WorldWideScience

Sample records for coal polymer degradation

  1. REGULATION OF COAL POLYMER DEGRADATION BY FUNGI

    Energy Technology Data Exchange (ETDEWEB)

    John A. Bumpus

    1998-11-30

    A variety of lignin degrading fungi mediate solubilization and subsequent biodegradation of coal macromolecules (a.k.a. coal polymer) from highly oxidized low rank coals such as leonardites. It appears that oxalate or possibly other metal chelators (i.e., certain Krebs Cycle intermediates) mediate solubilization of low rank coals while extracellular oxidases have a role in subsequent oxidation of solubilized coal macromolecule. These processes are under nutritional control. For example, in the case of P. chrysosporium, solubilization of leonardite occurred when the fungi were cultured on most but not all nutrient agars tested and subsequent biodegradation occurred only in nutrient nitrogen limited cultures. Lignin peroxidases mediate oxidation of coal macromolecule in a reaction that is dependent on the presence of veratryl alcohol and hydrogen peroxide. Kinetic evidence suggests that veratryl alcohol is oxidized to the veratryl alcohol cation radical which then mediates oxidation of the coal macromolecule. Results by others suggest that Mn peroxidases mediate formation of reactive Mn{sup 3+} complexes which also mediate oxidation of coal macromolecule. A biomimetic approach was used to study solubilization of a North Dakota leonardite. It was found that a concentration {approximately}75 mM sodium oxalate was optimal for solubilization of this low rank coal. This is important because this is well above the concentration of oxalate produced by fungi in liquid culture. Higher local concentrations probably occur in solid agar cultures and thus may account for the observation that greater solubilization occurs in agar media relative to liquid media. The characteristics of biomimetically solubilized leonardite were similar to those of biologically solubilized leonardite. Perhaps our most interesting observation was that in addition to oxalate, other common Lewis bases (phosphate/hydrogen phosphate/dihydrogen phosphate and bicarbonate/carbonate ions) are able to mediate

  2. How do polymers degrade?

    Science.gov (United States)

    Lyu, Suping

    2011-03-01

    Materials derived from agricultural products such as cellulose, starch, polylactide, etc. are more sustainable and environmentally benign than those derived from petroleum. However, applications of these polymers are limited by their processing properties, chemical and thermal stabilities. For example, polyethylene terephthalate fabrics last for many years under normal use conditions, but polylactide fabrics cannot due to chemical degradation. There are two primary mechanisms through which these polymers degrade: via hydrolysis and via oxidation. Both of these two mechanisms are related to combined factors such as monomer chemistry, chain configuration, chain mobility, crystallinity, and permeation to water and oxygen, and product geometry. In this talk, we will discuss how these materials degrade and how the degradation depends on these factors under application conditions. Both experimental studies and mathematical modeling will be presented.

  3. Developments in polymer degradation - 7

    International Nuclear Information System (INIS)

    Grassie, N.

    1987-01-01

    A selection of topics which are representative of the continually expanding area of polymer degradation is presented. The aspects emphasised include the products of degradation of specific polymers, degradation by high energy radiation and mechanical forces, fire retardant studies and the special role of small radicals in degradation processes. (author)

  4. Degradable polymers for tissue engineering

    NARCIS (Netherlands)

    van Dijkhuizen-Radersma, Riemke; Moroni, Lorenzo; van Apeldoorn, Aart A.; Zhang, Zheng; Grijpma, Dirk W.; van Blitterswijk, Clemens A.

    2008-01-01

    This chapter elaborates the degradable polymers for tissue engineering and their required scaffold material in tissue engineering. It recognizes the examples of degradable polymers broadly used in tissue engineering. Tissue engineering is the persuasion of the body to heal itself through the

  5. Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation.

    Science.gov (United States)

    Andorko, James I; Hess, Krystina L; Pineault, Kevin G; Jewell, Christopher M

    2016-03-01

    Recent studies reveal many biomaterial vaccine carriers are able to activate immunostimulatory pathways, even in the absence of other immune signals. How the changing properties of polymers during biodegradation impact this intrinsic immunogenicity is not well studied, yet this information could contribute to rational design of degradable vaccine carriers that help direct immune response. We use degradable poly(beta-amino esters) (PBAEs) to explore intrinsic immunogenicity as a function of the degree of polymer degradation and polymer form (e.g., soluble, particles). PBAE particles condensed by electrostatic interaction to mimic a common vaccine approach strongly activate dendritic cells, drive antigen presentation, and enhance T cell proliferation in the presence of antigen. Polymer molecular weight strongly influences these effects, with maximum stimulation at short degradation times--corresponding to high molecular weight--and waning levels as degradation continues. In contrast, free polymer is immunologically inert. In mice, PBAE particles increase the numbers and activation state of cells in lymph nodes. Mechanistic studies reveal that this evolving immunogenicity occurs as the physicochemical properties and concentration of particles change during polymer degradation. This work confirms the immunological profile of degradable, synthetic polymers can evolve over time and creates an opportunity to leverage this feature in new vaccines. Degradable polymers are increasingly important in vaccination, but how the inherent immunogenicity of polymers changes during degradation is poorly understood. Using common rapidly-degradable vaccine carriers, we show that the activation of immune cells--even in the absence of other adjuvants--depends on polymer form (e.g., free, particulate) and the extent of degradation. These changing characteristics alter the physicochemical properties (e.g., charge, size, molecular weight) of polymer particles, driving changes in

  6. Kinetic Parameters of Thermal Degradation of Polymers

    Institute of Scientific and Technical Information of China (English)

    朱新生; 程嘉祺

    2003-01-01

    The derivative expressions between activation energy (E) and the temperature at the maximum mass loss rate(Tmax) and between activation energy (E) and exponent (N) were deduced in the light of Arrhenius theory. It was found that the increase of activation energy results in the decrease of exponent and the increase of Tmax. The kinetic parameters were involved in the analysis of the thermal degradation of several polymers. The degradation kinetics of these polymers well complied with the prediction of the derivative expressions for the polymer degradation with single mechanism dominated.

  7. A constitutive law for degrading bioresorbable polymers.

    Science.gov (United States)

    Samami, Hassan; Pan, Jingzhe

    2016-06-01

    This paper presents a constitutive law that predicts the changes in elastic moduli, Poisson's ratio and ultimate tensile strength of bioresorbable polymers due to biodegradation. During biodegradation, long polymer chains are cleaved by hydrolysis reaction. For semi-crystalline polymers, the chain scissions also lead to crystallisation. Treating each scission as a cavity and each new crystal as a solid inclusion, a degrading semi-crystalline polymer can be modelled as a continuum solid containing randomly distributed cavities and crystal inclusions. The effective elastic properties of a degrading polymer are calculated using existing theories for such solid and the tensile strength of the degrading polymer is predicted using scaling relations that were developed for porous materials. The theoretical model for elastic properties and the scaling law for strength form a complete constitutive relation for the degrading polymers. It is shown that the constitutive law can capture the trend of the experimental data in the literature for a range of biodegradable polymers fairly well. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Causes of coal degradation at working faces

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1985-01-01

    Coal comminution by shearer loaders at working faces and factors influencing it are analyzed. Three groups of factors are evaluated: coal mechanical properties, design and specifications of shearer loaders and mining schemes. On the basis of analyses, recommendations for increasing proportion of coarse coal and reducing coal comminution in underground coal mines in Poland are made. Increasing output of coarse coal in coal seams with a high proportion of dull coal is most economic. Increasing power of drive systems for shearer loaders to 500 kW or more decisively influences grain size distribution of coal and increases proportion of coarse coal, especially in seams of dull coal. Gradually increasing cutting depth of a shearer loader negatively influences haulage speed and coarse coal output. Replacing gradual cutting depth increase by attack at the full cutting depth increases proportion of coarse coal. When medium or thick coal seams are mined a coal bench from 0.3 to 0.5 m thick should be left in the roof or between 2 benches cut by 2 cutting drums. The coal bench left in the face disintegrates under the influence of gravity and the proportion of coarse coal increases. Optimizing yield strength of powered supports at a working face is a further method for improving grain size distribution of coal and increasing proportion of coarse coal. 2 references.

  9. Polymer scaffold degradation control via chemical control

    Science.gov (United States)

    Hedberg-Dirk, Elizabeth L.; Dirk, Shawn; Cicotte, Kirsten

    2016-01-05

    A variety of polymers and copolymers suitable for use as biologically compatible constructs and, as a non-limiting specific example, in the formation of degradable tissue scaffolds as well methods for synthesizing these polymers and copolymers are described. The polymers and copolymers have degradation rates that are substantially faster than those of previously described polymers suitable for the same uses. Copolymers having a synthesis route which enables one to fine tune the degradation rate by selecting the specific stoichiometry of the monomers in the resulting copolymer are also described. The disclosure also provides a novel synthesis route for maleoyl chloride which yields monomers suitable for use in the copolymer synthesis methods described herein.

  10. Polymer Composites Corrosive Degradation: A Computational Simulation

    Science.gov (United States)

    Chamis, Christos C.; Minnetyan, Levon

    2007-01-01

    A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  11. Accelerated Testing Of Photothermal Degradation Of Polymers

    Science.gov (United States)

    Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow

    1989-01-01

    Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.

  12. Fungal degradation of coal as a pretreatment for methane production

    Science.gov (United States)

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  13. Degradability of Polymers for Implantable Biomedical Devices

    Science.gov (United States)

    Lyu, SuPing; Untereker, Darrel

    2009-01-01

    Many key components of implantable medical devices are made from polymeric materials. The functions of these materials include structural support, electrical insulation, protection of other materials from the environment of the body, and biocompatibility, as well as other things such as delivery of a therapeutic drug. In such roles, the stability and integrity of the polymer, over what can be a very long period of time, is very important. For most of these functions, stability over time is desired, but in other cases, the opposite–the degradation and disappearance of the polymer over time is required. In either case, it is important to understand both the chemistry that can lead to the degradation of polymers as well as the kinetics that controls these reactions. Hydrolysis and oxidation are the two classes of reactions that lead to the breaking down of polymers. Both are discussed in detail in the context of the environmental factors that impact the utility of various polymers for medical device applications. Understanding the chemistry and kinetics allows prediction of stability as well as explanations for observations such as porosity and the unexpected behavior of polymeric composite materials in some situations. In the last part, physical degradation such interfacial delamination in composites is discussed. PMID:19865531

  14. ANTI-BIOFOULING BY DEGRADATION OF POLYMERS

    Institute of Scientific and Technical Information of China (English)

    Chun-feng Ma; Hong-jun Yang; Guang-zhao Zhang

    2012-01-01

    Copolymers of methyl methacrylate (MMA) and acrylate terminated poly(ethylene oxide-co-ethylene carbonate)(PEOC) macromonomer (PEOCA) were synthesized,and the degradation of the polymers was investigated by use of quartz crystal microbalance with dissipation (QCM-D).It is shown that the polymeric surface exhibits degradation in seawater depending on the content of the side chains.Field tests in seawater show that the surface constructed by the copolymer can effectively inhibit marine biofouling because it can be self-renewed due to degradation of the copolymer.

  15. Stability and Degradation of Polymer Solar cells

    DEFF Research Database (Denmark)

    Norrman, Kion

    The current state-of-the-art allows for roll-to-roll manufacture of polymer solar cells in high volume with stability and efficiency sufficient to grant success in low-energy applications. However, further improvement is needed for the successful application of the devices in real life applications....... This is obtained by detailed knowledge of the degradation mechanisms. Methods to compare and standardize device stability are urgently needed. Methodologies to study failure mechanism that are based on physical processes (e.g. morphological changes) are well-established. However, methodologies to study chemical...... degradation mechanisms are currently scarce. An overview of known degradation mechanisms will be presented and discussed in relation to state-of-the-art methodologies to study failure mechanisms with focus on chemical degradation....

  16. Energy-Saving Vibration Impulse Coal Degradation at Finely Dispersed Coal-Water Slurry Preparation

    Directory of Open Access Journals (Sweden)

    Moiseev V.A.

    2015-01-01

    Full Text Available Theoretical and experimental research results of processes of finely dispersed coal-water slurry preparation for further generation of energetic gas in direct flow and vortex gas generator plants have been presented. It has been stated that frequency parameters of parabolic vibration impulse mill influence degradation degree. Pressure influence on coal parameters in grinding cavity has been proven. Experimental researches have proven efficiency of vibration impulse mill with unbalanced mass vibrator generator development. Conditions of development on intergranular walls of coal cracks have been defined.

  17. Characterization and characteristics of degradable polymer sacks

    International Nuclear Information System (INIS)

    Davis, Georgina

    2003-01-01

    This paper reviews the categories and characteristics of degradable polymers used to manufacture sacks for the collection and subsequent treatment of organic wastes from householders. The characteristics of polyethylene (PE) and starch-based sacks were examined using a number of different methods, including scanning electron microscopy (SEM), chemical analysis and mechanical strength testing of the sacks during their use. The analyses revealed that the characteristics of the PE and starch-based sacks were very different. Photomicrographs indicated that the surface of the PE sack was much smoother than the surface of the starch-based sacks. Polyethylene sacks exhibited a greater mechanical strength, both in the unused state and over time during householder use. The severe loss of mechanical strength during use of the starch-based sacks indicated that only thicker gauge sacks were suitable for the fortnightly kerbside collection of biodegradable municipal waste (BMW). Chemical analysis of two different PE sacks indicated that transition metals and other elements were commonly incorporated into the PE structure in order to facilitate increased polymer degradation

  18. Kinetics approach to modeling of polymer additive degradation in lubricants

    Institute of Scientific and Technical Information of China (English)

    llyaI.KUDISH; RubenG.AIRAPETYAN; Michael; J.; COVITCH

    2001-01-01

    A kinetics problem for a degrading polymer additive dissolved in a base stock is studied.The polymer degradation may be caused by the combination of such lubricant flow parameters aspressure, elongational strain rate, and temperature as well as lubricant viscosity and the polymercharacteristics (dissociation energy, bead radius, bond length, etc.). A fundamental approach tothe problem of modeling mechanically induced polymer degradation is proposed. The polymerdegradation is modeled on the basis of a kinetic equation for the density of the statistical distribu-tion of polymer molecules as a function of their molecular weight. The integrodifferential kineticequation for polymer degradation is solved numerically. The effects of pressure, elongational strainrate, temperature, and lubricant viscosity on the process of lubricant degradation are considered.The increase of pressure promotes fast degradation while the increase of temperature delaysdegradation. A comparison of a numerically calculated molecular weight distribution with an ex-perimental one obtained in bench tests showed that they are in excellent agreement with eachother.

  19. Coal/Polymer Coprocessing with Efficient Use of Hydrogen.

    Energy Technology Data Exchange (ETDEWEB)

    Broadbelt, L.J.

    1997-08-31

    The objective of the current research is to investigate the feasibility of coprocessing coal with waste polymers, with particular interest in employing the polymers as an alternate hydrogen source for coal upgrading and simultaneously recovering high valued fuels and chemicals from plastic waste. A chemical modeling approach was employed in which real and model feedstocks were used to identify the underlying reaction pathways, kinetics, and mechanisms controlling coal liquefaction in the presence of plastics and catalysts. Simple model systems were employed to facilitate product analysis and obtain information about the intrinsic reactivity. When reacted in binary mixtures, the conversion of tetradecane, a model compound of polyethylene, increased while the selectivities to primary products of 4-(naphthylmethyl) bibenzyl were enhanced. Experiments in the last six months in which the relative concentrations of the components were varied revealed that the effect was indeed a chemical one and not simply a result of dilution. An experimental protocol was developed to conduct experiments at elevated pressures more representative of coal liquefaction conditions. Preliminary experiments with real feedstocks allowed the extrinsic factors (i.e., diffusion limitations, solvent effects) to be identified. The combination of these two sets of experiments will ultimately be used to carry out process optimization and formulate strategies for catalyst development.

  20. Thermal Degradation of Lead Monoxide Filled Polymer Composite Radiation Shields

    International Nuclear Information System (INIS)

    Harish, V.; Nagaiah, N.

