by domestic-policy disputes like strikes or unrest or by foreign-policy disputes like embargos, trade conflicts or even tensions and wars in the producing regions. In the energy-economic discussion the reach of fossil primary energies plays a central role with the most important questions being: when will which energy source be exhausted, which impact will future developments have on the energy price, what does the situation of the other energies look like and which alternatives are there? The reach of coal can only be estimated because of the large deposits on the one hand and the uncertain future coal use and demand on the other. The stronger growth of population and the economic catching-up process in the developing and threshold countries will result in a shift of the production and demand centres in the global economy. However, also in case of further increases the geological potential will be sufficient to reliably cover the global coal demand for the next 100 years. The conventional mining of seams at great depths or of thin seams reaches its technical and economic limits

  6. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  7. Coal slurries: An environmental bonus?

    International Nuclear Information System (INIS)

    Basta, N.; Moore, S.; Ondrey, G.

    1994-01-01

    Developers and promoters of coal-water slurries and similar CWF (coal-water fuel) technologies have had a hard time winning converts since they unveiled their first commercial processes in the 1970s. The economic appeal of such processes, marginal at best, varies with the price of oil. Nevertheless, the technology is percolating, as geopolitics and environmental pressures drive new processes. Such fuels are becoming increasingly important to coal-rich, oil-poor nations such as China, as they attempt to build an onshore fuel supply. Meanwhile, improvements are changing the way coal-fired processes are viewed. Where air pollution regulations once discouraged the use of coal fuels, new coal processes have been developed that cut nitrous oxides (NOx) emissions and provide a use for coal fines, previously viewed as waste. The latest developments in the field were all on display at the 19th International Technical Conference on Coal Utilization and Fuel Systems, held in Clearwater, Fla., on March 21--24. At this annual meeting, sponsored by the Coal and Slurry Technology Association, (Washington, D.C.) and the Pittsburgh Energy Technology Center of the US Dept. of Energy (PETC), some 200 visitors from around the work gathered to discuss the latest developments in coal slurry utilization--new and improved processes, and onstream plants. This paper presents highlights from the conference

  8. Extractive de-sulfurization and de-ashing of high sulfur coals by oxidation with ionic liquids

    International Nuclear Information System (INIS)

    Saikia, Binoy K.; Khound, Kakoli; Baruah, Bimala P.

    2014-01-01

    Highlights: • Extractive de-sulfurization and de-ashing process for cleaning high sulfur coals. • The process removes inorganic as well as organic sulfur components from high sulfur coals. • The process has less risk to chemists and other surroundings. - Abstract: The environmental consequences of energy production from coals are well known, and are driving the development of desulfurization technologies. In this investigation, ionic liquids were examined for extractive desulfurization and de-ashing in industrially important high sulfur sub-bituminous Indian coals. The ionic liquids, namely, 1-n-butyl-3-methylimidazolium tetrafluoroborate (IL1) and 1-n-butyl 3-methylimidazolium chloride (IL2) were employed for desulfurization of a few Indian coal samples in presence of HCOOH/H 2 O 2 and V 2 O 5 . Results show the maximum removal of 50.20% of the total sulfur, 48.00% of the organic sulfur, and 70.37 wt% of the ash in this process. The ionic liquids were recovered and subsequently used for further desulfurization. FT-IR spectra reveal the transformation of organic sulfur functionalities into the sulfoxides (S=O) and sulfones (-SO 2 ) due to the oxidative reactions. The sulfate, pyrite and sulfides (aryls) signals in the near edge X-ray absorption fine structure (NEXAFS) of the oxidized coal samples showed sulfur transformation during the desulfurization process. The study demonstrates the removal of significant amount of inorganic as well as organic sulfur (aryls) components from the original high sulfur coal samples to make them cleaner

  9. Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations.

    Science.gov (United States)

    Tabelin, Carlito Baltazar; Veerawattananun, Suchol; Ito, Mayumi; Hiroyoshi, Naoki; Igarashi, Toshifumi

    2017-02-15

    Pyrite is one of the most common and geochemically important sulfide minerals in nature because of its role in the redox recycling of iron (Fe). It is also the primary cause of acid mine drainage (AMD) that is considered as a serious and widespread problem facing the mining and mineral processing industries. In the environment, pyrite oxidation occurs in the presence of ubiquitous metal oxides, but the roles that they play in this process remain largely unknown. This study evaluates the effects of hematite (α-Fe 2 O 3 ) and alumina (α-Al 2 O 3 ) on pyrite oxidation by batch-reactor type experiments, surface-sensitive characterization of the oxidation layer and thermodynamic/kinetic modeling calculations. In the presence of hematite, dissolved sulfur (S) concentration dramatically decreased independent of the pH, and the formation of intermediate sulfoxy anionic species on the surface of pyrite was retarded. These results indicate that hematite minimized the overall extent of pyrite oxidation, but the kinetic model could not explain how this suppression occurred. In contrast, pyrite oxidation was enhanced in the alumina suspension as suggested by the higher dissolved S concentration and stronger infrared (IR) absorption bands of surface-bound oxidation products. Based on the kinetic model, alumina enhanced the oxidative dissolution of pyrite because of its strong acid buffering capacity, which increased the suspension pH. The higher pH values increased the oxidation of Fe 2+ to Fe 3+ by dissolved O 2 (DO) that enhanced the overall oxidative dissolution kinetics of pyrite. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Development of an integrated research and development program on eastern Canadian coals

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, D

    1981-01-01

    Coal production and use, R and D performers on eastern Canadian coals, coordination of an R and D program, technical problems of the coal industry and R and D requirements, and recommendations for a research and development program are described. (27 refs.)

  11. A preliminary study of mineralogy and geochemistry of four coal samples from northern Iran

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, F.; Sanei, H.; Stasiuk, L.D.; Reyes, J. [Natural Resources Canada, Geological Survey of Canada-Calgary Division, Calgary, Alberta (Canada); Bagheri-Sadeghi, H. [Department of Chemistry, Faculty of Science, Azad University, Central Campus, Tehran (Iran)

    2006-01-03

    This study is related to four Jurassic-age bituminous coal (0.69-1.02 Ro%) samples collected from coal mines from the west, central and east of central, Alborz in northern Iran. Geological settings played key roles in determining the geochemistry and mineralogy of coals from the central Alborz region of northern Iran. The mineralogy of coals from the eastern part of the region is dominated by kaolinite; halloysite; and carbonates such as calcite, dolomite/ankerite, and siderite. The coals were deposited in a lacustrine environment. In the western part of the region, where the depositional setting was also lacustrine with volcanic input and tonstein deposition (glass shards present), the coal primarily contains kaolinite (68%) and fluorapatite (26%). In contrast, coal from the central part of the region, which was deposited in a terrestrial environment and on eroded limestone and dolomite rocks, is dominated by dolomite (98%) with little input by kaolinite. These coals have low sulphur (0.35-0.70 wt.%), which is mostly in the organic form (0.34-0.69 wt.%). Pyritic sulphur is detected only in one coal and in small quantities. The boron contents of these coals range from 9 to 33 mg/kg, indicating that deposition occurred in a fresh water environment. Coal with higher concentrations of Ba, Sr, and P contain fluorapatite and goyazite-gorceixite series [BaAl{sub 3} (PO{sub 4}){sub 2} (OH){sub 5}, H{sub 2}O] minerals, which indicates volcanoclastic input. Compared to world coal averages, these coals exhibit low concentrations of elements of environmental concern, such as As (1.3-5.9 mg/kg), Cd (<0.02-0.06 mg/kg), Hg (<0.01-0.07 mg/kg) Mo (<0.6-1.7 mg/kg), Pb (4.8-13 mg/kg), Th (0.5-21 mg/kg), Se (<0.2-0.8 mg/kg) and U (0.2-4.6 mg/kg). Two of the northern Iranian coals have concentrations of Cl (2560 and 3010 mg/kg) that are higher than world coal average. (author)

  12. Effectiveness of underground coal extraction. Effektivnost' podzemnoy dobychi uglya

    Energy Technology Data Exchange (ETDEWEB)

    Pirskiy, A A

    1982-01-01

    This book examines the possibility of improving the efficiency of underground coal extraction based on the solution to the scientific-technical problem of monitoring and controlling concentration and intensifying mining operations. The problem has been resolved as applied to conditions of working coal fields of the Lvov-Volynskiy basin, West Donbass and other regions which are similar in relation to mining-geological conditions. The main conclusions and recommendations consist of the following: synthesized concept ''concentration of mining operations'' is determined by regulation and concentration, intensification of mining operations by using progressive technology, mechanization and organization of production in order to increase extraction, improve productivity of labor and reduce the net cost of coal. The structure of concentration of mining operations is based on the synthesis of natural, technical and organizational conditions for working coal seams. The problem of monitoring and control of the concentration of mining operations was realized by using the systems method based on the laws of development, principles of comprehensive evaluation and optimization of the level of concentration based on economic-mathematical modeling. The use of the systems approach guarantees a comprehensive solution to the problem. In definite periods of development of the coal industry, between the organizational-technical potentialities, natural conditions and trends determined in the sector for the change in the level of mining operation concentration, disproportions develop. The level of work concentration goes beyond the limits of optimal values, and the effectiveness of coal extraction is reduced. In order to predict and eliminate this phenomenon, it is recommended that the level of mining concentration be controlled.

  13. Evaluation, engineering and development of advanced cyclone processes

    International Nuclear Information System (INIS)

    Durney, T.E.; Cook, A.; Ferris, D.D.

    1995-01-01

    This research and development project is one of three seeking to develop advanced, cost-effective, coal cleaning processes to help industry comply with 1990 Clean Air Act Regulations. The specific goal for this project is to develop a cycloning technology that will beneficiate coal to a level approaching 85% pyritic sulfur rejection while retaining 85% of the parent coal's heating value. A clean coal ash content of less than 6% and a moisture content, for both clean coal and reject, of less than 30% are targeted. The process under development is a physical, gravimetric-based cleaning system that removes ash bearing mineral matter and pyritic sulfur. Since a large portion of the Nation's coal reserves contain significant amounts of pyrite, physical beneficiation is viewed as a potential near-term, cost effective means of producing an environmentally acceptable fuel

  14. Geothermal, Geochemical and Geomagnetic Mapping Of the Burning Coal Seam in Fire- Zone 18 of the Coal Mining Area Wuda, Inner Mongolia, PR China.

    Science.gov (United States)

    Kessels, W.; Han, J.; Halisch, M.; Lindner, H.; Rueter, H.; Wuttke, M. W.

    2008-12-01

    Spontaneous combustion of coal has become a world wide problem caused by and affecting technical operations in coal mining areas. The localization of the burning centre is a prerequisite for any planning of fire fighting operations. In the German - Chinese coal fire project sponsored by the German Ministry of Science and Technologies (Grant No. 0330490K) the so called fire zone 18 of the coal mining area of Wuda (InnerMongolia, PR China) serves as a test area for geophysical measurements. For the geothermal and geochemical mapping 25 up to 1m deep boreholes with a diameter of approx. 30 mm are distributed over the particular fire-zone with an extension of 320 × 180 m2. To avoid the highly dynamic gas flow processes in fire induced fractures caused by weather conditions, all boreholes were situated in the undisturbed rock compartments. In these boreholes, plastic tubes of 12 mm diameter provide access to the borehole ground filled with highly permeable gravel. The boreholes are otherwise sealed to the atmosphere by clay. The geothermal observations consist of measurements of temperature profiles in the boreholes and thermal conductivity measurement on rock samples in the lab. For depths greater then 0.2 m diurnal variations in the temperature gradient were neglected. The derived heat flow with maximum values of 80 W/m2 is more then three orders of magnitude higher than the natural undisturbed heat flow. The high heat flow suggests that the dominant heat transport is gas convection through the system of porous rock and fractures. Any temperature anomaly caused by the burning coal in a depth of more than 18 m would need years to reach the surface by a heat transport restricted to conduction. The geochemical soil gas probing is performed by gas extraction from the boreholes. Measured are the concentrations of O2, CO, CO2, H2S and CH4. The O2 deficit in the soil air and the concentrations of the other combustion products compared to the concentrations in the free

  15. Coal and recycling mark the way forward

    Energy Technology Data Exchange (ETDEWEB)

    Bignell, E.

    2000-11-01

    A report is given of this year's Mineral Engineering Society's annual conference held in Scarborough, UK. The themes of recycling and coal were chosen for the two days of technical presentations. Topics included the cleaning up of brown field sites; the use of recycled waste oxide to replace iron ore pellets for cooling furnaces in steel making; high pressure filtration of industrial mineral effluent; iron ore mining in Australia; screen development; the status of coal preparation technology, by RJB Mining; study of movement of material (to simulate coal) in a hopper; and a UK-Chinese project on reduction of sulphur in coal.

  16. Berau coal in East Kalimantan; Its petrographics characteristics and depositional environment

    Directory of Open Access Journals (Sweden)

    Nana Suwarna

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol2no4.20071To asses the characteristics of the Early to Middle Miocene Berau coal in the Berau Basin, leading to interpretation of coal depositional environments, some fresh outcrop and subcrop samples and also drill cores of the coals have been analyzed microscopically. Coal petrographic analysis was performed on twenty four coal samples from the Middle Miocene Lati Formation. Vitrinite, present in a high value, and ranging between 66.2 - 96.2%, is dominated by vitrinite B. On the other hand, inertinite and exinite, showing a similar value, exist in a low to moderate amount. Vitrinite reflectance, present in a low value, varies from 0.40 - 0.58%. Low mineral matter content is dominated by clay minerals (0.4 - 6.6% with minor pyrite. Transitions from wet and very wet forested swamps to drier conditions with lower tree density are indicated by the higher content of vitrinite B, whilst a reverse trend is indicated by the lower content of vitrinite A. Petrographic indices obtained from facies diagnostic macerals show that an accumulation of the ancient peats under prevailing relatively wet limited influx clastic marsh to very wet forest swamps or moors is considered. The composition of the coal samples supports the interpretation of a system of fluvial to meandering streams in an upper delta plain environment. The original peat-forming vegetation was composed mainly of cellulose rich, shrub-like plants, tree ferns, herbaceous plant communities, with minor amount of trees. Thereby, the organic facies concept is thus applicable in basin studies context and has potential to become an additional tool for depositional environment interpretation.  

  17. Technology assessment of various coal-fuel options

    International Nuclear Information System (INIS)

    Coenen, R.; Findling, B.; Klein-Vielhauer, S.; Nieke, E.; Paschen, H.; Tangen, H.; Wintzer, D.

    1991-01-01

    The technology assessment (TA) study of coal-based fuels presented in this report was performed for the Federal Ministry for Research and Technology. Its goal was to support decision-making of the Federal Ministry for Research and Technology in the field of coal conversion. Various technical options of coal liquefaction have been analyzed on the basis of hard coal as well as lignite -- direct liquefaction of coal (hydrogenation) and different possibilities of indirect liquefaction, that is the production of fuels (methanol, gasoline) by processing products of coal gasification. The TA study takes into consideration the entire technology chain from coal mining via coal conversion to the utilization of coal-based fuels in road transport. The analysis focuses on costs of the various options, overall economic effects, which include effects on employment and public budgets, and on environmental consequences compared to the use of liquid fuels derived from oil. Furthermore, requirements of infrastructure and other problems of the introduction of coal-based fuels as well as prospects for the export of technologies of direct and indirect coal liquefaction have been analyzed in the study. 14 figs., 10 tabs

  18. Improving Competitiveness of U.S. Coal Dialogue

    Energy Technology Data Exchange (ETDEWEB)

    Kokkinos, Angelos [Energetics, Inc., Colubmia, MD (United States)

    2018-02-01

    The Improving Competitiveness of U.S. Coal Dialogue held in September 2017 explored a broad range of technical developments that have the potential to improve U.S. coal competitiveness in domestic and overseas markets. The workshop is one in a series of events hosted by DOE to gather expert input on challenges and opportunities for reviving the coal economy. This event brought together coal industry experts to review developments in a broad range of technical areas such as conventional physical (e.g. dense-medium) technologies, and dry coal treatments; thermal, chemical, and bio-oxidation coal upgrading technologies; coal blending; and applications for ultrafine coal and waste streams. The workshop was organized to focus on three main discussion topics: Challenges and Opportunities for Improving U.S. Coal Competitiveness in Overseas Markets, Mineral Processing, and Technologies to Expand the Market Reach of Coal Products. In each session, invited experts delivered presentations to help frame the subsequent group discussion. Throughout the discussions, participants described many possible areas of research and development (R&D) in which DOE involvement could help to produce significant outcomes. In addition, participants discussed a number of open questions—those that the industry has raised or investigated but not yet resolved. In discussing the three topics, the participants suggested potential areas of research and issues for further investigation. As summarized in Table ES-1, these crosscutting suggestions centered on combustion technologies, coal quality, coal processing, environmental issues, and other issues. The discussions at this workshop will serve as an input that DOE considers in developing initiatives that can be pursued by government and industry. This workshop generated strategies that described core research concepts, identified implementation steps, estimated benefits, clarified roles of government and industry, and outlined next steps. While

  19. Early diagenetic high-magnesium calcite and dolomite indicate that coal balls formed in marine or brackish water: Stratigraphic and paleoclimatic implications

    Science.gov (United States)

    Raymond, Anne

    2016-04-01

    Coal balls are carbonate and pyrite permineralizations of peat that contain three-dimensional plant fossils preserved at the cellular level. Coal balls, which occur in Pennsylvanian and earliest Permian equatorial coals, provide a detailed record of terrestrial ecology and tropical climate during the Late Paleozoic Ice Age; yet their depositional environment remains controversial. The exquisite preservation of some coal-ball fossils, e.g. pollen with pollen tubes and leaves with mesophyll, indicates rapid formation. The presence of abundant, cement-filled, void spaces within and between the plant debris in most coal balls indicates that they formed in uncompacted peat, near the surface of the mire. Botanical, taphonomic and isotopic evidence point to a freshwater origin for coal balls. The nearest living relatives of coal ball plants (modern lycopsids, sphenopsids, marratialean ferns and conifers) grow in fresh water. Coal-ball peat contains a high percentage of aerial debris, similar to modern freshwater peat. The stable oxygen isotopes of coal-ball carbonate (δ18O = 16 to 3 per mil) suggest a freshwater origin. However, the widespread occurrence of marine invertebrates and early diagenetic framboidal pyrite in coal balls suggests that many formed in close proximity to marine water. Indeed, carbonate petrology points to a marine or brackish water origin for the first-formed carbonate cements in coal balls. Petrographic and geochemical (microprobe) analysis of coal-ball carbonates in Pennsylvanian coals from the midcontinent of North America (Western Interior Basin, West Pangaea) and the Ruhr and Donets Basins (East Pangaea) indicate that the first formed carbonate is either radaxial, nonstochiometric dolomite or high magnesium calcite (9 - 17 mol % MgCO3, indicating precipitation in marine or brackish water. Although both primary dolomite and high magnesium calcite can form in lacustrine settings, the lakes in which these minerals form occur in carbonate terranes

  20. Non-matrix corrected organic sulfur determination by energy dispersive X-ray spectroscopy for western Kentucky coals and residues

    International Nuclear Information System (INIS)

    Clark, C.P.; Freeman, G.B.; Hower, J.C.

    1984-01-01

    A method for non-matrix corrected organic sulfur analysis by energy dispersive X-ray spectroscopy has been developed using petroleum coke standards. Typically, electron beam microanalysis is a rapid, nondestructive analytical technique to quantitatively measure organic sulfur in coal. The results show good correlation to ASTM values for numerous well characterized coals with a wide range in total and pyritic sulfur content. This direct analysis is capable of reducing error commonly associated with the present ASTM method which relies on an indirect measure of organic sulfur by difference. The precision of the organic sulfur values determined in the present study is comparable to that obtained by ZAF matrix corrected microanalysis. The energy dispersive microanalysis is capable of measuring micro as well as bulk organic sulfur levels

  1. Effects of long-term coal supply contracts on technology adoption and improvements in the mining of coal. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D.R.; Hawkins, S.A.; Webb, P.F.; Kauffman, P.W.

    1979-08-01

    The relationship between long-term coal supply contracts and the adoption of new technology in the coal mining industry is a complex one. From this study certain conclusions can be drawn. New technologies and improvements in the mining of coal can be logically categorized into three areas: evolutionary technology, transitional technology, or innovative technology. Evolutionary improvements in technology can be categorized as improvements, or increased production capacities, in existing equipment. Transitional technology involves the adoption of existing or proven technologies into new conditions, or, proceeding from one technology type to a newer type for the same function. Innovative technology includes equipment, concepts, and systems not readily available, or untried, in the existing mining environment (seam conditions, etc.). Technology adoption is an economic decision. This point was repeatedly emphasized by industry representatives contacted during the study. The long-term coal supply contract influences the decision to adopt new technology and mining improvements in several ways depending on the technology type (i.e., evolutionary, transitional, or innovative), and also the coal supplier type (i.e., captive or independent producer). Several examples of the adoption of new technologies in mines under long-term coal supply contracts are discussed. (LTN)

  2. Have U.S. power plants become less technically efficient? The impact of carbon emission regulation

    International Nuclear Information System (INIS)

    Zhou, Yishu; Huang, Ling

    2016-01-01

    We estimate directional distance functions to measure the impact of carbon emission regulation, the Regional Greenhouse Gas Initiative (RGGI) in particular, on U.S. power plants' technical efficiency. The model shows that the average technical efficiency scores for coal and natural gas plants are 88.70% and 83.14% respectively, indicating a very technically efficient industry. We find no evidence of technical efficiency changes due to the RGGI regime in the RGGI area. In the same area, relatively less efficient coal plants exited the market and slightly more efficient natural gas plants entered, compared to the incumbent plants. In addition, some evidence of a spillover effect is found. Using a counterfactual analysis, the RGGI regulation leads to a 1.48% decline in the average technical efficiency for coal plants within neighboring states of RGGI during 2009–2013. - Highlights: • RGGI does not lead to a change in the technical efficiency of RGGI power plants. • Less efficient coal plants exit. • Entering natural gas plants are more efficient. • RGGI has a spillover effect on neighboring coal plants.

  3. Challenges And Opportunities For Coal Gasification In Developing Countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-10-01

    Coal gasification for chemicals, gaseous and liquid fuels production can fulfil an important strategic need in those developing countries where coal is the primary fuel source and oil and gas energy security is an issue. At the same time, the establishment of major projects in such countries can be problematical for a number of technical and economic reasons, although it is encouraging that some projects appear to be moving forward. There are two developing countries where coal conversion projects to produce chemicals, gaseous and liquid fuels have been taken forward strongly. The first is South Africa, which established the world's only commercial-scale coal-to-liquids and coal-to-chemicals facilities at Secunda and Sasolburg respectively. The other is China, where there is a major gasification-based coal conversion development and deployment programme that is set to become a significant, large-scale commercial element in the nation's energy development plans. This will provide further major opportunities for the deployment of large-scale coal gasification technologies, various syngas conversion units and catalysts for the subsequent production of the required products. The role of China is likely to be critical in the dissemination of such technologies to other developing countries as it can not only provide the technical expertise but also financially underpin such projects, including the associated infrastructure needs.

  4. Paleoredoc and pyritization of soft-bodied fossils in the Ordovician Frankfort Shale of New York

    DEFF Research Database (Denmark)

    Farrell, Una C.; Briggs, Derek E. G.; Hammarlund, Emma U.

    2013-01-01

    Multiple beds in the Frankfort Shale (Upper Ordovician, New York State), including the original "Beecher's Trilobite Bed," yield fossils with pyritized soft-tissues. A bed-by-bed geochemical and sedimentological analysis was carried out to test previous models of soft-tissue pyritization...

  5. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. II. Inhibition in run of mine refuse under simulated field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, P.R.

    1987-01-01

    The combination of sodium lauryl sulfate and benzoic acid effectively inhibits iron- and sulfur-oxidizing bacteria in coal refuse and prevents the conversion of iron pyrite to sulfate, ferric iron, and sulfuric acid, thereby significantly reducing the formation of acidic drainage from coal refuse. The inhibitors were effective in a concentration of 1.1. mg/kg refuse, and data indicate that the SLS was in excess of the concentration required. The treatment was compatible with the use of lime for neutralization of acid present prior to inhibition of its formation.

  6. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    Science.gov (United States)

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  7. Technical aspects of coal use in the Japanese steel industry

    International Nuclear Information System (INIS)

    Iguchi, T.

