WorldWideScience

Sample records for coal pretreatment quarterly

  1. Hydrothermal pretreatment of coal. Quarterly report No. 1, September 21--December 15, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.S.

    1989-12-21

    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of ``OH`` seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  2. Quarterly coal report, July--September 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks. Coke production consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1997 and aggregated quarterly historical data for 1991 through the second quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. 72 tabs.

  3. Quarterly coal report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.

  4. Quarterly coal report, January--March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.

    1998-08-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for January through March 1998 and aggregated quarterly historical data for 1992 through the fourth quarter of 1997. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the United States, historical information has been integrated in this report. 58 tabs.

  5. Quarterly coal report, July--September 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1998 and aggregated quarterly historical data for 1992 through the second quarter of 1998. 58 tabs.

  6. Quarterly coal report, October--December 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1998 and aggregated quarterly historical data for 1992 through the third quarter of 1998. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. 58 tabs.

  7. Quarterly coal report, April--June, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for April through June 1998 and aggregated quarterly historical data for 1992 through the first quarter of 1998. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. 58 tabs.

  8. Steam pretreatment for coal liquefaction

    Science.gov (United States)

    Ivanenko, Olga

    The objectives of this work are to test the application of steam pretreatment to direct coal liquefaction, to investigate the reaction of model compounds with water, and to explore the use of zeolites in these processes. Previous work demonstrated the effectiveness of steam pretreatment in a subsequent flash pyrolysis. Apparently, subcritical steam ruptures nearly all of the ether cross links, leaving a partially depolymerized structure. It was postulated that very rapid heating of the pretreated coal to liquefaction conditions would be required to preserve the effects of such treatment. Accordingly, a method was adopted in which coal slurry is injected into a hot autoclave containing solvent. Since oxygen is capable of destroying the pretreatment effect, precautions were taken for its rigorous exclusion. Tests were conducted with Illinois No. 6 coal steam treated at 340sp°C, 750 psia for 15 minutes. Both raw and pretreated samples were liquified in deoxygenated tetralin at high severity (400sp°C, 30 min.) and low severity (a: 350sp°C, 30 min., and b: 385sp°C, 15 min.) conditions under 1500 psia hydrogen. Substantial improvement in liquid product quality was obtained and the need for rapid heating and oxygen exclusion demonstrated. Under low severity conditions, the oil yield was more than doubled, going from 12.5 to 29 wt%. Also chemistry of the pretreatment process was studied using aromatic ethers as model compounds. alpha-Benzylnaphthyl ether (alpha-BNE), alpha-naphthylmethyl phenyl (alpha-NMPE), and 9-phenoxyphenanthrene were exposed to steam and inert gas at pretreatment conditions and in some cases to liquid water at 315sp°C. alpha-BNE and alpha-NMPE showed little difference in conversion in inert gas and in steam. Hence, these compounds are poor models for coal in steam pretreatment. Thermally stable 9-phenoxyphenanthrene, however, was completely converted in one hour by liquid water at 315sp°C. At pretreatment conditions mostly rearranged starting

  9. Quarterly coal report, April--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-02

    The Quarterly Coal Report provides comprehensive information about US coal production, exports, imports, receipts, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. This issue presents detailed quarterly data for April 1990 through June 1990, aggregated quarterly historical data for 1982 through the second quarter of 1990, and aggregated annual historical data for 1960 through 1989 and projected data for selected years from 1995 through 2010. To provide a complete picture of coal supply and demand in the United States, historical information and forecasts have been integrated in this report. 7 figs., 37 tabs.

  10. Quarterly coal report, October--December 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities. This report presents detailed quarterly data for october through December 1997 and aggregated quarterly historical data for 1991 through the third quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data, as specified in Section 202 of the energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

  11. Quarterly coal report, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-20

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada.

  12. Hydrothermal pretreatment of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.S.

    1989-12-21

    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of OH'' seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  13. Quarterly coal report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-23

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1994 and aggregated quarterly historical data for 1986 through the third quarter of 1994. Appendix A displays, from 1986 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  14. Quarterly coal report, January--March 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-24

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1995 and aggregated quarterly historical data for 1987 through the fourth quarter of 1994. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  15. Quarterly coal report, January--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-24

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1994 and aggregated quarterly historical data for 1986 through the fourth quarter of 1993. Appendix A displays, from 1986 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  16. Review of a Proposed Quarterly Coal Publication

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This Review of a Proposed Quartery Coal Publication contains findings and recommendations regarding the content of a new summary Energy Information Administration (EIA) coal and coke publication entitled The Quarterly Coal Review (QCR). It is divided into five sections: results of interviews with selected EIA data users; identification of major functions of the coal and coke industries; analysis of coal and coke data collection activities; evaluation of issues conerning data presentation including recommendations for the content of the proposed QCR; and comparison of the proposed QCR with other EIA publications. Major findings and recommendations are as follows: (1) User interviews indicate a definite need for a compehensive publication that would support analyses and examine economic, supply and demand trends in the coal industry; (2) the organization of the publication should reflect the natural order of activities of the coal and coke industries. Based on an analysis of the industries, these functions are: production, stocks, imports, exports, distribution, and consumption; (3) current EIA coal and coke surveys collect sufficient data to provide a summary of the coal and coke industries on a quarterly basis; (4) coal and coke data should be presented separately. Coke data could be presented as an appendix; (5) three geographic aggregations are recommended in the QCR. These are: US total, coal producing districts, and state; (6) coal consumption data should be consolidated into four major consumer categories: electric utilities, coke plants, other industrial, and residential commercial; (7) several EIA publications could be eliminated by the proposed QCR.

  17. Quarterly coal report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-18

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended.

  18. Quarterly coal report, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-26

    In the second quarter of 1993, the United States produced 235 million short tons of coal. This brought the total for the first half of 1993 to 477 million short tons, a decrease of 4 percent (21 million short tons) from the amount produced during the first half of 1992. The decrease was due to a 26-million-short-ton decline in production east of the Mississippi River, which was partially offset by a 5-million-short-ton increase in coal production west of the Mississippi River. Compared with the first 6 months of 1992, all States east of the Mississippi River had lower coal production levels, led by West Virginia and Illinois, which produced 9 million short tons and 7 million short tons less coal, respectively. The principal reasons for the drop in coal output for the first 6 months of 1993 compared to a year earlier were: a decrease in demand for US coal in foreign markets, particularly the steam coal markets; a draw-down of electric utility coal stocks to meet the increase in demand for coal-fired electricity generation; and a lower producer/distributor stock build-up. Distribution of US coal in the first half of 1993 was 15 million short tons lower than in the first half of 1992, with 13 million short tons less distributed to overseas markets and 2 million short tons less distributed to domestic markets.

  19. Quarterly coal report, April 1995--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This document provides comprehensive information about U.S. coal production, distribution, imports, exports, prices, and consumption. Coke production, consumption, distribution, imports, and exports are also provided. This report presents compiled data for April thru June, and historical data for 1987 thru the first quarter of 1995.

  20. Quarterly coal report July--September 1996, February 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1996 and aggregated quarterly historical data for 1990 through the second quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. 8 figs., 72 tabs.

  1. Quarterly coal report July--September 1996, February 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1996 and aggregated quarterly historical data for 1990 through the second quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. 8 figs., 72 tabs.

  2. Review of the Proposed Quarterly Coal Review

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    This Review of the Proposed Quarterly Coal Review is the second of two reports and contains the results of our analysis of issues regarding the publication of a new summary publication, the Quarterly Coal Review. The first report on the QCR was submitted to the Office of Energy Data Operations (OEDO) in January 1981 and included results of our analysis and recommendations concerning data availability and content organization. This report concentrates on data presentation and publication format for the proposed QCR. Comprised of two sections, the report addresses chapter and table formats and presents a detailed analysis of chapter content. The first section of this report, Chapter, Table and Graph Formats, consists of findings and recommendations on the ordering, titling, end notes and cosmetics of the tables proposed for the QCR. The next section, Detailed Analysis of Chapter Content, is the result of a more in-depth analysis of chapters in the QCR.

  3. Exploratory research on novel coal liquefaction concept. [Quarterly report], January 1--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Burke, F.P.; Brandes, S.D.; Winschel, R.A. [CONSOL, Inc., Library, PA (United States). Research and Development Dept.; Derbyshire, F.J.; Kimber, G.; Anderson, R.K.; Carter, S.D. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Peluso, M. [LDP Associates, Hamilton Square, NJ (United States)

    1996-05-09

    Work this quarter concentrated on evaluating the effects of low- severity, first stage reaction conditions on coal conversions, exploring the effect of solvent-to-coal ratio on filtration performance, exploring the effects of pretreatment on dispersed catalysts for hydrotreating tests, and the installation and calibration of a simulated distillation instrument. Additional work included continued review of the technical and patent literature and expansion of the annotated bibliography.

  4. Coal Combustion Science quarterly progress report, April--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. (ed.); Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    This document provides a quarterly status report of the Coal Combustion Science Program that is being conducted at the Combustion, Research Facility, Sandia National Laboratories, Livermore, California. Coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 56 refs., 25 figs., 13 tabs.

  5. Quarterly coal report July--September 1995, February 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-16

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for July through September 1995 and aggregated quarterly historical data for 1987 through the second quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  6. Coal liquefaction. Quarterly report, July-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The status of coal liquefaction pilot plants supported by US DOE is reviewed under the following headings: company involved, location, contract, funding, process name, process description, flowsheet, history and progress during the July-September 1979 quarter. Supporting projects such as test facilities, refining and upgrading coal liquids, catalyst development, and gasification of residues from coal gasification plants are discussed similarly. (LTN)

  7. Cooperative research program in coal liquefaction. Quarterly report, August 1, 1991--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1991-12-31

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  8. Cooperative research program in coal liquefaction. Quarterly report, August 1, 1991--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1991-12-31

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  9. Coal gasification. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association, is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. A number of the processes for converting coal to high Btu and to low Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  10. Coal demonstration plants. Quarterly report, July-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The status of two coal liquefaction demonstration plants and of four coal gasification demonstration plants is reviewed under the following headings: company involved, contract number, funding, process name, process description, flowsheet, schedule, history and progress during the July-September quarter, 1979. Supporting projects in coal feeding systems, valves, grinding equipment, instrumentation, process control and water treatment are discussed in a similar way. Conceptual design work on commercial plants for coal to methanol and for a HYGAS high BTU gas plant were continued. (LTN)

  11. Coal combustion science. Quarterly progress report, July--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.; Baxter, L.L.; Davis, K.A.; Hurt, R.H.; Yang, N.Y.C.

    1995-09-01

    This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories, Livermore, California. The information reported is for the period July-September 1994. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project.

  12. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, April--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States)

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  13. Coal liquefaction. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    Current ERDA work in coal liquefaction is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. Coal liquefaction can now be achieved under more moderate processing conditions and more rapidly than was the case in the 1930's. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquid fuels also have the potential for use as chemical feedstocks. To determine the most efficient means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Nineteen projects under development are described and progress for each in the quarter is detailed briefly. (LTN)

  14. Coal gasification. Quarterly report, July-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The status of 18 coal gasification pilot plants or supporting projects supported by US DOE is reviewed under the following headings: company involved, location, contract number, funding, gasification process, history, process description, flowsheet and progress in the July-September 1979 quarter. (LTN)

  15. Coal gasification. Quarterly report, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-05-01

    A number of the processes for converting coal to gas supported by US DOE have reached the pilot plant stage. Laboratory research is also continuing in order to develop data for verifying the feasibility of the specific process and for supporting the operation of the plant. Responsibility for designing, constructing, and operating these pilot plants is given. The most successful test to date was completed in the pilot plant of the BI-GAS Process. The HYGAS Process pilot plant continued testing with Illinois bituminous coal to acquire data necessary to optimize the design of a commercial demonstration plant using the HYGAS process. The Synthane Process pilot plant continued studies of Illinois No. 6 coal. Other processes discussed are: Agglomerating Burner Process, Liquid Phase Methanation Process, Molten Salt Gasification Process, Advanced Coal Gasification System, and Lo-Btu Gasification of Coal for Electric Power Generation. Each project is described briefly with funding, history, and progress during the quarter. (LTN)

  16. Coal liquefaction. Quarterly report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    ERDA's program for the conversion of coal to liquid fuels is aimed at improved process configurations for both catalytic and noncatalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids also have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Responsibility for the design, construction, and operation of these facilities is given and progress in the quarter is summarized. Several supporting or complementary projects are described similarly. (LTN)

  17. Quarterly coal report, April 1996--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This report provides information about U.S. coal production, distribution; exports, imports, prices, consumption, and stocks. Data on coke production is also provided. This report presents data for April 1996 thru June 1996.

  18. Coal liquefaction. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The United States has more energy available in coal than in petroleum, natural gas, oil shale, and tar sands combined. Nationwide energy shortages, together with the availability of abundant coal reserves, make commercial production of synthetic fuels from coal vital to the Nation's total supply of clean energy. In response to this need, the Office of Fossil Energy of the Energy Research and Development Administration (ERDA) is conducting a research and development program to provide technology that will permit rapid commercialization of processes for converting coal to synthetic liquid and gaseous fuels and for improved direct combustion of coal. These fuels must be storable and suitable for power generation, transportation, and residential and industrial uses. ERDA's program for the conversion of coal to liquid fuels was begun by two of ERDA's predecessor agencies: Office of Coal Research (OCR) in 1962, and Bureau of Mines, U.S. Department of the Interior, in the 1930's. Current work in coal liquefaction is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. Coal liquefaction can now be achieved under more moderate processing conditions and more rapidly than was the case in the 1930's. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquid fuels also have the potential for use as chemical feedstocks. To determine the most efficient means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Nineteen projects under development are described and progress for each in the quarter is detailed briefly

  19. Coal combustion science. Quarterly progress report, April 1993--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.

    1994-05-01

    This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories. The information reported is for Apr-Jun 1993. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the PETC Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. The objective of the kinetics and mechanisms of pulverized coal char combustion task is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: kinetics of heterogeneous fuel particle populations; char combustion kinetics at high carbon conversion; the role of particle structure and the char formation process in combustion and; unification of the Sandia char combustion data base. This data base on the high temperature reactivities of chars from strategic US coals will permit identification of important fuel-specific trends and development of predictive capabilities for advanced coal combustion systems. The objective of the fate of inorganic material during coal combustion task is the establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of inorganic material during coal combustion as a function of coal type, particle size and temperature, the initial forms and distribution of inorganic species in the unreacted coal, and the local gas temperature and composition. In addition, optical diagnostic capabilities are being developed for in situ, real-time detection of inorganic vapor species and surface species during ash deposition. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  20. Pretreatment of biomass by torrefaction and carbonization for coal blend used in pulverized coal injection.

    Science.gov (United States)

    Du, Shan-Wen; Chen, Wei-Hsin; Lucas, John A

    2014-06-01

    To evaluate the utility potential of pretreated biomass in blast furnaces, the fuel properties, including fuel ratio, ignition temperature, and burnout, of bamboo, oil palm, rice husk, sugarcane bagasse, and Madagascar almond undergoing torrefaction and carbonization in a rotary furnace are analyzed and compared to those of a high-volatile coal and a low-volatile one used in pulverized coal injection (PCI). The energy densities of bamboo and Madagascar almond are improved drastically from carbonization, whereas the increase in the calorific value of rice husk from the pretreatment is not obvious. Intensifying pretreatment extent significantly increases the fuel ratio and ignition temperature of biomass, but decreases burnout. The fuel properties of pretreated biomass materials are superior to those of the low-volatile coal. For biomass torrefied at 300°C or carbonized at temperatures below 500°C, the pretreated biomass can be blended with coals for PCI.

  1. Coal gasification. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    High-Btu natural gas has a heating value of 950 to 1,000 Btu per standard cubic foot, is composed essentially of methane, and contains virtually no sulfur, carbon monoxide, or free hydrogen. The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. A number of the processes for converting coal to high Btu and to low Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  2. Coal gasification. Quarterly report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association, is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. There are, for example, important differences in reactor configurations and methods of supplying heat for gasification. Moreover, because these processes require high temperatures and some require high pressures, temperature-resistant alloys and new pressure vessels must be developed to obtain reliable performance. A number of the processes for converting coal to high-Btu and to low-Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  3. Fungal degradation of coal as a pretreatment for methane production

    Science.gov (United States)

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  4. Coal power and combustion. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    ERDA's coal combustion and power program has focused on two major areas: Direct combustion of coal and advanced power systems. Efforts in the area of direct combustion are concentrated on: Development of atmospheric and pressurized systems capable of burning high-sulfur coal of all rank and quality in fluidized-bed combustors; development of advanced technology power systems to generate power more economically than present technology permits while using medium- and high-sulfur coal in an environmentally-acceptable manner; development of the technology enabling coal-oil slurries to be substituted as feedstock for gas or oil-fired combustors; and improvement of the efficiency of present boilers. Compared with conventional coal-fired systems, fluidized-bed combustion systems give higher power generation efficiencies and cleaner exhaust gases, even when burning high-sulfur coals. If the fluidized-bed system is pressurized, additional economies in capital and operating costs may be realized. The benefits from high-pressure combustion are a reduction of furnace size due to decreased gas volume and better sulfur removal. High-pressure combustion, however, requires the development of equipment to clean the hot combustion products to make them suitable for use in power generation turbines. The advanced power systems program is directed toward developing electric power systems capable of operating on coal or coal-derived fuels. These systems involve the use of high temperature gas turbines burning low-Btu gas and turbine systems using inert gases and alkali metal vapors. Some 25 projects in these areas are described, including a brief summary of progress during the quarter. (LTN)

  5. Coal liquefaction. Quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    DOE's program for the conversion of coal to liquid fuels was begun by two of DOE's predecessor agencies: Office of Coal Research (OCR) in 1962, and Bureau of Mines, US Department of the Interior, in the 1930's. Current work is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, especially boiler fuel, distillate fuel oil, and gasoline, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is supporting the development of several conversion processes that are currently in the pilot plant stage. DOE, together with the Electric Power Research Institue, has contracted with fourteen projects are described brieflly: funding, description, status, history, and progress in the current quarter. (LTN)

  6. Coal demonstration plants. Quarterly report, January-March 1979. [US DOE-supported

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Progress in US DOE-supported demonstration plants for the gasification and liquefaction of coal is reported: company, contract number, process description and flowsheet, history and progress in the current quarter. Related projects involve coal feeders, lock hoppers, values, etc. for feeding coal into high pressure systems, coal grinding equipment and measuring and process control instrumentation. (LTN)

  7. Sixteenth Quarterly Report Regulation of Coal Polymer Degradation by Fungi

    Energy Technology Data Exchange (ETDEWEB)

    John A. Bumpus

    1998-07-31

    Three phenomena which concern coal solubilization and depolymerization were studied during this reporting period. Previous investigations have shown that lignin peroxidases mediate the oxidation of soluble coal macromolecule. Because it appears to be a substrate, soluble coal macromolecule is also an inhibitor of veratryl alcohol oxidation, a reaction that is mediated by these enzymes. The mechanism of inhibition is complex in that oxidation (as assayed by decolorization) of soluble coal macromolecule requires the presence of veratryl alcohol and veratryl alcohol oxidation occurs only after a substantial lag period during which the soluble coal macromolecule is oxidized. In a previous quarterly report we proposed a reaction mechanism by which this may occur. During the present reporting period we showed that our proposed reaction mechanism is consistent with classical enzyme kinetic theory describing enzyme activity in the presence of a potent inhibitor (i.e., an inhibitor with a very low KI ). The oxidative decolorization and depolymerization of soluble coal macromolecule was also studied. Because wood rotting fungi produce hydrogen peroxide via a variety of reactions, we studied the effect of hydrogen peroxide on soluble coal macromolecule decolorization and depolymerization. Results showed that substantial decolorization occurred only at hydrogen peroxide concentrations that are clearly non-physiological (i.e., 50 mM or greater). It was noted, however, that when grown on solid lignocellulosic substrates, wood rotting fungi, overtime, cumulatively could produce amounts of hydrogen peroxide that might cause significant oxidative degradation of soluble coal macromolecule. Thirdly, we have shown that during oxalate mediated solubilization of low rank coal, a pH increase is observed. During this reporting period we have shown that the pH of solutions containing only sodium oxalate also undergo an increase in pH, but to a lesser extent than that observed in mixtures

  8. Coal demonstration plants. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The objective of DOE's demonstration plant program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Under the DOE program, contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50% from industry and 50% from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Six of these demonstration plant projects are described and progress in the quarter is summarized. Several support and complementary projects are described (fuel feeding system development, performance testing and comparative evaluation, engineering support, coal grinding equipment development and a critical components test facility). (LTN)

  9. Coal demonstration plants. Quarterly report, January--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The Department of Energy's demonstration plant program was started in 1974 by one of the Department of Energy's predecessor agencies, the Office of Coal Research, US Department of the Interior. The objective of the program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Under the DOE program, contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50% from industry and 50% from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Seventeen projects in this program are discussed briefly with identification of the company involved, funding, flow sheets, history and progress during the quarter. (LTN)

  10. Coal demonstration plants. Quarterly report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    The objective of DOE's demonstration plant program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50% from industry and 50% from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Twenty-two projects involving demonstration plants or support projects for such plants are reviewed, including a summary for each of progress in the quarter. (LTN)

  11. Low-rank coal research. Quarterly report, January--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

  12. Effects of pretreatment in steam on the pyrolysis behavior of Loy Yang brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Cai Zeng; George Favas; Hongwei Wu; Alan L. Chaffee; Jun-ichiro Hayashi; Chun-Zhu Li [Monash University, Vic. (Australia). CRC for Clean Power from Lignite, Department of Chemical Engineering

    2006-02-01

    Dewatering/drying of Victorian brown coal will be an integral part of future brown coal utilization processes aimed at the reduction of greenhouse gas emissions. This study aims to investigate the effects of the thermal pretreatment of brown coal in the presence of steam/water on its subsequent pyrolysis behavior. A Victorian (Loy Yang) brown coal was thermally pretreated in pressurized steam and inert atmospheres. The pyrolysis behavior of these pretreated coal samples was investigated in a wire-mesh reactor. While the pretreatment in steam at temperatures higher than 250{sup o}C increased the char yield of the steam-treated coal, it did not affect the overall pyrolysis char yield at 1000{sup o} C s{sup -1} if the weight loss during the pretreatment in steam was also considered. However, the tar yield decreased significantly after the pretreatment in the presence of steam. The UV-fluorescence spectroscopy of tars revealed that the release of large aromatic systems from the steam-treated coal was only affected by the pretreatment in steam if the treatment temperature was very high (e.g. 350{sup o}C). The loss of NaCl and the use of high pressure during the pretreatment of brown coal in steam were not the main reasons for the changes in the observed tar yield. The hydrolysis of O-containing structures such as ethers, esters, and carboxylates during the pretreatment in the presence of steam plays an important role in the fates of these O-containing structures during pretreatment and subsequent pyrolysis, leading to changes in the pyrolysis behavior of the brown coal. 36 refs., 8 figs.

  13. Effects of pretreatment by organic reduction on coal liquefaction (3). [Partial

    Energy Technology Data Exchange (ETDEWEB)

    Yuzu, Satoshi; Fujimoto, Tatsuya; Miyake, Mikio; Nomura, Masakatsu

    1986-10-23

    In this experiment, Akabira coal pretreated by the reductive hydrogenation was liquefied using the red mud-sulfur (ratio by weight: 9/1) catalyst to determine the effect of the partial reductive hydrogenation as the pretreatment on the coal liquefaction. The reduced coal was prepared by the reductive hydrogenation using sodium in liquid ammonia or by the pretreatment using molten potassium under reflux of tetra-hydrofuran. A 50 ml-autoclave was used for the liquefaction. The result indicates that hydrogen is introduced into the aromatic nucleus in the molecule of coal by the partial hydrogenation and the partial cleavages of C-C and C-O bonds in the structure of coal take place. Since the liquefaction of partially hydrogenated coal is accelerated by introducing hydrogen, the consumption of hydrogen is reduced and the efficiency of reaction is enhanced. (4 figs, 2 tabs, 3 refs)

  14. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, October 1993--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Huang, L.; Wenzel, K.A.; Hatcher, P.G.; Schobert, H.H.

    1994-02-01

    In this quarter, progress has been made in the following two aspects: The influences of temperature, dispersed Mo catalyst, and solvent on the liquefaction conversion and composition of products from low-rank coals; and the hydrous pyrolysis of a lignite and spectroscopic characterization of its structural transformation during the hydrous pyrolysis. The analytical work described in this quarter also represents molecular-level characterization of products. The purpose of the first part of the work described in this quarter is to study the influences of temperature, solvent and dispersed Mo catalyst on the liquefaction conversion and chemical composition of the products. Many specialty chemicals, including one- to four-ring aromatics, could potentially be produced by liquefying coal. To achieve this goal, not only a high coal conversion but also a desirable product distribution is necessary. Therefore, it is of great importance to understand the structural changes of the coal during reaction and to investigate the conditions under which the aliphatics or aromatics can be removed from the macromolecular structure of coal. This quarterly report also describes the hydrous pyrolysis of Potapsco lignite and spectroscopic characterization of its structural transformation during the hydrous pyrolysis. This work has some implications both on the structural changes of low-rank coals during pretreatment and on the geochemical reactions during coalification stage. Vitrinite, a major component of most coals, is derived from degraded wood in ancient peat swamps. Organic geochemical studies conducted on a series of coalified wood samples derived mostly from gymnosperms have allowed the development of a chemical reaction series to characterize the major coalification reactions which lignin, the major coal-producing component of wood, undergoes.

  15. Supercritical fluid reactions for coal processing. Quarterly progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, C.A.

    1996-11-01

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which resemble the organic nitrogen containing components of coal, we propose to develop a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal denitrogenation. The tautomeric equilibrium of a Schiff base was chosen as the model system and was investigated in supercritical ethane and cosolvent modified supercritical ethane.

  16. Supercritical fluid reactions for coal processing. Quarterly report, January 1, 1996--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, C.A.

    1996-10-01

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which resemble the organic nitrogen containing components of coal, we propose to develop a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal denitrogenation. The tautomeric equilibrium of a Schiff base was chosen as the model system and was investigated in supercritical ethane and cosolvent modified supercritical ethane.

  17. Coal liquefaction. Quarterly report, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-05-01

    Progress on seventeen projects related to coal liquefaction or the upgrading of coal liquids and supported by US DOE is reported with emphasis on funding, brief process description history and current progress. (LTN)

  18. Energy Information Administration quarterly coal report, October--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-21

    The United States produced just over 1 billion short tons of coal in 1992, 0.4 percent more than in 1991. Most of the 4-million-short-ton increase in coal production occurred west of the Mississippi River, where a record level of 408 million short tons of coal was produced. The amount of coal received by domestic consumers in 1992 totaled 887 million short tons. This was 7 million short tons more than in 1991, primarily due to increased coal demand from electric utilities. The average price of delivered coal to each sector declined by about 2 percent. Coal consumption in 1992 was 893 million short tons, only 1 percent higher than in 1991, due primarily to a 1-percent increase in consumption at electric utility plants. Consumer coal stocks at the end of 1992 were 163 million short tons, a decrease of 3 percent from the level at the end of 1991, and the lowest year-end level since 1989. US coal exports fell 6 percent from the 1991 level to 103 million short tons in 1992. Less coal was exported to markets in Europe, Asia, and South America, but coal exports to Canada increased 4 million short tons.

  19. Study on the economic mining method for the close quarter coal seams with thin rock sheet

    Institute of Scientific and Technical Information of China (English)

    GOU Pan-feng; CHEN Zhao-qiang; YUN Xiao-you

    2001-01-01

    The paper presents the mining method for the close quarter coal seams with thin rock sheet, that is mining the low coal seam, recovering the top coal seam aft er putting down the roof rock of the low coal seam. Practice has proved that in recovering the top coal outside the face width after the rock between seams fall s naturally or is demolished, the technology is simple, easy to operate and doe s not make a great demand for technical equipment. In the process of recovering t he top coal, the low seam support could not be affected seriously, and two seams mining could be coordinated. Compared with the individual mining method, this m ining method can produce a better economic benefit.

  20. Study on the economic mining method for the close quarter coal seams with thin rock sheet

    Institute of Scientific and Technical Information of China (English)

    勾攀峰; 陈兆强; 员小有

    2001-01-01

    The paper presents the mining method for the close quarter coal seams with thin rock sheet, that is mining the low coal seam, recovering the top coal seam after putting down the roof rock of the low coal seam. Practice has proved that in recovering the top coal outside the face width after the rock between seams falls naturally or is demolished, the technology is simple, easy to operate and does not make a great demand for technical equipment. In the process of recovering the top coal, the low seam support could not be affected seriously, and two seams mining could be coordinated. Compared with the individual mining method, this mining method can produce a better economic benefit.

  1. The Dual Role of Oxygen Functions in Coal Pretreatment and Liquefaction: Crosslinking and Cleavage Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Michael Serio; Erik Kroo; Sylvie Charpenay; Peter Solomon

    1993-09-30

    The overall objective of this project was to elucidate and model the dual role of oxygen functions in thermal pretreatment and liquefaction of low rank coals through the application of analytical techniques and theoretical models. The project was an integrated study of model polymers representative of coal structures, raw coals of primarily low rank, and selectively modified coals in order to provide specific information relevant to the reactions of real coals. The investigations included liquefaction experiments in microautoclave reactors, along with extensive analysis of intermediate solid, liquid and gaseous products. Attempts were made to incorporate the results of experiments on the different systems into a liquefaction model.

  2. Co-firing of biomass with coal: constraints and role of biomass pretreatment

    NARCIS (Netherlands)

    Maciejewska, A.K.; Veringa, H.; Sanders, J.P.M.; Peteves, S.D.

    2006-01-01

    This report aims at introducing the aspects of co-firing of biomass with coal. The main focus is given to problems and constraints related to utilizing biomass together with coal for power generation, and the potential of biomass pre-treatment in mitigating these constraints. The work is based on a

  3. Co-firing of biomass with coal: constraints and role of biomass pretreatment

    NARCIS (Netherlands)

    Maciejewska, A.K.; Veringa, H.; Sanders, J.P.M.; Peteves, S.D.

    2006-01-01

    This report aims at introducing the aspects of co-firing of biomass with coal. The main focus is given to problems and constraints related to utilizing biomass together with coal for power generation, and the potential of biomass pre-treatment in mitigating these constraints. The work is based on a

  4. Mild coal pretreatment to improve liquefaction reactivity. Final technical report, September 1990--February 1994

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.; Shams, K.G.

    1994-07-01

    Recent research efforts in direct coal liquefaction are focused on lowering the level of reaction severity, identification and determination of the causes of retrogressive reactions, and improving the economics of the process. Ambient pretreatment of coals using methanol and a trace amount of hydrochloric acid was extensively studied in connection with low severity coal liquefaction. Ambient pretreatment of eight Argonne coals using methanol/HCl improved THF-soluble conversions 24.5 wt % (maf basis) for Wyodak subbituminous coal and 28.4 wt % for Beulah-Zap lignite with an average increase of 14.9 wt % for the eight Argonne coals at 623 K (350{degrees}C) reaction temperature and 30 minutes reaction time. Optimal pretreatment conditions were determined using Wyodak and Illinois No. 6 coals. Acid concentration was the most important pretreatment variable studied; liquefaction reactivity increased with increasing acid concentration up to 2 vol %. The FTIR spectra of treated and untreated Wyodak coal samples demonstrated formation of carboxylic functional groups during pretreatment, a result of divalent (Ca, Mg) cationic bridge destruction. The extent of liquefaction reactivity directly correlated with the amount of calcium removed during pretreatment, and results from calcium ``addback`` experiments supported the observation that calcium adversely affected coal reactivity at low severity reaction conditions. Model compound studies using benzyl phenyl ether demonstrated that calcium cations catalyzed retrogressive reactions, inhibited hydrogenation reactions at low severity reaction conditions, and were more active at higher reaction temperatures. Based on kinetic data, mechanisms for hydrogenation-based inhibition and base-catalyzed retrogressive reactions are proposed. The base-catalyzed retrogressive reactions are shown to occur via a hydrogen abstraction mechanism where hydrogenation inhibition reactions are shown to take place via a surface quenching mechanism.

  5. Coal gasification. Quarterly report, January-March 1979. [US DOE supported

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Progress in DOE-supported coal gasification pilot plant projects is reported: company, location, contract number, funding, process description, history and progress in the current quarter. Two support projects are discussed: preparation of a technical data book and mathematical modeling of gasification reactors. (LTN)

  6. Coal Combustion Science. Quarterly progress report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.; Baxter, L.L.; Davis, K.A.; Hurt, R.H.; Yang, N.Y.C.

    1996-02-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: Task 1--Kinetics and mechanisms of pulverized coal char combustion; and Task 2--deposit growth and property development in coal-fired furnaces. The objective of task 1 is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: (a) kinetics of heterogeneous fuel particle populations; (b) char combustion kinetics at high carbon conversion; (c) the role of particle structure and the char formation process in combustion and; (d) unification of the Sandia char combustion data base. The objectives of Task 2 are to provide a self-consistent database of simultaneously measured, time-resolved, ash deposit properties in well-controlled and well-defined environments and to provide analytical expressions that relate deposit composition and structure to deposit properties of immediate relevance to PETC`s Combustion 2000 program. The task include the development and use of diagnostics to monitor, in situ and in real time, deposit properties, including information on both the structure and composition of the deposits.

  7. Coal gasification. Quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    In DOE's program for the conversion of coal to gaseous fuels both high-and low-Btu gasification processes are being developed. High-Btu gas can be distributed economically to consumers in the same pipeline systems now used to carry natural gas. Low-Btu gas, the cheapest of the gaseous fuels produced from coal, can be used economically only on site, either for electric power generation or by industrial and petrochemical plants. High-Btu natural gas has a heating value of 950 to 1000 Btu per standard cubic foot, is composed essentially of methane, and contains virtually no sulfur, carbon monoxide, or free hydrogen. The conversion of coal to High-Btu gas requires a chemical and physical transformation of solid coal. Coals have widely differing chemical and physical properties, depending on where they are mined, and are difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, DOE, together with the American Gas Association (AGA), is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, each of the processes under development have unique characteristics. A number of the processes for converting coal to high-Btu gas have reached the pilot plant Low-Btu gas, with a heating value of up to 350 Btu per standard cubic foot, is an economical fuel for industrial use as well as for power generation in combined gas-steam turbine power cycles. Because different low-Btu gasification processes are optimum for converting different types of coal, and because of the need to provide commercially acceptable processes at the earliest possible date, DOE is sponsoring the concurrent development of several basic types of gasifiers (fixed-bed, fluidized-bed, and entrained-flow).

  8. Coal gasification. Quarterly report, October-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    DOE's program for the conversion of coal to gaseous fuels was started by two of its predecessor agencies: the Office of Coal Research (OCR) and ERDA. The US Bureau of Mines, Department of Interior, had previously done research in the 1930's. Both high- and low-Btu gasification processes are being developed. High-Btu gas can be distributed economically to consumers in the same pipeline systems now used to carry natural gas. Low-Btu gas, the cheapest of the gaseous fuels produced from coal, can be used economically only on site, either for electric power generation or by industrial and petrochemical plants. The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. Coals have widely differing chemical and physical properties depending on where they are mined, and are difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, DOE, together with the American Gas Association (AGA), is sponsoring the development of several conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, each of the processes under development have unique characteristics. There are, for example, important differences in reactor configurations and methods of supplying heat for gasification. Moreover, because these processes require high temperatures, because some require high pressures, and because all produce corrosive and chemically-active gases, resistant alloys and new pressure vessels must be developed to obtain reliable performance. A number of the processes for converting coal to high-Btu gas have reached the pilot plant stage. Laboratory research is also continuing in order to develop data for verifying the feasibility of each specific process and for supporting the operation of each plant. Responsibility for designing, constructing, and operating these pilot plants is contracted to individual companies. Each process is described briefly.

  9. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, October--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.

    1992-12-31

    Low severity coal liquefaction promoted by cyclic olefins offers a means of liquefying coal at low severity conditions. Lower temperature, 350{degrees}C, and lower hydrogen pressure, 500 psi, have been used to perform liquefaction reactions. The presence of the cyclic olefin, hexahydroanthracene, made a substantial difference in the conversion of Illinois No. 6 coal at these low severity conditions. The Researchperformed this quarter was a parametric evaluation of the effect of different parameters on the coal conversion and product distribution from coal. The effect of the parameters on product distribution from hexahydroanthracene was also determined. The work planned for next quarter includes combining the most effective parametric conditions for the low severity reactions and determining their effect. The second part ofthe research performed this quarter involved performing Fourier transform infrared (FTIR) spectroscopy using cyclic olefins. The objective of this study was to determine the feasibility of using FTIR and a heated cell to determine the reaction pathway that occurs in the hydrogen donation reactions from cyclic olefins. The progress made to date includes evaluating the FTIR spectra of cyclic olefins and their expected reaction products. This work is included in this progress report.

  10. Development program to support industrial coal gasification. Quarterly report 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-15

    The Development Program to Support Industrial Coal Gasification is on schedule. The efforts have centered on collecting background information and data, planning, and getting the experimental program underway. The three principal objectives in Task I-A were accomplished. The technical literature was reviewed, the coals and binders to be employed were selected, and tests and testing equipment to be used in evaluating agglomerates were developed. The entire Erie Mining facility design was reviewed and a large portion of the fluidized-bed coal gasification plant design was completed. Much of the work in Task I will be experimental. Wafer-briquette and roll-briquette screening tests will be performed. In Task II, work on the fluidized-bed gasification plant design will be completed and work on a plant design involving entrained-flow gasifiers will be initiated.

  11. Coal gasification. Quarterly report, July-September 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    To develop the most suitable techniques for gasifying coal, DOE, together with the American Gas Association, is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, each of the processes under development has unique characteristics. There are, for example, important differences in reactor configurations and in methods of supplying heat for gasification. Moreover, because these processes require high temperatures, because some require high pressures, and because all produce corrosive and chemically-active gases, resistant alloys and new pressure vessels must be developed to obtain reliable performance. A number of processes for making high Btu gas and for making low Btu gas are described with the contractor identification, contract, site, funding, and current progress. Projects on mathematical modeling and preparation of a coal conversion systems technical data book are also described. (LTN)

  12. Coal demonstration plants. Quarterly report, July-September 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    The objective of the Department of Energy's demonstration plant program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Under the DOE program, contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50 percent from industry and 50 percent from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Two coal liquefaction and 5 coal gasification projects are described; these are mostly at an advanced design stage. Support projects for fuel feeding systems, values, instrumentation and process control, etc. are also described. (LTN)

  13. Valve development for coal gasification plants. Phase II. Monthly/quarterly technical program report, January--March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bellezza, D.

    1979-04-01

    The eleventh in a series of Quarterly Technical Progress Reports relating to the Valve Development for Coal Gasification Plants Program discusses engineering progress during the period of January to March 1979.

  14. Coal demonstration plants. Quarterly report, October-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The Department of Energy's demonstration plant program was started in 1974 by one of the Department of Energy's predecessor agencies: the Office of Coal Research, US Department of the Interior. The objective of the program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Under the DOE program, contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operating phases being co-funded, 50% from industry and 50% from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Individual demonstration plant contracts are described briefly.

  15. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 17, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1993-08-01

    Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1993, the following technical progress was made: Completed modeling calculations of coal mineral matter transformations, deposition behavior, and heat transfer impacts of six test fuels; and ran pilot-scale tests of Upper Freeport feed coal, microagglomerate product, and mulled product.

  16. Preliminary evaluation of resinite recovery from Illinois coal. [Quarterly] technical report, September 1--November 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

    1994-12-31

    Resinite is a naturally occurring substance found in coal and derived from original plant resins. It is ubiquitous in North American coals. It makes up one to four percent by volume of most Illinois coals. It has been commercially exploited in the western USA for use in adhesives, varnishes and thermal setting inks. The overall objective of this project is to compare the properties of the resinite contained in Illinois Basin coals to resinite being commercially exploited in the western United States, and to recover the resinite from Illinois coals by microbubble column floatation techniques. The significance of this study is that it has the potential to show the way to recover a valuable chemical, resinite, from coal using only physical processing techniques. The value of the resinite at $1.00/kg or $0.50/lb makes it about fifty times more valuable than steam coal. The removal of resinite from coal does not decrease the value of the remaining coal in any way. The unique aspects are that: (1) it is the first examination of the resinite recovery potential of Illinois coal, (2) it integrates the latest characterization techniques such as density Gradient centrifugation, microspectrofluorometry, and gas chromatography- mass spectrometry, and (3) it uses microbubble column flotation to determine the resinite recovery potential. During this quarter samples were obtained, information from both the databases of both the Illinois State Geological Survey (ISGS) and the Pennsylvania State University (PSU) was obtained and evaluated, and EBCSP samples from the Herrin No. 6, the Springfield No. 5 and the Colchester No. 2 seams were analyzed petrographically and the resinites in these samples were characterized by fluorescence spectral analysis.

  17. Coal demonstration plants. Quarterly report, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-05-01

    DOE's demonstration plant program's objective is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Under the DOE program, contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50 percent from industry and 50 percent from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Eighteen projects related to the program are described with emphasis on funding, planning, status, and progress. (LTN)

  18. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly report, April 1--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-12-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). Accomplishments during the quarter are described on the following tasks and subtasks: Development of near-term applications (engineering development and dewatering studies); Engineering development of selective agglomeration (bench-scale testing and process scale-up); PDU and advanced column flotation module (coal selection and procurement and advanced flotation topical report); Selective agglomeration module (module operation and clean coal production with Hiawatha, Taggart, and Indiana 7 coals); Disposition of the PDU; and Project final report. Plans for next quarter are discussed and agglomeration results of the three tested coals are presented.

  19. Coal liquefaction. Quarterly report, January--March 1978. [Brief summary of 15 pilot plant projects supported by US DOE

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is sponsoring the development of several conversion processes currently in the pilot plant stage. Fifteen coal liquefaction projects supported by US DOE are described briefly, with flowsheets, funding, history and progress during the quarter. (LTN)

  20. Appalachian clean coal technology consortium. Technical quarterly progress report, October 1, 1996--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Basim, B.; Luttrell, G.H.; Phillips, D.I. [and others

    1997-01-28

    Novel chemicals that can be used for increasing the efficiency of fine coal dewatering was developed at Virginia Tech. During the past quarter, Reagent A was tested on three different coal samples in laboratory vacuum filtration tests. These included flotation products from Middle Fork plant, Elkview Mining Company, and CONSOL, Inc. The tests conducted with the Middle Fork coal sample (100 mesh x 0) showed that cake moisture can be reduced by more than 10% beyond what can be achieved without using dewatering aid. This improvement was achieved at 1 lb/ton of Reagent A and 0.1 inch cake thickness. At 0.5 inches of cake thickness, the improvement was limited to 8% at the same reagent dosage. The results obtained with the Elkview coal (28 mesh x 0) showed similar advantages in using the novel dewatering aid. Depending on the reagent dosage, cake thickness, drying cycle time and temperature, it was possible to reduce the cake moisture to 12 to 14% rage. In addition to achieving lower cake moisture, the use of Reagent A substantially decreased the cake formation time, indicating that the reagent improves the kinetics of dewatering. The test results obtained with CONSOL coal were not as good as with the other coals tested in the present work, which may be attributed to possible oxidation and/or contamination.

  1. Coal demonstration plants. Quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    The objective of the US DOE demonstration program is to demonstrate and verify second-generation technologies and validate the economic, environmental and productive capacity of a near commercial-size plant by integrating and operating a modular unit using commercial size equipment. These facilities are the final stage in the RD and D process aimed at accelerating and reducing the risks of industrial process implementation. Under the DOE program, contracts for the design, construction, and operation of the demonstration plants are awarded through competitive procedures and are cost shared with the industrial partner. The conceptual design phase is funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded between industry and the government. The government share of the cost involved for a demonstration plant depends on the plant size, location, and the desirability and risk of the process to be demonstrated. The various plants and programs are discussed: Description and status, funding, history, flowsheet and progress during the current quarter. (LTN)

  2. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2017; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. 1. Vierteljahr 2017

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-06-14

    The paper reports on the coal mining in the Federal Republic of Germany in the 1st quarter of 2017. Statistical data are presented for mining, exports and imports of hard coal and lignite and for employees.

  3. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2016; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. 1. Vierteljahr 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-06

    The paper reports on the coal mining in the Federal Republic of Germany in the 1st quarter of 2016. Statistical data are presented for mining, exports and imports of hard coal and lignite and for employees.

  4. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 8, January--March 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1991-07-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the third quarter of 1991, the following technical progress was made: Calculated the kinetic characteristics of chars from the combustion of spherical oil agglomeration beneficiated products; continued drop tube devolatilization tests of the spherical oil agglomeration beneficiated products; continued analyses of the data and samples from the CE pilot-scale tests of nine fuels; and started writing a summary topical report to include all results on the nine fuels tested.

  5. Molecular biological enhancement of coal biodesulfurization. Quarterly technical report, September 1, 1993--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II [Institute of Gas Technology, Chicago, IL (United States)

    1993-12-31

    IGT has developed a microbial culture of Rhodococcus rhodochrous, designated as IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum without significantly sacrificing the calorific value of the fuel. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strains of microorganisms that possess higher levels of desulfurization activity and therefore will permit more favorable biodesulfurization process conditions: faster rates, more complete removal, and smaller reactor size. strain improvement is the single most important aspect to the development of a practical coal biodesulfurization process and accordingly is the focus of research in this project. During this quarter the promoter probe vectors that were constructed last quarter were found to be unstable in E. coli. Fragments of R. rhodochrous IGTS8 chromosomal DNA were cloned into pRCAT3 and pRCM1 (previously described in final ICCI report 1993). Many derivatives of pRCM1 and pRCAT3 receiving inserts that regulated the expression of chloramphenicol resistance in Rhodococcus rhodochrous IGTS8 proved to be unstable in E. coli frequently yielding plasmids containing deletions. Stable inserts have been observed ranging from 100 bp to 2.0 kb that regulated expression in Rhodococcus rhodochrous IGTS8. Subtractive hybridization studies continue, several candidates have been isolated and are being confirmed for inducible promoters. Primer extension analysis of the Rhodococcus rhodochrous IGTS8 16S RNA promoter region was initiated this quarter.

  6. Environmental impact assessment and selenium transformation in coal mine spoils. Seventh quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Atalay, A.; Koll, K.J.

    1991-06-01

    This quarterly report addresses the continued field investigation of a selected coal mining site in Oklahoma. Table 1 (appendix) portrays all the data (field measurements) taken at the Henryetta experimental site. An analysis of this data would be useful in providing information for potential Se migration from a coal mining site and the distribution of Se in a soil profile of land reclaimed to its pristine state. Also addressed is the methodology developed (1) for SeO{sub 4}{sup 2{minus}} and SeO{sub 3}{sup 2{minus}} adsorption on selected soils, (2) leachate migration through a cell column using soil samples from the Henryetta reclamation site, and (3) chemical transformation of SeO{sub 4}{sup 2{minus}} under harsh chemical and conditions.

  7. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 15, October--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1993-03-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1992, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; re-analyzed the samples from the pilot-scale ash deposition tests of the first nine feed coals and BCFs using a modified CCSEM technique; updated the topical summary report; and prepared for upcoming tests of new BCFs being produced.