    2011-01-01

    Lead monoxide filled Isophthalate resin particulate polymer composites were prepared with different filler concentrations and investigated for physical, thermal, mechanical and gamma radiation shielding characteristics. This paper discusses about the thermo gravimetric analysis of the composites done to understand their thermal properties especially the effect of filler concentration on the thermal stability and degradation rate of composites. Pristine polymer exhibits single stage degradation whereas filled composites exhibit two stage degradation processes. Further, the IDT values as well as degradation rates decrease with the increased filler content in the composite.

  1. Thermal Degradation and Identification of Heat-Sensitive Polymers

    Science.gov (United States)

    Clough, Stuart C.; Goldman, Emma W.

    2005-01-01

    A study demonstrates the thermal degradation of two heat-sensitive polymers, namely, polystyrene and poly (methyl methacrylate). The experiment described in the study introduces undergraduate students to polymer structure as well as the application of spectroscopic techniques to the solution of structural problems.

  2. Comparative experiments on polymer degradation technique of produced water of polymer flooding oilfield

    Science.gov (United States)

    Chen, Rong; Qi, Mei; Zhang, Guohui; Yi, Chenggao

    2018-02-01

    The application of polymer flooding technology in oilfields can result in polymer content increased in produced water. This increasing made produced water quality become poor. The efficiency of produced water processing decreased significantly. Processed water quality seriously exceeded criterion’s stipulation. The presence of the polymer in produced water is the main reason for more difficulties in processing of produced water, therefore the polymer degradation technology is a key coefficient in produced water processing for polymer flooding oilfields. We evaluated several physical and chemical polymer degradation methods with the solution of separated water from polymer flooding oilfields and hydrolyzed polyacrylamide. The experiment results can provide a basis for produced water processing technologies application in polymer flooding oilfields.

  3. Concentrated Light for Accelerated Photo Degradation of Polymer Materials

    DEFF Research Database (Denmark)

    Madsen, Morten Vesterager; Tromholt, Thomas; Norrman, Kion

    2013-01-01

    Concentrated light is used to perform photochemical degradation of polymer solar cell materials with acceleration factors up to 1200. At constant temperature the photon efficiency in regards to photo degradation is constant for 1–150 suns and oxygen diffusion rates are not a limiting factor...

  4. Determination of Polymers Thermal Degradation by Color Change Analysis

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Rojas González

    2016-01-01

    Full Text Available Context: It has been observed that thermal degradation of thermoplastic polymers, when they are reprocessed by injection, extrusion and extrusion / injection, undergo color changes in the product, although it not has been established as this change occurs. Method: It analyzed the effect on thermal degradation caused by polymer type, processing type, polymer grade, rotation speed of the extrusion screw and number of reprocessing, which is quantified by the color change using an empirical equation, with experimental data obtained by analysis through a microcolor colorimeter. Results: It was found that the color change analysis provides information about progress of the thermal degradation and stability of thermoplastic polymers, which are undergoing to multiple reprocessing events and processes. Conclusions: It was established that this technique can be implemented as a simple and efficient measure of thermoplastic products quality control, according to their color change.

  5. Thermal degradation of CR-39 polymer in an inert atmosphere

    International Nuclear Information System (INIS)

    Kalsi, P.C.; Pandey, A.K.; Iyer, R.H.; Singh Mudher, K.D.

    1995-01-01

    The thermal degradation of CR-39 (allyl diglycol carbonate), a polymer widely used in nuclear science and technology, in an inert atmosphere has been studied using thermogravimetric analysis (TGA) and differential thermal analysis (DTA) techniques. The results are compared with the thermal degradation data of the polymer in an air atmosphere. The present studies showed that the thermal degradation of the polymer proceeds in two steps in an argon atmosphere as compared to three steps in air atmosphere. The mass losses in air are higher than that in argon due to the oxidative decomposition of the residue. The kinetics of the different stages of degradation were also evaluated from the TG curves. (author). 7 refs., 1 tab

  6. Hyperbranched Polymers - Engineering Materials and Degradation Behavior

    National Research Council Canada - National Science Library

    Wooley, Karen

    2000-01-01

    .... In the studies supported under this grant, hyperbranched polycarbonates were designed as analogs to common engineering polymers to investigate the effects of branching upon the chain-chain packing...

  7. Localized Enzymatic Degradation of Polymers: Physics and Scaling Laws

    Science.gov (United States)

    Lalitha Sridhar, Shankar; Vernerey, Franck

    2018-03-01

    Biodegradable polymers are naturally abundant in living matter and have led to great advances in controlling environmental pollution due to synthetic polymer products, harnessing renewable energy from biofuels, and in the field of biomedicine. One of the most prevalent mechanisms of biodegradation involves enzyme-catalyzed depolymerization by biological agents. Despite numerous studies dedicated to understanding polymer biodegradation in different environments, a simple model that predicts the macroscopic behavior (mass and structural loss) in terms of microphysical processes (enzyme transport and reaction) is lacking. An interesting phenomenon occurs when an enzyme source (released by a biological agent) attacks a tight polymer mesh that restricts free diffusion. A fuzzy interface separating the intact and fully degraded polymer propagates away from the source and into the polymer as the enzymes diffuse and react in time. Understanding the characteristics of this interface will provide crucial insight into the biodegradation process and potential ways to precisely control it. In this work, we present a centrosymmetric model of biodegradation by characterizing the moving fuzzy interface in terms of its speed and width. The model predicts that the characteristics of this interface are governed by two time scales, namely the polymer degradation and enzyme transport times, which in turn depend on four main polymer and enzyme properties. A key finding of this work is simple scaling laws that can be used to guide biodegradation of polymers in different applications.

  8. Synthesis and thermal degradation Kinetics of D - (+ - galactose containing polymers

    Directory of Open Access Journals (Sweden)

    Fehmi Saltan

    2013-01-01

    Full Text Available In this study, it is investigated the synthesis and characterizations of polymerizable vinyl sugars. Carbohydrate containing polymers were synthesized via free radical polymerization. Thermal behavior of polymer derivatives was analyzed by using DSC and TG. Molecular weight dispersion of polymer derivatives was also analyzed with GPC. Molecular structures were analyzed by FT-IR and 1H-NMR spectrophotometer. We found that molecular weight of copolymers could effect to the thermal stability. According to TG data related to the copolymers, molecular weight of polymers increased while the thermal stability decreased. Thermogravimetric analysis of polymers also investigated. The apparent activation energies for thermal degradation of carbohydrate containing polymers were obtained by integral methods (Flynn - Wall - Ozawa, Kissinger - Akahira - Sunose, and Tang.

  9. Mechanisms of polymer degradation using an oxygen plasma generator

    Science.gov (United States)

    Colony, Joe A.; Sanford, Edward L.

    1987-01-01

    An RF oxygen plasma generator was used to produce polymer degradation which appears to be similar to that which has been observed in low Earth orbit. Mechanisms of this type of degradation were studied by collecting the reaction products in a cryogenic trap and identifying the molecular species using infrared, mass spectral, and X-ray diffraction techniques. No structurally dependent species were found from Kapton, Teflon, or Saran polymers. However, very reactive free radical entities are produced during the polymer degradation, as well as carbon dioxide and water. Reactions of the free radicals with the glass reaction vessel, with copper metal in the cold trap, and with a triphenyl phosphate scavenger in the cold trap, demonstrated the reactivity of the primary products.

  10. The radiation induced degradation of polymers

    International Nuclear Information System (INIS)

    Wilski, H.

    1987-01-01

    A compilation was made of all data about the radiation stability of thermoplastic polymeric materials, published in the literature up to the end of 1985. From those experiments in which the irradiation was carried out in air half value doses (elongation) (= hvd) as a measure of radiation stability were extracted and compared on the basis of the chemical structure of the polymers, the chemical composition of the materials under test and the dose rate, respectively. The first result is that our knowledge of the radiation stability of polymers, if irradiated in air, is still very incomplete. On the other hand enough data were found for some polymers, to see that there is a region at low dose rates where the half value dose Dsub(e) increases with the dose rate (dD/dt) according to the equation Dsub(e)=Dsub(el).(dD/dt)sup(n). This seems to be the normal behavior. Values for the hvd at 1 Gy/h (in air) were found to lie between 1 and 500 kGy (with PTFE and PS at the respective ends of the scale), whereas n varied only between 0.1 and 0.4. The range of validity of the equation and the magnitude of the coefficients strongly depend on the chemical nature of the polymer and also on the kind and amount of the additives used. At dose rates in the neighborhood of 10 5 Gy/h the influence of the dose rate (and the atmosphere) disappears. (author)

  11. A model for hydrolytic degradation and erosion of biodegradable polymers.

    Science.gov (United States)

    Sevim, Kevser; Pan, Jingzhe

    2018-01-15

    For aliphatic polyesters such as PLAs and PGAs, there is a strong interplay between the hydrolytic degradation and erosion - degradation leads to a critically low molecular weight at which erosion starts. This paper considers the underlying physical and chemical processes of hydrolytic degradation and erosion. Several kinetic mechanisms are incorporated into a mathematical model in an attempt to explain different behaviours of mass loss observed in experiments. In the combined model, autocatalytic hydrolysis, oligomer production and their diffusion are considered together with surface and interior erosion using a set of differential equations and Monte Carlo technique. Oligomer and drug diffusion are modelled using Fick's law with the diffusion coefficients dependent on porosity. The porosity is due to the formation of cavities which are a result of polymer erosion. The model can follow mass loss and drug release up to 100%, which cannot be explained using a simple reaction-diffusion. The model is applied to two case studies from the literature to demonstrate its validity. The case studies show that a critical molecular weight for the onset of polymer erosion and an incubation period for the polymer dissolution are two critical factors that need to be considered when predicting mass loss and drug release. In order to design bioresorbable implants, it is important to have a mathematical model to predict polymer degradation and corresponding drug release. However, very different behaviours of polymer degradation have been observed and there is no single model that can capture all these behaviours. For the first time, the model presented in this paper is capable of capture all these observed behaviours by switching on and off different underlying mechanisms. Unlike the existing reaction-diffusion models, the model presented here can follow the degradation and drug release all the way to the full disappearance of an implant. Crown Copyright © 2017. Published by

  12. Degradation of Polymer-Coated Materials

    Science.gov (United States)

    2013-10-01

    W. Kammlott, Science, 1984. 224(4649): p. 599-601. 18. B. Millet , C. Fiaud, and C. Hinnen, Corrosion Science, 1995. 37(12): p. 1903-1918. 19. Z. Y...M. M. Sutter, B. Millet , C. Fiaud, and D. Lincot, Journal of Electroanalytical Chemistry, 1995. 386(1-2): p. 101-109. 50. W. Siripala and K. P...between 800-900 cm-1 and above 1200 cm-1 which are attributed to polymer finger -print 267 modes.37,38 This confirms that the assembled KP-Raman

  13. Methods for Evaluating the Biodegradability of Environmentally Degradable Polymers

    NARCIS (Netherlands)

    Zee, van der M.

    2014-01-01

    This chapter presents an overview of the current knowledge on experimental methods for monitoring the biodegradability of polymeric materials. The focus is, in particular, on the biodegradation of materials under environmental conditions. Examples of in vivo degradation of polymers used in

  14. Degradability of an Acrylate-Linked, Fluorotelomer Polymer in Soil

    Science.gov (United States)

    Fluorotelomer polymers are used in a broad array of products in modern societies worldwide and, if they degrade at significant rates, potentially are a significant source of perfluorooctanoic acid (PFOA) and related compounds to the environment. To evaluate this possibility, we i...

  15. Degradation Testing of Fluorotelomer-based polymers (FTPs)

    Science.gov (United States)

    Over the last decade, concern about sources of per and polyfluorochemicals (PFCs) have led to an increasing need for information on the microbial and/or abiotic degradation of polymer materials that contain PFC structural fragments that may be released. EPA, OECD, ASTM and other...

  16. Study of in vitro degradation of biodegradable polymer based thin ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... treatment of bone fracture costs over Ł 900 million annually in the ... implantation when the cells start to migrate deep into the scaffold (Ma .... DISCUSSION. Figure 8 is ... polymer-based materials proceeds via a surface erosion mechanism. ... materials and the critical thickness above which the degradation ...

  17. Water and UV degradable lactic acid polymers

    Science.gov (United States)

    Bonsignore, P.V.; Coleman, R.D.

    1996-10-08

    A water and UV light degradable copolymer is described made from monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  18. Radiation degradation of α-substituted acrylate polymers and copolymers

    International Nuclear Information System (INIS)

    Helbert, J.N.; Caplan, P.J.; Poindexter, E.H.

    1977-01-01

    Radiation degradation is observed in poly(methyl α-chloroacrylate), poly(methyl α-cyanoacrylate), and poly (α-chloroacrylonitrile) homopolymers and their respective MMA copolymers when γ-irradiated in vacuo. Polymer degradation susceptibilities are quantified in terms of G(scission radicals) and G(scission) -- G(crosslinks), measured by EPR and membrane osmometry, respectively; values by these two methods are compared. Higher G(rads) values ranging from 2 to 6 and [G(s) -- G(x)] values ranging from 2 to 11 are obtained for the substituted polymers and copolymers relative to the values for PMMA (1.6; 1.9), a standard e-beam positive resist, which suggests that these modified polymers are more sensitive e-beam resists than PMMA

  19. Stability and Degradation of Organic and Polymer Solar Cells

    DEFF Research Database (Denmark)

    Organic photovoltaics (OPV) are a new generation of solar cells with the potential to offer very short energy pay back times, mechanical flexibility and significantly lower production costs compared to traditional crystalline photovoltaic systems. A weakness of OPV is their comparative instability...... during operation and this is a critical area of research towards the successful development and commercialization of these 3rd generation solar cells. Covering both small molecule and polymer solar cells, Stability and Degradation of Organic and Polymer Solar Cells summarizes the state of the art...... understanding of stability and provides a detailed analysis of the mechanisms by which degradation occurs. Following an introductory chapter which compares different photovoltaic technologies, the book focuses on OPV degradation, discussing the origin and characterization of the instability and describing...

  20. Spin Transfer in Polymer Degradation of Abnormal Linkage

    Science.gov (United States)

    Yu, Tianrong; Tian, Chuanjin; Liu, Xizhe; Wang, Jia; Gao, Yang; Wang, Zhigang

    2017-07-01

    The degradation of polymer materials plays an important role in production and life. In this work, the degradation mechanism of poly-α-methylstyrene (PAMS) tetramers with abnormal linkage was investigated by using density functional theory (DFT). Calculated results indicate that the head-to-head and the tail-to-tail reactions needed to overcome the energy barriers are about 0.15 eV and about 1.26 eV, respectively. The broken C-C bond at the unsaturated end of the chain leads to the dissociation of alpha-methylstyrene (AMS) monomers one by one. Furthermore, the analyses of bond characteristics are in good agreement with the results of energy barriers. In addition, the spin population analysis presents an interesting net spin transfer process in depolymerization reactions. We hope that the current theoretical results provide useful help to understand the degradation mechanism of polymers.

  1. Polymer degradation rate control of hybrid rocket combustion

    Science.gov (United States)

    Stickler, D. B.; Ramohalli, K. N. R.

    1970-01-01

    Polymer degradation to small fragments is treated as a rate controlling step in hybrid rocket combustion. Both numerical and approximate analytical solutions of the complete energy and polymer chain bond conservation equations for the condensed phase are obtained. Comparison with inert atmosphere data is very good. It is found that the intersect of curves of pyrolysis rate versus interface temperature for hybrid combustors, with the thermal degradation theory, falls at a pyrolysis rate very close to that for which a pressure dependence begins to be observable. Since simple thermal degradation cannot give sufficient depolymerization at higher pyrolysis rates, it is suggested that oxidative catalysis of the process occurs at the surface, giving a first order dependence on reactive species concentration at the wall. Estimates of the ratio of this activation energy and interface temperature are in agreement with best fit procedures for hybrid combustion data. Requisite active species concentrations and flux are shown to be compatible with turbulent transport. Pressure dependence of hybrid rocket fuel regression rate is thus shown to be describable in a consistent manner in terms of reactive species catalysis of polymer degradation.