    1991-01-01

    Japan's crude steel production exceeded 100 million tons for the first time in fiscal 1972 and reached a peak of 120 million tons in fiscal 1973, as shown in this paper. The Japanese steel industry then switched from quantity to quality in line with production and market trends in the world. In fiscal 1987, all steelmakers announced future plans for reductions in steel production facilities on the assumption that Japan's crude steel production would hover around 90 million tons in response to the change in the country's production structure. Although steel production has held strong with the expansion in domestic steel demand triggered by the government's economic policy and the production plans that have eventually put their original production plans into practice. In its energy-saving activities prompted by 2 oil rises, the Japanese steel industry has dramatically improved its energy costs through energy conservation, waste heat recovery and process step consolidation, as represented by the reductions in blast furnace fuel rate and coke-oven heat consumption. During this period, the Japanese steel industry has won independence from oil and increased dependence on coal. This paper describes coal utilization technologies in coke ovens and blast furnaces, 2 major coal consuming processes in the steel industry. The environmental problems associated with the use of coal are discussed as well

  8. Uranium from Coal Ash: Resource Assessment and Outlook on Production Capacities

    International Nuclear Information System (INIS)

    Monnet, Antoine

    2014-01-01

    Conclusion: Uranium production from coal-ash is technically feasible: in some situations, it could reach commercial development, in such case, fast lead time will be a plus. Technically accessible resources are significant (1.1 to 4.5 MtU). Yet most of those are low grade. Potential reserves don’t exceed 200 ktU (cut-off grade = 200 ppm). • By-product uranium production => constrained production capacities; • Realistic production potential < 700 tU/year; • ~ 1% of current needs. → Coal ash will not be a significant source of uranium for the 21st century – even if production constrains are released (increase in coal consumption

  9. Element migration of pyrites during ductile deformation of the Yuleken porphyry Cu deposit (NW-China)

    Science.gov (United States)

    Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen; Li, Jilei; Cao, Mingjian; Xiang, Peng; Wu, Chu; You, Jun

    2017-01-01

    The strongly deformed Yuleken porphyry Cu deposit (YPCD) occurs in the Kalaxiangar porphyry Cu belt (KPCB), which occupies the central area of the Central Asian Orogenic Belt (CAOB) between the Sawu’er island arc and the Altay Terrane in northern Xinjiang. The YPCD is one of several typical subduction-related deposits in the KPCB, which has undergone syn-collisional and post-collisional metallogenic overprinting. The YPCD is characterized by three pyrite-forming stages, namely a hydrothermal stage A (Py I), a syn-ductile deformation stage B (Py II) characterized by Cu-Au enrichment, and a fracture-filling stage C (Py III). In this study, we conducted systematic petrographic and geochemical studies of pyrites and coexist biotite, which formed during different stages, in order to constrain the physicochemical conditions of the ore formation. Euhedral, fragmented Py I has low Pb and high Te and Se concentration and Ni contents are low with Co/Ni ratios mostly between 1 and 10 (average 9.00). Py I is further characterized by enrichments of Bi, As, Ni, Cu, Te and Se in the core relative to the rim domains. Anhedral round Py II has moderate Co and Ni contents with high Co/Ni ratios >10 (average 95.2), and average contents of 46.5 ppm Pb and 5.80 ppm Te. Py II is further characterized by decreasing Bi, Cu, Pb, Zn, Ag, Te, Mo, Sb and Au contents from the rim to the core domains. Annealed Py III has the lowest Co content of all pyrite types with Co/Ni ratios mostly <0.1 (average 1.33). Furthermore, Py III has average contents of 3.31 ppm Pb, 1.33 ppm Te and 94.6 ppm Se. In addition, Fe does not correlate with Cu and S in the Py I and Py III, while Py II displays a negative correlation between Fe and Cu as well as a positive correlation between Fe and S. Therefore, pyrites which formed during different tectonic regimes also have different chemical compositions. Biotite geothermometer and oxygen fugacity estimates display increasing temperatures and oxygen

  10. Sequential solvent extraction for the modes of occurrence of selenium in coals of different ranks from the Huaibei Coalfield, China

    Directory of Open Access Journals (Sweden)

    Wang Lei

    2007-12-01

    Full Text Available Abstract Forms of selenium in bituminous coal, anthracite, and cokeite (natural coke from Huaibei Coalfield, Anhui, China, have been determined by sequential solvent extraction. The selenium content in bulk samples is 4.0, 2.4, and 2.0 μg/g in bituminous coal, anthracite, and cokeite, respectively. The six forms of selenium determined by six-step solvent extraction are water-leachable, ion-exchangeable, organic matter-associated, carbonate-associated, silicate-associated, and sulfide-associated. The predominant forms of selenium in bituminous coal are organic matter-associated (39.0%, sulfide-associated (21.1%, and silicate bound (31.8%; these three forms account for 92% of the total. The organic matter bound-selenium decrease dramatically from bituminous coal (39.0% to anthracite (11.6% and to cokeite (0%, indicating that organic matter bound selenium is converted to other forms during metamorphism of the coal, most likely sulfide-form. The sulfide-associated form increased remarkably from bituminous coal (21.1% to anthracite (50.4% and cokeite (54.5%, indicating the formation of selenium sulfide, possibly in pyrite during the transformation of bituminous coal to anthracite and cokeite. The silicate-associated selenium in bituminous coal (31.8% is much higher than that in anthracite (16.4% and cokeite (15.8%, indicating that silicate-associated selenium is partly converted to sulfide during metamorphism.

  11. Coal characteristics from 'Priskupshtina' deposit and technological parameters for briquetting (Macedonia)

    International Nuclear Information System (INIS)

    Damjanovski, Dragan

    1998-01-01

    The use of small class coal as well as the lack of formed fuel needed for the industry and for the consumer goods has been a long lasting problem, and a challenge for the researchers of the Republic of Macedonia. For that purpose, all-inclusive analysis of the quality of the coals in Macedonia, their reserves and technical characteristics, as well as analysis of the petrographic structure were made. Classification of the deposits and the research for the possibility of making briquettes was done, too. Laboratory investigations in the coal deposit 'Priskupshtina' were carried out. The analysis of the coal briquetting show that the expected results in coordination with the required standards were not obtained. Spatially the results from the coal calorific value, its hardness and atmospheric resistance. Standard methods were used for the researches without connective means and the achieved results were mutually correlated. Technical-economic verification is necessary in the further process. (Author)

  12. Characterization of coal blends for effective utilization in thermal power plants

    International Nuclear Information System (INIS)

    Santhosh Raaj, S.; Arumugam, S.; Muthukrishnan, M.; Krishnamoorthy, S.; Anantharaman, N.

    2016-01-01

    Highlights: • This work will assist utilities to decide on the choice of coals for blending. • Conventional and advanced analytical techniques were used for characterization. • Fuel ratio, burnout profile, ash chemistry and carbon burnout are key factors. • Basic properties were additive while carbon burnout was non additive for the blends. - Abstract: This paper deals with the characterization of coal blends using various conventional and advanced analytical techniques. There has been an increasing trend in utilizing imported coals for power generation in India and utilities are resorting to blended coal firing for various reasons, both financially as well as technically. Characterization studies were carried out on 2 combinations of Indian and imported coal blends. Conventional characterization such as proximate and ultimate analysis and determination of calorific value were carried out for the raw coals and blends as per ASTM standards. Following this thermal and mineral analysis of the samples were carried out using thermo gravimetric analyzer (TGA), X-ray fluorescence spectrometer (XRF) and computer controlled scanning electron microscope (CCSEM). Combustion experiments were also conducted using drop tube furnace (DTF) to determine the burnout of the raw coals and blends. The selection of technically suitable coal combination for blending, based on these characterization studies, has been detailed.

  13. Bacterial leaching of pyritic gold ores

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, F.M.; Cashion, J.D.; Brown, L.J. [Monash Univ., Clayton, VIC (Australia). Dept. of Physics; Jay, W.H. [Monash Univ., Clayton, VIC (Australia). Chemical Engineering Department

    1996-12-31

    The bacterial oxidation process is well known in nature but has only recently come under investigation as a viable and relatively clean method of gold recovery from ores. However there is currently little information about the process at an atomic scale. It is known that the bacterial attack progresses preferentially along grain boundaries which is precisely where the gold has been deposited from aqueous infiltration. Samples have been obtained from the Wiluna mine in Western Australia consisting of the original ore, 2 pre-treatments, and from six successive bacterial reactors. {sup 57}Fe Moessbauer spectra taken at room temperature show only two quadrupole split doublets which can be ascribed to pyrite, FeS{sub 2}, and arsenopyrite, FeAsS. However, the presence of any superparamagnetic oxide or oxyhydroxide species would be expected to give a spectrum very similar to that of pyrite and would be undetectable in small quantities. At a temperature of 5K, a broad magnetically split sextet is observable with a mean hyperfine field of approximately 50T. This field is characteristic of magnetically ordered ferric iron surrounded by an octahedron of oxygens. The intensity and characteristics of this subspectrum alters through the series and interpretations will be given on the oxidation products of the bacterial leaching

  14. Bacterial leaching of pyritic gold ores

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Cashion, J.D.; Brown, L.J.; Jay, W.H.

    1996-01-01

    The bacterial oxidation process is well known in nature but has only recently come under investigation as a viable and relatively clean method of gold recovery from ores. However there is currently little information about the process at an atomic scale. It is known that the bacterial attack progresses preferentially along grain boundaries which is precisely where the gold has been deposited from aqueous infiltration. Samples have been obtained from the Wiluna mine in Western Australia consisting of the original ore, 2 pre-treatments, and from six successive bacterial reactors. 57 Fe Moessbauer spectra taken at room temperature show only two quadrupole split doublets which can be ascribed to pyrite, FeS 2 , and arsenopyrite, FeAsS. However, the presence of any superparamagnetic oxide or oxyhydroxide species would be expected to give a spectrum very similar to that of pyrite and would be undetectable in small quantities. At a temperature of 5K, a broad magnetically split sextet is observable with a mean hyperfine field of approximately 50T. This field is characteristic of magnetically ordered ferric iron surrounded by an octahedron of oxygens. The intensity and characteristics of this subspectrum alters through the series and interpretations will be given on the oxidation products of the bacterial leaching

  15. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    Science.gov (United States)

    Karpenko, E. I.; Karpenko, Yu. E.; Messerle, V. E.; Ustimenko, A. B.

    2009-06-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  16. Cooperative research in coal liquefaction. Technical progress report, May 1, 1993--April 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1994-10-01

    Accomplishments for the past year are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts some of the highlights are: very promising results have been obtained from the liquefaction of plastics, rubber tires, paper and other wastes, and the coliquefaction of wastes with coal; a number of water soluble coal liquefaction catalysts, iron, cobalt, nickel and molybdenum, have been comparatively tested; mossbauer spectroscopy, XAFS spectroscopy, TEM and XPS have been used to characterize a variety of catalysts and other samples from numerous consortium and DOE liquefaction projects and in situ ESR measurements of the free radical density have been conducted at temperatures from 100 to 600{degrees}C and H{sub 2} pressures up to 600 psi.

  17. Chemostratigraphy and trace element pattern of authigenic pyrite in a Frasnian-Fammenian transition section (Büdesheimer bach, Germany)

    Science.gov (United States)

    Pujol, F.; Berner, Z.; Neumann, T.; Stüben, D.

    2003-04-01

    Trace element contents in authigenic pyrite were investigated in relationship to the geochemistry of host rocks in a 160 m deep drilling at Büdesheimer Bach (Prümer Mulde, Germany), in order to put constrains on possible changes in depositional conditions and seawater composition related to the Kellwasser events (Frasnian/Fammenian transition). The approach is based on the observation that the trace element pattern of authigenic pyrite is controlled by genetic conditions (Stüben et al., 2002) and that the content of elements with generally high degree of pyritization (DTMP, degree of trace metal pyritization, like As, Mo, Co, Ni, etc.) depends on their availability at the site of pyrite formation (e.g. Huerta-Diaz and Morse, 1992). The distribution of trace elements in the bulk rock essentially reflects mineralogical composition and redox conditions which are mainly controlled by the flux of organic matter entering the sediment. The lower and upper Kellwasser horizons are marked by an increase in carbonate and organic carbon content (up to 2%), coupled with an increase in the degree of pyritization of Fe (DOP: 0.4-0.8), indicating a change from normal marine to suboxic/anoxic conditions. A simultaneous drop in the Ba content of the host lithology, which usually is used as a proxy for paleoproductivity, can be explained by the removal of Ba dissolved in pore water under anoxic conditions (McManus et al., 1998). While low in the host rock, the Ba content of authigenic pyrite is high in these horizons, suggesting that pyrite may preserve the initial composition of pore water even for some elements with generally low DTMP, like Ba. Consequently, Ba content in pyrite may serve as indicator for productivity even when the Ba content of sediment can not be used due to its poor preservation. During these anoxic episodes also a significant increase in the content of As, U, V was registered in pyrite. Opposite to these, others like Ni, Co, Ag show a decrease in their

  18. Chemical and sulphur isotope compositions of pyrite in the ...

    Indian Academy of Sciences (India)

    sulphide mineralization and their chemical evo- lution in relative .... properties and chemical compositions. Electron ..... from the sulphide lode provide clues to the chang- ing fluid ..... Raymond O L 1996 Pyrite composition and ore geneis in.

  19. Deposit Formation during Coal-Straw Co-Combustion in a Utility PF-Boiler

    DEFF Research Database (Denmark)

    Andersen, Karin Hedebo

    1998-01-01

    the combustion conditions, including the method of introduction of the straw to the boiler, as well as the amount of Fe introduced as Pyrite with the coal.No significant effect could be found in the deposition probe samples for an increase in probe metal temperature from 540°C to 620°C. The importance of deposit...... area. The evaluation was performed for an opposed-wall fired and tangentially fired boiler, which are compared to the wall-fired MKS1. Two major aspects were evaluated: The effect of flue gas temperatures and the effect of mixing. However, no final recommandation for choise of boilertype can be given...

  20. Trace element mapping of pyrite from Archean gold deposits – A comparison between PIXE and EPMA

    Energy Technology Data Exchange (ETDEWEB)

    Agangi, A., E-mail: aagangi@uj.ac.za [University of Johannesburg, Department of Geology, Auckland Park 2006 (South Africa); Przybyłowicz, W., E-mail: przybylowicz@tlabs.ac.za [Materials Research Department, iThemba LABS, National Research Foundation, Somerset West 7129 (South Africa); AGH University of Science and Technology, Faculty of Physics & Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow (Poland); Hofmann, A., E-mail: ahofmann@uj.ac.za [University of Johannesburg, Department of Geology, Auckland Park 2006 (South Africa)

    2015-04-01

    Chemical zoning of pyrites can record the evolution of mineralising fluids at widely varying P–T conditions ranging from diagenesis to medium-grade metamorphism. If preserved, zoning can reveal growth textures, brecciation and veining, resorption and recrystallisation events, thus shedding light on the processes that contributed to ore formation. Chemical zoning of sulfides is invisible in optical microscopy, but can be studied by chemical etching, high-contrast back-scattering electron images, and elemental imaging. In this study we compared micro-PIXE and WDS-EPMA elemental maps on the chemically zoned pyrites in mineralised vein-bearing samples from the Sheba and Fairview gold mines in the Barberton Greenstone Belt, South Africa. Elemental images show complex distribution of trace elements, suggesting multiple events of pyrite crystallisation and gold deposition. EPMA maps show fine-scale variations reflecting growth and recrystallisation textures marked, in particular, by variations of As, Ni, and Co. In PIXE maps, gold occurs both as finely-distributed and discrete inclusions, suggesting incorporation in the pyrite structure as solid solution, and deposition as electrum inclusions, respectively. Micro-PIXE and EPMA provide complementary information, forming together a powerful tool to obtain information on chemical zoning of pyrites in ore deposits.

  1. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  2. Surface structure-dependent pyrite oxidation in relatively dry and moist air: Implications for the reaction mechanism and sulfur evolution

    Science.gov (United States)

    Zhu, Jianxi; Xian, Haiyang; Lin, Xiaoju; Tang, Hongmei; Du, Runxiang; Yang, Yiping; Zhu, Runliang; Liang, Xiaoliang; Wei, Jingming; Teng, H. Henry; He, Hongping

    2018-05-01

    Pyrite oxidation not only is environmentally significant in the formation of acid mine (or acid rock) drainage and oxidative acidification of lacustrine sediment but also is a critical stage in geochemical sulfur evolution. The oxidation process is always controlled by the reactivity of pyrite, which in turn is controlled by its surface structure. In this study, the oxidation behavior of naturally existing {1 0 0}, {1 1 1}, and {2 1 0} facets of pyrite was investigated using a comprehensive approach combining X-ray photoelectron spectroscopy, diffuse reflectance Fourier transform infrared spectroscopy, and time-of-flight secondary-ion mass spectrometry with periodic density functional theoretical (DFT) calculations. The experimental results show that (i) the initial oxidation rates of both pyrite {1 1 1} and {2 1 0} are much greater than that of pyrite {1 0 0}; (ii) the initial oxidation rate of pyrite {2 1 0} is greater than that of pyrite {1 1 1} in low relative humidity, which is reversed in high relative humidity; and (iii) inner sphere oxygen-bearing sulfur species are originally generated from surface reactions and then converted to outer sphere species. The facet dependent rate law can be expressed as: r{hkl} =k{hkl}haP0.5(t + 1) - 0.5 , where r{hkl} is the orientation dependent reaction rate, k{hkl} is the orientation dependent rate constant, h is the relative humidity, P is the oxygen partial pressure, and t is the oxidation time in seconds. {1 1 1} is the most sensitive facet for pyrite oxidation. Combined with DFT theoretical investigations, water catalyzed electron transfer is speculated as the rate-limiting step. These findings disclose the structure-reactivity dependence of pyrite, which not only presents new insight into the mechanism of pyrite oxidation but also provides fundamental data to evaluate sulfur speciation evolution, suggesting that the surface structure sensitivity should be considered to estimate the reactivity at the mineral

  3. A convenient method for the quantitative determination of elemental sulfur in coal by HPLC analysis of perchloroethylene extracts

    Science.gov (United States)

    Buchanan, D.H.; Coombs, K.J.; Murphy, P.M.; Chaven, C.

    1993-01-01

    A convenient method for the quantitative determination of elemental sulfur in coal is described. Elemental sulfur is extracted from the coal with hot perchloroethylene (PCE) (tetrachloroethene, C2Cl4) and quantitatively determined by HPLC analysis on a C18 reverse-phase column using UV detection. Calibration solutions were prepared from sublimed sulfur. Results of quantitative HPLC analyses agreed with those of a chemical/spectroscopic analysis. The HPLC method was found to be linear over the concentration range of 6 ?? 10-4 to 2 ?? 10-2 g/L. The lower detection limit was 4 ?? 10-4 g/L, which for a coal sample of 20 g is equivalent to 0.0006% by weight of coal. Since elemental sulfur is known to react slowly with hydrocarbons at the temperature of boiling PCE, standard solutions of sulfur in PCE were heated with coals from the Argonne Premium Coal Sample program. Pseudo-first-order uptake of sulfur by the coals was observed over several weeks of heating. For the Illinois No. 6 premium coal, the rate constant for sulfur uptake was 9.7 ?? 10-7 s-1, too small for retrograde reactions between solubilized sulfur and coal to cause a significant loss in elemental sulfur isolated during the analytical extraction. No elemental sulfur was produced when the following pure compounds were heated to reflux in PCE for up to 1 week: benzyl sulfide, octyl sulfide, thiane, thiophene, benzothiophene, dibenzothiophene, sulfuric acid, or ferrous sulfate. A sluury of mineral pyrite in PCE contained elemental sulfur which increased in concentration with heating time. ?? 1993 American Chemical Society.

  4. Combustion characterization of beneficiated coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Levasseur, A.A.

    1995-11-01

    The Pittsburgh Energy Technology Center (PETC) of the U.S. Department of Energy is sponsoring the development of advanced coal-cleaning technologies aimed at expanding the use of the nation`s vast coal reserves in an environmentally and economically acceptable manner. Because of the lack of practical experience with deeply beneficiated coal-based fuels, PETC has contracted Combustion Engineering, Inc. to perform a multi-year project on `Combustion Characterization of Beneficiated Coal-Based Fuels.` The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of Beneficiated Coal-Based Fuels (BCs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs.

  5. Sulfur-oxidizing bacteria dominate the microbial diversity shift during the pyrite and low-grade pyrolusite bioleaching process.

    Science.gov (United States)

    Han, Yifan; Ma, Xiaomei; Zhao, Wei; Chang, Yunkang; Zhang, Xiaoxia; Wang, Xingbiao; Wang, Jingjing; Huang, Zhiyong

    2013-10-01

    The microbial ecology of the pyrite-pyrolusite bioleaching system and its interaction with ore has not been well-described. A 16S rRNA gene clone library was created to evaluate changes in the microbial community at different stages of the pyrite-pyrolusite bioleaching process in a shaken flask. The results revealed that the bacterial community was disturbed after 5 days of the reaction. Phylogenetic analysis of 16S rRNA sequences demonstrated that the predominant microorganisms were members of a genus of sulfur-oxidizing bacteria, Thiomonas sp., that subsequently remained dominant during the bioleaching process. Compared with iron-oxidizing bacteria, sulfur-oxidizing bacteria were more favorable to the pyrite-pyrolusite bioleaching system. Decreased pH due to microbial acid production was an important condition for bioleaching efficiency. Iron-oxidizing bacteria competed for pyrite reduction power with Mn(IV) in pyrolusite under specific conditions. These results extend our knowledge of microbial dynamics during pyrite-pyrolusite bioleaching, which is a key issue to improve commercial applications. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Characterization and evaluation of washability of Alaskan coals: Fifty selected seams from various coal fields: Final technical report, September 30, 1976-February 28, 1986. [50 coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Rao, P.D.

    1986-09-01

    This final report is the result of a study initiated in 1976 to obtain washability data for Alaskan coals, to supplement the efforts of the US Department of Energy in their ongoing studies on washability of US coals. Washability characteristics were determined for fifty coal samples from the Northern Alaska, Chicago Creek, Unalakleet, Nenana, Matanuska, Beluga, Yentna and Herendeen Bay coal fields. The raw coal was crushed to 1-1/2 inches, 3/8 inch, 14 mesh and 65 mesh top sizes, and float-sink separations were made at 1.30, 1.40 and 1.60 specific gravities. A limited number of samples were also crushed to 200 and 325 mesh sizes prior to float-sink testing. Samples crushed to 65 mesh top size were also separated at 1.60 specific gravity and the float and sink products were characterized for proximate and ultimate analyses, ash composition and ash fusibility. 72 refs., 79 figs., 57 tabs.

  7. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. 1. Preliminary experiments in controlled shaken flasks

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, P.R.

    1987-01-01

    Changes of pH and sulfate concentration in high-sulfur coal refuse slurries are used as measurements of microbial pyrite oxidation in the laboratory. Sodium lauryl sulfate (SLS), alkylbenzene sulfonate (ABS), benzoic acid (BZ) and combinations of SLS plus BZ and ABS plus BZ effectively inhibited formation of sulfate and acid when added in concentrations greater than 50 mg/l to inoculated 20 or 30% coal refuse slurries. Here 25 mg/l concentrations of SLS, ABS and ABS plus BZ stimulated acid production. Formic, hexanoic, oxalic, propionic, and pyruvic acids at 0.1% concentrations were also effective inhibitors. Four different lignin sulfonates were only slightly effective inhibitors at 0.1% concentrations. It was concluded that acid formation resulting from microbial oxidation in high-sulfur coal refuse can be inhibited. 22 references.

  8. Thin film preparation of semiconducting iron pyrite

    Science.gov (United States)

    Smestad, Greg P.; Ennaoui, Ahmed; Fiechter, Sebastian; Hofmann, Wolfgang; Tributsch, Helmut; Kautek, Wolfgang

    1990-08-01

    Pyrite (Fe52) has been investigated as a promising new absorber material for thin film solar cell applications because of its high optical absorption coefficient of 1OL cm1, and its bandgap of 0.9 to 1.0 eV. Thin layers have been prepared by Metal Organic Chemical Vapor Deposition, MOCVD, Chemical Spray Pyrolysis, CSP, Chemical Vapor Transport, CVT, and Sulfurization of Iron Oxide films, 510. It is postulated that for the material FeS2, if x is not zero, a high point defect concentration results from replacing 2 dipoles by single S atoms. This causes the observed photovoltages and solar conversion efficiencies to be lower than expected. Using the Fe-O-S ternary phase diagram and the related activity plots, a thermodynamic understanding is formulated for the resulting composition of each of these types of films. It is found that by operating in the oxide portion of the phase diagram, the resulting oxidation state favors pyrite formation over FeS. By proper orientation of the grains relative to the film surface, and by control of pinholes and stoichiometry, an efficient thin film photovolatic solar cell material could be achieved.

  9. Production and planning organization at coal mines. Organizatsiya proizvodstva i planirovanie na ugol'nykh shakhtakh

    Energy Technology Data Exchange (ETDEWEB)

    Rybnikov, S E; Voloshin, A P

    1981-01-01

    A discussion is made of problems concerning the organization of production, labor, and planning at enterprises of the coal industry. Theoretical and methodological principles are given for production organization, standardization and renumeration of wages, production planning and the use of available capacity. Computations are given for optimal numbers of workers, the essential growth in productivity, material expenditures for coal recovery, lowering production costs, and increasing the profitability of enterprise operations. Particular attention is given to the operation of mines of production and associations, organizational and practical problems concerned with the technical retooling of coal mines, and improving management and planning. The teaching aid is intended for students at coal technical institutes specializing in planning at enterprises of the coal industry. 14 references, 26 figures, 14 tables.

  10. Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea

    DEFF Research Database (Denmark)

    Neretin, LN; Bottcher, ME; Jørgensen, BB

    2004-01-01

    Pyritization in late Pleistocene sediments of the Black Sea is driven by sulfide formed during anaerobic methane oxidation. A sulfidization front is formed by the opposing gradients of sulfide and dissolved iron. The sulfidization processes are controlled by the diffusion flux of sulfide from above...... and by the solid reactive iron content. Two processes of diffusion-limited pyrite formation were identified. The first process includes pyrite precipitation with the accumulation of iron sulfide precursors with the average chemical composition of FeSn (n = 1.10-1.29), including greigite. Elemental sulfur...... and polysulfides, formed from H,S by a reductive dissolution of Fe(Ill)-containing minerals, serve as intermediates to convert iron sulfides into pyrite. In the second process, a "direct" pyrite precipitation occurs through prolonged exposure of iron-containing minerals to dissolved sulfide. Methane-driven sulfate...

  11. COAL DERIVED MATRIX PITCHES FOR CARBON-CARBON COMPOSITE MANUFACTURE/PRODUCTION OF FIBERS AND COMPOSITES FROM COAL-BASED PRECURSORS

    Energy Technology Data Exchange (ETDEWEB)

    Peter G. Stansberry; John W. Zondlo

    2001-07-01

    The Consortium for premium Carbon Products from Coal, with funding from the US Department of Energy, National Energy Technology Laboratory continue with the development of innovative technologies that will allow coal or coal-derived feedstocks to be used in the production of value-added carbon materials. In addition to supporting eleven independent projects during budget period 3, three meetings were held at two separate locations for the membership. The first was held at Nemacolin Woodlands Resort on May 15-16, 2000. This was followed by two meetings at Penn State, a tutorial on August 11, 2000 and a technical progress meeting on October 26-27.

  12. 40Ar/39Ar dating of pyrite

    International Nuclear Information System (INIS)

    York, D.; Masliwec, A.; Kuybida, P.; Hanes, J.A.; Hall, C.M.; Kenyon, W.J.; Spooner, E.T.C.; Scott, S.D.

    1982-01-01

    To overcome difficulties encountered in the customary method of determining the age of mineralization of sulphide ore deposits by analysing silicate material, the sulphide minerals themselves have been examined to see if they contained sufficient potassium and argon for 40 Ar/ 39 Ar age determination. Initial results indicate that this is the case for pyrite from the Geco ore body in northwestern Ontario, Canada. (U.K.)