  8. Pretreatment of highly turbid coal mine drainage by a chemical agent free filtration system

    Institute of Scientific and Technical Information of China (English)

    Zhang Chunhui; He Xiong; Li Kaihe; Wu Dongsheng; Guo Yanrong; Wang Can

    2012-01-01

    A filtration system used without chemical agents for the pretreatment of turbid coal mine drainage is described in this paper.The influence of different aperture sizes and different motor speeds was investigated during the study.The experimental results show that for aperture diameters of 0.4,0.6,or 0.8 mm smaller apertures provide more complete filtration.Rotations of 12,20,28,or 40 r/min show that higher speeds give more efficient filtration.Suspended solids decreased in both particle size and concentration after the filtration.The separated slime can be directly reused as a fuel.Efficient filtration pretreatment systems for coal mine drainage were investigated and the economic feasibility is analyzed in this article.

  9. An assessment of acid wash and bioleaching pre-treating options to remove mercury from coal

    Energy Technology Data Exchange (ETDEWEB)

    Laura C. Dronen; April E. Moore; Evguenii I. Kozliak; Wayne S. Seames [University of North Dakota, Grand Forks, ND (USA). Department of Chemical Engineering

    2004-01-01

    The United States Environmental Protection Agency is expected to begin regulating the release of vapor-phase mercury from coal-fired power plants in the year 2007. Chemical pre-treatment methods were investigated for mercury removal effectiveness from pulverized low-sulfur North Dakota lignite coal. More limited results were obtained for a pulverized high-sulfur Blacksville bituminous coal. A two-step acid wash treatment showed removal rates of 60 90%, compared to one-step treatments with concentrated HCl, which yielded removals of 30 38%. Removal effectiveness is similar for first step solvents of water, pH 5.0 acid, or pH 2.0 acid followed by concentrated HCl as the second step solvent, and is independent of first step incubation time. Neither of two bacterial strains, Thiobacillus ferrooxidans and T. thiooxidans, was found effective for mercury removal. 23 refs., 5 tabs.

  10. Advanced physical coal cleaning to comply with potential air toxic regulations. [Quarterly] technical report, September 1--November 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Paul, B.C.; Wang, D. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mining Engineering

    1994-12-31

    This research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Trace elements considered in this project will include mercury, selenium, cadmium, and chlorine. Work in the first quarter has focused on trace element analysis procedures and sample acquisition. Several experts in the field of trace element analysis of coal have been consulted and these procedures are presently being evaluated.

  11. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report No. 7, April 1993--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States); Gutterman, C.

    1994-09-01

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases. This effect is also demonstrated by improved catalyst precursor impregnation with increased contact temperature. Laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent.

  12. Solvent refined coal (SRC) process. Quarterly technical progress report, January 1980-March 1980. [In process streams

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This report summarizes the progress of the Solvent Refined Coal (SRC) project at the SRC Pilot Plant in Fort Lewis, Wahsington, and the Process Development Unit (P-99) in Harmarville, Pennsylvania. After the remaining runs of the slurry preheater survey test program were completed January 14, the Fort Lewis Pilot Plant was shut down to inspect Slurry Preheater B and to insulate the coil for future testing at higher rates of heat flux. Radiographic inspection of the coil showed that the welds at the pressure taps and the immersion thermowells did not meet design specifications. Slurry Preheater A was used during the first 12 days of February while weld repairs and modifications to Slurry Preheater B were completed. Two attempts to complete a material balance run on Powhatan No. 6 Mine coal were attempted but neither was successful. Slurry Preheater B was in service the remainder of the quarter. The start of a series of runs at higher heat flux was delayed because of plugging in both the slurry and the hydrogen flow metering systems. Three baseline runs and three slurry runs of the high heat flux program were completed before the plant was shut down March 12 for repair of the Inert Gas Unit. Attempts to complete a fourth slurry run at high heat flux were unsuccessful because of problems with the coal feed handling and the vortex mix systems. Process Development Unit (P-99) completed three of the four runs designed to study the effect of dissolver L/D ratio. The fourth was under way at the end of the period. SRC yield correlations have been developed that include coal properties as independent variables. A preliminary ranking of coals according to their reactivity in PDU P-99 has been made. Techniques for studying coking phenomenona are now in place.

  13. Refining and end use study of coal liquids. Quarterly report, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Bechtel, with South west research Institute, Amoco Oil R&D, and the M. W. Kellogg Co. as subcontractors, initiated a study on November 1, 1993, for the US Department of Energy`s Pittsburgh Energy Technology Center to determine the most cost effective and suitable combination of existing petroleum refinery processes needed to make specification transportation fuels or blending stocks, from direct and indirect coal liquefaction product liquids. A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An integral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. To enhance management of the study, the work has been divided into two parts, the Basic Program and Option 1. The objectives of the Basic Program are to: characterize the coal liquids; develop an optimized refinery configuration for processing indirect and direct coal liquids; and develop a LP refinery model with Process Industry Modeling System software. The objective of Option 1 are to: confirm the validity of the optimization work of the Basic Program; produce large quantities of liquid transportation fuel blending stocks; conduct engine emission tests; and determine the value and the processing costs of the coal liquids. The major effort conducted during the fourth quarter of 1995 were in the areas of: IL catalytic cracking--microactivity tests were conducted on various wax blends; IL wax hydrocracking--a pilot plant run was conducted on a wax/petroleum blend; and DL2 characterization and fractionation.

  14. Hindered diffusion of coal liquids. Quarterly report No. 10, December 18, 1994--March 17, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Webster, I.A. [UNOCAL Corp., Los Angeles, CA (United States)

    1995-09-01

    The design of industrial catalysts requires that the diffusivity of the reacting species within the catalyst be accurately known. Nowhere is this more important than in the area of coal liquefaction and upgrading of coal liquids. In this area one is faced with the task of processing a number of heavy oils, containing metals and other contaminants, in a variety of process dependent solvents. It is important, therefore, on the basis of predicting catalyst activity, selectivity, and optimizing reactor performance, that the diffusivities of these oil species be accurately known. Throughout the experimental runs we will utilize a high pressure, high temperature diffusion of cell system. This diffusion system has been tested through the measurement of the diffusivity of a number of model coal liquids. The following were accomplished this quarter: During this quarter, we have initiated a series of transport investigations under high temperature (360{degrees}) high pressure (500 psi, H{sub 2}) reactive conditions. We have also continued our studies of formation and precipitation of fractal molecular aggregates in porous media. Small-angle scattering as well as precipitation data are analyzed to delineate the structure of the molecular colloidal aggregates that are formed, when a fluid is injected into the pore space of a porous medium to react with, or displace the in-place fluid. The results suggest that these colloidal structures are diffusion-limited particle and cluster aggregates. This is the first conclusive evidence for fractality of such molecular aggregates, which has important implications for their stability and molecular weight distribution, as well as modelling their flow and precipitation in a porous medium.

  15. Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. Quarterly report, January 1, 1992--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    A study of the high-temperature soaking started in this quarter, following the installation of reactors in the previous quarter. Two high-volatile bituminous coals and three coal liquids, which were identified in the previous report, were used. A cross-linked, three-dimensional macromolecular model has been widely accepted f or the structure of coal, but there is no direct evidence to prove this model. The conventional coal structure model has been recently re-examined by this investigator because of the importance of relatively strong intra- and intermolecular interactions in bituminous coals. It was reasonable to deduce that significant portions were physically associated after a study of multistep extractions, associative equilibria, the irreversibility and the dependence of coal concentration on solvent swelling, and consideration of the monophase concept. Physical dissociation which may be significant above 300{degree}C should be utilized for the treatment before liquefaction. The high-temperature soaking in a recycle oil was proposed to dissociate coal complexes.

  16. Molecular biological enhancement of coal biodesulfurization. [Quarterly] technical report, December 1, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II [Institute of Gas Technology, Chicago, IL (United States)

    1994-06-01

    IGT has developed a microbial culture of Rhodococcus rhodochrous, IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strain`s of microorganisms that possess higher levels of desulfurization activity and therefore wall permit more favorable biodesulfurization process conditions: faster rates, mare complete removal, and smaller reactor size. Strain improvement is the single most important aspect to the development of a practical coal biodesulfurization process and accordingly is the focus of research in this project. Several possible strong promoters have been isolated and are in the process of being analyzed. When these promoters have been characterized for inducibility, strength, transcriptional start sites and other physical properties, they will be placed in front of the desulfurization genes and expression will be monitored. Improved promoter probe vectors have been constructed, allowing a conclusive screen of all putative Rhodococcus promoters. With the improved methodologies in the handling of Rhodococcus RNA, we have begun to gauge promoter expression using Northern blots. During this quarter we have constructed and successfully used a promoter probe vector using the {beta}-galactosidane gene from E. coli. A chromosomal promoter library was constructed upstream from the {beta}-galactosidase gene. Over 200 colonies were isolated that yielded {beta}-galactosidase activity.

  17. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, January 1--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-08-01

    This is the tenth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Process oils from Wilsonville Run 262 were analyzed to provide information on process performance. Run 262 was operated from July 10 through September 30, 1991, in the thermal/catalytic Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) configuration with ash recycle. The feed coal was Black Thunder Mine subbituminous coal. The high/low temperature sequence was used. Each reactor was operated at 50% of the available reactor volume. The interstage separator was in use throughout the run. The second-stage reactor was charged with aged Criterion 324 catalyst (Ni/Mo on 1/16 inch alumina extrudate support). Slurry catalysts and sulfiding agent were fed to the first-stage reactor. Molyvan L is an organometallic compound which contains 8.1% Mo, and is commercially available as an oil-soluble lubricant additive. It was used in Run 262 as a dispersed hydrogenation catalyst precursor, primarily to alleviate deposition problems which plagued past runs with Black Thunder coal. One test was made with little supported catalyst in the second stage. The role of phenolic groups in donor solvent properties was examined. In this study, four samples from direct liquefaction process oils were subjected to O-methylation of the phenolic groups, followed by chemical analysis and solvent quality testing.

  18. Permeability changes in coal resulting from gas desorption. Tenth quarterly report, January 1, 1992--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Johnson, P.M.

    1992-12-31

    Research continued on the study of coal permeability and gas desorption. This quarter, most of the effort involved identifying problems with the microbalance and then getting it repaired. Measurement of the amount of gas adsorbed with the microbalance involved corrections for the buoyancy change with pressure and several experiments with helium were made to determine this correction.

  19. Valve development for coal gasification plants. Phase II (Draft). Quarterly technical program report, October--December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bellezza, D.

    1979-01-01

    This is the tenth in a series of Quarterly Technical Progress Reports relating to the Valve Development for Coal Gasification Plants Program. This document discusses engineering progress during the period of October to December 1978. Work performed is discussed briefly. (LTN)

  20. Cooperative research program in coal liquefaction. Quarterly report, November 1, 1991--January 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1992-06-01

    Research continues on coal liquefaction in the following areas: (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  1. Advanced physical coal cleaning to comply with potential air toxic regulations. Quarterly report, 1 March 1995--31 May 1995

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Paul, B.C.; Mohanty, M.K.; Wang, D.

    1995-12-31

    Studies have indicated that the potentially hazardous trace elements found in coal have a strong affinity for coal pyrite. Thus, by maximizing the rejection of pyrite, one can minimize the trace element content of a given coal while also reducing sulfur emissions. The pyrite in most Illinois Basin coals, however, is finely disseminated within the coal matrix. Therefore, to remove the pyrite using physical coal cleaning techniques, the pyrite must be liberated by grinding the coal to ultrafine particle sizes. Fortunately, the coals being fed to pulverized coal boilers (PCB) are already ground to a very fine size, i.e., 70% passing 200 mesh. Therefore, this research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Work in this quarter has focused on the processing of a run-of-mine coal sample collected from Amax Coal Company`s Delta Coal mine using column flotation and an enhanced gravity separator as separate units and in circuitry arrangements. The {minus}60 mesh run-of-mine sample having an ash content of about 22% was cleaned to 6% while achieving a very high energy recovery of about 87% and a sulfur rejection value of 53% in a single stage column flotation operation. Enhanced gravity treatment is believed to be providing excellent total sulfur rejection values, although with inferior ash rejection for the {minus}400 mesh size fraction. The circuitry arrangement with the Falcon concentrator as the primary cleaner followed by the Packed-Column resulted in an excellent ash rejection performance, which out performed the release analysis. Trace element analyses of the samples collected from these tests will be conducted during the next report period.

  2. Coal combustion science quarterly progress report, October--December 1992. Task 1, Coal char combustion [and] Task 2, Fate of mineral matter

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.] [Sandia National Labs., Livermore, CA (United States); Hurt, R.H.; Baxter, L.L. [Sandia National Labs., Albuquerque, NM (United States)

    1993-06-01

    In the Coal Combustion Laboratory (CCL) this quarter, controlled laboratory experiments were carried out to better understand the late stages of coal combustion and its relation to unburned carbon levels in fly ash. Optical in situ measurements were made during char combustion at high carbon conversions and the optical data were related to particle morphologies revealed by optical microscopy on samples extracted under the same conditions. Results of this work are reported in detail below. In the data presented below, we compare the fraction of alkali metal loss to that of the alkaline earth metals as a function of coal rank to draw conclusions about the mechanism of release for the latter. Figure 2.1 illustrates the fractional release of the major alkali and alkaline earth metals (Na, K, Ca, Mg) as a function of coal rank for a series of coals and for several coal blends. All data are derived from combustion experiments in Sandia`s Multifuel Combustor (MFC) and represent the average of three to eight experiments under conditions where the mass loss on a dry, ash-free (daf) basis exceeds 95 %. There are no missing data in the figure. The several coals with no indicated result exhibited no mass loss of the alkali or alkaline earth metals in our experiments. There is a clear rank dependence indicated by the data in Fig. 2.1, reflecting the mode of occurrence of the material in the coal.

  3. Thermal Pretreatment of Wood for Cogasification/cofiring of Biomass and Coal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ping; Howard, Bret; Hedges, Sheila; Morreale, Bryan; Van Essendelft, Dirk; Berry, David

    2013-10-29

    Utilization of biomass as a co-feed in coal and biomass co-firing and co-gasification requires size reduction of the biomass. Reducing biomass to below 0.2 mm without pretreatment is difficult and costly because biomass is fibrous and compressible. Torrefaction is a promising thermal pretreatment process and has the advantages of increasing energy density, improving grindability, producing fuels with more homogenous compositions and hydrophobic behavior. Temperature is the most important factor for the torrefaction process. Biomass grindability is related to cell wall structure, thickness and composition. Thermal treatment such as torrefaction can cause chemical changes that significantly affect the strength of biomass. The objectives of this study are to understand the mechanism by which torrefaction improves the grindability of biomass and discuss suitable temperatures for thermal pretreatment for co-gasification/cofiring of biomass and coal. Wild cherry wood was selected as the model for this study. Samples were prepared by sawing a single tangential section from the heartwood and cutting it into eleven pieces. The samples were consecutively heated at 220, 260, 300, 350, 450 and 550oC for 0.5 hr under flowing nitrogen in a tube furnace. Untreated and treated samples were characterized for physical properties (color, dimensions and weight), microstructural changes by SEM, and cell wall composition changes and thermal behaviors by TGA and DSC. The morphology of the wood remained intact through the treatment range but the cell walls were thinner. Thermal treatments were observed to decompose the cell wall components. Hemicellulose decomposed over the range of ~200 to 300oC and resulted in weakening of the cell walls and subsequently improved grindability. Furthermore, wood samples treated above 300oC lost more than 39% in mass. Therefore, thermal pretreatment above the hemicelluloses decomposition temperature but below 300oC is probably sufficient to improve

  4. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, April 1--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Lancet, M.S.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1992-11-01

    This is the eleventh Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: (1) The results of a study designed to determine the effects of the conditions employed at the Wilsonville slurry preheater vessel on coal conversion is described. (2) Stable carbon isotope ratios were determined and used to source the carbon of three product samples from Period 49 of UOP bench-scale coprocessing Run 37. The results from this coprocessing run agree with the general trends observed in other coprocessing runs that we have studied. (3) Microautoclave tests and chemical analyses were performed to ``calibrate`` the reactivity of the standard coal used for determining donor solvent quality of process oils in this contract. (4) Several aspects of Wilsonville Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) resid conversion kinetics were investigated; results are presented. Error limits associated with calculations of deactivation rate constants previously reported for Runs 258 and 261 are revised and discussed. A new procedure is described that relates the conversions of 850{degrees}F{sup +} , 1050{degrees}F{sup +}, and 850 {times} 1050{degrees}F material. Resid conversions and kinetic constants previously reported for Run 260 were incorrect; corrected data and discussion are found in Appendix I of this report.

  5. Molecular catalytic coal liquid conversion. Quarterly progress report, [January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Cheng, C.; Ettinger, M.

    1993-03-31

    Last quarter, substantial progress has been made in the two general tasks advanced in our research proposal. The first task consists of the development of molecular homogeneous catalysts that can be used in the hydrogenation of coal liquids and in coal conversion processes. The second task concerns the activation of dihydrogen by basic catalysts in homogeneous reaction systems. With regards to the first task, we have prepared two organometallic rhodium (1) catalysts. These are the dimer of dichloropentamethylcyclopentadienylrhodium, [RhCl{sub 2}(C{sub 5}Me{sub 5})], and the dimer of chloro(1,5-hexadiene)rhodium We have subsequently investigated the hydrogenation of various aromatic organic compounds using these organometallic reagents as catalysts. Results showed that both catalysts effected the hydrogenation of the aromatic portions of a wide range of organic compounds, including aromatic hydrocarbons and aromatic compounds containing the ether group, alkyl groups, amino and carbonyl groups. However, both compounds were totally ineffective in catalyzing the hydrogenation of sulfur-containing aromatic organic compounds. Nevertheless, both rhodium catalysts successfully catalyzed the hydrogenation of naphthalene even in the presence of the coal liquids. With regards to base-activated hydrogenation of organic compounds, we have found that hydroxide and alkoxide bases are capable of activating,dihydrogen, thereby leading to the hydrogenation of phenyl-substituted alkenes. More specifically, tetrabutylammonium hydroxide, potassium tert-butoxide and potassium phenoxide were successfully used to activate dihydrogen and induce the hydrogenation of trans-stilbene. Potassium tert-butoxide was found to be slightly more effective than the other two bases in accomplishing this chemistry.

  6. Valve development for coal gasification plants: Phase I to Phase II transition. Quarterly technical program report, May--July 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bellezza, D.

    1978-08-01

    This is the eighth in a series of Quarterly Technical Progress Reports relating to the Valve Development for Coal Gasification Plants Program. This document discusses engineering progress during the period of May to July 1978. The work described herein represents a continuation of the Phase I seat development effort for the Task III valve and the continuation of design engineering effort, necessary to prepare detail manufacturing drawings for use in the production of prototype valves during Phase II of this program. Work performed during this quarter consists of: valve design, thermal and stress analysis of valves, design detailing and specifications, quality assurance planning and various tests as outlined.

  7. Great Plains Coal Gasification Project: Quarterly technical progress report, April-June 1988 (Fourth fiscal quarter, 1987-1988)

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-29

    This progress report describes the operation of the Great Plains Gasification Plant, including lignite coal production, SNG production, gas quality, by-products, and certain problems encountered. (LTN)

  8. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 2 - hydrogenative and hydrothermal pretreatments and spectroscopic characterization using pyrolysis-GC-MS, CPMAS {sup 13}C NMR and FT-IR

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Hatcher, P.G.; Saini, A.K.; Wenzel, K.A.

    1998-01-01

    It has been indicated by DOE COLIRN panel that low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals. As the second volume of the final report, here we summarize our work on spectroscopic characterization of four raw coals including two subbituminous coals and two bituminous coals, tetrahydrofuran (THF)-extracted but unreacted coals, the coals (THF-insoluble parts) that have been thermally pretreated. in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent, and the coals (THF-insoluble parts) that have been catalytically pretreated in the presence of a dispersed Mo sulfide catalyst in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent.

  9. The 3R anthracite clean coal technology: Economical conversion of brown coal to anthracite type clean coal by low temperature carbonization pre-treatment process

    Directory of Open Access Journals (Sweden)

    Someus Edward

    2006-01-01

    Full Text Available The preventive pre-treatment of low grade solid fuels is safer, faster, better, and less costly vs. the "end-of-the-pipe" post treatment solutions. The "3R" (Recycle-Reduce-Reuse integrated environment control technology provides preventive pre-treatment of low grade solid fuels, such as brown coal and contaminated solid fuels to achieve high grade cleansed fuels with anthracite and coke comparable quality. The goal of the 3R technology is to provide cost efficient and environmentally sustainable solutions by preventive pre-treatment means for extended operations of the solid fuel combustion power plants with capacity up to 300 MWe power capacities. The 3R Anthracite Clean Coal end product and technology may advantageously be integrated to the oxyfuel-oxy-firing, Foster Wheeler anthracite arc-fired utility type boiler and Heat Pipe Reformer technologies in combination with CO2 capture and storage programs. The 3R technology is patented original solution. Advantages. Feedstock flexibility: application of pre-treated multi fuels from wider fuel selection and availability. Improved burning efficiency. Technology flexibility: efficient and advantageous inter-link to proven boiler technologies, such as oxyfuel and arcfired boilers. Near zero pollutants for hazardous-air-pollutants: preventive separation of halogens and heavy metals into small volume streams prior utilization of cleansed fuels. >97% organic sulphur removal achieved by the 3R thermal pre-treatment process. Integrated carbon capture and storage (CCS programs: the introduction of monolitic GHG gas is improving storage safety. The 3R technology offers significant improvements for the GHG CCS conditions. Cost reduction: decrease of overall production costs when all real costs are calculated. Improved safety: application of preventive measures. For pre-treatment a specific purpose designed, developed, and patented pyrolysis technology used, consisting of a horizontally arranged externally

  10. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-09-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. The paper describes activities carried out this quarter. 11 refs., 21 figs., 17 tabs.

  11. Advanced physical coal cleaning to comply with potential air toxic regulations. Quarterly report, 1 December 1994--28 February 1995

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Paul, B.C.; Wang, D.

    1995-12-31

    Studies have indicated that the potentially hazardous trace elements found in coal have a strong affinity for coal pyrite. Thus, by maximizing the rejection of pyrite, one can minimize the trace element content of a given coal while also reducing sulfur emissions. The pyrite in most Illinois Basin coals, however, is finely disseminated within the coal matrix. Therefore, to remove the pyrite using physical coal cleaning techniques, the pyrite must be liberated by grinding the coal to ultrafine particle sizes. Fortunately, the coals being fed to pulverized coal boilers (PCB) are already ground to a very fine size, i.e., 70% passing 200 mesh. Therefore, this research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Work in this quarter has focused on the processing of a PCB feed sample collected from Central Illinois Power`s Newton Power Station using column flotation and an enhanced gravity separator as separate units and in a circuitry arrangement. The PCB feed sample having a low ash content of about 12% was further cleaned to 6% while achieving a very high energy recovery of about 90% in a single stage column flotation operation. Enhanced gravity treatment is believed to be providing excellent total sulfur rejection values, although with inferior ash rejection for the {minus}400 mesh size fraction. The circuitry arrangement with the Falcon concentrator as the primary cleaner followed by the Microcel column resulted in an excellent ash rejection performance, which out performed the release analysis. Trace element analyses of the samples collected from these tests will be conducted during the next report period.

  12. Coal Combustion Science quarterly progress report, January--March 1993. Task 1, Coal char combustion: Task 2,, Fate of mineral matter

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.; Hurt, R.H.; Baxter, L.L.

    1994-02-01

    The objective of this work is to obtain insights into the mechanisms of combustion, fragmentation, and final burnout, and to use the insights to aid in the interpretation of the quantitative data generated in Subtasks 1 and 2. The initial image sequences for Illinois No. 6 coal confirm the presence of an early near-extinction process (discussed in previous reports) and the asymptotic nature of the carbon burnout process. The technique also provided important new insights into the processes of particle fragmentation and reagglomeration at high burnout. During this quarter, chemical fractionation tests on coals pulverized to different sizes were completed. These data will help us to asses the accuracy of the fuels characterizations for the purpose of interpreting inorganic release during coal devolatilization. Chemical fractionation tests on mineral species are proceeding for the same purposes, but these are not yet completed.

  13. Computational Modeling and Experimental Studies on NO(x) Reduction Under Pulveerized Coal Combustion Conditions. Quarterly technical progress report, July 1 - September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kumpaty, S.K.; Subramanian, K.; Darboe, A.; Kumpati, S.K.

    1997-12-31

    Several experiments were conducted during this quarter to study the NO{sub x} reduction effectiveness of lignite coal, activated carbon and catalytic sites such as calcium sulfide and calcium carbide. While some of the coals/chemicals could be fed easily, some needed the mixing with silica gel to result in a uniform flow through the feeder. Several trial runs were performed to ensure proper feeding of the material before conducting the actual experiment to record NO{sub x} reduction. The experimental approach has been the same as presented in the past two quarterly reports with the coal reburning experiments. Partial reduction is achieved through methane addition for SR2=0.95 conditions and then coal or the catalyst is introduced to see if there is further reduction. Presented below are the results of the experiments conducted during this quarter.

  14. Reactivities of acid and/or tetralin pretreated Wandoan coal for a Curie point flash pyrolysis; Sanzen shori, tetralin yobaimae shori Wandoan tan no kyusoku netsubunkai

    Energy Technology Data Exchange (ETDEWEB)

    Kishino, M.; Sakanishi, K.; Korai, Y.; Mochida, I. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1996-10-28

    Discussions were given on effects of acid pretreatment and tetralin swelling in Wandoan coal on a Curie point flash pyrolysis (which used a Curie point pyrolyzer). Residue yield loss effects were obtained at 3.9% in hydrochloric acid pretreatment, and 6.2% in acetic acid pretreatment. The effects of tetralin swelling pretreatment were compared in the similar manner in terms of the residue yield loss. The effects were 4.0% in untreated coal, 2.0% in the hydrochloric acid pretreatment, and 0.6% in the acetic acid pretreatment. It is thought that components that can be activated by acetic acid have already been activated, but the remaining components would not be activated by tetralin. Average microporosity (area) in the remaining particle as a whole shows very little difference both in acetic acid pretreated coal and untreated coal. However, with the acetic acid pretreatment, pores smaller than 4{mu}m{sup 2} disappeared, and pores as large as 205 to 411{mu}m{sup 2} increased largely. This phenomenon was observed as an increase in foaming degree under microscopic observation, even if the average microporosity remains equal. Thermoplasticity of the coal increased, and so did volatilization reactivity as a result of the acetic acid pretreatment, resulting in appearance of a large number of large pores. 6 refs., 2 figs., 2 tabs.

  15. Exploratory study of coal-conversion chemistry. Quarterly report No. 9, March 20, 1980-June 19, 1980. [Hydroxydiphenylmethane, diphenylether, diphenymethane

    Energy Technology Data Exchange (ETDEWEB)

    McMillen, Donald F.; Ogier, Walter C.

    1980-11-19

    This report describes work accomplished under two tasks: Task A, Mechanism of Cleavage of Key Bond Types Present in Coals, and Task B, Catalysis of Conversion in CO-H/sub 2/O Systems. Under Task A, the very effective catalysis of carbon-carbon bond cleavage by iron oxides in hydroxydiphenylmethane structures has been further characterized. An electron-transfer mechanism offers the most likely explanation of the observations that (1) alumina and silica-alumina surfaces are less active catalysts than Fe/sub 3/O/sub 4/, (2) meta-hydroxydiphenylmethane is almost as subject to catalysis as para-hydroxydiphenylmethane, (3) diphenyl ether is less subject to Fe/sub 3/O/sub 4/ catalysis than diphenylmethane, and (4) ortho-methoxydiphenylmethane exhibits the same susceptibility to Fe/sub 3/O/sub 4/ catalysis as ortho-hydroxydiphenylmethane. Under Task B, this quarter we have completed the survey of possible metal catalysts present in the Hastelloy C autoclave. We have found that coal conversion in CO-H/sub 2/O systems is effective when metal oxides such as MoO/sub 4//sup =/, Cr/sub 2/O/sub 7//sup =/, and MnO/sub 4//sup -/ are used as catalysts, but there is less or no coal conversion with FeCl/sub 3/ or Ni(CH/sub 3/COO)/sub 2/. While studying the fate of the catalyst after the reaction, we have isolated formate in the water-soluble fraction. This important information could help us in studying the role of formate in coal conversion. During this quarter, we have also studied the influence of reaction time and fresh CO on coal conversion in the presence of a catalyst. A striking result of 67% of benzene-soluble materials was obtained with an equivalent of 6000 ppM of Cr as sodium dichromate.

  16. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, G.P. [ed.

    1994-07-01

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  17. Rheology of coal-water slurries prepared by the HP roll mill grinding of coal. Quarterly technical progress report number 11, March 1--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.

    1995-06-01

    The objective of this research is the development of improved technology for the preparation of coal-water slurries that have potential for replacing fuel oil in direct combustion. Detailed investigations of the effect of solids content and chemical additives on the rheology of coal-water slurries, prepared with fines produced by the ball milling of Pittsburgh No. 8 coal, were conducted during the first phase of the research program. These experiments were to provide a baseline against which the rheological behavior of slurries prepared with fines produced by high-pressure roll milling or hybrid high-pressure, roll mill/ball mill grinding could be compared. The viscosity of slurries with high solids content is strongly influenced by the packing density of the feed material. The packing density can be significantly altered by mixing distributions of different median sizes, and to an extent by modifying the grinding environment. The research during this quarter was, therefore, directed towards: (1) establishing the relationship between the packing characteristic of fines and the viscosity of slurries prepared with the fines; (2) investigation of the effect of mixing distribution on the rheology; and (3) study of the effect of grinding environment in the ball mill on the rheology of coal-water slurries.

  18. Regulation of coal polymer degradation by fungi. Eighth quarterly report, [January--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, R.L. [Notre Dame Univ., IN (United States). Dept. of Civil Engineering and Geological Sciences; Bumpus, J.A. [University of Northern Iowa, Cedar Falls, IA (United States). Dept. of Chemistry

    1996-07-28

    Progress is reported on solubilization of low-rank coal by enzyme activity derived from Trametes versicolor or P. chrysosporium. Specifically during the reporting period efforts were directed towards the determining the effect of pH on solubilization of leonardite, the role of laccase in low coal solubilization and metabolism, the decolorization of soluble coal macromolecule by P. chrysosprium and T. versicolor in solid agar gel, and the solubilization of low rank coal in slurry cultures and solid phase reactors.

  19. Characterization and supply of coal based fuels. Quarterly report, August 1, 1987--October 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements; Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is discussed.

  20. Selective solvent absorption in coal conversion. Quarterly report, July 1, 1991--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.; Lapucha, A.; Lazarov, L.; Amui, J.

    1992-04-01

    The objectives of this project are: (1) to determine the importance of the presence of added hydrogen donor compounds within the coal in the first stage of direct liquefaction processes; and (2) to determine the composition of the solvent absorbed by and present within the coal in the first stage of direct coal liquefaction.

  1. Advanced treatment of biologically pretreated coal gasification wastewater by a novel heterogeneous Fenton oxidation process.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Ma, Wencheng; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2015-07-01

    Sewage sludge from a biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl2 as activation agent, which was used as a support for ferric oxides to form a catalyst (FeOx/SBAC) by a simple impregnation method. The new material was then used to improve the performance of Fenton oxidation of real biologically pretreated coal gasification wastewater (CGW). The results indicated that the prepared FeOx/SBAC significantly enhanced the pollutant removal performance in the Fenton process, so that the treated wastewater was more biodegradable and less toxic. The best performance was obtained over a wide pH range from 2 to 7, temperature 30°C, 15 mg/L of H2O2 and 1g/L of catalyst, and the treated effluent concentrations of COD, total phenols, BOD5 and TOC all met the discharge limits in China. Meanwhile, on the basis of significant inhibition by a radical scavenger in the heterogeneous Fenton process as well as the evolution of FT-IR spectra of pollutant-saturated FeOx/BAC with and without H2O2, it was deduced that the catalytic activity was responsible for generating hydroxyl radicals, and a possible reaction pathway and interface mechanism were proposed. Moreover, FeOx/SBAC showed superior stability over five successive oxidation runs. Thus, heterogeneous Fenton oxidation of biologically pretreated CGW by FeOx/SBAC, with the advantages of being economical, efficient and sustainable, holds promise for engineering application.

  2. Regulation of coal polymer degradation by fungi. Eighth quarterly report, [April--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, R.L. [Notre Dame Univ., IN (United States). Dept. of Civil Engineering and Geological Sciences; Bumpus, J.A. [University of Northern Iowa, Cedar Falls, IA (United States). Dept. of Chemistry

    1996-07-28

    This project addresses the solubilization of low-rank coal (leonardite) by lignin degrading fungi. During this reporting period efforts were focused on determining the effect of pH on coal solubilization by oxalate ion and other biologically important compounds that might function as metal chelators, on the role of laccase in coal solubilization and metabolism, on decolorization of soluble coal macromolecule by Phanerochaete chrysosporium and T. versicolor in solid agar media, and on solubilization of coal in slurry cultures and solid phase reactors.

  3. Formulation, Pretreatment, and Densification Options to Improve Biomass Specifications for Co-Firing High Percentages with Coal

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; J Richard Hess; Richard D. Boardman; Shahab Sokhansanj; Christopher T. Wright; Tyler L. Westover

    2012-06-01

    There is a growing interest internationally to use more biomass for power generation, given the potential for significant environmental benefits and long-term fuel sustainability. However, the use of biomass alone for power generation is subject to serious challenges, such as feedstock supply reliability, quality, and stability, as well as comparative cost, except in situations in which biomass is locally sourced. In most countries, only a limited biomass supply infrastructure exists. Alternatively, co-firing biomass alongwith coal offers several advantages; these include reducing challenges related to biomass quality, buffering the system against insufficient feedstock quantity, and mitigating the costs of adapting existing coal power plants to feed biomass exclusively. There are some technical constraints, such as low heating values, low bulk density, and grindability or size-reduction challenges, as well as higher moisture, volatiles, and ash content, which limit the co-firing ratios in direct and indirect co-firing. To achieve successful co-firing of biomass with coal, biomass feedstock specifications must be established to direct pretreatment options in order to modify biomass materials into a format that is more compatible with coal co-firing. The impacts on particle transport systems, flame stability, pollutant formation, and boiler-tube fouling/corrosion must also be minimized by setting feedstock specifications, which may include developing new feedstock composition by formulation or blending. Some of the issues, like feeding, co-milling, and fouling, can be overcome by pretreatment methods including washing/leaching, steam explosion, hydrothermal carbonization, and torrefaction, and densification methods such as pelletizing and briquetting. Integrating formulation, pretreatment, and densification will help to overcome issues related to physical and chemical composition, storage, and logistics to successfully co-fire higher percentages of biomass ( > 40

  4. The dual role of oxygen functions in coal pretreatment and liquefaction: Crosslinking and cleavage reactions. First annual report, April 1, 1991--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Serio, M.A.; Kroo, E.; Teng, H.; Charpenay, S.; Solomon, P.R.

    1992-08-01

    The overall objective of this project is elucidate and model the dual role of oxygen functions in thermal pretreatment and liquefaction of low rank coals through the application of analytical techniques and theoretical models. The project will be an integrated study of model polymers representative of coal structures, raw coals of primarily low rank, and selectivity modified coals in order to provide specific information relevant to the reactions of real coals. The investigations will include liquefaction experiments in microautoclave reactors along with extensive analysis of intermediate solid, liquid and gaseous products. Attempts will be made to incorporate the results of experiments on the different systems into a liquefaction model.

  5. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, October 1--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  6. Regulation of coal polymer degradation by fungi. Quarterly report, 31 July 1997--30 September 1997

    Energy Technology Data Exchange (ETDEWEB)

    1997-12-31

    During this reporting period the authors continued their investigations of how low rank coals are degraded by wood rotting fungi. Previous investigations showed that ligninolytic cultures of P. chrysosporium could decolorize soluble low rank coal macromolecule. The authors continue to investigate this phenomenon. Consistent with earlier observations they conclude that soluble coal macromolecule is decolorized in ligninolytic cultures of P. chrysosporium. To determine if this fungus can depolymerize coal macromolecule, samples were analyzed by GPC-HPLC. These analyses suggested that when coal macromolecules were incubated with ligninolytic cultures of P. chrysosporium a slight decrease in the average peak molecular weight of this mixture had occurred. During this reporting period they also discovered that changes in buffer composition can alter the peak retention times of coal macromolecules during GPC-HPLC probably by causing dissociation and reassociation of individual macromolecules. In other experiments it has been shown that lignin peroxidases that are secreted by ligninolytic cultures of P. chrysosporium are responsible, at least in part, for decolorization of coal macromolecules. Taken together, these studies show that the lignin degrading system of P. chrysosporium is able to enzymatically attack macromolecules solubilized from low rank coal. The ability of nonacclimated bacteria from sewage sludge to used leonardite and soluble coal macromolecule as a substrate for methanogenesis was also investigated. To date, the bacterial consortium studied was unable to use these substrates for this purpose.

  7. Regulation of coal polymer degradation by fungi. Fifth quarterly report, July 1995--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, R.L.

    1995-10-24

    This research program investigates the solubilization and depolymerization of coal polymer degradation by Fungi. We investigate the hypothesis that solubilization and depolymerization are distinctive events.

  8. Coal surface control for advanced physical fine coal cleaning technologies: Quarterly report, September 19, 1988--January 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B. I.; Chiang, S. -H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Streeter, R.; Gray, R.; Venkatadri, R.; Cheng, Y. S.; Chiarelli, P.

    1989-01-01

    The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration to achieve 90% pyrite sulfur rejection while operating at a Btu recovery greater than 90% based on run-of-mine coal. The surface control is meant to encompass storage, grinding environments and media, surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: project planning, method for analysis of samples, development of standard beneficiation test, grinding studies, modification of particle surface, and exploratory R D and support. Progress in each task of the project is presented in this report. 14 refs., 12 figs., 14 tabs.

  9. Combustion and emissions characterization of pelletized coal fuels. [Quarterly] technical report, March 1--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, S. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes

    1993-09-01

    Pelletization of coal offers a means of utilizing coal fines which otherwise would be difficult to use. Other advantages of coal pelletization include: (a) utilization of low grade fuels such as preparation plant waste, (b) impregnation of pellets with calcium carbonate or calcium hydroxide sorbent for efficient sulfur removal, and (c) utilization of coal fines of low quality in combination with different types of binders. The objective of this project is to investigate the carbon conversion efficiency and SO{sub 2} and NO{sub x} emissions from combusting pelletized coal fuels made from preparation plant waste streams using both limestone and calcium hydroxide as sorbent and cornstarch and gasification tar as binders. The combustion performance of these pelletized fuels is compared with equivalent data from a reference run-of-mine coal. Six different samples of coal pellets have been secured from ISGS researchers. Combustion and emissions characterization of these pellets in the laboratory scale 4-inch diameter circulating fluidized bed have been performed on some of the pellet samples. The pellets burn readily, and provide good bed temperature control. Preliminary results show good carbon conversion efficiencies. Oxides of nitrogen emissions are quite low and sulfur dioxide emissions are as good as or lower than those from a representative run-of-mine coal.

  10. Dewatering studies of fine clean coal. [Quarterly] technical report, December 1, 1991--February 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, B.K. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research

    1992-08-01

    Physical cleaning of ultra-fine coal using an advanced froth flotation techniques provides a low ash product, however, due to high surface area of particles the amount of water associated with clean coal is high. Economic removal of water from the froth will be important for commercial applicability of advanced froth flotation processes. The main objective of the present research program is to study and understand the dewatering characteristics of ultra-fine clean coal and to develop process parameters to effectively reduce the moisture to less than 20 percent in the clean coal product. The research approach under investigation utilizes synergistic effects of metal ions and surfactant to lower the moisture of clean coal using a conventional vacuum dewatering technique. The studies have identified a combination of metal ion and surfactant found to be effective in providing a 22 percent moisture filter cake.

  11. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, March 30, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.T. Jr.; Neufeld, R.D.; Blachere, J.R. [and others

    1998-04-01

    Progress is described on the use of by-products form clean coal technologies for the treatment of hazardous wastes. During the third quarter of Phase 2, work continued on evaluating Phase 1 samples (including evaluation of a seventh waste), conducting scholarly work, preparing for field work, preparing and delivering presentations, and making additional outside contacts.

  12. Effects of pretreatment and reduction on the Co/Al2O3 catalyst for CO hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Xiaoping Dai; Changchun Yu

    2008-01-01

    The purpose of this study was to investigate the effect of preadsorbed CO at different temperatures,calcination temperatures,the combined influence of reduction temperature and time,and pretreatment using hydrogen or syngas as reduction agents on the F-T synthesis(FTS)activity and selectivity of Co/Al2O3 catalyst.The reactivity of the carbon species at higher preadsorption temperature with H2 in TPSR decreased,whereas the carbon-containing species showed higher reactivity over Co/Al2O3 catalyst with 10W calcination temperature.This agreed well with the order of catalytic activity for F-T synthesis on this catalyst.The catalytic activity of the catalyst varied with reduction temperature and time remarkably.CODEX optimization gave an optimum reduction temperature of 756 K and reduction time of 6.2 h and estimated C5+ yield perfectly.The pretreatment of Co/Al2O3 catalyst with different reduction agents (hydrogen or syngas)showed important influences on the catalytic performance.A high CO conversion and C5+yield were obtained on the catalyst reduced by hydrogen,wherea smethane selectivity on the catalyst reduced by syngas was much higher than that on the catalyst reduced by hydrogen.

  13. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lili [Pennsylvania State Univ., University Park, PA (United States); Schobert, Harold H. [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    1998-01-01

    The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. For convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.

  14. Advanced direct coal liquefaction concepts. Quarterly report, January 1, 1994--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Berger, D.J.; Parker, R.J.; Simpson, P.L. [Canadian Energy Development, Inc., Edmonton, AB (Canada)

    1994-07-01

    A detailed evaluation of the bench unit data on Black Thunder feedstocks was completed. The results show that in a once-through operation using counterflow, reactor technology coal conversions in excess of 90% could be obtained, giving distillable oil yields in the range 60--65 wt % on MAF coal. The remaining non-distillable oil fraction which represents 20--25 wt % on MAF coal is a source of additional distillable oil in further processing, for example, bottoms recycle operation. C{sub 1}-C{sub 3} gas yields were generally in the order of 6--8 wt %. In autoclave studies, Illinois No. 6 coal was found to be much less reactive than Black Thunder coal, and did not respond well to solubilization with carbon monoxide/steam. Process severity was, therefore, increased for bench unit operations on Illinois No. 6 coal, and work has concentrated on the use of hydrogen rather than carbon monoxide for solubilization. Preliminary coking studies on the resid from bench unit runs on Black Thunder coal were also carried out. Distillable liquid yields of 55--60 wt % were obtained. The technical and economic study to be carried out by Kilborn Engineering Company has been initiated.

  15. Chemistry and structure of coal derived asphaltenes and preasphaltenes. Quarterly progress report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T. F.

    1980-01-01

    It is the objective of this project to isolate the asphaltene and preasphaltene fractions from coal liquids from a number of liquefaction processes. These processes consist of in general: catalytic hydrogenation, staged pyrolysis and solvent refining. These asphaltene fractions may be further separated by both gradient elution through column chromatography, and molecular size distribution through gel permeation chromatography. Those coal-derived asphaltene and preasphaltene fractions will be investigated by various chemical and physical methods for characterization of their structures. After the parameters are obtained, these parameters will be correlated with the refining and conversion variables which control a given type of liquefaction process. The effects of asphaltene in catalysis, ash or metal removal, desulfurization and denitrification will also be correlated. It is anticipated that understanding the role of asphaltenes in liquefaction processes will enable engineers to both improve existing processes, and to make recommendations for operational changes in planned liquefaction units in the United States. The objective of Phase 1 was to complete the isolation and separation of coal liquid fractions and to initiate their characterization. The objective of Phase 2 is to continue the characterization of coal asphaltenes and other coal liquid fractions by use of physical and instrumental methods. The structural parameters obtained will be used to postulate hypothetical average structures for coal liquid fractions. The objective of Phase 3 is to concentrate on the characterization of the preasphaltene (benzene insoluble fraction) of coal liquid fraction by the available physical and chemical methods to obtain a number of structural parameters.

  16. Coal materials handling: classifier evaluation. Quarterly progress report, October-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.S.C.

    1980-01-01

    The desire and need to reduce energy requirements is, of course, the first and foremost reason for seeking a better understanding of the role of classification in closed circuit coal grinding. A better understanding of classifiers typically used in conjunction with coal grinding circuits would result in the ability to better utilize energies expended in coal grinding. In addition, the ability to better control the product size distribution is of major importance to many new processes being introduced to our energy conscious economy. Such processes include coal-oil mixture production, the production of coal-water slurries of pipelines, coal gasification and the production of solvent refined coal. All of these processes call for the use of pumpable and high concentrate slurries. In all cases the particle size distribution has a direct effect on the pumpability and percent by weight solids concentration that is reasonably attainable. Recognizing the need for a better technical understanding of classifiers used in coal grinding, the United States Department of Energy and the Kennedy Van Saun Corporation conceived the present project to evaluate various classifiers currently being used in air swept coal grinding systems. The classifiers under consideration include a twin cone classifier, an expansion chamber type (vari-mesh) classifier and a new centrifugal classifier recently introduced by Hukki. The objectives of this evaluation are to compare the classifiers with respect to their effect on closed circuit grinding system performance and to provide data that will allow a preliminary evaluation of classifier design with respect to separation on the basis of sulfur and ash content.

  17. Geochemistry of a reclaimed coal slurry impoundment. [Quarterly] technical report, September 1, 1993--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dreher, G.B.; Roy, W.R.; Steele, J.D.; Heidari, M.

    1993-12-31

    The highly alkaline residue from the fluidized-bed combustion (FBC) of coal may be an environmentally acceptable material for use in neutralizing acid produced by the oxidation of pyrite in coal slurry solids (CSS). Previous research indicated that FBC residues in mixtures with pyrite-rich CSS neutralized the acid produced by or attenuated the oxidation of pyrite in CSS. In the present research we intend to collect cores of unconsolidated material and sample pore gases from a reclaimed coal slurry impoundment. The data gathered will provide background information necessary for the development of a predictive computer model of the generation and migration of acid in a reclaimed coal slurry impoundment. A conceptual model for the oxidation of pyrite at near-neutral conditions is being developed. This report includes our first approximation of the model. The model is subject to change.

  18. Liquid chromatographic analysis of coal surface properties. Quarterly progress report, July--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, K.C.

    1992-12-15

    Experiments on equilibrium adsorption of various alcohols on 60--200 mesh Illinois No. 6 coal (DECS-2; Randolph county) were performed during the July--September period. The alcohols include ethanol, methanol, isobutanol, t-butanol, 1-heptanol, 1-octanol, 1-hexadecanol, 4-methyl-2-pentanol, and 2-methyl-l-pentanol. Amounts of equilibrium adsorption of alcohols (ALCO) on 60--200 mesh Illinois No. 6 coal are 1 - 230 {times} 10{sup {minus}6} mg-ALCO/g-coal, whereas equilibrium concentrations of alcohols are 3--40 ppM. Relations between equilibrium loadings of alcohols on the coal and equilibrium concentrations of alcohols in aqueous solutions are shown to be linear.