  2. Controlling of degradation effects in radiation processing of polymers

    International Nuclear Information System (INIS)

    2009-05-01

    The interest of Member States of the IAEA in introducing radiation technology into the polymer and plastics industry is growing. This publication summarizes a number of studies conducted in the framework of a coordinated research project (CRP) on controlling of degradation effects on polymers by radiation processing technologies. It reviews a variety of applications and details the most important results and achievements of the participating centres and laboratories during the course of the CRP. The publication is intended to be of use to scientists implementing the technology and managers of radiation processing facilities

  3. Thermal degradation of polymer systems having liquid crystalline oligoester segment

    Directory of Open Access Journals (Sweden)

    Renato Matroniani

    Full Text Available Abstract Block copolymers and blends comprised by liquid crystalline oligoester and polystyrene were prepared and their thermal stability were characterized by thermogravimetric analysis (TGA. The samples have shown three main decomposition temperatures due to (1 lost of flexible chain and decomposition of mesogenic segment, (2 decomposition of polystyrene and (3 final decomposition of oligoester rigid segment. Both copolymers and polymer blends presented lower thermal stability compared to polystyrene and oligoester. The residual mass after heating at 600 °C in copolymers and polymer blends were lower than those found in the oligoesters. A degradative process of aromatic segments of oligoester induced by decomposition of polystyrene is suggested.

  4. Spatial degradation mapping and componentwise degradation tracking in polymer-fullerene blends

    DEFF Research Database (Denmark)

    Pedersen, Emil Bøje Lind; Tromholt, Thomas; Madsen, Morten Vesterager

    2014-01-01

    Using X-ray absorption the effects of photodegradation in active layer materials for polymer solar cells are investigated. Through the observation of changes in the X-ray absorption energy spectra the degradation of the individual components is tracked in blends of poly-3-hexyl-thiophene (P3HT) a...

  5. Brown Coal Dewatering Using Poly (Acrylamide-Co-Potassium Acrylic Based Super Absorbent Polymers

    Directory of Open Access Journals (Sweden)

    Sheila Devasahayam

    2015-09-01

    Full Text Available With the rising cost of energy and fuel oils, clean coal technologies will continue to play an important role during the transition to a clean energy future. Victorian brown coals have high oxygen and moisture contents and hence low calorific value. This paper presents an alternative non evaporative drying technology for high moisture brown coals based on osmotic dewatering. This involves contacting and mixing brown coal with anionic super absorbent polymers (SAP which are highly crossed linked synthetic co-polymers based on a cross-linked copolymer of acryl amide and potassium acrylate. The paper focuses on evaluating the water absorption potential of SAP in contact with 61% moisture Loy Yang brown coal, under varying SAP dosages for different contact times and conditions. The amount of water present in Loy Yang coal was reduced by approximately 57% during four hours of SAP contact. The extent of SAP brown coal drying is directly proportional to the SAP/coal weight ratio. It is observed that moisture content of fine brown coal can readily be reduced from about 59% to 38% in four hours at a 20% SAP/coal ratio.

  6. Degradation of Polymers by Ultra-Violet Light

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D. T. [Camille Dreyfus Laboratory, Research Triangle Institute, Research Triangle Park, NC (United States)

    1968-10-15

    To reach an understanding of the complex processes which occur when polymers are degraded by ultra-violet light under service conditions it is first judicious to try to elucidate the photochemistry of relatively simple polymer reactions. For this reason, emphasis is given to studies in which purified polymers, in bulk, were exposed to monochromatic radiations in the absence of oxygen. In respect of product analysis, emphasis is given to methods for estimating quantum yields for fractures and crosslinks. Photochemical mechanisms are illustrated by discussion of polystyrene, polytethylene terephthalate) and cellulose. Special emphasis is given to the role of free radicals. Attention is drawn to reports that the course of photolysis may be changed by application of an external pressure of a chemically inert gas, such as nitrogen. The explanation suggested in the literature is that this depends on the ease of escape of hydrogen atoms which, alternatively, might react with trapped polymer radicals. The course of photolysis may also be affected by polymer radicals acting as strongly absorbing chromophores and consequently undergoing further chemical reaction. This is illustrated by reference to the conversion of allyl radicals to alkyl radicals in polyethylene and also by changes observed in the ESR spectrum of polymer radicals trapped in poly (ethylene terephthalate) as a result of exposure to light. It is suggested that this effect is primarily responsible for the evolution of hydrocarbon gases on photolysis of polyethylene or natural rubber. In contrast, radiolysis of these polymers yields almost pure hydrogen because, in this case, energy is absorbed by relatively non-selective processes, i.e. free radicals do not absorb high energy radiation much more strongly than does their polymeric environment. (author)

  7. Development of degradable renewable polymers and stimuli-responsive nanocomposites

    Science.gov (United States)

    Eyiler, Ersan

    The overall goal of this research was to explore new living radical polymerization methods and the blending of renewable polymers. Towards this latter goal, polylactic acid (PLA) was blended with a new renewable polymer, poly(trimethylene-malonate) (PTM), with the aim of improving mechanical properties, imparting faster degradation, and examining the relationship between degradation and mechanical properties. Blend films of PLA and PTM with various ratios (5, 10, and 20 wt %) were cast from chloroform. Partially miscible blends exhibited Young's modulus and elongation-to-break values that significantly extend PLA's usefulness. Atomic force microscopy (AFM) data showed that incorporation of 10 wt% PTM into PLA matrix exhibited a Young's modulus of 4.61 GPa, which is significantly higher than that of neat PLA (1.69 GPa). The second part of the bioplastics study involved a one-week hydrolytic degradation study of PTM and another new bioplastic, poly(trimethylene itaconate) (PTI) using DI water (pH 5.4) at room temperature, and the effects of degradation on crystallinity and mechanical properties of these films were examined by differential scanning calorimetry (DSC) and AFM. PTI showed an increase in crystallinity with degradation, which was attributed to predominately degradation of free amorphous regions. Depending on the crystallinity, the elastic modulus increased at first, and decreased slightly. Both bulk and surface-tethered stimuli-responsive polymers were studied on amine functionalized magnetite (Fe3O4) nanoparticles. Stimuli-responsive polymers studied, including poly(N-isopropylacrylamide) (PNIPAM), poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), and poly(itaconic acid) (PIA), were grafted via surface-initiated aqueous atom transfer radical polymerization (SI-ATRP). Both Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) spectroscopies showed the progression of the grafting. The change in particle size as a

  8. COAL/POLYMER COPROCESSING WITH EFFICIENT USE OF HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Linda J. Broadbelt; Matthew J. DeWitt; Hsi-Wu Wong

    2000-09-30

    The final project period was devoted to investigating the binary mixture pyrolysis of polypropylene and polystyrene. Their interactions were assessed in order to provide a baseline for experiments with multicomponent mixtures of polymers with coal. Pyrolysis of polypropylene, polystyrene and their binary mixture was investigated at temperatures of 350 C and 420 C with reaction times from 1 to 180 minutes. Two different loadings, 10 mg and 20 mg, were studied for neat polypropylene and polystyrene to assess the effect of total pressure on product yields and selectivities. For neat pyrolysis of polypropylene, total conversion was much higher at 420 C, and no significant effect of loading on the total conversion was observed. Four classes of products, alkanes, alkenes, dienes, and aromatic compounds, were observed, and their distribution was explained by a typical free radical mechanism. For neat polystyrene pyrolysis, conversion reached approximately 75% at 350 C, while at 420 C the conversion reached a maximum around 90% at 10 minutes and decreased at longer times because of condensation reactions. The selectivities to major products were slightly different for the two different loadings due to the effect of total reaction pressure on secondary reactions. For binary mixture pyrolysis, the overall conversion was higher than the average of the two neat cases. The conversion of polystyrene remained the same, but a significant enhancement in the polypropylene conversion was observed. This suggests that the less reactive polypropylene was initiated by polystyrene-derived radicals. These results are summarized in detail in an attached manuscript that is currently in preparation. The other results obtained during the lifetime of this grant are documented in the set of attached manuscripts.

  9. Novel salicylazo polymers for colon drug delivery: dissolving polymers by means of bacterial degradation.

    Science.gov (United States)

    Saphier, Sigal; Karton, Yishai

    2010-02-01

    Novel azo polymers were prepared for colonic drug delivery with a release mechanism based on structural features of azo derivatives designed for rapid bacterial degradation leading to soluble polymers. Two Salicylazo derivatives were prepared and conjugated as side chains at different ratios to methacrylic acid-methyl methacrylate copolymers (Eudragits). The azo compounds were designed to have a hydrophilic and a hydrophobic part on opposite sides of the azo bond. Upon reduction of the azo bonds, the hydrophobic part is released, resulting in a more water soluble polymer. The solubility of the polymeric films was studied relative to Eudragit S known to dissolve toward the end of the small intestine. One of the two azo derivatives prepared gave rise to polymers, which showed reduced solubility relative to Eudragit S. These polymers were subjected to reduction tests in anaerobic rat cecal suspensions by following the release of the hydrophobic product. Reduction rate was found to be rapid, comparable to that of Sulfasalazine. Studies on the azopolymeric films in anaerobic rat cecal suspensions, showed that these polymers dissolve faster than in sterilized suspensions. Solid dosage forms may be coated with these polymers to provide an efficient delivery system to the colon with a rapid release mechanism. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  10. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj, E-mail: pankaj@mail.nplindia.ernet.in [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Feron, Krishna [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); CSIRO Energy Technology, P. O. Box 330, Newcastle NSW 2300 (Australia)

    2014-05-12

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles.

  11. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C.; Feron, Krishna

    2014-01-01

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) and P3HT:indene-C 60 bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles

  12. Quantitation of buried contamination by use of solvents. [degradation of silicone polymers by amine solvents

    Science.gov (United States)

    Pappas, S. P.; Hsiao, Y. C.; Hill, L. W.

    1973-01-01

    Spore recovery form cured silicone potting compounds using amine solvents to degrade the cured polymers was investigated. A complete list of solvents and a description of the effect of each on two different silicone polymers is provided.

  13. Evaluation of thermal degradation of coal with residual salts

    Czech Academy of Sciences Publication Activity Database

    Plevová, Eva; Kaloč, M.; Šugárková, Věra; Vaculíková, Lenka; Vallová, S.

    2010-01-01

    Roč. 1, č. 1 (2010), s. 15-19 ISSN 0976-6294 R&D Projects: GA ČR GA105/08/1398; GA ČR GP105/07/P416 Institutional research plan: CEZ:AV0Z30860518 Keywords : chlorides * impregnation * coal Subject RIV: CA - Inorganic Chemistry

  14. Imaging the intracellular degradation of biodegradable polymer nanoparticles

    Directory of Open Access Journals (Sweden)

    Anne-Kathrin Barthel

    2014-10-01

    Full Text Available In recent years, the development of smart drug delivery systems based on biodegradable polymeric nanoparticles has become of great interest. Drug-loaded nanoparticles can be introduced into the cell interior via endocytotic processes followed by the slow release of the drug due to degradation of the nanoparticle. In this work, poly(L-lactic acid (PLLA was chosen as the biodegradable polymer. Although common degradation of PLLA has been studied in various biological environments, intracellular degradation processes have been examined only to a very limited extent. PLLA nanoparticles with an average diameter of approximately 120 nm were decorated with magnetite nanocrystals and introduced into mesenchymal stem cells (MSCs. The release of the magnetite particles from the surface of the PLLA nanoparticles during the intracellular residence was monitored by transmission electron microscopy (TEM over a period of 14 days. It was demonstrated by the release of the magnetite nanocrystals from the PLLA surface that the PLLA nanoparticles do in fact undergo degradation within the cell. Furthermore, even after 14 days of residence, the PLLA nanoparticles were found in the MSCs. Additionally, the ultrastructural TEM examinations yield insight into the long term intercellular fate of these nanoparticles. From the statistical analysis of ultrastructural details (e.g., number of detached magnetite crystals, and the number of nanoparticles in one endosome, we demonstrate the importance of TEM studies for such applications in addition to fluorescence studies (flow cytometry and confocal laser scanning microscopy.

  15. Polymers for combatting sudden outbursts in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gadzhiev, G P; Sukhanov, V V

    1988-02-01

    Describes investigations in coal mines in the Donetsk basin (hazardous because of the high methane presence, the risk of outbursts of coal and gas, underground fires and the high dust levels) with the aim of studying the toxic emissions of formaldehyde and methanol produced when a urea formaldehyde resin binder is applied to the coal seam. The measurements taken led to the following recommendations: the amount of free formaldehyde in the binder should be limited to 0.5%; the use of concentrated (50%) solutions should be limited to 10 l per ton of coal in areas where there are geologic faults; underground workings need ventilation of at least 200 m/sup 3//min; the binder should be introduced to the borehole separately from the water and hardener; individual protection measures and wet dusting should be used during coal extraction; a period of not less than 4 months should elapse between application of the resin and commencement of coal extraction; there should be at least 80 m between the point where the binder is applied and the coal face.

  16. Polymer Drilling Fluid with Micron-Grade Cenosphere for Deep Coal Seam

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-01-01

    Full Text Available Traditional shallow coal seam uses clean water, solid-free system, and foam system as drilling fluid, while they are not suitable for deep coal seam drilling due to mismatching density, insufficient bearing capacity, and poor reservoir protection effect. According to the existing problems of drilling fluid, micron-grade cenosphere with high bearing capacity and ultralow true density is selected as density regulator; it, together with polymer “XC + CMC” and some other auxiliary agents, is jointly used to build micron-grade polymer drilling fluid with cenosphere which is suitable for deep coal seam. Basic performance test shows that the drilling fluid has good rheological property, low filtration loss, good density adjustability, shear thinning, and thixotropy; besides, drilling fluid flow is in line with the power law rheological model. Compared with traditional drilling fluid, dispersion stability basically does not change within 26 h; settlement stability evaluated with two methods only shows a small amount of change; permeability recovery rate evaluated with Qinshui Basin deep coal seam core exceeds 80%. Polymer drilling fluid with cenosphere provides a new thought to solve the problem of drilling fluid density and pressure for deep coal seam drilling and also effectively improves the performance of reservoir protection ability.

  17. Analytical methods for toxic gases from thermal degradation of polymers

    Science.gov (United States)

    Hsu, M.-T. S.

    1977-01-01

    Toxic gases evolved from the thermal oxidative degradation of synthetic or natural polymers in small laboratory chambers or in large scale fire tests are measured by several different analytical methods. Gas detector tubes are used for fast on-site detection of suspect toxic gases. The infrared spectroscopic method is an excellent qualitative and quantitative analysis for some toxic gases. Permanent gases such as carbon monoxide, carbon dioxide, methane and ethylene, can be quantitatively determined by gas chromatography. Highly toxic and corrosive gases such as nitrogen oxides, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and sulfur dioxide should be passed into a scrubbing solution for subsequent analysis by either specific ion electrodes or spectrophotometric methods. Low-concentration toxic organic vapors can be concentrated in a cold trap and then analyzed by gas chromatography and mass spectrometry. The limitations of different methods are discussed.

  18. High Temperature Degradation Mechanisms in Polymer Matrix Composites

    Science.gov (United States)

    Cunningham, Ronan A.

    1996-01-01

    Polymer matrix composites are increasingly used in demanding structural applications in which they may be exposed to harsh environments. The durability of such materials is a major concern, potentially limiting both the integrity of the structures and their useful lifetimes. The goal of the current investigation is to develop a mechanism-based model of the chemical degradation which occurs, such that given the external chemical environment and temperatures throughout the laminate, laminate geometry, and ply and/or constituent material properties, we can calculate the concentration of diffusing substances and extent of chemical degradation as functions of time and position throughout the laminate. This objective is met through the development and use of analytical models, coupled to an analysis-driven experimental program which offers both quantitative and qualitative information on the degradation mechanism. Preliminary analyses using a coupled diffusion/reaction model are used to gain insight into the physics of the degradation mechanisms and to identify crucial material parameters. An experimental program is defined based on the results of the preliminary analysis which allows the determination of the necessary material coefficients. Thermogravimetric analyses are carried out in nitrogen, air, and oxygen to provide quantitative information on thermal and oxidative reactions. Powdered samples are used to eliminate diffusion effects. Tests in both inert and oxidative environments allow the separation of thermal and oxidative contributions to specimen mass loss. The concentration dependency of the oxidative reactions is determined from the tests in pure oxygen. Short term isothermal tests at different temperatures are carried out on neat resin and unidirectional macroscopic specimens to identify diffusion effects. Mass loss, specimen shrinkage, the formation of degraded surface layers and surface cracking are recorded as functions of exposure time. Geometry effects

  19. Degradation Studies of b-Cyclodextrin Polyurethane Polymers using ...

    African Journals Online (AJOL)

    NJD

    A biodegradable polymer undergoes significant chemical and .... After filter- ing, the isolated white polymer was washed with copious amounts of acetone (3 × 100 mL) to ... polymers to have contact with air, moisture and microorganisms.