  13. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    International Nuclear Information System (INIS)

    Cravotta, C.A. III

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (< 5-m depth) from sludge-treated spoil (pH 5.9) were not elevated relative to untreated spoil (pH 4.4). In contrast, concentrations of nitrate were elevated in vadose water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only

  14. Technical report on NEDO-conducted Western US steam coal (for power generation and boiler) survey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    The New Energy and Industrial Technology Development Organization (NEDO) conducted studies covering Wyoming, Utah, Colorado, New Mexico, and North Dakota, all in the West. Illinois and Gulf-Texas are also included. The bituminous coal of Utah and Colorado is given the highest priority as coal to be exported to Japan. It is feared, however, that the price of the bituminous coal from these areas may soar if demand increases. As for sub-bituminous coal, its price is far more stable because its reserves are basically limitless. The sub-bituminous coal, however, is not expected to be imported to Japan in the very near future because it is low in calorific power and fails to meet the conditions prerequisite to Japan's boiler fuel. Illinois can receive large orders but its coal contains more sulfur than the Western coal and a longer distance has to be covered for its transportation. As for transportation to the West Cost, freight cars are available and the port capacity can be enlarged dependent on the magnitude of demand for coal. Loading a deep draft bulk ship off shore with coarse coal slurry by pipeline is an attractive scheme. (NEDO)

  15. Technical report on NEDO-conducted Western US steam coal (for power generation and boiler) survey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    The New Energy and Industrial Technology Development Organization (NEDO) conducted studies covering Wyoming, Utah, Colorado, New Mexico, and North Dakota, all in the West. Illinois and Gulf-Texas are also included. The bituminous coal of Utah and Colorado is given the highest priority as coal to be exported to Japan. It is feared, however, that the price of the bituminous coal from these areas may soar if demand increases. As for sub-bituminous coal, its price is far more stable because its reserves are basically limitless. The sub-bituminous coal, however, is not expected to be imported to Japan in the very near future because it is low in calorific power and fails to meet the conditions prerequisite to Japan's boiler fuel. Illinois can receive large orders but its coal contains more sulfur than the Western coal and a longer distance has to be covered for its transportation. As for transportation to the West Cost, freight cars are available and the port capacity can be enlarged dependent on the magnitude of demand for coal. Loading a deep draft bulk ship off shore with coarse coal slurry by pipeline is an attractive scheme. (NEDO)

  16. Degradation of Anthraquinone Dye Reactive Blue 4 in Pyrite Ash Catalyzed Fenton Reaction

    Directory of Open Access Journals (Sweden)

    Milena Becelic-Tomin

    2014-01-01

    Full Text Available Pyrite ash (PA is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4 degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH=2.5; [PA]0=0.2 g L−1; [H2O2]0=5 mM and initial RB4 concentration up to 100 mg L−1. The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes.

  17. Operating experiences with heat-exchanging components of a semi-technical pilot plant for steam gasification of coal using heat from HTR

    International Nuclear Information System (INIS)

    Kirchhoff, R.; Heek, K.H. van

    1984-01-01

    within the framework of the PNP- Project, a semi-technical plant for the development of a process of coal gasification by means of nuclear heat was operated. Here gasification is for the first time implemented in a fluidized bed using heat of an electrically heated helium cycle at pressure up to 40 bar and temperatures normal for HTR. The plant serves for testing and developing various components as immersion heater, insulations, dosing devices, and for compiling sound data for further planning

  18. Issue of fossil fuel resources and coal technology strategy for the 21st century - toward the globalization

    Energy Technology Data Exchange (ETDEWEB)

    Ando, K. [Japan Coal Energy Center, Tokyo (Japan)

    2001-03-01

    The President of the Japan Coal Energy Centre gives an outlook on coal demand worldwide and particularly in Asia as a whole and Japan, and outlines the present day environmental concerns concerning coal. World reserves of coal, petroleum, natural gas and uranium are compared. The huge resources of coal may not be realized due to difficulty of development in both technical and economic terms. The 'triangle strategy' to resolve problems of supply and the environment is outlined - this considers the relationship between resources (supply) and utilization (demand); between resources and environment; and between utilization and environment. Technical tasks to tackle to exploit coal are listed. These include: advance in technology for resource exploration; improvement in refining and storing low-grade coal; establishing a highly efficient mining system; promoting of clean coal technology; recovery of coalbed methane; and CO{sub 2} fixation. 6 figs., 1 tab.

  19. Proceedings of the Second APEC Coal Flow Seminar Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-05

    This proceedings includes papers presented at the Second APEC Coal Flow Seminar held at Shanghai in December, 1995. Three keynote speeches were presented, and two panel discussions were held. `Medium-term outlook for coal trade,` `Energy and the environment,` and `Progress with environmental control technology and technical exchanges between economies` were presented as keynote speeches. In the panel discussions, `Achieving low environmental impact from coal production and utilization` and `How to tackle environmental issues related to coal` were discussed. The Panel 1 was divided into Part 1 and Part 2. In the Part 1, overview of current environmental protection policy measures was discussed in relation to coal production and use in economies where coal consumption has been increasing significantly. In the Part 2, overview of current environmental protection policy measures was discussed in relation to coal production and use in major coal producing and consuming economies. 38 refs., 64 figs., 31 tabs.

  20. National-economic aspects of reducing coal production in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, M. (Otbor Statni Spravy pro Uhelny Prumysl MHPR CR, Prague (Czechoslovakia))

    1992-10-01

    Analyzes the planned decrease in coal output of Czechoslovakia by the year 2000 and its effects. The following aspects are evaluated: decreasing coal output of Czechoslovakia in comparison to coal output decline in the United Kingdom and FRG in 1980-1990, output of brown and black coal of Czechoslovakia in the period from 1970 to 1991, planned decrease in coal output of Czechoslovakia (influenced by resource depletion, negative effects of coal combustion on the environment, declining demand for energy of the national economy caused by transformation of a command economy into a market one, discontinuation of state subsidies of the coal industry), the situation in individual coal basins of Czechoslovakia, closing coal mines (names of coal mines and closure date), economic aspects of mine closure (social cost, cost of alternative energy sources, cost of technical mine closure), effects of decreasing coal combustion on environmental pollution in Czechoslovakia.

  1. Mineralization and trace element distribution in pyrite using EMPA in exploration drill holes from Cheshmeh Zard gold district, Khorasan Razavi Province, Iran

    Directory of Open Access Journals (Sweden)

    Zahra Alaminia

    2015-10-01

    Full Text Available Introduction Pyrite is the most abundant sulfide mineral in low sulfidation ore deposits. Experimental studies have shown that low-temperature ( 200°C from hydrothermal or metamorphic fluids (Butler and Rickard, 2000. Framboidal pyrite mostly occurs in sedimentary environments, though it could also form during metamorphism and hydrothermal alteration (Scott et al., 2009. The pyrite formed tends to be enriched in various trace elements such as Au and As. For this study we have combined the geology, alteration, mineralization with recent studies of the description of the deposit from core logging and underground mapping and geochemistry in the CheshmehZard gold district and also investigated the compositional variation and textural differences between pyrite types. This study is based on the results of our alteration and mineralization mapping and detailed logging of 1937.8 m of drill core. Materials and Methods Geology, hydrothermal alteration and mineralization were examined in drill holes along several cross sections. Host-rock alteration minerals and veins were determined for 11 samples using standard X-ray diffraction (XRD and X-ray fluorescence spectrometry (XRF techniques. Polished sections were studied by reflected light microscopy and backscattered electron images (BSE. In this study, the trace-element composition of pyrite samples from the Au-III vein system was obtained using electron microprobe analyzer (EMPA data. All analyseswere carried out at the department of Materials Engineering and Physics of the University of Salzburg in Austria. The EMPA measurements and BSE imaging were made using a JXA-8600 electron microprobe. Spot analyses of 30 pyrite grains from CheshmehZard are given in Table 1. Results The study area is located in the north of Khorasan Razavi Province 45 km to the south of Neyshabour. The area near CheshmehZard could become important as a site of economically significant gold mineralization. Six gold-bearing vein

  2. Proceedings of the Clean and Efficient Use of Fossil Energy for Power Generation in Thailand. The Joint Eighth APEC Clean Fossil Energy Technical Seminar and the Seventh APEC Coal Flow Seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-30

    The convention named above held jointly by the two seminars also named above took place in Bangkok, Thailand, in the period October 30 through November 3. Open remarks were delivered by Mr. Piromsakdi Laparojkit, Secretary General of National Energy Policy Council, Thailand; Mr. Yoshito Yoshimura, Ministry of International Trade and Industry, Japan; Mr. Paul Toghe, Embassy of Australia in Bangkok; and Mr. Robert Gee, Department of Energy, U.S.A. There were ten technical sessions, in which presentations were made and discussion was held over coal in the APEC (Asia-Pacific Economic Cooperation Conference) economy, important role of coal and natural gas in developing economies, coal and environmental situation in Thailand, coal fired power plant related environmental issues, commercially available CCTs (clean coal technologies) in the APEC region, emerging technologies for reducing GHG (greenhouse gas) emissions, clean fuels in the APEC region, growing importance of IPPs (independent power producers) in the APEC region, cooperation among APEC economies, and the like. (NEDO)

  3. Economical Optimization of the Mechanized Longwall Faces with Top Coal Caving Mining, In Horizontal Slices

    Science.gov (United States)

    Onica, Ilie; Mihăilescu, Viorel; Andrioni, Felicia

    2016-09-01

    To increase the economic and technical performances of the Jiu Valley hard coal mines, the top coal caving, in horizontal slices, mining methods (Bourbaki methods) were introduced, adapted to the local geo-mining conditions. This mining was successfully experimented by using classical technology, using the individual supports and coal blasting. In the future, it is planned to adopt the mechanized technology, with frame supports and shearers. The mechanized longwall faces with top coal caving mining, in horizontal slices, of coal seam no. 3 could be efficient only if the sizes of the top coal height and the panel length determine a minimum cost of production. Therefore, the goal of this paper is the optimization of these parameters, from a technical and economic point of view, taking into account the general model of the cost function, at the panel level. For that, it was necessary to make a certain sequence of analysis involving: technological unit establishment, purpose function and optimizing model. Thus, there attaining to the mathematical model of the unit cost, after determination of all the individual calculation articles, regarding the preparatory workings, coal face equipments, materials, energy, workforce, etc. Because of the complexity of the obtained technical and economic model, to determine the optimum sizes of the panel length and top coal height, it was necessary to archive a sensitivity analysis of the unit cost function to the main parameters implied into this mathematical model.

  4. Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  5. Toxic substances from coal combustion -- A comprehensive assessment

    Energy Technology Data Exchange (ETDEWEB)

    Senior, C.L.; Huggins, F.E.; Huffman, G.P.; Shan, N.; Yap, N.; Wendt, J.O.L.; Seames, W.; Ames, M.R.; Sarofim, A.F.; Swenson, S.; Lighty, J.; Kolker, A.; Finkelman, R.; Palmer, C.; Mroczkowski, S.; Helble, J.; Mamani-Paco, R.; Sterling, R.; Dunham, G.; Miller, S.

    2000-08-17

    The final program review meeting of Phase II was held on June 22 in Salt Lake City. The goals of the meeting were to present work in progress and to identify the remaining critical experiments or analyses, particularly those involving collaboration among various groups. The information presented at the meeting is summarized in this report. Remaining fixed bed, bench-scale experiments at EERC were discussed. There are more ash samples which can be run. Of particular interest are high carbon ash samples to be generated by the University of Arizona this summer and some ash-derived sorbents that EERC has evaluated on a different program. The use of separation techniques (electrostatic or magnetic) was also discussed as a way to understand the active components in the ash with respect to mercury. XAFS analysis of leached and unleached ash samples from the University of Arizona was given a high priority. In order to better understand the fixed bed test results, CCSEM and Moessbauer analyses of those ash samples need to be completed. Utah plans to analyze the ash from the single particle combustion experiments for those major elements not measured by INAA. USGS must still complete mercury analyses on the whole coals and leaching residues. Priorities for further work at the SHRIMP-RG facility include arsenic on ash surfaces and mercury in sulfide minerals. Moessbauer analyses of coal samples from the University of Utah were completed; samples from the top and bottom layers of containers of five different coals showed little oxidation of pyrite in the top relative to the bottom except for Wyodak.

  6. Unpacking paleoenvironmental change across OAE2 using paired d34S records of pyrite and organic matter

    Science.gov (United States)

    Raven, M. R.; Gomes, M.; Fike, D. A.

    2017-12-01

    Pyrite sulfur isotopes have proven to be a powerful tool for reconstructing major changes in global redox state and the emergence of microbial metabolisms. Still, pyrite can be a challenging archive, as its formation depends on the availability of reactive iron species and can occur over multiple generations of sedimentary processes. Accordingly, pyrite δ34S records commonly have large point-to-point variability reflecting local processes. By pairing pyrite δ34S records with those of coexisting organic matter (OM), including both kerogens and extractable bitumens, we can begin to parse the various potential causes of this variability and gain greater insights into changes in the sedimentary paleoenvironment. Here, we present the first collection of records of OM δ34S for the Cretaceous, focusing on sections spanning Ocean Anoxic Event 2 (OAE2, 94 Mya), a period of globally widespread marine anoxia and carbon cycle disruption. In carbonates and shales from OAE2 in Pont d'Issole, France, pyrite and OM δ34S values vary in parallel throughout most of the section, consistent with their shared sulfide source. There are also distinct exceptions: In one interval, an excursion in pyrite δ34S is entirely absent from the organic sulfur record but associated with unusual organic sulfur redox speciation (by XAS), potentially reflecting later exposure to oxic porewaters. Across the core interval of shale deposition during OAE2, the offset between pyrite and OM δ34S values declines smoothly from +17.4 to -7.9‰, which we interpret in terms of changes in the speciation of detrital iron minerals that may have regional implications. We then compare these results with data for other well-characterized OAE2 sections, including Cismon (Italy), Tarfaya (Morocco), and the Demerara Rise (offshore Brazil), which represent environments with a variety of apparent redox states. These paired pyrite - OM δ34S profiles yield new information about how the local and global forcings

  7. FY 2000 international exchange project on exchanges of engineers - Coal mine technology field. Overseas workshop (China); 2000 nendo gijutsusha koryu jigyo (tanko gijutsu bun'ya) kokusai koryu jigyo. Kaigai workshop (Chugoku)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of making technical exchanges with coal mine related engineers in China and surveying levels of coal production technology and the needs in China and possibilities of technology transfer from Japan, workshop was held and technical tours were made. On December 13, 2000, a workshop was held in China which was named 'Japan-China Joint Coal Project Workshop: Environment/Production/Security.' Participants were 112 including 16 from Japan and 96 from China. Subjects were as follows: subjects on coal resource and technical strategy in the 21st century, technical exchange project and technical development, Japan-China technical cooperation project, report on the operational situation of China Coal Industry Environmental Preservation Safety Training Center, Japan-China Joint Project on spontaneous combustion prevention technology, CMG recovery/utilization system joint demonstration project, Japan-China joint coal exploration project, Japan-China coal field geology joint exploration project, etc. (NEDO)

  8. Electrochemical Properties for Co-Doped Pyrite with High Conductivity

    Directory of Open Access Journals (Sweden)

    Yongchao Liu

    2015-09-01

    Full Text Available In this paper, the hydrothermal method was adopted to synthesize nanostructure Co-doped pyrite (FeS2. The structural properties and morphology of the synthesized materials were characterized using X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. Co in the crystal lattice of FeS2 could change the growth rate of different crystal planes of the crystal particles, which resulted in various polyhedrons with clear faces and sharp outlines. In addition, the electrochemical performance of the doping pyrite in Li/FeS2 batteries was evaluated using the galvanostatic discharge test, cyclic voltammetry and electrochemical impedance spectroscopy. The results showed that the discharge capacity of the doped material (801.8 mAh·g−1 with a doping ratio of 7% was significantly higher than that of the original FeS2 (574.6 mAh·g−1 because of the enhanced conductivity. Therefore, the doping method is potentially effective for improving the electrochemical performance of FeS2.

  9. Retort for distilling coal oil

    Energy Technology Data Exchange (ETDEWEB)

    Gibbon, J

    1865-12-20

    The construction of a retort for extracting or distilling coal oil or other products from cannel coal, shale, or schist, and more particularly of small coal or dust technically called slack, consists in applying self-acting feed and discharge apparatus to a revolving cylindrical wrought or cast iron retort, and constructing the inner surface of the cylindrical retort with a projecting ridge which encircles the interior of the retort in a spiral manner, the same as the interior of a female screw, and the ridge may be either cast upon or riveted on the internal surface, and is so arranged to cause the material to be operated upon to advance from one end of the retort to the other, as the retort revolves by following the course of the spiral screw or worm formed by the projecting ridge.

  10. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  11. Oxygen isotope evidence for sorption of molecular oxygen to pyrite surface sites and incorporation into sulfate in oxidation experiments

    International Nuclear Information System (INIS)

    Tichomirowa, Marion; Junghans, Manuela

    2009-01-01

    Experiments were conducted to investigate (i) the rate of O-isotope exchange between SO 4 and water molecules at low pH and surface temperatures typical for conditions of acid mine drainage (AMD) and (ii) the O- and S-isotope composition of sulfates produced by pyrite oxidation under closed and open conditions (limited and free access of atmospheric O 2 ) to identify the O source/s in sulfide oxidation (water or atmospheric molecular O 2 ) and to better understand the pyrite oxidation pathway. An O-isotope exchange between SO 4 and water was observed over a pH range of 0-2 only at 50 deg. C, whereas no exchange occurred at lower temperatures over a period of 8 a. The calculated half-time of the exchange rate for 50 deg. C (pH = 0 and 1) is in good agreement with former experimental data for higher and lower temperatures and excludes the possibility of isotope exchange for typical AMD conditions (T ≤ 25 deg. C, pH ≥ 3) for decades. Pyrite oxidation experiments revealed two dependencies of the O-isotope composition of dissolved sulfates: O-isotope values decreased with longer duration of experiments and increasing grain size of pyrite. Both changes are interpreted as evidence for chemisorption of molecular O 2 to pyrite surface sites. The sorption of molecular O 2 is important at initial oxidation stages and more abundant in finer grained pyrite fractions and leads to its incorporation in the produced SO 4 . The calculated bulk contribution of atmospheric O 2 in the dissolved SO 4 reached up to 50% during initial oxidation stages (first 5 days, pH 2, fine-grained pyrite fraction) and decreased to less than 20% after about 100 days. Based on the direct incorporation of molecular O 2 in the early-formed sulfates, chemisorption and electron transfer of molecular O 2 on S sites of the pyrite surface are proposed, in addition to chemisorption on Fe sites. After about 10 days, the O of all newly-formed sulfates originates only from water, indicating direct interaction

  12. Simulated aerobic pedogenesis in pyritic overburden with a positive acid-base account

    Energy Technology Data Exchange (ETDEWEB)

    Doolittle, J.J.; Hossner, L.R.; Wilding, L.P. (South Dakota State University, Brookings, SD (United States). Dept. of Plant Science)

    Reclamation of surface-mined land is often hindered by the excess salts and acidity produced by the weathering of pyritic overburden. This study was conducted to document the initial transformations that occur when pyritic overburden containing excess acid neutralizing potential is used as parent material in minesoil construction. An overburden containing 0.8% FeS[sub 2] (pyrite) and 1.6% inorganic carbonate (predominantly dolomite) was collected from the highwall of an active lignite surface mine in Panola County, Texas. The overburden was lightly crushed through a 13-mm sieve and packed into three replicate lysimeters (0.75 by 0.75 by 1.2 m). The lysimeters were leached monthly with 63.5 mm of deionized water for 24 mo. The initial material had a pH of 8.3 and an excess acid neutralizing potential. Progressive FeS[sub 2] oxidation released H[sub 2]SO[sub 4], and the pH decreased to 6.8. The dolomite dissolved, neutralizing the acidity, with subsequent release of Ca and Mg ions into solution. Leachate Ca[sup 2+] and SO[sub 4][sup 2-] concentrations exceeded the ion activity product of gypsum in the lower 60 cm of the lysimeters. Thin-section analysis revealed that gypsum crystals precipitated along margins of residual pyrite particles and in conductive vughs and channels. The continued accumulation of gypsum in minesoil development could eventually lead to the formation of a gypsic or a petrogypsic horizon. A restrictive layer such as this would decrease vertical movement of water and O[sub 2] which would reduce vegetative growth, increase runoff and erosion, and thus increase the probability of reclamation failure.

  13. Panorama 2010: World coal resources

    International Nuclear Information System (INIS)

    Bessereau, G.; Saniere, A.

    2010-01-01

    At a time when the international community must face the key challenges posed by global warming as well as sustainability in general and many of our fellow citizens have come to look unfavorably upon fossil energies, the world is still heavily dependent on these energies to cover growing global energy demand. With proved reserves equivalent to more than 120 years at the present rate of extraction, with a better worldwide geographical distribution than petroleum, coal seems like an especially secure energy. While the renewable energies are showing rapid growth but still only represent a small proportion of the world energy mix, coal was the energy whose consumption grew at the fastest rate and for the sixth consecutive year. This gives cause for concern when one realizes that coal is also the most environmentally harmful energy at local level (its extraction generates pollution) and globally (its combustion emits CO 2 ). So how is it possible to reconcile the apparently irreconcilable, especially when, in some countries, coal represents the bulk of the energy resources? Since it is impossible to do without coal, the solution is to develop new 'clean coal' technologies, among which the capture and storage of CO 2 looks like a promising pathway. In the process, it will be necessary to overcome major technical, economic and social challenges. (author)

  14. Combustion and emissions characterization of pelletized coal fuels. Technical report, December 1, 1992--February 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, S. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes

    1993-05-01

    The aim of this project is to demonstrate that sorbent-containing coal pellets made from low grade coal or coal wastes are viable clean burning fuels, and to compare their performance with that of standard run-of-mine coal. Fuels to be investigated are: (a) carbonated pellets containing calcium hydroxide sorbent, (b) coal fines-limestone pellets with cornstarch as binder, (c) pellets made from preparation plant recovered coal containing limestone sorbent and gasification tar as binder, and (d) a standard run-of-mine Illinois seam coal. The fuels will be tested in a laboratory scale 411 diameter circulating fluidized bed combustor. Progress this quarter has centered on the development of a hydraulic press based pellet mill capable of the high compaction pressures necessary to produce the gasification tar containing pellets outlined in (c) above. Limited quantities of the pellets have been made, and the process is being fine tuned before proceeding into the production mode. Tests show that the moisture content of the coal is an important parameter that needs to be fixed within narrow limits for a given coal and binder combination to produce acceptable pellets. Combustion tests with these pellet fuels and the standard coal are scheduled for the next quarter.

  15. Presentations from the 1992 Coal Mining Impoundment Informational Meeting

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    On May 20 and 21, 1992, the MSHA Coal Mining Impoundment Informational Meeting was held at the National Mine Health and Safety Academy in Beckley, West Virginia. Fifteen presentations were given on key issues involved in the design and construction of dams associated with coal mining. The attendees were told that to improve the consistency among the plan reviewers, engineers from the Denver and Pittsburgh Technical Support Centers meet twice annually to discuss specific technical issues. It was soon discovered that the topics being discussed needed to be shared with anyone involved with coal waste dam design, construction, or inspection. The only way to accomplish that goal was through the issuance of Procedure Instruction Letters. The Letters present a consensus of engineering philosophy that could change over time. They do not present policy or carry the force of law. Currently, thirteen position papers have been disseminated and more will follow as the need arises. The individual paper were not even entered into the database.

  16. Gelatin/DMSO. A new approach to enhancing the performance of a pyrite electrode in a lithium battery

    Energy Technology Data Exchange (ETDEWEB)

    Montoro, L.A.; Rosolen, J.M. [Department of Chemistry, FFCLRP-University of Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2003-04-01

    We have studied the electrochemical behavior of natural pyrite (FeS{sub 1.9}, n-type semiconductor) treated nonaqueously with dimethylsulfoxide (DMSO) solvent and also with a gelatin/DMSO solution. Composite electrodes (comprised of pyrite, polyvinilidene fluoride, polyethylene oxide and carbon) were characterized in a lithium cell at room temperature by cyclic voltammetry and galvanostatic measurements; the electrolyte used was LiPF{sub 6} in a solution of ethylene carbonate and dimethyl carbonate (1 mol l{sup -1}). The gelatin/DMSO treatment greatly improved the reversible specific capacity of a pyrite electrode. For galvanostatic discharge/charge at a current density of 0.4 mA cm{sup -2} and between voltage limits of 3.2 and 1.1 V, its reversible specific capacity at the 15th cycle equaled 275 mA h g{sup -1}, an impressive value compared to less than 25 mA h g{sup -1} for a pristine pyrite electrode.

  17. Predicting the market penetration of the next generation of coal-fired technologies

    International Nuclear Information System (INIS)

    Guha, M.K.; McCall, G.W.

    1990-01-01

    This paper discusses what role clean coal-fired technology will have in future generating capacity based on availability and prices of coal and natural gas, the nuclear option, environmental regulations, limitations of current air pollution control technologies, and economics. The topics of the paper include the need for new electric generating capacity, why coal must remain a source of energy for generating electricity, technology effectiveness and market penetration analysis methodologies, coal-fired technology economic and technical assumptions, cost estimates, and high and low growth scenarios

  18. Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants

    Directory of Open Access Journals (Sweden)

    Carolina Gil-Lozano

    2014-06-01

    Full Text Available The Fenton reaction is the most widely used advanced oxidation process (AOP for wastewater treatment. This study reports on the use of pyrite nanoparticles and microparticles as Fenton reagents for the oxidative degradation of copper phthalocyanine (CuPc as a representative contaminant. Upon oxidative dissolution in water, pyrite (FeS2 particles can generate H2O2 at their surface while simultaneously promoting recycling of Fe3+ into Fe2+ and vice versa. Pyrite nanoparticles were synthesized by the hot injection method. The use of a high concentration of precursors gave individual nanoparticles (diameter: 20 nm with broader crystallinity at the outer interfaces, providing a greater number of surface defects, which is advantageous for generating H2O2. Batch reactions were run to monitor the kinetics of CuPc degradation in real time and the amount of H2O2. A markedly greater degradation of CuPc was achieved with nanoparticles as compared to microparticles: at low loadings (0.08 mg/L and 20 h reaction time, the former enabled 60% CuPc removal, whereas the latter enabled only 7% removal. These results confirm that the use of low concentrations of synthetic nanoparticles can be a cost effective alternative to conventional Fenton procedures for use in wastewater treatment, avoiding the potential risks caused by the release of heavy metals upon dissolution of natural pyrites.