  19. Flash hydropyrolysis of coal. Quarterly report No. 9, April 1-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-10-01

    Both the North Dakota lignite and New Mexico sub-bituminous coal have been hydrogasified in the Flash Hydropyrolysis unit with yields ranging up to about 85 to 90% conversion of the available carbon at 2500 psi and 875 to 900/sup 0/C. The lignite appears to be less reactive at lower pressure than the sub-bituminous coal, producing an average of 40% gaseous yield at 1000 psi and 900/sup 0/C while the sub-bituminous produced over 50%. The reactivity of both coals is dependent on the hydrogen partial pressure but does not appear to be affected by H/sub 2//coal feed ratio. When the H/sub 2//coal ratio was reduced to 0.05 and sub-bituminous coal was run at 2500 psi and 875/sup 0/C, a high methane concentration of 57% was achieved. However, the yield or conversion of carbon to gas was limited to 30% which may be attributed to the reduction in hydrogen partial pressure during the run. Further work is being planned to obtain additional data at the lower pressure and H/sub 2//coal feed ratios. Illinois No. 6 coal, a caking bituminous, has been successfully run in the experimental equipment both treated with calcium and untreated. A reaction model, previously developed, has been modified and is being fitted to all the lignite data to produce one consistent set of pre-exponential factors and activation energies for the reaction rate equations. The experimental equipment is being modified to allow varying feed composition and especially introduction of steam into the feed gas.

  20. Desulfurization of coal: enhanced selectivity using phase transfer catalysts. Quarterly report, March 1 - May 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, S.R.; Hippo, E.J. [Southern Illinois Univ., Carbondale, IL (United States)

    1996-12-31

    Due to environmental problems related to the combustion of high sulfur Illinois coal, there continues to be interest in the development in viable pre-combustion desulfurization processes. Recent studies by the authors have obtained very good sulfur removals but the reagents that are used are too expensive. Use of cheaper reagents leads to a loss of desired coal properties. This study investigated the application phase transfer catalysts to the selective oxidation of sulfur in coal using air and oxygen as oxidants. The phase transfer catalyst is expected to function as a selectivity moderator by permitting the use of milder reaction conditions that otherwise necessary. This would enhance the sulfur selectivity and help retain the heating value of the coal. The use of certain coal combustion wastes for desulfurization, and the application of cerium (IV) catalyzed air oxidation for selective sulfur oxidation are also being studied. If successful, this project could lead to the rapid development of a commercially viable desulfurization process. This would significantly improve the marketability of Illinois coal.

  1. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous catalytic ozonation and biological process.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Hou, Baolin; Zhao, Qian

    2014-08-01

    Advanced treatment of biologically pretreated coal gasification wastewater (CGW) was investigated employing heterogeneous catalytic ozonation integrated with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process. The results indicated that catalytic ozonation with the prepared catalyst (i.e. MnOx/SBAC, sewage sludge was converted into sludge based activated carbon (SBAC) which loaded manganese oxides) significantly enhanced performance of pollutants removal by generated hydroxyl radicals. The effluent of catalytic ozonation process was more biodegradable and less toxic than that in ozonation alone. Meanwhile, ANMBBR-BAF showed efficient capacity of pollutants removal in treatment of the effluent of catalytic ozonation at a shorter reaction time, allowing the discharge limits to be met. Therefore, the integrated process with efficient, economical and sustainable advantages was suitable for advanced treatment of real biologically pretreated CGW.

  2. Innovative Clean Coal Technology (ICCT). Technical progress report, first quarter, 1993, January 1993--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 NM capacity) near Pensacola, Florida. The project will be funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  3. Biological upgrading of coal liquids. Quarterly report, October--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Culture screening and performance studies were performed with a variety of cultures in removing nitrogen compounds from coal liquid. Two cultures were shown to be effective in removing 17 and 26 percent of the nitrogen in coal liquid as determined by elemental analysis. Experiments will continue in an effort to find additional cultures and isolates able to degrade nitrogen, as well as oxygen and sulfur as heteroatom compounds, from coal liquids. A biological process for upgrading of coal liquids would offer significant advantages, such as operation at ordinary temperature and pressure with better energy efficiency. Of greater importance is the fact that microorganisms do not require an external supply of hydrogen for heteroatom removal, obtaining required hydrogen from water. Furthermore, the biocatalysts are continuously regenerated by growth on the heteroatom compounds. Ring structures are degraded as the heteroatoms are removed. The heteroatoms are in an inocuous form, such as NH{sub 3}, SO{sub 4}{sup 2{minus}} CO{sub 2} and H{sub 2}O. Therefore, there is significant potential for the development of an economical biological process for upgrading of coal liquids.

  4. Molten Salt Coal Gasification Process Development Unit. Phase 2. Quarterly technical progress report No. 2, October-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Slater, M. H.

    1981-01-20

    This represents the second quarterly progress report on Phase 2 of the Molten Salt Coal Gasification Process Development Unit (PDU) Program. Phase 1 of this program started in March 1976 and included the design, construction, and initial operation of the PDU. On June 25, 1980, Phase 2 of the program was initiated. It covers a 1-year operations program utilizing the existing PDU and is planned to include five runs with a targeted total operating time of 9 weeks. During this report period, Run 6, the initial run of the Phase 2 program was completed. The gasification system was operated for a total of 95 h at pressures up to 10 atm. Average product gas HHV values of 100 Btu/scf were recorded during 10-atm operation, while gasifying coal at a rate of 1100 lb/h. The run was terminated when the melt overflow system plugged after 60 continuous hours of overflow. Following this run, melt withdrawal system revisions were made, basically by changing the orifice materials from Monofrax to an 80 Cobalt-20 Chromium alloy. By the end of the report period, the PDU was being prepared for Run 7.

  5. Hindered diffusion of coal liquids. Quarterly report No. 3, March 18, 1993--June 17, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Webster, I.A. [Unocal Corp., Los Angeles, CA (United States)

    1993-11-01

    The design of industrial catalysts requires that the diffusivity of the reacting species within the catalyst be accurately known. Nowhere is this more important than in the area of coal liquefaction and upgrading of coal liquids. In this area one is faced with the task of processing a number of heavy oils, containing metals and other contaminants, in a variety of process dependent solvents. It is important, therefore, on the basis of predicting catalyst activity, selectivity, and optimizing reactor performance, that the diffusivities of these oil species be accurately known. It is the purpose of this project to provide a correct concept of coal asphaltenes by careful and detailed investigations of asphaltene transport through porous systems under realistic process temperature and pressure conditions. The experimental studies will be coupled with detailed, in-depth statistical and molecular dynamics models intended to provide a fundamental understanding of the overall transport mechanisms.

  6. Hydrogen bonding in asphaltenes and coal. Quarterly Report for July 1, 1978 - September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Li, N.C.; Tewari, K.C.

    1978-09-29

    Two coal liquid products derived from the same Kentucky hvAb coal have been separated into toluene-insoluble, asphaltene, and pentane-soluble heavy oil fractions. Viscosity and calorimetric studies are reported of the interaction between heavy oil and asphaltene(A) and its acid/neutral(AA) and base(BA) components in solvent benzene. The increase in viscosity and molar enthalpy of interaction, {Delta}H{sup 0}, in the order BA>A>AA, correlate well with the proton magnetic resonance downfield chemical shift of the OH signal of o-phenylphenol, as a function of added asphaltene (A, AA, BA) concentration in solvent CS{sub 2}· The results suggest that when asphaltene .and heavy oil are present together, hydrogen-bonding involving largely phenolic OH, is one of the mechanisms by which asphaltene-heavy oil interactions are achieved and, in part, is responsible for the viscosity increase of coal liquids.

  7. A characterization and evaluation of coal liquefaction process streams. Quarterly report, January 1--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Heunisch, G.W.; Winschel, R.A.

    1998-08-01

    Described in this report are the following activities: CONSOL characterized process stream samples from HTI Run ALC-2, in which Black Thunder Mine coal was liquefied using four combinations of dispersed catalyst precursors. Oil assays were completed on the HTI Run PB-05 product blend. Fractional distillation of the net product oil of HTI Run POC-1 was completed. CONSOL completed an evaluation of the potential for producing alkylphenyl ethers from coal liquefaction phenols. At the request of DOE, various coal liquid samples and relevant characterization data were supplied to the University of West Virginia and the Federal Energy Technology Center. The University of Delaware is conducting resid reactivity tests and is completing the resid reaction computer model. The University of Delaware was instructed on the form in which the computer model is to be delivered to CONSOL.

  8. Hindered diffusion of coal liquids. Quarterly report No. 12, June 18, 1995--September 17, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Webster, I.A. [Unocal Corp., Los Angeles, CA (United States)

    1995-12-31

    The design of industrial catalysts requires that the diffusivity of the reacting species within the catalyst be accurately known. Nowhere is this more important than in the area of coal liquefaction and upgrading of coal liquids. In this area one is faced with the task of processing a number of heavy oils, containing metals and other contaminants, in a variety of process dependent solvents. It is important, therefore, on the basis of predicting catalyst activity, selectivity, and optimizing reactor performance, that the diffusivities of these oil species be accurately known. It is the purpose of the project described here to provide such a correct concept of coal asphaltenes by careful and detailed investigations of asphaltene transport through porous systems under realistic process temperature and pressure conditions. The experimental studies will be coupled with detailed, in-depth statistical and molecular dynamics models intended to provide a fundamental understanding of the overall transport mechanisms.

  9. TRW Advanced Slagging Coal Combustor Utility Demonstration. Fourth Quarterly progress report, August 1989--October 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The TRW Advanced Slagging Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O&R) Utility Corporation`s Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/ou desip unit to fire 2.5 sulfur coal. The slogging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Envirommental Standards. TRW-CBU scope of work includes the engineering, design and supply of the slogging combustors, coal and limestone feed systems and a control system for these components. During this report period, the design activities for all systems progressed to permit the release of specifications and requests for proposals. Award of contracts for long-delivery items and major equipment are being placed to meet the revised program schedule.

  10. Molecular biological enhancement of coal biodesulfurization. Ninth quarterly technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, J.H.; Zupancic, T.J.; Baker, B.; Palmer, D.T.; Fry, I.J.; Tranuero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N. [Battelle, Columbus, OH (United States); Chakravanty, L.; Tuovinen, O.H. [Ohio State Univ., Columbus, OH (United States)

    1991-09-13

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotropic bacterium; conduct a batch-mode optimization/analysis of scale-up variables.

  11. Molecular biological enhancement of coal desulfurization. Eleventh quarterly technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, J.H.; Zupancic, T.J.; Kittle, J.D. Jr.; Baker, B.; Palmer, D.T.; Traunero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N. [Battelle, Columbus, OH (United States); Chakravarty, L.; Tuovinen, O.H. [Ohio State Univ., Columbus, OH (United States)

    1991-03-13

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of the organism; transfer this pathway into a fast-growing chemolithotrophic bacterium; conduct a batch-mode optimization/analysis of scale-up variables.

  12. Molecular biological enhancement of coal biodesulfurization. Tenth quarterly technical progress report, [September--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, J.H.; Zupancic, T.J.; Kittle, J.D.; Baker, B.; Palmer, D.T.; Fry, I.J.; Traunero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N. [Battelle, Columbus, OH (United States); Chakravanty, L.; Tuovinen, O.H. [Ohio State Univ., Columbus, OH (United States)

    1991-12-13

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The specific technical objectives of the project are to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotrophic bacterium; and conduct a batch-mode optimization/analysis of scale-up variables.

  13. Molecular biological enhancement of coal biodesulfurization. Fourth quarterly technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, J.H.; Fry, I.; Wyza, R.E.; Palmer, D.T.; Zupancic, T.J.; Conkle, H.N.

    1990-06-14

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotropic bacterium; conduct a batch-mode optimization/analysis of scale-up variables.

  14. Micropore diffusion in coal chars under reactive conditions: Quarterly technical progress report, 15 September 1986-15 December 1986

    Energy Technology Data Exchange (ETDEWEB)

    Calo, J.M.

    1986-01-01

    This project is concerned with the development of a new technique for measuring the rates of diffusion of gases on the microporous structure of coal chars. Mass transport in pores of molecular dimensions is known to be an activated, relatively slow process. The gasification of coal chars may be transport-limited. To correlate and predict gasification reactivity, it is quite important to know over what range of conditions such limitations may control. The initial transient behavior of a gaseous species exposed to such chars primarily reflects the transport resistance offered by the micropores. When this process is conducted using a well-defined perturbation in a mixed reactor, the diffusion step can often be separated from the subsequent reaction steps, so that measurements can be conducted under actual gasification conditions. We will apply this technique to a few well-characterized coal/carbon chars. Micropore diffusion times in these samples will be determined for various gaseous species relevant to the gasification environments. The primary variables will be temperature and degree of conversion (i.e., burn-off). Measurements will be examined with respect to changes occurring in the pore structure of the chars. In this first quarterly technical progress report, the background and objectives of the study and the requisite experimental preparations to begin the micropore diffusion studies are presented. In particular, during the reporting period: the graduate assistant on this project conducted a literature review of the general area of micropore diffusion and began to acquire the necessary background for the experimental study; the inception of a pore model was undertaken involving micropore diffusion; and the Autoclave Engineers 3'' Berty catalytic reactor has been refurbished and modified for the study. 59 refs., 2 figs.

  15. Hindered diffusion of coal liquids. Quarterly report No. 6, December 18, 1993--March 17, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. [Univ. of Southern California, Los Angeles (United States); Webster, I.A. [UNOCAL Corp., Los Angeles, CA (United States)

    1994-08-01

    Throughout the experimental runs described herein, the authors utilized a high pressure, high temperature diffusion cell system. This diffusion system has been tested through the measurement of the diffusivity of a number of model coal liquids. The project is of both empirical and theoretical nature and is divided into a number of tasks which are reviewed here.

  16. Electrostatic beneficiation of coal. Quarterly technical progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, M.K.; Lindquist, D.; Tennal, K.B.

    1996-07-01

    Progress reports are presented for the following: modification to the electrostatic separator; review of DOE specifications for minimum beneficiation and calculations of grinding requirements based on washability; two-pass beneficiation; analysis of different sieve fractions; measurement of charge to mass ratio as a function of height of deposition; and charging of coal against different materials.

  17. Effects of coal combustion and gasification upon lung structure and function. Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, Dr., David E.

    1980-12-12

    The effects on lungs of emissions from fluidized-bed combustion and coal gasification on man are being studied by inhalation experiments and intratracheal administration of fly ash to hamsters. The hamsters are sacrificed at 1, 3, 6, 9 and 30 days and the lungs examined by methods which are described. (LTN)

  18. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 14, January--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-04-30

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by June 1997. During Quarter 14 (January--March 1996), parametric testing of the 30-inch Microcel{trademark} flotation column at the Lady Dunn Plant continued under Subtask 3.2. Subtask 3. 3 testing, investigating a novel Hydrophobic Dewatering process (HD), continued this quarter with parametric testing of the batch dewatering unit. Coal product moistures of 3 to 12 percent were achieved, with higher percent solids slurry feeds resulting in lower product moistures. For a given percent solids feed, the product moisture decreased with increasing butane to dry coal ratios. Stirring time, stirring rate, and settling time were all found to have little effect on the final moisture content. Continuing Subtask 6.4 work, investigating coal-water-fuel slurry formulation for coals cleaned by selective agglomeration, indicated that pH adjustment to 10 resulted in marginally better (lower viscosity) slurries for one of the two coals tested. Subtask 6.5 agglomeration bench-scale testing results indicate that the new Taggart coal requires a grind with a d{sub 80} of approximately 33 microns to achieve the 1 lb ash/MBtu product quality specification. Also under Subtask 6.5, reductions in the various trace element concentrations accomplished during selective agglomeration were determined. Work was essentially completed on the detailed design of the PDU selective agglomeration module under Task 7 with the issuing of a draft report.

  19. A Pilot-scale Study on Coal Gasification Wastewater Reclamation Using Pretreatment Alternatives Combined with Ultrafiltration and Reverse Osmosis

    Institute of Scientific and Technical Information of China (English)

    Qian Zhao; Hongjun Han; Fang Fang; Peng Xu; Kun Li; Dexin Wang

    2015-01-01

    Aims to investigate the performance of the pilot⁃scale reclamation plant for coal gasification wastewater ( CGW) using ultrafiltration and reverse osmosis with appropriate pretreatment alternatives, different pre⁃treatment alternatives⁃coagulation, adsorption, and ozonation methods were employed to treat the secondary effluent of coal gasification wastewater ( SECGW ) in a pilot⁃scale pressurized membrane system. The performance was compared to choose the most suitable pre⁃treatment alternative for the SECGW reclamation. Ozone reaction achieved highest COD removal efficiency (79.6%-91.0%), resulting in the stable normalized parameters of the subsequent ultrafiltration and reverse osmoses. In contrast, the coagulation and adsorption processes achieved only 32. 8%-45. 7% and 53. 1%-64. 6% decreases in COD, respectively. The residual organic pollutants in the reverse osmosis feed water led to an increase in normalized pressure drop and a decrease in normalized permeability ( or membrane transference coefficient) . The hydrophobic fraction was the main constituent ( approx. 70% of DOC ) in pretreated SECGW, and the hydrophobic⁃neutral fraction contributed mostly to the UV absorbance ( 53%) . Fluorescence excitation emission matrices revealed that ozonation removed most of the hydrophobic and aromatic proteins such as tyrosine and tryptophan which dominated in raw wastewater. The recalcitrant compounds such as phenolic compounds, heterocyclic compounds, especially long⁃chain hydrocarbons, which were easily attached to the membrane surface and contributed to organic fouling, could be oxidized and mineralized by ozone. Among the three pretreatments, ozonation showed highest removal efficiencies of hydrophobic and aromatic proteins, therefore resulting in highest normalized permeability.

  20. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report No. 4, October 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-20

    The objectives of this project are to demonstrate that: The Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality at a convincing rate of production in a commercial coal preparation plant. The wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation. A wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. During this fourth quarter of the contract period, activities were underway under Tasks 2 and 3. Sufficient characterization of the bench-scale testing and pilot-plant testing results enabled the design and procurement activities to move forward. On that basis, activities in the areas of design and procurement that had been initiated during the previous quarter were conducted and completed.

  1. Molecular biological enhancement of coal biodesulfurization. Eleventh quarterly technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, J.H.; Zupancic, T.J.; Kittle, J.D. Jr.; Baker, B.; Palmer, D.T.; Traunero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N. [Battelle, Columbus, OH (United States); Chakravarty, L.; Tuovinen, O.H. [Ohio State Univ., Columbus, OH (United States)

    1992-03-13

    The objective of this project is to produce one or more microorganisms capable of the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: (1) clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; (2) return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; (3) transfer this pathway into a fast-growing chemolithotrophic bacterium; (4) conduct a batch-mode optimization/analysis of scale-up variables. By letter of September 3, 1991, from the Project Manager at Department of Energy, Pittsburgh Energy Technology Center, these objectives of this project were redirected toward finding and developing suitable vectors for Thiobacillus strains. All work on bacterial strains from Lehigh University was terminated since they did not contain desulfurization traits represented by the ``4S`` pathway.

  2. Systems studies of coal coal conversion processes using a reference simulator. Quarterly report, July 1, 1978--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, G.V.; Sood, M.K.; Soni, Y.; Overturf, B.W.; Buchanan, P.; Weide, W. Jr.; Wilkinson, C.R.; Boo, J.

    1978-11-01

    The plant capital cost estimation package has been largely implemented. Testing and documentation is projected to be completed by the end of the next quarter. Additions consisting of the physical properties package of entropy estimation capabilities and of automatic selection of the steam table routines when appropriate were made. Significant progress has been made in developing equipment modules for the pyrolysis vapor recovery, heat recovery, bulk methanation, and H/sub 2/ plant sections. These modules include an ejector model, an electrostatic precipitator model, an alternate three phase column routine, a multiphase heat exchanger design routine, as well as a steam reformer furnace design program. Case studies have been carried out on the heat recovery section. Integrated simulations of the methanation, vapor recovery, and H/sub 2/ plant sections are in various stages of assembly. The hierarchical calculation strategy which is to allow execution of over-all flowsheet simulations in terms of a linked sequence of process section simulations has been demonstrated successfully. An available ethylene oxide/glycol process simulation model was used as a test case. Execution time reductions to 1/3 of the direct simulation time could be shown. Work is in progress in generalizing the interfacing and applying the strategy to portions of the modified COED flowsheet. Successful linkage of the combined pryolysis, gasifier, lift-tube, and combustor models was achieved. These models include detailed kinetics, heat transfer calculations as well as particle balance calculations which allow both particle shrinkage at constant density and reduction of particle density at constant size. Several case studies were run and more are projected.

  3. Enzymatic desulfurization of coal. Second quarterly report, October 1--December 15, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Marquis, J.K. [Boston Univ., MA (United States). School of Medicine; Kitchell, J.P. [Holometrix, Inc., Cambridge, MA (United States)

    1988-12-15

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of ``model`` organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  4. Biological upgrading of coal liquids. First quarterly report, January 1, 1992--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The purpose of this report is to present the results of culture selection studies for the removal of heteroatom compounds from coal liquids. A variety of pure cultures have been selected based upon a comprehensive literature review. In addition, cultures are being isolated from natural sources. Synthetic heteroatom compounds are presently being utilized in the degradation studies until the Environmental Assessment Questionnaire is approved. (VC)

  5. Hindered diffusion of coal liquids. Quarterly report number 11, March 18--June 17, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Webster, I.A. [UNOCAL Corp., Los Angeles, CA (United States)

    1995-12-31

    The design of industrial catalysts requires that the diffusivity of the reacting species within the catalyst be accurately known. Nowhere is this more important than in the area of coal liquefaction and upgrading of coal liquids. In this area one is faced with the task of processing a number of heavy oils, containing metals and other contaminants, in a variety of process dependent solvents. It is important, therefore, on the basis of predicting catalyst activity, selectivity, and optimizing reactor performance, that the diffusivities of these oil species be accurately known. Contrary to laboratory reactors, where most of the studies of asphaltene`s chemical structure have taken place, most industrial reactors are continuous systems. The state of the asphaltene molecule therefore does not only depend on the temperature, pressure and polarity of the solvent but also on the reactor`s residence time. It is, therefore, very important to have a correct concept of the asphaltene`s structure and through careful experimentation, one can then decide whether such a concept has any practical implications at realistic upgrading conditions. It is the purpose of the project described here to provide such a correct concept of coal asphaltenes by careful and detailed investigations of asphaltenes transport through porous systems under realistic process temperature and pressure conditions. The experimental studies will be coupled with detailed, in-depth statistical and molecular dynamics models intended to provide a fundamental understanding of the overall transport mechanisms. 60 refs.

  6. Hindered diffusion of coal liquids. Quarterly report No. 4, June 18, 1993--September 17, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Webster, I.A. [Unocal Corp., Los Angeles, CA (United States)

    1993-12-31

    The design of industrial catalysts requires that the diffusivity of the reacting species within the catalyst be accurately known. Nowhere is this more important than in the area of coal liquefaction and upgrading of coal liquids. In this area one is faced with the task of processing a number of heavy oils, containing metals and other contaminants, in a variety of process dependent solvents. It is important, therefore, on the basis of predicting catalyst activity, selectivity, and optimizing reactor performance, that the diffusivities of these oil species by accurately known. It is the purpose of this project to provide a correct concept of coal asphaltenes by careful and detailed investigations of asphaltene transport through porous systems under realistic process temperature and pressure conditions. The experimental studies will be coupled with detailed, in-depth statistical and molecular dynamics models intended to provide a fundamental understanding of the overall transport mechanisms. The project is of both experimental and theoretical nature and is divided into a number of tasks. Experimental tasks cover measuring asphaltene diffusivity in: model catalysts under realistic temperature and pressure conditions; sol-gel ceramic membranes; and model and real membranes under reactive conditions. Theoretical tasks include: study of hindered transport in a single pore; transport and reaction in networks of interconnected pores; Monte Carlo and molecular dynamics simulations; dilute simulations; low density diffusion with adsorption desorption; role of intramolecular, intermolecular and surface forces-accounting for aggregation and delamination phenomena; and molecular dynamics simulations.

  7. MHD Coal-Fired Flow Facility. Quarterly technical progress report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Altstatt, M. C.; Attig, R. C.; Baucum, W. E.

    1980-07-31

    Significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Energy Conversion Facility (ECF), formerly the Research and Development Laboratory, are reported. CFFF Bid Package construction is now virtually complete. The remaining construction effort is being conducted by UTSI. On the quench system, another Task 1 effort, the cyclone was erected on schedule. On Tasks 2 through 6, vitiation heater and nozzle fabrication were completed, an investigation of a fish kill (in no way attributable to CFFF operations) in Woods Reservoir was conducted, major preparation for ambient air quality monitoring was made, a broadband data acquisition system for enabling broadband data to be correlated with all general performance data was selected, a Coriolis effect coal flow meter was installed at the CFFF. On Task 7, an analytical model of the coal flow combustor configuration was prepared, MHD generator testing which, in part, involved continued materials evaluation and the heat transfer characteristics of capped and uncapped electrodes was conducted, agglomerator utilization was studied, and development of a laser velocimeter system was nearly completed.

  8. Novel microorganism for selective separation of coal from ash and pyrite; First quarterly technical progress report, September 1, 1993--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Misra, M.; Smith, R.W.; Raichur, A.M.

    1993-12-31

    This report summarizes the progress made during the first quarter of the research project entitled ``A Novel Microorganism for Selective Separation of Coal from Ash and Pyrite,`` DOE Grant No. DE-FG22-93PC93215. The objective of this project is to study the effectiveness of a novel hydrophobic microorganism, Mycobacterium phlei (M. phlei), for the selective flocculation of coal from pyrite and ash-forming minerals. During the reporting period, three different coal samples: Illinois No. 6 coal, Kentucky No. 9 coal and Pittsburgh No. 8 coal, were collected to be used in the investigation. The microorganism, M. phlei, was obtained as freeze-dried cultures and the growth characteristics of the bacteria were studied. Scanning electron microphotographs revealed that M. phlei cells are coccal in shape and are approximately 1 {mu}m in diameter. Electrokinetic measurements showed that the Illinois No. 6 and Pittsburgh No. 8 coal samples had an isoelectric point (IEP) around pH 6 whereas M. phlei had an IEP around pH 1.5. Electrokinetic measurements of the ruptured microorganisms exhibited an increase in IEP. The increase in IEP of the ruputured cells was due to the release of fatty acids and polar groups from the cell membrane.

  9. Valve development for coal gasification plants: Phase I. Quarterly technical program report, January--April 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bellezza, D.

    1978-08-01

    This document discusses engineering and development progress during the period of January to April 1978. The work performed during this quarter consisted of: Successful development testing of seat and visor materials for Task I, II, and IV valve applications; continued seat and visor development for Task III valve application; successful development testing of bearing systems; completion of Phase I Conceptual Design and Functional Analysis effort; completion of the Phase I Summary Review report; improvements to the Hot Test fixture for use in further seat and visor development tests for Task III valve application.

  10. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 12, July--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-10-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction and operation of a 2-t/hr process development unit. The project began in October, 1992, and is scheduled for completion by June, 1997. During Quarter 12 (July--September 1995), work continued on the Subtask 3.2 in-plant testing of the Microcel{trademark} flotation column at Lady Dunn. Under Subtask 4.4, additional toxic trace element analysis of column flotation samples finalized the data set. Data analysis indicates that reasonably good mass balances were achieved for most elements. The final Subtask 6.3 Selective Agglomeration Process Optimization topical report was issued this quarter. Preliminary Subtask 6.4 work investigating coal-water-fuel slurry formulation indicated that selective agglomeration products formulate slurries with lower viscosities than advanced flotation products. Work continued on Subtask 6.5 agglomeration bench-scale testing. Results indicate that a 2 lb ash/MBtu product could be produced at a 100-mesh topsize with the Elkhorn No. 3 coal. The detailed design of the 2 t/hr selective agglomeration module neared completion this quarter with the completion of additional revisions of both the process flow, and the process piping and instrument diagrams. Construction of the 2 t/hr PDU and advanced flotation module was completed this quarter and startup and shakedown testing began.

  11. Peat Biogasification Development Program. Quarterly progress report No. 3, April 1-June 30, 1980. [Pretreatment; anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D.L.

    1980-01-01

    Procedures for High Pressure Liquid Chromatography (HPLC) are under development that will identify and quantify fermentable material contained in pretreated peat liquors. Several of the model compounds hypothesized to be a product of peat pretreatment have been identified with HPLC and confirmed with Thin Layer Chromatography (TLC). However, there are numerous unknown peaks of other products for which elution times and extinction coefficients must be determined in order to make HPLC a quantitative analytical tool for kinetic data.

  12. Coal-fired high performance power generating system. Quarterly progress report, October 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This report covers work carried out under Task 3, Preliminary R and D, under contract DE-AC22-92PC91155, {open_quotes}Engineering Development of a Coal-Fired High Performance Power Generation System{close_quotes} between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of (1) > 47% thermal efficiency; (2) NO{sub x}, SO{sub x} and particulates {<=}25% NSPS; (3) cost {>=}65% of heat input; (4) all solid wastes benign. In our design consideration, we have tried to render all waste streams benign and if possible convert them to a commercial product. It appears that vitrified slag has commercial values. If the flyash is reinjected through the furnace, along with the dry bottom ash, then the amount of the less valuable solid waste stream (ash) can be minimized. A limitation on this procedure arises if it results in the buildup of toxic metal concentrations in either the slag, the flyash or other APCD components. We have assembled analytical tools to describe the progress of specific toxic metals in our system. The outline of the analytical procedure is presented in the first section of this report. The strengths and corrosion resistance of five candidate refractories have been studied in this quarter. Some of the results are presented and compared for selected preparation conditions (mixing, drying time and drying temperatures). A 100 hour pilot-scale stagging combustor test of the prototype radiant panel is being planned. Several potential refractory brick materials are under review and five will be selected for the first 100 hour test. The design of the prototype panel is presented along with some of the test requirements.

  13. Pelletizing/reslurrying as a means of distributing and firing clean coal. Final quarterly technical progress report No. 7, January 1, 1992-- March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Conkle, H.N.

    1992-06-09

    Work in this quarter focused on completing (1) the final batch of pilot-scale disk pellets, (2) storage, handling, and transportation evaluation, (3) pellet reslurrying and atomization studies, and (4) cost estimation for pellet and slurry production. Disk pelletization of Elkhorn coal was completed this quarter. Pellets were approximately 1/2- to 3/4-in. in diameter. Pellets, after thermal curing were strong and durable and exceeded the pellet acceptance criteria. Storage and handling tests indicate a strong, durable pellet can be prepared from all coals, and these pellets (with the appropriate binder) can withstand outdoor, exposed storage for at least 4 weeks. Pellets in unexposed storage show no deterioration in pellet properties. Real and simulated transportation tests indicate truck transportation should generate less than 5 percent fines during transport. Continuous reslurrying testing and subsequent atomization evaluation were performed this quarter in association with University of Alabama and Jim Walter Resources. Four different slurries of approximately 55-percent-solids with viscosities below 500 cP (at 100 sec{sup {minus}1}) were prepared. Both continuous pellet-to-slurry production and atomization testing was successfully demonstrated. Finally, an in depth evaluation of the cost to prepare pellets, transport, handle, store, and convert the pellet into Coal Water Fuel (CWF) slurries was completed. Cost of the pellet-CWF option are compared with the cost to directly convert clean coal filter cake into slurry and transport, handle and store it at the user site. Findings indicate that in many circumstances, the pellet-CWF option would be the preferred choice. The decision depends on the plant size and transportation distance, and to a lesser degree on the pelletization technique and the coal selected.

  14. Hydrogen bonding in asphaltenes and coal liquids. Quarterly report, August 1, 1980-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Li, N.C.; Jones, L.; Yaggi, N.F.

    1980-01-01

    A coal-derived liquid (SRC-II) and its fractions have been characterized by 600 MHz /sup 1/H NMR spectrometer. Saturate fraction, being 8.1% by weight of unfractionated coal-liquid, is mainly composed of n-alkanes of high carbon numbers and the content of cycloalkanes is negligible. Aromatic fraction (49.0%) contains a considerable amount of partially hydrogenated polynuclear compounds. Double resonance techniques have been used for chemical shift identification of ..beta..-CH/sub 2/ and ..cap alpha..-CH/sub 2/ protons attached to aromatic ring structures. The decoupled signals may be used for quantitative analysis of donor hydrogens, which are known to be effective in hydrogen-transfer phenomenon in coal-liquefaction processes. The aromatic fraction contains larger amounts of CH/sub 3/ group attached to condensed aromatic ring structures, which appear as singlets in the region of 2.4 to 2.7 ppM, whereas in acidic fractions almost all benzylic CH/sub 3/ groups are attached to mono-aromatic ring structure (chemical-shift range of 2.2 to 2.3 ppM). The relatively strong acidic fraction, Acid-II (15.0%), can be recovered from anion-exchange resin by the elution with CO/sub 2/ saturated methanol after the elution with benzene. Acid-II is substantially composed of alkyl substituted mono-aromatic phenols and 75% of the fraction boil in the narrow boiling-point range of 461 to 516 K (370 to 470 F).

  15. Hindered diffusion of coal liquids. Quarterly report No. 1, September 18, 1992--December 17, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Webster, I.A. [Unocal Corp., Los Angeles, CA (United States)

    1992-12-31

    The molecules comprising coal liquids can range from less than 10 to several hundred {angstrom} in diameter. Their size is, therefore, comparable to the average pore size of most hydroprocessing catalysts. Thus, during processing, transport of these molecules into the catalyst occurs mainly by ``configurational`` or ``hindered diffusion,`` which is the result of two phenomena occurring in the pores; the distribution of solute molecules in the pores is affected by the pores and the solute molecules experience an increased hydrodynamic drag. The field of hindered diffusion has been reviewed by Deen [16]. The earliest studies in the filed were by Renkin et al. [17].

  16. The influence of water pretreatment on the medium-rank coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Saranchuk, V.; Butuzova, L.; Matsenko, G. [Academy of Sciences, Donetsk (Russian Federation). Inst. of Physical Organic and Coal Chemistry; Oshovskij, V. [Donetsk State Technical Univ. (Ukraine)

    1997-12-31

    This paper gives the results of research on the effect of the way of humidification on the process of coal (Ro=1,1) thermodestruction in the centrifugal field (the improved method for thermofiltration of fluid products of coal pyrolysis in the centrifugal field). The proofs that during plastic stage moisture chemically interacts with COM are given. This interaction gives a change in a chemical composition and the structure of the solid pyrolysis residue. In the presence of water 2-3-fold increase in the fluid product output is observed which can be of great practical value. (orig.)

  17. Hindered diffusion of coal liquids. Quarterly report No. 5, September 18, 1993--December 17, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Webster, I.A. [UNOCAL Corp., Los Angeles, CA (United States)

    1994-05-01

    The design of industrial catalysts requires that the diffusivity of the reacting species within the catalyst be accurately known. Nowhere is this more important than in the area of coal liquefaction and upgrading of coal liquids. In this area one is faced with the task of processing a number of heavy oils, containing metals and other contaminants, in a variety of process dependent solvents. It is important, therefore, on the basis of predicting catalyst activity, selectivity, and optimizing reactor performance, that the diffusivities of these oil species be accurately known. In this report, the authors report the publication of model studies of the diffusivity of Lennard-Jones particles in porous systems with dimensionality between two and three. Such a modeled system includes pillared clays. They also published a paper which addresses the sorption and aggregation of asphaltene particles with porous media such as catalysts. The paper presents new experimental data for the amount of asphalt precipitation formed with various solvents. The experimental results are compared to model calculations.

  18. Flash hydropyrolysis of coal. Quarterly report No. 6, April 1--June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    Thirty experimental runs were conducted between pressures of 500 and 2500 psig and temperatures of 850/sup 0/ and 900/sup 0/C for the purpose of studying the production of gaseous hydrocarbons from lignite. Yields as high as 90% conversion of the available carbon to methane and ethane have been observed at 2500 psig and 875/sup 0/C, with only 1.5% of the carbon appearing as CO and the remainder as char. It was observed that significant decomposition of the gaseous hydrocarbon products occurred as the coal residence time in the reactor increased from the maximum yields at 2.4 sec to 7 seconds. Hydrogen pressure was shown to have a significant effect on the production of the gaseous hydrocarbons at 875 to 900/sup 0/C, the yield increasing linearly at a rate of 18% in absolute conversion of the available carbon for each 500 psi increase in pressure. Coal hydrogenation data from several laboratories was examined and the conclusions from this study are reported. The experimental limits of reactor operation have been changed to study primarily the formation of gaseous hydrocarbons.

  19. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of catalytic ultrasound oxidation and membrane bioreactor.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Hou, Baolin

    2015-01-01

    Laboratorial scale experiments were conducted to investigate a novel system integrating catalytic ultrasound oxidation (CUO) with membrane bioreactor (CUO-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. Results indicated that CUO with catalyst of FeOx/SBAC (sewage sludge based activated carbon (SBAC) which loaded Fe oxides) represented high efficiencies in eliminating TOC as well as improving the biodegradability. The integrated CUO-MBR system with low energy intensity and high frequency was more effective in eliminating COD, BOD5, TOC and reducing transmembrane pressure than either conventional MBR or ultrasound oxidation integrated MBR. The enhanced hydroxyl radical oxidation, facilitation of substrate diffusion and improvement of cell enzyme secretion were the mechanisms for CUO-MBR performance. Therefore, the integrated CUO-MBR was the promising technology for advanced treatment in engineering applications.

  20. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous Fenton oxidation and biological process.

    Science.gov (United States)

    Xu, Peng; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Jia, Shengyong; Xu, Chunyan; Wang, Dexin

    2015-04-01

    Laboratorial scale experiments were conducted in order to investigate a novel system integrating heterogeneous Fenton oxidation (HFO) with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process on advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that HFO with the prepared catalyst (FeOx/SBAC, sewage sludge based activated carbon (SBAC) which loaded Fe oxides) played a key role in eliminating COD and COLOR as well as in improving the biodegradability of raw wastewater. The surface reaction and hydroxyl radicals (OH) oxidation were the mechanisms for FeOx/SBAC catalytic reaction. Compared with ANMBBR-BAF process, the integrated system was more effective in abating COD, BOD5, total phenols (TPs), total nitrogen (TN) and COLOR and could shorten the retention time. Therefore, the integrated system was a promising technology for engineering applications.

  1. Advanced development of fine coal desulfurization and recovery technology. Quarterly technical progress report, October 1, 1976--December 31, 1976. [53 references

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, R.W.; Wheelock, T.D.

    1977-02-01

    The improvement and technical development of promising methods for desulfurizing and recovering fine coal underway includes froth flotation, selective oil agglomeration, pelletization, and a chemical desulfurization process which involves leaching fine coal with a hot dilute solution of sodium carbonate containing dissolved oxygen under pressure. A preliminary assessment of the state of the art and review of the technical literature has been made. Equipment and apparatus have been assembled for small-scale laboratory experiments in froth flotation, oil agglomeration and chemical desulfurization. Preliminary froth flotation tests have been carried out on an Iowa coal to establish baseline data. Quite unexpectedly these tests indicated that aluminum nitrate may be an activator for coal because it served to increase the recovery of coal. Several potential flotation depressants for pyrite have been screened by measurement at the zeta potential and floatability of pyrite or coal in aqueous suspensions containing the potential depressants. The following reagents show some promise as pyrite depressants: ferric chloride, sodium cyanide, ammonium thiocyanate, and the disodium salt of ethylenediaminetetraacetic acid. Preliminary plans have been prepared for a continuous flow bench-scale system to demonstrate the process. This system will include equipment for grinding and pretreating the coal as well as equipment for demonstrating froth flotation, selective oil agglomeration and pelletization. An investigation of coal microstructure as it relates to coal beneficiation methods has also been initiated. The distribution of various forms of pyrite by size and crystal structure has been determined for two cannel samples of coal through application of scanning electron microscope techniques.

  2. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Quarterly technical progress report, July--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chunshan; Schmidt, E.; Schobert, H.H.

    1996-01-01

    Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting polycyclic aromatic units and the reactions of various oxygen functional groups. Here in this quarterly, we report on the hydrocracking of 4-(l-naphthylmethyl)bibenzyl in the presence of iron (Fe) catalysts and sulfur and residual wall catalytic effect. Catalytic hydrocracking of 4-(1-naphthylmethyl)bibenzyl (NMBB) predominantly yielded naphthalene and 4-methylbibenzyl. Various iron compounds were examined as catalyst precursors. Sulfur addition to most catalyst precursors led to substantially higher catalyst activity and higher conversion. NMBB was also treated with sulfur in the absence of iron compounds, in concentrations of 1.2-3.4 wt%, corresponding to the conditions present in reactions with added iron compounds. Increasing sulfur concentrations led to higher NMBB conversions. Furthermore, sulfur had a permanent effect on the reactor walls. A black sulfide layer formed on the surface which could not be removed mechanically. The supposed non-catalytic reactions done in the same reactor but after experiments with added sulfur showed higher conversions than comparable experiments done in new reactors. This wall catalytic effect can be reduced by treating the sulfided reactors with hydrochloric acid. The results of this work demonstrate the significant effect of sulfur addition and sulfur-induced residual wall effects on carbon-carbon bond cleavage and hydrogenation of aromatics.

  3. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 2, January 1995--March 1995

    Energy Technology Data Exchange (ETDEWEB)

    Groppo, J.G.; Parekh, B.K.

    1995-05-05

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 to March 31, 1995.

  4. Direct coal liquefaction baseline design and system analysis. Quarterly report, January--March 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The primary objective of the study is to develop a computer model for a base line direct coal liquefaction design based on two stage direct coupled catalytic reactors. This primary objective is to be accomplished by completing the following: a base line design based on previous DOE/PETC results from Wilsonville pilot plant and other engineering evaluations; a cost estimate and economic analysis; a computer model incorporating the above two steps over a wide range of capacities and selected process alternatives; a comprehensive training program for DOE/PETC Staff to understand and use the computer model; a thorough documentation of all underlying assumptions for baseline economics; and a user manual and training material which will facilitate updating of the model in the future.

  5. Direct coal liquefaction baseline design and system analysis. Quarterly report, May--August 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The primary objective of the study is to develop a computer model for a base line direct coal liquefaction design based on two stage direct coupled catalytic reactors. This primary objective is to be accomplished by completing the following: a base line design based on previous DOE/PETC results from Wilsonville pilot plant and other engineering evaluations; a cost estimate and economic analysis; a computer model incorporating the above two steps over a wide range of capacities and selected process alternatives; a comprehensive training program for DOE/PETC Staff to understand and use the computer model; a thorough documentation of all underlying assumptions for baseline economics; and a user manual and training material which will facilitate updating of the model in the future.

  6. AFBC co-firing of coal and hospital waste. Quarterly report, February - April, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, J.M.

    1996-12-31

    The project objective is to design, construct, install provide operator training and start-up a circulating fluidized bed combustion system at the Lebanon Pennsylvania Veteran`s Affairs Medical Center. This unit will co-fire coal and hospital waste providing lower cost steam for heating and possibly cooling (absorption chiller) and operation of a steam turbine-generator for limited power generation while providing efficient destruction of both general and infectious hospital waste. The steam generated is as follows: steam = 20,000 lb/hr; temperature = 353 F (saturated); pressure = 125 psig; and steam quality = {approximately}98.5%. During this reporting period: structural corrections have been made to make the facility meet the required building costs; and refractory bakeout was successfully completed during April 23-25, 1996 over a 54 -hour period. Operating permits will be obtained after construction has been completed.

  7. Engineering development of coal-fired high-performance power systems. Fourth quarterly report, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal fired, combined cycle plant with indirect heating of gas turbine air. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). It is a pulverized fuel fired boiler/air heater where steam and gas turbine air are indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and then a pilot plant with integrated pyrolyzer and char combustion systems will be tested. In this report, progress in the pyrolyzer pilot plant preparation is reported. The results of laboratory and bench scale testing of representative char are also reported. Preliminary results of combustion modeling of the char combustion system are included. There are also discussions of the auxiliary systems that are planned for the char combustion system pilot plant and the status of the integrated system pilot plant.

  8. Utilization of lightweight materials made from coal gasification slags. Quarterly report, March 1995--May 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Integrated-gasification combined-cycle (IGCC) technology is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, this process generates large amounts of solid waste, consisting of vitrified ash (slag) along with some unconverted carbon, which is disposed of as solid waste. In previous projects, Praxis investigated the utilization of {open_quotes}as-generated{close_quotes} slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for {open_quotes}as-generated{close_quotes} slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag could be made into a lightweight material by controlled heating in a kiln at temperatures between 1400 and 1700{degrees}F. These results indicated the potential for using such materials as substitutes for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project, funded by DOE`s Morgantown Energy Technology Center (METC), are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications.

  9. Hindered diffusion of coal liquids. Quarterly report No. 2, December 18, 1992--March 17, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Webster, I.A. [Unocal Corp., Los Angeles, CA (United States)

    1993-06-01

    Throughout the experimental runs we utilize a high pressure, high temperature diffusion cell system. This diffusion system has been tested through the measurement of the diffusivity of a number of model coal liquids. The heart of the experimental system is a high pressure autoclave, which in its interior can accommodate one or several ceramic membranes. One side of these membranes is exposed to the contents of the autoclave, while the other side, through an independent flow system, is exposed to flowing pure solvent. The pressure in the interior and exterior of the membranes can be independently adjusted and controlled. This is also true with the flow rate of the solvent in the interior of the membrane. The diffusion experiments are initiated by placing the coal liquid solution (model liquids or asphaltenes) in the autoclave space exterior of the membrane, pressurizing the exterior and interior membrane volumes and initiating the flow of the solvent. One has the option of running the experiment in a batch (exterior)-continuous (interior) or batch-batch mode. The option also exists for loading catalyst in the exterior volume either in a pellet or slurry form or using metal impregnated membranes for simultaneously studying transport and reaction. Model membrane preparation and characterization will be carried out both at USC at the UNOCAL Science and Technology Division, of UNOCAL Corporation (USTD). UNOCAL, in addition, will contribute technician and machine time on apparatuses, such as Auger and XPS, preparative GPC, SEC, XRF, SEC/ICP, Low Angle Light Scattering Photometer, Electron Microscope, Atomic Adsorption, Porosimeters and BET. The project is of both experimental and theoretical nature and is divided into a number of tasks, a brief description of which.

  10. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, January 1--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1993-12-01

    Process oil samples from HRI Catalytic Two-Stage Liquefaction (CTSL) Bench Unit Run CC-16 (227-76) were analyzed to provide information on process performance. Run CC-16 was operated in December 1992 with Burning Star 2 Mine (Illinois 6 seam) coal to test and validate Akzo EXP-AO-60 Ni/Mo catalyst (1/16 in. extrudate). Results were compared with those of four previous HRI CTSL bench unit runs made with Ni/Mo catalysts. Major conclusions from this work are summarized. (1) Akzo EXP-AO-60 gave process oil characteristics in Run CC-16 similar to those of other Ni/Mo catalysts tested in Runs I-13, I-16, I-17, and I-18 (by our analytical and empirical test methods). No distinct performance advantage for any of the catalysts emerges from the process oil characteristics and plant performance. Thus, for commercial coal liquefaction, a number of equivalent catalysts are available from competitive commercial sources. The similarity of run performance and process oil characteristics indicates consistent performance of HRI`s bench unit operations over a period of several years; (2) Dominant effects on process oil properties in Run CC-16 were catalyst age and higher temperature operation in Periods 10--13 (Condition 2). Properties affected were the aromaticities and phenolic -OH concentrations of most streams and the asphaltene and preasphaltene concentrations of the pressure-filter liquid (PFL) 850{degrees}F{sup +} resid. The trends reflect decreasing hydrogenation and defunctionalization of the process streams with increasing catalyst age. Operation at higher temperature conditions seems to have partially offset the effects of catalyst age.