  20. Effects of frequency and a radical scavenger on ultrasonic degradation of water-soluble polymers.

    Science.gov (United States)

    Koda, Shinobu; Taguchi, Kimihiko; Futamura, Kazunori

    2011-01-01

    Ultrasonic degradation of methyl cellulose, pullulan, dextran and poly(ethylene oxide) in aqueous solutions was investigated at the frequencies of 20 and 500 kHz, where the ultrasonic power delivered into solutions was kept constant (22 W). The number average molecular mass and the polydispersity were obtained as a function of sonication time. The degradation under sonication at the 500 kHz frequency proceeded faster in comparison with the 20 kHz sonication for four polymers. The addition of a radical scavenger, t-BuOH, resulted in suppression of degradation of water-soluble polymers. The degradation rate constants were estimated from the plot of molecular weight against sonication time. The degradation rate of methyl cellulose was the largest one among the investigated polymers. The difference in the degradation rates was discussed in terms of the flexibility and the hydrodynamic radius of polymer chains in aqueous solutions. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Effect of sodium aromatic sulfonate group in anionic polymer dispersant on the viscosity of coal-water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Toshio Kakui; Hidehiro Kamiya [Lion Corporation, Tokyo (Japan). Chemicals Research Laboratories, Chemicals Division

    2004-06-01

    This paper focused on the effect of sodium aromatic sulfonate in anionic polymer dispersants on the viscosity of coal-water mixtures (CWMs) with a Tatung coal powder. To determine the optimum molecular structure of a polymer dispersant for the minimum viscosity of a CWM, various anionic co-polymers with different hydrophilic and hydrophobic groups or different molecular weights were prepared, using various types of monomers. Anionic co-polymers with sodium aromatic sulfonate, such as sodium styrene-sulfonate and sodium naphthalene-sulfonate, reduced the viscosity of dense CWMs. In particular, a co-polymer of sodium styrene-sulfonate and sodium acrylate with a molar ratio of 70:30 and a molecular weight of {approximately} 10 000 gave the minimum viscosity of a 70 wt % CWM. To obtain a low viscosity for a CWM, a large electrostatic repulsive force with an absolute value of the zeta potential of the coal particles of {gt} 70 mV and {gt} 6.5 mg/g of adsorbed polymer on the coal surface were needed. The mixture of sodium polystyrene-sulfonate and sodium polyacrylate with a weight ratio of 50:50 also gave a low viscosity of 70 wt % CWM. On the basis of the results, the adsorption behavior of polymer dispersants on the coal surface is examined by measuring the wettability of coal powder pellets. 27 refs., 8 figs., 3 tabs.

  2. Pathways for degradation of plastic polymers floating in the marine environment.

    Science.gov (United States)

    Gewert, Berit; Plassmann, Merle M; MacLeod, Matthew

    2015-09-01

    Each year vast amounts of plastic are produced worldwide. When released to the environment, plastics accumulate, and plastic debris in the world's oceans is of particular environmental concern. More than 60% of all floating debris in the oceans is plastic and amounts are increasing each year. Plastic polymers in the marine environment are exposed to sunlight, oxidants and physical stress, and over time they weather and degrade. The degradation processes and products must be understood to detect and evaluate potential environmental hazards. Some attention has been drawn to additives and persistent organic pollutants that sorb to the plastic surface, but so far the chemicals generated by degradation of the plastic polymers themselves have not been well studied from an environmental perspective. In this paper we review available information about the degradation pathways and chemicals that are formed by degradation of the six plastic types that are most widely used in Europe. We extrapolate that information to likely pathways and possible degradation products under environmental conditions found on the oceans' surface. The potential degradation pathways and products depend on the polymer type. UV-radiation and oxygen are the most important factors that initiate degradation of polymers with a carbon-carbon backbone, leading to chain scission. Smaller polymer fragments formed by chain scission are more susceptible to biodegradation and therefore abiotic degradation is expected to precede biodegradation. When heteroatoms are present in the main chain of a polymer, degradation proceeds by photo-oxidation, hydrolysis, and biodegradation. Degradation of plastic polymers can lead to low molecular weight polymer fragments, like monomers and oligomers, and formation of new end groups, especially carboxylic acids.

  3. Insights into the Mechanism and Kinetics of Thermo-Oxidative Degradation of HFPE High Performance Polymer.

    Science.gov (United States)

    Kunnikuruvan, Sooraj; Parandekar, Priya V; Prakash, Om; Tsotsis, Thomas K; Nair, Nisanth N

    2016-06-02

    The growing requisite for materials having high thermo-oxidative stability makes the design and development of high performance materials an active area of research. Fluorination of the polymer backbone is a widely applied strategy to improve various properties of the polymer, most importantly the thermo-oxidative stability. Many of these fluorinated polymers are known to have thermo-oxidative stability up to 700 K. However, for space and aerospace applications, it is important to improve its thermo-oxidative stability beyond 700 K. Molecular-level details of the thermo-oxidative degradation of such polymers can provide vital information to improve the polymer. In this spirit, we have applied quantum mechanical and microkinetic analysis to scrutinize the mechanism and kinetics of the thermo-oxidative degradation of a fluorinated polymer with phenylethenyl end-cap, HFPE. This study gives an insight into the thermo-oxidative degradation of HFPE and explains most of the experimental observations on the thermo-oxidative degradation of this polymer. Thermolysis of C-CF3 bond in the dianhydride component (6FDA) of HFPE is found to be the rate-determining step of the degradation. Reaction pathways that are responsible for the experimentally observed weight loss of the polymer is also scrutinized. On the basis of these results, we propose a modification of HFPE polymer to improve its thermo-oxidative stability.

  4. Application of controlled radiation-induced degradation in polymers: less exploited aspect of radiation processing of polymers

    International Nuclear Information System (INIS)

    Haji Saeid, M.; Guven, O.

    2007-01-01

    Industrial use of ionizing radiation treatment has been most successful in applications related to polymeric materials. The polymer, plastics and rubber industries have benefited from the unique advantages of ionizing radiation since its inception as an industrial tool to modify their properties and manufacture novel materials with value addition to the end product. The established and emerging applications of electron beam processing of polymers are based on the well known ultimate effects of ionizing radiation on polymers namely, crosslinking, curing, grafting and chain scissioning. Radiation-induced crosslinking dominates most applications, whereas the chain scissioning effect is much less explored and currently limited to radiation-induced degradation of Teflon, cellulose and polypropylene. The controlling of radiation-induced degradation for achieving a target average molecular weight or distribution has been evaluated for some polysaccharides, biopolymers and waste inner tubes whereas mitigation of the degradative effects of radiation has been analyzed from the point of view of using certain stabilizers, copolymers and annealing at an appropriate temperature. Several new or highly specialized techniques such as positron annihilation lifetime spectroscopy. Rutherford backscattering, elastic recoil detection analysis and solid waste NMR spectroscopy and gas chromatography-mass spectroscopy have been applied to the study or radiation-induced degradation. New information has been collected on the morphological changes associated with radiation-induced degradation processes, including chain scission, oxidation and free volume alteration. The IAEA coordinated research project (CRP) on Controlling of Degradation Effects in Radiation Processing of Polymers dealt with the role and importance of using ionizing radiation in controlling properties of natural and synthetic polymers through its degradative effect. This paper provides a summary of most important results

  5. Controlling of degradation effects in radiation processing of polymers. Second RCM report

    International Nuclear Information System (INIS)

    2005-08-01

    The research and development works carried out by the participants of the CRP (Coordinated Research Project) dealt with natural polymers, synthetic polymers and new techniques for better understanding of radiation degradation of polymers. It includes progress in radiation degradation of polysaccharides from agricultural products (including sodium alginate, carrageenans, chitosan and gum acacia); use of radiation-degradation for doping of conductive polymers; controlling degradation processes in artificial joint implants, surface treatment of materials and food packaging; stabilizer additives for radiation environments; surface treatment of materials; and application of specialized analytical techniques (positron annihilation spectroscopy, ESR, RBS, ERDA, NMR/isotopic-labeling) to gain improved understanding of radiation degradation effects and mechanisms. Projects within the RCM group span the spectrum from fundamental studies through specific technological applications. Participants from Czech Republic, Spain and Turkey benefited from scientific collaboration with Bulgaria on PAS

  6. Deformation and degradation of polymers in ultra-high-pressure liquid chromatography.

    Science.gov (United States)

    Uliyanchenko, Elena; van der Wal, Sjoerd; Schoenmakers, Peter J

    2011-09-28

    Ultra-high-pressure liquid chromatography (UHPLC) using columns packed with sub-2 μm particles has great potential for separations of many types of complex samples, including polymers. However, the application of UHPLC for the analysis of polymers meets some fundamental obstacles. Small particles and narrow bore tubing in combination with high pressures generate significant shear and extensional forces in UHPLC systems, which may affect polymer chains. At high stress conditions flexible macromolecules may become extended and eventually the chemical bonds in the molecules can break. Deformation and degradation of macromolecules will affect the peak retention and the peak shape in the chromatogram, which may cause errors in the obtained results (e.g. the calculated molecular-weight distributions). In the present work we explored the limitations of UHPLC for the analysis of polymers. Degradation and deformation of macromolecules were studied by collecting and re-injecting polymer peaks and by off-line two-dimensional liquid chromatography. Polystyrene standards with molecular weight of 4 MDa and larger were found to degrade at UHPLC conditions. However, for most polymers degradation could be avoided by using low linear velocities. No degradation of 3-MDa PS (and smaller) was observed at linear velocities up to 7 mm/s. The column frits were implicated as the main sources of polymer degradation. The extent of degradation was found to depend on the type of the column and on the column history. At high flow rates degradation was observed without a column being installed. We demonstrated that polymer deformation preceded degradation. Stretched polymers eluted from the column in slalom chromatography mode (elution order opposite to that in SEC or HDC). Under certain conditions we observed co-elution of large and small PS molecules though a convolution of slalom chromatography and hydrodynamic chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Degradation of amine-based water treatment polymers during chloramination as N-nitrosodimethylamine (NDMA) precursors.

    Science.gov (United States)

    Park, Sang-Hyuck; Wei, Shuting; Mizaikoff, Boris; Taylor, Amelia E; Favero, Cedrick; Huang, Ching-Hua

    2009-03-01

    Recent studies indicated that water treatment polymers such as poly(epichlorohydrin dimethylamine) (polyamine) and poly(diallyldimethylammonium chloride) (polyDADMAC) may form N-nitrosodimethylamine (NDMA) when in contact with chloramine water disinfectants. To minimize such potential risk and improve the polymer products, the mechanisms of how the polymers behave as NDMA precursors need to be elucidated. Direct chloramination of polymers and intermediate monomers in reagent water was conducted to probe the predominant mechanisms. The impact of polymer properties including polymer purity, polymer molecular weight and structure, residual dimethylamine (DMA), and other intermediate compounds involved in polymer synthesis, and reaction conditions such as pH, oxidant dose, and contact time on the NDMA formation potential (NDMA-FP) was investigated. Polymer degradation after reaction with chloramines was monitored at the molecular level using FT-IR and Raman spectroscopy. Overall, polyamines have greater NDMA-FP than polyDADMAC, and the NDMA formation from both polymers is strongly related to polymer degradation and DMA release during chloramination. Polyamines' tertiary amine chain ends play a major role in their NDMA-FP, while polyDADMACs' NDMA-FP is related to degradation of the quaternary ammonium ring group.

  8. The rheology, degradation, processing, and characterization of renewable resource polymers

    Science.gov (United States)

    Conrad, Jason David

    Renewable resource polymers have become an increasingly popular alternative to conventional fossil fuel based polymers over the past couple decades. The push by the government as well as both industrial and consumer markets to go "green" has provided the drive for companies to research and develop new materials that are more environmentally friendly and which are derived from renewable materials. Two polymers that are currently being produced commercially are poly-lactic acid (PLA) and polyhydroxyalkanoate (PHA) copolymers, both of which can be derived from renewable feedstocks and have shown to exhibit similar properties to conventional materials such as polypropylene, polyethylene, polystyrene, and PET. PLA and PHA are being used in many applications including food packaging, disposable cups, grocery bags, and biomedical applications. In this work, we report on the rheological properties of blends of PLA and PHA copolymers. The specific materials used in the study include Natureworks RTM 7000D grade PLA and PHA copolymers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Blends ranging from 10 to 50 percent PHA by weight are also examined. Shear and extensional experiments are performed to characterize the flow behavior of the materials in different flow fields. Transient experiments are performed to study the shear rheology over time in order to determine how the viscoelastic properties change under typical processing conditions and understand the thermal degradation behavior of the materials. For the blends, it is determined that increasing the PHA concentration in the blend results in a decrease in viscosity and increase in degradation. Models are fit to the viscosity of the blends using the pure material viscosities in order to be able to predict the behavior at a given blend composition. We also investigate the processability of these materials into films and examine the resultant properties of the cast films. The mechanical and thermal properties of the

  9. Degradation Studies of β-Cyclodextrin Polyurethane Polymers using

    African Journals Online (AJOL)

    diisocyanate (TDI) and hexamethylene diisocyanate (HMDI) were carried out by exposing the polymers to different soil types for up to 120 days. The aim of the study was to determine the fate of these novel polymers in the environment.

  10. Degradation Action of the Anaerobic Bacteria and Oxygen to the Polymer

    Institute of Scientific and Technical Information of China (English)

    LU Xiang-Guo; ZHANG Ke

    2008-01-01

    Oxygen could prohibit anaerobic bacterium in the produced water and degrade the polymer molecular chains.Aiming at problems making up aerobic polymer solution by the produced water in Daqing Oil Field, some evaluations were done on the viscosity characteristics of polymer solution and bactericide in anaerobic and aerobic environments. Reasonable aerobic concentration of the produced water was obtained. The experimental results indicate that the viscosity of polymer solution confected by the produced water in the aerobic environment is higher than that of the polymer solution confected by the produced water in the anaerobic environment, and the reasonable ments, but the sterilization effect is better in the aerobic environment.

  11. The biochemistry and molecular biology of xenobiotic polymer degradation by microorganisms.

    Science.gov (United States)

    Kawai, Fusako

    2010-01-01

    Research on microbial degradation of xenobiotic polymers has been underway for more than 40 years. It has exploited a new field not only in applied microbiology but also in environmental microbiology, and has greatly contributed to polymer science by initiating the design of biodegradable polymers. Owing to the development of analytical tools and technology, molecular biological and biochemical advances have made it possible to prospect for degrading microorganisms in the environment and to determine the mechanisms involved in biodegradation when xenobiotic polymers are introduced into the environment and are exposed to microbial attack. In this review, the molecular biological and biochemical aspects of the microbial degradation of xenobiotic polymers are summarized, and possible applications of potent microorganisms, enzymes, and genes in environmental biotechnology are suggested.

  12. Polyester-Based (Bio)degradable Polymers as Environmentally Friendly Materials for Sustainable Development

    Science.gov (United States)

    Rydz, Joanna; Sikorska, Wanda; Kyulavska, Mariya; Christova, Darinka

    2014-01-01

    This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields. PMID:25551604

  13. Carbon-13 Labeling Used to Probe Cure and Degradation Reactions of High- Temperature Polymers

    Science.gov (United States)

    Meador, Mary Ann B.; Johnston, J. Christopher

    1998-01-01

    High-temperature, crosslinked polyimides are typically insoluble, intractible materials. Consequently, in these systems it has been difficult to follow high-temperature curing or long-term degradation reactions on a molecular level. Selective labeling of the polymers with carbon-13, coupled with solid nuclear magnetic resonance spectrometry (NMR), enables these reactions to be followed. We successfully employed this technique to provide insight into both curing and degradation reactions of PMR-15, a polymer matrix resin used extensively in aircraft engine applications.