  19. Investigating the formation of acid mine drainage of Toledo pyrite concentrate using column cells

    Science.gov (United States)

    Aguila, Diosa Marie

    2018-01-01

    Acid mine drainage (AMD) is an inevitable problem in mining and has adverse effects in water quality. Studying AMD formation will be valuable in controlling the composition of mine waters and in planning the rehabilitation method for a mine. In this research, kinetics of AMD formation of Toledo pyrite was studied using two column experiments. The mechanisms of AMD formation and the effects of various factors on pH drop were first studied. Another column test was done for validation and to study the role of Fe2+/Fe3+ ratio in the change of leachate pH. The first experiment revealed that time and particle size are the most significant factors. It was also observed that the sudden pH drop during the starting hours was due to cracks formed from beneficiation, and the formation of Fe(OH)3. The laddered behavior of pH thereafter was due to decrease in formation of Fe(OH)3, and the precipitates in pyrite surface that lowered the surface area available for pyrite oxidation. The results of the second experiment validated the laddered behavior of pH. It was also observed that particle size distribution and pyrite surface were affected by the change in pH. Fe2+/Fe3+ ratio of leachate generally decreased as pH dropped.

  20. Collaborative Studies for Mercury Characterization in Coal and Coal Combustion Products, Republic of South Africa

    Science.gov (United States)

    Kolker, Allan; Senior, Constance L.; van Alphen, Chris

    2014-12-15

    Mercury (Hg) analyses were obtained for 42 samples of feed coal provided by Eskom, the national electric utility of South Africa, representing all 13 coal-fired power stations operated by Eskom in South Africa. This sampling includes results for three older power stations returned to service starting in the late 2000s. These stations were not sampled in the most recent previous study. Mercury concentrations determined in the present study are similar to or slightly lower than those previously reported, and input Hg for the three stations returned to service is comparable to that for the other 10 power stations. Determination of halogen contents of the 42 feed coals confirms that chlorine contents are generally low, and as such, the extent of Hg self-capture by particulate control devices (PCDs) is rather limited. Eight density separates of a South African Highveld (#4) coal were also provided by Eskom, and these show a strong mineralogical association of Hg (and arsenic) with pyrite. The density separates were used to predict Hg and ash contents of coal products used in South Africa or exported. A suite of 48 paired samples of pulverization-mill feed coal and fly ash collected in a previous (2010) United Nations Environment Programme-sponsored study of emissions from the Duvha and Kendal power stations was obtained for further investigation in the present study. These samples show that in each station, Hg capture varies by boiler unit and confirms that units equipped with fabric filters for air pollution control are much more effective in capturing Hg than those equipped with electrostatic precipitators. Apart from tracking the performance of PCDs individually, changes resulting in improved mercury capture of the Eskom fleet are discussed. These include Hg reduction through coal selection and washing, as well as through optimization of equipment and operational parameters. Operational changes leading to increased mercury capture include increasing mercury

  1. System applications CRC -Biomass + Coal; Aplicaciones Sistema CRC-Biomasa+Carbon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Main object of Phase I of the project is to analyse the technical-economic feasibility of the combined use of biomass and coal for power generation in the Spanish region of Andalusia, by means of new medium-size independent power plants or using biomass as supplementary fuel in existing large coal power plants, including: -Analysis and classification of biomass and coal resources in the region -Technical-economic study of conventional alternatives using the steam cycle -Analysis of efficiency improvement provided by advanced Rankine-cycle technologies, like the SMR cycle -Analysis of alternatives based on parallel combined cycles using gas turbines, including advanced solutions, like the EAPI and CRC-EAPI systems. -Description and evaluation of different biomass drying systems. -Description and evaluation of the three main biomass gasification systems currently under development: atmospheric direct, atmospheric indirect and pressurized. Main objects of Phase II of the project are to analyse a specific application of the EAPI system to a real cogeneration plant project and to analyse the application of the CRC2 system to a commercial supercritical power plant, including technical-economic study of both applications. (Author)

  2. Bioleaching of low grade uranium ore containing pyrite using A. ferrooxidans and A. thiooxidans

    International Nuclear Information System (INIS)

    Alexey Borisovich Umanskii; Anton Mihaylovich Klyushnikov

    2013-01-01

    A process of uranium extraction from ore containing 3.1 % pyrite by bacterial leaching was investigated in shaken flasks during 90 days. The highest uranium recovery amounting to 85.1 % was obtained using binary mixture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans that was exceeding results obtained by traditional acid leaching technique up to 27 %. High uranium recovery was founded to be due to the high degree of pyrite dissolution that can be readily achieved by bacterial leaching (up to 98.0 %). (author)

  3. Report on the FY 1989 potential survey of overseas coal development. Coal fields in Indonesia; 1989 nendo kaigaitan kaihatsu kanosei chosa hokokusho. Indonesia kyowakoku kaku tanden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-12-01

    This survey is aimed at acquiring the basic data required for judging a possibility of development/import of steam coal in Indonesia (west of Java, north of Sumatra and west of Sumatra). Areas for survey are Meulaboh coal field in north Sumatra, Ombilin III area in West Sumatra, and Bayah coal field in West Java. The survey includes the field survey to grasp the situation of coal seam existence, coal quality, coal amount, etc. and activities for collecting the related data and information from the organizations concerned. The Meulaboh coal field has a technical possibility of open pit mining of medium scale. However, the heating value is extremely low, around 4,300 kcal/kg. Judging from this coal quality, there is no possibility of exporting it. It can be said that Ombilin coal is the world's top class steam coal. Accordingly, the demand can be expected both in export use and domestic use. As to Bayah coal, Bemmelen (1949) concluded that the coal was extremely excellent in quality, but had great disadvantages such as thin coal seam, discontinuity, and complicated geological structure. To date, the conclusion has been unchanged. (NEDO)

  4. Technical surveys on MHD combustors. Surveys on incorporation of pressurized coal partial combustion furnaces; MHD combustor gijutsu chosa. Kaatsugata sekitan bubun nenshoro no donyu chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    The pressurized coal partial combustion (PCPC) furnace is surveyed/studied for its incorporation in MHD generation. The technical development of the atmospheric CPC has been basically completed, and the concept is demonstrated using a test system of commercial size. Many techniques developed for the atmospheric CPC are applicable to the PCPC system. These include structures of the CPC furnace walls, and slag handling and simulation techniques. Combination of PFBC with PCPC or IGCC can bring about many merits, e.g., enhanced efficiency and abated NOx emissions for the combined cycle power generation. These topping cycles, therefore, should be developed in the early stage. MHD power generation is one of the concepts that can enhance efficiency. In particular, the techniques for closed cycle MHD generation have notably advanced recently. The PCPC techniques are useful for coal combustors for MHD generation. Full-scale development works for the direct coal combustion gas turbine systems have been just started for the IGCC systems of the next generation, and the PCPC-related techniques are expected to serve as the central techniques for these turbine systems. (NEDO)

  5. Element geochemistry and cleaning potential of the No. 11 coal seam from Antaibao mining district

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.F.; Qin, Y.; Song, D.Y.; Sang, S.X.; Jiang, B.; Zhu, Y.M.; Fu, X.H. [China University of Mining & Technology, Xuzhou (China). College for Resources & Geoscience

    2005-12-15

    Based on the analyses of sulfur and 41 other elements in 8 channel samples of the No. 11 coal seam from Antaibao surface mine, Shanxi, China and 4 samples from the coal preparation plant of this mine, the distribution of the elements in the seam profile, their geochemical partitioning behavior during the coal cleaning and the genetic relationships between the both are studied. The coal-forming environment was probably invaded by sea water during the post-stage of peatification, which results in the fact that the contents of As, Fe, S, etc. associated closely with sea water tend to increase toward the top of the seam. These elements studied are dominantly associated with kaolinite, pyrite, illite, montmorillonite, etc., of which the As, Pb, Mn, Cs, Co, Ni, etc. are mainly associated with sulfides, the Mo, V, Nb, Hf, REEs, Ta etc. mainly with kaolinite, the Mg, Al etc. mainly with epigenetic montmorillonite, and the Rb, Cr, Ba, Cu, K, Hg, etc. mainly with epigenetic illite. The physical coal cleaning is not only effective in the removal of ash and sulfur, but also in reducing the concentration of most major and trace elements. The elements Be, U, Sb, W, Br, Se, P, etc. are largely or partly organically bound showing a relatively low removability, while the removability of the other elements studied is more than 20%, of which the Mg, Mn, Hg, Fe, As, K, AI, Cs, and Cr associated mostly with the coarser or epigenetic minerals show a higher removability than that of ash. The distribution of the elements in the seam profile controls their partitioning behavior to a great degree during the coal cleaning processes.

  6. Mobilisation and attenuation of boron during coal mine rehabilitation, Wangaloa, New Zealand

    International Nuclear Information System (INIS)

    Craw, D.; Rufaut, C.G.; Haffert, L.; Todd, A.

    2006-01-01

    Environmental mobility and fate of boron has been traced from source to discharge waters through the rehabilitated Wangaloa coal mine in southern New Zealand. The boron is derived initially from coal, which has up to 450 mg/kg B. The coal also contains pyrite (2-5 wt.% S), which oxidizes to yield a low-pH environment (typical pH 2-5). Weathering of coal-bearing waste rock liberates B into rainwater that infiltrates into waste rock or evaporates to leave a gypsum crust enriched in B, possibly as boric acid or colemanite as inferred from geochemical modelling. Surface waters dissolve this evaporative material periodically, yielding total B concentrations up to 6 mg/L, at pH<4.5. Some of the available B is taken up by plants that have been established on the waste rock, resulting in foliage B concentrations of up to 230 mg/kg (dry weight). Partial attenuation of dissolved B by adsorption to iron oxyhydroxide occurs as groundwater passes through waste rock, but this is inhibited by adsorption competition with dissolved sulphate (up to 600 mg/L). Groundwater flows from the mine through a pit lake and wetland, with total dissolved B near 1 mg/kg after dilution and limited adsorption attenuation has occurred. Despite the widespread B mobility throughout the rehabilitated mine, there is little evidence of B toxicity in plants. The B concentrations in discharging waters are in the environmentally safe range for most aquatic organisms, being neither deficient in B as a micronutrient, nor boron-toxic. (author)

  7. Transformation of sulfur during pyrolysis and hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Yang, J.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). Inst. of Coal Chemistry

    1998-05-01

    It is reported that the transformation of sulfur during pyrolysis (Py) under nitrogen and hydropyrolysis (HyPy) of Chinese Yanzhou high sulfur bituminous coal and Hongmiao lignite was studied in a fixed-bed reactor. The volatile sulfur-containing products were determined by gas chromatography with flame photometric detection. The sulfur in initial coal and char (mainly aliphatic and thiophenic sulfur forms) was quantitatively analyzed using X-ray photoelectron spectroscopy (XPS). The desulfurization yield was calculated by elemental analysis. The main volatile sulfur-containing gas was H{sub 2}S in both Py and HyPy. Both the elemental analysis and XPS results indicated that more sulfur was removed in HyPy than in Py under nitrogen. Thiophenic sulfur can be partially hydrogenated and removed in HyPy. Pyrite can be reduced to a ferrous sulfide completely even as low as 400{degree}C in HyPy while in Py the reduction reaction continues up to 650{degree}C. Mineral matter can not only fix H{sub 2}S produced in Py and HyPy to form higher sulfur content chars but also catalyses the desulfurization reactions to form lower sulfur content tars in HyPy. 24 refs., 8 figs., 4 tabs.

  8. Acid-base properties of a limed pyritic overburden during simulated weathering

    Energy Technology Data Exchange (ETDEWEB)

    Doolittle, J.J.; Hossner, L.R. [South Dakota State University, Brookings, SD (United States). Plant Science Dept.

    1997-11-01

    Surface-mine reclamation is often hindered by the formation of acid mine soil and acid mine drainage from FeS{sub 2} oxidation. Surface soils containing FeS{sub 2} are often treated with crushed limestone (predominately CaCO{sub 3}) to prevent aid minesoil formation. The main objective of this study was to evaluate the long-term effectiveness of liming pyritic minesoil to prevent the formation of acid minesoil and acid mine drainage. Pyritic minesoils that did not receive lime became acidic very rapidly and produced acidic leachate. Almost all of the FeS{sub 2} in this treatment oxidized during the first 200 d. The addition of lime at a rate of 25% of the theoretical acid-base account (ABA) significantly slowed FeS{sub 2} oxidation, but rapid oxidation ensued after the added lime was neutralized. Treatments receiving a liming rate of 50% ABA or greater remained neutral to alkaline throughout the study. Acid-base values and residual FeS{sub 2}-CO{sub 3} data, however, indicate that the lime was dissolving from the system faster than the FeS{sub 2} was oxidizing, and all the treatments would eventually become acidic. The results indicate that the liming of a pyritic overburden to an ABA of 125% is not a sustainable solution to preventing acid minesoil and acid mine drainage. 25 refs., 6 figs., 3 tabs.

  9. Terrestrial sedimentary pyrites as a potential source of trace metal release to groundwater – A case study from the Emsland, Germany

    International Nuclear Information System (INIS)

    Houben, Georg J.; Sitnikova, Maria A.; Post, Vincent E.A.

    2017-01-01

    Pyrite is a common minor constituent of terrestrial freshwater sediments and a sink for trace elements. Different amounts and morphological types (framboids and euhedral crystals) of sedimentary pyrites were found in the heavy mineral fraction of cores obtained from several drillholes located in the Emsland region, NW Germany. Their trace element contents were investigated to assess their potential for groundwater contamination after oxidation, e.g. induced by dewatering or autotrophic denitrification. Nickel, arsenic and cadmium were found in significant concentrations in pyrite. Geochemical modeling showed that elevated trace metal concentrations in groundwater, potentially exceeding drinking water standards, should preferentially occur in a less than 1 m thick zone situated around the depth of the redoxcline, where nitrate is reduced by pyrite. This was confirmed by depth-specific groundwater sampling in the Emsland and by previously published studies. The absolute concentration of released trace metals depends on their content in the pyrite but also strongly on the nitrate load of groundwater. - Highlights: • Pyrite from heavy mineral fraction of aquifer sediment analyzed for trace metal content. • Pyrites contain significant concentration of trace metals, such as nickel, arsenic, cadmium. • Trace elements are released by autotrophic denitrification. • Reactive transport model predicts small zone of trace element accumulation. • Release of trace elements strongly dependent on nitrate content of groundwater.

  10. Correlation of Surface Adsorption and Oxidation with a Floatability Difference of Galena and Pyrite in High-Alkaline Lime Systems.

    Science.gov (United States)

    Niu, Xiaopeng; Ruan, Renman; Xia, Liuyin; Li, Li; Sun, Heyun; Jia, Yan; Tan, Qiaoyi

    2018-02-27

    When it comes to Pb-Zn ores with high amounts of pyrite, the major problem encountered is the low separation efficiency between galena and pyrite. By virtue of high dosage of lime and collector sodium diethyl dithiocarbamate (DDTC), pyrite and zinc minerals are depressed, allowing the galena to be floated. However, there have been significant conflicting reports on the flotation behavior of galena at high pH. In this context, correlation of the surface adsorption and oxidation with the floatability difference of galena and pyrite in high-alkaline lime systems would be a key issue for process optimization. Captive bubble contact angle measurements were performed on freshly polished mineral surfaces in situ exposed to lime solutions of varying pH as a function of immersion time. Furthermore, single mineral microflotation tests were conducted. Both tests indicated that the degree of hydrophobicity on the surfaces of galena and pyrite increased in the presence of DDTC at natural or mild pulp pH. While in a saturated lime solution, at pH 12.5, DDTC only worked for galena, but not for pyrite. Surface chemistry analysis by time-of-flight secondary ion mass spectrometry (Tof-SIMS) confirmed the preference of DDTC on the galena surface at pH 12.5, which contributed to a merit recovery. Further important evidence through measurements of Tof-SIMS, ion chromatography, and high-performance liquid chromatography indicated that in high-alkaline lime systems, the merit floatability of galena could exclude the insignificant contribution of elemental sulfur (S 8 ) and was dominantly attributed by the strong adsorption of DDTC. In contrast, the poor flotation response of pyrite at high pH was due to the prevailing adsorption of CaOH + species. This study provides an important surface chemistry evidence for a better understanding of the mechanism on the better selectivity in the galena-pyrite separation adopting high-alkaline lime systems.

  11. Coal background paper. Coal demand

    International Nuclear Information System (INIS)

    1997-01-01

    Statistical data are presented on coal demands in IEA and OECD member countries and in other countries. Coal coaking and coaking coal consumption data are tabulated, and IEA secretariat's coal demand projections are summarized. Coal supply and production data by countries are given. Finally, coal trade data are presented, broken down for hard coal, steam coal, coking coal (imports and export). (R.P.)

  12. Surface chemistry of pyrite during the pre-processing for the flotation in alkaline sodium carbonate medium during uranium ore processing

    International Nuclear Information System (INIS)

    Neudert, A.; Sommer, H.; Schubert, H.

    1991-01-01

    It is often necessary during processing of uranium ore to flotate pyrite at sodium carbonate alkaline pH value caused by the subsequent hydrometallurgical process stages. It was found out by ESCA analyses that the pyrite surface changes chemically prior to the addition of flotation agents. FeS 2 becomes FeO within a few hours in the case of storage in process water; limonite and/or geothite result from pyrite. The copper ions of the activator CuSO 4 are exclusively monovalent on the pyrite surface. The resulting heavy metal xanthogenate is Cu(I) xanthogenate. Conclusions are derived for the flotation practice for the intensification of the reagent regime. (orig./HP) [de

  13. Belgium's burning coal tips. Coupling thermographic ASTER imagery with topography to map debris slide susceptibility

    Energy Technology Data Exchange (ETDEWEB)

    Nyssen, Jan; Diependaele, Stijn; Goossens, Rudi [Ghent Univ. (Belgium). Dept. of Geography

    2012-03-15

    Burning coal tips and the debris slides induced by this combustion are a potential danger for local residents and visitors, and a method is required to identify areas of susceptibility. The relatively easy circulation of air, enhanced by the poor compaction of the spoil heaps, and the exothermic reaction of pyrite with oxygen may ignite coal tips. Rainwater infiltration and subsequent evaporation inside burning coal tips may create steam pressure, which, combined with humidity and slope steepness can then trigger landsliding. Based on mapping of debris slides and susceptibility factors such as burning (represented by positive surface temperature anomalies on thermographic imagery) and slope gradient, this study aims to define thresholds for debris slide susceptibility on coal tips and to map potential debris slide source areas on spoil heaps. The Belgian coal tips were used as study area. A DTM as well as ASTER Kinetic Surface Temperature products were used to measure slope gradients and temperature anomaly. Locations with typical characteristics of combustion (heat, red soil colour, steam and gases), and debris slides were recorded in the field, and were used to identify thresholds beyond which debris sliding is generally observed: a temperature anomaly of > 0.5 K, when comparing the debris slide areas to the average temperature of the coal tip, and a slope gradient {>=} 28 . The susceptibility zones for debris slide detachment were mapped by considering the imagery pixels that exceeded the thresholds for temperature and slope gradient; the results fitted well when compared with the observed debris slides. The method can be improved by using more coal tips for calibration, and by taking into account rain depth and slope aspect. (orig.)

  14. FY 2000 report on the project for promotion of clean coal technology. Survey of overseas trends of technology to use hydrocarbon base energy such as coal; 2000 nendo clean coru technology suishin jigjyo. Sekitan tou tankasuiso kei energy riyo gijutsu ni kansuru kaigai doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For contributing to the study on the comprehensive development of technology to use hydrocarbon resource such as coal in Japan, survey was conducted of trends of supply/demand, policy, utilization technology, etc. of hydrocarbon base energy such as coal in developed countries such as the U.S., European countries, etc. Proved coal reserves in the world are 980 billion tons, and years of mining are 230. The resource amount of coal is more than those of oil and natural gas. In the U.S., the budget was largely cut in the 1990s because of the financial deficit, but the R and D are being promoted of power plant being aimed at substantial reduction in emissions of NOx, SOx, etc. and reduction in cost. European countries are tackling the technical development of petroleum substituting energy and the verification/commercialization. As to the clean coal technology, every country is making the technical development for coal liquefaction/gasification. Relating to the natural gas technology, studies are being made of GTL, coal bed methane, shale gas, methane hydrate, etc. The energy conversion use of waste, technical development of biomass energy, etc. were also being carried out. (NEDO)

  15. Whole-coal versus ash basis in coal geochemistry: a mathematical approach to consistent interpretations

    Science.gov (United States)

    Geboy, Nicholas J.; Engle, Mark A.; Hower, James C.

    2013-01-01

    Several standard methods require coal to be ashed prior to geochemical analysis. Researchers, however, are commonly interested in the compositional nature of the whole-coal, not its ash. Coal geochemical data for any given sample can, therefore, be reported in the ash basis on which it is analyzed or the whole-coal basis to which the ash basis data are back calculated. Basic univariate (mean, variance, distribution, etc.) and bivariate (correlation coefficients, etc.) measures of the same suite of samples can be very different depending which reporting basis the researcher uses. These differences are not real, but an artifact resulting from the compositional nature of most geochemical data. The technical term for this artifact is subcompositional incoherence. Since compositional data are forced to a constant sum, such as 100% or 1,000,000 ppm, they possess curvilinear properties which make the Euclidean principles on which most statistical tests rely inappropriate, leading to erroneous results. Applying the isometric logratio (ilr) transformation to compositional data allows them to be represented in Euclidean space and evaluated using traditional tests without fear of producing mathematically inconsistent results. When applied to coal geochemical data, the issues related to differences between the two reporting bases are resolved as demonstrated in this paper using major oxide and trace metal data from the Pennsylvanian-age Pond Creek coal of eastern Kentucky, USA. Following ilr transformation, univariate statistics, such as mean and variance, still differ between the ash basis and whole-coal basis, but in predictable and calculated manners. Further, the stability between two different components, a bivariate measure, is identical, regardless of the reporting basis. The application of ilr transformations addresses both the erroneous results of Euclidean-based measurements on compositional data as well as the inconsistencies observed on coal geochemical data

  16. The development of coal-based technologies for Department of Defense facilities. Volume 1, Technical report. Semiannual technical progress report, September 28, 1994--March 27, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Bartley, D.A.; Hatcher, P. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1996-10-15

    This program is being conducted as a cooperative agreement between the Consortium for Coal Water Mixture Technology and the U.S. Department of Energy. Activities this reporting period are summarized by phase. Phase I is nearly completed. During this reporting period, coal beneficiation/preparation studies, engineering designs and economics for retrofitting the Crane, Indiana boiler to fire coal-based fuels, and a 1,000-hour demonstration of dry, micronized coal were completed. In addition, a demonstration-scale micronized-coal water mixture (MCWM) preparation circuit was constructed and a 1,000-hour demonstration firing MCWM began. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations involved literature surveys of NO{sub x}, SO{sub 2}, trace metals, volatile organic compounds, and fine particulate matter capture. In addition, vendors and engineering firms were contacted to identify the appropriate emissions technologies for the installation of commercial NO{sub x} and SO{sub 2} removal systems on the demonstration boiler. Information from the literature surveys and engineering firms will be used to identify, design, and install a control system(s). Work continued on the refinement and optimization of coal grinding and MCWM preparation procedures, and on the development of advanced processes for beneficiating high ash, high sulfur coals. Work also continued on determining the basic cost estimation of boiler retrofits, and evaluating environmental, regulatory, and regional economic impacts. In addition, the feasibility of technology adoption, and the public`s perception of the benefits and costs of coal usage was studied. A coal market analysis was completed. Work in Phase III focused on coal preparation studies, emissions reductions and economic analyses of coal use.

  17. The upper pennsylvanian pittsburgh coal bed: Resources and mine models

    Science.gov (United States)

    Watson, W.D.; Ruppert, L.F.; Tewalt, S.J.; Bragg, L.J.

    2001-01-01

    The U.S. Geological Survey recently completed a digital coal resource assessment model of the Upper Pennsylvanian Pittsburgh coal bed, which indicates that after subtracting minedout coal, 16 billion short tons (14 billion tonnes) remain of the original 34 billion short tons (31 billion tonnes) of coal. When technical, environmental, and social restrictions are applied to the remaining Pittsburgh coal model, only 12 billion short tons (11 billion tonnes) are available for mining. Our assessment models estimate that up to 0.61 billion short tons (0.55 billion tonnes), 2.7 billion short tons (2.4 billion tonnes), and 8.5 billion short tons (7.7 billion tonnes) could be available for surface mining, continuous mining, and longwall mining, respectively. This analysis is an example of a second-generation regional coal availability study designed to model recoverability characteristics for all the major coal beds in the United States. ?? 2001 International Association for Mathematical Geology.

  18. Impact of Sulphur Content on Coal Quality at Delta Plain Depositional Environment: Case study in Geramat District, Lahat Regency, South Sumatra

    Directory of Open Access Journals (Sweden)

    Siska Linda Sari

    2017-09-01

    Full Text Available The research was conducted in Geramat District of Lahat Regency, South Sumatra. An evaluation of the geological condition of the research area shown that the coal deposits were found in Muara Enim Formation as a coal-bearing formation. The method used was literature study, field observation and the laboratory work includes proximate and petrography analysis. The aim of this research is to determine the environmental condition of coal based on the change of total sulphur content and to know the relation between ash content to calorific value.  As the result of proximate analysis conducted on five samples of coal, the research area obtained total sulphur (0,21-1,54% adb, ash content (3,16 - 71,11% adb and gross calorific value (953 - 5676 cal/g. adb. Based on the result of maceral analysis showed the maceral percentage of coal in research area composed by vitrinite (77,8-87,4 %, liptinite (0,6 %, inertinite (8,0 – 17,6 % and mineral matter concentration in the form of pyrite (1,6-4,6 %. The average reflectance value of vitrinite (Rv of coal in the research area (0.54%. the results analysis shows that the coal in Muara Enim Formation on the research area is in the transitional lower delta plain depositional environment phase. Any changes in the sedimentary environment affected by sea water will be followed by changes in total sulphur and the higher ash content, on the contrary, the lower calorific value of the coal.