  11. Molecular catalytic coal liquid conversion. Quarterly progress report, [April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Cheng, C.; Ettinger, M.

    1993-06-30

    This phase of the project essentially consists of preparing organometallic reagents which are known or have been reported to act as homogeneous hydrogenation catalysts of aromatic hydrocarbons and studying their properties as homogeneous hydrogenation catalysts under various conditions with the ultimate objective of using these compounds to catalyze the conversion of coal liquids. With regards to this task, we have prepared two rhodium (I) catalysts. These are the dimer of dichloropentamethylcyclopentadienylrhodium, [RhCl{sub 2}(C{sub 5}Me{sub 5})], and the dimer of chloro(1,5-hexadiene) rhodium. The dimer of dichloropentamethylcyclopentadienylrhodium was prepared by stirring rhodium (III) chloride hydrate with hexamethyldewarbenzene at 65{degrees}C. It was reported to hydrogenate arenes and various substituted arenas such as aryl ethers, esters and ketones at 50{degrees} and 50 atm of dihydrogen. The dimer of chloro (1,5-hexadiene) rhodium was prepared by reacting rhodium (III) chloride hydrate with 1,5-hexadiene at 50{degrees}C for six days in water. Our second task is to investigate the chemistry of base-catalyzed hydrogenation of organic compounds with the ultimate objective of applying the chemistry behind this novel concept to the catalytic conversion of coal liquids. It is not generally known that bases such as the hydroxide ion are capable of activating dihydrogen to form ``solvated hydride`` or hydride-like species which can effect hydrogenation reactions under the appropriate conditions. Research during the first half of this century has amply demonstrated the feasibility of this concept. More recently, Klingler, Krause and Rathke studied the role of this kind of chemistry in the water-gas shift reaction. So far, only Walling and Bollyky have been the only investigators to have applied dihydrogen activation by bases to the hydrogenation of organic compounds.

  12. Materials technology for coal-conversion processes. Sixteenth quarterly report, October--December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, W A

    1978-01-01

    Refractories for slag containment, nondestructive evaluation methods, corrosion, erosion, and component failures were studied. Analysis of coal slags reveal ferritic contents of 18 to 61%, suggesting a partial pressure of 0/sub 2/ in the slagging zone of approx. 10/sup -2/ to 10/sup -4/ Pa. A second field test of the high-temperature ultrasonic erosion-monitoring system was completed. Ultrasonic inspecton of the HYGAS cyclone separator shows a reduced erosive-wear rate at 5000 h in the stellite region. The acoustic leak-detection system for valves was field tested using a 150-mm-dia. valve with a range of pressures from 0.34 to 4.05 MPa. Results suggest a linear relation between detected rms levels and leak rates. Studies on acoustic emissions from refractory concrete continued with further development of a real-time data acquisition system. Corrosion studies were conducted on Incoloy 800, Type 310 stainless steel, Inconel 671 and U.S. Steel Alloy 18-18-2 (as-received, thermally aged, and preexposed for 3.6 Ms to multicomponent gas mixtures). Results suggest a decrease in ultimate tensile strength and flow stress after preexposure. Examination of commercial iron- and nickel-base alloys after 100-h exposures in atmospheric-pressure fluidized-bed combustors suggests that the addition of 0.3 mole % CaCl/sub 2/ to the fluidized bed has no effect on the corrosion behavior of these materials; however, 0.5 mole % NaCl increased the corrosion rate of all materials. Failure-analysis activities included (1) the design and assembly of thermowells (Haynes Alloy 188 and slurry-coated Type 310 stainless steel) and (2) examination of components from the Synthane boiler explosion, the IGT Steam--Iron Pilot Plant, the HYGAS Ash Agglomerating Gasifier, and the Westinghouse Coal Gasification PDU.

  13. Comparison of two modified coal ash ferric-carbon micro-electrolysis ceramic media for pretreatment of tetracycline wastewater.

    Science.gov (United States)

    Yang, Kunlun; Jin, Yang; Yue, Qinyan; Zhao, Pin; Gao, Yuan; Wu, Suqing; Gao, Baoyu

    2017-05-01

    Application of modified sintering ferric-carbon ceramics (SFC) and sintering-free ferric-carbon ceramics (SFFC) based on coal ash and scrap iron for pretreatment of tetracycline (TET) wastewater was investigated in this article. Physical property, morphological character, toxic metal leaching content, and crystal component were studied to explore the application possibility of novel ceramics in micro-electrolysis reactors. The influences of operating conditions including influent pH, hydraulic retention time (HRT), and air-water ratio (A/W) on the removal of tetracycline were studied. The results showed that SFC and SFFC were suitable for application in micro-electrolysis reactors. The optimum conditions of SFC reactor were pH of 3, HRT of 7 h, and A/W of 10. For SFFC reactor, the optimum conditions were pH of 2, HRT of 7 h, and A/W of 15. In general, the TET removal efficiency of SFC reactor was better than that of SFFC reactor. However, the harden resistance of SFFC was better than that of SFC. Furthermore, the biodegradability of TET wastewater was improved greatly after micro-electrolysis pretreatment for both SFC and SFFC reactors.

  14. Molecular biological enhancement of coal biodesulfurization: Second quarter report, January--April 1989

    Energy Technology Data Exchange (ETDEWEB)

    Bielaga, B.; Kilbane, J. J.

    1989-04-01

    The work planned for this quarter included the isolation of pure bacterial cultures capable of desulfurizing organic substrates and the genetic study of those cultures through the isolation and analysis of mutations. All aspects of the project are proceeding well and are either on or ahead of schedule. Two pure cultures of bacteria, that are each capable of utilizing dibenzothiophene (DBT) as their sole source of sulfur, were isolated from the mixed culture IGTS7. These cultures have been identified as Rhodococcus rhodochrous and Bacillus sphaericus species and have been designated IGTS8 and IGTS9, respectively. The examination of all of these cultures confirmed the identities of IGTS8 and IGTS9 as Rhodococcus rhodochrous and Bacillus sphaericus, respectively, and revealed that IGTS8 and IGTS9 are apparently unique in their ability to utilize organically-bound sulfur. The metabolites of DBT produced by IGTS8 were analyzed by gas chromatography/mass spectroscopy. Genetic studies of IGTS8 have begun. Mutants resistant to high levels of three different antibiotics, and combinations of antibiotics have been obtained. Resistance to antibiotics is a selectable genetic trait that will help to unequivocally identify this particular strain of bacteria and will be used in future genetic experiments. Chemical mutagenesis and ultra violet light mutagenesis procedures are being optimized. 2 figs., 8 tabs.

  15. Cooperative research program in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. (ed.)

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  16. Cooperative research program in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. (ed.)

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  17. Coal cinder filtration as pretreatment with biological processes to treat pharmaceutical wastewater.

    Science.gov (United States)

    Zheng, Wei; Li, Xiao-ming; Hao, Zhi-ming; Wang, Dong-bo; Yang, Qi; Zeng, Guang-ming

    2010-01-01

    This study aims at coupling coal cinder filter with biological process to improve pharmaceutical wastewater quality and reduce the disposal cost. In the coal cinder filter, the removal efficiencies of COD, BOD(5), SS and color were 90+/-2%, 72+/-2%, 95+/-2% and 80+/-2%, respectively. The results attribute to the big specific surface area and strong adsorption ability. Coal cinder filter removes a large portion of the pollutants in the influent wastewater, which would strongly stable the effluent waste water quality, and reduce the load of follow-up biological treatment process. The average removal efficiencies for COD, BOD(5), SS and color of the combined process were about 99.7+/-3%, 98.2+/-4%, 98.5+/-3% and 96.3+/-2%, respectively, with the average effluent quality of COD 16+/-1 mg/L, BOD(5) 11+/-1 mg/L, SS 10+/-0.6 mg/L and color 22+/-1 (multiple), which are consistent with the national requirements of the waste pollutants for pharmaceutical industry of chinese traditional medicine discharge standard (GB 21906-2008). The results indicated that the combined procedure could offer an attractive solution for pharmaceutical wastewater treatment with considerable low cost.

  18. MHD Coal Fired Flow Facility. Quarterly technical progress report, July-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Altstatt, M. C.; Attig, R. C.; Brosnan, D. A.

    1980-11-01

    Significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Energy Conversion Facility (ECF) are described. On Task 1, the first phase of the downstream quench system was completed. On Task 2, all three combustor sections were completed, hydrotested, ASME code stamped, and delivered to UTSI. The nozzle was also delivered. Fabrication of support stands and cooling water manifolds for the combustor and vitiation heater were completed, heat transfer and thermal stress analysis, along with design development, were conducted on the generator and radiant furnace and secondary combustor installation progressed as planned. Under Task 3 an Elemental Analyzer and Atomic Absorption Spectrophotometer/Graphite Furnace were received and installed, sites were prepared for two air monitoring stations, phytoplankton analysis began, and foliage and soil sampling was conducted using all study plots. Some 288 soil samples were combined to make 72 samples which were analyzed. Also, approval was granted to dispose of MHD flyash and slag at the Franklin County landfill. Task 4 effort consisted of completing all component test plans, and establishing the capability of displaying experimental data in graphical format. Under Task 7, a preliminary testing program for critical monitoring of the local current and voltage non-uniformities in the generator electrodes was outlined, electrode metal wear characteristics were documented, boron nitride/refrasil composite interelectrode sealing was improved, and several refractories for downstream MHD applications were evaluated with promising results.

  19. Exxon catalytic coal-gasification process development program. Quarterly technical progress report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Euker, Jr, C. A.

    1980-03-01

    Work continued on the catalyst recovery screening studies to evaluate the economic impacts of alternative processing approaches and solid-liquid separation techniques. Equipment specifications have been completed for two cases with countercurrent water washing using rotary-drum filters for the solid-liquid separations. Material and energy balances have been completed for an alternative methane recovery process configuration using low pressure stripping which requires 26% less horsepower than the Study Design system. A study has been initiated to identify trace components which might be present in the CCG gas loop and to assess their potential impacts on the CCG process. This information will be used to assist in planning an appropriate series of analyses for the PDU gasifier effluent. A study has been initiated to evaluate the use of a small conventional steam reformer operating in parallel with a preheat furnace for heat input to the catalytic gasifier which avoids the potential problem of carbon laydown. Preliminary replies from ten manufacturers are being evaluated as part of a study to determine the types and performance of coal crushing equipment appropriate for commercial CCG plants. A material and energy balance computer model for the CCG reactor system has been completed. The new model will provide accurate, consistent and cost-efficient material and energy balances for the extensive laboratory guidance and process definition studies planned under the current program. Other activities are described briefly.

  20. Advanced liquefaction using coal swelling and catalyst dispersion techniques

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. (Auburn Univ., AL (United States)); Gutterman, C. (Foster Wheeler Development Corp., Livingston, NJ (United States)); Chander, S. (Pennsylvania State Univ., University Park, PA (United States))

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  1. 煤层气发电厂预处理系统及控制%Coal-bed Methane Power Plant Pretreatment System and Control

    Institute of Scientific and Technical Information of China (English)

    赵德悦

    2015-01-01

    主要介绍煤层气发电流程中的气体预处理系统及其控制系统 ,包括预处理系统的作业流程、主要设备功能、控制系统、技术参数等 ,并对其进行了详细分析和讨论.%This paper mainly introduces a gas pretreatment process of coal-bed methane power generation system and its control sys-tem ,including the pretreatment system's working process ,main equipment ,control system and technical parameters ,etc .

  2. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 17, August 1, 1992--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The construction of the DOE POC at the OCDO facility continued through this entire quarter. By the end of the quarter approximately 90% of all of the construction had been completed. All equipment has beeninstalled, checked for mechanical and installation and operated from a local pushbutton. During this quarter a review of items to be completed for start-up was compiled. This information was then presented to the construction subcontractors and agreement was concluded that all items will be completed and operational for processing coal by February 1, 1993. There are still several items that were not on site for installation during this quarter. These items are the flocculant controls supplied by Westec Engineering, Inc., and the discharge valve for the hyperbaric filter supplied by KHD. Neither of these items will prevent start-up. The flocculants can be manually controlled and provisions are all ready provided to bypass the hyperbaric filter to the Sharpels high-G centrifuge. Both of these items are scheduled for delivery in mid-January.

  3. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, November 1994--February 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This second quarterly report describes work during the second three months of the University of Pittsburgh`s (Pitt`s) project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with Pitt on this project are Dravo Lime Company (DLC), Mill Service, Inc. (MSI) and the Center for Hazardous Materials Research (CHMR). The report describes the activities of the project team during the reporting period. The principal work has focussed upon the acquisition of by-product samples and their initial analysis. Other efforts during the second quarter have been directed toward identifying the first hazardous waste samples and preparing for their treatment and analysis. Relatively little data has yet been collected. Major presentation of technical details and data will appear for the first time in the third quarterly report. The activity on the project during the second quarter of Phase One, as presented in the following sections, has fallen into seven areas: (1) Acquiring by-products, (2) Analyzing by-products, (3) Identifying, analyzing and treating suitable hazardous wastes, (4) Carrying out the quality assurance/quality control program, (5) Developing background, and (6) Initiating public relations

  4. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, April 1983-June 1983

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, Jr., G. A.

    1983-01-01

    Progress reports are presented for the following tasks: (1) gasification wastewater treatment and reuse; (2) fine coal cleaning; (3) coal-water slurry preparation; (4) low-rank coal liquefaction; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization; (8) combustion research and ash fowling; (9) fluidized-bed combustion of low-rank coals; (10) ash and slag characterization; (11) organic structure of coal; (12) distribution of inorganics in low-rank coals; (13) physical properties and moisture of low-rank coals; (14) supercritical solvent extraction; and (15) pyrolysis and devolatilization.

  5. Effects of surface chemistry on the porous structure of coal. Quarterly technical progress report, October 1996--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.A.; Hatcher, P.G.; Radovic, L.R.

    1997-01-01

    Selective presaturation and saturation transfer {sup 129}Xe NMR experiments were performed on a high volatile C bituminous coal and an anthracite. The experiments detect the movement of xenon atoms among different regions of the internal surface, and to the external surface of the coal particles. The results indicate that adsorbed xenon atoms can move to the external surface of the bituminous coal significantly faster than in the anthracite. The results are interpreted in terms of the porous structure of the coals.

  6. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

  7. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Speight, J.G.

    1992-12-31

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  8. Influence of phenol on ammonia removal in an intermittent aeration bioreactor treating biologically pretreated coal gasification wastewater.

    Science.gov (United States)

    Xu, Chunyan; Han, Hongjun; Jia, Shengyong; Zhao, Qian

    2016-05-01

    A laboratory-scale intermittent aeration bioreactor was investigated to treat biologically pretreated coal gasification wastewater that was mainly composed of NH3-N and phenol. The results showed that increasing phenol loading had an adverse effect on NH3-N removal; the concentration in effluent at phenol loading of 40mgphenol/(L·day) was 7.3mg/L, 36.3% of that at 200mg phenol/(L·day). The enzyme ammonia monooxygenase showed more sensitivity than hydroxylamine oxidoreductase to the inhibitory effect of phenol, with 32.2% and 10.5% activity inhibition, respectively at 200mg phenol/(L·day). Owing to intermittent aeration conditions, nitritation-type nitrification and simultaneous nitrification and denitrification (SND) were observed, giving a maximum SND efficiency of 30.5%. Additionally, ammonia oxidizing bacteria (AOB) and denitrifying bacteria were the main group identified by fluorescent in situ hybridization. However, their relative abundance represented opposite variations as phenol loading increased, ranging from 30.1% to 17.5% and 7.6% to 18.2% for AOB and denitrifying bacteria, respectively.

  9. Hard to Have Warm Spring with Flower Blooming for Coal Market at First Quarter of 2012%2012年一季度煤炭市场难现春暖花开

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The paper reviewed the operation conditions of Chinese coal market in 2011 and summarized the supply and demand features of the coal market in 2011. The paper had an analysis on the operation conditions of the coal market at first quarter of 2012 and had a prediction on the operation tendency of the steam coal market at first quarter of 2012.%文章回顾了2011年我国煤炭市场运行情况,总结了2011年煤炭市场供需特点,对2012年1月份煤炭市场运行情况进行了重点分析,并对2012年一季度动力煤运行趋势做了预测。

  10. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, July--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States)

    1992-12-31

    The experimental study of coal swelling ratios have been determined with a wide variety of solvents. Only marginal levels of coal swelling were observed for the hydrocarbon solvents, but high levels were found with solvents having heteroatom functionality. Blends were superior to pure solvents. The activity of various catalyst precursors for pyrene hydrogenation and coal conversion was measured. Higher coal conversions were observed for the S0{sub 2}-treated coal than the raw coal, regardless of catalyst type. Coal conversions were highest for Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively. Bottoms processing consists of a combination of the ASCOT process coupling solvent deasphalting with delayed coking. Initial results indicate that a blend of butane and pentane used near the critical temperature of butane is the best solvent blend for producing a yield/temperature relationship of proper sensitivity and yet retaining an asphalt phase of reasonable viscosity. The literature concerning coal swelling, both alone and in combination with coal liquefaction, and the use of dispersed or unsupported catalysts in coal liquefaction has been updated.

  11. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 1, September 21, 1989--December 20, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    In this project we well evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated. (VC)

  12. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, May 1995--August 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This fourth quarterly report describes work done during the fourth three-month period of the University of Pittsburgh`s project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quote} Participating with the university on this project are Dravo Lime Company, Mill Service, Inc., and the Center for Hazardous Materials Research. This report describes the activities of the project team during the reporting period. The principal work has focussed upon the production of six sets of samples with high water content for solidification testing and the mixing of five dry samples for solidification testing by the Proctor method. Twenty-eight day compressive strengths are reported for five of the six sets of samples with high water content. The report also discusses completion of the format of the database and the inclusion in it of all data collected to date. Special reports presented during the quarter include the Continuation Application, a News Release, and modification to the Test Plan. Work is progressing on the NEPA report and the Topical Report. The activity on the project during the fourth quarter of Phase one, as presented in the following sections, has fallen into six major areas: (1) Completion of by-product evaluations, (2) Completion of analyses of six wastes, (3) Initiation of eleven solidification tests, (4) Continued extraction and extract analysis of solidified samples, (5) Development of the database, and (6) Production of reports.

  13. Large scale solubilization of coal and bioconversion to utilizable energy. Quarterly report, October 1--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, N.C.

    1996-12-22

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the author plans to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. He also plans to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  14. Large scale solubilization of coal and bioconversion to utilizable energy. Fifth quarterly technical report, January 1, 1995--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, N.C.

    1995-12-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  15. Coal combustion science: Task 1, Coal char combustion: Task 2, Fate of mineral matter. Quarterly progress report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.; Hurt, R.H.; Davis, K.A.; Baxter, L.L.

    1994-07-01

    Progress reports are presented for the following tasks: (1) kinetics and mechanisms of pulverized coal char combustion and (2) fate of inorganic material during coal combustion. The objective of Task 1 is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. In Sandia`s Coal Combustion Laboratory (CCL), optical techniques are used to obtain high-resolution images of individual burning coal char particles and to measure, in situ, their temperatures, sizes, and velocities. Detailed models of combustion transport processes are then used to determine kinetic parameters describing the combustion behavior as a function of coal type and combustion environment. Partially reacted char particles are also sampled and characterized with advanced materials diagnostics to understand the critical physical and chemical transformations that influence reaction rates and burnout times. The ultimate goal of the task is the establishment of a data base of the high temperature reactivities of chars from strategic US coals, from which important trends may be identified and predictive capabilities developed. The overall objectives for task 2 are: (1) to complete experimental and theoretical investigation of ash release mechanisms; (2) to complete experimental work on char fragmentation; (3) to establish the extent of coal (as opposed to char) fragmentation as a function of coal type and particle size; (4) to develop diagnostic capabilities for in situ, real-time, qualitative indications of surface species composition during ash deposition, with work continuing into FY94; (5) to develop diagnostic capabilities for in situ, real-time qualitative detection of inorganic vapor concentrations; and (6) to conduct a literature survey on the current state of understanding of ash deposition, with work continuing into FY94.

  16. 煤气废水酸化破乳预处理功效探讨%Pretreatment of Coal Gasification Wastewater by Acidification Demulsion

    Institute of Scientific and Technical Information of China (English)

    张文启; 马军; 杨世东; 张涛; 李永峰

    2006-01-01

    General pretreatment processes of ammonia stripping and phenols solvent extraction can reduce the concentration of toxic compounds of the coal gasification wastewater for the following biological treatment. However, some emulsified coal tar still exists in the influent and many substances in coal tar are refractory and toxic to microorganisms. This study is mainly on the removal of emulsified coal tar by acidification demulsion. The experimental results show that the acidification process of the wastewater by pure hydrochloric acid can reduce the chemical oxygen demand (COD), total organic carbon (TOC), total phenolics and oil about 3.1%-11.3%, 6%10.8%, 5.3%-8.6% and 25.2%-57.4% respectively with pH value in the range of 4 to 7. The analysis of molecular weight distribution indicates that compounds removed from the wastewater by this process are large molecular substances. The experiment also shows that the efficiency of COD removal in the demulsion process by different acids is different and the phosphoric acid is prominent. The preserved time of the wastewater also affects the efficiency of demulsion. Small amount low-cost solid additives including kaolin and diatomite can improve the rate of coal tar sedimentation and enhance the removal efficiency of organics in the phosphoric acidification process.

  17. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Third quarterly technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. Baseline, AOFA, LNB, and LNB plus AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO{sub x} emission levels to be approximately 0.65 lb/MBtu with fly ash LOI values of approximately 8 percent. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. For comparison, the long-term full-load, baseline NO{sub x} emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing in the LNB+AOFA configuration indicate that at full-load, NO{sub x} emissions and fly ash LOI are near 0.40 lb/MBtu and 8 percent, respectively. However, it is believed that a substantial portion of the incremental change in NO{sub x} emissions between the LNB and LNB+AOFA configurations is the result of additional burner tuning and other operational adjustments and is not the result of the AOFA system. During this quarter, LNB+AOFA testing was concluded. Testing performed during this quarter included long-term and verification testing in the LNB+AOFA configuration.

  18. A fine coal circuitry study using column flotation and gravity separation. Quarterly report, 1 March 1995--31 May 1995

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q. [Southern Illinois Univ., Carbondale, IL (United States); Reed, S. [Kerr-McGee Coal Corp., Oklahoma City, OK (United States)

    1995-12-31

    Column flotation provides excellent recovery of ultrafine coal while producing low ash content concentrates. However, column flotation is not efficient for treating fine coal containing significant amounts of mixed-phase particles. Fortunately, enhanced gravity separation has proved to have the ability to treat the mixed-phased particles more effectively. A disadvantage of gravity separation is that ultrafine clay particles are not easily rejected. Thus, a combination of these two technologies may provide a circuit that maximizes both the ash and sulfur rejection that can be achieved by physical coal cleaning while maintaining a high energy recovery. This project is studying the potential of using different combinations of gravity separators, i.e., a Floatex hydrosizer and a Falcon Concentrator, and a proven flotation column, which will be selected based on previous studies by the principle investigator. During this reporting period, an extensive separation performance comparison between a pilot-scale Floatex Density Separator (18{times}18-inch) and an existing spiral circuit has been conducted at Kerf-McGee Coal Preparation plan for the treatment of nominally {minus}16 mesh coal. The results indicate that the Floatex is a more efficient separation device (E{sub p}=0.12) than a conventional coal spiral (E{sub p}=0.18) for Illinois seam coals. In addition, the treatment of {minus}100 mesh Illinois No. 5 fine coal from the same plant using Falcon concentrator, column flotation (Packed-Column) and their different combinations was also evaluated. For a single operation, both Falcon concentrator and column flotation can produce a clean coal product with 90% combustible recovery and 5% ash content. In the case of the combined circuit, column flotation followed by the Falcon achieved a higher combustible recovery value (about 75%) than that obtained by the individual units while maintaining an ash content less than 3%.

  19. Gasification in pulverized coal flames. Second quarterly progress report, October--December 1975. [Contains literature survey on vortex gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Lenzer, R. C.; George, P. E.; Laurendeau, N. M.

    1976-01-01

    This project is concerned with the production of power and synthesis gases from pulverized coal via suspension gasification. A literature review concerning the vortex type gasifier has been completed and a survey concerning the confined jet gasifier is underway. Preliminary design of the vortex gasifier is nearing completion. Test cell and coal handling facilities are in the final stages of design and coal handling equipment has been received. A mass spectrometer has been ordered and a preliminary survey of high-temperature probes is complete.

  20. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 9, October 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C. [AMAX Research and Development Center, Golden, CO (United States)

    1995-01-25

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 ton lots of each of three project coals, by each process. The project began in October, 1992 and is scheduled for completion by March, 1997. During Quarter 9 (October--December, 1995), parametric and optimization testing was completed for the Taggart, Sunnyside, and Indiana VII coal using a 12-inch Microcel{trademark} flotation column. The detailed design of the 2-t/hr PDU grinding, flotation, and dewatering circuits neared completion with the specification of the major pieces of capital equipment to be purchased for these areas. Selective agglomeration test work investigated the properties of various industrial grades of heptane for use during bench- and PDU-scale testing. It was decided to use a hydrotreated grade of commercial heptane due to its low cost and low concentration of aromatic compounds. The final Subtask 6.4 CWF Formulation Studies Test Plan was issued. A draft version of the Subtask 6.5 Preliminary Design and Test Plan Report was also issued, discussing the progress made in the design of the bench-scale selective agglomeration unit. PDU construction work moved forward through the issuing of 26 request for quotations and 21 award packages for capital equipment.

  1. A novel coal feeder for production of low sulfur fuel. Quarterly technical progress report, December 1, 1989--April 1, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Keener, T.C.; Khang, S.J.; Yu, X.L.

    1990-12-31

    A novel coal feeding system is currently undergoing testing and evaluation at the University of Cincinnati. The system consists primarily of an auger feed tube which is used to both convey and provide desulfurization of a high sulfur coal feedstock. The coal is conveyed at temperatures ranging from 350 to 550 {degrees}C and under normal atmospheric pressure. Under these mild processing conditions, the coal partially pyrolizes and emits sulfur in the form of hydrogen sulfide while maintaining a relatively high heating value in the char product. The evolved gases are evacuated from the reactor (the feed tube) to another absorbing bed where H{sub 2}S reacts with the sorbent, usually lime or limestone. The resultant sorbent utilization is substantially higher than the values found in current dry scrubbing system and the produced low-sulfur char may then be used in a conventional steam boiler.

  2. Coal log pipeline research at the University of Missouri. [Quarterly report No. 6, November 26, 1991--February 25, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.

    1992-03-01

    Project tasks: Perform the necessary testing and development to demonstrate that the amount of binder in coal logs can be reduced to 8% or lower to produce logs with adequate strength to eliminate breakage during pipeline transportation, under conditions experienced in long distance pipeline systems. Prior to conducting any testing and demonstration, grantee shall perform an information search and make full determination of all previous attempts to extrude or briquette coal, upon which the testing and demonstration shall be based. Perform the necessary development to demonstrate a small model of the most promising injection system for coal-logs, and test the logs produced from Task 1. Conduct economic analysis of coal-log pipeline, based upon the work to date. Refine and complete the economic model. Prepare a final report for DOE.

  3. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 2, December 21, 1989--March 20, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  4. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 8, June 21, 1991--September 20, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will also be investigated.

  5. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 7, March 21, 1991--June 20, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  6. Novel carbons from Illinois coal for natural gas storage. Quarterly report, 1 December 1994--28 February 1995

    Energy Technology Data Exchange (ETDEWEB)

    Rostam-Abadi, M.; Sun, Jian; Lizzio, A.A. [Illinois State Geological Survey, Urbana, IL (United States); Fatemi, M. [Sperry Univac, St. Paul, MN (United States)

    1995-12-31

    The goal of this project is to develop a technology for producing microengineered adsorbent carbons from Illinois coal and to evaluate the potential application of these novel materials for storing natural gas for use in emerging low pressure, natural gas vehicles (NGV). The focus of the project is to design and engineer adsorbents that meet or exceed the performance and cost targets established for low-pressure natural gas storage materials. Potentially, about two million tons of adsorbent could be consumed in natural gas vehicles by year 2000. If successful, the results obtained in this project could lead to the use of Illinois coal in a sowing and profitable market that could exceed 6 million tons per year. During this reporting period, a series of experiments were made to evaluate the effect of coal pre-oxidation, coal pyrolysis, and char activation on the surface area development and methane adsorption capacity of activated carbons/chars made from IBC-102. The optimum production conditions were determined to be: coal oxidation in air at 225C, oxicoal (oxidized coal); devolatilization in nitrogen at 400C; and char gasification in 50% steam in nitrogen at 850C. Nitrogen BET surface areas of the carbon products ranged from 800--1100 m{sup 2}/g. Methane adsorption capacity of several Illinois coal derived chars and a 883 m{sup 2}/g commercial activated carbon were measured using a pressurized thermogaravimetric analyzer at pressures up to 500 psig. Methane adsorption capacity (g/g) of the chars were comparable to that of the commercial activated carbon manufactured by Calgon Carbon. It was determined that the pre-oxidation is a key processing step for producing activated char/carbon with high surface area and high methane adsorption capacity. The results to date are encouraging and warrant further research and development in tailored activated char from Illinois coal for natural gas storage.

  7. Coal log pipeline research at the University of Missouri. 4th Quarterly report, October 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.

    1994-05-01

    This paper is a progress report on a research project aimed at the development of coal log technology. Efforts have been directed at the development of technology for the fabrication of stable coal logs, as well as the energy efficient transport of these logs, in particular by pipelines. Work has been directed at new types of binders, new fabrication presses, the application of polymers to reduce transport losses, and modeling efforts.

  8. Permeability changes in coal resulting from gas desorption. Second quarterly report, November 15, 1989--February 15, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Tsay, F.

    1990-12-31

    Measurement of sorption capacity of coals by microbalance in a high pressure environment requires that corrections be made for the buoyancy of the gas that is displaced by the solid coal. As the pressure increases, the gas density increases, requiring that a correction factor be applied to the weight of the sample as measured by microbalance. A brief report summarizing this correction is attached as Appendix A.

  9. Large scale solubilization of coal and bioconversion to utilizable energy. Quarterly report, October 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, N.C.

    1995-12-31

    The ability of Neurospora to solubilize and bioconvert coal was investigated. The coal solubilizing activity (CSA) was fractionated to isolate the enzyme responsible for this activity. The enzyme was purified in order to obtain the amino acid sequence. From that sequence potential oligonucleotide probes were synthesized and used to screen genomic library of Neurospora. The gene so identified was isolated. CSA appears to be an phenol oxidase or is tyrosinase.

  10. In-plant testing of a novel coal cleaning circuit using advanced technologies, Quarterly report, March 1 - May 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q. [Southern Illinois Univ., Carbondale, IL (United States); Reed, S.; Mohanty, M.K. [Kerr-McGee Coal Corp., Oklahoma City, OK (United States)

    1996-12-31

    Research conducted at Southern Illinois University at Carbondale over the past two years has identified highly efficient methods for treating fine coal (i.e., -28 mesh). In this study, a circuit comprised of the three advanced fine coal cleaning technologies is being tested in an operating preparation plant to evaluate circuit performance and to compare the performance with the current technologies used to treat -16 mesh fine coal. The circuit integrated a Floatex hydrosizer, a Falcon concentrator and a Jameson froth flotation cell. The Floatex hydrosizer is being used as a primary cleaner for the nominally -16 mesh Illinois No. 5 fine coal circuit feed. The overflow of the Floatex is screened at 48 mesh using a Sizetec vibratory screen to produce a clean coal product from the screen overflow. The screen overflow is further treated by the Falcon and Jameson Cell. During this reporting period, tests were initiated on the fine coal circuit installed at the Kerr-McGee Galatia preparation plant. The circuit was found to reduce both the ash content and the pyritic sulfur content. Additional in-plant circuitry tests are ongoing.

  11. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 12, June 21, 1992--September 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-12-31

    In this project we intend to study a novel process concept, i.e.,the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we wig evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  12. High temperature ceramic membrane reactors for coal liquid upgrading. Quarter report No. 9, September 21, 1991--December 20, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-07-01

    In this project we intend to study a novel process concept, i.e, the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  13. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report number 12, July 1--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    Both plug-flow microreactor systems at WVU are now functioning. Screening runs on these systems were started using carbide and nitride catalysts first, to avoid any question of contamination of the system with sulfur. The carbide and nitride catalysts are characterized by high activity but low selectivity towards alcohols. The Chevrel-phase catalysts tested have much lower activities but may be more selective to alcohols. Catalyst synthesis procedures are attempting to offset this tendency, and also to characterize and prepare sulfide catalyst by other approaches. At UCC and P, test runs on the reactor system have commenced. Higher alcohols up to butanol were observed and identified at high temperatures. Modeling studies have concentrated on the catalytic membrane reactor. The topical report, originally submitted last quarter, was revised after some errors were found. This report includes the design and economics for the seven cases discussed in previous quarterly reports. In the topical report, it is shown that a judicious choice of coal:natural gas feed ratio to the alcohol synthesis process allows the Shell Gasifier to be nearly competitive with natural gas priced at of $3.00/MMBtu. The advantage of the Shell Gasifier over the Texaco Gasifier is that the former produces a syngas with a lower H{sub 2}:CO ratio. When the feed to the process is coal only, there is no difference in the projected economics that would favor one gasifier over the other. The potential of co-generation of electric power with high alcohol fuel additives has been investigated. Preliminary results have revealed that a once-through alcohol synthesis process with minimal gas clean-up may provide an attractive alternative to current designs given the prevailing economic status of IGCC units.

  14. Innovative Clean Coal Technology (ICCT). Technical progress report, second & third quarters, 1993, April 1993--June 1993, July 1993--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by constructing and operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  15. Underground gasification for steeply dipping coal beds: Phase III. Quarterly progress report, April 1-June 30, 1981. [Rawlins Test 2

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    Preparations are being made for the August start-up of Rawlins Test 2. Site construction activities began May 4 with the mobilization of the construction subcontractor. The drilling program was completed this quarter with the installation of instrumentation wells. The Experimental Basis Document, PGA Operating Manual, and DAS Operating Manual have also been completed.

  16. Superacid Catalyzed Coal Conversion Chemistry. 1st and 2nd Quarterly Technical Progress Reports, September 1, 1983-March 30, 1984.

    Science.gov (United States)

    Olah, G. A.

    1984-01-01

    In our laboratories we have previously developed a mild coal conversion process. This involves the use of a superacid system consisting of HF and BF{sub 3} in presence of hydrogen and/or a hydrogen donor solvent. In order to understand the chemistry involved in the process of depolymerization of coal by the HF:BF{sub 3}:H{sub 2} system we are carrying out a systematic study of a number of coal model compounds. The model compounds selected for present study have two benzene rings connected with various bridging units such as alkylidene, ether, sulfide etc. From studies so far carried out it appears that high pyridine extractibilities achieved by treating coal at temperature below 100 degrees C results from the cleavage of bridges such as present in bibenzyl, diphenyl methane, dibenzyl ether, dibenzyl sulfide etc. On the other hand the increased cyclohexane extractibility and distillability observed at relatively higher temperatures and hydrogen pressures reflects the hydrogenation and cleavage of the aromatic backbone in coal structure similar to what is seen in the conversion of model compounds such as biphenyl, diphenyl ether, diphenyl sulfide, anthracene, etc.

  17. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 11, March 21, 1992--June 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-12-31

    Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. Having the inherent capability for combining reaction and separation in a single step, they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, such as these typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. This project will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. Development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  18. Systems studies of coal conversion processes using a reference simulator. Quarterly progress report, June 13--September 12, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, G.V.; Woods, J.M.

    1976-09-27

    This project has two principal objectives. The first is to construct a modular computer simulation/design package for coal conversion systems. The second is to use this package to study in a programmatic fashion an array of coal conversion flowsheet alternatives. The computerized package is to be based on bench- and large-scale pilot plant data developed by other organizations under ERDA contracts. It is to have sufficient flexibility to permit the user to incorporate process alternatives and engineering design modifications and is to have the capability for detailed cost estimation and economic evaluation. The Illinois Coal Gasification Group Demonstration Plant based on COED and COGAS development work is the first conversion process to be investigated with the simulation package. Other variations to this flowsheet, which retain the COGAS and COED primary conversion sections will be investigated, as well as several alternatives involving other primary conversion technologies currently under development for ERDA.

  19. Systems studies of coal conversion processes using a reference simulator. Quarterly report, July 1, 1977--September 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, G.V.; Sood, M.K.; Raghavan, S.; Overturf, B.W.; Fazzoni, G.F.; Ford, J.R.

    1977-11-01

    The objectives of this study are to develop a conceptual flowsheet of a coal conversion plant which will process Illinois No. 6 coal and will employ the basic processing sequence proposed by the Illinois Coal Gasification Group. The conceptual flowsheet differs from the ICGG proposal in that proprietary or otherwise ill-defined processing steps are replaced with units whose operating data is adequately reported in the open literature and for which satisfactory design models can be formulated. The purpose for formulating this flowsheet is to define a base case conceptual process which will be modelled using both the steady state process simulation package being developed for DOE/FE under our current contract as well as the dynamic simulation library being developed by Lehigh University under a separate contract. Key elements in the process are described.

  20. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-25

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

  1. Evaluation of hyperbaric filtration for fine coal dewatering. Fourth quarterly technical progress report: June 1, 1993--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, B.K. [Univ. of Kentucky, Lexington, KY (United States); Hogg, R. [Pennsylvania State Univ., University Park, PA (United States); Fonseca, A. [CONSOL Inc., Library, PA (United States)

    1993-12-31

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases, Model Development, Laboratory Studies, and Field Testing. The Pennsylvania State University is leading efforts in Phase 1, the University of Kentucky in Phase 2, and Consol Inc. in Phase 3 of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in phase 1 and 2 will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit.

  2. Low-rank coal research annual report, July 1, 1989--June 30, 1990 including quarterly report, April--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    Research programs in the following areas are presented: control technology and coal preparation; advance research and technology development; combustion; liquefaction; and gasification. Sixteen projects are included. Selected items have been processed separately for inclusion in the Energy Science and Technology Database.

  3. Graphic values for some organic constitutents of beneficiated coal samples. [Quarterly] report, December 1, 1991--February 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kohlenberger, L.B. [Illinois State Geological Survey, Champaign, IL (United States)

    1992-08-01

    Graphic techniques exist which can accurately predict values for calorific value, organic sulfur, and possibly other constituents of the organic portion of beneficiated coal sample fractions. These techniques also permit a determination of coal rank to be made without the use of the approximations required in the standard procedure. Fractions of IBC-101 with varying ash contents were produced by froth flotation. The various fractions were analyzed by the coal analysis laboratory and the particular data type was plotted in each case vs. the individual ash content of each fraction, using Lotus 123 and Freelace software packages. Such plots for calorific value and organic sulfur have, so far, been made. These curves and the information they contain are discussed in this report. A comparison of the graphic mineral matter value with the usual one calculated from the Parr approximation has been made. Eventually, the data may lead to an effective way to estimate inorganic carbon, hydrogen, nitrogen, and other organic constitents of coal. All data will be made available to researchers.

  4. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 10, December 21, 1991--March 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-07-01

    In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL`s contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

  5. Large scale solubilization of coal and bioconversion to utilizable energy. Quarterly report, July 1, 1996--September 30 1996

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, N.C.

    1996-12-31

    A purification of the Neurospora protein with coal solubilization activity (CSA) using DEAE cellulose chromatography is described. The protein is heavily glycosylated suggesting that it is different than tyrosinase or common phenol oxidases even though it resembles these proteins in enzyme activity and molecular weight.

  6. Systems studies of coal conversion processes using a reference simulator. Quarterly report, December 12, 1976--March 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, G.V.; Woods, J.M.; Kayihan, F.; Sood, M.

    1977-04-01

    Progress is reported in the development of a modular computer simulation/design package for coal conversion systems based on bench-scale and large pilot plant data. The initial work is based on COGAS and COED process results. The package should be useful for evaluating various flowsheet alternatives. (LTN)

  7. Development of an advanced high efficiency coal combustor for boiler retrofit. Quarterly report, November 1986--January 1987

    Energy Technology Data Exchange (ETDEWEB)

    Rini, M.J.; LaFlesh, R.C. [Combustion Engineering, Inc., Windsor, CT (United States); Beer, J.M.; Togan, M.A.; Yu, T.U. [Massachusetts Inst. of Tech., Cambridge, MA (United States); McGowan, J.G. [Univ. of Massachusetts, MA (US)

    1987-05-06

    During the quarter from October 1986 to January 1987 the following technical progress was made: (1) Initiated a literature study focusing on optimized burner aerodynamics and design methodologies for high efficiency swirl generation devices, (2) Completed design of Swirler Test Facility (STF) to be used for comparative swirler evaluations, and (3) Initiated facility preparation at MIT for thermal atomization studies and high shear viscosity measurements.

  8. 微波辅助浸钒工艺实验研究%Study on the leaching of vanadium from stone coal ore by microwave pretreatment

    Institute of Scientific and Technical Information of China (English)

    马彦锋; 陈向阳; 陈永明

    2013-01-01

    微波是一种频率在300 MHz~300 GHz的电磁辐射,微波技术在冶金工业中的应用研究主要在矿物的加热、干燥、预处理等方面,包括脱硫、氧化物还原、浸出和冶金废弃物处理等方面.通过对石煤钒矿进行微波预处理,考察了是石煤钒矿的升温特性、失重率等因素,然后对微波预处理后的石煤钒矿进行浸出实验,与没有进行微波预处理的钒矿进行对比发现,不同的微波预处理方式均能够提高浸出率,微波氧化预处理加热5 min,石煤钒矿的浸出率与微波不氧化预处理的钒矿浸出率提高4.58%.%Microwave is an electromagnetic radiation with an frequency between 300 MHz~300 GHz.The microwave technology in metallurgy application research is mainly in heating,drying,oxide reduction,mineral processing such as the pretreatment of refractory gold and waste treatment,and metal recovery.The stone coal vanadium ore grinded was dealt with the microwave pretreatment in this article.In order to study the factors such as the heating-up characteristics and weightlessness rate of this ore,the ore by pretreatment was carried on the leaching experiments.Compared with the vanadium mine with different microwave pretreatment,the results showed that every different microwave pretreatment was able to improve the leaching rate.As the ore pretreated by microwave with oxidation heating for 5 minutes,the leaching rate was improved almost 4.58% compared with the leaching short of oxidation pretreatment.

  9. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, First quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  10. Novel pre-treatment of zeolite materials for the removal of sodium ions: potential materials for coal seam gas co-produced wastewater.

    Science.gov (United States)

    Santiago, Oscar; Walsh, Kerry; Kele, Ben; Gardner, Edward; Chapman, James

    2016-01-01

    Coal seam gas (CSG) is the extraction of methane gas that is desorbed from the coal seam and brought to the surface using a dewatering and depressurisation process within the saturated coalbed. The extracted water is often referred to as co-produced CSG water. In this study, co-produced water from the coal seam of the Bowen Basin (QLD, Australia) was characterised by high concentration levels of Na(+) (1156 mg/L), low concentrations of Ca(2+) (28.3 mg/L) and Mg(2+) (5.6 mg/L), high levels of salinity, which are expected to cause various environmental problems if released to land or waters. The potential treatment of co-produced water using locally sourced natural ion exchange (zeolite) material was assessed. The zeolite material was characterized for elemental composition and crystal structure. Natural, untreated zeolite demonstrated a capacity to adsorb Na(+) ions of 16.16 mEq/100 g, while a treated zeolite using NH4 (+) using a 1.0 M ammonium acetate (NH4C2H3O2) solution demonstrated an improved 136 % Na(+) capacity value of 38.28 mEq/100 g after 720 min of adsorption time. The theoretical exchange capacity of the natural zeolite was found to be 154 mEq/100 g. Reaction kinetics and diffusion models were used to determine the kinetic and diffusion parameters. Treated zeolite using a NH4 (+) pre-treatment represents an effective treatment to reduce Na(+) concentration in coal seam gas co-produced waters, supported by the measured and modelled kinetic rates and capacity.

  11. A fine coal circuitry study using column flotation and gravity separation. Quarterly report, 1 December 1994--28 February 1995

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q. [Southern Illinois Univ., Carbondale, IL (United States); Reed, S. [Kerr-McGee Coal Corp., Oklahoma City, OK (United States)

    1995-12-31

    Column flotation provides excellent recovery of ultrafine coal while producing low ash content concentrates. However, column flotation is not efficient for treating fine coal containing significant amounts of mixed-phase particles. Fortunately, enhanced gravity separation has proved to have the ability to treat the mixed-phased particles more effectively. A disadvantage of gravity separation is that ultrafine clay particles are not easily rejected. Thus, a combination of these two technologies may provide a circuit that maximizes both the ash and sulfur rejection that can be achieved by physical coal cleaning while maintaining a high energy recovery. This project is studying the potential of using different combinations of gravity separators, i.e., a Floatex hydrosizer and a Falcon Concentrator, and a proven flotation column, which will be selected based on previous studies by the principle investigator. During this reporting period, an in-plant Box-Behnken test program of the Floatex hydrosizer has been conducted at Kerr-McGee`s Galatia preparation plant. The results have shown that the Floatex hydrosizer can be successfully used to reject most of coarser ({plus}100 mesh) pyrite and mineral matter in the coal stream to the plant. With a single operation, ash rejection of 63% and total sulfur rejection of 43% have been achieved while maintaining a combustible recovery as high as 90.5%. A long term duration test under the optimum operating conditions determined from Box-Behnken test results has also been conducted. The feed samples for the following enhanced gravity - column flotation studies, which will be carried out in the next reporting period, have been collected.

  12. Studies in coal liquefaction with application to the SRC and related processes. Quarterly report, May-July 1983

    Energy Technology Data Exchange (ETDEWEB)

    Tarrer, A. R.; Guin, J. A.; Curtis, C. W.

    1984-03-01

    This report examines liquid-phase adsorption as a possible method of studying the interactions between coal liquids and hydrotreating catalysts. The duel purposes of this work are to develop a method to determine specific surface areas of porous catalysts and to examine how compounds commonly found in coal liquids are adsorbed on hydrotreating catalysts. The liquid-phase adsorption studies were performed at room temperature in tubing bomb reactors. Adsorption isotherms obtained from these experiments were assumed to follow Langmuir-type behavior. Compounds used in these studies included PNA compounds, a basic nitrogen containing compound, and an acidic oxygen containing compound. Various commercial grade catalysts as well as presulfided CoMo/Al/sub 2/O/sub 3/ and presulfided iron oxide were used as adsorbents. Experiments have shown that quinoline, a basic nitrogen containing compound, appears to be an excellent compound for surface area determination via liquid-phase adsorption. Adsorption of compounds such as pyrene, a PNA compound, and phenol, an acidic oxygen containing compound, may be used to determine the relative areas of different types of sites on catalyst surfaces. The sensitivity of this liquid-phase adsorption technique was evaluated by adsorbing different solutes on various catalyst surfaces. This technique shows that the adsorptivity of different coal liquids is a distinct function of the individual properties of the adsorbate as well as the properties of adsorbent used. Comparison of the adsorption properties of these coal liquids on various adsorbents may give insights as to how they adsorb on hydrotreating catalysts, how they compete for the active catalyst sites, and what types of sites the adsorbed molecules occupy. 29 references, 37 figures, 41 tables.