  14. Formation of microscopic particles during the degradation of different polymers.

    Science.gov (United States)

    Lambert, Scott; Wagner, Martin

    2016-10-01

    This study investigated the formation and size distribution of microscopic plastic particles during the degradation of different plastic materials. Particle number concentrations in the size range 30 nm-60 μm were measured by nanoparticle tracking analysis (NTA) and Coulter Counter techniques. Each of the plastics used exhibited a measureable increase in the release of particles into the surrounding solution, with polystyrene (PS) and polylactic acid (PLA) generating the highest particle concentrations. After 112 d, particle concentrations ranged from 2147 particles ml(-1) in the control (C) to 92,465 particles ml(-1) for PS in the 2-60 μm size class; 1.2 × 10(5) particles ml(-1) (C) to 11.6 × 10(6) for PLA in the 0.6-18 μm size class; and 0.2 × 10(8) particles ml(-1) (C) to 6.4 × 10(8) particles ml(-1) for PS in the 30-2000 nm size class (84 d). A classification of samples based on principal component analysis showed a separation between the different plastic types, with PLA clustering individually in each of the three size classes. In addition, particle size distribution models were used to examine more closely the size distribution data generated by NTA. Overall, the results indicate that at the beginning of plastic weathering processes chain scission at the polymer surface causes many very small particles to be released into the surrounding solution and those concentrations may vary between plastic types. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Degradation Mechanism in a Direct Carbon Fuel Cell Operated with Demineralised Brown Coal

    International Nuclear Information System (INIS)

    Rady, Adam C.; Giddey, Sarbjit; Kulkarni, Aniruddha; Badwal, Sukhvinder P.S.; Bhattacharya, Sankar

    2014-01-01

    Graphical abstract: - Highlights: • Degradation mechanism studied for demineralised coal in a direct carbon fuel cell. • Diffusion limited processes dominate the electrode polarisation losses in pure N 2 . • Major fuel cell performance loss occurred due to loss of carbon/anode contacts. • The anode retained its phase structure with minor other phases formed in operation. - Abstract: The performance of a demineralised and devolatilised coal from the Morwell mine in the Latrobe Valley, Victoria, has been investigated in a direct carbon fuel cell (DCFC) operated at 850 °C. The focus of the investigation has been on understanding degradation issues as a function of time involving a sequence of electrochemical impedance spectroscopy and voltage-current characteristic. Diffusion limited processes dominate the electrode polarisation losses in pure N 2 atmosphere, however, these decrease substantially in the presence of CO 2 as the anode chamber purge gas, due to in situ generation of fuel species by the reaction of CO 2 with carbon. Post-mortem analysis of anode by SEM and XRD revealed only a minor degradation due to its reduction, particle agglomeration as well as the formation of small quantity of new phases. However, major fuel cell performance degradation (increase of ohmic resistive and electrode polarisation losses) occurred due to loss of carbon/anode contacts and a reduction in the electron-conducting pathways as the fuel was consumed. The investigations revealed that the demineralised coal char can be used as a viable fuel for DCFC, however, further developments on anode materials and fuel feed mechanism would be required to achieve long-term sustained performance

  16. Experimental degradation of polymer shopping bags (standard and degradable plastic, and biodegradable) in the gastrointestinal fluids of sea turtles.

    Science.gov (United States)

    Müller, Christin; Townsend, Kathy; Matschullat, Jörg

    2012-02-01

    The persistence of marine debris such as discarded polymer bags has become globally an increasing hazard to marine life. To date, over 177 marine species have been recorded to ingest man-made polymers that cause life-threatening complications such as gut impaction and perforation. This study set out to test the decay characteristics of three common types of shopping bag polymers in sea turtle gastrointestinal fluids (GIF): standard and degradable plastic, and biodegradable. Fluids were obtained from the stomachs, small intestines and large intestines of a freshly dead Green turtle (Chelonia mydas) and a Loggerhead turtle (Caretta caretta). Controls were carried out with salt and freshwater. The degradation rate was measured over 49 days, based on mass loss. Degradation rates of the standard and the degradable plastic bags after 49 days across all treatments and controls were negligible. The biodegradable bags showed mass losses between 3 and 9%. This was a much slower rate than reported by the manufacturers in an industrial composting situation (100% in 49 days). The GIF of the herbivorous Green turtle showed an increased capacity to break down the biodegradable polymer relative to the carnivorous Loggerhead, but at a much lower rate than digestion of natural vegetative matter. While the breakdown rate of biodegradable polymers in the intestinal fluids of sea turtles is greater than standard and degradable plastics, it is proposed that this is not rapid enough to prevent morbidity. Further study is recommended to investigate the speed at which biodegradable polymers decompose outside of industrial composting situations, and their durability in marine and freshwater systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. BET, thermal degradation, and FTIR spectras of triazine polyamine polymers.

    Science.gov (United States)

    Can, Mustafa

    2017-04-01

    Here we show effect of the polyamine polymer chain length to BET isotherms. According to IUPAC classification [1], all three polymers are fitting type 1 physical adsorption isotherm with H3 hysteresis (except for EDA having H2 hysteresis). Moreover, TG and TGA analysis of polymers triazine-ethylenediamine (EDA) and triazine-triethylenetetramine (TETA) are provided. Due to the similarities of the structure, main decomposition temperatures are close to each other (between 593 K and 873 K). In order to understand change of FTIR spectra with adsorption and stripping Au(III), fresh, Au(III) adsorbed and recycled spectras of polymers measured. For further discussions about the effect of chain length to adsorption of Au(III) onto triazine polyamine polymer particles "Au (III) Uptake by Triazine Polyamine Polymers: Mechanism, Kinetic and Equilibrium Studies" Can et al. [2] (article in press).

  18. Evaluating polymer degradation with complex mixtures using a simplified surface area method.

    Science.gov (United States)

    Steele, Kandace M; Pelham, Todd; Phalen, Robert N

    2017-09-01

    Chemical-resistant gloves, designed to protect workers from chemical hazards, are made from a variety of polymer materials such as plastic, rubber, and synthetic rubber. One material does not provide protection against all chemicals, thus proper polymer selection is critical. Standardized testing, such as chemical degradation tests, are used to aid in the selection process. The current methods of degradation ratings based on changes in weight or tensile properties can be expensive and data often do not exist for complex chemical mixtures. There are hundreds of thousands of chemical products on the market that do not have chemical resistance data for polymer selection. The method described in this study provides an inexpensive alternative to gravimetric analysis. This method uses surface area change to evaluate degradation of a polymer material. Degradation tests for 5 polymer types against 50 complex mixtures were conducted using both gravimetric and surface area methods. The percent change data were compared between the two methods. The resulting regression line was y = 0.48x + 0.019, in units of percent, and the Pearson correlation coefficient was r = 0.9537 (p ≤ 0.05), which indicated a strong correlation between percent weight change and percent surface area change. On average, the percent change for surface area was about half that of the weight change. Using this information, an equivalent rating system was developed for determining the chemical degradation of polymer gloves using surface area.

  19. Photo-degradation of high efficiency fullerene-free polymer solar cells.

    Science.gov (United States)

    Upama, Mushfika Baishakhi; Wright, Matthew; Mahmud, Md Arafat; Elumalai, Naveen Kumar; Mahboubi Soufiani, Arman; Wang, Dian; Xu, Cheng; Uddin, Ashraf

    2017-12-07

    Polymer solar cells are a promising technology for the commercialization of low cost, large scale organic solar cells. With the evolution of high efficiency (>13%) non-fullerene polymer solar cells, the stability of the cells has become a crucial parameter to be considered. Among the several degradation mechanisms of polymer solar cells, burn-in photo-degradation is relatively less studied. Herein, we present the first systematic study of photo-degradation of novel PBDB-T:ITIC fullerene-free polymer solar cells. The thermally treated and as-prepared PBDB-T:ITIC solar cells were exposed to continuous 1 sun illumination for 5 hours. The aged devices exhibited rapid losses in the short-circuit current density and fill factor. The severe short-circuit current and fill factor burn in losses were attributed to trap mediated charge recombination, as evidenced by an increase in Urbach energy for aged devices.

  20. Kinetics and mechanism of thermal degradation of pentose- and hexose-based carbohydrate polymers.

    Science.gov (United States)

    Akbar, Jamshed; Iqbal, Mohammad S; Massey, Shazma; Masih, Rashid

    2012-10-15

    This work aims at study of thermal degradation kinetics and mechanism of pentose- and hexose-based carbohydrate polymers isolated from Plantago ovata (PO), Salvia aegyptiaca (SA) and Ocimum basilicum (OB). The analysis was performed by isoconversional method. The materials exhibited mainly two-stage degradation. The weight loss at ambient-115°C characterized by low activation energy corresponds to loss of moisture. The kinetic triplets consisting of E, A and g(α) model of the materials were determined. The major degradation stage represents a loss of high boiling volatile components. This stage is exothermic in nature. Above 340°C complete degradation takes place leaving a residue of 10-15%. The master plots of g(α) function clearly differentiated the degradation mechanism of hexose-based OB and SA polymers and pentose-based PO polymer. The pentose-based carbohydrate polymer showed D(4) type and the hexose-based polymers showed A(4) type degradation mechanism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Degradation analysis of the encapsulation polymer in photovoltaic modules by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Peike, Cornelia

    2015-07-01

    Understanding the degradation behavior of photovoltaic modules is of great importance for the production of reliable and durable PV modules. Within this work, the applicability of Raman spectroscopy as a non-destructive method for PV module degradation analysis was investigated. In addition, the influence of polymer stabilizers on the photochemical discoloration of EVA as well as the impact of EVA aging on the cell metallization degradation under damp-heat conditions was studied.

  2. Main chain acid-degradable polymers for the delivery of bioactive materials

    Science.gov (United States)

    Frechet, Jean M. J. [Oakland, CA; Standley, Stephany M [Evanston, IL; Jain, Rachna [Milpitas, CA; Lee, Cameron C [Cambridge, MA

    2012-03-20

    Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.

  3. Chemical degradation and morphological instabilities during focused ion beam prototyping of polymers.

    Science.gov (United States)

    Orthacker, A; Schmied, R; Chernev, B; Fröch, J E; Winkler, R; Hobisch, J; Trimmel, G; Plank, H

    2014-01-28

    Focused ion beam processing of low melting materials, such as polymers or biological samples, often leads to chemical and morphological instabilities which prevent the straight-forward application of this versatile direct-write structuring method. In this study the behaviour of different polymer classes under ion beam exposure is investigated using different patterning parameters and strategies with the aim of (i) correlating local temperatures with the polymers' chemistry and its morphological consequences; and (ii) finding a way of processing sensitive polymers with lowest chemical degradation while maintaining structuring times. It is found that during processing of polymers three temperature regimes can be observed: (1) at low temperatures all polymers investigated show stable chemical and morphological behaviour; (2) very high temperatures lead to strong chemical degradation which entails unpredictable morphologies; and (3) in the intermediate temperature regime the behaviour is found to be strongly material dependent. A detailed look reveals that polymers which rather cross-link in the proximity of the beam show stable morphologies in this intermediate regime, while polymers that rather undergo chain scission show tendencies to develop a creeping phase, where material follows the ion beam movement leading to instable and unpredictable morphologies. Finally a simple, alternative patterning strategy is suggested, which allows stable processing conditions with lowest chemical damage even for challenging polymers undergoing chain scission.

  4. Potential of Thermophilic microorganisms for the degradation of synthetic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, A.; Deive, F. J.; Sanroman, M. A.; Longo, M. A.

    2009-07-01

    Nowadays, synthetic polymers are used in all areas of human activity, mainly due to their high stability against environmental conditions and microbial attack. However, these properties are also a problem from an environmental point of view, and thus it is necessary to find biodegradable synthetic polymers that can be easily removed in nature after disposal, and decomposed into biomass, CO{sub 2} and water. (Author)

  5. Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications.

    Science.gov (United States)

    Repenko, Tatjana; Rix, Anne; Ludwanowski, Simon; Go, Dennis; Kiessling, Fabian; Lederle, Wiltrud; Kuehne, Alexander J C

    2017-09-07

    Conjugated polymer nanoparticles exhibit strong fluorescence and have been applied for biological fluorescence imaging in cell culture and in small animals. However, conjugated polymer particles are hydrophobic and often chemically inert materials with diameters ranging from below 50 nm to several microns. As such, conjugated polymer nanoparticles cannot be excreted through the renal system. This drawback has prevented their application for clinical bio-medical imaging. Here, we present fully conjugated polymer nanoparticles based on imidazole units. These nanoparticles can be bio-degraded by activated macrophages. Reactive oxygen species induce scission of the conjugated polymer backbone at the imidazole unit, leading to complete decomposition of the particles into soluble low molecular weight fragments. Furthermore, the nanoparticles can be surface functionalized for directed targeting. The approach opens a wide range of opportunities for conjugated polymer particles in the fields of medical imaging, drug-delivery, and theranostics.Conjugated polymer nanoparticles have been applied for biological fluorescence imaging in cell culture and in small animals, but cannot readily be excreted through the renal system. Here the authors show fully conjugated polymer nanoparticles based on imidazole units that can be bio-degraded by activated macrophages.

  6. Polymer degradation in reactive ion etching and its possible application to all dry processes

    International Nuclear Information System (INIS)

    Hiraoka, H.; Welsh, L.W. Jr.

    1981-01-01

    Dry etching processes involving CF 4 -plasma and reactive ion etching become increasingly important for microcircuit fabrication techniques. In these techniques polymer degradation and etch resistance against reactive species like F atoms and CF 3 + ions are the key factors in the processes. It is well-known that classical electron beam resists like poly(methyl methacrylate) and poly(1-butene sulfone) are not suitable for dry etching processes because they degrade rapidly under these etching conditions. In order to find a correlation of etching rate and polymer structures the thickness loss of polymer films have been measured for a variety of polymer films in reactive ion etching conditions, where CF 3 + ions are the major reactive species with an accelerating potential of 500 volts. Because of its high CF 4 -plasma and reactive ion etch resistance, and because of its high electron beam sensitivity, poly(methacrylonitrile) provides a positive working electron beam resist uniquely suited for all dry processes. (author)

  7. Coal

    International Nuclear Information System (INIS)

    Teissie, J.; Bourgogne, D. de; Bautin, F.

    2001-12-01

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  8. Microporous Organic Polymers Based on Hyper-Crosslinked Coal Tar: Preparation and Application for Gas Adsorption.

    Science.gov (United States)

    Gao, Hui; Ding, Lei; Bai, Hua; Li, Lei

    2017-02-08

    Hyper-crosslinked polymers (HCPs) are promising materials for gas capture and storage, but high cost and complicated preparation limit their practical application. In this paper, a new type of HCPs (CTHPs) was synthesized through a one-step mild Friedel-Crafts reaction with low-cost coal tar as the starting material. Chloroform was utilized as both solvent and crosslinker to generate a three-dimensional crosslinked network with abundant micropores. The maximum BET surface area of the prepared CTHPs could reach up to 929 m 2  g -1 . Owing to the high affinity between the heteroatoms on the coal-tar building blocks and the CO 2 molecules, the adsorption capacity of CTHPs towards CO 2 reached up to 14.2 wt % (1.0 bar, 273 K) with a high selectivity (CO 2 /N 2 =32.3). Furthermore, the obtained CTHPs could adsorb 1.27 wt % H 2 at 1.0 bar and 77.3 K, and also showed capacity for the capture of high organic vapors at room temperature. In comparison with other reported porous organic polymers, CTHPs have the advantages of low-cost, easy preparation, and high gas-adsorption performance, making them suitable for mass production and practical use in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition

    Energy Technology Data Exchange (ETDEWEB)

    Xu Liping [Biometals Group, Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki, 305-0044 (Japan); Yamamoto, Akiko, E-mail: yamamoto.akiko@nims.go.jp [Biometals Group, Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki, 305-0044 (Japan)

    2012-06-15

    Magnesium (Mg) coated with four kinds of polymers, poly (L-lactic acid) (PLLA)-high molecular weight (HMW), PLLA-low molecular weight (LMW), poly ({epsilon}-caprolactone) (PCL)-HMW and PCL-LMW, and uncoated Mg were immersed under cell culture condition to study the degradation/corrosion behavior of the polymer-coated Mg. The releases of Mg{sup 2+} are measured during the immersion. Surface morphology and chemical composition are observed and identified by SEM and EDX. The tomography is obtained by X-ray CT observation and degradation rate is calculated by image analysis after 10-day immersion. All kinds of polymer-coated Mg showed significantly low release of Mg{sup 2+} (p < 0.05) in the whole immersion process comparing to that of uncoated Mg. In SEM and EDX results show, a corrosion layer can be observed on both polymer-coated and uncoated Mg after immersion. There is no obvious difference on the morphology and chemical composition of the corrosion layer between polymer-coated and uncoated Mg, indicating the corrosion/degradation process and corrosion product of Mg substrate are not changed by the polymer films under the present condition compared with uncoated Mg. Concerning the tomography and degradation rate of 10-day immersion, it can be found that the polymer-coated Mg shows a significantly low corrosion rate (p < 0.05) compared with that of uncoated Mg. PLLA coated Mg shows relatively uniform corrosion than PCL coated Mg and uncoated Mg. The largest pitting corrosion depth of PCL-LMW is about 3 times as large as the PLLA-LMW, which might be attributed to the difference of polymer microstructure. It is suggested that PLLA coating might be a suitable option for retarding the loss of mechanical properties of Mg substrate.