  19. The origin of copiapite from chlorite pyritic schist (Wiesciszowice, Lower Silesia, Poland) in the light of Moessbauer analysis

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, Z., E-mail: zdzislaw.adamczyk@polsl.pl [Silesian University of Technology, Institute of Applied Geology (Poland); Komraus, J. L., E-mail: komraus@us.edu.pl [University of Silesia, Institute of Physics (Poland)

    2008-01-15

    This work presents the results of the analysis of copiapite, formed from weathering and oxidation of pyrite in pyritic schist from Wiesciszowice, Lower Silesia (Poland). The pure phase of copiapite was found in secondary minerals after pyrite and identified by optical microscopy, XRD and Moessbauer spectroscopy. In the analyzed copiapite major cations appear to be Fe{sup 2+} and Fe{sup 3+}. Some Fe{sup 3+} is substituted by other cations, mainly Al{sup 3+}. Al{sup 3+} probably comes from leaching of chlorite from which hydrated sulphates of iron, mainly szomolnokite, form followed by hydrated sulphates fibroferrite, which is replaced by copiapite.

  20. Analysis on safety production in coal mines Henan Province

    Institute of Scientific and Technical Information of China (English)

    KONG Liu-an; ZHANG Wen-yong

    2006-01-01

    Based on the rigorous situation of safety production in coal mines, the paper analyzed the statistical data of recent accidents indexes in Henan's coal mines. Using investigation and comparison analysis methods, a specified analysis on mining conditions, technical facility level, safety input and vocational quality of workers in Henan's coal mines was conducted. The result indicates that there have been existing such main safety production problems as weak safety management, low-level facilities, inadequate safety input and poor vocational quality and so on. Finally it proposes such reference solutions as to establish and perfect coal mining supervision and management system, to increase safety investment into techniques and facilities and to strengthen workers' safety education and introduction of more high-level professional talents.

  1. Sustainable global energy development: the case of coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The report aims at developing an internationally consistent reply to the question whether and to what extent coal use could be economic and sustainable in meeting global energy demand to 2030 and beyond. It covers markets, trade and demand, mining and combustion technologies, restructuring and international policies, and perspectives. It considers both the contribution that coal could make to economic development as well as the need for coal to adapt to the exigencies of security of supply, local environmental protection and mitigation of climate change. The conclusion suggests that coal will continue to be an expanding, a cheap foundation for economic and social development. Backed by its vast and well-distributed resource base, coal will make a significant contribution to eradicating energy poverty and coal can be and will be increasingly clean, at a bearable cost in terms of technological sophistication and at little cost in terms of international technology transfer and RD & D in CO{sub 2} sequestration. For this to happen, even-handed energy and environmental policies are needed, not ideologies. Moreover, a more pro-active involvement of the coal and power industries is needed in 'globalizing' best technical and managerial practices and advocating coal's credentials.

  2. Development of decision- making mechanism in engineering design of phased coal mines technical upgrade

    Science.gov (United States)

    Kulak, V. Yu; Petrova, T. V.; Novichikhin, A. V.

    2017-09-01

    The approach to a choice of a new mine design and technical upgrade of operating coal mines is substantiated. The choice of the option is made in the following way: the elements of the mine technological system are defined, for each element of the system two levels of costs are allocated - capital and operational; a graph of alternative options of the system is formed by matrix enumeration taking into account the possibility of simultaneous application of different elements, up to 10 000 scenarios are formed; capital and operating costs of options are estimated in the form of coefficients as the cost-to-cost ratio in the base variant, which has already been implemented and the costs of which are already known; ranking of the options at the level of costs and the definition of the 10 preferred are performed. It is established that the application of partial enumeration allows the costs relative to the base variant to be reduced by 10 %; the main constraint of costs reduction is the need to comply with all conditions that ensure industrial safety.

  3. Clean coal use in China: Challenges and policy implications

    International Nuclear Information System (INIS)

    Tang, Xu; Snowden, Simon; McLellan, Benjamin C.; Höök, Mikael

    2015-01-01

    Energy consumption in China is currently dominated by coal, a major source of air pollution and carbon emissions. The utilization of clean coal technologies is a likely strategic choice for China at present, however, although there have been many successes in clean coal technologies worldwide, they are not widely used in China. This paper examines the challenges that China faces in the implementation of such clean coal technologies, where the analysis shows that those drivers that have a negative bearing on the utilization of clean coal in China are mainly non-technical factors such as the low legal liability of atmospheric pollution related to coal use, and the lack of laws and mandatory regulations for clean coal use in China. Policies for the development of clean coal technologies are in their early stages in China, and the lack of laws and detailed implementation requirements for clean coal require resolution in order to accelerate China's clean coal developments. Currently, environmental pollution has gained widespread attention from the wider Chinese populace and taking advantage of this opportunity provides a space in which to regain the initiative to raise people’s awareness of clean coal products, and improve enterprises’ enthusiasm for clean coal. - Highlights: • Clean coal is not widely used in China due to many management issues. • Legal liability of pollution related with coal utilization is too low in China. • China is lack of laws and mandatory regulations for clean coal utilization. • It is difficult to accelerate clean coal utilization by incentive subsidies alone.

  4. In situ remediation of hexavalent chromium with pyrite fines : bench scale demonstration

    International Nuclear Information System (INIS)

    Cathum, S.; Wong, W.P.; Brown, C.E.

    2002-01-01

    An in situ remediation technique for chromium contaminated soil with pyrite fines was presented. Past industrial activities and lack of disposal facilities have contributed to a serious problem dealing with chromium, which cannot be eliminated from the environment because it is an element. Both bench-scale and laboratory testing was conducted to confirm the efficiency of the proposed process which successfully converted Cr(VI) into Cr(III) in soil and water. Cr(III) is less toxic and immobile in the environment compared to Cr(VI) which moves freely in the soil matrix, posing a risk to the groundwater quality. pH in the range of 2.0 to 7.6 has no effect on the reactivity of pyrite towards Cr(VI). The optimization of the bench-scale treatment resulted in a large volume of chromium waste, mostly from the control experiments and column hydrology testing. These waste streams were treated according to municipal guidelines before disposal to the environment. Samples of chromium waste before and after treatment were analyzed. Cr (VI) was completely mineralized to below guideline levels. It was determined that several conditions, including contact time between pyrite and Cr(VI), are crucial for complete mineralization of Cr(VI). 13 refs., 8 tabs., 9 figs

  5. Prediction of acid mine drainage generation potential of various lithologies using static tests: Etili coal mine (NW Turkey) as a case study.

    Science.gov (United States)

    Yucel, Deniz Sanliyuksel; Baba, Alper

    2016-08-01

    The Etili neighborhood in Can County (northwestern Turkey) has large reserves of coal and has been the site of many small- to medium-scale mining operations since the 1980s. Some of these have ceased working while others continue to operate. Once activities cease, the mining facilities and fields are usually abandoned without rehabilitation. The most significant environmental problem is acid mine drainage (AMD). This study was carried out to determine the acid generation potential of various lithological units in the Etili coal mine using static test methods. Seventeen samples were selected from areas with high acidic water concentrations: from different alteration zones belonging to volcanic rocks, from sedimentary rocks, and from coals and mine wastes. Static tests (paste pH, standard acid-base accounting, and net acid generation tests) were performed on these samples. The consistency of the static test results showed that oxidation of sulfide minerals, especially pyrite-which is widely found not only in the alteration zones of volcanic rocks but also in the coals and mine wastes-is the main factor controlling the generation of AMD in this mine. Lack of carbonate minerals in the region also increases the occurrence of AMD.

  6. A 1,000 GtC Coal Question for Future Energy Scenarios: How Much Coal Will Renewables Need to Displace?

    Science.gov (United States)

    Ritchie, W. J.; Dowlatabadi, H.

    2016-12-01

    Twenty years ago, global coal assessments indicated reserve-to-production (R-P) ratios of more than 300 years. Consequently, most studies of energy futures established coal as a virtually unlimited backstop to meet the world's projected energy needs. Coal was modeled to offset oil and gas production declines and provide a source of energy which renewables and lower carbon supply strategies needed to outcompete. Over the past two decades, increasingly consistent methodologies have been applied globally to assess recoverable coal. Coal production has also witnessed significant mechanization to meet higher demand. Each of these has led to a significant reduction in estimates of economically recoverable coal reserves despite a doubling of market prices over this period. The current reserve to production ratio for coal is now around 100 years. It is time to reconsider coal as the inexhaustible energy backstop The energy models which develop long-term estimates of renewable energy needs and projections of greenhouse gas (GHG) emissions still adopt the characteristics of vintage coal assessments. By convention, baseline GHG emissions used by the IPCC and others, project combustion of most known coal reserves before the year 2100. When vintage assessments are used, this involves extraction of all currently known coal reserves plus twice again from resources invalidated as recoverable for geologic, environmental, social, legal, technical or economic reasons. We provide evidence for rejecting these projections of unbounded growth in coal consumption. Legacy pathways of implausibly high coal use upwardly bias long-term scenarios for total cumulative GHG emissions and subsequent research on climate change. This bias has precluded consideration of much more ambitious climate mitigation targets without significant socio-economic dislocation and unnecessarily diminishes possible future contributions from renewables.

  7. Fate of the naturally occurring radioactive materials during treatment of acid mine drainage with coal fly ash and aluminium hydroxide.

    Science.gov (United States)

    Madzivire, Godfrey; Maleka, Peane P; Vadapalli, Viswanath R K; Gitari, Wilson M; Lindsay, Robert; Petrik, Leslie F

    2014-01-15

    Mining of coal is very extensive and coal is mainly used to produce electricity. Coal power stations generate huge amounts of coal fly ash of which a small amount is used in the construction industry. Mining exposes pyrite containing rocks to H2O and O2. This results in the oxidation of FeS2 to form H2SO4. The acidic water, often termed acid mine drainage (AMD), causes dissolution of potentially toxic elements such as, Fe, Al, Mn and naturally occurring radioactive materials such as U and Th from the associated bedrock. This results in an outflow of AMD with high concentrations of sulphate ions, Fe, Al, Mn and naturally occurring radioactive materials. Treatment of AMD with coal fly ash has shown that good quality water can be produced which is suitable for irrigation purposes. Most of the potentially toxic elements (Fe, Al, Mn, etc) and substantial amounts of sulphate ions are removed during treatment with coal fly ash. This research endeavours to establish the fate of the radioactive materials in mine water with coal fly ash containing radioactive materials. It was established that coal fly ash treatment method was capable of removing radioactive materials from mine water to within the target water quality range for drinking water standards. The alpha and beta radioactivity of the mine water was reduced by 88% and 75% respectively. The reduced radioactivity in the mine water was due to greater than 90% removal of U and Th radioactive materials from the mine water after treatment with coal fly ash as ThO2 and UO2. No radioisotopes were found to leach from the coal fly ash into the mine water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Proceedings of the second symposium on the geology of Rocky Mountain coal, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, H. E. [ed.

    1978-01-01

    The 1977 Symposium on the Geology of Rocky Mountain Coal was held May 9 and 10 on the campus of the Colorado School of Mines in Golden, Colorado. The 1977 Symposium was sponsored by the Colorado Geological Survey and the US Geological Survey. The 1977 Symposium consisted of four technical sessions: Depositional Models for Coal Exploration in the Rocky Mountain Cretaceous; Stratigraphy and Depositional Environments of Rocky Mountain Tertiary Coal Deposits; Depositional Models for Coal Exploration in non-Rocky Mountain Regions; and Application of Geology to Coal Mining and Coal Mine Planning. Several papers discuss geophysical survey and well logging techniques applied to the exploration of coal deposits and for mine planning. Fouteen papers have been entered individually into EDB and ERA. (LTN)

  9. Coal -98

    International Nuclear Information System (INIS)

    Sparre, C.

    1998-01-01

    The following report deals with the use of coal and coke during 1997. Some information about technic, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from SCB have also been used. The use of steam coal for heating purposes during 1997 was 730 000 tons and about 500 000 tons lower than in 1996. The extremely high figures of 1996 were due to twice the production of electricity because of lack of hydro power. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. Some foreign analysts, however, estimate a doubled use of coal for energy use after 2020 because of the plans to phase out the nuclear power. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. 1997 these figures are 2 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1997 was 1.6 mill tons like the year before. 1.2 mill tons coke were produced. The coke consumption in the industry was 1.5 Mill tons. 0.3 mill tons of coke were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has plans to build a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has taken a fluid bed boiler for different fuels in operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm

  10. Isotopic Tracing of Thallium Contamination in Soils Affected by Emissions from Coal-Fired Power Plants.

    Science.gov (United States)

    Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin; Trubač, Jakub; Ettler, Vojtěch; Teper, Leslaw; Cabala, Jerzy; Rohovec, Jan; Zádorová, Tereza; Penížek, Vít; Pavlů, Lenka; Holubík, Ondřej; Němeček, Karel; Houška, Jakub; Drábek, Ondřej; Ash, Christopher

    2016-09-20

    Here, for the first time, we report the thallium (Tl) isotope record in moderately contaminated soils with contrasting land management (forest and meadow soils), which have been affected by emissions from coal-fired power plants. Our findings clearly demonstrate that Tl of anthropogenic (high-temperature) origin with light isotope composition was deposited onto the studied soils, where heavier Tl (ε(205)Tl ∼ -1) naturally occurs. The results show a positive linear relationship (R(2) = 0.71) between 1/Tl and the isotope record, as determined for all the soils and bedrocks, also indicative of binary Tl mixing between two dominant reservoirs. We also identified significant Tl isotope variations within the products from coal combustion and thermo-desorption experiments with local Tl-rich coal pyrite. Bottom ash exhibited the heaviest Tl isotope composition (ε(205)Tl ∼ 0), followed by fly ash (ε(205)Tl between -2.5 and -2.8) and volatile Tl fractions (ε(205)Tl between -6.2 and -10.3), suggesting partial Tl isotope fractionations. Despite the evident role of soil processes in the isotope redistributions, we demonstrate that Tl contamination can be traced in soils and propose that the isotope data represent a possible tool to aid our understanding of postdepositional Tl dynamics in surface environments for the future.

  11. Primary immigration and succession of soil organisms on reclaimed opencast coal mining areas in eastern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Wanner, M.; Dunger, W. [Staatliches Museum Naturkunde, Gorlitz (Germany)

    2002-07-01

    Immigration to and colonisation of recultivated opencast coal mining areas by soil organisms were investigated in eastern Germany during the period 1996-1998 in freshly exposed substrates (immigration test) and two up to 46-year-old afforested mine soils (stage-dependent succession). The results indicate that immigration by air is characteristic for protists, soil microarthropods and spiders, while active locomotion is more important for the soil macrofauna. Testate amoebae assemblages showed no evident differences between 30-37-year-old Tertiary afforestations (ash-ameliorated, pyrite-rich, low soil pH) and 46-year-old Pleistocene sites (liming, low pyrite content, moderate soil pH), while comparisons in soil animals revealed pronounced differences in abundance, biomass and species composition. Generally, all investigated soil animal groups indicated taxon-specific immigration and colonisation strategies with pronounced site preferences, dependent on substrate quality, age and afforestation. Within 40 years, a consistent trend is visible from an open pioneer to a woodland community. Furthermore, it was demonstrated that long-term investigations as well as numerous taxa of different trophic levels are essential for a comprehensive evaluation of recultivated mine dumps.

  12. Environmental control implications of generating electric power from coal. Appendix B. Assessment of status of technology for solvent refining of coal. 1977 technology status report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This report reviews the technology and environmental impacts of the solvent refined coal process to produce clean solid fuel (SRC-I). Information on SRC-I pilot plant operation, process design, and economics is presented. A bibliography of current available literature in this technology area, divided into fourteen categories with abstracts of the references, is appended. The history, current operations, and future plans for the SRC pilot plants at Fort Lewis and Wilsonville are reviewed. Process data generated at these pilot plants for various coals are used as a basis for a conceptual commercial plant design with a capacity to process 20,000 tons per day (TPD) of prepared coal. Block flow diagrams, material balances, an energy balance, and a list of raw materials for the plant are also provided. Capital cost estimates for a 20,000 TPD coal feed plant derived from four prior economic studies range from $706 million to $1093 million in 1976 dollars. The annual net operating cost is estimated at $238.6 million (1976 dollars) and the average product cost at $2.71/MM Btu based on utility financing (equity 25:debt 75) with $25/ton as the delivered price of the dry coal. The report also discusses special technical considerations associated with some of the process operations and major equipment items and enumerates technical risks associated with the commercialization of the SRC-I process.

  13. Influence of Sulfobacillus thermosulfidooxidans on Initial Attachment and Pyrite Leaching by Thermoacidophilic Archaeon Acidianus sp. DSM 29099

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2016-07-01

    Full Text Available At the industrial scale, bioleaching of metal sulfides includes two main technologies, tank leaching and heap leaching. Fluctuations in temperature caused by the exothermic reactions in a heap have a pronounced effect on the growth of microbes and composition of mixed microbial populations. Currently, little is known on the influence of pre-colonized mesophiles or moderate thermophiles on the attachment and bioleaching efficiency by thermophiles. The objective of this study was to investigate the interspecies interactions of the moderate thermophile Sulfobacillus thermosulfidooxidans DSM 9293T and the thermophile Acidianus sp. DSM 29099 during initial attachment to and dissolution of pyrite. Our results showed that: (1 Acidianus sp. DSM 29099 interacted with S. thermosulfidooxidansT during initial attachment in mixed cultures. In particular, cell attachment was improved in mixed cultures compared to pure cultures alone; however, no improvement of pyrite leaching in mixed cultures compared with pure cultures was observed; (2 active or inactivated cells of S. thermosulfidooxidansT on pyrite inhibited or showed no influence on the initial attachment of Acidianus sp. DSM 29099, respectively, but both promoted its leaching efficiency; (3 S. thermosulfidooxidansT exudates did not enhance the initial attachment of Acidianus sp. DSM 29099 to pyrite, but greatly facilitated its pyrite dissolution efficiency. Our study provides insights into cell-cell interactions between moderate thermophiles and thermophiles and is helpful for understanding of the microbial interactions in a heap leaching environment.

  14. Matrix composition and community structure analysis of a novel bacterial pyrite leaching community.

    Science.gov (United States)

    Ziegler, Sibylle; Ackermann, Sonia; Majzlan, Juraj; Gescher, Johannes

    2009-09-01

    Here we describe a novel bacterial community that is embedded in a matrix of carbohydrates and bio/geochemical products of pyrite (FeS(2)) oxidation. This community grows in stalactite-like structures--snottites--on the ceiling of an abandoned pyrite mine at pH values of 2.2-2.6. The aqueous phase in the matrix contains 200 mM of sulfate and total iron concentrations of 60 mM. Micro-X-ray diffraction analysis showed that jarosite [(K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6)] is the major mineral embedded in the snottites. X-ray absorption near-edge structure experiments revealed three different sulfur species. The major signal can be ascribed to sulfate, and the other two features may correspond to thiols and sulfoxides. Arabinose was detected as the major sugar component in the extracellular polymeric substance. Via restriction fragment length polymorphism analysis, a community was found that mainly consists of iron oxidizing Leptospirillum and Ferrovum species but also of bacteria that could be involved in dissimilatory sulfate and dissimilatory iron reduction. Each snottite can be regarded as a complex, self-contained consortium of bacterial species fuelled by the decomposition of pyrite.

  15. Whole rock and discrete pyrite geochemistry as complementary tracers of ancient ocean chemistry: An example from the Neoproterozoic Doushantuo Formation, China

    Science.gov (United States)

    Gregory, Daniel D.; Lyons, Timothy W.; Large, Ross R.; Jiang, Ganqing; Stepanov, Aleksandr S.; Diamond, Charles W.; Figueroa, Maria C.; Olin, Paul

    2017-11-01

    The trace element content of pyrite is a recently developed proxy for metal abundance in paleo-oceans. Previous studies have shown that the results broadly match those of whole rock studies through geologic time. However, no detailed study has evaluated the more traditional proxies for ocean chemistry for comparison to pyrite trace element data from the same samples. In this study we compare pyrite trace element data from 14 samples from the Wuhe section of the Ediacaran-age Doushantuo Formation, south China, measured by laser ablation inductively coupled plasma mass spectrometry with new and existing whole rock trace element concentrations; total organic carbon; Fe mineral speciation; S isotope ratios; and pyrite textural relationships. This approach allows for comparison of data for individual trace elements within the broader environmental context defined by the other chemical parameters. The results for discrete pyrite analyses show that several chalcophile and siderophile elements (Ag, Sb, Se, Pb, Cd, Te, Bi, Mo, Ni, and Au) vary among the samples with patterns that mirror those of the independent whole rock data. A comparison with existing databases for sedimentary and hydrothermal pyrite allows us to discriminate between signatures of changing ocean conditions and those of known hydrothermal sources. In the case of the Wuhe samples, the observed patterns for trace element variation point to primary marine controls rather than higher temperature processes. Specifically, our new data are consistent with previous arguments for pulses of redox sensitive trace elements interpreted to be due to marine oxygenation against a backdrop of mostly O2-poor conditions in the Ediacaran ocean-with important implications for the availability of bioessential elements. The agreement between the pyrite and whole rock data supports the use of trace element content of pyrite as a tracer of ocean chemistry in ways that complement existing approaches, while also opening additional

  16. Coal use in the People's Republic of China. Volume 1: Environmental impacts

    International Nuclear Information System (INIS)

    Bhatti, N.; Tompkins, M.M.; Simbeck, D.R.

    1994-11-01

    The People's Republic of China (hereafter referred to as China) is the largest producer and consumer of coal in the world. Coal makes up 76% and 74% of China's primary energy consumption and production, respectively. This heavy dependence on coal has come at a high price for China, accounting for a large share of its environmental problems. This report examines the dominance of coal in China's energy balance, its impact on the environment, and the need for technical and financial assistance, specifically for two distinct aspects: the effect of coal use on the environment and the importance of coal to China's economy. The results of the analysis are presented in two volumes. Volume 1 focuses on full fuel cycle coal emissions and the environmental effects of coal consumption. Volume 2 provides a detailed analysis by sector of China's economy and examines the economic impact of constraints on coal use. 51 refs., 19 figs., 15 tabs

  17. An experimental study on the geochemical behavior of highly siderophile elements (HSE) and metalloids (As, Se, Sb, Te, Bi) in a mss-iss-pyrite system at 650 °C: A possible magmatic origin for Co-HSE-bearing pyrite and the role of metalloid-rich phases in the fractionation of HSE

    Science.gov (United States)

    Cafagna, Fabio; Jugo, Pedro J.

    2016-04-01

    Pyrite, the most abundant sulfide in the Earth's crust, is an accessory mineral in several magmatic sulfide deposits. Although most pyrite is hydrothermal, previous experimental studies have shown that pyrite can also have a primary magmatic origin, by exsolving from monosulfide solid solution (mss) during cooling of a sulfide melt, if sulfur fugacity is sufficiently high. Pyrite from some localities has significant amounts of Co, and complex zonation in some low-melting-point chalcophile elements (LMCE), such as As, Se, Sb, Te, Bi (henceforth referred to as metalloids) and some platinum-group elements (PGE: Ru, Rh, Pd, Os, Ir, Pt). However, the origin of such pyrite and the causes of zonation are not clear. Because the distribution of some of these elements is heterogeneous and seems to be developed in concentric zones, the zonation has been interpreted to represent growth stages, some of them secondary and caused partly by hydrothermal fluids. Better constraints on the origin of Co-PGE-bearing pyrite could help unravel the geochemical processes affecting the sulfide assemblages in which it is found; thus, an experimental study was undertaken to characterize pyrite formation in magmatic sulfide environments and its relationship with metalloids and highly siderophile elements (HSE: PGE, Re, Au). Natural pyrrhotite, chalcopyrite, pentlandite and elemental S were mixed and doped with approximately 50 ppm of each HSE. A mixture of metalloids was added at 0.2 wt.% or 3 wt.% to aliquots of sulfide mixtures. Starting materials were sealed in evacuated silica tubes and fused at 1200 °C. The temperature was subsequently reduced to 750 °C (at 60 °C/h), then to 650 °C (at 0.5 °C/h) to produce relatively large euhedral pyrite crystals, then quenched. The experiments were analyzed using reflected light, SEM, EPMA and LA-ICP-MS. Experimental products contained euhedral pyrite, mss, intermediate solid solution (iss) and metalloid-rich phases, interpreted as quench product

  18. Sustainable Mining Environment: Technical Review of Post-mining Plans

    Directory of Open Access Journals (Sweden)

    Restu Juniah

    2017-12-01

    Full Text Available The mining industry exists because humans need mining commodities to meet their daily needs such as motor vehicles, mobile phones, electronic equipment and others. Mining commodities as mentioned in Government Regulation No. 23 of 2010 on Implementation of Mineral and Coal Mining Business Activities are radioactive minerals, metal minerals, nonmetallic minerals, rocks and coal. Mineral and coal mining is conducted to obtain the mining commodities through production operations. Mining and coal mining companies have an obligation to ensure that the mining environment in particular after the post production operation or post mining continues. The survey research aims to examine technically the post-mining plan in coal mining of PT Samantaka Batubara in Indragiri Hulu Regency of Riau Province towards the sustainability of the mining environment. The results indicate that the post-mining plan of PT Samantaka Batubara has met the technical aspects required in post mining planning for a sustainable mining environment. Postponement of post-mining land of PT Samantaka Batubara for garden and forest zone. The results of this study are expected to be useful and can be used by stakeholders, academics, researchers, practitioners and associations of mining, and the environment.

  19. Bio-coal, torrefied lignocellulosic resources – Key properties for its use in co-firing with fossil coal – Their status

    International Nuclear Information System (INIS)

    Agar, D.; Wihersaari, M.

    2012-01-01

    Bio-coal has received generous amounts of media attention because it potentially allows greater biomass co-firing rates and net CO 2 emission reductions in pulverised-coal power plants. However, little scientific research has been published on the feasibility of full-scale commercial production of bio-coal. Despite this, several companies and research organisations worldwide have been developing patented bio-coal technologies. Are the expectations of bio-coal realistic and are they based on accepted scientific data? This paper examines strictly peer-reviewed scientific publications in order to find an answer. The findings to date on three key properties of torrefied biomass are presented and reviewed. These properties are: the mass and energy balance of torrefaction, the friability of the product and the equilibrium moisture content of torrefied biomass. It is these properties that will have a major influence on the feasibility of bio-coal production regardless of reactor technology employed in production. The presented results will be of use in modelling commercial production of bio-coal in terms of economics and green-house gas emission balance. -- Highlights: ► A technical note on torrefaction research results. ► Presents experimental values on three key properties. ► Mass-energy balance, grindability, equilibrium moisture content of torrefied biomass. ► Results useful for modelling bio-coal production schemes.