  13. A comparison study of column flotation technologies for cleaning Illinois coal. [Quarterly] technical report, December 1, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Paul, B.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mining Engineering

    1994-06-01

    The objectives of this research project are to optimize the performance of six commercially available column technologies for the treatment of Illinois Basin coal fines and to compare their performance on the basis of the recovery-grade curve and column throughput capacity. A statistically-designed, experimental program will be conducted to optimize the critical operating performance values of each flotation column. During the previous reporting period, construction and installation of the six flotation columns were completed. The flotation feed sample that will be used for the tests in this investigation was collected from a coal preparation plant treating the Illinois No. 5 seam coal. During this reporting period, the flotation feed sample was characterized on a size-by-size basis for its ash, total sulfur, and BTU content. A release analysis was also conducted to obtain the best possible recovery versus product grade curve that can be achieved by a froth flotation process for the treatment of the Illinois No. 5 flotation feed sample. Experiments were initiated on the Jameson Cell. The preliminary results indicate that the Jameson Cell achieves a separation performance that is close to the release data. The experimental program on the Jameson Cell and the other flotation technologies will be performed during the next reporting period.

  14. Production of carbon molecular sieves from Illinois coal. [Quarterly] technical report, March 1, 1993--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Lizzio, A.A.; Rostam-Abadi, M. [Illinois State Geological Survey, Champaign, IL (United States)

    1993-09-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recover processes. The overall objective of this project is to determine whether Illinois Basin coals are suitable feedstocks for the production of CMS and to evaluate the potential application of these products in commercial gas separation processes. In Phase I of this project, gram quantities of char were prepared from Illinois coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. Chars having surface areas of 1500--2100 m{sup 2}/g were produced by chemical activation using potassium hydroxide (KOH) as the activant. These high surface area chars had more than twice the adsorption capacity of commercial molecular sieves. The kinetics of adsorption of various gases, e.g., N{sub 2}, O{sub 2}, CO{sub 2}, CH{sub 4}, CO and H{sub 2}, on these chars at 25{degrees}C was determined. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4} and CH{sub 4}/H{sub 2} separation; both a high adsorption capacity and selectivity were achieved. The full potential of these materials in commercial gas separations has yet to be realized. In Phase II of this project, larger quantities of char are being prepared from Illinois coal in a batch fluidized-bed reactor and in a continuous rotary tube kiln.

  15. Chemistry and catalysis of coal liquefaction catalytic and thermal upgrading of coal liquid and hydrogenation of CO to produce fuels. Quarterly progress report, July-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W.H.

    1981-02-01

    Studies on the basic properties of supported sulfide catalysts showed that different supports have a profound influence on catalytic activities of CoMo catalysts. The three functions of hydrodesulfurization, hydrogenation and cracking were differently affected depending on the support used and the manner of preparation of the catalyst. Also, incorporation of additives to the support showed that the different catalytic functions can be selectively affected. A systematic study concerned with catalytic cracking of coal-derived liquids, viz., an SRC-II middle-heavy distillate and four hydrotreated SRC-II products was carried out in the range of 375 to 500/sup 0/C (LHSV, 0.2 to 3.9 h/sup -1/). Hydrotreatment, even to a limited extent, results in a remarkable improvement in the yield of gasoline-range products from the SRC-II distillate. This improvement is ascribed to: (a) hydrogenolysis reactions leading to lower molecular weight feedstock components and (b) limited hydrogenation of aromatic rings leading to polycyclic feed components with sufficient concentration of hydroaromatic rings needed for effective cracking. The results with model compounds and the data on hydrogen consumption during hydrotreatment of SRC-II liquids indicate that for tricyclic, tetracyclic, and pentacyclic coal-liquid components the optimal concentration of hydroaromatic rings for effective subsequent cracking is at least two rings per molecule.

  16. Coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1995--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. This includes new installations and those existing installations that were originally designed for oil or gas firing. The data generated by these projects must be sufficient for private-sector decisions on the feasibility of using coal as the fuel of choice. This work should also provide incentives for the private sector to continue and expand the development, demonstration, and application of these combustion systems. Vortec Corporation`s Coal-Fired Combustion System for Industrial Process Heating Applications is being developed under contract DE-AC22-91PC91161 as part of this DOE development program. The current contract represents the third phase of a three-phase development program. Phase I of the program addressed the technical and economic feasibility of the process, and was initiated in 1987 and completed 1989. Phase II was initiated in 1989 and completed in 1990. During Phase II of the development, design improvements were made to critical components and the test program addressed the performance of the process using several different feedstocks. Phase III of the program was initiated September 1991 and is scheduled for completion in 1994. The Phase III research effort is being focused on the development of a process heater system to be used for producing value-added vitrified glass products from boiler/incinerator ashes and selected industrial wastes.

  17. Heteroatom speciation in coal liquefaction via FTIR coupled with liquid chromatography. Quarterly progress report, October 1-December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.T.

    1984-05-01

    The objectives of the research are (1) evaluate the potential of FT-IR for qualitative functional group detection in chromatographic fractions of highly polar materials, (2) develop separation techniques with the aid of FT-IR detection for concentration of oxygen, nitrogen and sulfur functionalities in synfuels, (3) describe and quantify the various heteroatom functionalities in selected solvent refined coal fractions, (4) place speciation techniques on-line with chromatographic separations, (5) compare quantitative speciation information obtained from LC-FTIR with established fluorine tagging techniques regarding model compounds and synfuels. 23 figures, 5 tables.

  18. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of three-dimensional catalytic electro-Fenton and membrane bioreactor.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng

    2015-12-01

    Laboratorial scale experiments were conducted to investigate a novel system three-dimensional catalytic electro-Fenton (3DCEF, catalyst of sewage sludge based activated carbon which loaded Fe3O4) integrating with membrane bioreactor (3DCEF-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. The results indicated that 3DCEF-MBR represented high efficiencies in eliminating COD and total organic carbon, giving the maximum removal efficiencies of 80% and 75%, respectively. The integrated 3DCEF-MBR system significantly reduced the transmembrane pressure, giving 35% lower than conventional MBR after 30 days operation. The enhanced hydroxyl radical oxidation and bacteria self repair function were the mechanisms for 3DCEF-MBR performance. Therefore, the integrated 3DCEF-MBR was expected to be the promising technology for advanced treatment in engineering applications.

  19. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application.

  20. Engineering support services for the DOE/GRI coal gasification research program. Quarterly technical progress report, January-March 1982

    Energy Technology Data Exchange (ETDEWEB)

    Bostwick, L.E.; Ethridge, T.R.; Starr, D.W.; Koneru, P.B.; Hubbard, D.A.; Shah, K.V.; Smith, M.R.; Ward, W.E.; Wong, E.W.

    1982-05-01

    Kellogg continued to actively monitor operations at BI-GAS, Westinghouse and IGT (for peat gasification). Pilot plant/PDU test runs which were monitored and reported included BI-GAS Tests G-18, G-18A and G-18B; Westinghouse PDU Test TP-032-1 and CFSF Test TP-M003; and Peatgas Pilot Plant Test No. 5. Kellogg also monitored winterization/maintenance activities at BI-GAS and Westinghouse and precommissioning of the IGT Wet Carbonization PDU. The final report on the Hygas Data Base Evaluation was issued, while final revisions were completed for the reports concerning PDU data base evaluations of Peatgas and single-stage peat gasification. Efforts toward completion of the brochure describing the DOE/GRI Joint Program proceeded. Normal MPC activities continued. Several technical progress reports were issued during this quarter.

  1. Development of alternative fuels from coal-derived syngas. Quarterly status report No. 6, January 1--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.M.

    1992-05-19

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products` laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively ``benign`` system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE`s program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  2. Studies in coal liquefaction with application to the SRC and related processes. Quarterly report, May-July 1981

    Energy Technology Data Exchange (ETDEWEB)

    Guin, J. A.; Curtis, C. W.; Tarrer, A. R.

    1981-01-01

    This report discusses a kinetic investigation of the Fe-S-H/sub 2/ system conducted as an outgrowth of current research in the SRC-I (solvent refined coal) process to better understand the effects of naturally occurring iron sulfides in coal hydrogenation and hydrodesulfurization. A total of twelve closed system reactions were carried out in which 48 to 60 mesh pyrite, in the presence of hydrogen gas, underwent transformation to 1C hexagonal pyrrhotite. Reaction temperatures were 350/sup 0/C and 400/sup 0/C with four sample runs at temperature. Initial pressure of hydrogen gas was 1250 psig (8617 KPa). A comparison of the results for each reaction series was evaluated with time and temperature as variables. The transformation rate of pyrite to pyrrhotite was found to increase over the range of reaction temperatures with the 400/sup 0/C samples showing the greatest amount of transformation per unit time. For the 375/sup 0/C and 400/sup 0/C runs pyrrhotite formation decreased after approximately 15 minutes of reaction time due to (1) reduced availability of pyrite, and (2) resistance to diffusion in the topochemical product layer.

  3. Integrated production/use of ultra low-ash coal, premium liquids and clean char. [Quarterly] technical report, March 1, 1993--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, C.W.; Carlson, S.L. [Illinois State Geological Survey, Champaign, IL (United States); Fatemi, M. [Amoco Research Center, Naperville, IL (United States); Snoeyink, V.L.; Feizoulof, C.A. [Illinois Univ., Urbana, IL (United States); Klavetter, E. [Sandia National Labs., Albuquerque, NM (United States)

    1993-09-01

    Tests this quarter showed the adsorption efficiency of an oxidized activated ChemCoal{trademark} (OACC) char for removing volatile organic compounds (VOCs) from spiked water is higher than for unoxidized activated char (ACC). OACC destroyed (or reacted with) a higher percentage of VOCs when loaded char was heated quickly to 850{degrees}C. This was expected based on the OACC`s superiority as an elimination catalyst. Aromatic VOCs appeared to be adsorbed on the chars more readily than the chlorinated ones but the multichlorinated VOCs appeared to be adsorbed more strongly. The performance of two oxidized carbons (OST3-9 and OACC chars) for the removal of the VOCs from two industrial waste waters spiked with VOCs appeared similar. The more active catalyst, OST3-9 appeared more effective than OACC in destroying the adsorbed materials. A series of carbons having differing levels of oxygen on the surface was prepared by desorbing oxygen from the surface placed there by nitric acid oxidation. Tests revealed that the capacity to adsorb 2-nitrophenol increased as the outgassing temperature was increased. This indicates that PNP adsorption is increased as surface oxygen is removed from the carbon.

  4. Coal log pipeline research at the University of Missouri. 1st Quarterly report for 1995, January 1, 1995--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.

    1995-08-01

    Work continued on the study of coal log pipeline research. Individual projects described include fast compaction of coal logs; effect of cooling on coal log quality; coal log capping; effectiveness of adding fiber to enhance coal log quality; fabrication using hydrophobic binders; cost estimation of different lubricants; automatic control of coal log pipeline system; CLP design; coal log train transport; economics of coal log pipeline; legal aspects; heating, cooling, and drying of logs; vacuum systems to enhance production; design; and effect of piston modification on capping.

  5. The feasibility of using combined TiO2 photocatalysis oxidation and MBBR process for advanced treatment of biologically pretreated coal gasification wastewater.

    Science.gov (United States)

    Xu, Peng; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Wang, Dexin; Li, Kun; Zhao, Qian

    2015-01-01

    The study examined the feasibility of using combined heterogeneous photocatalysis oxidation (HPO) and moving bed biofilm reactor (MBBR) process for advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that the TOC removal efficiency was significantly improved in HPO. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that the HPO could be employed to eliminate bio-refractory and toxic compounds. Meanwhile, the BOD5/COD of the raw wastewater was increased from 0.08 to 0.49. Furthermore, in the integration of TiO2 photocatalysis oxidation and MBBR process, the effluent of COD, BOD5, TOC, NH4(+)-N and TN were 22.1 mg/L, 1.1 mg/L, 11.8 mg/L, 4.1mg/L and 13.7 mg/L, respectively, which all met class-I criteria of the Integrated Wastewater Discharge Standard (GB18918-2002, China). The total operating cost was 2.8CNY/t. Therefore, there is great potential for the combined system in engineering applications as a final treatment for biologically pretreated CGW.

  6. Slag characterization and removal using pulse detonation for coal gasification. Quarterly research report, July 1--September 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Huque, Z.; Mei, D.; Biney, P.O.; Zhou, J.; Ali, M.R.

    1996-10-25

    Boiler slagging and fouling as a result of inorganic impurities in combustion gases being deposited on heat transfer tubes have caused severe problems in coal-fired power plant operation. These problems are fuel, system design, and operating condition dependent. Conventional slag and ash removal methods include the use of in situ blowing or jet-type devices such as air or steam soot blowers and water lances. Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. The detonation wave technique based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. These detonation waves have been demonstrated experimentally to have exceptionally high shearing capability important to the task of removing slag and fouling deposits. Several tests have been performed with single shot detonation wave at University of Texas at Arlington to remove the slag deposit. To hold the slag deposit samples at the exit of detonation tube, two types of fixture was designed and fabricated. They are axial arrangement and triangular arrangement. The slag deposits from the utility boilers have been used to prepare the slag samples for the test. The experimental results show that the single shot detonation wave is capable of removing the entire slag (types of slag deposited on economizer, and air-heater, i.e., relatively softer slags) and 30% of the reheater slag (which is harder) even at a distance of 6 in. from the exit of a detonation engine tube. Wave strength and slag orientation also have different effects on the chipping off of the slag. The annual report discusses about the results obtained in effectively removing the slag.

  7. Chemistry and structure of coal-derived asphaltenes, Phase III. Quarterly progress report, April--June 1978

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T. F.

    1978-01-01

    Solubility parameters may be calculated for coal liquid derived products by use of a semi-empirical relationship between solubility parameter and refractive index. Thermal treatment of Synthoil coal liquid oil + resin solvent fraction at 235 to 300/sup 0/C resulted in the transformation of oil and resin into asphaltene. Further support of structural characterizations was obtained by use of a combined x-ray and NMR structural characterization procedure which relies on the important x-ray structural parameter L/sub a/ (average layer diameter of the aromatic sheet). L/sub a/ values of approx. = 8 to 10 A for asphaltenes, approx. = 13.4 to 14 A for carbenes, and approx. = 14 to 16.5 A for carboids were obtained by the x-ray procedure. These data were used to calculate C/sub Au/ (aromatic carbons per structural unit) and N (number of structural units per molecule) values. For asphaltenes the results agree with those previously deduced from NMR and other techniques. The C/sub Au/ values are generally close to 14 which is the number of aromatic carbons present in a 3-ring kata-system such as anthracene or phenanthrene. The number of structural units per molecule is close to two for all the asphaltenes. Additional data were used to improve the correlation equation between weight percent OH, determined by the silylation method, and the absorbance of the monomeric OH infrared stretching band at 3600 cm/sup -1/ for asphaltenes. A similar correlation between weight percent NH, from elemental analysis of asphaltene samples containing essentially all nitrogen as pyrrolic N-H, and the infrared absorbance of the N-H stretching band at 3470 cm/sup -1/ was developed for asphaltenes.

  8. Micropore diffusion in coal chars under reactive conditions: Quarterly technical progress report, 15 March 1987-15 June 1987

    Energy Technology Data Exchange (ETDEWEB)

    Calo, J.M.; Perkins, M.T.; Lilly, W.D.

    1987-01-01

    In this third quarterly technical progress report, we present some initial data obtained with the ''gradientless'' reactor, and explore the effects of dispersion in the reactor sampling line. In particular: the gas sampling system and the solenoid valve network have been assembled and interfaced between the 3'' Berty catalytic reactor and the mass spectrometer beam system; initial purging experiments were conducted with this system, focusing on the convoluting effects of the sampling line on time constant measurements; it was shown and concluded that for the projected operating regime, the sampling line configuration without the in-line filter should not introduce any appreciable error in the measurements; and an analysis of the dispersion effects to be expected in the sampling line has defined the useful flow rate ranges for the current system and the means by which to extend the dynamic range; e.g., by increasing the length of the small bore diameter tubing. 21 refs., 11 figs.

  9. Systems studies of coal conversion processes using a reference simulator. Quarterly report, October 1, 1978--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, G.V.; Sood, M.K.; Soni, Y.; Overturf, B.W.; Buchanan, P.; Wiede, W. Jr.; Wilkinson, C.R.; Boo, J.

    1979-02-01

    Work was completed on the coding and testing of the plant cost estimation package PCOST. Significant effort was expended in adapting the ORNL PRP evaluation program to make it compatible with PCOST. Continuing efforts include completion of the user's manual and rechecking of the cost data base entries. Continued miscellaneous revisions and additions arising from user suggestions were made to the S4 and PPROPS packages. The two phase flash routine was modified to more efficiently accommodate single components. The three phase flash routine was revised to include generation of sharper initial estimates and phase stability tests. A versatile process utilities section model was implemented and tested. This program will perform the balance calculations, will select turbine design conditions, and will determine required auxiliary boiler loads for a plant steam system containing multiple steam pressure levels. Integrated simulations of the hydrogen and vapor recovery sections have been assembled and design case studies are in progress. The integrated simulation of the hydrotreating, acid gas removal, and hydrogen plant sections is being prepared for combined execution using the hierchiacal strategy tested in the previous quarter. Alternate numerical methods are being tested for accommodating the severe stiffness which has been encountered in the differential equations of the lift tube model.

  10. Systems studies of coal conversion processes using a reference simulator. Quarterly report, April 1--June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, G.V.; Sood, M.K.; Raghavan, S.; Soni, Y.; Overturf, B.W.; Ford, J.R.; Buchanan, P.; Weide, W. Jr.; Wilkinson, C.R.; Boo, J.

    1978-08-01

    In this reporting period work has been completed on the simulation model of the hydrotreating process section. This model successfully tested the integrated operation of the Simulation System including the physical properties subsystems and involving pseudo-components and solids stream flows. The hydrotreating reactor model was modified to include improved temperature profile predictions. The plant capital cost estimation subsystem has been redesigned to allow use as a stand alone package. The revised package will include a redesigned cost data bank, equipment costing programs, factored plant and auxiliary equipment programs as well as a profitability analysis routine. Implementation of the revised economics package is expected to be completed during the third quarter of 1978. The physical properties package has been updated by the addition of routines for the accurate estimation of the thermodynamic properties of steam. A steady state model of the methanation section has been assembled. Scrubber, multi-phase separator, and turbine models have been developed for the vapor recovery and heat recovery process sections. Work is in progress on a detailed model of the char lift leg and the steam reformer. progress has been delayed but work is continuing on the hierarchical process calculation system outlined in Fe--2275-7.

  11. Stabilization and/or regeneration of spent sorbents from coal gasification. [Quarterly] technical report, March 1, 1992--May 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R. [Institute of Gas Technology, Chicago, IL (United States)

    1992-10-01

    The objective of this investigation is to determine the effects of SO{sub 2} partial pressure and reaction temperature on the conversion of sulfide containing solid wastes from coal gasifiers to stable and environmentally acceptable calcium sulfate, while preventing the release of sulfur dioxide through undesirable side reactions during the stabilization step. An additional objective of this program is to investigate the use of the Spent Sorbent Regeneration Process (SSRP) to regenerate spent limestone, from a fluidized-bed gasifier with in-bed sulfur capture, for recycling to the gasifier. To achieve these objectives, selected samples of partially sulfided sorbents will be reacted with oxygen at a variety of operating conditions under sufficient S0{sub 2} partial pressure to prevent release of sulfur from the solids during stabilization that reduces the overall sorbent utilization. Partially sulfided limestone will also be regenerated with water using the SSRP to produce calcium hydroxide and release sulfur as H{sub 2}S. The regenerated sorbent will be dewatered, dried and pelletized. The reactivity of the regenerated sorbent toward H{sub 2}S will also be determined.

  12. Stabilization and/or regeneration of spent sorbents from coal gasification. [Quarterly] technical report, December 1, 1991--February 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R.

    1992-08-01

    The objective of this investigation is to determine the effects of SO, partial pressure and reaction temperature on the conversion of sulfide containing solid wastes from coal gasifiers to stable and environmentally acceptable calcium-sulfate, while preventing the release of sulfur dioxide through undesirable side reactions during the stabilization step. An additional objective of this program is to investigate the use of the Spent Sorbent Regeneration Process (SSRP) to regenerate spent limestone, from a fluidized-bed gasifier with in-bed sulfur capture, for recycling to the gasifier. To achieve these objectives, selected samples of partially sulfided sorbents will be reacted with oxygen at a variety of operating conditions under sufficient S0{sub 2} partial pressure to prevent release of sulfur from the solids during stabilization that reduces the overall sorbent utilization. Partially sulfided limestone will also be regenerated with water to produce calcium hydroxide and release sulfur as H{sub 2}S. The regenerated sorbent will be dewatered, dried and pelletized. The reactivity of the regenerated sorbent toward H{sub 2}S will also be determined.

  13. Healy clean coal project. Quarterly technical progress report No. 16-19, October 1, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    This Quarterly Technical Progress Report is required under U.S. Department of Energy (DOE) Cooperative Agreement, Section XV, {open_quotes}Reporting Requirements{close_quotes} and Attachment C, {open_quotes}Federal Assistance Reporting Checklist{close_quotes}. It covers the period of October 1, 1994 through September 30, 1995. The primary objective of the HCCP is to conduct a cost-sharing project that will demonstrate a new power plant design which features innovative integration of an advanced combustor and heat recovery system coupled with both high and low temperature emission control processes. The parties anticipate that if the demonstration project is successful, the technology could become commercialized in the near term and will be capable of (1) achieving significant reductions in the emissions of sulfur dioxide and the oxides of nitrogen from existing facilities to minimize environmental impacts such as transboundary and interstate pollution and/or (2) providing for future energy needs in an environmentally acceptable manner. The primary equipment elements comprising this new power plant design includes entrained combustion systems coupled with a boiler which will produce low NOx levels, function as a limestone calciner and first stage SO{sub 2} remover in addition to its heat recovery function; a single spray dryer absorber vessel for second stage sulfur removal; a baghouse for third stage sulfur and particulate removal; and a lime activation system which recovers unused reagent from particulate collected in the baghouse. The emission levels Of SO{sub 2}, NOx, and particulate to be demonstrated are expected to be better than the federal New Source Performance Standards (NSPS).

  14. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, July-September 1983

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.A. Jr.

    1983-01-01

    Two long gasification tests were accomplished (66 and 72 hours of slagging operation) this quarter, and the balance of the wastewater needed for the second cooling tower (CT) test (approx. 11,000 gallons) was generated. Eleven thousand gallons of slagging fixed-bed gasifier (SFBG) wastewater were solvent extracted and ammonia stripped (AS) to nominal levels of 160 mg/1 phenol and 600 mg/1 NH/sub 3/. This wastewater is being further treated by activated sludge (AS) and granular activated carbon (GAC) processing to prepare a high quality makeup for the second CT test. Phenol mass balances indicated that > 90 pct of the phenol was stripped from the tower, indicating that previous assumptions of high levels of biodegradation were erroneous. Over 80 pct of the ammonia and about 25 pct of the methanol were also stripped. Data collected during steady state operation of the bench-scale rotating biological contractor indicate complete removal of phenolics and alcohols, and 94 pct removal of BOD. Nitrification also occurred in this unit, with over 30 pct removal of ammonia. Problems due to individual bacteria, present in the biotreated wastewater, passing through the multi-media filter and thus decreasing the carbon adsorption efficiency of the GAC system, have resulted in lower treatment rates than originally anticipated. As a result, to achieve the desired treatment, the contact time of the wastewater with the carbon in the granular activated carbon system has been increased. Since this has decreased the treatment rate, a larger carbon adsorption system has been designed and is presently being constructed.

  15. The effects of moderate coal cleaning on the microbial removal of organic sulfur. [Rhodococcuc rhodochrous

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, V.J.

    1991-01-01

    The purpose of this project is to investigate the possibilities of developing an integrated physical/chemical/microbial process for the precombustion removal of sulfur from coal. An effective pre- combustion coal desulfurization process should ideally be capable of removing both organic and inorganic sulfur. A variety of techniques exist for the removal of inorganic sulfur from coal, but there is currently no cost-effective method for the pre-combustion removal of organic sulfur. Recent developments have demonstrated that microorganisms are capable of specifically cleaving carbon-sulfur bonds and removing substantial amounts of organic sulfur from coal. However, lengthy treatment times are required. Moreover, the removal of organic sulfur form coal by microorganisms is hampered by the fact that, as a solid substrate, it is difficult to bring microorganisms in contact with the entirety of a coal sample. This study will examine the suitability of physically/chemically treated coal sample for subsequent biodesulfurization. Physical/chemical processes primarily designed for the removal of pyritic sulfur may also cause substantial increases in the porosity and surface area of the coal which may facilitate the subsequent removal of organic sulfur by microoganisms. During the current quarter, coal samples that have been chemically pretreated with methanol, ammonia, and isopropanol were examined for the removal of organic sulfur by the microbial culture IGTS8, an assay for the presence of protein in coal samples was developed, and a laboratory-scale device for the explosive comminution of coal was designed and constructed.

  16. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  17. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  18. Advanced treatment of biologically pretreated coal gasification wastewater using a novel anoxic moving bed biofilm reactor (ANMBBR)-biological aerated filter (BAF) system.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Zhao, Qian; Hou, Baolin

    2014-04-01

    A novel system integrating anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) with short-cut biological nitrogen removal (SBNR) process was investigated as advanced treatment of real biologically pretreated coal gasification wastewater (CGW). The results showed the system had efficient capacity of degradation of pollutants especially nitrogen removal. The best performance was obtained at hydraulic residence times of 12h and nitrite recycling ratios of 200%. The removal efficiencies of COD, total organic carbon, NH4(+)-N, total phenols and total nitrogen (TN) were 74.6%, 70.0%, 85.0%, 92.7% and 72.3%, the corresponding effluent concentrations were 35.1, 18.0, 4.8, 2.2 and 13.6mg/L, respectively. Compared with traditional A(2)/O process, the system had high performance of NH4(+)-N and TN removal, especially under the high toxic loading. Moreover, ANMBBR played a key role in eliminating toxicity and degrading refractory compounds, which was beneficial to improve biodegradability of raw wastewater for SBNR process.

  19. A novel integration of three-dimensional electro-Fenton and biological activated carbon and its application in the advanced treatment of biologically pretreated Lurgi coal gasification wastewater.

    Science.gov (United States)

    Hou, Baolin; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Jia, Shengyong; Li, Kun

    2015-11-01

    A novel integrated process with three-dimensional electro-Fenton (3D EF) and biological activated carbon (BAC) was employed in advanced treatment of biologically pretreated Lurgi coal gasification wastewater. SAC-Fe (sludge deserved activated carbon from sewage and iron sludge) and SAC (sludge deserved activated carbon) were used in 3D EF as catalytic particle electrodes (CPEs) and in BAC as carriers respectively. Results indicated that 3D EF with SAC-Fe as CPEs represented excellent pollutants and COLOR removals as well as biodegradability improvement. The efficiency enhancement attributed to generating more H2O2 and OH. The integrated process exhibited efficient performance of COD, BOD5, total phenols, TOC, TN and COLOR removals at a much shorter retention time, with the corresponding concentrations in effluent of 31.18, 6.69, 4.29, 17.82, 13.88mg/L and <20 times, allowing discharge criteria to be met. The integrated system was efficient, cost-effective and ecological sustainable and could be a promising technology for engineering applications.

  20. POC-scale testing of oil agglomeration techniques and equipment for fine coal processing. Quarterly report, July 1--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Ignasiak, B.; Pawlak, W.; Szymocha, K.

    1997-12-31

    This report covers the technical progress achieved from July 1, 1997 to September 30, 1997 on the POC-Scale Testing Agglomeration Techniques and Equipment for Fine Coal Processing project. Experimental procedures and test data for recovery of fine coal from coal fines streams generated at a commercial coal preparation plant are described. Two coal fines streams, namely Sieve Bend Effluent and Cyclone Overflow were investigated. The test results showed that ash was reduced by more than 50% at combustible matter recovery levels exceeding 95%.

  1. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Quarterly technical report: March 1, 1993 to May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.; Ilias, S. [North Carolina A and T State Univ., Greensboro, NC (United States). Dept. of Chemical Engineering

    1993-11-01

    The viscosity of coal derived liquids is an important property that is required for the design of the coal liquefaction processes, as well as for understanding the flow characteristics of coal liquids. Coal liquids are complex undefined mixtures and boil over a wide range of temperatures. One method of characterizing coal liquids is to treat coal liquids as a continuous distribution of molecular weights. Upon review of the literature for viscosity correlations, the authors quickly concluded that there is no accurate method available that may be successfully applied to coal liquids. They generally believe that correlations based on molecular structure of materials are superior to those that use solely the characterization parameters such as refractive index, critical properties, density, boiling points etc. A few correlations in the literature do consider molecular structures in viscosity determinations. Using important features in these correlations, they set out to develop a new viscosity correlation that would apply to model coal aromatic compounds, their mixtures and finally to coal derived liquids themselves. The correlation for pure compounds and mixtures has been developed and is discussed below. Attempts are now being made to apply this to coal derived liquids.

  2. The effects of moderate coal cleaning on the microbial removal of organic sulfur. Technical report, September 1--November 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, V.J.

    1991-12-31

    The purpose of this project is to investigate the possibilities of developing an integrated physical/chemical/microbial process for the precombustion removal of sulfur from coal. An effective pre- combustion coal desulfurization process should ideally be capable of removing both organic and inorganic sulfur. A variety of techniques exist for the removal of inorganic sulfur from coal, but there is currently no cost-effective method for the pre-combustion removal of organic sulfur. Recent developments have demonstrated that microorganisms are capable of specifically cleaving carbon-sulfur bonds and removing substantial amounts of organic sulfur from coal. However, lengthy treatment times are required. Moreover, the removal of organic sulfur form coal by microorganisms is hampered by the fact that, as a solid substrate, it is difficult to bring microorganisms in contact with the entirety of a coal sample. This study will examine the suitability of physically/chemically treated coal sample for subsequent biodesulfurization. Physical/chemical processes primarily designed for the removal of pyritic sulfur may also cause substantial increases in the porosity and surface area of the coal which may facilitate the subsequent removal of organic sulfur by microoganisms. During the current quarter, coal samples that have been chemically pretreated with methanol, ammonia, and isopropanol were examined for the removal of organic sulfur by the microbial culture IGTS8, an assay for the presence of protein in coal samples was developed, and a laboratory-scale device for the explosive comminution of coal was designed and constructed.

  3. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 16, July 1, 1992--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  4. Large scale solubilization of coal and bioconversion to utilizable energy. Seventh quarterly technical progress report, April 1, 1995--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, N.C.

    1995-12-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  5. Large scale solubilization of coal and bioconversion to utilizable energy. Eighth quarterly technical progress report, July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, N.C.

    1996-02-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  6. Organosulphur compounds in coals as determined by reaction with Raney nickel and microscale pyrolysis techniques. Quarterly report, January 1, 1995--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Philp, R.P.; Stalker, L.

    1995-09-01

    This report briefly descibes a method for cleaving organosulfur compounds from coal, kerogens and asphaltenes. The technique utilized nickel chloride and sodium borohydride. Experiments were performed on Illinois No. 6 coal. The method was also used in a deuterium labelling technique for investigating sulfur bonds.

  7. Characteristics of American coals in relation to their conversion into clean energy fuels. Quarterly technical progress report, July--September 1975

    Energy Technology Data Exchange (ETDEWEB)

    Spackman, W.; Davis, A.; Walker, P. L.; Lovell, H. L.; Essenhigh, R. H.; Vastola, F. J.; Given, P. H.

    1975-12-01

    Twenty-one coal samples have been collected and characterized. Sixty coals have been provided to other agencies at their request. The capability of controlling coal characteristics during preparation is being developed: large variations in volatile content occur within a given raw coal but, by controlling the preparation, a uniform product with the devised specifications can be produced. Studies have begun on the suitability of various coals and cokes for use in pressurized fixed bed gasifiers. Preliminary studies are being carried out on the feasibility of applying small angle x-ray scattering to the characterization of coal chars. Reactivity profiles and parameters for chars in air are markedly dependent upon the gaseous flow system used, indicating that char reactivity is determined by partial pressure of the reacting gas. Reactivities have been maximized by keeping the heat treatment temperature as low as possible, and allowing no soak time. The minerals kaolinite, dolomite, siderite, calcite, and pyrite are found not to be catalysts for the char-air reaction at 550/sup 0/C. The addition of coal to an oil-water-air emulsion considerably increases the heat flux from the flame to the water tubes during combustion. (auth)

  8. Installation of a stoker-coal preparation plant in Krakow, Poland. Quarterly technical progress report No. 3, November--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Rozelle, P.

    1996-01-01

    This report describes the progress made during this reporting period of a two year project to demonstrate that the air pollution from a traveling grate stoker being used to heat water at a central heating plant in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost effective and hence be adopted by the other central heating plants in Krakow and indeed, throughout Eastern European cities where coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators, for the execution of this effort. The washability data from a 20mm x 0.5mm size fraction of raw coal from the Nikwa Modrejow Mine were evaluated. The data show that the ash content of this coal can be reduced from 34.0 percent to 9.0 percent by washing in a heavy-media cyclone at 1.725 sp.gr.; the actual yield of clean coal would be 63.1 percent. This product would meet compliance limitations of 500 a of SO{sub 2}/GJ. An evaluation of the predicted results that can be expected when washing five different candidate Polish coals shows that compliance products containing less than 640 a SO{sub 2}/GJ and 10 percent ash at attractive yields can be produced by washing the raw coals in a heavy-media cyclone. Discussions with financial institutions regarding the cost of producing a quality stoker coal in Poland and for identifying sources of private capital to help cost share the project continued. The search for markets for utilizing surplus production from the new plant continued.

  9. Effect of pretreatment methods of raw material on coking of needle coke from coal tar pitch by delayed coking%原料预处理方法对延迟焦化成焦的影响

    Institute of Scientific and Technical Information of China (English)

    吴甦; 王磊; 王小冰; 菜闯

    2012-01-01

    介绍了针状焦的工业生产方法,分析了不同的原料软沥青处理方法以及原料的结构和组成对延迟焦化成焦的影响.%The methods of manufacturing needle coke were introduced. And the effects of different pretreatment methods, the structure and composition of the raw material on the formation of needle coke from coal tar pitch by delayed coking were analyzed.

  10. Novel microorganism for selective separation of coal from ash and pyrite. Sixth quarterly technical progress report, January 1, 1995--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Misra, M.; Smith, R.W.; Raichur, A.M.

    1995-08-01

    The objective of this research project is to study the effectiveness of a novel hydrophobic microorganism, Mycobacterium phlei (M. phlei), for the selective flocculation of coal from pyrite and ash forming minerals. During the reporting period, the flocculation efficiencies of Illinois No. 6 and KY No. 9 coal in the presence of whole and ruptured cells of M. phlei were studied. The effect of synthetic flocculants were also studied for comparison at selected pH values. Results showed that the whole cells of M. phlei can flocculate coal very effectively and rapidly for both the coal samples. However, with ruptured cells of M. phlei the flocculation efficiency is significantly less which can be attributed to the loss of extracellular surfactants during rupturing. Separation of flocs using column flotation was studied for both the coal samples in the acidic pH range. Results indicated that excellent rejection of pyritic sulfur and ash could be obtained with a high combustible recovery. DLVO calculations were performed for all the minerals used in this study to calculate the interaction energies in the presence of whole cells and ruptured cells of M. phlei. A minimum in interaction energy is observed between coal and whole cells of M. phlei at pH 4 which is probably responsible for the higher adhesion and flocculation efficiencies at the pH. However, with ruptured cells the interaction energy increases thus decreasing the amount of M. phlei cells adhering to the surface.

  11. Combustion characterization of coal fines recovered from the handling plant. Quarterly technical progress report no. 3, April 1, 1995--June 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Houshang, M.; Samudrala, S.R.; Mohannad, O. [and others

    1995-07-01

    The main goal of this research project is to evaluate the combustion characteristics of the slurry fuels prepared from the recovered coal fines and plant coal fines. A specific study will include the combustion behavior, flame stability, ash behavior and emissions of SO{sub x}, NO{sub x} and particulate in a well insulated laboratory scale furnace in which the residence time and temperature history of the burning particles are similar to that of utility boiler furnace at 750,000 Btu/hr input and 20% excess air. The slurry fuel will be prepared at 60% solid to match the generic slurry properties, i.e., viscosity less than 500 cp, 100% of particles passing through 100 mesh and 80-90% of solid particles passing through 200 mesh. The coal blend is prepared using a mix of 15% effluent recovered coal and 85% plant fines. Combustion characteristics of the slurry fuels is determined at three different firing rates 750K, 625K, 500K Btu/hr. Finally a comparison of the results is made to determine the advantages of coal water slurry fuel over the plant coal blended form.

  12. The economical production of alcohol fuels from coal-derived synthesis gas. Sixth quarterly technical progress report, January 1, 1993--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    Preliminary economic investigations have focused on cost reduction measures in the production of syngas from coal. A spread sheet model has been developed which can determine the cost of syngas production based upon the cost of equipment and raw materials and the market value of energy and by-products. In comparison to natural gas derived syngas, coal derived syngas is much more expensive, suggesting a questionable economic status of coal derived alcohol fuels. While it is possible that use of less expensive coal or significant integration of alcohol production and electricity production may reduce the cost of coal derived syngas, it is unlikely to be less costly to produce than syngas from natural gas. Fuels evaluation is being conducted in three parts. First, standard ASTM tests are being used to analyze the blend characteristics of higher alcohols. Second, the performance characteristics of higher alcohols are being evaluated in a single-cylinder research engine. Third, the emissions characteristics of higher alcohols are being investigated. The equipment is still under construction and the measurement techniques are still being developed. Of particular interest is n-butanol, since the MoS{sub 2} catalyst produces only linear higher alcohols. There is almost no information on the combustion and emission characteristics of n-butanol, hence the importance of gathering this information in this research.

  13. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Quarterly technical report, December 1, 1992--February 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.; Ilias, S.

    1993-12-31

    Very little data is available on the thermodynamic properties of coal model compounds in liquid phase at high pressures. The authors present preliminary compilations of available data. It is anticipated that they will require vapor pressure and saturated liquid density data for coal model compounds in their high pressure liquid equation of state development. These data sets have also been compiled and are presented. They have at this time completed a review of techniques for high pressure density measurements. Some thought is being given to the possibility of building an apparatus to carry out density measurements for selected model compounds. Finally, they reproduce the Thomson et al equation and describe their preliminary procedure to test this equation with available high pressure thermodynamic data. They acknowledge the possibility that a number of modifications of the Thomson equation will be necessary before a reasonably accurate liquid state equation of state for coal model compound emerges.

  14. Organosulphur compounds in coals as determined by reaction with Raney nickel and microscale pyrolysis techniques. Quarterly report, 1 July 1995--31 October 1995

    Energy Technology Data Exchange (ETDEWEB)

    Stalker, L.; Philp, R.P.

    1995-12-31

    As well as studying coal samples from Oklahoma and Missouri States, we have now completed the preliminary part of a study of a well known high organosulphur containing coal, Illinois No. 6. As a number of other research groups have used Illinois No. 6 for study, we thought it wise to also analyse this coal for comparison of our method with existing data reported in the literature. To date, analyses of the aliphatic fractions of the free maltene components and the aliphatic hydrocarbons isolated following desulphurization of the free maltene polar fraction, asphaltenes and pre-extracted coal matrix have been performed in duplicate. So far, most of these samples have been analysed by GC and subsequently quantified using n-C{sub 24}D{sub 50}. As Figures 1 and 2 show, the duplicates for the desulphurized products (e.g. Figure 2a and 2b of desulphurized asphaltenes) while showing broad similarities, do not appear to be identical. This is emphasized by differences in the yields of n-alkanes generated, quantified in Table 1. Abundance of corresponding n-alkanes are often quite variable for duplicate analyses, which have been normalized to the quantity of original starting material. While inhomogeneity of sampling can easily explain the variation in abundance of products generated for the asphaltenes and coal matrix, the same cannot be said for the free polar compounds, which dissolve easily in the methanol/tetrahydrofuran solvent system used in the desulphurization process. It would therefore appear that desulphurization experiments should be performed at the very least, in duplicate to gain a clear impression of the distribution and abundance of aliphatic products cleaved from organosulphur compounds. The GC analysis also appears to show that there are different organosulphur compound precursors trapped in the different fractions of the coals.

  15. Characteristics of American coals in relation to their conversion into clean energy fuels. Quarterly technical progress report, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    Spackman, W.; Davis, A.; Walker, P. L.; Lovell, H. L.; Essenhigh, R. H.; Vastola, F. J.; Given, P. H.; Suhr, N. H.

    1978-03-01

    The Penn State/DOE Coal Sample Bank has been expanded. A total of 54 characterized coal samples and 232 selected printouts of coal data were provided upon request to the coal research community. Work has been conducted using nitrogen as a pyrolysis medium at 808/sup 0/C and seven size grades of the Texas Darco lignite (PSOC-412) as starting material. This work was intended to extend previous work on the effects of particle size on pyrolysis. A study is being made into the effects of low temperature oxidation on the agglomerating properties of caking coals. The effect of preoxidation in air of a highly caking coal at different temperatures on weight loss during pyrolysis up to 1000/sup 0/C and reactivity of resultant chars to air at 475/sup 0/C has been investigated. Preoxidation has essentially no effect on weight loss during pyrolysis below 450/sup 0/C. At higher temperatures, however, preoxidation results in a decrease in weight loss. Preoxidation markedly enhances subsequent char reactivity. Differential scanning calorimetry and thermogravimetric analysis have been used to study the interaction between oxygen and an unactivated Saran carbon. In the range 125-227/sup 0/C, chemisorption of oxygen, though the predominant process, is associated with a gasification reaction. The rate of the latter reaction is much higher than extrapolated from the Arrhenius plot in the temperature range 450-550/sup 0/C. In the temperature range 450-850/sup 0/C, gasification kinetics have been studied by the TGA technique. Plots of burn-off versus reaction time are linear over the 15-65% burn-off range. The Arrhenius plots consist of three distinct straight lines of different slopes, indicating that the gasification reaction occurs in three different zones.

  16. Characterization of open-cycle coal-fired MHD generators. 14th/15th quarterly technical progress report, February 1-July 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wormhoudt, J.; Yousefian, V.; Weinberg, M.; Kolb, C.; Martinez-Sanchez, M.; Cheng, W.; Bien, F.; Dvore, D.; Unkel, W.; Stewart, G.

    1980-09-01

    The successful design of full-scale, open-cycle, coal-fired MHD generators for baseload electrical production requires a detailed understanding of the plasma chemical and plasma dynamic characteristics of anticipated combustor and channel fluids. Progress in efforts to model the efficiency of an open-cycle, coal-fired MHD channel based on the characterization of the channel flow as well as laboratory experiments to validate the modeling effort as detailed. In addition, studies related to understanding arcing phenomena in the vicinity of an anode are reported.

  17. Large scale solubilization of coal and bioconversion to utilizable energy. Eleventh quarterly technical progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, N.C.

    1996-10-01

    Neurospora has the capability to solubilize coal and the protein fraction accounting for this ability has been isolated. During this period the cola solubilizing activity (CSA) was fractionated and partially sequenced. The activity has been determined to be a tyrosinase and/or a phenol oxidase. The amino acid sequence of the protein was used to prepare oligonucleotides to identify the clone carrying Neurospora CSA. It is intended to clone the Neurospora gene into yeast, since yeast cannot solubilize coal, to further characterize the CSA.

  18. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Third quarterly technical progress report 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur, coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3} and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high-sulfur US coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida.

  19. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  20. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction technology for the control of nitrogen oxide emissions from high-sulfur coal-fired boilers. First and second quarterly technical progress reports, [January--June 1995]. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia (NH{sub 3}) into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor containing a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW nameplate capacity) near Pensacola, Florida. The project is funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  1. Engineering development of coal-fired high performance power systems, Phase II and Phase III. Quarter progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    Work is presented on the development of a coal-fired high performance power generation system by the year 2000. This report describes the design of the air heater, duct heater, system controls, slag viscosity, and design of a quench zone.

  2. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 5, October 1, 1992--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Two base case flow sheets have now been prepared. In the first, which was originally presented in TPR4, a Texaco gasifier is used. Natural gas is also burned in sufficient quantity to increase the hydrogen to carbon monoxide ratio of the synthesis gas to the required value of 1. 1 for alcohol synthesis. Acid gas clean up and sulfur removal are accomplished using the Rectisol process followed by the Claus and Beavon processes. About 10% of the synthesis gas is sent to a power generation unit in order to produce electric power, with the remaining 90% used for alcohol synthesis. For this process, the estimated installed cost is $474.2 mm. The estimated annual operating costs are $64.5 MM. At a price of alcohol fuels in the vicinity of $1. 00/gal, the pay back period for construction of this plant is about four years. The details of this case, called Base Case 1, are presented in Appendix 1. The second base case, called Base Case 2, also has a detailed description and explanation in Appendix 1. In Base Case 2, a Lurgi Gasifier is used. The motivation for using a Lurgi Gasifier is that it runs at a lower temperature and pressure and, therefore, produces by-products such as coal liquids which can be sold. Based upon the economics of joint production, discussed in Technical Progress Report 4, this is a necessity. Since synthesis gas from natural gas is always less expensive to produce than from coal, then alcohol fuels will always be less expensive to produce from natural gas than from coal. Therefore, the only way to make coal- derived alcohol fuels economically competitive is to decrease the cost of production of coal-derived synthesis gas. one method for accomplishing this is to sell the by-products from the gasification step. The details of this strategy are discussed in Appendix 3.

  3. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report Number 8, 1 July, 1993--30 September, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    Task 1, the preparation of catalyst materials, is proceeding actively. At WVU, catalysts based on Mo are being prepared using a variety of approaches to alter the oxidation state and environment of the Mo. At UCC and P, copper-based zinc chromite spinel catalysts will be prepared and tested. The modeling of the alcohol-synthesis reaction in a membrane reactor is proceeding actively. Under standard conditions, pressure drop in the membrane reactor has been shown to be negligible. In Task 2, base case designs had previously been completed with a Texaco gasifier. Now, similar designs have been completed using the Shell gasifier. A comparison of the payback periods or production cost of these plants shows significant differences among the base cases. However, a natural gas only design, prepared for comparison purposes, gives a lower payback period or production cost. Since the alcohol synthesis portion of the above processes is the same, the best way to make coal-derived higher alcohols more attractive economically than natural gas-derived higher alcohols is by making coal-derived syngas less expensive than natural gas-derived syngas. The maximum economically feasible capacity for a higher alcohol plant from coal-derived syngas appears to be 32 MM bbl/yr. This is based on consideration of regional coal supply in the eastern US, coal transportation, and regional product demand. The benefits of economics of scale are illustrated for the base case designs. A value for higher alcohol blends has been determined by appropriate combination of RVP, octane number, and oxygen content, using MTBE as a reference. This analysis suggests that the high RVP of methanol in combination with its higher water solubility make higher alcohols more valuable than methanol.