  10. In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition

    International Nuclear Information System (INIS)

    Xu Liping; Yamamoto, Akiko

    2012-01-01

    Magnesium (Mg) coated with four kinds of polymers, poly (L-lactic acid) (PLLA)-high molecular weight (HMW), PLLA-low molecular weight (LMW), poly (ε-caprolactone) (PCL)-HMW and PCL-LMW, and uncoated Mg were immersed under cell culture condition to study the degradation/corrosion behavior of the polymer-coated Mg. The releases of Mg 2+ are measured during the immersion. Surface morphology and chemical composition are observed and identified by SEM and EDX. The tomography is obtained by X-ray CT observation and degradation rate is calculated by image analysis after 10-day immersion. All kinds of polymer-coated Mg showed significantly low release of Mg 2+ (p < 0.05) in the whole immersion process comparing to that of uncoated Mg. In SEM and EDX results show, a corrosion layer can be observed on both polymer-coated and uncoated Mg after immersion. There is no obvious difference on the morphology and chemical composition of the corrosion layer between polymer-coated and uncoated Mg, indicating the corrosion/degradation process and corrosion product of Mg substrate are not changed by the polymer films under the present condition compared with uncoated Mg. Concerning the tomography and degradation rate of 10-day immersion, it can be found that the polymer-coated Mg shows a significantly low corrosion rate (p < 0.05) compared with that of uncoated Mg. PLLA coated Mg shows relatively uniform corrosion than PCL coated Mg and uncoated Mg. The largest pitting corrosion depth of PCL-LMW is about 3 times as large as the PLLA-LMW, which might be attributed to the difference of polymer microstructure. It is suggested that PLLA coating might be a suitable option for retarding the loss of mechanical properties of Mg substrate.

  11. Patterns of efficiency and degradation of composite polymer solar cells

    NARCIS (Netherlands)

    Jeranko, T; Tributsch, H; Sariciftci, NS; Hummelen, JC

    2004-01-01

    Bulk-heterojunction plastic solar cells (PSC) produced from a conjugated polymer, poly(2-methoxy-5-(3',7'-dimethyloctyl-oxy)-1,4-phenylenevinylene) (MDMO-PPV), and a methanofullerene [6,6]-phenyl C-61-butyric acid methyl ester (PCBM) were investigated using photocurrent imaging techniques to

  12. Environmental Degradation of Fiber-Reinforced Polymer Fasteners in Wood

    Science.gov (United States)

    Samuel L. Zelinka; Douglas R. Rammer

    2013-01-01

    This paper examines the durability of fiber-reinforced polymer (FRP) nails in treated wood. The FRP nails were exposed to four conditions: (1) accelerated weathering, consisting of exposure to ultraviolet light and condensation; (2) 100% relative humidity (RH); (3) being driven into untreated wood and exposed to 100% RH; and (4) being driven into wood treated with...

  13. Lignocellulose Biomass: Constitutive Polymers. Biological Processes of Lignin Degradation

    International Nuclear Information System (INIS)

    Martin, C.; Manzanares, P.

    1994-01-01

    The structure of the lignocellulosic materials and the chemical composition of their main constitutive polymers, cellulose, hemicelluloses and lignin are described. The most promising transformation processes according to the type of biomass considered: hardwood, softwood an herbaceous and the perspectives of biotechnological processes for bio pulping, bio bleaching and effluents decolorisation in the paper pulp industry are also discussed. (Author) 7 refs

  14. Study of in vitro degradation of biodegradable polymer based thin ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... Science and Biomedical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia. Accepted 7 November, 2011 .... polymers approved by the US Food and Drug. Administration (FDA) for certain ... equation is applicable when the extent of reaction is slow or before the specimen ...

  15. Applicability of X-ray reflectometry to studies of polymer solar cell degradation

    DEFF Research Database (Denmark)

    Andreasen, Jens Wenzel; Gevorgyan, Suren; Schleputz, C.M.

    2008-01-01

    Although degradation of polymer solar cells is widely acknowledged, the cause, physical or chemical, has not been identified. The purpose of this work is to determine the applicability of X-ray reflectometry for in situ observation of physical degradation mechanisms. We find that the rough...... interfaces of the polymer solar cell constituent layers seriously obstruct the sensitivity of the technique, rendering it impossible to elucidate changes in the layer/interface structure at the sub-nanometer level. (c) 2008 Elsevier B.V. All rights reserved....

  16. Development of Bioorthogonally Degradable Linkers and Polymers Using alpha-Azidoethers

    Science.gov (United States)

    Rajagopalan, Chandrasekhar Ramasubramanian

    Degradable polymers have gained a lot of attention in recent years for applications in biotechnology and medicine. External control over polymer degradation can be obtained by incorporating functional groups that cleave in the presence of triggers that would normally be absent in biological environments, i.e. are bioorthogonal. This thesis explores the use of chemically cleavable alpha-azidoethers as a new method to obtain external control over the degradation behavior of polymers. My first goal is to illustrate the potential of alpha-azidoethers toward developing cleavable linkers. We have studied the relationship between alpha-azidoether structure and hydrolytic stability, to prepare linkers that withstand background hydrolytic cleavage until they are exposed to the cleaving trigger. The cleavage kinetics of the alpha-azidoether functional group was quantified. In addition to the conventionally used tris(2-carboxyethyl)phosphine (TCEP), dihydrolipoic acid (DHLA), a previously unexplored, biocompatible reducing agent, was also evaluated as a cleaving trigger. Based on these results, we have proposed design rules for utilizing alpha-azidoethers as cleavable linkers in applications that require bioorthogonal control over linker cleavage. Secondly, the alpha-azidoether cleavable linker chemistry was implemented into the development of polymeric materials. Two different types of polymers were developed. Polyamides incorporating alpha-azidoethers along the backbone were synthesized, and their physical properties and chemically triggered degradation behavior were characterized. The degradation timescale of these polymers can be tuned simply by manipulating the concentration of the externally applied chemical trigger. The alpha-azidoether functional group was then utilized to develop a unique triggered-release polymeric adhesive for potential applications in dental adhesive formulations. A methacrylamide-phosphonate adhesive monomer incorporating an alpha

  17. Thermal degradation of biocidal organic N-halamines and N-halamine polymers

    Energy Technology Data Exchange (ETDEWEB)

    Chylińska, Marta; Kaczmarek, Halina, E-mail: halina@chem.umk.pl

    2014-05-01

    Highlights: • Novel biocidal N-halamines have been substituted to poly(p-methyl styrene). • Thermal stability of all obtained compounds has been studied by thermogravimetry. • Stabilization of selected polymer has been achieved using octyl tin mercaptide. • The mechanism of thermal degradation of N-halamine polymers has been proposed. - Abstract: Novel biocidal organic N-halamines (based on imidazoline dione rings) were used as a substituents for poly(p-methyl styrene). The biocidal polymers and substituents have been investigated using thermogravimetric analysis. The thermal resistance of investigated compounds was compared to those of non-halogenated precursors. The introduction of chlorine atoms to polymers decreases their thermal resistance comparing to precursors but efficient stabilization is possible by using octyl tin mercaptide. The complex mechanism of thermal decomposition of polymers has been discussed.

  18. Thermal degradation process of poly (alpha-methylstyrene) microspheres coated with glow discharge polymer

    International Nuclear Information System (INIS)

    Zhang Zhanwen; Huang Yong; Tang Yongjian; Li Bo; Chen Sufen; He Zhibing

    2009-01-01

    Glow discharge polymer (GDP) shell was made by the decomposable mandrel technique using poly(alpha-methylstyrene) (PAMS) mandrel. The PAMS degradation rate and the GDP shell surface morphology at different equilibrium temperatures were investigated. Degradation rate was calculated from weight variation of PAMS before and after pyrolysis process. Experiment results indicate that the degradation rate decreases at the fixed equilibrium temperature and graded temperature can improve the rate. The degradation process has an effect on the GDP shell properties. The PAMS doesn't molten to flow liquid during degradation. But the degradation can reduce surface finish of GDP coatings. The GDP shell deffects are the result of the PAMS degradiation process. (authors)

  19. Review of oxidative degradations of certain heterocyclic polymers

    Science.gov (United States)

    Mayo, F. R.

    1971-01-01

    The curing and decompositions of polyphenylenes and several nitrogen-containing condensation polymers, particularly polybenzimidazoles and pyrones, are reviewed critically. It is concluded that the condensations are usually imperfect and incomplete and that in most of the published work the late stages of the condensation are complicated by the beginnings of the charring and carbonization processes. Most discussions of mechanisms in this range are highly speculative and of little value. The most promising fields for further research are at lower temperatures, where slow oxidation processes deserve study, and at higher temperatures, where it may be possible to influence carbonization processes to obtain better products.

  20. Diversity screening for novel enzymes degrading synthetic polymers

    DEFF Research Database (Denmark)

    Lezyk, Mateusz Jakub

    plant cell wall polymers. Several enzymes catalysed transglycosylation either using lactose or pNP-Fuc as acceptor and Mfuc6 exhibited an unusually high transglycosylation/hydrolysis ratio. Using 25 mM pNP-Fuc as donor and under conditions tested, the maximum yields of 1.6 ± 0.1 mM 2’-fucosyllactose...... of glucose during cellulase-catalyzed hydrolysis of pretreated sugarcane bagasse. We have further utilized the constructed metagenomic library for functional identification of epoxide hydrolase activities using a new agar-plate assay. Using this method, clones with epoxide hydrolase activity were identified...

  1. Estimation of apparent kinetic parameters of polymer pyrolysis with complex thermal degradation behavior

    International Nuclear Information System (INIS)

    Srimachai, Taranee; Anantawaraskul, Siripon

    2010-01-01

    Full text: Thermal degradation behavior during polymer pyrolysis can typically be described using three apparent kinetic parameters (i.e., pre-exponential factor, activation energy, and reaction order). Several efficient techniques have been developed to estimate these apparent kinetic parameters for simple thermal degradation behavior (i.e., single apparent pyrolysis reaction). Unfortunately, these techniques cannot be directly extended to the case of polymer pyrolysis with complex thermal degradation behavior (i.e., multiple concurrent reactions forming single or multiple DTG peaks). In this work, we proposed a deconvolution method to determine the number of apparent reactions and estimate three apparent kinetic parameters and contribution of each reaction for polymer pyrolysis with complex thermal degradation behavior. The proposed technique was validated with the model and experimental pyrolysis data of several polymer blends with known compositions. The results showed that (1) the number of reaction and (2) three apparent kinetic parameters and contribution of each reaction can be estimated reasonably. The simulated DTG curves with estimated parameters also agree well with experimental DTG curves. (author)

  2. Driving degradation within biodegradable polymers with embedded nanoparticles

    Science.gov (United States)

    Gorga, Russell; Firestone, Gabriel; Fontecha, Daniela; Bochinski, Jason; Clarke, Laura

    The ability to controllably trigger breaking of chemical bonds enables a substance that has robust material properties during use but can be re-worked or deteriorated upon command. Photothermal heating creates intense local heat at isolated nanoparticle locations within a sample and can result in very different material responses than those achievable with conventional (uniform) heating. In this process, irradiation with visible light resonant with the nanoparticle's surface plasmon resonance results in dramatic local heating of the particles and the surrounding material. This work studies intentional thermal degradation of poly ethyl cyanoacrylate-starch composites doped with metal nanoparticles, and explores differences in degradation speed, efficiency, and resultant mechanical properties when heated via the photothermal effect. This work was supported by the National Science Foundation, Grant #: CMMI-1462966.

  3. Degradation of homogeneous polymer solutions in high shear turbulent pipe flow

    Science.gov (United States)

    Elbing, B. R.; Winkel, E. S.; Solomon, M. J.; Ceccio, S. L.

    2009-12-01

    This study quantifies degradation of polyethylene oxide (PEO) and polyacrylamide (PAM) polymer solutions in large diameter (2.72 cm) turbulent pipe flow at Reynolds numbers to 3 × 105 and shear rates greater than 105 1/s. The present results support a universal scaling law for polymer chain scission reported by Vanapalli et al. (2006) that predicts the maximum chain drag force to be proportional to Re 3/2, validating this scaling law at higher Reynolds numbers than prior studies. Use of this scaling gives estimated backbone bond strengths from PEO and PAM of 3.2 and 3.8 nN, respectively. Additionally, with the use of synthetic seawater as a solvent the onset of drag reduction occurred at higher shear rates relative to the pure water solvent solutions, but had little influence on the extent of degradation at higher shear rates. These results are significant for large diameter pipe flow applications that use polymers to reduce drag.

  4. Electroluminescence and electrical degradation of insulating polymers at electrode interfaces under divergent fields

    Science.gov (United States)

    Zhang, Shuai; Li, Qi; Hu, Jun; Zhang, Bo; He, Jinliang

    2018-04-01

    Electrical degradation of insulating polymers at electrode interfaces is an essential factor in determining long-term reliability. A critical challenge is that the exact mechanism of degradation is not fully understood, either experimentally or theoretically, due to the inherent complex processes. Consequently, in this study, we investigate electroluminescence (EL) at the interface of an electrode and insulator, and determine the relationship between EL and electrical degradation. Using a tip-plate electrode structure, the unique features of EL under a highly divergent field are investigated. The voltage type (alternating or direct current), the polymer matrix, and the time of pressing are also investigated separately. A study of EL from insulators under a divergent field is provided, and the relationship between EL spectra and degradation is discussed. It is shown that EL spectra under a divergent field have unique characteristics compared with EL spectra from polymer films under a uniform field and the most obvious one is the UV emission. The results obtained in the current investigation bring us a step closer to understanding the process of electrical degradation and provide a potential way to diagnose insulator defects.

  5. Degradation of polyethylene microplastics in seawater: Insights into the environmental degradation of polymers.

    Science.gov (United States)

    Da Costa, João P; Nunes, Ana R; Santos, Patrícia S M; Girão, Ana V; Duarte, Armando C; Rocha-Santos, Teresa

    2018-04-06

    Microplastic contamination of aquatic environments has become an increasingly alarming problem. These, defined as particles degradation of this material. These results highlight the importance of determining the mechanisms of degradation of microplastics in marine settings and what the implications may be for the environment. Overall, the herein presented results show that a relatively short period of time of accelerated exposure can yield quantifiable chemical and physical impacts on the structural and morphological characteristics of PE pellets.

  6. Biocompatibility of degradable biomaterials : a study on the factors determining the inflammatory response against degradable polymers

    NARCIS (Netherlands)

    Lam, King Hong

    1992-01-01

    The study reported in this thesis was undertaken to obtain more insight in the role of various factors determining the outcome of the interaction between biodegradable polymers and the host in which they are implanted. In the end, the outcome of this interaction determines the success or failure of

  7. Mass spectrometric comparison of swift heavy ion-induced and anaerobic thermal degradation of polymers

    Science.gov (United States)

    Lima, V.; Hossain, U. H.; Walbert, T.; Seidl, T.; Ensinger, W.