  20. Utilization of coal ash/coal combustion products for mine reclamation

    International Nuclear Information System (INIS)

    Dolence, R.C.; Giovannitti, E.

    1997-01-01

    Society's demand for an inexpensive fuel, combined with ignorance of the long term impacts, has left numerous scars on the Pennsylvania landscape. There are over 250,000 acres of abandoned surface mines with dangerous highwalls and water filled pits. About 2,400 miles of streams do not meet water quality standards because of drainage from abandoned mines. There are uncounted households without an adequate water supply due to past mining practices. Mine fires and mine subsidence plague many Pennsylvania communities. The estimated cost to reclaim these past scars is over $15 billion. The beneficial use of coal ash in Pennsylvania for mine reclamation and mine drainage pollution abatement projects increased during the past ten years. The increase is primarily due to procedural and regulatory changes by the Department of Environmental Protection (DEP). Prior to 1986, DEP required a mining permit and a separate waste disposal permit for the use of coal ash in backfilling and reclaiming a surface mine site. In order to eliminate the dual permitting requirements and promote mine reclamation, procedural changes now allow a single permit which authorize both mining and the use of coal ash in reclaiming active and abandoned pits. The actual ash placement, however, must be conducted in accordance with the technical specifications in the solid waste regulations

  1. Model-based analysis of δ34S signatures to trace sedimentary pyrite oxidation during managed aquifer recharge in a heterogeneous aquifer

    Science.gov (United States)

    Seibert, Simone; Descourvieres, Carlos; Skrzypek, Grzegorz; Deng, Hailin; Prommer, Henning

    2017-05-01

    The oxidation of pyrite is often one of the main drivers affecting groundwater quality during managed aquifer recharge in deep aquifers. Data and techniques that allow detailed identification and quantification of pyrite oxidation are therefore crucial for assessing and predicting the adverse water quality changes that may be associated with this process. In this study, we explore the benefits of combining stable sulphur isotope analysis with reactive transport modelling to improve the identification and characterisation of pyrite oxidation during an aquifer storage and recovery experiment in a chemically and physically heterogeneous aquifer. We characterise the stable sulphur isotope signal (δ34S) in both the ambient groundwater and the injectant as well as its spatial distribution within the sedimentary sulphur species. The identified stable sulphur isotope signal for pyrite was found to vary between -32 and +34‰, while the signal of the injectant ranged between +9.06 and +14.45‰ during the injection phase of the experiment. Both isotope and hydrochemical data together suggest a substantial contribution of pyrite oxidation to the observed, temporally variable δ34S signals. The variability of the δ34S signal in pyrite and the injectant were both found to complicate the analysis of the stable isotope data. However, the incorporation of the data into a numerical modelling approach allowed to successfully employ the δ34S signatures as a valuable additional constraint for identifying and quantifying the contribution of pyrite oxidation to the redox transformations that occur in response to the injection of oxygenated water.

  2. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  3. Designing on-line analyzer for coal on belt conveyor using neutron activation technique

    International Nuclear Information System (INIS)

    Rony Djokorayono; Agus Cahyono

    2014-01-01

    Basic design of on-line analyzer for coal on belt conveyor using neutron activation technique has been carried out. Compared with sampling technique, this neutron activation technique has some advantages in term of analysis accuracy and time. The design activities performed include the establishment of design requirements, functional requirements, technical requirements, technical specification, detection sub-system design, data acquisition subsystem design, and operator computer console design. This program will use Nal(Tl) scintillation detector to detect gamma-rays emitted by elements in coal due to neutron activation of a neutron source, "2"5"2Cf (Californium-252). This basic design of on-line analyzer for coal on belt conveyor using neutron activation technique should be followed up with the development of detailed design, prototype construction, and field testing. (author)

  4. Depositional environments of the Jurassic Maghara main coal seam in north central Sinai, Egypt

    Science.gov (United States)

    Edress, Nader Ahmed Ahmed; Opluštil, Stanislav; Sýkorová, Ivana

    2018-04-01

    Twenty-eight channel samples with a cumulative thickness of about 4 m collected from three sections of the Maghara main coal seam in the middle Jurassic Safa Formation have been studied for their lithotype and maceral compositions to reconstruct the character of peat swamp, its hydrological regime and the predominating type of vegetation. Lithotype composition is a combination of dully lithotypes with duroclarain (19% of total cumulative thickness), clarodurain (15%), black durain (15%), and shaly coal (15%) and bright lithotypes represented by clarain (23%), vitrain (12%) and a small proportion of wild fire-generated fusain (1%). Maceral analyses revealed the dominance of vitrinite (70.6% on average), followed by liptinite (25.2%) and inertinite (8.1%). Mineral matter content is ∼9% on average and consists of clay, quartz and pyrite concentrate mostly at the base and the roof of the seam. Dominantly vitrinite composition of coal and extremely low fire- and oxidation-borne inertinite content, together with high Gelification Indices imply predomination of waterlogged anoxic conditions in the precursing mire with water tables mostly above the peat surface throughout most of the time during peat swamp formation. Increases in collotelinite contents and Tissue Preservation Index up the section, followed by a reversal trend in upper third of the coal section, further accompanied by a reversal trend in collodetrinite, liptodetrinite, alginite, sporinite and clay contents records a transition from dominately limnotelmatic and limnic at the lower part to dominately limnotelmatic with increase telmatic condition achieved in the middle part of coal. At the upper part of coal seam an opposite trend marks the return to limnic and limnotelmatic conditions in the final phases of peat swamp history and its subsequent inundation. The proportion of arborescent (mostly coniferous) and herbaceous vegetation varied throughout the section of the coal with tendency of increasing

  5. Advanced Coal Wind Hybrid: Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

    2008-11-28

    Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW

  6. TVA coal-gasification commercial demonstration plant project. Volume 5. Plant based on Koppers-Totzek gasifier. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This volume presents a technical description of a coal gasification plant, based on Koppers-Totzek gasifiers, producing a medium Btu fuel gas product. Foster Wheeler carried out a conceptual design and cost estimate of a nominal 20,000 TPSD plant based on TVA design criteria and information supplied by Krupp-Koppers concerning the Koppers-Totzek coal gasification process. Technical description of the design is given in this volume.

  7. On the mechanism of action of combination of thionocarbamates with xanthate during flotation of copper-molybdenum pyrite contained ores

    International Nuclear Information System (INIS)

    Nedosekina, T.V.; Glembotskij, A.V.; Bekhtle, G.A.; Novgorodova, Eh.Z.

    1985-01-01

    Investigation results of action mechanism of thionocarbamates combination with xanthate are described. It is established that these collectors are capable of co-adsorbing on pyrite surface, that is the reason for sharp increase of the floatability and disturbs the selectivity of copper-molybdenum pyrite-containing ore flotation

  8. Application of House of Quality in evaluation of low rank coal pyrolysis polygeneration technologies

    International Nuclear Information System (INIS)

    Yang, Qingchun; Yang, Siyu; Qian, Yu; Kraslawski, Andrzej

    2015-01-01

    Highlights: • House of Quality method was used for assessment of coal pyrolysis polygeneration technologies. • Low rank coal pyrolysis polygeneration processes based on solid heat carrier, moving bed and fluidized bed were evaluated. • Technical and environmental criteria for the assessment of technologies were used. • Low rank coal pyrolysis polygeneration process based on a fluidized bed is the best option. - Abstract: Increasing interest in low rank coal pyrolysis (LRCP) polygeneration has resulted in the development of a number of different technologies and approaches. Evaluation of LRCP processes should include not only conventional efficiency, economic and environmental assessments, but also take into consideration sustainability aspects. As a result of the many complex variables involved, selection of the most suitable LRCP technology becomes a challenging task. This paper applies a House of Quality method in comprehensive evaluation of LRCP. A multi-level evaluation model addressing 19 customer needs and analyzing 10 technical characteristics is developed. Using the evaluation model, the paper evaluates three LRCP technologies, which are based on solid heat carrier, moving bed and fluidized bed concepts, respectively. The results show that the three most important customer needs are level of technical maturity, wastewater emissions, and internal rate of return. The three most important technical characteristics are production costs, investment costs and waste emissions. On the basis of the conducted analysis, it is concluded that the LRCP process utilizing a fluidized bed approach is the optimal alternative studied

  9. Twenty-five years of the common market in coal, 1953--1978

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The development of the common market for coal is traced from its creation on 10 February 1953 by the High Authority of the European Coal and Steel Community up to the recent past. Describes the position assumed by coal in the Community's energy supply, the changes on the individual markets for solid fuels and the development of the factors affecting supply, including technical progress in the Community's coal mining industry. The changes which have transformed the world energy market are also described. There follows an account of the role played by the Community, in particular the ECSC executive, in the various stages of development of the common market in coal. Chapter 3 deals with the consolidation during the transitional period provided for in the ECSC Treaty; Chapter 4 describes the events of the coal crisis and Chapter 5 is devoted to Community energy policy since the oil crisis of 1973/74 from the coal industry's viewpoint. The appendix contains 39 tables of statistics covering all important aspects of the coal sector since the common market was established.

  10. Chemical vapour transport of pyrite (FeS 2) with halogen (Cl, Br, I)

    Science.gov (United States)

    Fiechter, S.; Mai, J.; Ennaoui, A.; Szacki, W.

    1986-12-01

    A systematic study of chemical vapour transport (CVT) of pyrite with halogen, hydrogen halides and ammonium halides as transporting agents has shown that the transport with chlorine and bromine in a temperature gradient Δ T = 920-820 K yields the highest transport rates (˜6 mg/h) with crystals up to 5 mm edge length. Computing thermochemical equilibria and flux functions in the system Fe-S-Hal (Hal = Cl, Br, I) it has been confirmed that the transport velocity of pyrite is limited by the concentration of FeHal 2 in the vapour phase, the equilibrium position between FeHal 2(g) and FeHal 3(g) and the flux directions of the iron gas species.

  11. Strategies for Reduced Acid and Metalliferous Drainage by Pyrite Surface Passivation

    Directory of Open Access Journals (Sweden)

    Gujie Qian

    2017-03-01

    Full Text Available Acid and metalliferous drainage (AMD is broadly accepted to be a major global environmental problem facing the mining industry, requiring expensive management and mitigation. A series of laboratory-scale kinetic leach column (KLC experiments, using both synthetic and natural mine wastes, were carried out to test the efficacy of our pyrite passivation strategy (developed from previous research for robust and sustainable AMD management. For the synthetic waste KLC tests, initial treatment with lime-saturated water was found to be of paramount importance for maintaining long-term circum-neutral pH, favourable for the formation and preservation of the pyrite surface passivating layer and reduced acid generation rate. Following the initial lime-saturated water treatment, minimal additional alkalinity (calcite-saturated water was required to maintain circum-neutral pH for the maintenance of pyrite surface passivation. KLC tests examining natural potentially acid forming (PAF waste, with much greater peak acidity than that of the synthetic waste, blended with lime (≈2 wt % with and without natural non-acid-forming (NAF waste covers, were carried out. The addition of lime and use of NAF covers maintained circum-neutral leachate pH up to 24 weeks. During this time, the net acidity generated was found to be significantly reduced by the overlying NAF cover. If the reduced rate of acidity production from the natural PAF waste is sustained, the addition of smaller (more economically-feasible amounts of lime, together with application of NAF wastes as covers, could be trialled as a potential cost-effective AMD mitigation strategy.

  12. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite.

    Science.gov (United States)

    Chandra, A P; Gerson, A R

    2009-01-30

    A review of the considerable, but often contradictory, literature examining the specific surface reactions associated with copper adsorption onto the common metal sulfide minerals sphalerite, (Zn,Fe)S, and pyrite (FeS(2)), and the effect of the co-location of the two minerals is presented. Copper "activation", involving the surface adsorption of copper species from solution onto mineral surfaces to activate the surface for hydrophobic collector attachment, is an important step in the flotation and separation of minerals in an ore. Due to the complexity of metal sulfide mineral containing systems this activation process and the emergence of activation products on the mineral surfaces are not fully understood for most sulfide minerals even after decades of research. Factors such as copper concentration, activation time, pH, surface charge, extent of pre-oxidation, water and surface contaminants, pulp potential and galvanic interactions are important factors affecting copper activation of sphalerite and pyrite. A high pH, the correct reagent concentration and activation time and a short time delay between reagent additions is favourable for separation of sphalerite from pyrite. Sufficient oxidation potential is also needed (through O(2) conditioning) to maintain effective galvanic interactions between sphalerite and pyrite. This ensures pyrite is sufficiently depressed while sphalerite floats. Good water quality with low concentrations of contaminant ions, such as Pb(2+)and Fe(2+), is also needed to limit inadvertent activation and flotation of pyrite into zinc concentrates. Selectivity can further be increased and reagent use minimised by opting for inert grinding and by carefully choosing selective pyrite depressants such as sulfoxy or cyanide reagents. Studies that approximate plant conditions are essential for the development of better separation techniques and methodologies. Improved experimental approaches and surface sensitive techniques with high spatial

  13. The directory of United States coal & technology export resources. Profiles of domestic US corporations, associations and public entities, nationwide, which offer products or services suitable for export, relating to coal and its utilization

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directory and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.

  14. Techno-economic assessments of oxy-fuel technology for South African coal-fired power stations

    CSIR Research Space (South Africa)

    Oboirien, BO

    2014-03-01

    Full Text Available at the technical and economic viability of oxy-fuel technology for CO(sub2) capture for South African coal-fired power stations. This study presents a techno-economic analysis for six coal fired power stations in South Africa. Each of these power stations has a...

  15. Superacid Catalyzed Depolymerization and Conversion of Coals. Final Technical Report. [HF:BF{sub 2}/H{sub 2}

    Science.gov (United States)

    Olah, G.

    1980-01-01

    We were interested in applying superacid catalyzed cleavage-depolymerization and ionic hydrogenation low temperature conversion of coal to liquid hydrocarbon, as well as obtaining information about the reactions involved and the structure of intermediates of the coal liquefaction process. In order to show the feasibility of our proposed research we have carried out preliminary investigation in these areas. Preceding our work there was no practical application of a superacid system to coal liquefaction. We carried out an extensive study of the potential of the HF:BF{sub 3}/H{sub 2} system for coal hydroliquefaction. Under varying conditions of reactant ratio, reaction time and temperature, we were able to obtain over 95% pyridine extractible product by treating coal in HF:BF{sub 3}:H{sub 2} system at approx. 100 degrees C for 4 hours. The coal to acid ratio was 1:5 and FB{sub 3} at 900 psi and H{sub 2} at 500 psi were used. These are extremely encouraging results in that the conditions used are drastically milder than those used in any known process, such as Exxon donor solvent and related processes. The cyclohexane extractibility of the treated coal was as high as 27% and the yield of liquid distillate at 400 degrees C/5 x 10{sup -3}/sup torr/ was approx. 30%. The infrared spectrum of product coal, extracts and distillates were distinctly different from the starting coal and show a significant increase in the amount of saturates. The {sup 1}H NMR spectrum of cyclohexane extract of the treated coal shows essentially all aliphatic photons. The spectra of other treated coal extracts show increased amounts and types of aliphatic protons as well as significant amounts of protons bound to unsaturated sites. This again indicates that the HF-BF{sub 3} system is depolymerizing the coal to small fragments which are soluble in non-polar solvents.

  16. International Coal Report's coal year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McCloskey, G [ed.

    1991-05-31

    Following introductory articles on factors affecting trade in coal and developments in the freight market, tables are given for coal exports and coal imports for major countries worldwide for 1989 and 1990. Figures are also included for coal consumption in Canada and the Eastern bloc,, power station consumption in Japan, coal supply and demand in the UK, electric utility coal consumption and stocks in the USA, coal production in Australia, Canada and USA by state, and world hard coal production. A final section gives electricity production and hard coal deliveries in the EEC, sales of imported and local coal and world production of pig iron and steel.

  17. The Influence of Pyrite on the Solubility of Minjingu and Panda ...

    African Journals Online (AJOL)

    28.5 million tons of sulphur. This study was ... bining PRs with elemental S, FYM ot 'and pyrite rock rere used.in this compost (Chien et al., ... Some of the possibility of using locally available the chemical properties of the rocks materials in ...

  18. Co-gasification of coal and wood to reduce environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Giovanni Pino; Martino Paolucci; Francesco Geri; F. Tunzio; G. Spazzafumo [APAT - National Agency for Environmental Protection and Technical Services, Rome (Italy)

    2005-07-01

    After presenting the paper 'Co-firing and Co-gasification Wood and Coal' at the First International Conference on Clean Coal Technologies, the authors thought about studying in depth the gasification process of woody biomass and coal. This would lead, once all the technical difficulties related to hybrid feeding were solved, to bear a system which mainly presents two advantages. The first advantage is derived by knowing that woody biomass contains a mass percentage of sulphur which is hundred times smaller as much when compared to coal. The second advantage derives from the fact that, given a capturing and sequestration system for the carbon dioxide, it is feasible to control the biomass/coal ratio at the feeding state. In doing so, emissions of carbon dioxide which are not captured will quantitatively be equal to the ones that would derive from the plain combustion of the biomass. 3 refs., 4 figs.

  19. [Characterization and supply of coal based fuels]. Quarterly technical report, February 1, 1988--April 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-31

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements; Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is described.

  20. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits

    Science.gov (United States)

    Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; Singh, B.; Foster, J.

    2009-01-01

    Laser ablation ICP-MS imaging of gold and other trace elements in pyrite from four different sediment- hosted gold-arsenic deposits has revealed two distinct episodes of gold enrichment in each deposit: an early synsedimentary stage where invisible gold is concentrated in arsenian diagenetic pyrite along with other trace elements, in particular, As, Ni, Pb, Zn, Ag, Mo, Te, V, and Se; and a later hydrothermal stage where gold forms as either free gold grains in cracks in overgrowth metamorphic and/or hydrothermal pyrite or as narrow gold- arsenic rims on the outermost parts of the overgrowth hydrothermal pyrite. Compared to the diagenetic pyrites, the hydrothermal pyrites are commonly depleted in Ni, V, Zn, Pb, and Ag with cyclic zones of Co, Ni, and As concentration. The outermost hydrothermal pyrite rims are either As-Au rich, as in moderate- to high- grade deposits such as Carlin and Bendigo, or Co-Ni rich and As-Au poor as in moderate- to low-grade deposits such as Sukhoi Log and Spanish Mountain. The early enrichment of gold in arsenic-bearing syngenetic to diagenetic pyrite, within black shale facies of sedimentary basins, is proposed as a critical requirement for the later development of Carlin-style and orogenic gold deposits in sedimentary environments. The best grade sediment-hosted deposits appear to have the gold climax event, toward the final stages of deformation-related hydrothermal pyrite growth and fluid flow. ?? 2009 Society of Economic Geologists, Inc.

  1. Abiotic pyrite reactivity versus nitrate, selenate and selenite using chemical and electrochemical methods

    International Nuclear Information System (INIS)

    Ignatiadis, I.; Betelu, S.; Gaucher, E.; Tournassat, C.; Chainet, F.

    2010-01-01

    Document available in extended abstract form only. This work is part of ReCosy European project (www.recosy.eu), whose main objectives are the sound understanding of redox phenomena controlling the long-term release/retention of radionuclides in nuclear waste disposal and providing tools to apply the results to performance assessment/safety case. Redox is one of the main factor affecting speciation and mobility of redox-sensitive radionuclides. Thus, it is of a great importance to investigate the redox reactivity of the host radioactive waste formations, particularly when exposed to redox perturbations. Callovo-Oxfordian formation (COx), a clay rock known as an anoxic and reducing system, was selected in France as the most suitable location to store nuclear waste. Iron (II) sulfide, mostly constituted of pyrite (FeS 2 ), iron (II) carbonate, iron(II) bearing clays and organic matter are considered to account almost entirely for the total reducing capacity of the rock. We report here the redox reactivity of pyrite upon exposure to nitrate (N(V)), selenate (Se(VI)) and selenite (Se(IV)) that possibly occur in the nuclear storage. Both, chemical and electrochemical kinetic approaches were simultaneously conducted such as to (i) determine the kinetics parameters of the reactions and (ii) understand the kinetic mechanisms. In order to reach similar conditions that are encountered in the storage system, all experiments were realised in NaCl 0.1 M, near neutral pH solutions, and an abiotic glove box (O 2 less than 10 -8 M). Chemical approach has consisted to set in contact pyrite in grains with solutions containing respectively nitrate, selenate and selenite. Reactants and products chemical analyses, conducted at different contact times, allowed us to assess the kinetics of oxidant reduction. Electrochemical approach has consisted in the continuous or semi-continuous analysis of large surface pyrite electrodes immersed in solutions with or without oxidant (nitrate

  2. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide

    KAUST Repository

    Cabán-Acevedo, Miguel

    2015-09-14

    The scalable and sustainable production of hydrogen fuel through water splitting demands efficient and robust Earth-abundant catalysts for the hydrogen evolution reaction (HER). Building on promising metal compounds with high HER catalytic activity, such as pyrite structure cobalt disulphide (CoS 2), and substituting non-metal elements to tune the hydrogen adsorption free energy could lead to further improvements in catalytic activity. Here we present a combined theoretical and experimental study to establish ternary pyrite-type cobalt phosphosulphide (CoPS) as a high-performance Earth-abundant catalyst for electrochemical and photoelectrochemical hydrogen production. Nanostructured CoPS electrodes achieved a geometrical catalytic current density of 10 mA cm at overpotentials as low as 48mV, with outstanding long-term operational stability. Integrated photocathodes of CoPS on n -p-p silicon micropyramids achieved photocurrents up to 35 mA cm at 0 V versus the reversible hydrogen electrode (RHE), onset photovoltages as high as 450 mV versus RHE, and the most efficient solar-driven hydrogen generation from Earth-abundant systems.

  3. Geologic coal assessment: The interface with economics

    Science.gov (United States)

    Attanasi, E.D.

    2001-01-01

    Geologic resource assessments describe the location, general characteristics, and estimated volumes of resources, whether in situ or technically recoverable. Such compilations are only an initial step in economic resource evaluation. This paper identifies, by examples from the Illinois and Appalachian basins, the salient features of a geologic assessment that assure its usefulness to downstream economic analysis. Assessments should be in sufficient detail to allocate resources to production units (mines or wells). Coal assessments should include the spatial distribution of coal bed characteristics and the ability to allocate parts of the resource to specific mining technologies. For coal bed gas assessment, the production well recoveries and well deliverability characteristics must be preserved and the risk structure should be specified so dryholes and noncommercial well costs are recovered by commercially successful wells. ?? 2001 International Association for Mathematical Geology.

  4. Cofiring biomass with coal: Opportunities for Malaysia

    International Nuclear Information System (INIS)

    Rahman, A A; Shamsuddin, A H

    2013-01-01

    Malaysia generated 108,175 GWh of electricity in 2010 where 39.51 % was sourced from coal. Coal power generation is also planned to overtake natural gas as the main fuel for electricity generation within the next two decades. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper studies the option of cofiring biomass in existing Malaysian coal power plants to increase the nation's renewable energy mix as well as to reduce its power sector carbon dioxide emission. Benefits of cofiring to the nation were discussed and agricultural residues from palm oil and paddy was identified as a potential source of biomass for cofiring. It was also found that there is a willingness for cofiring by stakeholders but barriers existed in the form of technical issues and lack of clear direction and mechanism.

  5. Cofiring biomass with coal: Opportunities for Malaysia

    Science.gov (United States)

    Rahman, A. A.; Shamsuddin, A. H.

    2013-06-01

    Malaysia generated 108,175 GWh of electricity in 2010 where 39.51 % was sourced from coal. Coal power generation is also planned to overtake natural gas as the main fuel for electricity generation within the next two decades. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper studies the option of cofiring biomass in existing Malaysian coal power plants to increase the nation's renewable energy mix as well as to reduce its power sector carbon dioxide emission. Benefits of cofiring to the nation were discussed and agricultural residues from palm oil and paddy was identified as a potential source of biomass for cofiring. It was also found that there is a willingness for cofiring by stakeholders but barriers existed in the form of technical issues and lack of clear direction and mechanism.

  6. Archaeal diversity and the extent of iron and manganese pyritization in sediments from a tropical mangrove creek (Cardoso Island, Brazil)

    Science.gov (United States)

    Otero, X. L.; Lucheta, A. R.; Ferreira, T. O.; Huerta-Díaz, M. A.; Lambais, M. R.

    2014-06-01

    Even though several studies on the geochemical processes occurring in mangrove soils and sediments have been performed, information on the diversity of Archaea and their functional roles in these ecosystems, especially in subsurface environments, is scarce. In this study, we have analyzed the depth distribution of Archaea and their possible relationships with the geochemical transformations of Fe and Mn in a sediment core from a tropical mangrove creek, using 16S rRNA gene profiling and sequential extraction of different forms of Fe and Mn. A significant shift in the archaeal community structure was observed in the lower layers (90-100 cm), coinciding with a clear decrease in total organic carbon (TOC) content and an increase in the percentage of sand. The comparison of the archaeal communities showed a dominance of methanogenic Euryarchaeota in the upper layers (0-20 cm), whereas Crenarchaeota was the most abundant taxon in the lower layers. The dominance of methanogenic Euryarchaeota in the upper layer of the sediment suggests the occurrence of methanogenesis in anoxic microenvironments. The concentrations of Fe-oxyhydroxides in the profile were very low, and showed positive correlation with the concentrations of pyrite and degrees of Fe and Mn pyritization. Additionally, a partial decoupling of pyrite formation from organic matter concentration was observed, suggesting excessive Fe pyritization. This overpyritization of Fe can be explained either by the anoxic oxidation of methane by sulfate and/or by detrital pyrite tidal transportation from the surrounding mangrove soils. The higher pyritization levels observed in deeper layers of the creek sediment were also in agreement with its Pleistocenic origin.

  7. Empirical prediction of ash deposition propensities in coal-fired utilities

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.