  4. Characterization of open-cycle coal-fired MHD generators. Quarterly technical summary report No. 6, October 1--December 31, 1977. [PACKAGE code

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, C.E.; Yousefian, V.; Wormhoudt, J.; Haimes, R.; Martinez-Sanchez, M.; Kerrebrock, J.L.

    1978-01-30

    Research has included theoretical modeling of important plasma chemical effects such as: conductivity reductions due to condensed slag/electron interactions; conductivity and generator efficiency reductions due to the formation of slag-related negative ion species; and the loss of alkali seed due to chemical combination with condensed slag. A summary of the major conclusions in each of these areas is presented. A major output of the modeling effort has been the development of an MHD plasma chemistry core flow model. This model has been formulated into a computer program designated the PACKAGE code (Plasma Analysis, Chemical Kinetics, And Generator Efficiency). The PACKAGE code is designed to calculate the effect of coal rank, ash percentage, ash composition, air preheat temperatures, equivalence ratio, and various generator channel parameters on the overall efficiency of open-cycle, coal-fired MHD generators. A complete description of the PACKAGE code and a preliminary version of the PACKAGE user's manual are included. A laboratory measurements program involving direct, mass spectrometric sampling of the positive and negative ions formed in a one atmosphere coal combustion plasma was also completed during the contract's initial phase. The relative ion concentrations formed in a plasma due to the methane augmented combustion of pulverized Montana Rosebud coal with potassium carbonate seed and preheated air are summarized. Positive ions measured include K/sup +/, KO/sup +/, Na/sup +/, Rb/sup +/, Cs/sup +/, and CsO/sup +/, while negative ions identified include PO/sub 3//sup -/, PO/sub 2//sup -/, BO/sub 2//sup -/, OH/sup -/, SH/sup -/, and probably HCrO/sub 3/, HMoO/sub 4//sup -/, and HWO/sub 3//sup -/. Comparison of the measurements with PACKAGE code predictions are presented. Preliminary design considerations for a mass spectrometric sampling probe capable of characterizing coal combustion plasmas from full scale combustors and flow trains are presented

  5. Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Fourth quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  6. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Innovative Clean Coal Technology (ICCT). Quarterly report No. 7, January--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the amonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO, and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project will be funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), and the Electric Power Research Institute.

  7. Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 3, January--March 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

  8. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of Nitrogen Oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  9. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 2, October--December 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide NO{sub x} control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  10. Hydrocarbon-oil encapsulated bubble flotation of fine coal using 3-in. ID flotation column. Technical progress report for the eleventh quarter, April 1--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Peng, F.F.

    1996-05-01

    There are four modes of the collector dispersion techniques. They are (1) direct liquid additions and stirring, (2) ultrasonic energy collector dispersion, (3) atomized collector dispersion, and (4) gasified collector transported in air stream. Among those collector dispersion techniques, the technique using the gasified collector transported in air phase can be used to enhance the flotation performance with substantial reduction in collector usage and selectivity, compared to the flotation using direct liquid addition (and mechanical agitation) technique. In this phase of study, two modes of collector addition techniques including gasified collector transported in gas phase and direct collector addition techniques were applied in the column flotation to demonstrate the selectivity of utilizing the hydrocarbon-oil encapsulated air bubbles in the fine coal flotation process. The 1-in. ID flotation column was used to scale-up to 3-in. ID flotation column. The initial starting point to operate the 3-in ID flotation column were determined using both 1-in. and 3-in. flotation columns based on the three phases of work plans and experiment design. A 3-in. flotation column was used to evaluate two modes of collector dispersion and addition techniques on the recovery and grade of fine coals using various ranks of coal.

  11. Organosulphur compounds in coals as determined by reaction with Raney nickel and microscale pyrolysis techniques. Fifth quarterly report, October 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Philp, R.P.

    1996-01-31

    This project is designed to study the nature of sulphur-containing organic compounds and their respective linkages in coals and related materials using a variety of microscale pyrolysis techniques combined with gas chromatography--mass spectrometry. The majority of the work will be undertaken using a PYRAN pyrolysis system purchased with funds from the DOE University Instrumentation Program. Since the last report, we have reached the point in the project that we are satisfied with the nickel boride chemical degradation method, and are now working our way through the large amounts of data collected by gas chromatography-mass spectrometry analysis. While we have tentatively identified a variety of compounds produced by the chemical degradation method with spectra from the literature, we have yet to confirm many of these identifications with pure standards or specialized oil samples. As a result we will present in this report chromatograms of one of the coals (Illinois No. 6) and compare the free aliphatic hydrocarbons with those compounds cleaved from the polar extract, asphaltenes and pre-extracted coal matrix.

  12. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

  13. Hydrogen bonding in asphaltenes and coal liquids. Quarterly report, May 1, 1981-July 31, 1981. [Effects of phenols or anisole on aging of SRC blends

    Energy Technology Data Exchange (ETDEWEB)

    Li, N.C.; Jones, L.; Yaggi, N.F.

    1981-01-01

    Coal-derived liquids are very susceptible to oxidative degradation. Oxygen and temperature exert a dramatic effect on enhancing the viscosity of coal-derived fuels, and a free-radical mechanism is an obvious choice for the mechanism of this noted oxidative degradation. In the present study, several different phenols were added to blends consisting of two different ratios of SRC I and SRC II middle distillate: 20/80 and 30/70 by weight. The objective of this research is to study the effect of phenols on the aging of the SRC blends. It has been found that upon the addition of phenol itself, the original hydrogen bonding between the acidic and basic functional groups in the coal-derived liquids is apparently disrupted because the added phenol can now interact with the proton-accepting species in liquids, thus, leading to a lower viscosity. When anisole (which contains no hydroxyl group) is added instead of phenol, the effect of slowing down the aging process is much smaller. o-Phenylphenol is a hindered phenol, and the effect on the aging process is intermediate between anisole and phenol.

  14. Studies in coal liquefaction with application to the SRC and related processes. Quarterly report, August 1981-October 1981. [Using model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tarrer, A. R.; Guin, J. A.; Curtis, C. W.

    1981-01-01

    Model compound reactions were studied to evaluate the effects of mass transfer, solvent type, solvent blending, hydrogen partial pressure, temperature, reactant concentration, additive loading and its preparation, etc. Naphthalene hydrogenation and benzothiophene hydrodesulfurization were investigated under the conditions comparable to commercial coal liquefaction and related processes. Both of these reaction systems were observed to be surface reaction controlled under the reaction conditions used in this work. Certain aromatic compounds were observed to cause a reduction in the reaction rates of naphthalene and benzothiophene. Single stage coal dissolution was investigated using tetralin as a hydrogen donor solvent and a commercial cobalt-molybdate catalyst. A spinning basket system was developed to allow injection of the catalyst at a desired time in the reaction cycle. This catalyst injection technique proved to be reliable for the exploratory work done here. The degree of catalyst deactivation was rated by comparing the activities of the spent catalyst for model compound (naphthalene and cumene) reactivities relative to those of the fresh catalyst. No substantial reduction in deactivation was observed to result with delayed contacting of the catalyst with the coal-tetralin reaction mixture. The effect of reaction temperature on the initial rate of catalyst deactivation was also studied.

  15. Development & testing of industrial scale, coal fired combustion system, phase 3. Eighth quarterly technical progress report, 1 October, 1993--31 December, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.

    1994-01-31

    The primary objective of the present Phase 3 effort is to perform the final testing at a 20 MMBtu/hr commercial scale of an air cooled, slagging coal combustor for application to industrial steam boilers and power plants. The focus of the test effort will be on combustor durability, automatic control of the combustor`s operation, and optimum environmental control of emissions inside the combustor. In connection with the latter, the goal is to achieve 0.4 lb/MMBtu of SO{sub 2} emissions, 0.2 lb/MMBtu of NO{sub x} emissions, and 0.02 lb particulates/MMBtu. Meeting the particulate goal will require the use of a baghouse or electrostatic precipitator to augment the nominal slag retention in the combustor. The NO{sub x} emission goal will require a modest improvement over maximum reduction achieved to date in the combustor to a level of 0.26 lb/MMBtu. To reach the SO{sub 2} emissions goal may require a combination of sorbent injection inside the combustor and sorbent injection inside the boiler, especially in high (>3.5%) sulfur coals. Prior to the initiation of the project, SO{sub 2} levels as low as 0.6 lb/MMBtu, equal to 81% reduction in 2% sulfur coals, were measured with boiler injection of calcium hydrate. The final objective is to define suitable commercial power or steam generating systems to which the use of the air cooled combustor offers significant technical and economic benefits. In implementing this objective both simple steam generation and combined gas turbine-steam generation systems will be considered.

  16. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  17. Bench-scale demonstration of biological production of ethanol from coal synthesis gas. Quarterly report, January 1, 1994--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report presents results from the solvent selection, fermentation, and product recovery studies performed thus far in the development of a bench scale unit for the production of ethanol from coal-derived synthesis gas. Several additional solvents have been compared for their ability to extract ethanol from aqueous solutions of ethanol in water and fermentation permeate. The solvent 2,6-dimethyl-4-heptanol still appears to be the solvent of choice. Liquid-liquid equilibrium data have been collected for ethanol and 2,6-dimethyl-4-heptanol.

  18. Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Quarterly technical status report, January--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-14

    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  19. Emissions reductions in coal-fired home heating stoves through use of briquettes. Quarterly report, January 1, 1995--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-27

    The purpose of this program is to encourage the formation of commercial ventures between the U.S. and Polish firms to provide equipment and /or services to reduce pollution from low emission sources in Krakow, Poland. This period has seen additional briquette testing at Akademia Gorniczo Hutnicza (AGH). In addition, Euromining has begun large-scale briquette production. The initial multi-ton batches were delivered as this period ended. Acurex Environmental Corporation has delivered a sampling crew and equipment to Krakow. Testing at INCO Veritas (INCO) has not started due to delays in the delivery of briquettes by Euromining but is expected to begin with the new quarter. Arrangements are in place for the product market testing to begin as soon as the briquettes are available.

  20. Micropore diffusion in coal chars under reactive conditions: Quarterly technical progress report, 15 December 1986-15 March 1987. [Effect of activated diffusion in small pores

    Energy Technology Data Exchange (ETDEWEB)

    Calo, J.M.; Perkins, M.T.; Lilly, W.D.

    1987-01-01

    In this second quarterly technical progress report, we present some additional developments concerning the analysis of the effect of activated micropore diffusion on gasification reactivity, and report on progress with the experimental apparatus: (1) The Autoclave Engineers 3'' Berty catalytic reactor has been reassembled and tested, and has been found to function satisfactorily. However, the mass spectrometer malfunctioned and had to be repaired. (2) The effect of sorbate partial pressure on miropore diffusion and gasification reactivity have been examined. It was found that: pressure can have a significant effect on micropore diffusivities; increasing pressure generally increases the microparticle effectiveness factor for pressures far from saturation (while the opposite is true at near-saturation conditions); and the effect of sorbate partial pressure should be considered in conducting and interpreting measurements regarding micropore diffusion. 6 refs., 1 fig., 1 tab.

  1. Kinetics and mechanism of catalytic hydroprocessing of components of coal-derived liquids. Twentieth quarterly report, February 16, 1984-May 15, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Gates, B.C.; Olson, J.H.; Schuit, G.C.A.; Stiles, A.B.; Petrakis, L.

    1984-06-26

    Kinetics data have been determined for the catalytic hydroprocessing of the acidic fractions of a heavy distillate of a liquid derived from Powhatan No. 5 coal. A commercial, sulfided Ni-Mo/..gamma..-Al/sub 2/O/sub 3/ catalyst was used in the experiments, carried out at 350/sup 0/C and 120 atm with the coal liquid fractions dissolved in cyclohexane. The feed and hydrotreated products were analyzed by gas chromatography/mass spectrometry. The data were analyzed with group-type methods for compound classes, and results were also obtained for some individual organooxygen compounds. Catalytic hydroprocessing leads to a large increase in the number of compounds and a shift to lower boiling ranges. The data are broadly consistent with reaction networks determined with pure compounds; the most important reactions include aromatic ring hydrogenation, hydrodeoxygenation, and hydrodemethylation. Pseudo first-order rate constants for conversion of the predominant organooxygen compounds are on the order of 10/sup -4/ L/(g of catalyst.s); the reactivity decreases in the order cyclohexylphenol > dimethylhydroxyindane > tetrahydronaphthol > phenylphenol > 1-naphthol. 12 references, 15 figures, 5 tables.

  2. Engineering development of coal-fired high performance power systems, Phases 2 and 3. Quarterly progress report, October 1--December 31, 1996. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The goals of this program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of: {gt} 47% efficiency (HHV); NO{sub x}, SO{sub x}, and particulates {gt} 10% NSPS; coal providing {ge} 65% of heat input; all sold wastes benign; and cost of electricity 90% of present plant. Work reported herein is from Task 1.3 HIPPS Commercial Plant Design, Task 2,2 HITAF Air Heater, and Task 2.4 Duct Heater Design. The impact on cycle efficiency from the integration of various technology advances is presented. The criteria associated with a commercial HIPPS plant design as well as possible environmental control options are presented. The design of the HITAF air heaters, both radiative and convective, is the most critical task in the program. In this report, a summary of the effort associated with the radiative air heater designs that have been considered is provided. The primary testing of the air heater design will be carried out in the UND/EERC pilot-scale furnace; progress to date on the design and construction of the furnace is a major part of this report. The results of laboratory and bench scale activities associated with defining slag properties are presented. Correct material selection is critical for the success of the concept; the materials, both ceramic and metallic, being considered for radiant air heater are presented. The activities associated with the duct heater are also presented.

  3. Development of a use for Illinois coal concentrates for slurry fed gasifiers. [Quarterly] technical report, December 1, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Khan, L.A.; Lytle, J.M.; Khan, S.; At-Taras, M. [Illinois State Geological Survey, Champaign, IL (United States); Ehrlinger, H.P. III [Consultant (United States)

    1994-06-01

    The purpose of this project is to test concentrates made from preparation plant fines as to their amenability as feed for slurry fed, slagging, entrained-flow gasifiers. During the current reporting period, waste slurry samples were obtained from the washing plants associated with surface mining, underground mining from which the fines are not treated, underground mining from which a flotation concentrate is made from the washer plant waste fines, and from a tailing pile associated with one of the washing plants which had been deposited for over five years. Column flotation testing was conducted on representative samples of several of these. Using a typical flotation reagent requirement of kerosene and MIBC several tests showed outstanding results when the feed rate was kept at the nominal rate of 10 pounds per hour as suggested by the Deister Concentrator Company. The most encouraging test was conducted on waste fines from the surface plant. While the ash content in the clean coal concentrate was higher than expected, the calorific content in the tailing was 422 BTU/pound, which was at least twice as low as any tailings produced either in the laboratory or in plants during the last ten years of coal flotation research. In this same test 96.9% of the BTU`s were concentrated in the flotation product and 80.3% of the ash reported in the flotation tailing. Flotation results of the material which had been impounded for an extended period were encouraging as 67.7% of the BTU`s were concentrated in a product which contained 12,762 BTU/pound.

  4. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 4, July 1, 1992--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    A base case flow sheet for the production of higher alcohols from coal derived synthesis gas has been completed, including an economic analysis. The details of the flow sheet and economics are in Appendix 1. The pay back period for the capital investment for the plant has been calculated as a function of the market price of the product, and this figure is also shown as Figure I in Appendix 1. The estimated installed cost is almost $500 MM, and the estimated annual operating cost is $64 MM. At a price in the vicinity of $1.00/gal for the alcohol product, the pay back period for construction of the plant is four years. These values should be considered preliminary, since many of the capital costs were obtained from other paper studies sponsored by DOE and TVA and very few values could be found from actual plants which were built. This issue is currently being addressed. The most expensive capital costs were found to be the gasifier, the cryogenic air separation plant, the steam/power generation plant and the acid gas/sulfur removal processes taken as a whole. It is planned to focus attention on alternatives to the base case. The problem is that it is less expensive to make syngas from natural gas. Therefore, it is essential to reduce the cost of syngas from coal. This is where the energy park concept becomes important. In order for this process to be economical (at current market and political conditions) a method must be found to reduce the cost of syngas manufacture either by producing energy or by-products. Energy is produced in the base case, but the amount and method has not been optimized. The economic arguments for this concept are detailed in Appendix 2.

  5. Thermodestruction of brown coals of different genetic types

    Energy Technology Data Exchange (ETDEWEB)

    Butuzova, Ludmila; Isaeva, Lubov [L.M. Litvinenko Institute of Physical Organic and Coal Chemistry, National Academy of Sciences of the Ukraine, 70 R. Luxemburg str., 83114 Donetsk (Ukraine); Turchanina, Oksana [Donetsk National Technical University, 48 Artema str., 83000 Donetsk (Ukraine); Krzton, Andrzej [Institute of Coal Chemistry, Polish Academy of Sciences, 5 Sowinskiego, 44-102, Gliwice (Poland)

    2002-06-20

    The influence of brown coal genetic type and method of chemical pre-treatment on its behavior in pyrolysis processes has been shown. An important role of brown coal reductivity in coal thermal decomposition has been ascertained. It has been found that chemical pre-treatment permits variation of the rate of pyrolysis, the yields of pyrolysis products and structure of semi-cokes.

  6. Lime Pretreatment

    Science.gov (United States)

    Sierra, Rocio; Granda, Cesar Benigno; Holtzapple, Mark T.

    Lime pretreatment has proven to be a useful method for selectively reducing the lignin content of lignocellulosic biomass without significant loss in carbohydrates, thus realizing an important increase in biodigestibility. In lime pretreatment, the biomass is pretreated with calcium hydroxide and water under different conditions of temperature and pressure. It can be accomplished in one of three fashions: (1) short-term pretreatment that lasts up to 6 h, requires temperatures of 100-160°C, and can be applied with or without oxygen (pressure ~200 psig); (2) long-term pretreatment taking up to 8 weeks, requiring only 55-65°C, and capable of running with or without air (atmospheric pressure); and (3) simple pretreatment requiring 1 h in boiling water, without air or oxygen. Nonoxidative conditions are effective at low lignin contents (below ~18% lignin), whereas oxidative conditions are required for high lignin contents (above ~18% lignin).

  7. Utilization of Illinois coal gasification slags for production of ultra-lightweight aggregates. [Quarterly] technical report, March 1--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Zimmerle, T. [Silbrico Corp. (United States)

    1993-09-01

    This research is aimed at testing and developing the expansion potential of gasification solid residues (slag) to manufacture ultra-lightweight aggregates (ULWA). Conventional ULWAs are manufactured by pyroprocessing of perlite or vermiculite ores and have unit weights in the range of 5--15 lb/ ft3. These materials are sold for approximately $200/ton (or $1.00/ft3) and have numerous applications including loose fill insulation, insulating concrete, precast products, filtration media, and agricultural applications. In a previous project, Praxis Engineers demonstrated that lightweight aggregates (LWA) with unit weights of 25--55 lb/ ft3 can be produced from Illinois coal slags and used as substitutes for conventional LWAs. In this program, tests are being undertaken in a pilot-scale vertical shaft furnace to identify operating conditions for the expansion of Illinois slags such that the product can be substituted for ULWA. Upon completion of testing, a large batch of expanded slag will be produced for evaluation in various applications, both in this phase and in subsequent Phase II testing. During the initial pilot plant runs using two Illinois slags, expanded products with unit weights of 12.5--26.5 and 20--52 lb/ ft3, respectively, were produced. Efforts are under way to generate products with lower unit weights.

  8. Development and testing of industrial scale, coal fired combustion system, Phase 3. Eighteenth quarterly technical progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.

    1996-08-18

    In the second quarter of calendar year 1996, 16 days of combust- boiler tests were performed, including 2 days of tests on a parallel DOE sponsored project on sulfur retention in a slagging combustor. Between tests, modifications and improvements that were indicated by these tests were implemented. This brings the total number of test days to the end of June in the task 5 effort to 28, increased to 36 as of the date of this Report, 8/18/96. This compares with a total of 63 test days needed to complete the task 5 test effort. It is important to note that the only major modification to the Williamsport combustor has been the addition of a new downstream section, which lengthens the combustor and improves the combustor-boiler interface. The original combustor section, which includes the fuel, air, and cooling water delivery systems remained basically unchanged. Only the refractory liner was completely replaced, a task which occurs on an annual basis in all commercial slagging utility combustors. Therefore, this combustor has been operated since 1988 without replacement. The tests in the present reporting period are of major significance in that beginning with the first test on March 31st, for the first time slagging opening conditions were achieved in the upgraded combustor. The first results showed that the present 20 MMBtu/hr combustor design is far superior to the previous one tested since 1988 in Williamsport, PA. The most important change is that over 95% of the slag was drained from the slag tap in the combustor. This compares with an range of one-third to one-half in Williamsport. In the latter, the balance of the slag flowed out of the exit nozzle into the boiler floor. In addition, the overall system performance, including the combustor, boiler, and stack equipment, ranged from good to excellent. Those areas requiring improvement were of a nature that could be corrected with some work. but in no case were the problems encountered of a barrier type.

  9. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  10. Short-term energy outlook, quarterly projections, second quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections. The details of these projections, as well as monthly updates, are available on the Internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The paper discusses outlook assumptions; US energy prices; world oil supply and the oil production cutback agreement of March 1998; international oil demand and supply; world oil stocks, capacity, and net trade; US oil demand and supply; US natural gas demand and supply; US coal demand and supply; US electricity demand and supply; US renewable energy demand; and US energy demand and supply sensitivities. 29 figs., 19 tabs.

  11. Configurational diffusion of asphaltenes in fresh and aged catalyst extrudates. Quarterly progress report, June 20, 1995--September 20, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Guin, J.A.

    1996-01-01

    The objective of this research is to determine the relationship between the size and shape of coal and petroleum macromolecules and their diffusion rates i.e., effective diffusivities, in catalyst pore structures. This quarter, three petroleum and two coal asphaltenes were prepared from petroleum asphalts and coal derived solids separately by solvent extraction.

  12. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; Ursla Levy; John Sale; Nenad Sarunac

    2006-01-01

    This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energy extracted from boiler flue gas.

  13. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; Ursla Levy; John Sale; Nenad Sarunac

    2006-01-01

    This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energy extracted from boiler flue gas.

  14. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 4, April--June 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor, Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuel performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  15. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 8, April--June, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U. S. coal.

  16. Effect of pretreating of host oil on coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Hajdu, P.E.; Tierney, J.W.; Wender, I. [Univ. of Pittsburgh, PA (United States)

    1995-12-31

    The principal objective of this research was to determine if coprocessing performance (i.e., coal conversion and oil yield) could be significantly improved by pretreating the heavy resid prior to reacting it with coal. For this purpose, two petroleum vacuum resids (1000{degrees}F+), one from the Amoco Co. and another from the Citgo Co., were used as such and after they had been pretreated by catalytic hydrogenation and hydrocracking reactions. The pretreatments were aimed at improving the host oil by; (1) converting any aromatic structures in the petroleum to hydroaromatic compounds capable of donating hydrogen, (2) cracking the heavy oil to lower molecular weight material that might serve as a better solvent, (3) reducing the coking propensity of the heavy oil through the hydrogenation of polynuclear aromatic compounds, and (4) removing metals and heteroatoms that might poison a coprocessing catalyst. Highly dispersed catalysts, including fine particle Fe- and Mo-based, and dicobalt octacarbonyl, Co{sub 2}(CO){sub 8}, were used in this study. The untreated and pretreated resids were extensively characterized in order to determine chemical changes brought about by the pretreatments. The modified heavy oils were then coprocessed with an Illinois No. 6 coal as well as with a Wyodak coal, and compared to coprocessing with untreated resids under the same hydroliquefaction conditions. The amount of oil derived from coal was estimated by measuring the level of phenolic oxygen (derived mainly from coal) present in the oil products. Results are presented and discussed.

  17. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, first and second quarters 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involve injecting ammonia into the flue gas generated from coal combustion in a boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The project is being conducted in the following three phases: permitting, environmental monitoring plan and preliminary engineering; detailed design engineering and construction; and operation, testing, disposition and final report. The project was in the operation and testing phase during this reporting period. Accomplishments for this period are described.

  18. Coal surface control for advanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J. (California Univ., Berkeley, CA (USA)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (USA)); Hu, Weibai; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (USA)); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (USA))

    1990-08-15

    The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Work this quarter concentrated on the following: washability studies, which included particle size distribution of the washability samples, and chemical analysis of washability test samples; characterization studies of induction time measurements, correlation between yield, combustible-material recovery (CMR), and heating-value recovery (HVR), and QA/QC for standard flotation tests and coal analyses; surface modification and control including testing of surface-modifying reagents, restoration of hydrophobicity to lab-oxidized coals, pH effects on coal flotation, and depression of pyritic sulfur in which pyrite depression with calcium cyanide and pyrite depression with xanthated reagents was investigated; flotation optimization and circuitry included staged reagent addition, cleaning and scavenging, and scavenging and middling recycling. Weathering studies are also discussed. 19 figs., 28 tabs.

  19. Possibilities and evaluation of straw pretreatment

    DEFF Research Database (Denmark)

    Knudsen, Niels Ole; Jensen, Peter Arendt; Sander, Bo

    1998-01-01

    Biomass utilisation by cofiring of straw in a pulverised coal fire boiler is economically attractive compared to dedicated straw fired plants. However, the high content of potassium and chloride impedes utilisation of the fly ash, deactivates the de NOx catalysts in the flue gas cleaning system...... and may also lead to increased deposit formation. A pretreatment process is required to solve the problems. In this paper two pretreatment processes are considred, one based on straw wash and another based on pyrolysis and char wash. To evaluate and compare the processes, laboratory and technical...

  20. US energy industry financial developments, 1993 first quarter

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-25

    Net income for 259 energy companies-- including, 20 major US petroleum companies-- rose 38 percent between the first quarter of 1992 and the first quarter of 1993. An increased level of economic activity, along with colder weather, helped lift the demand for natural gas. crude oil, coal, and electricity. The sharp rise in the domestic price of natural gas at the wellhead relative to the year-ago quarter was the most significant development in US energy during the first quarter. As a consequence of higher natural gas prices, the upstream segment of the petroleum industry reported large gains in income, while downstream income rose due to higher refined product demand. Increased economic activity and higher weather-related natural gas demand also led to improvements in income for the rate-regulated energy segment. However, declining domestic oil production continued to restrain upstream petroleum industry earnings growth, despite a moderate rise in crude oil prices.

  1. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, January--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    In the Advance Coal Liquefaction Concept Proposal (ACLCP) carbon monoxide (CO) and water have been proposed as the primary reagents in the pretreatment process. The main objective of this project is to develop a methodology for pretreating coal under mild conditions based on a combination of existing processes which have shown great promise in liquefaction, extraction and pyrolysis studies. The aim of this pretreatment process is to partially depolymerise the coal, eliminate oxygen and diminish the propensity for retograde reactions during subsequent liquefaction. The desirable outcome of the CO pretreatment step should be: (1) enhanced liquefaction activity and/or selectivity toward products of higher quality due to chemical modification of the coal structure; (2) cleaner downstream products; (3) overall improvement in operability and process economics.

  2. Selective flotation of fossil resin from western coal. A special report comprising: Monthly report for December 1991--April 1992 and Quarterly reports for December 1, 1991--February 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, G.F.; Miller, J.D.

    1992-03-20

    The test program has demonstrated that: (1) technically, the new flotation technologies discovered at the University of Utah and then improved upon by Advanced Processing Technologies, Inc. provide a highly efficient means to selectively recover fossil resin from coal. The proof-of-concept continuous flotation circuit resulted in fossil resin recovery with the same separation efficiency as was obtained from laboratory bench-scale testing (more than 80% recovery at about 80% concentrate grade); and (2) economically, the selective flotation process has been shown to be sufficiently profitable to justify the development of a fossil resin industry based on this new flotation process. The proof-of-concept testing has resulted in significant interest from several coal mining companies and has sparked the desire of local and state government to establish a fossil resin industry in the Wasatch Plateau coal field. In this view, the results from the current proof-of-concept testing program have been successful. This special report provides theoretical and analytical data on some surface chemistry work pertinent to fossil resin characterization, and other efforts carried out during the past months.

  3. Fluidized-bed bioreactor system for the microbial solubilization of coal

    Science.gov (United States)

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.

  4. Fixed-bed bioreactor system for the microbial solubilization of coal

    Science.gov (United States)

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fixed-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fixed-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the large scale production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fixed-bed bioreactor. 1 fig., 1 tab.

  5. Fluidized-bed bioreactor process for the microbial solubiliztion of coal

    Science.gov (United States)

    Scott, Charles D.; Strandberg, Gerald W.

    1989-01-01

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

  6. THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS. Includes quarterly technical progress report No.25 from 10/01/1997-12/31/1997, and quarterly technical progress report No.26 from 01/01/1998-03/31/1998

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-03-01

    This project was divided into two parts. One part evaluated possible catalysts for producing higher-alcohols (C{sub 2} to C{sub 5+}) as fuel additives. The other part provided guidance by looking both at the economics of mixed-alcohol production from coal-derived syngas and the effect of higher alcohol addition on gasoline octane and engine performance. The catalysts studied for higher-alcohol synthesis were molybdenum sulfides promoted with potassium. The best catalysts produced alcohols at a rate of 200 g/kg of catalyst/h. Higher-alcohol selectivity was over 40%. The hydrocarbon by-product was less than 20%. These catalysts met established success criteria. The economics for mixed alcohols produced from coal were poor compared to mixed alcohols produced from natural gas. Syngas from natural gas was always less expensive than syngas from coal. Engine tests showed that mixed alcohols added to gasoline significantly improved fuel quality. Mixed-alcohols as produced by our catalysts enhanced gasoline octane and decreased engine emissions. Mixed-alcohol addition gave better results than adding individual alcohols as had been done in the 1980's when some refiners added methanol or ethanol to gasoline.

  7. Coal 99; Kol 99

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, C.

    2000-07-01

    in equipment for burning pellets instead of coal. In Linkoeping waste of rubber is mixed with coal. Also Soederenergi AB has rebuilt their three coal boilers and replaced 100 % of the coal by peat and wood fuels. Coal is a reserve fuel. Several co-generation plants like Linkoeping, Norrkoeping, Uppsala and Oerebro use both coal and forest fuels. The use of coal is then concentrated to the electricity production. The average price of steam coal imported in Sweden in 1998 was 370 SEK/ton or the same as in 1997. For the world, the average import price fell about 6 USD/ton to 32 USD/ton. The price fall was concentrated to the 4th quarter. The prices have continued to fall during 1999 as a result of the crisis in Asia but are now stabilising as a result of increasing oil prices. All Swedish plants meet their emission limits of dust, SO{sub 2} and NO{sub x}, given by county administrations or concession boards. The co-generation plants have all some sort of SO{sub 2}-removal system. Mostly used is the wet-dry method. The biggest co-generation plant, in Vaesteraas, has recently invested in a catalytic NO{sub x}-cleaning system type SCR, which is reducing the emission level 80-90 %. Most other plants are using low NO{sub x}- burners or injection systems type SNCR, based on ammonium or urea, which are reducing the emissions 50-70 %. A positive effect of the recently introduced NO{sub x}-duties is a 60 % reduction compared to some years ago, when the duties were introduced. World hard coal production was about 3 700 tons in 1998, a minor decrease compared to 1997. The trade, however, has increased about 3 % to 520 mill tons. The coal demand in the OECD-countries has increased about 1,7 % yearly during the last ten years. The coal share of the energy supply is about 20% in the OECD-countries and 27% in the whole world. Several sources estimate a continuing growth during the next 20 years in spite of an increasing use of natural gas and nuclear power. The reason is a strong

  8. TOXIC SUBSTANCES FROM COAL COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    A KOLKER; AF SAROFIM; CL SENIOR; FE HUGGINS; GP HUFFMAN; I OLMEZ; J LIGHTY; JOL WENDT; JOSEPH J HELBLE; MR AMES; N YAP; R FINKELMAN; T PANAGIOTOU; W SEAMES

    1998-12-08

    carried out during August at the Advanced Photon Source (APS), the new synchrotron facility at Argonne National Laboratory, Chicago, IL. Further analysis of small-scale combustion experiments conducted at PSI in Phase I was completed this quarter. The results of these experiments for the first time suggest almost complete vaporization of certain trace elements (Se, Zn) from coal combustion in the flame zone, in accordance with theoretical equilibrium predictions. Other elements (As, Sb, Cr) appeared considerably less volatile and may react with constituents in the bulk ash at combustion temperatures. The combustion section of the University of Arizona's Downflow Combustor was completely rebuilt. The University of Utah worked on setting up EPA Method 26A to give the capability to measure chlorine in flue gas. The chlorine kinetic calculations performed as part of the Phase I program were found to have an error in the initial conditions. Therefore, the calculations were re-done this quarter with the correct starting conditions. Development of a quasi-empirical emissions model based on reported emissions of particulate matter from field measurements was continued this quarter. As a first step in developing the ToPEM, we developed a sub-model that calculates the evaporation of major elements (Na, K, Fe, Si, Al, Ca and Mg) from both inherent and extraneous minerals of coal. During this quarter, this sub-model was included into EMAF, which formed the ToPEM. Experimental data from the Phase I program were used to test and modify the sub-model and the ToPEM.

  9. Appalachian clean coal technology consortium

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.-H.; Basim, B.; Luttrell, G.H.; Phillips, D.I. [Virginia Polytechnic Inst., Blacksburg, VA (United States); Jiang, D.; Tao, D.; Parekh, B.K. [Kentucky Univ., Lexington, KY (United States); Meloy, T. [West Virginia Univ., Morgantown, WV (United States)

    1997-01-28

    Novel chemicals that can be used for increasing the efficiency of fine coal dewatering was developed at Virginia Tech. During the past quarter, Reagent A was tested on three different coal samples in laboratory vacuum filtration tests. these included flotation products from Middle Fork plant, Elkview Mining Company, and CONSOL, Inc. the tests conducted with the Middle Fork coal sample (100 mesh x 0) showed that cake moisture can be reduced by more than 10% beyond what can be achieved without using dewatering aid. This improvement was achieved at 1 lb/ton of Reagent A and 0.1 inch cake thickness. At 0. 5 inches of cake thickness, this improvement was limited to 8% at the same reagent dosage. the results obtained with the Elkview coal (28 mesh x 0) showed similar advantages in using the novel dewatering aid. Depending on the reagent dosage, cake thickness, drying cycle time and temperature, it was possible to reduce the cake moisture to 12 to 14% rage. In addition to achieving lower cake moisture, the use of Reagent A substantially decreased the cake formation time, indicating that the reagent improves the kinetics of dewatering, The test results obtained with CONSOL coal were not as good as with the other coals tested in the present work, which may be attributed to possible oxidation and/or contamination.

  10. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 3, July--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluate the economic and technical feasibility of the concept, and prepare an R & D plan to develop the concept further. Foster Wheeler Development Corporation is leading a team ofcompanies involved in this effort. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degrees}F in furnaces fired with cool-derived fuels and then directly heated in a natural-gas-fired combustor up to about 2400{degrees}F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuelgas is a relatively clean fuel, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need tobe a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown.

  11. Characteristics of American coals in relation to their conversion into clean energy fuels. Quarterly technical progress report, January--March 1976. [2 appendices; 19 refs. Dryflo separation tests data

    Energy Technology Data Exchange (ETDEWEB)

    Spackman, W.; Davis, A.; Walker, P. L.; Lovell, H. L.; Essenhigh, R. H.; Vastola, F. J.; Given, P. H.

    1976-05-01

    Responses to the questionnaire, which was distributed to determine the extent to which the nation's coal seams have been sampled and characterized, are being received. Early comparisons indicate a mathematical relationship between average random reflectance (Rapid Scan) and the mean-maximum reflectance as obtained by standard reflectance analysis. Results obtained so far show support of a diffusion dominance mechanism in the oxidation region of a combustion pot and a chemical kinetic mechanism in the gasification region. Values of reaction rates in coke beds have been calculated from experiments with a fixed bed shaft gasifier. Devolatilization of a North Dakota lignite in a laminar flow reactor and subsequent treatment of the resulting char has shown that weight loss is strongly dependent upon the isothermal decomposition time. Although gasification rates increase with increase in partial pressure of oxygen, the mechanism for gasification of a given char is independent of partial pressure of oxygen. Study of the reactivity of ion-exchanged lignite chars to steam shows that increased heat treatment decreases reactivity and ion exchange increases reactivity. Use of the DSC technique to study the thermal effects involved during chemisorption of oxygen on Saran carbon has yielded information on the activation energy (EA) of the reaction. Work on the infinite parallel plane char combustion computer model has determined that low volatile chars and coals can be suitable fuels if adequate available internal surface area is present.

  12. Improving performance of direct coal liquefaction through swelling with solvent under the radiation of ultrasonic wave

    Institute of Scientific and Technical Information of China (English)

    NI Xian-zhi; LI Ke-jian; WANG Li

    2004-01-01

    Three kinds of lower rank bituminous coals from Yanzhou mine and Tengxian mine from Shandong Province were treated and hydrogenated in the study. The test results show that the performance of hydrogenation liquefaction of the pretreated coals is improved markedly. Under the test condition of H2 initial pressure 8.2 MPa, addition of the oil yield of pretreated YZ1 coal is 69.76% compared with 62.53% of oil yield of untreated YZ1. Seminally the oil yield of pretreated YZ2 coal is 55.43% compared with20.88% of untreated YZ2 coal. The results of tests also prove that the improving degree of hydrogenation liquefaction of the pretreated coals is related with radiation duration when the radiation frequency and radiation power of ultrasonic wave are fixed.

  13. Coal 99; Kol 99

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, C.

    2000-07-01

    in equipment for burning pellets instead of coal. In Linkoeping waste of rubber is mixed with coal. Also Soederenergi AB has rebuilt their three coal boilers and replaced 100 % of the coal by peat and wood fuels. Coal is a reserve fuel. Several co-generation plants like Linkoeping, Norrkoeping, Uppsala and Oerebro use both coal and forest fuels. The use of coal is then concentrated to the electricity production. The average price of steam coal imported in Sweden in 1998 was 370 SEK/ton or the same as in 1997. For the world, the average import price fell about 6 USD/ton to 32 USD/ton. The price fall was concentrated to the 4th quarter. The prices have continued to fall during 1999 as a result of the crisis in Asia but are now stabilising as a result of increasing oil prices. All Swedish plants meet their emission limits of dust, SO{sub 2} and NO{sub x}, given by county administrations or concession boards. The co-generation plants have all some sort of SO{sub 2}-removal system. Mostly used is the wet-dry method. The biggest co-generation plant, in Vaesteraas, has recently invested in a catalytic NO{sub x}-cleaning system type SCR, which is reducing the emission level 80-90 %. Most other plants are using low NO{sub x}- burners or injection systems type SNCR, based on ammonium or urea, which are reducing the emissions 50-70 %. A positive effect of the recently introduced NO{sub x}-duties is a 60 % reduction compared to some years ago, when the duties were introduced. World hard coal production was about 3 700 tons in 1998, a minor decrease compared to 1997. The trade, however, has increased about 3 % to 520 mill tons. The coal demand in the OECD-countries has increased about 1,7 % yearly during the last ten years. The coal share of the energy supply is about 20% in the OECD-countries and 27% in the whole world. Several sources estimate a continuing growth during the next 20 years in spite of an increasing use of natural gas and nuclear power. The reason is a strong

  14. EMSL Quarterly Highlights Report: 1st Quarter, Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.

    2009-02-02

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2008 - December 2008) of Fiscal Year 2009.

  15. EMSL Quarterly Highlights Report: 1st Quarter, FY08

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-01-28

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  16. EMSL Quarterly Highlights Report: FY 2008, 3rd Quarter

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-09-16

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  17. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141574 Chen Hao(Exploration and Development Research Institute,Daqing Oilfield Company,Daqing 163712,China)High-Resolution Sequences and Coal Accumulating Laws in Nantun Formation of Huhe Lake Sag(Petroleum Geology&Oilfield Development in Daqing,ISSN1000-3754,CN23-1286/TQ,32(4),2013,p.15-19,5 illus.,15 refs.)Key words:coal accumulation regularity,coal

  18. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091159 Gao Yan(No.3 Prospecting Team of Anhui Bureau of Coal Geology,Suzhou 234000,China) Effect of Depositional Environment of Coal-Bearing Stratum on Major Coal Seams in Suntan Coalmine,Anhui Province(Geology of Anhui,ISSN 1005- 6157,CN34-1111/P,18(2),2008,p.114 -117,5 illus.,1 ref.,with English abstract)

  19. Supercritical Fluid Reactions for Coal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Charles A. Eckert

    1997-11-01

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which resemble the organic nitrogen containing components of coal, we developed a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal denitrogenation. The tautomeric equilibrium of a Schiff base was chosen as one model system and was investigated in supercritical ethane and cosolvent modified supercritical ethane. The Diels-Alder reaction of anthracene and 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) was selected as a second model system, and it was investigated in supercritical carbon dioxide.

  20. LFCM vitrification technology. Quarterly progress report, April-June 1985

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, H.C.; Jarrett, J.H.; Minor, J.E. (comps.)

    1986-01-01

    This report is compiled by the Nuclear Waste Treatment Program and the Hanford Waste Vitrification Program at Pacific Northwest Laboratory to document progress on liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the third quarter of FY 1985 is discussed: pretreatment systems, melting process chemistry and glass development, feed preparation and transfer systems, melter systems, canister filling and handling systems, off-gas systems, process/product modeling and control, and supporting studies.

  1. Liquefaction and/or solubilization of Spanish coals by newly isolated microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Monistrol, I.F.; Laborda, F. (Universidad de Alcala de Henares, Alcala de Henares (Spain). Dept. de Microbiologia Parasitologia)

    1994-11-01

    A screening procedure has been set up for isolating microorganisms capable of liquefying coal. Spanish coals were used in the tests, namely a brown lignite from Galicia, sub-bituminous coal from Teruel and hard coal from Minas Figaredo S.A. (Asturias). Among the isolated strains several microorganisms proved capable of liquefying untreated lignite. When lignites were pretreated a more intense and rapid liquefaction was achieved, chelating agents being among the best pretreatment. None of the isolated microorganisms could satisfactorily liquefy sub-bituminous and hard coals in solid media. On the other hand, some fungi grew specifically on the untreated coals, engulfing them and in many cases a soft slurry was obtained. Several of the isolated microorganisms were able to solubilize all three untreated Spanish coals in liquid media. Coal solubilization was measured spectrophotometrically at 300, 400 and 450 nm. 5 refs., 10 figs., 3 tabs.

  2. Quarterly environmental data summary for first quarter 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the first quarter of 1999 is enclosed. The data presented in this constitute the QEDS. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the Weldon Spring Site verification group and merged into the database during the first quarter of 1999. KPA results for on-site total uranium analyses performed during first quarter 1999 are included. Air monitoring data presented are the most recent complete sets of quarterly data.

  3. Quarterly fiscal policy

    NARCIS (Netherlands)

    Kendrick, D.A.; Amman, H.M.

    2014-01-01

    Monetary policy is altered once a month. Fiscal policy is altered once a year. As a potential improvement this article examines the use of feedback control rules for fiscal policy that is altered quarterly. Following the work of Blinder and Orszag, modifications are discussed in Congressional

  4. Quarterly Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Ayman I. Hawari

    2002-12-30

    This report presents the progress made during the first quarter of phase 2 for the project entitled ''Development and Validation of Thermal Neutron Scattering Laws from Applications and Safety Implications in Generation IV Reactor Designs.'' (B204) THIS IS NOT A FINAL REPORT

  5. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131668 Chang Huizhen(Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process,CUMT,Ministry of Edu-cation,School of Resource and Earth Science,China University of Mining and Technology,Xuzhou 221008,China);Qin Yong Differences in of Pore Structure of Coals and Their Impact on the Permeability of Coals from the

  6. Methods for pretreating biomass

    Science.gov (United States)

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2017-05-09

    A method for pretreating biomass is provided, which includes, in a reactor, allowing gaseous ammonia to condense on the biomass and react with water present in the biomass to produce pretreated biomass, wherein reactivity of polysaccharides in the biomass is increased during subsequent biological conversion as compared to the reactivity of polysaccharides in biomass which has not been pretreated. A method for pretreating biomass with a liquid ammonia and recovering the liquid ammonia is also provided. Related systems which include a biochemical or biofuel production facility are also disclosed.

  7. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111053 Chen Jian(School of Earth and Environment,Anhui University of Science and Technology,Huainan 232001,China);Liu Wenzhong Organic Affinity of Trace Elements in Coal from No.10 Coal-Bed at Western Huagou,Guoyang(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,38(4),2010,p.16-20,24,3 illus.,3 tables,19 refs.)Key words:coal,minor elements,Anhui Province In order to study the organic affinity of trace elements in coal from No.10 coal-bed at western Huagou,Guoyang,10 borehole samples were collected at exploration area of Huaibei mining area.The contents of 12 kinds of trace elements were determined by the inductively coupled plasma mass spectrometry(ICP-MS),the total organic carbon(TOC)of coal was determined by LECO carbon and sulfur analyzer,and the organic affinity of trace elements were deduced from the correlations between contents and TOCs.The results showed that the contents of V,Cr,Co,Ni,Mo,Cd,Sb,Pb and Zn were lower than

  8. GREET Pretreatment Module

    Energy Technology Data Exchange (ETDEWEB)

    Adom, Felix K.; Dunn, Jennifer B.; Han, Jeongwoo

    2014-09-01

    A wide range of biofuels and biochemicals can be produced from biomass via different pretreatment technologies that yield sugars. This report documents the material and energy flows that occur when fermentable sugars from four lignocellulosic feedstocks (corn stover, miscanthus, switchgrass, and poplar) are produced via dilute acid pretreatment and ammonia fiber expansion. These flows are documented for inclusion in the pretreatment module of the Greenhouses Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. Process simulations of each pretreatment technology were developed in Aspen Plus. Material and energy consumption data from Aspen Plus were then compiled in the GREET pretreatment module. The module estimates the cradle-to-gate fossil energy consumption (FEC) and greenhouse gas (GHG) emissions associated with producing fermentable sugars. This report documents the data and methodology used to develop this module and the cradle-to-gate FEC and GHG emissions that result from producing fermentable sugars.

  9. Effectiveness factors for hydroprocessing of coal and coal liquids

    Energy Technology Data Exchange (ETDEWEB)

    Massoth, F.E.; Seader, J.D.