    2018-03-01

    The study of polymers irradiated by highly energetic ions and the resulting radiation-induced degradation is of major importance for space and particle accelerator applications. The mechanism of ion-induced molecular fragmentation of polyethylene, polyethyleneimine and polyamide was investigated by means of mass spectrometry and infrared spectroscopy. The results show that the introduction of nitrogen and oxygen into the polymer influences the stability rendering aliphatic polymers with heteroatoms less stable. A comparison to thermal decomposition data from literature reveals that ion-induced degradation is different in its bond fracture mechanism. While thermal degradation starts at the weakest bond, which is usually the carbon-heteroatom bond, energetic ion irradiation leads in the first step to scission of all types of bonds creating smaller molecular fragments. This is due to the localized extreme energy input under non-equilibrium conditions when the ions transfer kinetic energy onto electrons. These findings are of relevance for the choice of polymers for long-term application in both space and accelerator facilities.

  8. Pulse radiolysis studies concerning oxidative degradation processes in linear polymers

    International Nuclear Information System (INIS)

    Schnabel, Wolfram

    1986-01-01

    On the basis of pulse radiolysis experiments carried out with various polymers in dilute solution three modes of action of molecular oxygen, 0 2 , can be discriminated with respect to main-chain scission: (a) 0 2 acts as a promoter, (b) 0 2 acts as an inhibitor, and (c) 0 2 acts as a fixing agent for main-chain breaks. The promoting mode of action (a) is due to the inhibition of simultaneously occurring intermolecular crosslinking (DNA, polymethylvinylketone) and/or to the combination of peroxyl radicals with the subsequent formation of readily decomposing oxyl radicals (polyethylene oxide, polyacrylamide, polyvinylpyrrolidone, polyribouridylic acid, polyriboadenylic acid, polyribocytidylic acid). The inhibiting mode of action (b) pertains to the reaction of 0 2 with macroradicals that otherwise undergo main-chain rupture (amylose polymethylmethacrylate). Fixing of main-chain ruptures (mode c) becomes important, if macroradicals generated by a very fast rupture of bonds in the main-chain, are prone to recombine quickly. This mode of action was evidenced in the case of polybutenesulfone where main-chain scission involves the extrusion of small segments of the chain. (author)

  9. Degradation and stability of R2R manufactured polymer solar cells

    DEFF Research Database (Denmark)

    Norrman, Kion; Krebs, Frederik C

    2009-01-01

    Polymer solar cells have many advantages such as light weight, flexibility, environmental friendliness, low thermal budget, low cost and most notably very fast modes of production by printing techniques. Production experiments have shown that it is highly feasible with existing technology to mass...... produce polymer solar cells at a very low cost. We have employed state-of-the-art analytical techniques to address the challenging issues of degradation and stability of R2R manufactured devices. We have specifically studied the relative effect of oxygen and water on the operational devices in regard...

  10. Polymer electrolyte membrane water electrolysis: Restraining degradation in the presence of fluctuating power

    Science.gov (United States)

    Rakousky, Christoph; Reimer, Uwe; Wippermann, Klaus; Kuhri, Susanne; Carmo, Marcelo; Lueke, Wiebke; Stolten, Detlef

    2017-02-01

    Polymer electrolyte membrane (PEM) water electrolysis generates 'green' hydrogen when conducted with electricity from renewable - but fluctuating - sources like wind or solar photovoltaic. Unfortunately, the long-term stability of the electrolyzer performance is still not fully understood under these input power profiles. In this study, we contrast the degradation behavior of our PEM water electrolysis single cells that occurs under operation with constant and intermittent power and derive preferable operating states. For this purpose, five different current density profiles are used, of which two were constant and three dynamic. Cells operated at 1 A cm-2 show no degradation. However, degradation was observed for the remaining four profiles, all of which underwent periods of high current density (2 A cm-2). Hereby, constant operation at 2 A cm-2 led to the highest degradation rate (194 μV h-1). Degradation can be greatly reduced when the cells are operated with an intermittent profile. Current density switching has a positive effect on durability, as it causes reversible parts of degradation to recover and results in a substantially reduced degradation per mole of hydrogen produced. Two general degradation phenomena were identified, a decreased anode exchange current density and an increased contact resistance at the titanium porous transport layer (Ti-PTL).

  11. Degradation behaviour of poly(ethylene glycol) diblock and multiblock polymers with hydrolytically degradable ester linkages

    Czech Academy of Sciences Publication Activity Database

    Braunová, Alena; Pechar, Michal; Ulbrich, Karel

    2004-01-01

    Roč. 69, č. 8 (2004), s. 1643-1656 ISSN 0010-0765 R&D Projects: GA ČR GA305/02/1425; GA AV ČR IAA4050201 Institutional research plan: CEZ:AV0Z4050913 Keywords : PEG * block copolymers * degradable bonds Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.062, year: 2004

  12. Construction of porous covalent organic polymer as photocatalysts for RhB degradation under visible light

    Institute of Scientific and Technical Information of China (English)

    Pingxiao Liu; Lingbao Xing; Hongtao Lin; Haining Wang; Ziyan Zhou; Zhongmin Su

    2017-01-01

    In the present work,a novel porous,and chemically stable amine-based covalent organic polymer (POP-1) was designed and synthesized under solvothermal conditions.The porosity,crystallinity,chemical stability,electrochemical properties,and diffuse reflectance of POP-1 were investigated via N2 sorption experiment,power X-ray diffraction,thermogravimetric analysis,cyclic voltammetry,and ultraviolet visible near infrared spectrometry,respectively.POP-1 exhibits good chemical stability in both acidic and alkaline aqueous solutions,as well as in organic solvents.Undoped POP-1 can be directly used as a photocatalyst for rhodamine B irradiation degradation under light-emitting diode and natural light.The Ea of POP-1 for RhB degradation is 82.37 kJ/mol.Furthermore,POP-1 can be reused as a catalyst in RhB degradation without degraded catalytic activity.

  13. Local impact of humidification on degradation in polymer electrolyte fuel cells

    Science.gov (United States)

    Sanchez, Daniel G.; Ruiu, Tiziana; Biswas, Indro; Schulze, Mathias; Helmly, Stefan; Friedrich, K. Andreas

    2017-06-01

    The water level in a polymer electrolyte membrane fuel cell (PEMFC) affects the durability as is seen from the degradation processes during operation a PEMFC with fully- and nonhumidified gas streams as analyzed using an in-situ segmented cell for local current density measurements during a 300 h test operating under constant conditions and using ex situ SEM/EDX and XPS post-test analysis of specific regions. The impact of the RH on spatial distribution of the degradation process results from different water distribution giving different chemical environments. Under nonhumidified gas streams, the cathode inlet region exhibits increased degradation, whereas with fully humidified gases the bottom of the cell had the higher performance losses. The degradation and the degree of reversibility produced by Pt dissolution, PTFE defluorination, and contaminants such as silicon (Si) and nickel (Ni) were locally evaluated.

  14. Cathepsin B-sensitive polymers for compartment-specific degradation and nucleic acid release.

    Science.gov (United States)

    Chu, David S H; Johnson, Russell N; Pun, Suzie H

    2012-02-10

    Degradable cationic polymers are desirable for in vivo nucleic acid delivery because they offer significantly decreased toxicity over non-degradable counterparts. Peptide linkers provide chemical stability and high specificity for particular endopeptidases but have not been extensively studied for nucleic acid delivery applications. In this work, enzymatically degradable peptide-HPMA copolymers were synthesized by RAFT polymerization of HPMA with methacrylamido-terminated peptide macromonomers, resulting in polymers with low polydispersity and near quantitative incorporation of peptides. Three peptide-HPMA copolymers were evaluated: (i) pHCathK(10), containing peptides composed of the linker phe-lys-phe-leu (FKFL), a substrate of the endosomal/lysosomal endopeptidase cathepsin B, connected to oligo-(L)-lysine for nucleic acid binding, (ii) pHCath(D)K(10), containing the FKFL linker with oligo-(D)-lysine, and (iii) pH(D)Cath(D)K(10), containing all (D) amino acids. Cathepsin B degraded copolymers pHCathK(10) and pHCath(D)K(10) within 1 h while no degradation of pH(D)Cath(D)K(10) was observed. Polyplexes formed with pHCathK(10) copolymers show DNA release by 4 h of treatment with cathepsin B; comparatively, polyplexes formed with pHCath(D)K(10) and pH(D)Cath(D)K(10) show no DNA release within 8 h. Transfection efficiency in HeLa and NIH/3T3 cells were comparable between the copolymers but pHCathK(10) was less toxic. This work demonstrates the successful application of peptide linkers for degradable cationic polymers and DNA release. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Natural polymers supported copper nanoparticles for pollutants degradation

    Energy Technology Data Exchange (ETDEWEB)

    Haider, Sajjad [Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421 (Saudi Arabia); Kamal, Tahseen, E-mail: tkkhan@kau.edu.sa [Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Khan, Sher Bahadar [Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Omer, Muhammad [Institute of Chemical Sciences, University of Swat, Odigram, Swat, 19130, Khyber Pakhtunkhwa (Pakistan); Haider, Adnan [Department of Nano, Medical and Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749 (Korea, Republic of); Khan, Farman Ullah; Asiri, Abdullah M. [Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2016-11-30

    Highlights: • Chitosan (CS) coating layer was applied on the surface of cellulose microfibers mat (CMM). • The CS coating layer was used to uptake the Copper (Cu) ions which were converted to nanoparticles. • The Cu/CS-CMM was demonstrated as catalyst in nitrophenols and cresyl blue reductions. • The rate constants for 2-nitrophenol, 4-nitrophenol and cresyl blue were 1.2 × 10{sup −3} s{sup −1}, 2.1 × 10{sup −3} s {sup −1} and, 1.3 × 10{sup −3} s{sup −1}, respectively. • The used catalyst was easily recovered by just pulling the strip from solutions. - Abstract: In this report, chitosan (CS) was adhered on cellulose microfiber mat (CMM) to prepare CS-CMM. This was used as host for copper (Cu) nanoparticles preparation. After adsorption of Cu{sup 2+} ions from an aqueous solution of CuSO{sub 4}, the metal ions entrapped in CS coating layer was treated with sodium borohydride (NaBH{sub 4}) to prepare Cu nanoparticles loaded CS-CMM (Cu/CS-CMM). Fourier transform infrared spectroscopy, and X-ray diffraction confirmed the formation of Cu/CS-CMM hybrid. Scanning electron microscopy analysis was performed to reveal the morphology of the prepared catalyst. The prepared Cu/CS-CMM was employed as a catalyst for the degradation of nitro-aromatic compounds of 2-nitrophenol (2NP) and 4-nitrophenol (4NP) as well as an organic cresyl blue (CB) dye. Remarkably, the turnover frequency in the case of 2NP and 4NP using Cu/CS-CMM reaches 103.3 and 88.6 h{sup −1}, outperforming previously reported Cu nanoparticles immobilized in hydrogel-based catalytic systems. The rate constants for 2NP, 4NP and CB were 1.2 × 10{sup −3} s{sup −1}, 2.1 × 10{sup −3} s{sup −1} and, 1.3 × 10{sup −3} s{sup −1}, respectively. Besides, we discussed the separation of the catalyst from the reaction mixture and its re-usability.

  16. Application of Microextraction Techniques Including SPME and MESI to the Thermal Degradation of Polymers: A Review.

    Science.gov (United States)

    Kaykhaii, Massoud; Linford, Matthew R

    2017-03-04

    Here, we discuss the newly developed micro and solventless sample preparation techniques SPME (Solid Phase Microextraction) and MESI (Membrane Extraction with a Sorbent Interface) as applied to the qualitative and quantitative analysis of thermal oxidative degradation products of polymers and their stabilizers. The coupling of these systems to analytical instruments is also described. Our comprehensive literature search revealed that there is no previously published review article on this topic. It is shown that these extraction techniques are valuable sample preparation tools for identifying complex series of degradation products in polymers. In general, the number of products identified by traditional headspace (HS-GC-MS) is much lower than with SPME-GC-MS. MESI is particularly well suited for the detection of non-polar compounds, therefore number of products identified by this technique is not also to the same degree of SPME. Its main advantage, however, is its ability of (semi-) continuous monitoring, but it is more expensive and not yet commercialized.

  17. New insights into enhanced anaerobic degradation of coal gasification wastewater (CGW) with the assistance of graphene.

    Science.gov (United States)

    Zhu, Hao; Han, Yuxing; Ma, Wencheng; Han, Hongjun; Ma, Weiwei; Xu, Chunyan

    2018-08-01

    The up-flow anaerobic sludge blanket (UASB) system with graphene assisted was developed for coal gasification wastewater (CGW) treatment. Short-term results showed that optimal graphene addition (0.5 g/L) resulted in a more significant enhancement of methane production and chemical oxygen demand (COD) removal compared with that of the optimal activated carbon addition (10.0 g/L). Long-term results demonstrated that COD removal efficiency and methane production rate with graphene assisted achieved 64.7% and 180.5 mL/d, respectively. In addition, graphene could promote microbes accumulation and enzymes activity, resulting in higher extracellular polymeric substances (EPS) and coenzyme F 420 concentrations. X-ray Diffraction (XRD) analysis indicated that chemical of graphene changed insignificantly during the experiment. Meanwhile, with graphene assisted, cells were attached together to form microbial aggregates to facilitate sludge granulation process. Furthermore, the enriched Geobacter and Pseudomonas might perform direct interspecies electron transfer (DIET) with Methanosaeta via biological electrical connection, enhancing the anaerobic degradation of CGW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. A New Property of Conjugated Polymer PFP: Catalytic Degradation of Methylene Blue Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A new property of conjugated polymer poly(furancarbinol-co-phenol)(PFP) was studied.The target copolymer was used as a catalyst after proper heating treatment. And dye methylene blue (MB) could be fully degraded and largely mineralized on PFP, under natural light or even in dark, in a few minutes. Furthermore, the catalytic activity could be preserved after several runs and the catalyst was readily separated. The effect of calcination temperature was also observed.

  19. Monitoring of the Enzymatically Catalyzed Degradation of Biodegradable Polymers by Means of Capacitive Field-Effect Sensors.

    Science.gov (United States)

    Schusser, Sebastian; Krischer, Maximilian; Bäcker, Matthias; Poghossian, Arshak; Wagner, Patrick; Schöning, Michael J

    2015-07-07

    Designing novel or optimizing existing biodegradable polymers for biomedical applications requires numerous tests on the effect of substances on the degradation process. In the present work, polymer-modified electrolyte-insulator-semiconductor (PMEIS) sensors have been applied for monitoring an enzymatically catalyzed degradation of polymers for the first time. The thin films of biodegradable polymer poly(D,L-lactic acid) and enzyme lipase were used as a model system. During degradation, the sensors were read-out by means of impedance spectroscopy. In order to interpret the data obtained from impedance measurements, an electrical equivalent circuit model was developed. In addition, morphological investigations of the polymer surface have been performed by means of in situ atomic force microscopy. The sensor signal change, which reflects the progress of degradation, indicates an accelerated degradation in the presence of the enzyme compared to hydrolysis in neutral pH buffer media. The degradation rate increases with increasing enzyme concentration. The obtained results demonstrate the potential of PMEIS sensors as a very promising tool for in situ and real-time monitoring of degradation of polymers.

  20. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications.

    Science.gov (United States)

    Sun, Huanli; Meng, Fenghua; Dias, Aylvin A; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan

    2011-06-13

    Currently, biomedical engineering is rapidly expanding, especially in the areas of drug delivery, gene transfer, tissue engineering, and regenerative medicine. A prerequisite for further development is the design and synthesis of novel multifunctional biomaterials that are biocompatible and biologically active, are biodegradable with a controlled degradation rate, and have tunable mechanical properties. In the past decades, different types of α-amino acid-containing degradable polymers have been actively developed with the aim to obtain biomimicking functional biomaterials. The use of α-amino acids as building units for degradable polymers may offer several advantages: (i) imparting chemical functionality, such as hydroxyl, amine, carboxyl, and thiol groups, which not only results in improved hydrophilicity and possible interactions with proteins and genes, but also facilitates further modification with bioactive molecules (e.g., drugs or biological cues); (ii) possibly improving materials biological properties, including cell-materials interactions (e.g., cell adhesion, migration) and degradability; (iii) enhancing thermal and mechanical properties; and (iv) providing metabolizable building units/blocks. In this paper, recent developments in the field of α-amino acid-containing degradable polymers are reviewed. First, synthetic approaches to prepare α-amino acid-containing degradable polymers will be discussed. Subsequently, the biomedical applications of these polymers in areas such as drug delivery, gene delivery and tissue engineering will be reviewed. Finally, the future perspectives of α-amino acid-containing degradable polymers will be evaluated.