    1997-01-01

    This report contain an outline of some of the ash chemistry indices utilized in the EPREDEPO (Empirical PREdiction of DEPOsition) PC-program, version 1.0 (DEPO10), developed by Flemming Frandsen, The CHEC Research Programme, at the Department of Chemical Engineering, Technical University of Denmark. DEPO10 is a 1st generation FTN77 Fortran PC-programme designed to empirically predict ash deposition propensities in coal-fired utility boilers. Expectational data (empirical basis) from an EPRI-sponsored survey of ash deposition experiences at coal-fired utility boilers, performed by Battelle, have been tested for use on Danish coal chemistry - boiler operational conditions, in this study. (au) 31 refs.

  8. Coal fires in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Whitehouse, Alfred E.; Mulyana, Asep A.S. [Office of Surface Mining/Ministry of Energy and Mineral Resources Coal Fire Project, Ministry of Energy and Mineral Resources, Agency for Training and Education, Jl. Gatot Subroto, Kav. 49, Jakarta 12950 (Indonesia)

    2004-07-12

    Indonesia's fire and haze problem is increasingly being ascribed to large-scale forest conversion and land clearing activities making way for pulpwood, rubber and oil palm plantations. Fire is the cheapest tool available to small holders and plantation owners to reduce vegetation cover and prepare and fertilize extremely poor soils. Fires that escaped from agricultural burns have ravaged East Kalimantan forests on the island of Borneo during extreme drought periods in 1982-1983, 1987, 1991, 1994 and 1997-1998. Estimates based on satellite data and ground observations are that more than five million hectares were burned in East Kalimantan during the 1997/1998 dry season. Not only were the economic losses and ecological damage from these surface fires enormous, they ignited coal seams exposed at the ground surface along their outcrops.Coal fires now threaten Indonesia's shrinking ecological resources in Kutai National Park and Sungai Wain Nature Reserve. Sungai Wain has one of the last areas of unburned primary rainforest in the Balikpapan-Samarinda area with an extremely rich biodiversity. Although fires in 1997/1998 damaged nearly 50% of this Reserve and ignited 76 coal fires, it remains the most valuable water catchment area in the region and it has been used as a reintroduction site for the endangered orangutan. The Office of Surface Mining provided Indonesia with the capability to take quick action on coal fires that presented threats to public health and safety, infrastructure or the environment. The US Department of State's Southeast Asia Environmental Protection Initiative through the US Agency for International Development funded the project. Technical assistance and training transferred skills in coal fire management through the Ministry of Energy and Mineral Resource's Training Agency to the regional offices; giving the regions the long-term capability to manage coal fires. Funding was also included to extinguish coal fires as

  9. The development of coal-based technologies for Department of Defense facilities. Technical progress report, September 1995 - March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Pisupati, S.V.; Scaroni, A.W. [and others

    1996-10-01

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Activities this reporting period are summarized by phase. During this reporting period, the Phase I final report was completed. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included completing a study to identify appropriate SO{sub 2} and NO{sub x} control technologies for coal-fired industrial boilers. In addition, work continued on the design of a ceramic filtering device for installation on the demonstration boiler. The ceramic filtering device will be used to demonstrate a smaller and more efficient filtering device for retrofit applications. Work related to coal preparation and utilization, and the economic analysis was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies and economic analyses of coal use. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. The economic study focused on community sensitivity to coal usage, regional economic impacts of new coal utilization technologies, and constructing a national energy portfolio.

  10. Safety-technical characteristics of biomass, coal and straw. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Rautalin, A.

    1995-12-31

    Safety-technical factors related to spontaneous ignition and dust explosions of biomasses were investigated. Parametres of dust explosions and effect of inertisation on the maximum pressure (pmax) and the maximum rate of pressure rise (Kstmax) were studied at elevated initial pressure (1-9 bar). The level of inertisation required to prevent dust explosions totally was determined at different initial pressures. The sensitivity of fuels to spontaneous ignition and the effect of pressure on the sensitivity to and temperature of spontaneous ignition were studied on a pressurised dynamic self-ignition equipment. The effect of inertisation on the self-ignition temperature and alternatives of preventing spontaneous ignition by effective inertisation in the pressure ranges of 1 and 25 bar were investigated. As an example of application, results obtained with the laboratory test equipment were extrapolated to bin sizes used in practice. As a factor contributing to spontaneous ignition, the flowability of different fuels in bins and lock-hoppers (stagnant fuel layers are especially sensitive to spontaneous ignition) in continuous flow and in flow stopped for a storage time of 1 hour was also studied. Walker`s rotating ring shear equipment and Jenike`s linear shear equipment based on shearing the fuel were used in the flowability measurements. The effect of fuel temperature (22 deg C, 40 deg C) on flowability was determined for forest residue chips. Dynamic friction coefficients between fuels and handling equipment were determined for stainless steel and rusty metal surface. As an example of application, results obtained with laboratory test equipment were extrapolated to a bin size of 21 m{sup 3} by calculating the size of the minimum discharge opening required by mass flow of different coals and forest residue chips and the minimum angle of repose of the conical part for a bin of stainless steel

  11. Safety-technical characteristics of biomass, coal and straw. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C; Rautalin, A

    1996-12-31

    Safety-technical factors related to spontaneous ignition and dust explosions of biomasses were investigated. Parametres of dust explosions and effect of inertisation on the maximum pressure (pmax) and the maximum rate of pressure rise (Kstmax) were studied at elevated initial pressure (1-9 bar). The level of inertisation required to prevent dust explosions totally was determined at different initial pressures. The sensitivity of fuels to spontaneous ignition and the effect of pressure on the sensitivity to and temperature of spontaneous ignition were studied on a pressurised dynamic self-ignition equipment. The effect of inertisation on the self-ignition temperature and alternatives of preventing spontaneous ignition by effective inertisation in the pressure ranges of 1 and 25 bar were investigated. As an example of application, results obtained with the laboratory test equipment were extrapolated to bin sizes used in practice. As a factor contributing to spontaneous ignition, the flowability of different fuels in bins and lock-hoppers (stagnant fuel layers are especially sensitive to spontaneous ignition) in continuous flow and in flow stopped for a storage time of 1 hour was also studied. Walker`s rotating ring shear equipment and Jenike`s linear shear equipment based on shearing the fuel were used in the flowability measurements. The effect of fuel temperature (22 deg C, 40 deg C) on flowability was determined for forest residue chips. Dynamic friction coefficients between fuels and handling equipment were determined for stainless steel and rusty metal surface. As an example of application, results obtained with laboratory test equipment were extrapolated to a bin size of 21 m{sup 3} by calculating the size of the minimum discharge opening required by mass flow of different coals and forest residue chips and the minimum angle of repose of the conical part for a bin of stainless steel

  12. 1991 Second international symposium on the biological processing of coal: Proceedings

    International Nuclear Information System (INIS)

    1991-09-01

    This symposium was held to aid in the advancement of science and technology in the area of coal bioprocessing by facilitating the exchange of technical information and offering a forum for open discussion and review. The symposium was complemented by four workshops which introduced the attendees to the fundamentals of genetic, mass ampersand energy balances, process ampersand economic analysis, and advanced analytical techniques as they pertain to bioprocessing of coal. Eleven countries were represented, as were numerous universities, national laboratories, federal agencies and corporations. Topics discussed include desulfurization, coal dissolution, gene cloning, and enzyme activity. Individual projects are processed separately on the databases

  13. Microbial leaching of iron from pyrite by moderate thermophile chemolithotropic bacteria

    International Nuclear Information System (INIS)

    Ilyas, S.; Niazi, S.B.

    2007-01-01

    The present work was aimed at studying the bioleachability of iron from pyrite by the selected moderately thermophilic strains of acidophilic chemolithotrophic and acidophilic heterotrophic bacteria. These included Sulfobacillus thermosulfidooxidans (chemolithotroph) and an un-identified strain of acidophilic heterotroph (code 6A1TSB) isolated from local environments. As compared to inoculated flasks, dissolution of metal (due to acid leaching) was significantly low in the un-inoculated control flasks in all the experiments in ore. A decrease in the bioleaching activity was observed at the later stages of bioleaching of metal from ore. Among the strategies adopted to enhance the metal leaching rates, a mixed consortium of the metal adapted cultures of the above-mentioned bacteria was found to exhibit the maximum metal leaching efficiency. In all the flasks where high metal leaching rates were observed, concomitantly biomass production rates were also high indicating high growth rates. It showed that the metal bioleaching capability of the bacteria was associated with their growth. Pyrite contained 42% iron. (author)

  14. Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States

    International Nuclear Information System (INIS)

    Jenner, Steffen; Lamadrid, Alberto J.

    2013-01-01

    The aim of this paper is to examine the major environmental impacts of shale gas, conventional gas and coal on air, water, and land in the United States. These factors decisively affect the quality of life (public health and safety) as well as local and global environmental protection. Comparing various lifecycle assessments, this paper will suggest that a shift from coal to shale gas would benefit public health, the safety of workers, local environmental protection, water consumption, and the land surface. Most likely, shale gas also comes with a smaller GHG footprint than coal. However, shale gas extraction can affect water safety. This paper also discusses related aspects that exemplify how shale gas can be more beneficial in the short and long term. First, there are technical solutions readily available to fix the most crucial problems of shale gas extraction, such as methane leakages and other geo-hazards. Second, shale gas is best equipped to smoothen the transition to an age of renewable energy. Finally, this paper will recommend hybrid policy regulations. - Highlights: ► We examine the impacts of (un)conventional gas and coal on air, water, and land. ► A shift from coal to shale gas would benefit public health. ► Shale gas extraction can affect water safety. ► We discuss technical solutions to fix the most crucial problems of shale gas extraction. ► We recommend hybrid regulations.

  15. Technical and Energy Performance of an Advanced, Aqueous Ammonia-Based CO2 Capture Technology for a 500 MW Coal-Fired Power Station.

    Science.gov (United States)

    Li, Kangkang; Yu, Hai; Feron, Paul; Tade, Moses; Wardhaugh, Leigh

    2015-08-18

    Using a rate-based model, we assessed the technical feasibility and energy performance of an advanced aqueous-ammonia-based postcombustion capture process integrated with a coal-fired power station. The capture process consists of three identical process trains in parallel, each containing a CO2 capture unit, an NH3 recycling unit, a water separation unit, and a CO2 compressor. A sensitivity study of important parameters, such as NH3 concentration, lean CO2 loading, and stripper pressure, was performed to minimize the energy consumption involved in the CO2 capture process. Process modifications of the rich-split process and the interheating process were investigated to further reduce the solvent regeneration energy. The integrated capture system was then evaluated in terms of the mass balance and the energy consumption of each unit. The results show that our advanced ammonia process is technically feasible and energy-competitive, with a low net power-plant efficiency penalty of 7.7%.

  16. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  17. Isolation and characterization of bacteria on the drainage water from Ratones mine and its behaviour on pyrite

    International Nuclear Information System (INIS)

    Merino, J. L.; Saez, R. M.

    1974-01-01

    This paper describes some of the studies made about iron and sulfur oxidizing bacteria on the drainage water from Ratones mine. Different liquid and solid media were utilized as well as some energy sources, ferrous sulphate, thiosulfate and sulfur. Some experiment were al so realized on museum grade pyrite aimed at determining the possibilities of applying the mentioned bacteria on the leaching of pyrite and subsequently on the leaching of uranium ores. (Author) 27 refs

  18. The future of integrated coal gasification combined cycle power plants

    International Nuclear Information System (INIS)

    Mueller, R.; Termuehlen, H.

    1991-01-01

    This paper examines the future of integrated coal gasification combined cycle (IGCC) power plants as affected by various technical, economical and environmental trends in power generation. The topics of the paper include a description of natural gas-fired combined cycle power plants, IGCC plants, coal gasifier concepts, integration of gasifiers into combined cycle power plants, efficiency, environmental impacts, co-products of IGCC power plants, economics of IGCC power plants, and a review of IGCC power plant projects

  19. Ways of conserving fuel-energy resources in the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Voloshchenko, N.I.; Nabokov, E.P.

    1981-01-01

    A discussion is made of the work undertaken by enterprises and organizations of the coal industry to conserve fuel-energy resources in the tenth Five-Year Plan. An examination is made of the basic organizational-technical measures that have been implemented in this sector for conserving thermal and electrical energy. A presentation is made of the results obtained from the introduction of advanced technological processes and equipment aimed at increasing productivity and reducing operational losses of coal.

  20. Two-stage liquefaction of a Spanish subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.T.; Fernandez, I.; Benito, A.M.; Cebolla, V.; Miranda, J.L.; Oelert, H.H. (Instituto de Carboquimica, Zaragoza (Spain))

    1993-05-01

    A Spanish subbituminous coal has been processed in two-stage liquefaction in a non-integrated process. The first-stage coal liquefaction has been carried out in a continuous pilot plant in Germany at Clausthal Technical University at 400[degree]C, 20 MPa hydrogen pressure and anthracene oil as solvent. The second-stage coal liquefaction has been performed in continuous operation in a hydroprocessing unit at the Instituto de Carboquimica at 450[degree]C and 10 MPa hydrogen pressure, with two commercial catalysts: Harshaw HT-400E (Co-Mo/Al[sub 2]O[sub 3]) and HT-500E (Ni-Mo/Al[sub 2]O[sub 3]). The total conversion for the first-stage coal liquefaction was 75.41 wt% (coal d.a.f.), being 3.79 wt% gases, 2.58 wt% primary condensate and 69.04 wt% heavy liquids. The heteroatoms removal for the second-stage liquefaction was 97-99 wt% of S, 85-87 wt% of N and 93-100 wt% of O. The hydroprocessed liquids have about 70% of compounds with boiling point below 350[degree]C, and meet the sulphur and nitrogen specifications for refinery feedstocks. Liquids from two-stage coal liquefaction have been distilled, and the naphtha, kerosene and diesel fractions obtained have been characterized. 39 refs., 3 figs., 8 tabs.

  1. Application of Paste Backfill in Underground Coal Fires

    Science.gov (United States)

    Masniyom, M.; Drebenstedt, C.

    2009-04-01

    Coal fires are known from different coalfields worldwide. China, India, USA, Australia, Indonesia and South Africa are the main countries affected by coal fires. The fires is thermally intensive and cause numerous sinkholes, large-scale subsidence, air pollution, global warming, loss of mining productivity and increasing safety risk. The Wuda Inner Mongolia coalfield has been selected as a possible test area for paste backfill. The traditional methods, executed by fire fighting teams, by covering the coalfire areas with soil, blasting burning coal outcrops and injecting water in the subsurface fire pockets are continuously improved and extended. Initiatives to introduce modern techniques, such as backfill placement at fracture and borehole, to cool down the burning coal and cut off the air supply. This study is to investigate backfill materials and techniques suited for underground coal fires. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special attention was paid to materials generated as by-products and other cheaply available materials e.g. fly ash from power plants. There is a good chance that one of the different material mixtures investigated can be used as a technically and economically viable backfill for underground coal fires.

  2. Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Miller, R.L.

    1991-12-01

    The findings in the first phase were as follows: 1. Both reductive (non-selective) alkylation and selective oxygen alkylation brought about an increase in liquefaction reactivity for both coals. 2. Selective oxygen alkylation is more effective in enhancing the reactivity of low rank coals. In the second phase of studies, the major findings were as follows: 1. Liquefaction reactivity increases with increasing level of alkylation for both hydroliquefaction and co-processing reaction conditions. 2. the increase in reactivity found for O-alkylated Wyodak subbituminous coal is caused by chemical changes at phenolic and carboxylic functional sites. 3. O-methylation of Wyodak subbituminous coal reduced the apparent activation energy for liquefaction of this coal.

  3. Coking coal of Checua Lenguazaque area; Carbones coquizantes del area Checua - Samaca

    Energy Technology Data Exchange (ETDEWEB)

    Arboleda Otalora, Carlos Ariel

    1987-06-01

    In this report a summary of the main characteristics of the coal of the area of Checua-Samaca is presented. Using the main works carried out on this area, the most important geologic, physical-chemical, technological and petrographic aspects are compiled that are considered essential to carry out a technical evaluation of these coal and all the analyses they take to conclude that in this area, bituminous coal are presented with very good coking properties, on the other hand, it is demonstrated by the use that is given to the coal extracted by the small existent mining. However, keeping in mind the demands of the international market of the coking coal, it becomes necessary to improve the existent geologic information to be able to make reliable stratigraphic correlations.

  4. The causes and consequences of blown-up coal dust

    International Nuclear Information System (INIS)

    Vrins, E.L.M.; Van Zuylen, E.J.

    1991-11-01

    The goal of the Dutch National Research Program Coal (NOK), which started in 1983, is to eliminate technical, economic and ecological objections, connected with the large-scale use of coal. The Blown-up Coal Dust program, which is completed in 1991, aimed at problems that arise, due to the dispersion of coal dust in the vicinity of coal storage and transshipment areas. The accumulated knowledge is categorized according to the route the dust itself follows, starting with activities that cause the dust and continuing up to the effects, of which nuisance in the neighborhood is the most important. The successive chapters are: Activities, Emission, Concentration, Deposition, Pollution and Nuisance and other effects. Inventories of available knowledge, models and measuring equipment have been carried out for each part. The models describe the connection between the various stages of the progress of the dust, from cause to consequence. Newly developed measuring equipment was tested in practice. Various analysis techniques were used and evaluated, such as gravimetric, chemical and optical analysis. A specific coal dust analysis technique is not available. 15 figs., 23 tabs., 1 appendix, 263 refs

  5. The economic case for industrial application of low-rank coal technology

    International Nuclear Information System (INIS)

    Irwin, W.

    1991-01-01

    The World Coal Institute estimates coal should overtake oil as the world's largest source of primary energy by the turn of the century. Current world coal production of 3.6 billion tons in 1990 is predicted to rise to 4 billion tons by the year 2000. It is conceded that a major environmental problem with burning coal is the so-called greenhouse effect. The question is how do you use the new technologies that have been developed which now allow coal to be burned with minimum damage to the environment. Despite their technical merits, acceptance of these new technologies is slow because they appear uncompetitive when compared with historic energy costs. Unless economic comparisons include some form of environmental evaluation, this issue will continue to be a barrier to progress. To avoid stagnation and provide the necessary incentive for implementing badly needed change, structural changes in energy economics need to be made which take into account the environmental cost element of these emerging new technologies. The paper discusses coal trade and quality and then describes the three main areas of development of clean coal technologies: coal preparation, combustion, and flue gas treatment

  6. Nanometre-sized pores in coal: Variations between coal basins and coal origin

    Science.gov (United States)

    Sakurovs, Richard; Koval, Lukas; Grigore, Mihaela; Sokolava, Anna; Ruppert, Leslie F.; Melnichenko, Yuri B.

    2018-01-01

    We have used small angle neutron scattering (SANS) to investigate the differences in methane and hexane penetration in pores in bituminous coal samples from the U.S., Canada, South Africa, and China, and maceral concentrates from Australian coals. This work is an extension of previous work that showed consistent differences between the extent of penetration by methane into 10–20 nm size pores in inertinite in bituminous coals from Australia, North America and Poland.In this study we have confirmed that there are differences in the response of inertinite to methane and hexane penetration in coals sourced from different coal basins. Inertinite in Permian Australian coals generally has relatively high numbers of pores in the 2.5–250 nm size range and the pores are highly penetrable by methane and hexane; coals sourced from Western Canada had similar penetrability to these Australian coals. However, the penetrability of methane and hexane into inertinite from the Australian Illawarra Coal Measures (also Permian) is substantially less than that of the other Australian coals; there are about 80% fewer 12 nm pores in Illawarra inertinite compared to the other Australian coals examined. The inertinite in coals sourced from South Africa and China had accessibility intermediate between the Illawarra coals and the other Australian coals.The extent of hexane penetration was 10–20% less than CD4 penetration into the same coal and this difference was most pronounced in the 5–50 nm pore size range. Hexane and methane penetrability into the coals showed similar trends with inertinite content.The observed variations in inertinite porosity between coals from different coal regions and coal basins may explain why previous studies differ in their observations of the relationships between gas sorption behavior, permeability, porosity, and maceral composition. These variations are not simply a demarcation between Northern and Southern Hemisphere coals.

  7. Pulverized coal vs. circulating fluidized bed: An economic comparison

    International Nuclear Information System (INIS)

    Johns, R.F.

    1991-01-01

    As the power industry looks to the 1990s for expanded steam generation capacity, boiler owners will continue on their long-standing assignment to evaluate and select the best, lowest cost alternative to meet their energy needs. For coal-fired plants, this evaluation process includes pulverized coal-fired boilers (PC) and circulating fluidized bed boilers (CFB). The cost difference between these products is site specific and depends on several variables, including: Boiler size, pressure, and temperature; Operating variables, such as the cost for fuel, auxiliary power, SO 2 reagent, and ash disposal; Capital cost; and Financial variables, such as evaluation period and interest rate. This paper provides a technical and economic comparison between a pulverized coal-fired boiler and circulating fluidized bed boiler

  8. Economic evaluation of coal deposits. Ekonomicheskaya otsenka ugolinykh mestorozhdenii

    Energy Technology Data Exchange (ETDEWEB)

    Raikhel' , B L

    1979-01-01

    A presentation is made of theoretical problems, methods, and criteria for the economic evaluation of coal deposits. An examination is made of factors which influence the formation of magnitudes that are utilized in economic evaluations as well as problems whose solution requires the consideration of the economic evaluation of coal deposits (evaluation of useful mineral losses, substantiation for the extraction of reserves under various conditions, sectioning off reserves to an operating mine, the completeness of reserve extraction, and technico-economic substantiation for quality). Extensive experience in planning is summarized and data are illustrated by examples. The book is intended for engineering-technical personnel of enterprises, organizations, planning, and scientific-research institutes of the coal industry as well as geological organizations. 29 references, 27 tables.

  9. Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst.

    Science.gov (United States)

    Labiadh, Lazhar; Oturan, Mehmet A; Panizza, Marco; Hamadi, Nawfel Ben; Ammar, Salah

    2015-10-30

    The mineralization of a new azo dye - the (4-amino-3-hydroxy-2-p-tolylazo-naphthalene-1-sulfonic acid) (AHPS) - has been studied by a novel electrochemical advanced oxidation process (EAOP), consisting in electro-Fenton (EF) oxidation, catalyzed by pyrite as the heterogeneous catalyst - the so-called 'pyrite-EF'. This solid pyrite used as heterogeneous catalyst instead of a soluble iron salt, is the catalyst the system needs for production of hydroxyl radicals. Experiments were performed in an undivided cell equipped with a BDD anode and a commercial carbon felt cathode to electrogenerate in situ H2O2 and regenerate ferrous ions as catalyst. The effects on operating parameters, such as applied current, pyrite concentration and initial dye content, were investigated. AHPS decay and mineralization efficiencies were monitored by HPLC analyses and TOC measurements, respectively. Experimental results showed that AHPS was quickly oxidized by hydroxyl radicals (OH) produced simultaneously both on BDD surface by water discharge and in solution bulk from electrochemically assisted Fenton's reaction with a pseudo-first-order reaction. AHPS solutions with 175 mg L(-1) (100 mg L(-1) initial TOC) content were then almost completely mineralized in 8h. Moreover, the results demonstrated that, under the same conditions, AHPS degradation by pyrite electro-Fenton process was more powerful than the conventional electro-Fenton process. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Short communication: Adverse effect of surface-active reagents on the bioleaching of pyrite and chalcopyrite by Thiobacillus ferrooxidans.

    Science.gov (United States)

    Huerta, G; Escobar, B; Rubio, J; Badilla-Ohlbaum, R

    1995-09-01

    Oxidation of Fe(II) iron and bioleaching of pyrite and chalcopyrite by Thiobacillus ferrooxidans was adversely affected by isopropylxanthate, a flotation agent, and by LIX 984, a solvent-extraction agent, each at ≤ 1 g/l. The reagents/l were adsorbed on the bacterial surface, decreasing the bacteria's development and preventing biooxidation. Both reagents inhibited the bioleaching of pyrite and LIX 984 also inhibited the bioleaching of chalcopyrite.

  11. Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process.

    Science.gov (United States)

    Xiao, Yunhua; Liu, Xueduan; Dong, Weiling; Liang, Yili; Niu, Jiaojiao; Gu, Yabing; Ma, Liyuan; Hao, Xiaodong; Zhang, Xian; Xu, Zhen; Yin, Huaqun

    2017-07-01

    This study used an artificial microbial community with four known moderately thermophilic acidophiles (three bacteria including Acidithiobacillus caldus S1, Sulfobacillus thermosulfidooxidans ST and Leptospirillum ferriphilum YSK, and one archaea, Ferroplasma thermophilum L1) to explore the variation of microbial community structure, composition, dynamics and function (e.g., copper extraction efficiency) in chalcopyrite bioleaching (C) systems with additions of pyrite (CP) or sphalerite (CS). The community compositions and dynamics in the solution and on the ore surface were investigated by real-time quantitative PCR (qPCR). The results showed that the addition of pyrite or sphalerite changed the microbial community composition and dynamics dramatically during the chalcopyrite bioleaching process. For example, A. caldus (above 60%) was the dominant species at the initial stage in three groups, and at the middle stage, still dominated C group (above 70%), but it was replaced by L. ferriphilum (above 60%) in CP and CS groups; at the final stage, L. ferriphilum dominated C group, while F. thermophilum dominated CP group on the ore surface. Furthermore, the additions of pyrite or sphalerite both made the increase of redox potential (ORP) and the concentrations of Fe 3+ and H + , which would affect the microbial community compositions and copper extraction efficiency. Additionally, pyrite could enhance copper extraction efficiency (e.g., improving around 13.2% on day 6) during chalcopyrite bioleaching; on the contrary, sphalerite restrained it.

  12. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, July 1--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-12-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Some of the contract activities for this quarter are: We completed many of the analyses on the 81 samples received from HTI bench-scale run CMSL-9, in which coal, coal/mixed plastics, and coal/high density polyethylene were fed; Liquid chromatographic separations of the 15 samples in the University of Delaware sample set were completed; and WRI completed CP/MAS {sup 13}C-NMR analyses on the Delaware sample set.

  13. Coal and the energy scramble

    Energy Technology Data Exchange (ETDEWEB)

    Ezra, D.