    1990-06-28

    The aim of this project is to develop a methodology to predict, from a knowledge of feed and catalyst properties, effectiveness factors for catalytic hydroprocessing of coal and coal liquids. The research entails a study of hydrodenitrogenation of model compounds and coal-derived liquids using three NiMo/alumina catalysts of different pore size to develop, for restrictive diffusion. During this quarter equilibrium adsorption studies of single and binary solutes in cyclohexane solvent on three NiMo catalysts were completed. Three single solutes, 9-phenylanthracene, 9-phenylcarbazole, and 9-phenylacridine; and two binary-solute mixtures (9-PhAn/9-PhC and 9-PhC/9-PhAn) were used for the studies. Mathematical models for sorptive diffusion on single- and binary-solute systems were developed. The previously hydrotreated coal-derived-liquid was subjected to a secondary hydrotreatment to achieve a satisfactory product quality. The oil was thoroughly analyzed. Hydrogenation of two nickel-porphines were carried out in this oil and the kinetics was studied with two catalysts under the process conditions. Reaction rates and restrictive diffusion effects were compared to those obtained in the pure solvents from the previous studies. 6 refs., 6 figs., 4 tabs.

  10. Enzymantic Conversion of Coal to Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Richard Troiano

    2011-01-31

    The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time

  11. Extraction, separation, and analysis of high sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    Olesik, S.V.; Pekay, L.A.; Larkins, W. Jr. (comps.)

    1992-05-31

    The work described in this report studies the removal of sulfur by oxidative interaction of various cupric salts with coal and also considers the possibility of removing organic sulfur by the selective interaction of supercritical ethanol with the organic coal matrix. Either one of these methods could potentially be used to pretreat coals before burning. The primary purpose of these studies is to ascertain the nature of the chemical reactions occurring, the chemical composition of the resultant products, and information on possible reaction mechanisms. This information should allow prediction of reasonable reaction conditions for the removal of organosulfur compound from coal.

  12. Extraction, separation, and analysis of high sulfur coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olesik, S.V.; Pekay, L.A.; Larkins, W. Jr. [comps.

    1992-05-31

    The work described in this report studies the removal of sulfur by oxidative interaction of various cupric salts with coal and also considers the possibility of removing organic sulfur by the selective interaction of supercritical ethanol with the organic coal matrix. Either one of these methods could potentially be used to pretreat coals before burning. The primary purpose of these studies is to ascertain the nature of the chemical reactions occurring, the chemical composition of the resultant products, and information on possible reaction mechanisms. This information should allow prediction of reasonable reaction conditions for the removal of organosulfur compound from coal.

  13. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2005-10-01

    Low rank fuels such as subbituminous coals and lignites contain significant amounts of moisture compared to higher rank coals. Typically, the moisture content of subbituminous coals ranges from 15 to 30 percent, while that for lignites is between 25 and 40 percent, where both are expressed on a wet coal basis. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit. High fuel moisture results in fuel handling problems, and it affects heat rate, mass rate (tonnage) of emissions, and the consumption of water needed for evaporative cooling. This project deals with lignite and subbituminous coal-fired pulverized coal power plants, which are cooled by evaporative cooling towers. In particular, the project involves use of power plant waste heat to partially dry the coal before it is fed to the pulverizers. Done in a proper way, coal drying will reduce cooling tower makeup water requirements and also provide heat rate and emissions benefits. The technology addressed in this project makes use of the hot circulating cooling water leaving the condenser to heat the air used for drying the coal (Figure 1). The temperature of the circulating water leaving the condenser is usually about 49 C (120 F), and this can be used to produce an air stream at approximately 43 C (110 F). Figure 2 shows a variation of this approach, in which coal drying would be accomplished by both warm air, passing through the dryer, and a flow of hot circulating cooling water, passing through a heat exchanger located in the dryer. Higher temperature drying can be accomplished if hot flue gas from the boiler or extracted steam from the turbine cycle is used to supplement the thermal energy obtained from the circulating cooling water. Various options such as these are being examined in this investigation. This is the eleventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits

  14. British coal

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, M.

    2009-03-15

    The paper describes a visit to UK's Daw Mill in north Warwickshire to find out about a planned expansion of the coal mine. Daw Mill, 10 km west of Coventry is the UK's largest underground coal mine. The coal is extracted by an Eckhoff Sl500 coal shearer that traverses the coalface. Overarching the shearer is a series of electro-hydraulically operated powered roof supports (PRS) over the roof and coalface that are advanced forward after each pass of the shearer. The void behind the PRS is then allowed to collapse. The coalface is currently 295 m long, but there are plans to extend the replacement coalface to 357 m. Under the shearer is an armored face conveyor (AFC) that receives and transports the coal along the coalface and deposits it onto the beam stage loader, which sits at 90{sup o} to the AFC. The coal is turned by a deflector plough on the AFC headframe and is transferred to the belt conveyor to begin its journey out of the mine. Last year two significant records were broken at Daw Mill - the fastest million tonnes achieved and the European record for a single face of 3.2 Mt. The 300s area of the mine has already been mapped out and development teams are constructing roadways to facilitate more mining. To maintain annual production in excess of three million tonnes will require at least 5,000 m of roadways to access the coal, and install equipment. These investments are supported by proven reserves. Seismic surveys and borehole drilling has shown approximately 20 Mt of extractable coal in the 300s area which extends over 15 km{sup 2}. These panels will be the next to be mined in a sequence that extends to 2014. 2 photos.

  15. Coal mining: coal in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Arguelles Martinez, A.; Lugue Cabal, V.

    1984-01-01

    The Survey of Spanish Coal Resources published by the Centre for Energy Studies in 1979 is without doubt the most serious and full study on this subject. The coal boom of the last few years and the important role it will play in the future, as well as the wealth of new information which has come to light in the research carried out in Spanish coalfields by both the public and private sector, prompted the General Mine Management of the Ministry of Industry and Energy to commission IGME to review and update the previous Survey of Spanish Coal Resources of November 1981.

  16. Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. [Effect of preconversion heat soak with coal liquids

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    A study of the high-temperature soaking started in this quarter, following the installation of reactors in the previous quarter. Two high-volatile bituminous coals and three coal liquids, which were identified in the previous report, were used. A cross-linked, three-dimensional macromolecular model has been widely accepted f or the structure of coal, but there is no direct evidence to prove this model. The conventional coal structure model has been recently re-examined by this investigator because of the importance of relatively strong intra- and intermolecular interactions in bituminous coals. It was reasonable to deduce that significant portions were physically associated after a study of multistep extractions, associative equilibria, the irreversibility and the dependence of coal concentration on solvent swelling, and consideration of the monophase concept. Physical dissociation which may be significant above 300{degree}C should be utilized for the treatment before liquefaction. The high-temperature soaking in a recycle oil was proposed to dissociate coal complexes.

  17. Blended coals for improved coal water slurries

    Institute of Scientific and Technical Information of China (English)

    GU Tian-ye; WU Guo-guang; LI Qi-hui; SUN Zhi-qiang; ZENG Fang; WANG Guang-you; MENG Xian-liang

    2008-01-01

    Three coal samples of different ranks were used to study the effect of coal blending on the preparation of Coal Water Slurry (CWS). The results show that by taking advantage of two kinds of coal, the coal concentration in slurry made from hard-to-pulp coal can be effectively improved and increased by 3%-5% generally. DLT coal (DaLiuTa coal mine) is very poor in slurryability and the stability and rheology of the resulting slurry are not very good. When the amount of easily slurried coal is more than 30%, all properties of the CWS improve and the CWS meets the requirements for use as fuel. Coalification, porosity, surface oxygenic functional groups, zeta potential and grindability have a great effect on the performance of blended coal CWS. This leads to some differences in performance between the slurry made from a single coal and slurry made from blended coal.

  18. Enhanced catalysis by solvent improvement. Quarterly technical progress report, 1 April-30 June 1983

    Energy Technology Data Exchange (ETDEWEB)

    Garg, D.; Miller, R.N.; Givens, E.N.; Tarrer, A.R.; Guin, J.A.; Curtis, C.W.

    1983-11-01

    This report describes the results from liquefaction solvent modification, coal liquefaction with original and modified solvents, catalyst selection, coal pretreatment, and pretreatment followed by liquefaction experiments. The effect of liquefaction reaction conditions on product distribution is also covered in this report. Significant removal of nitrogen compounds from coal-derived liquefaction solvent was obtained by treating it with anhydrous hydrochloric acid or silica gel. The removal of nitrogen compounds with HCl or silica gel was also accompanied by 25 to 40% removal of oxygen compounds. Treating liquefaction solvent with aqueous NaOH or zeolite removed significant amounts of phenolic compounds. Oxygen removal was also accompanied by a partial removal of nitrogen compounds. Sequential treatment of coal-derived liquefaction solvent with HCl followed by silica gel or NaOH followed by HCl resulted in complete removal of nitrogen compounds. Liquefying coals in the presence of coal-derived liquefaction solvents modified by the removal of nitrogen or oxygen compounds or both significantly increased the oil yield in the absence of catalyst. The overall coal conversion, however, decreased only slightly with these treated solvents. A significant increase in the oil yield was also noted during catalytic liquefaction with the pretreated solvents. The overall coal conversion also increased during catalytic liquefaction of coal. At a concentration level of 250 ppM metal based on coal molybdenum catalyst was more active than nickel. At this level the activity of molybdenum was also higher than that noted with 1 wt% iron or zinc. Combination of metals such as iron and molybdenum or zinc and molybdenum yielded significantly higher oil yield compared to individual metals alone. 1 ref., 2 figs., 28 tabs.

  19. National Bioenergy Center - Biochemical Platform Integration Project: Quarterly Update, Winter 2010

    Energy Technology Data Exchange (ETDEWEB)

    Schell, D.

    2011-02-01

    Winter 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program topic areas; results from reactive membrane extraction of inhibitors from dilute-acid pretreated corn stover; list of 2010 task publications.

  20. Quarterly Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    David Gray; Glen Tomlinson

    1998-11-12

    The Federal Energy Technology Center (FETC) at Pittsburgh contracted with the MJTRE Corporation to perform Research Guidance Studies that will assist the Center and other relevant offices in the Department of Energy in evaluating and prioritizing research in the areas of coal and natural gas conversion. MITRE was reorganized in December 1995, which resulted in the formation of Mitretek Systems Inc. Mitretek has been performing this work on MITRE's behalf awaiting completion of contract novation to Mitretek. The contract was novated in February 1998 to Mitretek Systems. The overall objectives of this contract are to provide support to DOE in the following areas: (1) technical and economic analyses of current and future coal-based energy conversion technologies and other similar emerging technologies such as coal-waste coprocessing, natural gas conversion, and biomass conversion technologies for the production of fuels, chemicals and electric power,(2) monitor progress in these technologies with respect to technical, economic, and environmental impact (including climate change), (3) conduct specific and generic project economic and technical feasibility studies based on these technologies, (4) identify long-range R&D areas that have the greatest potential for process improvements, and (5) investigate optimum configurations and associated costs for production of high quality energy products via refining and their performance in end-use applications.

  1. 20 CFR 404.146 - When a calendar quarter cannot be a quarter of coverage.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false When a calendar quarter cannot be a quarter...-AGE, SURVIVORS AND DISABILITY INSURANCE (1950- ) Insured Status and Quarters of Coverage Quarters of Coverage § 404.146 When a calendar quarter cannot be a quarter of coverage. This section applies when...

  2. Permeability changes in coal resulting from gas desorption

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Johnson, P.M.

    1992-01-01

    Research continued on the study of coal permeability and gas desorption. This quarter, most of the effort involved identifying problems with the microbalance and then getting it repaired. Measurement of the amount of gas adsorbed with the microbalance involved corrections for the buoyancy change with pressure and several experiments with helium were made to determine this correction.

  3. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091749 Cai Hou’an(College of Energy Geology,China University of Geosciences,Beijing 100083,China);Xu Debin SHRIMP U-Pb Isotope Age of Volcanic Rocks Distributed in the Badaohao Area,Liaoning Province and Its Significance(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,36(4),2008,p.17-20,2 illus.,1 table,16 refs.)Key words:coal measures,volcanic rocks,U-Pb dating,LiaoningA set of andesite volcanic rocks distributes in the Badaohao area in Heishan County,Liaoning Province.It’s geological age and stratigraphy sequence relationship between the Lower Cretaceous Badaohao Formation and the volcanic rocks can not make sure till now and is influencing the further prospect for coals.Zircon

  4. Low severity coal liquefaction promoted by cyclic olefins

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.

    1992-01-01

    Low severity coal liquefaction promoted by cyclic olefins offers a means of liquefying coal at low severity conditions. Lower temperature, 350[degrees]C, and lower hydrogen pressure, 500 psi, have been used to perform liquefaction reactions. The presence of the cyclic olefin, hexahydroanthracene, made a substantial difference in the conversion of Illinois No. 6 coal at these low severity conditions. The Researchperformed this quarter was a parametric evaluation of the effect of different parameters on the coal conversion and product distribution from coal. The effect of the parameters on product distribution from hexahydroanthracene was also determined. The work planned for next quarter includes combining the most effective parametric conditions for the low severity reactions and determining their effect. The second part ofthe research performed this quarter involved performing Fourier transform infrared (FTIR) spectroscopy using cyclic olefins. The objective of this study was to determine the feasibility of using FTIR and a heated cell to determine the reaction pathway that occurs in the hydrogen donation reactions from cyclic olefins. The progress made to date includes evaluating the FTIR spectra of cyclic olefins and their expected reaction products. This work is included in this progress report.

  5. Biotreatment of coals and coal related compounds by hydrogen-utilizing microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Murty, M.V.S.; Aleem, M.I.H.; Kermode, R.I.; Bhattacharyya, D. (University of Kentucky, Lexington, KY (United States). Dept. of Chemical Engineering)

    1994-08-01

    Desulfovibrio desulfuricans and Acidianus brierleyi were used to study hydrogenation of coal, pretreated coal, asphaltenes and model compounds (diphenyl methane (DPM) and fumarate) under anaerobic conditions. This study involved three primary aspects: (1) determination of net hydrogen-uptake, (2) identification of the biohydrogenated product of fumarate, and (3) testing the influence of hydrogen uptake/biohydrogenation of coal in terms of direct liquefaction yield. The net hydrogen uptake values (from Warburg and GC assays) by the coals or the model compounds (controls) were less than that of the biotreated samples. The greatest hydrogen uptake occurred in untreated coal KCER No. 4677 in the presence of D. desulfuricans. The net hydrogen uptake by coals varied depending upon the coal type and the microorganism. Model compound DPM showed its highest hydrogen uptake rate when catalysed by D. desulfuricans. D. desulfuricans also hydrogenated 36% of the fumarate to succinate in the presence of hydrogen. Biotreated coal KCER No. 4677 was subsequently subjected to direct liquefaction. It showed a net increase in liquefaction yield of 5-4% as a result of biotreatment.

  6. Surface electrochemical control for fine coal and pyrite separation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, M.E.; Bodily, D.M.; Hu, Weibai; Chen, Wanxiong; Huang, Qinping; Liang, Jun; Riley, A.M.; Li, Jun; Wann, Jyi-Perng; Zhong, Tingke; Zhu, Ximeng

    1993-01-20

    Laboratory flotation tests were carried out on three coals and on coal pyrite. Floatability measurements included natural floatability, flotation with a xanthate collector and salt flotation. The ranking of the floatability of the three coals were: Upper Freeport > Pittsburgh > Illinois. The floatability of mineral pyrite and coal pyrite increased markedly with xanthate concentration, but decreased with increased pH. In general, coal pyrite was more difficult to float than mineral pyrite. This was attributed to the presence of surface carbonaceous and mineral matter, since floatability of coal pyrite improved by acid pretreatment. Flotation tests demonstrated that the floatability of coal and mineral pyrite was greatly enhanced by the presence of an electrolyte. Flotation was also enhanced by the addition of modifiers such as CuSO{sub 4}, Na{sub 2}S, CO{sub 2} and EDTA. Lime additions markedly reduced the floatability of coal pyrite. Enhanced floatability of coal pyrite resulted when the pyrite was anodically oxidized in a specially constructed electrochemical flotation cell Pretreatment in potential ranges previously observed for polysulfide and sulfur film formation resulted in the enhanced floatability. While interesting trends and influences, both chemical and electrochemical, markedly improved the floatability of coal, there is little hope for reverse flotation as an effective technology for coal/coal-pyrite separations. The effects of poor liberation and entrainment appear overriding.

  7. Preliminary evaluation of resinite recovery from Illinois coal. Technical report, March 1--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Crelling, J.C.

    1995-12-31

    Resinite is a naturally occurring substance found in coal and derived from original plant resins. It has been commercially exploited in the western USA for use in adhesives, varnishes and thermal setting inks. The overall objective of this project is to compare the properties of the resinite contained in Illinois Basin coals to resinite being commercially exploited in the western US, and to recover the resinite from Illinois coals by microbubble column floatation techniques. The significance of this study is that it has the potential to show the way to recover a valuable chemical, resinite, from coal using only physical processing techniques. The value of the resinite at $1.00/kg or $0.50/lb makes it about fifty times more valuable than steam coal. The removal of resinite from coal does not decrease the value of the remaining coal in any way. During this quarter pure concentrates of resinite from Herrin No. 6 Seam were produced by the density gradient centrifugation technique. This material is also now being characterized by petrographic and chemical methods. Another accomplishment this quarter was the completion of a series of microbubble column flotation tests under eight different conditions. The tests were successful in producing concentrates that are now being evaluated. The significance of the work done during this quarter is the confirmation that the resinite in an Illinois coal can be successfully separated in quantities useful for testing and analysis.

  8. CFBC evaluation of fuels processed from Illinois coals. Technical report, March 1, 1992--May 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, S. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes

    1992-10-01

    The combustion and emissions properties of (a) flotation slurry fuel beneficiated from coal fines at various stages of the cleaning process and (b) coal-sorbent pellets made from the flotation concentrate of the same beneficiation process using corn starch as binder is being investigated in a 4-inch internal diameter circulating fluidized bed combustor (CFBC). Combustion data such as SO{sub 2}, NO{sub x} emissions, combustion efficiency and ash mineral matter analyses from these fuels are compared with similar parameters from a reference coal burnt in the same fluidized bed combustor. In the last quarter, the CFBC was brought on line and tests were performed on standard coal No. 3 from the Illinois Basin Coal Sample Program (IBCSP). During this quarter, it was decided, that a more meaningful comparison could be obtained if, instead of using the IBCSP No. 3 coal as a standard, the run-of-mine Illinois No. 5 coal from the Kerr-McGee Galatia plant could be used as the reference coal for purposes of comparing the combustion and emissions performance, since the slurry and pellet fuels mentioned in (a) and (b) above were processed from fines recovered form this same Illinois No. 5 seam coal. Accordingly, run-of-the mine Illinois No. 5 coal from the Galatia plant were obtained, riffled and sieved to {minus}14+18 size for the combustion tests. Preliminary combustion tests have been made in the CFBC with this new coal. In preparation for the slurry tests, the moisture content of the beneficiated slurry samples was determined. Proximate and ultimate analyses of all the coal samples were performed. Using a Leeds and Northrup Model 7995-10 Microtrek particle size analyzer, the size distributions of the coal in the three slurry samples were determined. The mineral matter content of the coal in the three slurry samples and the Illinois No. 5 seam coal were investigated using energy dispersive x-ray analysis.

  9. GREET Pretreatment Module

    Energy Technology Data Exchange (ETDEWEB)

    Adom, Felix K. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    A wide range of biofuels and biochemicals can be produced from cellulosic biomass via different pretreatment technologies that yield sugars. Process simulations of dilute acid and ammonia fiber expansion pretreatment processes and subsequent hydrolysis were developed in Aspen Plus for four lignocellulosic feedstocks (corn stover, miscanthus, switchgrass, and poplar). This processing yields sugars that can be subsequently converted to biofuels or biochemical. Material and energy consumption data from Aspen Plus were then compiled in a new Greenhouses Gases, Regulated Emissions, and Energy Use in Transportation (GREETTM) pretreatment module. The module estimates the cradle-to-gate fossil energy consumption (FEC) and greenhouse gas (GHG) emissions associated with producing fermentable sugars. This report documents the data and methodology used to develop this module and the cradle-to-gate FEC and GHG emissions that result from producing fermentable sugars.

  10. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  11. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  12. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  13. Combustion and emissions characterization of pelletized coal fuels. Technical report, December 1, 1992--February 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, S. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes

    1993-05-01

    The aim of this project is to demonstrate that sorbent-containing coal pellets made from low grade coal or coal wastes are viable clean burning fuels, and to compare their performance with that of standard run-of-mine coal. Fuels to be investigated are: (a) carbonated pellets containing calcium hydroxide sorbent, (b) coal fines-limestone pellets with cornstarch as binder, (c) pellets made from preparation plant recovered coal containing limestone sorbent and gasification tar as binder, and (d) a standard run-of-mine Illinois seam coal. The fuels will be tested in a laboratory scale 411 diameter circulating fluidized bed combustor. Progress this quarter has centered on the development of a hydraulic press based pellet mill capable of the high compaction pressures necessary to produce the gasification tar containing pellets outlined in (c) above. Limited quantities of the pellets have been made, and the process is being fine tuned before proceeding into the production mode. Tests show that the moisture content of the coal is an important parameter that needs to be fixed within narrow limits for a given coal and binder combination to produce acceptable pellets. Combustion tests with these pellet fuels and the standard coal are scheduled for the next quarter.

  14. Pretreatment methods for bioethanol production.

    Science.gov (United States)

    Xu, Zhaoyang; Huang, Fang

    2014-09-01

    Lignocellulosic biomass, such as wood, grass, agricultural, and forest residues, are potential resources for the production of bioethanol. The current biochemical process of converting biomass to bioethanol typically consists of three main steps: pretreatment, enzymatic hydrolysis, and fermentation. For this process, pretreatment is probably the most crucial step since it has a large impact on the efficiency of the overall bioconversion. The aim of pretreatment is to disrupt recalcitrant structures of cellulosic biomass to make cellulose more accessible to the enzymes that convert carbohydrate polymers into fermentable sugars. This paper reviews several leading acidic, neutral, and alkaline pretreatments technologies. Different pretreatment methods, including dilute acid pretreatment (DAP), steam explosion pretreatment (SEP), organosolv, liquid hot water (LHW), ammonia fiber expansion (AFEX), soaking in aqueous ammonia (SAA), sodium hydroxide/lime pretreatments, and ozonolysis are intensively introduced and discussed. In this minireview, the key points are focused on the structural changes primarily in cellulose, hemicellulose, and lignin during the above leading pretreatment technologies.

  15. PRETREATING THORIUM FOR ELECTROPLATING

    Science.gov (United States)

    Beach, J.G.; Schaer, G.R.

    1959-07-28

    A method is presented for pretreating a thorium surface prior to electroplating the surface. The pretreatment steps of the invention comprise cleaning by vapor blasting the surface, anodically pickling in a 5 to 15% by volume aqueous hydrochloric acid bath with a current of 125 to 250 amp/sq ft for 3 to 5 min at room temperature, chemically pickling the surface in a 5 to 15% by volume of aqueous sulfuric acid for 3 to 5 min at room temperature, and rinsing the surface with water.

  16. Literature review and binder and coal selection for research studies on coal agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.G.; Kuby, O.A.; Girimont, J.A.; peterson, C.A.; Saller, E.

    1982-02-26

    This report discusses the results of a literature survey on coal agglomeration and the approaches that were employed in selecting binders and coals to be studied in a process development program currently being performed for the Department of Energy. The survey is the first step toward the development of a useful process for the agglomeration of coal fines for use in a fixed-bed gasifier. Literature was found and reviewed on the effects of coal composition and physical properties, on agglomeration techniques and operating variables, on binders or additives to promote agglomeration, on pretreatment techniques on agglomerate feedstocks and post-treatment techniques on formed agglomerates, and on test results obtained by researchers in the past using various additives, treatments and agglomeration techniques. Much of this information did not deal directly with agglomerates for fixed-bed gasifiers, but the reported observations and results could be extrapolated to give useful guidelines for research plans. Conclusions and plans for further work are presented.

  17. The Magnetohydrodynamics Coal-Fired Flow Facility

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    Progress continued at MHD coal-fired flow facility. UTSI reports on progress in developing the technology for the steam bottoming portion of the MHD Steam Combined Cycle Power Plant. No Proof-of-Concept (POC) testing was conducted during the quarter but data analyses are reported from the test conducted during the prior quarter. Major results include corrosion data from the first 500 hours of testing on candidate tube materials in the superheater test module (SHTM). Solids mass balance data, electrostatic precipitator (ESP) and baghouse (BH) performance data, diagnostic systems and environmental data results from previous POC tests are included. The major activities this quarter were in facility modifications required to complete the scheduled POC test program. Activities reported include the installation of an automatic ash/seed removal system on the SHTM, the BH, and ESP hoppers. Also, a higher pressure compressor (350 psi) is being installed to provide additional blowing pressure to remove solids deposits on the convective heat transfer tubes in the high temperature zone where the deposits are molten. These activities are scheduled to be completed and ready for the next test, which is scheduled for late May 1990. Also, experiments on drying western coal are reported. The recommended system for modifying the CFFF coal system to permit processing of western coal is described. Finally, a new effort to test portions of the TRW combustor during tests in the CFFF is described. The status of system analyses being conducted under subcontract by the Westinghouse Electric Corporation is also described. 2 refs., 18 figs., 3 tabs.

  18. Characterization and Recovery of Rare Earths from Coal and By-Products

    Energy Technology Data Exchange (ETDEWEB)

    Granite, Evan J. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Roth, Elliot [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Alvin, Mary Anne [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2016-03-25

    Coal is a precious resource, both in the United States and around the world. The United States has a 250-year supply of coal, and generates between 30 - 40% of its electricity through coal combustion. Approximately 1 Gt of coal has been mined annually in the US, although the 2015 total will likely be closer to 900 Mt (http://www.eia.gov/coal/production/quarterly/). Most of the coal is burned for power generation, but substantial quantities are also employed in the manufacture of steel, chemicals, and activated carbons. Coal has a positive impact upon many industries, including mining, power, rail transportation, manufacturing, chemical, steel, activated carbon, and fuels. Everything that is in the earth’s crust is also present within coal to some extent, and the challenge is always to utilize abundant domestic coal in clean and environmentally friendly manners. In the case of the rare earths, these valuable and extraordinarily useful elements are present within the abundant coal and coal by-products produced domestically and world-wide. These materials include the coals, as well as the combustion by-products such as ashes, coal preparation wastes, gasification slags, and mining by-products. All of these materials can be viewed as potential sources of rare earth elements. Most of the common inorganic lanthanide compounds, such as the phosphates found in coal, have very high melting, boiling, and thermal decomposition temperatures, allowing them to concentrate in combustion and gasification by-products. Furthermore, rare earths have been found in interesting concentrations in the strata above and below certain coal seams. Much of the recent research on coal utilization in the United States has focused upon the capture of pollutants such as acid gases, particulates, and mercury, and the greenhouse gas carbon dioxide. The possible recovery of rare earth and other critical elements from abundant coal and by-products is an exciting new research area, representing a

  19. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  20. Coal - proximate analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-14

    This Standard establishes a practice for the proximate analysis of coal, that is, the coal is analysed for the content of moisture, ash and volatile matter; fixed carbon is calculated. The standard provides a basis for the comparison of coals.

  1. Advances in aluminum pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Sudour, Michel; Maintier, Philippe [PPG Industries France, 3 Z.A.E. Les Dix Muids, B.P. 89, F-59583 Marly (France); Simpson, Mark [PPG Industries Inc., 1200 Piedmont Troy, Michigan 48083 (United States); Quaglia, Paolo [PPG Industries Italia, Via Garavelli 21, I-15028 Quattordio (Italy)

    2004-07-01

    As automotive manufacturers continue to look for ways to reduce vehicle weight, aluminum is finding more utility as a body panel component. The substitution of cold-rolled steel and zinc-coated substrates with aluminum has led to new challenges in vehicle pretreatment. As a result, changes to traditional pretreatment chemistries and operating practices are necessary in order to produce an acceptable coating on aluminum body panels. These changes result in increased sludging and other undesirable characteristics. In addition to the chemistry changes, there are also process-related problems to consider. Many existing automotive pretreatment lines simply were not designed to handle aluminum and its increased demands on filtration and circulation equipment. To retrofit such a system is capital intensive and in addition to requiring a significant amount of downtime, may not be totally effective. Thus, the complexities of pre-treating aluminum body panels have actually had a negative effect on efforts to introduce more aluminum into new vehicle design programs. Recent research into ways of reducing the negative effects has led to a new understanding of the nature of zinc phosphate bath -aluminum interactions. Many of the issues associated with the pretreatment of aluminum have been identified and can be mitigated with only minor changes to the zinc phosphate bath chemistry. The use of low levels of soluble Fe ions, together with free fluoride, has been shown to dramatically improve the efficiency of a zinc phosphate system processing aluminum. Appearance of zinc phosphate coatings, coating weights and sludge are all benefited by this chemistry change. (authors)

  2. Electronic Service Statistics - Quarterly Report

    Data.gov (United States)

    Social Security Administration — This is a quarterly report that compares electronic data vs non-electronic data for electronic services. Report contains six main sections namely, electronic access,...

  3. Quarterly environmental data summary for first quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the first quarter of 1998 is enclosed. The data presented in this letter and attachment constitute the QEDS. The data were received from the contract laboratories, verified by the Weldon Spring Site verification group and, except for air monitoring data and site KPA generated data (uranium analyses), merged into the data base during the first quarter of 1998. Air monitoring data presented are the most recent complete sets of quarterly data. Air data are not stored in the data base, and KPA data are not merged into the regular data base. Significant data, defined as data values that have exceeded defined {open_quotes}above normal{close_quotes} Level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal Level 2 values are based, in ES&H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits and other guidelines. The procedures also establish actions to be taken in the event that {open_quotes}above normal{close_quotes} data occur. All data received and verified during the first quarter were within a permissible range of variability except for those detailed below. Above normal occurrences are cited for groundwater, air, and NPDES data. There were none for springs or surface water. The following discussion offers a brief summary of the data merged during the first quarter that exceeded the above normal criteria and updates on past reported above normal data. The attached tables present the most recent data for air and the data merged into the data base during the first quarter 1998 for groundwater, NPDES, surface water, and springs. Graphs showing concentrations of selected contaminants of concern at some of the critical locations have also been included in this QEDS. The graphs are discussed in the separate sections.

  4. Nonhazardous Urine Pretreatment Method

    Science.gov (United States)

    Akse, James R.; Holtsnider, John T.

    2012-01-01

    A method combines solid phase acidification with two non-toxic biocides to prevent ammonia volatilization and microbial proliferation. The safe, non-oxidizing biocide combination consists of a quaternary amine and a food preservative. This combination has exhibited excellent stabilization of both acidified and unacidified urine. During pretreatment tests, composite urine collected from donors was challenged with a microorganism known to proliferate in urine, and then was processed using the nonhazardous urine pre-treatment method. The challenge microorganisms included Escherichia coli, a common gram-negative bacteria; Enterococcus faecalis, a ureolytic gram-positive bacteria; Candida albicans, a yeast commonly found in urine; and Aspergillus niger, a problematic mold that resists urine pre-treatment. Urine processed in this manner remained microbially stable for over 57 days. Such effective urine stabilization was achieved using non-toxic, non-oxidizing biocides at higher pH (3.6 to 5.8) than previous methods in use or projected for use aboard the International Space Station (ISS). ISS urine pretreatment methods employ strong oxidants including ozone and hexavalent chromium (Cr(VI)), a carcinogenic material, under very acidic conditions (pH = 1.8 to 2.4). The method described here offers a much more benign chemical environment than previous pretreatment methods, and will lower equivalent system mass (ESM) by reducing containment volume and mass, system complexity, and crew time needed to handle pre-treatment chemicals. The biocides, being non-oxidizing, minimize the potential for chemical reactions with urine constituents to produce volatile, airborne contaminants such as cyanogen chloride. Additionally, the biocides are active under significantly less acidic conditions than those used in the current system, thereby reducing the degree of required acidification. A simple flow-through solid phase acidification (SPA) bed is employed to overcome the natural buffering

  5. Hydrothermal pretreatment of biomass for pellet production

    Energy Technology Data Exchange (ETDEWEB)

    Tooyserkani, Z. [British Columbia Univ., Vancouver, BC (Canada). Clean Energy Research Centre, Biomass and Bioenergy Research Group

    2010-07-01

    This presentation discussed innovative technologies for the production of wood pellets using the hydrothermal pre-treatment of biomass. Conventional techniques use low-cost mill residues, such as saw dust and shavings, as feedstock to produce durable, low-ash pellets. However, mill residues are becoming less available as a result of fewer saw mills, increased pellet production, and increased competition for saw dust. Advanced techniques use mixed biomass such as logging residue as feedstock, creating pellets that are durable for handling and long-term storage, of a higher energy density for transport and mixing with coal for co-firing, and a choice feedstock for biofuels. Advanced pellet production uses steam explosion/pre-treatment in which biomass receives a short-term high-pressure steam treatment followed by sudden decompression. Mild torrefaction seems to have positive feedback, and steam-treated pellets are durable with superior hydrophobicity. 3 figs., 3 tabs.

  6. Development of a Coal Quality Expert

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-20

    Task 3 provides detailed characterization of fuel properties of the test coals and in-depth evaluation of their performance characteristics under controlled pilot-scale combustion testing. Results from this task provide fundamental information required to develop some of the improved algorithms for the CQE. Both bench-scale fuel characterization and test furnace performance evaluations are being performed under this task. All pilot-scale combustion tests under this task have been completed. Topical reports for the coals evaluated under the Public Service Oklahoma's Northeastern Unit 4 and Northern States Power's King Unit 1 test series have been issued. Work continued during the past quarter on preparation of the final report for the Mississippi Power Company's Watson Unit 4 tests (to be completed first quarter 1993) and analyzing pilot-scale combustion data from the Alabama Power Company's Gaston tests; a topical report for the Gaston study will also be issued in 1993. Bench-scale testing and data analyses continued in support of the development of the slagging and fouling models. Data obtained from the analysis of samples of deposits, inflame solids, fly ash, and coal from CQE pilot-scale and drop tube combustion tests were evaluated for use in devising and verifying the slagging and fouling algorithms.

  7. Queensland coal inventory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-04-01

    Australia's black coal resources rank in the top five globally, around 50% of which are located in the sedimentary basins of Queensland. The Bowen Basin is the most prolific coal repository, hosting over 60% of the currently established resource inventory. Large volumes of thermal coal are present in the Surat and Galilee basins as well as small extensional and pull apart basins such as Blair Athol and Tarong. The article examines Queensland's coal industry from a government perspective. It first discusses the current coal market, then introduces the concept of inventory coal and explains the Australia Joint Ore Reserves Committee (JORC) code - a resource evaluation system. The stratigraphy of each of Queensland's coal basins is then discussed in sections headed Permian coals, Triassic coals, Jurassic and Cretaceous coals, and Tertiary coals. 3 figs.

  8. Chemical characterization of the surface sites of coal

    Energy Technology Data Exchange (ETDEWEB)

    Fowkes, F.M.; Kardos, K.; Riddle, F.L. Jr.; Cole, D.A.

    1990-08-01

    We propose to do experimental studies in four related areas concerning the acid-base properties of coal surfaces: (1) develop high precision flow microcalorimetric methods for determining the concentrations and strengths of the acidic and basic surface sites of coal powders: (2) develop photo-acoustic FTIR and solid-state NMR spectral shift techniques for determination of the concentrations and strengths of acidic and basic surface sites of coal powders; (3) determine the concentrations and strengths of the acidic and basic surface sites of some of the well-characterized coal samples from Argonne National Labs., comparing the coal samples before and after demineralization treatments with HCl and HF; (4) study the effects of surface acidity and basicity on the coal/water interface, with emphasis on the role of interfacial acid-base interactions in the adsorption of ions, surfactants and coal/water slurry stabilizers. From measured heats of interaction, a reasonable estimate can be made of the most prevalent functional groups in coal. This quarter, heats of adsorption of phenols and pyridines were investigated. 2 tabs. (CBS)

  9. Short-term energy outlook: Quarterly projections, fourth quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-14

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections for printed publication in January, April, July, and October in the Short-Term Energy Outlook. The details of these projections, as well as monthly updates on or about the 6th of each interim month, are available on the internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The forecast period for this issue of the Outlook extends from the fourth quarter of 1997 through the fourth quarter of 1998. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the fourth quarter 1997 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. 19 tabs.

  10. Quarterly environmental data summary for fourth quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1997 is prepared in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data presented constitute the QEDS. The data were received from the contract laboratories, verified by the Weldon Spring Site verification group and, except for air monitoring data and site KPA generated data (uranium analyses), merged into the data base during the fourth quarter of 1997. Air monitoring data presented are the most recent complete sets of quarterly data. Air data are not stored in the data base and KPA data are not merged into the regular data base. Significant data, defined as data values that have exceeded defined ``above normal`` level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal level 2 values are based, in ES and H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits and other guidelines. The procedures also establish actions to be taken in response to such data. Data received and verified during the fourth quarter were within a permissible range of variability except for those which are detailed.

  11. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  12. Power systems development facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This quarterly technical progress report summarizes work completed during the last quarter of the Second Budget Period, January 1 through March 31, 1994, entitled {open_quotes}Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.{close_quotes} The objective of this project is to evaluate hot gas particulate control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

  13. Applied coal petrology: the role of petrology in coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    Isabel Suarez-Ruiz; John Crelling [Instituto Nacional del Carbon (INCAR-CSIC), Oviedo (Spain)

    2008-08-15

    This book is an integrated approach towards the applications of coal (organic) petrology and discusses the role of this science in the field of coal and coal-related topics. Contents are: Introduction 2. Basic factors controlling coal quality and technological behaviour of coal 3. Mining and benefication 4. Coal combustion 5. Coal gasification 6. Coal liquefaction 7. Coal carbonisation 8. Coal-derived carbons 9. Coal as a Petroleum source rock and reservoir rock 10. Environmental and health aspects 11. Other applications of coal petrology.

  14. Recovery of calcium carbonate from steelmaking slag and utilization for acid mine drainage pre-treatment

    CSIR Research Space (South Africa)

    Mulopo, J

    2012-06-01

    Full Text Available the technical feasibility of calcium carbonate recovery and its use for pre-treatment of Acid Mine Drainage (AMD) from coal mines. The effect of key process parameters, such as the amount of acid (HCl/Calcium molar ratio), the pH and the CO2 flow rate were...

  15. Assessing coal burnout

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, A. [Pacific Power, Sydney, NSW (Australia)

    1999-11-01

    Recent research has allowed a quantitative description of the basic process of burnout for pulverized coals to be made. The Cooperative Research Centre for Black Coal Utilization has built on this work to develop a coal combustion model which will allow plant engineers and coal company representatives to assess their coals for combustion performance. The paper describes the model and its validation and outlines how it is run. 2 figs.

  16. Colombian coal focus

    Energy Technology Data Exchange (ETDEWEB)

    Warden-Fernandez, J.; Rodriguez, L.E. [University of Dundee, Dundee (United Kingdom)

    2003-03-01

    The paper reviews the development of Colombia's coal industry over recent years. Colombia has recently modernised its mining code, Law 685 of 2001 concerning mineral rights and including the concept of sustainable development. The article discusses the legislation, analyses trends in Columbia's income from the coal and mineral industries (nickel, gold, emerald), and briefly discusses coal reserves, mining projects, coal exports and markets for Colombian coal. 7 refs., 7 figs., 4 tabs.

  17. Coal markets in transition

    Energy Technology Data Exchange (ETDEWEB)

    Romer, R.

    1990-01-01

    Describes Colorado's coal industry, and the implementation of a nine point mining plan announced in 1988. This plan includes an environmental regulatory review, coal royalty reform, production and marketing incentives, clean coal and clean air issues, and promotion of the coal industry. Other issues to be addressed are abandoned mine reclamation, abandoned mine safety and land reclamation after surface mining. International markets for Colorado coal are also discussed.

  18. Coal combustion products

    Science.gov (United States)

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  19. CFBC evaluation of fuels processed from Illinois coals. Technical report, December 1, 1991--February 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, S.

    1992-08-01

    The main thrust of this research project is the combustion testing and evaluation of two fuels processed from Illinois high sulfur coals. These fuels are (a) flotation slurry fuel beneficiated from coal fines containing 30% and 80% solids, and (b) coal-sorbent pellets made from coal fines using corn starch as a binder. Combustion data from these two fuels are to be compared with corresponding data obtained from a standard coal from the IBCSP coal bank. Parameters to be evaluated are SO{sub 2}, NO{sub x} emissions, combustion efficiency and ash composition, insofar as its influences disposal techniques. During the last quarter, the equipment was serviced and brought on line, and combustion tests were initiated.

  20. El Cerrejon Zona Norte - a giant open pit coal mine in Colombia, South America

    Energy Technology Data Exchange (ETDEWEB)

    Golosinski, T.S. (Intercor, Barranquilla (Colombia))

    El Cerrejon coal bearing formation at the NE tip of Colombia, contains a quarter of the country's thermal coal. The coal is being mined under a 33-year contract by the Colombian Coal Agency, Carbocol, and Intercor, a subsidiary of the Exxon Corp. The third phase of the contract, ending in 2008, is now under way. The article describes the geology of the deposit and the construction project which was completed in October 1986. The complexity of geological setting, characterized by intensely faulted, inclined multiple coal seams, resulted in the selection of the open pit mining method, the initial mining sequence being based on strike mining. Procedures adopted for mine planning, drilling and blasting, waste removal, and minimising environmental impact are outlined. The operation has been successfully established in one of the most remote areas of Colombia, and produces 15 Mt/a high quality thermal coal in an efficient and environmentally safe manner. 6 figs.

  1. Coal data: A reference

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  2. Molecular biological enhancement of coal desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, J.H.; Fry, I.; Wyza, R.E.; Palmer, D.T.; Zupancic, T.J.; Conkle, H.N. (Battelle, Columbus, OH (United States)); Delgado, O.; Chakravanty, L.; Tuovinen, O.H. (Ohio State Univ., Columbus, OH (United States))

    1991-06-14

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The specific technical objectives of the project are to: Clone and characterize the genes encoding the enzymes of the 4S'' pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotrophic bacterium; and conduct a batch-mode optimization/analysis of scale-up variables. This report presents the results of research at Battelle during the 8th Quarterly Report period beginning on March 15, 1991. Major topics include: isolation of a marker gene for use in a thiobacillus ferrooxidans shuttle vector; electrotransformation of pseudomonas ATCC19151 with broad host range vectors; and C18 dibeneothiophene pathway analysis. 2 figs.

  3. Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs. Substantial progress in underground construction activities was achieved during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. MWK equipment at the grade level and the first tier are being set in the structure.

  4. Short-term energy outlook, quarterly projections, first quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The forecast period for this issue of the Outlook extends from the first quarter of 1998 through the fourth quarter of 1999. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the first quarter 1998 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are adjusted by EIA to reflect EIA assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 24 figs., 19 tabs.

  5. Short-Term Energy Outlook: Quarterly projections. Fourth quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-05

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the fourth quarter of 1993 through the fourth quarter of 1994. Values for the third quarter of 1993, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications.

  6. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  7. Lignocellulosic Biomass Pretreatment Using AFEX

    Science.gov (United States)

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P. S.; Marshall, Derek; Dale, Bruce E.

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  8. Lignocellulosic biomass pretreatment using AFEX.

    Science.gov (United States)

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P S; Marshall, Derek; Dale, Bruce E

    2009-01-01

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  9. Fuel Cells in the Coal Energy Industry

    Directory of Open Access Journals (Sweden)

    Kolat Peter

    1998-09-01

    Full Text Available In march 1998 at the conference „Coal Utilization & Fuel Systems“ in Clearwater, USA representatives of U.S. Department of Energy presented the vision 21 focused on the electricity generation from coal for 21st century. The goal is a powerplant with the ability to produce the electricity from coal with the efficiency approaching 60% (higher heating value and emission levels of one-tenth of today´s technologies, The CO2 capture and permanent sequestration at the cost of $15/ton of CO2, and a cost of electricity of 3 cents per kilowatt-hour. The goal is believed to be achievable by the first quarter of the next century. The vision 21 is presented with several possible concepts. One of them is based on coal gasification with following hydrogen separation. The obtained hydrogen is used as a fuel for the cogeneration unit with fuel cells. The remaining gas can be liquefied and utilised as a fuel in the automotive industry or further chemically processed. The concept has several important features. Firstly, a very clean low cost electricity production. Secondly, it is comprised of fuel processing section and power processing section. The two sections need not to be co-located. In the world of the deregulated electricity generation this offers a major advantage. The technologies of fuel processing section – coal gasification and hydrogen separation have been successfully developed in the last two decades. A specificity of the fuel processing section of this concept is to obtain hydrogen rich gas with very low concentrations of substances, as CO, which cause a poisoning of electrodes of fuel cells leading to the decreasing fuel cells efficiency. Fuel cells, specially highly efficient coal-gas SOFC and MCFC, are expected to be commercially available by 2020. The natural-gas MCFC and SOFC plants should enter the commercial marketplace by the year 2002.

  10. 10 CFR 34.29 - Quarterly inventory.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Quarterly inventory. 34.29 Section 34.29 Energy NUCLEAR... RADIOGRAPHIC OPERATIONS Equipment § 34.29 Quarterly inventory. (a) Each licensee shall conduct a quarterly physical inventory to account for all sealed sources and for devices containing depleted uranium...

  11. Management of dry flue gas desulfurization by-products in underground mines. Quarterly technical progress report, April 1995--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Y.P.; Dutta, D.; Esling, S. [and others

    1995-07-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, and a discussion of these is not repeated here. Rather, this report discusses the technical progress made during the period April 1 - June 30, 1995. A final topical report on the SEEC, Inc. demonstration of its technology for the transporting of coal combustion residues was completed during the quarter, although final printing of the report was accomplished early in July, 1995. The SEEC technology involves the use of Collapsible Intermodal Containers (CIC`s) developed by SEEC, and the transportation of such containers - filled with fly ash or other coal combustion residues - on rail coal cars or other transportation means. Copies of the final topical report, entitled {open_quotes}The Development and Testing of Collapsible Intermodal Containers for the Handling and Transport of Coal Combustion Residues{close_quotes} were furnished to the Morgantown Energy Technology Center. The Rapid Aging Test colums were placed in operation during the quarter. This test is to determine the long-term reaction of both the pneumatic and hydraulic mixtures to brine as a leaching material, and simulates the conditions that will be encountered in the actual underground placement of the coal combustion residues mixtures. The tests will continue for about one year.

  12. Apprentices & Trainees: September Quarter, 2012

    Science.gov (United States)

    National Centre for Vocational Education Research (NCVER), 2013

    2013-01-01

    This publication presents estimates of apprentice and trainee activity in Australia for the September quarter 2012. The figures in this publication are derived from the National Apprentice and Trainee Collection no.74 (December 2012 estimates). The most recent figures in this publication are estimated (those for training activity from the March…

  13. South African Crime Quarterly 59

    African Journals Online (AJOL)

    SA Crime QuArterly No. 59 • mArCh ... Section 77 of the Criminal Procedure Act 51 of 1977 deals with the treatment of persons who are unable to ..... resource considerations alone.36 .... membership of groups; as demonstrated in. President of ...