    1978-09-01

    Comparing the world's energy resources and estimated reserves, Sir Derek Ezra says coal has undeniably the biggest reserves of all the world's major sources of energy and is therefore the brightest hope for the future, if only its potential is realized and the necessary action taken now. The question is how much of the huge quantities believed to exist in the ground will prove economic to extract. According to estimates presented at the World Energy Conference in 1977, the World's geological resources of solid fuels amount to more than 10,000 million tons of coal equivalent. It was reckoned that some 640 thousand million tons c.e. were technically and economically recoverable under the conditions prevailing today. This is equivalent to between 200 and 300 years at current rates of usage (2.7 thousand million tons). The cost of extracting a great deal of the remaining far greater reserves will undoubtedly be high and the time scale long. In some regions there may be environmental obstacles to development. However, present day notions of what is economically and technically possible and of the relative importance of environmental values and human needs may well undergo a radical change as the realities of the world's energy situation strike home.

  14. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, October 1--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  15. Operational experiences of (in)direct co-combustion in coal and gas fired power plants in Europe

    International Nuclear Information System (INIS)

    Van Ree, R.; Korbee, R.; Meijer, R.; Konings, T.; Van Aart, F.

    2001-02-01

    The operational experiences of direct and indirect co-combustion of biomass/waste in European coal and natural gas fired power plants are addressed. The operational experiences of mainly Dutch direct co-combustion activities in coal fired power plants are discussed; whereas an overview of European indirect co-combustion activities is presented. The technical, environmental, and economic feasibility of different indirect co-combustion concepts (i.e. upstream gasification, pyrolysis, combustion with steam-side integration) is investigated, and the results are compared with the economic preferable concept of direct co-combustion. Main technical constraints that limit the co-combustion capacity of biomass/waste in conventional coal fired power plants are: the grindability of the biomass/coal blend, the capacity of available unit components, and the danger of severe slagging, fouling, corrosion and erosion. The main environmental constraints that have to be taken into account are the quality of produced solid waste streams (fly ash, bottom ash, gypsum) and the applicable air emission regulations. 6 refs

  16. Study on structuring the supervision system of coal mine associated with radionuclides in Xinjiang

    International Nuclear Information System (INIS)

    Feng Guangwen; Jia Xiahui

    2012-01-01

    Xinjiang is one of China's rich coal provinces (areas) and it accounts for about 40% national coal reserves. In the long-term radioactive scientific research, monitoring and environmental impact assessment works, we found parts of Yili and Hetian's coal was associated with higher radionuclide, and parts of coal seam even reached nuclear mining level. However the laws and regulations about associated radioactive coal mine supervision were not perfect, and the supervision system is still in the exploration. This article mainly started with the coal mine enterprises' geological prospecting reports, radiation environmental impact assessment and monitoring report preparation for environment acceptance checking and supervisory monitoring, controlled the coal radioactive pollution from the sources, and carried out the research of building Xinjiang associated radioactive coal mine supervision system. The establishment of supervision system will provide technical guidance for the enterprises' coal exploitation and cinders using on the one hand, and on the other hand will provide decision-making basis for strengthening the associated radioactive coal mine supervision for Xinjiang environmental regulators. (authors)

  17. Integrated engineering and cost model for management of coal combustion byproducts

    Energy Technology Data Exchange (ETDEWEB)

    Sevim, H. [Department of Mining Engineering, Southern Illinois University at Carbondale, Carbondale, Illinois (United States); Renninger, S. [US Department of Energy, Morgantown Energy Technology Center, Morgantown, West Virginia (United States)

    1998-07-01

    An integrated engineering and cost model has been developed as a part of an overall research project for exploring the technical, environmental and economic feasibility of disposing coal combustion byproducts and flue gas desulfurisation products in underground coal mines in Illinois. The features of the model have been keyed in user-friendly software. In this paper, the purpose and the structure of the model are described. The capabilities of the software are illustrated through an example involving transportation of byproducts in containers from a power plant to a mine site, and subsequent placement of the byproducts in a abandoned underground coal mine using a hydraulic injection system. 3 refs.

  18. Energy Economic Data Base (EEDB) Program. Technical Reference Book

    International Nuclear Information System (INIS)

    Allen, R.E.; Benedict, R.G.; Hodson, J.S.

    1983-09-01

    Purpose of the program is to develop current technical and cost information for nuclear and comparison electric power generating stations. Purpose of this Technical Reference Book is to provide the current technical design bases for each of the technical data models updated in the Sixth Update (1983). It contains a set of detailed system design descriptions for these technical data models, which are supplemented with engineering drawings. The system design descriptions reflect regulatory and industry practice and experience for nuclear and coal-fired power generating stations that are current for January 1, 1983

  19. Pyrite as a proxy for the identification of former coastal lagoons in semiarid NE Brazil

    Science.gov (United States)

    Ferreira, Tiago O.; Nóbrega, Gabriel N.; Albuquerque, Antonia G. B. M.; Sartor, Lucas R.; Gomes, Irlene S.; Artur, Adriana G.; Otero, Xosé L.

    2015-10-01

    This work aimed to test the suitability of pyrite (FeS2) as a proxy for reconstructing past marine environmental conditions along the semiarid coast of Brazil. Morphological description combined with physicochemical analyses including Fe partitioning were conducted for soil depth profiles (30 and 60 cm depths) at three sites in two contrasting lagoons of the state of Ceará: a suspected former lagoon that would have been transformed into a freshwater "lake" at a site vegetated by Juncus effusus (site P1), and another lagoon with connection to the sea at sites vegetated by J. effusus (site P2) or Portulaca oleracea (site P3). Soil samples were collected in September 2010. Site P3 had more reducing conditions, reaching Eh values of -132 mV in the surface layer (0-10 cm), whereas minimum values for the P1 and P2 sites were +219 and +85 mV, respectively. Lower pyritic Fe values were found at site P1, with a degree of pyritization (DOP) ranging from 10 to 13%. At sites P2 and P3, DOP ranged from 9 to 67% and from 55 to 72%, respectively. These results are consistent with an interruption of tidal channels by eolian dune migration inducing strong changes in the hydrodynamics and physicochemical characteristics (lower salinity, oxidizing conditions) of these sites, causing the dieback of suspected former mangroves and a succession to freshwater marshes with an intermediate salt marsh stage. Together with other physicochemical signatures, pyrite can evidently serve as a useful proxy in tracking environmental changes in such ecotones, with implications for coastal management.

  20. Technical diagnosis of industrial plants with radioisotopes

    International Nuclear Information System (INIS)

    Hartmann, G.

    1984-01-01

    A survey is given of the application of radioisotopes in technical diagnosis of industrial plants. Proceeding from the economic importance and the state of the art of radioisotope applications, the principles of tracer techniques are outlined including topical examples of application such as passage of coal through a steam generator, wear in impact crashing of coal, wear and corrosion in pipelines, testing the effective cross section of pipes, and investigations of microstructures. Limits and restrictions of applications are briefly discussed

  1. Development of coal-based technologies for Department of Defense Facilities. Semiannual technical progress report, September 28, 1996--March 27, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Miller, S.F.; Pisupati, S.V. [and others

    1997-07-22

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of developing technologies which can potentially decrease DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Work in Phase III focused on coal preparation studies, pilot-scale NO{sub x} reduction studies, economic analyses of coal use, and evaluation of deeply-cleaned coal as boiler fuel. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. Preliminary pilot-scale NO{sub x} reduction catalyst tests were conducted when firing natural gas in Penn State`s down-fired combustor. This is the first step in the scale-up of bench-scale results obtained in Phase II to the demonstration boiler scale when firing coal. The economic study focused on community sensitivity to coal usage, regional/national economic impacts of new coal utilization technologies, and constructing a national energy portfolio. The evaluation of deeply-cleaned coal as boiler fuel included installing a ribbon mixer into Penn State`s micronized coal-water mixture circuit for reentraining filter cake. In addition, three cleaned coals were received from CQ Inc. and three cleaned coals were received from Cyprus-Amax.

  2. Subtask 3.3 - Feasibility of Direct Coal Liquefaction in the Modern Economic Climate

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin Oster; Joshua Strege; Marc Kurz; Anthony Snyder; Melanie Jensen

    2009-06-15

    Coal liquefaction provides an alternative to petroleum for the production of liquid hydrocarbon-based fuels. There are two main processes to liquefy coal: direct coal liquefaction (DCL) and indirect coal liquefaction (ICL). Because ICL has been demonstrated to a greater extent than DCL, ICL may be viewed as the lower-risk option when it comes to building a coal liquefaction facility. However, a closer look, based on conversion efficiencies and economics, is necessary to determine the optimal technology. This report summarizes historical DCL efforts in the United States, describes the technical challenges facing DCL, overviews Shenhua's current DCL project in China, provides a DCL conceptual cost estimate based on a literature review, and compares the carbon dioxide emissions from a DCL facility to those from an ICL facility.

  3. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 2, appendices. Final technical report, October 1, 1991--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., College Park, PA (United States); Gutterman, C.

    1995-04-01

    Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than did relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.

  4. Result of design and test operation of a coal boiler at Hyogo Refinery

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Yasuhiko; Sato, Noriyuki

    1987-05-01

    This boiler is the first coal boiler for the oil refineries in Japan (Installed in Oct., 1986 at Idemitsu Petrochemical Co.) Causes for using coal as a fuel are a conversion to less expensive fuel and offering a technical service to the users of coal through the combustion of coal and learning of a handling technique. The type of boiler is Babcock single barrel radiant type and has 150 t/d capacity with single fuel combustion of coal. Auxiliary equipments are a pulverizer, a transportation and storage unit, a denitration unit, a dust collector, a desulfurization unit, and an ash disposal unit. Main considerations in the design are measures for the security of finely pulverized coal, clogging prevention for coal and ash. A test operation revealed 7 % of combustible loss and 160 - 250 ppm of NOx content at a charge inlet of denitration unit. Actual operation exhibited no clogging at the denitration unit of troubles due to scaling. Design for raw materials is to blend 4 imported coals (from Australia and Canada, etc) and 3 Japanese ones. (7 figs, 2 tabs)

  5. Programmer's guide to the Argonne Coal Market Model. [USA; mathematical models

    Energy Technology Data Exchange (ETDEWEB)

    Guziel, K.A.; Krohm, G.C.; VanKuiken, J.C.; Macal, C.M.

    1980-02-01

    The Argonne Coal Market Model was developed as part of a comprehensive DOE study of coal-related environmental, health, and safety impacts. The model includes a high degree of regional detail on both supply and demand. Coal demand is input separately for industrial and utility users in each region, and coal supply in each region is characterized by a linearly increasing function relating increments of new mine capacity to the marginal cost of extraction. Rail transportation costs and control technology costs are estimated for each supply-demand link. A quadratic programming algorithm is used to optimize flow patterns for the system. This report documents the model for programmers and users interested in technical details of the computer code.

  6. Research on the thermal decomposition of Mongolian Baganuur lignite and Naryn sukhait bituminous coal

    Directory of Open Access Journals (Sweden)

    A. Ariunaa

    2016-03-01

    Full Text Available The technical characteristics, elemental composition of the organic and mineral matters, ash melting behaviors and carbonization and gasification reactivities of coals from Baganuur and Naryn sukhait deposits were investigated. The results of proximate and ultimate analysis confirmed that the coal from Baganuur deposit can be graded as a low rank lignite B2 mark coal and Naryn sukhait coal is a bituminous G mark one. The carbonization and gasification experiments were performed using TGA apparatus and fixed bed quartz reactor. The data obtained with two experimental reactors showed that Baganuur lignite had lower thermal stability and much higher CO2 gasification reactivity at 950°C as compared to those for Naryn sukhait bituminous coal.Mongolian Journal of Chemistry 16 (42, 2015, 22-29

  7. Development trends in the Lusatian brown coal mining industry

    International Nuclear Information System (INIS)

    Schwirten, D.

    1994-01-01

    Lusatia has lived on and with brown coal for over 200 years. Brown coal changed what was once a region in which forestry and agriculture predominated into an industrial region. Thanks to its good combustion properties and high energy yield brown coal very soon became known and popular. It was always the driving force for a rapid development which resulted in an economically sound and technically up-to-date industry in Lusatia. This powerful status of brown coal was however soon exploited for aims which were bound to lead to the downfall of two social structures (during the years from 1933 to 1990) by reason of a regime of unconditional autarchy. The economic and technical development thus initiated certainly brought many advantages, but it also had serious diadvantages. Constant increases in production, as a result of which planned rated outputs were intentionally disregarded, were the rule because production targets had to be met or exceeded. Economic inefficiency led to a scarcity of labour and a shortage of finances. Environmental aims had no priority since production was the absolute, primary objective. Consequently, this regime of economic autarchy ended in an one-way street as far as industry was concerned, a situation which was accompanied by an unexampled destruction of the natural basic living conditions and direct, threatening health hazards to man and nature. The year 1990 saw the beginning of the transition from planned controlled economy to free market economy. The reorganization of the former large combines as corporations was not however merely a formal change, but internally also represented a transformation. The brown coal mining industry manifested its new intention and determination to be economically competitive and unsubsidized in future, to operate in such a way as to be compatible with the environment and to exploit reserves carefully, as well as to render its activities socially compatible. (orig.) [de

  8. Technical, economic and environmental potential of co-firing of biomass in coal and natural gas fired power plants in the Netherlands

    International Nuclear Information System (INIS)

    Van Ree, R.; Korbee, R.; Eenkhoorn, S.; De Lange, T.; Groenendaal, B.

    2000-01-01

    In this paper the technical, economic, and environmental potential of co-firing of biomass in existing Dutch coal and natural gas fired power plants, and industrial combined-cycles (CC), is addressed. Main criteria that are considered are: the availability and contractibility of biomass for energy purposes; the (technical) operation of the conventional fossil fuel based processes may not be disturbed; the gaseous and liquid plant emissions have to comply to those applicable for power plants/CCs, the commercial applicability of the solid residues may not be negatively influenced; applicable additional biomass conversion technologies must be commercially available; the necessary additional investment costs must be acceptable from an economic point of view, and the co-firing option must result in a substantial CO 2 -emission reduction. The main result of the study described in the paper is the presentation of a clear and founded indication of the total co-firing potential of biomass in existing power plants and industrial CCs in the Netherlands. This potential is determined by considering both technical, economic, and environmental criteria. In spite of the fact that the co-firing potential for the specific Dutch situation is presented, the results of the criteria considered are more generally applicable, and therefore are also very interesting for potential co-firing initiatives outside of the Netherlands

  9. Co-firing straw and coal in a 150-MWe utility boiler: in situ measurements

    DEFF Research Database (Denmark)

    Hansen, P. F.B.; Andersen, Karin Hedebo; Wieck-Hansen, K.

    1998-01-01

    A 2-year demonstration program is carried out by the Danish utility I/S Midtkraft at a 150-MWe PF-boiler unit reconstructed for co-firing straw and coal. As a part of the demonstration program, a comprehensive in situ measurement campaign was conducted during the spring of 1996 in collaboration...... with the Technical University of Denmark. Six sample positions have been established between the upper part of the furnace and the economizer. The campaign included in situ sampling of deposits on water/air-cooled probes, sampling of fly ash, flue gas and gas phase alkali metal compounds, and aerosols as well...... deposition propensities and high temperature corrosion during co-combustion of straw and coal in PF-boilers. Danish full scale results from co-firing straw and coal, the test facility and test program, and the potential theoretical support from the Technical University of Denmark are presented in this paper...

  10. Coal demonstration plants. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The objective of DOE's demonstration plant program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Under the DOE program, contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50% from industry and 50% from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Six of these demonstration plant projects are described and progress in the quarter is summarized. Several support and complementary projects are described (fuel feeding system development, performance testing and comparative evaluation, engineering support, coal grinding equipment development and a critical components test facility). (LTN)

  11. Global Development of Commercial Underground Coal Gasification

    Science.gov (United States)

    Blinderman, M. S.

    2017-07-01

    Global development of Underground Coal Gasification (UCG) is considered here in light of latest trends of energy markets and environmental regulations in the countries that have been traditional proponents of UCG. The latest period of UCG development triggered by initial success of the Chinchilla UCG project (1997-2006) has been characterized by preponderance of privately and share-market funded developments. The deceleration of UCG commercialization has been in part caused by recent significant decrease of world oil, gas and coal prices. Another substantial factor was lack of necessary regulations governing extraction and conversion of coal by UCG method in the jurisdictions where the UCG projects were proposed and developed. Along with these objective causes there seem to have been more subjective and technical reasons for a slowdown or cancelation of several significant UCG projects, including low efficiency, poor environmental performance, and inability to demonstrate technology at a sufficient scale and/or at a competitive cost. Latest proposals for UCG projects are briefly reviewed.

  12. Investigations into the ``in vitro-liquefaction`` of brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Fakoussa, R.M.; Frost, P.; Schwaemmle, A. [Bonn Univ. (Germany). Inst. fuer Mikrobiologie und Biotechnologie

    1997-12-31

    Brown coal can be liquefied/solubilized by a number of lignin-degrading fungi. However, with regard to technical applications in the future, the use of whole fungal cells is severely limited due to the mechanical and chemical sensitivity of the hyphae, and the expensive nutrition of the living cells. Therefore, many attempts have been made to make use of the coal-degrading enzymes produced by the fungus, mainly lignin peroxidases, manganese dependent peroxidases, and laccases. As it turned out, however, the isolated enzymes could not lower the mean molecular weight of the coal substances, but led to polymerization reactions due to the formation of reactive radical species. Apparently the living cell is able to prevent excessive levels of radical concentrations by the means of sensitive regulating mechanisms. (orig.)

  13. Abstract and research accomplishments of University Coal Research Projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their respective projects in time for distribution at a conference on June 13--14, 1995 at Tennessee State University in Nashville, Tennessee. This book is a compilation of the material received in response to that request. For convenience, the 70 grants reported in this book are stored into eight technical areas, Coal Science, Coal Surface Science, Reaction Chemistry, Advanced Process Concepts, Engineering Fundamentals and Thermodynamics, Environmental Science, high Temperature Phenomena, and Special topics. Indexes are provided for locating projects by subject, principal investigators, and contracting organizations. Each extended abstract describes project objectives, work accomplished, significance to the Fossil Energy Program, and plans for the next year.

  14. Development of coal petrography applied in technical processes at the Bergbau-Forschung/DMT during the last 50 years

    International Nuclear Information System (INIS)

    Steller, Monika; Arendt, Paul; Kuehl, Helmut

    2006-01-01

    The paper deals with the activities of the Bergbau-Forschung Coal Petrography Laboratory in Essen (Germany), which, under the influence of Marie-Therese Mackowsky, developed into a stronghold of the industrial application of coal petrology. In 1979, the formerly independent Section for Mineralogy and Petrology was merged with the Chemistry Section. This synergy has widened the research limits and resulted in higher efficiency of projects being carried out within both units. Since 1990, after transforming Bergbau-Forschung into DMT GmbH, a worldwide competition within hard coal and hard coal-based coke markets, together with the switch of the industry towards alternative energy sources, have significantly lowered the importance of the domestic coal mining industry. This in turn resulted in reduction of coal research programs. However, it is stressed that, in spite of transformations of the applied coal petrology experienced during the past 50 years, some achievements are still as applicable as ever. Among them, the method of predicting coke strength using maceral analysis and coal types, published by Mackowsky and Simonis [Mackowsky, M.-Th., Simonis, W., 1969. Die Kennzeichnung von Kokskohlen fur die mathematische Beschreibung der Hochtemperaturverkokung im Horizontalkammerofen bei Schuttbetrieb durch Ergebnisse mikroskopischer Analysen. Gluckauf-Forschungshefte 30, 25-27], is still in use today. The second part of this paper presents some examples of coal petrography applications, which are still important in carbonization processes. Mackowsky discovered that the pyrolytic components were influencing the coke homogeneity in coke ovens and affected coke quality parameters such as CRI and CSR. These highly graphitic layers and lenses prevent gasification of the inner zones of coke lumps, thus lowering the reactivity of metallurgical coke. Moreover, it also seems possible to predict wall load and maximum internal gas pressure as to prevent coke ovens from damage

  15. Development of coal petrography applied in technical processes at the Bergbau-Forschung/DMT during the last 50 years

    Energy Technology Data Exchange (ETDEWEB)

    Steller, Monika; Arendt, Paul; Kuehl, Helmut [Deutsche Montan Technologie GmbH ? Mining Service Division?Essen (Germany)

    2006-06-06

    The paper deals with the activities of the Bergbau-Forschung Coal Petrography Laboratory in Essen (Germany), which, under the influence of Marie-Therese Mackowsky, developed into a stronghold of the industrial application of coal petrology. In 1979, the formerly independent Section for Mineralogy and Petrology was merged with the Chemistry Section. This synergy has widened the research limits and resulted in higher efficiency of projects being carried out within both units. Since 1990, after transforming Bergbau-Forschung into DMT GmbH, a worldwide competition within hard coal and hard coal-based coke markets, together with the switch of the industry towards alternative energy sources, have significantly lowered the importance of the domestic coal mining industry. This in turn resulted in reduction of coal research programs. However, it is stressed that, in spite of transformations of the applied coal petrology experienced during the past 50 years, some achievements are still as applicable as ever. Among them, the method of predicting coke strength using maceral analysis and coal types, published by Mackowsky and Simonis [Mackowsky, M.-Th., Simonis, W., 1969. Die Kennzeichnung von Kokskohlen fur die mathematische Beschreibung der Hochtemperaturverkokung im Horizontalkammerofen bei Schuttbetrieb durch Ergebnisse mikroskopischer Analysen. Gluckauf-Forschungshefte 30, 25-27], is still in use today. The second part of this paper presents some examples of coal petrography applications, which are still important in carbonization processes. Mackowsky discovered that the pyrolytic components were influencing the coke homogeneity in coke ovens and affected coke quality parameters such as CRI and CSR. These highly graphitic layers and lenses prevent gasification of the inner zones of coke lumps, thus lowering the reactivity of metallurgical coke. Moreover, it also seems possible to predict wall load and maximum internal gas pressure as to prevent coke ovens from damage

  16. Effect of capping ligands on the optical properties and electronic energies of iron pyrite FeS2 nanocrystals and solid thin films

    International Nuclear Information System (INIS)

    Zhai, Guangmei; Xie, Rongwei; Wang, Heng; Zhang, Jitao; Yang, Yongzhen; Wang, Hua; Li, Xuemin; Liu, Xuguang; Xu, Bingshe

    2016-01-01

    In this work, the optical and electronic properties of iron pyrite FeS 2 nanocrystals and solid thin films with various capping ligands were systematically investigated by UV–Vis–NIR absorption spectroscopy, cyclic voltammetry and current density–voltage characteristic measurements. The iron pyrite nanocrystals with various ligands have an indirect band gap of around 1.05 eV and broad absorption spanning into the near-infrared region, exhibiting favorable optical properties for their photovoltaic applications. The electron affinities and ionization potentials of FeS 2 nanocrystals determined through cyclic voltammetry measurements show strong ligand dependence. An energy level shift of up to 190 meV was obtained among the pyrite nanocrystals capped with the ligands employed in this work. The iron pyrite nanocrystal films capped with iodide and 1,2-ethanedithiol exhibit the largest band edge energy shift and conductivity, respectively. Our results not only provide several useful optical and electronic parameters of pyrite nanocrystals for their further use in optoelectronic devices as active layers and/or infrared optical absorption materials, but also highlight the relationship between their surface chemistry and electronic energies. - Highlights: • The energy levels of FeS 2 nanocrystals with various ligands were determined via electrochemical measurements. • The energy levels of FeS 2 nanocrystals showed strong ligand-dependence. • An energy level shift of up to 190 meV was obtained for the pyrite nanocrystals studied in the work. • The conductivities of FeS 2 nanocrystals with different ligands were obtained by current density–voltage measurements.

  17. Technological and economical problems in exploitation of coal stripe mines in Bulgaria

    International Nuclear Information System (INIS)

    Khristov, Stoyan; Borisov, Bogomil

    1997-01-01

    Taking into consideration the restructure of the mining-energetic industry into the new economic conditions, financial, technical and technological problems are analysed, as well as their influence on the economic effects of the coal production in Bulgaria. Ecological standards for environmental policy are noticed. Perspectives for development of the coal production industry are pointed out, especially in the mining/power complex Maritsa East, one of the most important region for power generation in Bulgaria

  18. The Method of Validity Evaluation of Hard Coal Excavation in Residual Seam Parts

    Science.gov (United States)

    Wodarski, Krzysztof; Bijańska, Jolanta; Gumiński, Adam

    2017-12-01

    The excavation of residual seam parts should be justified by positive assessment of the purposefulness, technical feasibility and economic effectiveness. The results of the profitability evaluation are crucial in a decision making process. The excavation of residual seam parts, even if it is possible from a technical point of view, should not be implemented if it is economically inefficient or when accompanied by a very high risk of non-recovery of invested capital resources. The article presents the evaluation method of possibilities of excavating hard coal from residual seam parts, and the example of its use in one of collieries in the Upper Silesian Coal Basin. Working in line with the developed method, allows to indicate the variant of residual seam part exploitation, which is feasible to implement from a technical point of view, and which is characterized by the highest economic effectiveness and lowest risk.

  19. Outlook for use of 10 kV voltage in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Voloshchenko, N.I.; Nabokov, E.P.; Razumnyy, Yu.T.

    1983-01-01

    Based on technical-economic studies of the models of the plans for electricity supply, the economic expediency is shown of comprehensive implementation of measures for transition of high-voltage equipment of the mines to voltage of 10 kV with simultaneous improvement in the permissible power of short circuiting to 150 MV X A. Technical problems were examined which are associated with creation of explosion-safe electrical equipment, corresponding to the new technical requirements for the system of electricity supply of the coal mine.

  20. Possible strategies in development of highly productive underground coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Djoric, M

    1980-01-01

    This paper explains the basic strategies which may be applied in the exploitation of coal deposits by underground mining. It outlines the importance of combinations of extensive (non-mechanized) and intensive (mechanized) exploitation and their dependence on coal demand, available financial means, requirements concerning the protection of environment, unemployment of the population, availability of mechanical and electrical equipment, technical staff, etc. It is suggested that the applied strategy be revised and adapted to the current situation. Postponement of exploitation until the future when the demand and price of coal may be higher is criticized. The possibility of applying extensive underground mining in areas where unemployment and lack of capital speak against the application of fully mechanized working methods is also dealt with. (In Serbo-Croatian)