  14. An Initial Assessment of Coal-Fired Ship Operations.

    Science.gov (United States)

    1984-11-01

    presence of oversized rock and clinkers * generated in the boiler. - Blockages in the ash transfer system. - Burning coal fed through the ash system. Many...close quarters. Engineers indicate that maintaining "engine r.p.m." within one revolution is necessary during canal transits . Propulsion Control...injection of exhaust gas into . ventilation inlets. Fresh air makeup for ventilation systems did not Initially .Its have filter elements . Filters have been

  15. Coal char fragmentation during pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L.

    1995-07-01

    A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

  16. Upgraded Coal Interest Group

    Energy Technology Data Exchange (ETDEWEB)

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  17. Flash pyrolysis of coal-solvent slurry prepared from the oxidized coal and the coal dissolved in solvent; Ichibu yokaishita sanka kaishitsutan slurry no jinsoku netsubunkai

    Energy Technology Data Exchange (ETDEWEB)

    Maki, T.; Mae, K.; Okutsu, H.; Miura, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-10-28

    In order to develop a high-efficiency coal pyrolysis method, flash pyrolysis was experimented on slurry prepared by using liquid-phase oxidation reformed coal and a methanol-based solvent mixture. Australian Morwell coal was used for the experiment. The oxidized coal, into which carboxyl groups have been introduced, has the condensation structure relaxed largely, and becomes highly fluid slurry by means of the solvent. Char production can be suppressed by making the oxidation-pretreated coal into slurry, resulting in drastically improved pyrolytic conversion. The slurry was divided into dissolved solution, dried substance, extracted residue, and residual slurry, which were pyrolized independently. The dissolved solution showed very high conversion. Improvement in the conversion is contributed by separating the dissolved substances (coal macromolecules) at molecular levels, coagulating the molecules, suppressing cross-link formation, and reducing molecular weight of the dissolved substances. Oxidized coal can be dissolved to 80% or higher by using several kinds of mixed solvents. As a result of the dissolution, a possibility was suggested on pyrolysis which is easy in handling and high in conversion. 7 refs., 6 figs., 2 tabs.

  18. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    Energy Technology Data Exchange (ETDEWEB)

    Duane A. McVay; Walter B. Ayers Jr.; Jerry L. Jensen

    2003-10-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objective for this reporting period was to further characterize the three areas selected as potential CO{sub 2} sequestration sites. Well-log data are critical for defining depth, thickness, number, and grouping of coal seams at the proposed sequestration sites. Thus, we purchased 12 hardcopy well logs (in addition to 15 well logs obtained during previous quarter) from a commercial source and digitized them to make coal-occurrence maps and cross sections. Detailed correlation of coal zones is important for reservoir analysis and modeling. Thus, we correlated and mapped Wilcox Group subdivisions--the Hooper, Simsboro and Calvert Bluff formations, as well as the coal-bearing intervals of the Yegua and Jackson formations in well logs. To assess cleat properties and describe coal characteristics, we made field trips to Big Brown and Martin Lake coal mines. This quarter we also received CO{sub 2} and methane sorption analyses of the Sandow Mine samples, and we are assessing the results. GEM, a compositional simulator developed by the Computer Modeling Group (CMG), was selected for performing the CO{sub 2} sequestration and enhanced CBM modeling tasks for this project. This software was used to conduct preliminary CO{sub 2} sequestration and methane production simulations in a 5-spot injection pattern. We are continuing to pursue a cooperative agreement with Anadarko Petroleum, which has already acquired significant relevant data near one of our potential sequestration sites.

  19. International perspectives on coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  20. Coal Combustion Science

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

    1991-08-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

  1. Fractal desulfurization kinetics of high-sulfur coal

    Institute of Scientific and Technical Information of China (English)

    Xu Longjun; Peng Tiefeng; Zhang Dingyue; Zhang Fukai

    2012-01-01

    The pore structure characteristics of high-sulfur coal from Wansheng in Chongqing have been studied by a nitrogen adsorption method (BET).The effects of grinding and pre-treating with nitric acid on the inorganic sulfur content of coal have been investigated.Organic sulfur in coal pretreated with nitric acid was desulfurized by using propylene-glycol-KOH (PG-KOH).Fractal kinetic properties of these two desulfurization procedures were investigated by using fractal geometric theory.The results show that both the specific surface area and pore volume increased with the decrease in particle diameter.The microspore surface of coal had fractal characteristics; the fractal dimension was 2.48.The sulfur content decreased with the decrease in particle diameter by grinding.After pretreatment with nitric acid,the desulfurization ratio (DFR) of inorganic sulfur increased to over 99% and the DFR of total sulfur to over 70%.The desulfurization procedure of inorganic sulfur had fractal kinetic characteristics; its reactive fractal dimension was 2.94.The organic sulfur desulfurization procedure by PG-KOH was also tallied with fractal kinetic properties; the reactive fractal dimension was 2.57.The effect of temperature on the desulfurization ratio of organic sulfur can be described with an Arrhenius empirical equation.The rate constant,pre-exponential factor and the activation energy of the reaction increased with the decrease in particle diameter.

  2. Coal fires in China

    Institute of Scientific and Technical Information of China (English)

    CHE Yao(车遥); HUANG Wen-hui(黄文辉); ZHANG Ai-yun(张爱云)

    2004-01-01

    Coal fires have a very long history in China; the oldest coal fires have being burning for many million years. Up to now more than 56 coal fires spots were distinguished. They mainly locate in West-North of China, North of China and East-North of China. About millions of tons of coal have been burned in fires every year. Xinjiang Autonomy is the most serious region in coal fires as it has 38 coal fires spots and about 6.85 million tons of coal was burned every year. Coal fires in China ignited by wildfires, spontaneous combustion and human being during mining activities. These fires have released about 0.9 million tons of gasses (including CO, CO2, SO2, NO2 CH4, CO2, H2S etc.) into the atmosphere every year, most of which are brought to the east by wind and resulting more heavier air pollution in northern China.

  3. Continuous coal processing method

    Science.gov (United States)

    Ryason, P. R.

    1980-06-01

    A coal pump is provided in which solid coal is heated in the barrel of an extruder under pressure to a temperature at which the coal assumes plastic properties. The coal is continuously extruded, without static zones, using, for example, screw extrusion preferably without venting through a reduced diameter die to form a dispersed spray. As a result, the dispersed coal may be continuously injected into vessels or combustors at any pressure up to the maximum pressure developed in the extrusion device. The coal may be premixed with other materials such as desulfurization aids or reducible metal ores so that reactions occur, during or after conversion to its plastic state. Alternatively, the coal may be processed and caused to react after extrusion, through the die, with, for example, liquid oxidizers, whereby a coal reactor is provided.

  4. Nitrogen in Chinese coals

    Science.gov (United States)

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  5. Coal worker's pneumoconiosis

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000130.htm Coal worker's pneumoconiosis To use the sharing features on this page, please enable JavaScript. Coal worker's pneumoconiosis is a lung disease that results ...

  6. Fluidized coal combustion

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L.

    1979-01-01

    Fluidized-bed coal combustion process, in which pulverized coal and limestone are burned in presence of forced air, may lead to efficient, reliable boilers with low sulfur dioxide and nitrogen dioxide emissions.

  7. TENORM: Coal Combustion Residuals

    Science.gov (United States)

    Burning coal in boilers to create steam for power generation and industrial applications produces a number of combustion residuals. Naturally radioactive materials that were in the coal mostly end up in fly ash, bottom ash and boiler slag.

  8. Chemicals from coal

    Energy Technology Data Exchange (ETDEWEB)

    Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

    2004-12-01

    This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

  9. Molecular biological enhancement of coal biodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, J.H.; Fry, I.; Wyza, R.E.; Palmer, D.T.; Zupancic, T.J.; Conkle, H.N. (Battelle, Columbus, OH (USA)); Delgado, O.; Chakravanty, L.; Tuovinen, O.H. (Ohio State Univ., Columbus, OH (USA))

    1991-03-14

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The specific technical objectives of the project are to: Clone and characterize the genes encoding the enzymes of the 4S pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; Return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; Transfer this pathway into a fast-growing chemolithotrophic bacterium; and Conduct a batch-mode optimization/analysis of scale-up variables. The following work was accomplished during the 7th Quarterly Report Period by Battelle. ALA and SDP cultures have been analyzed for DBT metabolism. Several Pseudomonas and Thiobacillus strains were acquired during the quarter; these included host strains, and organisms containing broad host range vectors and a transposon. A broad-host range promoter probe vector is under construction. pTFI91 has been restriction mapped and cloned into the broad host range vector pDSK519. Preliminary electroporation studies with T. ferrooxidans have been completed. Confirmation that the mercuric reductase gene is present in the T. ferrooxidans strain DSM5083 was obtained by Southern blot analysis. A broad host range plasmid library is now being prepared. Results are presented. 2 figs. 2 tabs.

  10. Coal Extraction - Environmental Prediction

    Science.gov (United States)

    Cecil, C. Blaine; Tewalt, Susan J.

    2002-01-01

    Coal from the Appalachian region has supplied energy to the Nation for more than 200 years. Appalachian coal fueled America through a civil war and helped win two world wars. Appalachian coal has also provided fuel for keeping America warm in the winter and cool in the summer and has served as the basis for the steel, automobile, organic chemicals, chlorine, and aluminum industries. These benefits have not come without environmental costs, however. Coal extraction and utilization have had significant environmental impacts.

  11. 29 CFR 570.60 - Occupations in connection with mining, other than coal (Order 9).

    Science.gov (United States)

    2010-07-01

    ... underground. (2) Work in the operation and maintenance of living quarters. (3) Work outside the mine in... sections of railroad track located in those areas of open-cut metal mines where mining and haulage... mining, other than coal shall mean all work performed underground in mines and quarries; on the surface...

  12. Thermolysis of phenethyl phenyl ether: A model of ether linkages in low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Britt, P.F.; Buchanan, A.C. III; Malcolm, E.A.

    1994-09-01

    Currently, an area of interest and frustration for coal chemists has been the direct liquefaction of low rank coal. Although low rank coals are more reactive than bituminous coals, they are more difficult to liquefy and offer lower liquefaction yields under conditions optimized for bituminous coals. Solomon, Serio, and co-workers have shown that: in the pyrolysis and liquefaction of low rank coals, a low temperature cross-linking reaction associated with oxygen functional groups occurs before tar evolution. A variety of pretreatments (demineralization, alkylation, and ion-exchange) have been shown to reduce these retrogressive reactions and increase tar yields, but the actual chemical reactions responsible for these processes have not been defined. In order to gain insight into the thermochemical reactions leading to cross-linking in low rank coal, we have undertaken a study of the pyrolysis of oxygen containing coal model compounds. Solid state NMR studies suggest that the alkyl aryl ether linkage may be present in modest amounts in low rank coal. Therefore, in this paper, we will investigate the thermolysis of phenethyl phenyl ether (PPE) as a model of 0-aryl ether linkages found in low rank coal, lignites, and lignin, an evolutionary precursor of coal. Our results have uncovered a new reaction channel that can account for 25% of the products formed. The impact of reaction conditions, including restricted mass transport, on this new reaction pathway and the role of oxygen functional groups in cross-linking reactions will be investigated.

  13. Considerations on coal gasification

    Science.gov (United States)

    Franzen, J. E.

    1978-01-01

    Commercial processes for the gasification of coal with oxygen are discussed. The Koppers-Totzek process for the gasification of coal dust entrained in a stream of gasifying agents is described in particular detail. The outlook for future applications of coal gasification is presented.

  14. Prediction of coal hydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Labuschagne, B.C.J. [Council for Scientific and Industrial Research, Pretoria (South Africa). Div. of Energy Technology; Wheelock, T.D.; Guo, R.K.; David, H.T. [Iowa State Univ. of Science and Technology, Ames, IA (United States); Markuszewski, R. [Ames Lab., IA (United States)

    1988-12-31

    Many coals exhibit a certain degree of native hydrophobicity. The more hydrophobic coals (the higher-rank coals) are easily beneficiated by froth flotation or oil agglomeration, while the more hydrophilic coals (the lower-rank coals) are floated or agglomerated with difficulty. Coals of different ranks and often even of the same rank sometimes differ greatly in hydrophobicity as measured by contact angle or natural floatability. Although the degree of hydrophobicity of a coal is related to its rank and has been correlated with other surface properties of the coal , the known information is still not sufficient to allow a good estimation to be made of the hydrophobicity of a given coal and does not explain the variation of coal hydrophobicity as a function of rank. A statistical analysis of previously published data, as well as newly acquired data, shows that coal hydrophobicity correlates better with moisture content than with carbon content, and better with the moisture/carbon molar ratio than with the hydrogen/carbon or oxygen/carbon atomic ratios. These findings indicate that there is a strong association between hydrophobicity and coal moisture content.

  15. Coal production 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  16. Strategic Studies Quarterly- Spring 2016

    Science.gov (United States)

    2016-01-01

    Khyber Pakhtunkhwa, bordering Afghanistan. A number of analysts agree that if conflict breaks out with India, Pakistan would immediately rede - ploy...the military should not risk its capacity to fight just to become an instrument of social progress but at the same rook pride in ending the...the " social experiments" conducted during his tenure are not yet known. The former Secretary STRATEGIC STUDIES QuARTERLY + SPRING 2016 [ 149] Book

  17. Separation of flue-gas scrubber sludge into marketable products. Third year, second quarterly technical progress report, December 1, 1995--February 29, 1996 (Quarter {number_sign}10)

    Energy Technology Data Exchange (ETDEWEB)

    Kawatra, S.K.; Eisele, T.C.

    1996-03-01

    To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of. Knowledge of scrubber sludge characteristics is necessary for the development of purification technologies which will make it possible to directly utilize scrubber sludges rather than landfilling them. This project is studying the use of minimal-reagent froth flotation as the purification process, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified calcium sulfite/gypsum product. In the current quarter, research was focused on two different areas. The first part of this quarter the optimization of the feed slurry percent solids for the two inch water-only cyclone was completed. The optimization of the vortex finder, spigot diameter and inlet feed pressure was completed in the previous quarter. The second part of this quarter began the investigation of why water-only cycloning helps froth flotation performance. The hypothesis is that water-only cycloning scrubs the surface of the unreacted limestone. This scrubbing effect provides a clean calcium carbonate surface, which results in better flotation reagent adsorption. This study used the scanning electron microscope to investigate the surface of the unreacted limestone particles.

  18. Coal technology program. Progress report, September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-10-01

    A successful hydrocarbonization experiment at 300 psi of hydrogen and approximately 1050/sup 0/F was completed with Illinois No. 6 coal that had been chemically pretreated with aqueous CaO and NaOH. In pressurized carbonization, one successful experiment at approximately 1100/sup 0/F and 415 psi of methane was completed with vacuum distillation residue from the H-Coal process. In the thick section pressure vessel work, procedures are being developed with the DATA TRAK heat treating facility to allow preparation of relatively large heat treated samples of 2 /sup 1///sub 4/ Cr-1 Mo steel. In the Gas-Fired Potassium Boiler Project, the potassium system installation was completed, the fill and drain tank was filled with potassium, and the checkout of the instruments and controls was nearly completed. The Coal-Fired Alkali Metal Power System Design Study was completed and a draft report describing the design was issued. Cesium was selected as the working fluid for the topping cycle. For the reference design, the furnace operated at atmospheric pressure and the cycle conditions for the power conversion systems were 1500/sup 0/F (1089 K) to 900/sup 0/F (756 K) for the topping cycle and 2400 psi (16.5 MPa)/1000/sup 0/F (811 K)/1000/sup 0/F (811 K) to 1 /sup 1///sub 2/ in. Hg (5079 Pa) for the steam system. ORNL was requested by DOE to develop a program for testing coal feeders currently under development. Work was continued on process modeling, the preparation of a Synthetic Fuels Research Digest, a survey of industrial coal conversion equipment capabilities, and studies of flash hydropyrolysis, hot gas purification processes, processes for heat recovery, and hydrogen production by the steam/molten iron process. Process and program analysis studies were continued on low-Btu gasification, direct combustion, advanced power conversion systems, liquefaction, high-Btu gasification, in-situ gasification, and coal beneficiation.

  19. The South African coal industry - a millennium review

    Energy Technology Data Exchange (ETDEWEB)

    Lind, G.H.; Phillips, H.R. [University of Witwatersrand, Johannesburg (South Africa)

    2001-06-01

    South Africa is a significant contributor to southern Africa and Europe's coal needs and is expected to remain in this important position for the foreseeable future. This review paper of the South African coal mining industry highlights that, although abundant, the easily mineable reserves will become depleted within the next quarter century. Socio-economic issues of unique, local importance such as the HIV/AIDS pandemic as well as policies propagated by South Africa's post-apartheid government are detailed, as are programmes in research and development that will ensure that South Africa's long term coal industry is, at the every least, maintained. 11 refs., 9 figs., 7 tabs.

  20. The economics of coal

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Global aspects of the production, consumption and trade in coal are described. World reserves and resources, production (both by region and country), international trade (exporters and importers), coal consumption (by region and sector), and the demand for primary energy (1960-1979). Each of the producing and consuming countries are discussed individually. The electricity sector and its future demand for coal, and the future demand for coking coal are covered. Prices for metallurgical and steam coal are also given. Statistics are presented in tables.

  1. Radionuclides in US coals

    Energy Technology Data Exchange (ETDEWEB)

    Bisselle, C. A.; Brown, R. D.

    1984-03-01

    The current state of knowledge with respect to radionuclide concentrations in US coals is discussed. Emphasis is placed on the levels of uranium in coal (and lignite) which are considered to represent a concern resulting from coal combustion; areas of the US where such levels have been found; and possible origins of high radionuclide levels in coal. The report reviews relevant studies and presents new data derived from a computerized search of radionuclide content in about 4000 coal samples collected throughout the coterminous US. 103 references, 5 figures, 5 tables.

  2. A review on biomass classification and composition, cofiring issues and pretreatment methods

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2011-08-01

    Presently around the globe there is a significant interest in using biomass for power generation as power generation from coal continues to raise environmental concerns. Biomass alone can be used for generation of power which can bring lot of environmental benefits. However the constraints of using biomass alone can include high investments costs for biomass feed systems and also uncertainty in the security of the feedstock supply due to seasonal variations and in most of the countries biomass is dispersed and the infrastructure for biomass supply is not well established. Alternatively cofiring biomass along with coal offer advantages like (a) reducing the issues related to biomass quality and buffers the system when there is insufficient feedstock quantity and (b) costs of adapting the existing coal power plants will be lower than building new systems dedicated only to biomass. However with the above said advantages there exists some technical constrains including low heating and energy density values, low bulk density, lower grindability index, higher moisture and ash content to successfully cofire biomass with coal. In order to successfully cofire biomass with coal, biomass feedstock specifications need to be established to direct pretreatment options that may include increasing the energy density, bulk density, stability during storage and grindability. Impacts on particle transport systems, flame stability, pollutant formation and boiler tube fouling/corrosion must also be minimized by setting feedstock specifications including composition and blend ratios if necessary. Some of these limitations can be overcome by using pretreatment methods. This paper discusses the impact of feedstock pretreatment methods like sizing, baling, pelletizing, briquetting, washing/leaching, torrefaction, torrefaction and pelletization and steam explosion in attainment of optimum feedstock characteristics to successfully cofire biomass with coal.

  3. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Y.; Dutta, D.; Esling, S.; Ghafoori, N.; Paul, B.; Sevim, H.; Thomasson, E.

    1995-01-01

    On September 30, 1993, the US Department of Energy, Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative agreement entitled ``Management of Dry Flue Gas Desulfurization By-Products in Underground Mines`` (DE-FC21-93MC30252). Under the agreement, Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. The major event during the quarter was the demonstration of the SEEC, Inc. technology for loading and transporting coal combustion residues in the SEEC developed Collapsible Intermodal Containers (CIC). The demonstration was held on November 17, 1994, at the Illinois Power Company Baldwin power plant, and was attended by about eighty (80) invited guest. Also during the quarter meetings were held with Peabody Coal Company officials to finalize the area in the Peabody No. 10 mine to be used for the placement of coal combustion residues. Work under the Materials Handling and Systems Economics area continued, particularly in refining the costs and systems configuration and in economic evaluation of various systems using equipment leasing rather than equipment purchases. Likewise, work progressed on residues characterization, with some preparations being made for long-term testing.

  4. Experimental study of the cultivation and application of fungus for transformation and biodegradation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Wang Long-qui; Zhang Ming-xu; Ou Ze-shen; Shen Guo-juan [Anhui University of Science and Technology, Huainan (China). Departmental of Material Science & Engineering

    2006-07-15

    By microoganic fungus cultivation, three kinds of epiphyte were selected for the experiments of coal biodegradation and transformation. The influences of key factors, such as fungus type, size and rank of coal, and pretreatment, on coal degradation were studied. Results show that the best degradation result of 38.13% within 10 days is achieved under co-cultivation of the three kinds of epiphyte for Yima lignite. The finer the coal particle is, the higher the percentage of degradation is, the lower the degree of metamorphism of the coal is, the easier the coal is degraded by the fungus, and the pretreated coal generally tended to be more easily degraded. The degradation products were analysed using XRD and FTIR, and the results show that the degree of the polymerigation of the aromatic nucleus and the molecular weights of products as well are decreased obviously, and remarkable changes also take place in the content of functional groups compared with the coal. 11 refs., 7 figs., 6 tabs.

  5. Coal investment and long-term supply and demand outlook for coal in the Asia-Pacific Region

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.J.

    1997-12-31

    The theme of this symposium to look ahead almost a quarter century to 2020 gives one the freedom to speculate more than usual in projections for coal. It is important to attempt to take a long term look into the future of coal and energy, so that one can begin to prepare for major changes on the horizon. However, it would be a mistake to believe that the crystal ball for making long term projections is accurate for 2020. Hopefully it can suggest plausible changes that have long term strategic importance to Asia`s coal sector. This paper presents the medium scenario of long term projects of coal production, consumption, imports and exports in Asia. The second part of the paper examines the two major changes in Asia that could be most important to the long term role of coal. These include: (1) the impact of strict environmental legislation on energy and technology choices in Asia, and (2) the increased role of the private sector in all aspects of coal in Asia.

  6. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Teissie, J.; Bourgogne, D. de; Bautin, F. [TotalFinaElf, La Defense, 92 - Courbevoie (France)

    2001-12-15

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  7. The CIS coal summit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The presentations (overhead/viewgraphs) include: the impacts of EU environmental legislation on Russian coal market (A. Sankovski); how Caterpillar and Cat dealers create value in the global mining industry (D. Mohr); new coal preparation technology and application in the Russian coal market (D. Morris); UK demand outlook and import growth (G. Parker); new technologies in blasting operations and services (J. Petzold and others); a global bank's view of the coal sector (M. Seleznev); ELGA coal deposit, Republic of Sakha (Yakutia), Russia (M. Tsikanov); Russia's economic outlook (P. Forrest); Renaissance Capital (investment bank) (R. Edwards); Russian coal for Korean gencos (S. Kim); and coking coal in Ukraine (V. Khilko).

  8. Applied Meteorology Unit (AMU) Quarterly Report - Fourth Quarter FY-09

    Science.gov (United States)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2009-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the fourth quarter of Fiscal Year 2009 (July - September 2009). Tasks reports include: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Objective Lightning Probability Tool. Phase III, (3) Peak Wind Tool for General Forecasting. Phase II, (4) Update and Maintain Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS), (5) Verify MesoNAM Performance (6) develop a Graphical User Interface to update selected parameters for the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLlT)

  9. Applied Meteorology Unit (AMU) Quarterly Report Third Quarter FY-08

    Science.gov (United States)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Dreher, Joseph

    2008-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the third quarter of Fiscal Year 2008 (April - June 2008). Tasks reported on are: Peak Wind Tool for User Launch Commit Criteria (LCC), Anvil Forecast Tool in AWIPS Phase II, Completion of the Edward Air Force Base (EAFB) Statistical Guidance Wind Tool, Volume Averaged Height Integ rated Radar Reflectivity (VAHIRR), Impact of Local Sensors, Radar Scan Strategies for the PAFB WSR-74C Replacement, VAHIRR Cost Benefit Analysis, and WRF Wind Sensitivity Study at Edwards Air Force Base

  10. Biomass pretreatment: fundamentals toward application.

    Science.gov (United States)

    Agbor, Valery B; Cicek, Nazim; Sparling, Richard; Berlin, Alex; Levin, David B

    2011-01-01

    Development of sustainable energy systems based on renewable biomass feedstocks is now a global effort. Lignocellulosic biomass contains polymers of cellulose, hemicellulose, and lignin, bound together in a complex structure. Liquid biofuels, such as ethanol, can be made from biomass via fermentation of sugars derived from the cellulose and hemicellulose within lignocellulosic materials, but the biomass must be subjected to pretreatment processes to liberate the sugars needed for fermentation. Production of value-added co-products along-side biofuels through integrated biorefinery processes creates the need for selectivity during pretreatment. This paper presents a survey of biomass pretreatment technologies with emphasis on concepts, mechanism of action and practicability. The advantages and disadvantages, and the potential for industrial applications of different pretreatment technologies are the highlights of this paper. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Physicochemical pretreatments and hydrolysis of furfural residues via carbon-based sulfonated solid acid.

    Science.gov (United States)

    Ma, Bao Jun; Sun, Yuan; Lin, Ke Ying; Li, Bing; Liu, Wan Yi

    2014-03-01

    Potential commercial physicochemical pretreatment methods, NaOH/microwave and NaOH/ultrasound were developed, and the carbon-based sulfonated solid acid catalysts were prepared for furfural residues conversion into reducing sugars. After the two optimum pretreatments, both the content of cellulose increased (74.03%, 72.28%, respectively) and the content of hemicellulose (94.11%, 94.17% of removal rate, respectively) and lignin (91.75%, 92.09% of removal rate, respectively) decreased in furfural residues. The reducing sugar yields of furfural residues with the two physicochemical pretreatments on coal tar-based solid acid reached 33.94% and 33.13%, respectively, higher than that pretreated via NaOH alone (27%) and comparable to that pretreated via NaOH/H2O2 (35.67%). The XRD patterns, IR spectra and SEM images show microwave and ultrasound improve the pretreatment effect. The results demonstrate the carbon-based sulfonated solid acids and the physicochemical pretreatments are green, effective, low-cost for furfural residues conversion.

  12. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-08-01

    This is the tenth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Process oils from Wilsonville Run 262 were analyzed to provide information on process performance. Run 262 was operated from July 10 through September 30, 1991, in the thermal/catalytic Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) configuration with ash recycle. The feed coal was Black Thunder Mine subbituminous coal. The high/low temperature sequence was used. Each reactor was operated at 50% of the available reactor volume. The interstage separator was in use throughout the run. The second-stage reactor was charged with aged Criterion 324 catalyst (Ni/Mo on 1/16 inch alumina extrudate support). Slurry catalysts and sulfiding agent were fed to the first-stage reactor. Molyvan L is an organometallic compound which contains 8.1% Mo, and is commercially available as an oil-soluble lubricant additive. It was used in Run 262 as a dispersed hydrogenation catalyst precursor, primarily to alleviate deposition problems which plagued past runs with Black Thunder coal. One test was made with little supported catalyst in the second stage. The role of phenolic groups in donor solvent properties was examined. In this study, four samples from direct liquefaction process oils were subjected to O-methylation of the phenolic groups, followed by chemical analysis and solvent quality testing.

  13. Ultrafine coal single stage dewatering and briquetting process. Technical report, September 1--November 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.W. [Univ. of Missouri, Rolla, MO (United States). Dept. of Mining Engineering; Honaker, R.Q. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mining Engineering

    1994-12-31

    It is well known that a large portion of the pyrite particles in the coal seams of the Illinois Basin, are finely disseminated within the coal matrix. In order to liberate these micron size pyrite particles, one must use a fine grinding operation. The ultrafine coal particles that are produced are difficult to dewater and they create problems in coal transportation as well as in its storage and handling at utility plants. The objective of this research project is to combine ultrafine coal dewatering and briquetting processes into a single stage operation. This will be accomplished by the use of bitumen based emulsions for dewatering and a compaction device for briquetting. During this reporting period, two types of coal samples have been tested for use in the dewatering and briquetting processes. These tests were carried out in conjunction with a selected hydrophobic binder as the dewatering reagent and an uniaxial hydraulic press. The influence of compaction pressure and binder concentration (2 to 5%) on the performance of coal pellets have been evaluated in terms of their water and wear resistance. A laboratory scale ultrafine coal dewatering and briquetting extruder that can be operated continuously for coal pellets fabrication, has been designed and built, and will be available for testing in the next quarter.

  14. Correlation between coal characteristics and methane adsorption on China's coals

    Institute of Scientific and Technical Information of China (English)

    YU Hong-guan; YUAN Jian; SONG Ji-yong; LENG Shu-wei

    2007-01-01

    It is highly important to investigate relationship between coal characteristics and methane adsorption on coal in the fields of coalbed methane recovery. Based on data examination of coal quality indexes collected from the literatures, regression equations for Langmuir adsorption constants, VL or VL/PL, and coal quality indexes for selected coal samples were developed with multiple linear regression of SPSS software according to the degree of coal metamorphosis. The regression equations built were tested with data collected from some literatures, and the influences of coal quality indexes on CH4 adsorption on coals were studied with investigation of regression equations, and the reasons of low accuracy to Langmuir constants calculated with regression equation for a few coal samples were investigated. The results show that the regression equations can be employed to predict Langmuir constants for methane adsorption isotherms on coals obtained using volumetric gas adsorption experiments, which are conducted at 30 ℃ on a wet or dried coal samples with less than 30% ash content in coal. The influence of same coal quality index with various coal rank or influence of various coal quality indexes for same coal rank on CH4 adsorption is not consistent. The regression equations have different accuracy to different coal rank, in which the VL equations supply better prediction accuracy for anthracite and higher prediction error for lower metamorphosis coal, and the PL prediction error with VL and VL/PL equations is lower to bituminous coal and higher to anthracite.

  15. Processes for pretreating lignocellulosic biomass: A review

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J D

    1992-11-01

    This paper reviews existing and proposed pretreatment processes for biomass. The focus is on the mechanisms by which the various pretreatments act and the influence of biomass structure and composition on the efficacy of particular pretreatment techniques. This analysis is used to identify pretreatment technologies and issues that warrant further research.

  16. Processes for pretreating lignocellulosic biomass: A review

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J.D.

    1992-11-01

    This paper reviews existing and proposed pretreatment processes for biomass. The focus is on the mechanisms by which the various pretreatments act and the influence of biomass structure and composition on the efficacy of particular pretreatment techniques. This analysis is used to identify pretreatment technologies and issues that warrant further research.

  17. Coal, culture and community

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    16 papers are presented with the following titles: the miners; municipalisation and the millenium - Bolton-upon-Dearne Urban District Council 1899-1914; the traditional working class community revisited; the cultural capital of coal mining communities; activities, strike-breakers and coal communities; the limits of protest - media coverage of the Orgreave picket during the miners` strike; in defence of home and hearth? Families, friendships and feminism in mining communities; young people`s attitudes to the police in mining communities; the determinants of productivity growth in the British coal mining industry, 1976-1989; strategic responses to flexibility - a case study in coal; no coal turned in Yorkshire?; the North-South divide in the Central Coalfields; the psychological effects of redundancy and worklessness - a case study from the coalfields; the Dearne Valley initiative; the future under labour: and coal, culture and the community.

  18. Beneficiated coals' char morphology

    Directory of Open Access Journals (Sweden)

    Diana Vargas

    2012-09-01

    Full Text Available This work evaluated the char morphology of beneficiated and original coal (without beneficiation from four Colombian coalmines: Cerrejón (La Guajira, La Jagua (Cesar, Guachinte (Valle del Cauca and Nechí (Antioquia. Column flotation was used to obtain beneficiated coal, whereas a drop tube reactor at 1,000°C, 104 °C/s heating rate and 100 ms residence time was used to obtain char. The chars were analysed by image analysis which determined their shape, size, porosity and wall thickness. It was found that char morphology depended on coal rank and maceral composition. Morphological characteristics like high porosity, thinner walls and network-like morphology which are beneficial in improving combustion were present in vitrinite- and liptinite-rich lowest-ranking coals. Beneficiated coals showed that their chars had better performance regarding their morphological characteristics than their original coal chars.

  19. Coal tar in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Roelofzen, J.H.J.; Aben, K.K.H.; Van Der Valk, P.G.M.; Van Houtum, J.L.M.; Van De Kerkhof, P.C.M.; Kiemeney, L.A.L.M. [Radboud University Nijmegen Medical Center, Nijmegen (Netherlands). Dept. of Dermatology

    2007-07-01

    Coal tar is one of the oldest treatments for psoriasis and eczema. It has anti-inflammatory, antibacterial, antipruritic and antimitotic effects. The short-term side effects are folliculitis, irritation and contact allergy. Coal tar contains carcinogens. The carcinogenicity of coal tar has been shown in animal studies and studies in occupational settings. There is no clear evidence of an increased risk of skin tumors or internal tumors. Until now, most studies have been fairly small and they did not investigate the risk of coal tar alone, but the risk of coal tar combined with other therapies. New, well-designed, epidemiological studies are necessary to assess the risk of skin tumors and other malignancies after dermatological use of coal tar.

  20. Coal: ditching the dirt

    Energy Technology Data Exchange (ETDEWEB)

    Russell, E.

    2006-01-01

    At the time when the British government is considering building new nuclear power plants, this article gives an overview of how the coal industry has been developing technologies to reduce greenhouse gas emissions and increase combustion efficiency which make coal a more attractive power source that should not be overlooked. Technologies mentioned include integrated gasification combined cycle, fluidized bed combustion, low NOx burners, and combustion control. Research is under way on capturing greenhouse gas emissions from fossil fuels. Use of fly ash in cement manufacture help reduce CO{sub 2} emissions. Clean coal technologies in the UK are supported by the IEA Clean Coal Centre, the World Coal Institute and the Coal Research Forum. 3 photos. 3 figs.

  1. Arthropod cuticles in coal

    Energy Technology Data Exchange (ETDEWEB)

    Bartram, K.M.; Jeram, A.J.; Selden, P.A.

    1987-05-01

    An abundance of scorpion cuticles from Westphalian (Upper Carboniferous) coals of Yorkshire is described, and other records of arthropod cuticles in coals are reviewed. The absence of cuticles assignable to arthropod groups other than scorpions is thought to be due to preferential preservation of the unique exocuticle of scorpions; it alone is preserved and appears to retain an organic nature. The cuticle is recovered from all the lithotypes of humic bituminous coals although it is most common in coals rich in inertinite macerals. From the present study it is uncertain whether the scorpions were aquatic or terrestrial. The recognition of arthropod cuticle as a coal maceral could aid environmental interpretations. The abundance of arthropod cuticle in the coals studied indicates its potential use in correlation and in determining the thermal maturity of sediments. 37 refs., 1 fig.

  2. Cooperative research program in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. (ed.)

    1992-01-01

    Research continues on coal liquefaction in the following areas: (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  3. Weldon Spring Site Remedial Action Project quarterly environmental data summary (QEDS) for fourth quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    This report contains the Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1998 in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data, except for air monitoring data and site KPA generated data (uranium analyses) were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the fourth quarter of 1998. KPA results for on-site total uranium analyses performed during fourth quarter 1998 are included. Air monitoring data presented are the most recent complete sets of quarterly data.

  4. CLEANER ENERGY FROM COAL

    Directory of Open Access Journals (Sweden)

    Adina-MilenaTĂTAR

    2016-12-01

    Full Text Available With the ever-increasing demand for coal, particularly in the developing world, the use of low emission coal technologies becomes increasingly important if international targets on climate change are to be achieved. The two principal avenues for reducing carbon emissions from coal-fired power generation are through use of high efficiency, low emission power plantsand carbon capture, use and storage.

  5. Supercritical solvent coal extraction

    Science.gov (United States)

    Compton, L. E. (Inventor)

    1984-01-01

    Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.

  6. Extraction of organic compounds from brown coal

    Directory of Open Access Journals (Sweden)

    Slavomír Hredzák

    2005-11-01

    Full Text Available The paper presents the study on the extraction of organic compounds (low-molecular weight - diterpenes, high-molecular weight - fullerenes and humic acids from Handlová brown coal and pyrolytic soot. It was confirmed that the coal extract with a diterpene content - 16 β (H kaurene was obtained by the supercritical fluid extraction (using CO2 and modificator - tetrahydrofurane/acetone, 8:2 w/w at T = 90 oC and p = 30 MPa. The occurrence of fullerenes in the toluene extract of solid carbon product has confirmed by the MALDI - TOF - MS and UV-VIS spectroscopy. In the extraction process of GACL (Grinding Aqueous Caustic Leaching at the concentration of 0.1 % NaOH, the content of humic acids (HK in the physically untreated and pretreated sample increased by 6.09 and 4.57 times, respectively. In the case of higher leaching agent concentration (2 % NaOH, the content of HK in the physically untreated and pretreated sample increased by 8,67 and 8,21 times, respectively.

  7. United States housing, fourth quarter 2013

    Science.gov (United States)

    Delton Alderman

    2017-01-01

    In the beginning of 2013, the U.S. housing construction market indicated increases in all sectors; yet, by the fourth quarter’s end, only housing under construction improved. Moderation and declines are to be expected in the fourth quarter, as winter is setting in. Permits, starts, housing under construction, completions, and new and existing house sales all exceeded...

  8. United States housing, second quarter 2013

    Science.gov (United States)

    Delton Alderman

    2017-01-01

    The U.S. housing market’s quarter two results were disap¬pointing compared with the first quarter. Although overall expected gains did not materialize, certain sectors improved slightly. Housing under construction, completions, and new and existing home sales exhibited slight increases. Overall permit data declined, and the decrease in starts was due primarily to a...

  9. Pyrolysis of Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2006-07-01

    Full Text Available The paper presents a review of relevant literature on coal pyrolysis.Pyrolysis, as a process technology, has received considerable attention from many researchers because it is an important intermediate stage in coal conversion.Reactions parameters as the temperature, pressure, coal particle size, heating rate, soak time, type of reactor, etc. determine the total carbon conversion and the transport of volatiles and therebythe product distribution. Part of the possible environmental pollutants could be removed by optimising the pyrolysis conditions. Therefore, this process will be subsequently interesting for coal utilization in the future

  10. Petrographers fingerprint coals

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, D.E. [Pearson and Associates Ltd. (USA)

    2001-05-01

    A new system of coal fingerprinting called Digipet generates reflectance profiles by using an automated digital imaging system in which tens of millions of individual reflectance measurements are obtained. Images are conditioned to generate a detailed smooth histogram which convey information on the coal sample's provenance and history. Expert interpretation can reveal further information. The article gives details of the instrument and shows sample reflectance profiles. It discusses some applications in sampling coal charged to coke ovens of the Indiana Harbor Coke Co, and at a Midwest generating plant where it detected the presence of rogue high volatile coal. 3 figs.

  11. An evaluation of pretreatment agents for the stimulation of secondary biogenic coalbed natural gas

    Science.gov (United States)

    Huang, Zaixing

    permanganate treated samples, which had a much lower TOC (5%), were more promising in terms of biological conversion potential. The biometer assay data indicated that up to 1.1% of the coal carbon was mineralized to carbon dioxide (CO2) within a period of two weeks. On this basis, permanganate treated samples were utilized in subsequent experiments to evaluate potential biogenic methane generation. For the permanganate treated samples, 5.4% of the coal carbon was solubilized/depolymerized, and 3.2% of the soluble carbon was converted to methane (CH4). The methane was rapidly generated and peaked at 40-days with a cumulative amount of 93.4 mumol/g coal (73.9 standard cubic feet (Scf)/ton coal equivalent using linear extrapolation). This compares very favorably to the 22-74 Scf/ton said to exist within the PBR coalbeds prior to resource exploitation. Our data also showed that a small fraction, 143 mumol/g coal, of the soluble carbon which was designated as the volatile fraction (i.e., the purgeable fraction removable by sparging with N2 gas) is essential to the generation of biogenic methane from coal derived constituents. Subsequent studies evaluating the influence of the chemical pretreatment agents (HNO3, NaOH, catalyzed H 2O2, KMnO4) on the subsequent enzymatic conversion of subbituminous coal using a fungal manganese peroxidase (MnP) produced by the agaric white-rot fungus Bjerkandera adusta have shown that chemical pretreatments can also enhance the coal solubilization performance of MnP.

  12. Applied Meteorology Unit (AMU) Quarterly Report - Fourth Quarter FY-10

    Science.gov (United States)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2010-01-01

    Three AMU tasks were completed in this Quarter, each resulting in a forecast tool now being used in operations and a final report documenting how the work was done. AMU personnel completed the following tasks (1) Phase II of the Peak Wind Tool for General Forecasting task by delivering an improved wind forecasting tool to operations and providing training on its use; (2) a graphical user interface (GUI) she updated with new scripts to complete the ADAS Update and Maintainability task, and delivered the scripts to the Spaceflight Meteorology Group on Johnson Space Center, Texas and National Weather Service in Melbourne, Fla.; and (3) the Verify MesoNAM Performance task after we created and delivered a GUI that forecasters will use to determine the performance of the operational MesoNAM weather model forecast.

  13. Idaho National Laboratory Quarterly Occurrence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 85 reportable events (18 from the 4th Qtr FY-15 and 67 from the prior three reporting quarters), as well as 25 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (8 from this quarter and 17 from the prior three quarters).

  14. Clean coal technologies market potential

    Energy Technology Data Exchange (ETDEWEB)

    Drazga, B. (ed.)

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  15. Key contributions in MHD power generation. Quarterly report, 1 June 1979-31 August 1979

    Energy Technology Data Exchange (ETDEWEB)

    Louis, J F

    1979-11-01

    Activities during the third quarter of the contract period are reported in detail. The tasks reported on include: (1) investigation of electrical behavior in the vicinity of electrode and insulating walls; (2) studies of critical performance issues in the development of combustion disk generators; (3) development and testing of electrode modules, including studies of insulator properties; and (4) determination of coal combustion kinetics and ash behavior relevant to two-stage MHD combustors, and investigation of the mixing and flow aerodynamics of a high swirl geometry second stage.

  16. Fossil-energy program. Quarterly progress report for June 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    McNeese, L.E.

    1983-08-01

    This quarterly report covers the progress made during the period March 31 through June 30 for the Oak Ridge National Laboratory research and development projects that are carried out in support of the increased utilization of coal and other fossil fuels as sources of clean energy. These projects are supported by various parts of DOE including Fossil Energy, Basic Energy Sciences, Office of Health and Environmental Research, Office of Environmental Compliance and Overview, the Electric Power Research Institute, and by the Tennessee Valley Authority and the EPA Office of Research and Development through inter-agency agreement with DOE.

  17. FETC/EPRI Biomass Cofiring Cooperative Agreement. Quarterly technical report, July 1-September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, E.; Tillman, D.

    1997-12-01

    The FETC/EPRI Biomass Cofiring Program has completed one year of activity, accelerating the pace of cofiring development. Cofiring tests were completed at the Seward Generating Station of GPU Genco and at the Michigan City Generating Station of NIPSCO. The NYSEG work at Greenidge Station resulted in a workable, low cost method for injecting biofuels into coal-fired PC boilers. Support studies and modeling continued to provide analytics for the cofiring program. This report summarizes the activities during the fourth quarter of the FETC/EPRI Biomass Cofiring Cooperative Agreement. It focuses upon the results of testing in order to highlight the progress at utilities.

  18. The role of coal consumption in the economic growth of the Polish economy in transition

    Energy Technology Data Exchange (ETDEWEB)

    Gurgul, Henryk, E-mail: henryk.gurgul@gmail.co [Department of Applications of Mathematics in Economics, Faculty of Management, AGH University of Science and Technology, Gramatyka 10 st., 30-067 Cracow (Poland); Lach, Lukasz, E-mail: lukilach1983@o2.p [Department of Applications of Mathematics in Economics, Faculty of Management, AGH University of Science and Technology, Gramatyka 10 st., 30-067 Cracow (Poland)

    2011-04-15

    The main goal of this paper is an analysis of the causal links between quarterly coal consumption in the Polish economy and GDP. For the sake of accurate computation an additional variable - employment - was also taken into account. Computations conducted for the period Q1 2000 to Q4 2009 by means of recent causality techniques confirmed the neutrality of hard coal usage with respect to economic growth. On the other hand, calculations for the pairs lignite-GDP and total coal consumption-GDP showed the existence of a significant nonlinear causality from coal usage to economic growth. This is clear evidence for claiming that lignite plays an important role in the economic growth of the Polish economy. Furthermore, each coal-related variable was found to have a nonlinear causal impact on employment. Because of the relatively short length of available time series we additionally applied bootstrap critical values. The empirical results computed by both methods did not exhibit significant differences. These results have important policy implications. In general, our findings support the hypothesis that closing hard coal mines in Poland should have no significant repercussions on economic growth. However, this does not seem to be true for lignite mines. - Research highlights: {yields} The reduction of hard coal consumption should not hamper economic growth in Poland. {yields} Lignite consumption is an important factor determining economic growth in Poland. {yields} The usage of lignite and hard coal has a causal impact on employment in Poland.

  19. The chemical enhancement of the triboelectric separation of coal from pyrite and ash: A novel approach for electrostatic separation of mineral matter from coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, R.M.; DiMare, S.; Sabatini, J.

    1992-02-01

    Arthur D. Little, Inc., under contract to the US DOE Pittsburgh Energy Technology Center, has developed a triboelectric separation device for coal beneficiation, that employs an entrained-flow, rotating-cylinder concept. The described apparatus has been used to test the efficacy of chemical pretreatment and in-situ treatment of coal on separation efficiency. Coal particle entrainment is achieved with gaseous carbon dioxide and particle collection is accomplished by an electrostatic plate separator. The triboelectric separation device incorporates instrumentation for the direct measurement of charge in the dilute-phase particle stream. Some of the pretreatment materials investigated under this project to modify the surface charging characteristics of the coal included oleic acid, sodium oleate, quinoline and dicyclohexylamine. Ammonia and sulfur dioxide at a concentration up to 1000 ppM was used for in-situ treatment of the coal, with carbon dioxide as the carrier/inerting gas. Nitrogen was used earlier in the test program as the carrier/inerting gas for the coal, but a severe arcing problem was encountered in the electrostatic collector with nitrogen as the carrier gas. This problem did not occur when carbon dioxide was used. The report covers the chemical treatment employed, and summarizes and interprets the results achieved. In addition, an economic analysis of a full scale system based on this concept is presented.

  20. The chemical enhancement of the triboelectric separation of coal from pyrite and ash: A novel approach for electrostatic separation of mineral matter from coal

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, R.M.; DiMare, S.; Sabatini, J.

    1992-02-01

    Arthur D. Little, Inc., under contract to the US DOE Pittsburgh Energy Technology Center, has developed a triboelectric separation device for coal beneficiation, that employs an entrained-flow, rotating-cylinder concept. The described apparatus has been used to test the efficacy of chemical pretreatment and in-situ treatment of coal on separation efficiency. Coal particle entrainment is achieved with gaseous carbon dioxide and particle collection is accomplished by an electrostatic plate separator. The triboelectric separation device incorporates instrumentation for the direct measurement of charge in the dilute-phase particle stream. Some of the pretreatment materials investigated under this project to modify the surface charging characteristics of the coal included oleic acid, sodium oleate, quinoline and dicyclohexylamine. Ammonia and sulfur dioxide at a concentration up to 1000 ppM was used for in-situ treatment of the coal, with carbon dioxide as the carrier/inerting gas. Nitrogen was used earlier in the test program as the carrier/inerting gas for the coal, but a severe arcing problem was encountered in the electrostatic collector with nitrogen as the carrier gas. This problem did not occur when carbon dioxide was used. The report covers the chemical treatment employed, and summarizes and interprets the results achieved. In addition, an economic analysis of a full scale system based on this concept is presented.