  1. Drug-releasing shape-memory polymers - the role of morphology, processing effects, and matrix degradation.

    Science.gov (United States)

    Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2013-09-01

    Shape-memory polymers (SMPs) have gained interest for temporary drug-release systems that should be anchored in the body by self-sufficient active movements of the polymeric matrix. Based on the so far published scientific literature, this review highlights three aspects that require particular attention when combining SMPs with drug molecules: i) the defined polymer morphology as required for the shape-memory function, ii) the strong effects that processing conditions such as drug-loading methodologies can have on the drug-release pattern from SMPs, and iii) the independent control of drug release and degradation by their timely separation. The combination of SMPs with a drug-release functionality leads to multifunctional carriers that are an interesting technology for pharmaceutical sciences and can be further expanded by new materials such as thermoplastic SMPs or temperature-memory polymers. Experimental studies should include relevant molecules as (model) drugs and provide a thermomechanical characterization also in an aqueous environment, report on the potential effect of drug type and loading levels on the shape-memory functionality, and explore the potential correlation of polymer degradation and drug release.

  2. Scaling of Polymer Degradation Rate within a High-Reynolds-Number Turbulent Boundary Layer

    Science.gov (United States)

    Elbing, Brian; Solomon, Michael; Perlin, Marc; Dowling, David; Ceccio, Steven

    2009-11-01

    An experiment conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate test model produced the first quantitative measurements of polymer molecular weight within a turbulent boundary layer. Testing was conducted at speeds to 20 m/s and downstream distance based Reynolds numbers to 220 million. These results showed that the rate of polymer degradation by scission of the polymer chains increases with increased speed, downstream distance and surface roughness. With the surface fully rough at 20 m/s there was no measureable level of drag reduction at the first measurement location (0.56 m downstream of injection). These results are scaled with the assumption that the rate of degradation is dependent on the polymer residence time in the flow and the local shear rate. A successful collapse of the data within the measurement uncertainty was achieved over a range of flow speed (6.6 to 20 m/s), surface roughness (smooth and fully rough) and downstream distance from injection (0.56 to 9.28 m).

  3. Effects of surface roughness, texture and polymer degradation on cathodic delamination of epoxy coated steel samples

    International Nuclear Information System (INIS)

    Khun, N.W.; Frankel, G.S.

    2013-01-01

    Highlights: ► Cathodic delamination of epoxy coated steel samples was studied using SKP. ► Delamination of the coating decreased with increased substrate surface roughness. ► Delamination of the coating was faster on the substrate with parallel surface scratches. ► Delamination of the coating exposed to weathering conditions increased with prolonged exposure. - Abstract: The Scanning Kelvin Probe (SKP) technique was used to investigate the effects of surface roughness, texture and polymer degradation on cathodic delamination of epoxy coated steel. The cathodic delamination rate of the epoxy coatings dramatically decreased with increased surface roughness of the underlying steel substrate. The surface texture of the steel substrates also had a significant effect in that samples with parallel abrasion lines exhibiting faster cathodic delamination in the direction of the lines compared to the direction perpendicular to the lines. The cathodic delamination kinetics of epoxy coatings previously exposed to weathering conditions increased with prolonged exposure due to pronounced polymer degradation. SEM observation confirmed that the cyclic exposure to UV radiation and water condensation caused severe deterioration in the polymer structures with surface cracking and erosion. The SKP results clearly showed that the cathodic delamination of the epoxy coatings was significantly influenced by the surface features of the underlying steel substrates and the degradation of the coatings.

  4. Oxidation Responsive Polymers with a Triggered Degradation via Arylboronate Self-Immolative Motifs on a Polyphosphazene Backbone.

    Science.gov (United States)

    Iturmendi, Aitziber; Monkowius, Uwe; Teasdale, Ian

    2017-02-21

    Oxidation responsive polymers with triggered degradation pathways have been prepared via attachment of self-immolative moieties onto a hydrolytically unstable polyphosphazene backbone. After controlled main-chain growth, postpolymerization functionalization allows the preparation of hydrolytically stable poly(organo)phosphazenes decorated with a phenylboronic ester caging group. In oxidative environments, triggered cleavage of the caging group is followed by self-immolation, exposing the unstable glycine-substituted polyphosphazene which subsequently undergoes to backbone degradation to low-molecular weight molecules. As well as giving mechanistic insights, detailed GPC and 1 H and 31 P NMR analysis reveal the polymers to be stable in aqueous solutions, but show a selective, fast degradation upon exposure to hydrogen peroxide containing solutions. Since the post-polymerization functionalization route allows simple access to polymer backbones with a broad range of molecular weights, the approach of using the inorganic backbone as a platform significantly expands the toolbox of polymers capable of stimuli-responsive degradation.

  5. Polymer Film-Based Screening and Isolation of Polylactic Acid (PLA)-Degrading Microorganisms.

    Science.gov (United States)

    Kim, Mi Yeon; Kim, Changman; Moon, Jungheun; Heo, Jinhee; Jung, Sokhee P; Kim, Jung Rae

    2017-02-28

    Polylactic acid (PLA) has been highlighted as an alternative renewable polymer for the replacement of petroleum-based plastic materials, and is considered to be biodegradable. On the other hand, the biodegradation of PLA by terminal degraders, such as microorganisms, requires a lengthy period in the natural environment, and its mechanism is not completely understood. PLA biodegradation studies have been conducted using mainly undefined mixed cultures, but only a few bacterial strains have been isolated and examined. For further characterization of PLA biodegradation, in this study, the PLA-degrading bacteria from digester sludge were isolated and identified using a polymer film-based screening method. The enrichment of sludge on PLA granules was conducted with the serial transference of a subculture into fresh media for 40 days, and the attached biofilm was inoculated on a PLA film on an agar plate. 3D optical microscopy showed that the isolates physically degraded the PLA film due to bacterial degradation. 16S rRNA gene sequencing identified the microbial colonies to be Pseudomonas sp. MYK1 and Bacillus sp. MYK2. The two isolates exhibited significantly higher specific gas production rates from PLA biodegradation compared with that of the initial sludge inoculum.

  6. The impact of shape memory test on degradation profile of a bioresorbable polymer.

    Science.gov (United States)

    Musioł, Marta; Jurczyk, Sebastian; Kwiecień, Michał; Smola-Dmochowska, Anna; Domański, Marian; Janeczek, Henryk; Włodarczyk, Jakub; Klim, Magdalena; Rydz, Joanna; Kawalec, Michał; Sobota, Michał

    2018-05-01

    The semicrystalline poly(L-lactide) (PLLA) belongs to the materials with shape memory effect (SME) and as a bioresorbable and biocompatible polymer it have found many applications in medical and pharmaceutical field. Assessment of the SME impact on the polymer degradation profile plays crucial role in applications such as drug release systems or in regenerative medicine. Herein, the results of in vitro degradation studies of PLLA samples after SME full test cycle are presented. The samples were loaded and deformed in two manners: progressive and non-progressive. The performed experiments illustrate also influence of the material mechanical damages, caused e.g. during incorrect implantation of PLLA product, on hydrolytic degradation profile. Apparently, degradation profiles are significantly different for the material which was not subjected to the deformation and the deformed ones. The materials after deformation of 50% (in SME cycle) was characterized by non-reversible morphology changes. The effect was observed in deformed samples during the SME test which were carried out ten times. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Occurrence, degradation, and effect of polymer-based materials in the environment.

    Science.gov (United States)

    Lambert, Scott; Sinclair, Chris; Boxall, Alistair

    2014-01-01

    There is now a plethora of polymer-based materials (PBMs) on the market, because of the increasing demand for cheaper consumable goods, and light-weight industrial materials. Each PBM constitutes a mixture of their representative polymer/sand their various chemical additives. The major polymer types are polyethylene, polypropylene,and polyvinyl chloride, with natural rubber and biodegradable polymers becoming increasingly more important. The most important additives are those that are biologically active, because to be effective such chemicals often have properties that make them resistant to photo-degradation and biodegradation. During their lifecycle,PBMs can be released into the environment form a variety of sources. The principal introduction routes being general littering, dumping of unwanted waste materials,migration from landfills and emission during refuse collection. Once in the environment,PBMs are primarily broken down by photo-degradation processes, but due to the complex chemical makeup of PBMs, receiving environments are potentially exposed to a mixture of macro-, meso-, and micro-size polymer fragments, leached additives, and subsequent degradation products. In environments where sunlight is absent (i.e., soils and the deep sea) degradation for most PBMs is minimal .The majority of literature to date that has addressed the environmental contamination or disposition of PBMs has focused on the marine environment. This is because the oceans are identified as the major sink for macro PBMs, where they are known to present a hazard to wildlife via entanglement and ingestion. The published literature has established the occurrence of microplastics in marine environment and beach sediments, but is inadequate as regards contamination of soils and freshwater sediments. The uptake of microplastics for a limited range of aquatic organisms has also been established, but there is a lack of information regarding soil organisms, and the long-term effects of

  8. Degradation of non-vulcanized natural rubber - renewable resource for fine chemicals used in polymer synthesis

    Directory of Open Access Journals (Sweden)

    Alexander Fainleib

    2013-01-01

    Full Text Available In the current scenario, there is growing interest in the products of degradation of rubber (natural and synthetic for specific applications in different industry sectors, whose benefits in replacing conventionally used products are mainly related to sustainability. Since the degradation products of rubber can be used in different areas, several research groups may have the interest aroused by these products, but are not familiar with the aspects related to the chemical behavior of rubber. This review aims to bring together the key information in the published literature on the degradation of natural rubber, emphasizing metatheses reactions, oxidative damage and splitting of the double bond, in order to serve as a reference source for researchers from different fields interested in obtaining such kind of products. The structures and properties as well as additional chemical transformations resulting in oligomers of isoprene, functionalised oligomers and polymers based on both are also described.

  9. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    Science.gov (United States)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  10. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion.

    Science.gov (United States)

    Lo, Meng-chen; Wang, Shuwu; Singh, Sagar; Damodaran, Vinod B; Kaplan, Hilton M; Kohn, Joachim; Shreiber, David I; Zahn, Jeffrey D

    2015-04-01

    We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold. The size and stiffness of implanted probes have been identified as critical factors that lead to this long term gliosis. Smaller, more flexible probes that match the mechanical properties of brain tissue could allow better long term integration by limiting the mechanical disruption of the surrounding tissue during and after probe insertion, while being flexible enough to deform with the tissue during brain movement. However, these small flexible probes inherently lack the mechanical strength to penetrate the brain on their own. In this work, we have developed a micromolding method for coating a non-functional miniaturized SU-8 probe with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)). Coated, non-functionalized probes of varying dimensions were reproducibly fabricated with high yields. The polymer erosion/degradation profiles of the probes were characterized in vitro. The probes were also mechanically characterized in ex vivo brain tissue models by measuring buckling and insertion forces during probe insertion. The results demonstrate the ability to produce polymer coated probes of consistent quality for future in vivo use, for example to study the effects of different design parameters that may affect tissue response during long term chronic intra-cortical microelectrode neural recordings.

  11. Branched multifunctional polyether polyketals: variation of ketal group structure enables unprecedented control over polymer degradation in solution and within cells.

    Science.gov (United States)

    Shenoi, Rajesh A; Narayanannair, Jayaprakash K; Hamilton, Jasmine L; Lai, Benjamin F L; Horte, Sonja; Kainthan, Rajesh K; Varghese, Jos P; Rajeev, Kallanthottathil G; Manoharan, Muthiah; Kizhakkedathu, Jayachandran N

    2012-09-12

    Multifunctional biocompatible and biodegradable nanomaterials incorporating specific degradable linkages that respond to various stimuli and with defined degradation profiles are critical to the advancement of targeted nanomedicine. Herein we report, for the first time, a new class of multifunctional dendritic polyether polyketals containing different ketal linkages in their backbone that exhibit unprecedented control over degradation in solution and within the cells. High-molecular-weight and highly compact poly(ketal hydroxyethers) (PKHEs) were synthesized from newly designed α-epoxy-ω-hydroxyl-functionalized AB(2)-type ketal monomers carrying structurally different ketal groups (both cyclic and acyclic) with good control over polymer properties by anionic ring-opening multibranching polymerization. Polymer functionalization with multiple azide and amine groups was achieved without degradation of the ketal group. The polymer degradation was controlled primarily by the differences in the structure and torsional strain of the substituted ketal groups in the main chain, while for polymers with linear (acyclic) ketal groups, the hydrophobicity of the polymer may play an additional role. This was supported by the log P values of the monomers and the hydrophobicity of the polymers determined by fluorescence spectroscopy using pyrene as the probe. A range of hydrolysis half-lives of the polymers at mild acidic pH values was achieved, from a few minutes to a few hundred days, directly correlating with the differences in ketal group structures. Confocal microscopy analyses demonstrated similar degradation profiles for PKHEs within live cells, as seen in solution and the delivery of fluorescent marker to the cytosol. The cell viability measured by MTS assay and blood compatibility determined by complement activation, platelet activation, and coagulation assays demonstrate that PKHEs and their degradation products are highly biocompatible. Taken together, these data

  12. A paradigm for peptide vaccine delivery using viral epitopes encapsulated in degradable polymer hydrogel capsules.

    Science.gov (United States)

    Chong, Siow-Feng; Sexton, Amy; De Rose, Robert; Kent, Stephen J; Zelikin, Alexander N; Caruso, Frank

    2009-10-01

    We report on the use of degradable polymer capsules as carriers for the delivery of oligopeptide antigens to professional antigen presenting cells (APCs). To achieve encapsulation, oligopeptide sequences were covalently linked to a negatively charged carrier polymer via biodegradable linkages and the resulting conjugate was then adsorbed onto amine-functionalized silica particles. These peptide-coated particles were then used as templates for the layer-by-layer (LbL) deposition of thiolated poly(methacrylic acid) (PMA(SH)) and poly(vinylpyrrolidone) (PVPON) multilayers. Removal of the silica core and disruption of the hydrogen bonding between PMA(SH) and PVPON by altering the solution pH yielded disulfide-stabilized PMA capsules that retain the encapsulated cargo in an oxidative environment. In the presence of a natural reducing agent, glutathione, cleavage of the disulfide bonds causes release of the peptide from the capsules. The developed strategy provides control over peptide loading into polymer capsules and yields colloidally stable micron- and submicron-sized carriers with uniform size and peptide loading. The conjugation and encapsulation procedures were proven to be non-degrading to the peptide vaccines. The peptide-loaded capsules were successfully used to deliver their cargo to APCs and activate CD8 T lymphocytes in a non-human primate model of SIV infection ex vivo. The reported approach represents a novel paradigm in the delivery of peptide vaccines and other therapeutic agents.

  13. Release of engineered nanomaterials from polymer nanocomposites: the effect of matrix degradation.

    Science.gov (United States)

    Duncan, Timothy V

    2015-01-14

    Polymer nanocomposites-polymer-based materials that incorporate filler elements possessing at least one dimension in the nanometer range-are increasingly being developed for commercial applications ranging from building infrastructure to food packaging to biomedical devices and implants. Despite a wide range of intended applications, it is also important to understand the potential for exposure to these nanofillers, which could be released during routine use or abuse of these materials so that it can be determined whether they pose a risk to human health or the environment. This article is the second of a pair that review what is known about the release of engineered nanomaterials (ENMs) from polymer nanocomposites. Two roughly separate ENM release paradigms are considered in this series: the release of ENMs via passive diffusion, desorption, and dissolution into external liquid media and the release of ENMs assisted by matrix degradation. The present article is focused primarily on the second paradigm and includes a thorough, critical review of the associated body of peer-reviewed literature on ENM release by matrix degradation mechanisms, including photodegradation, thermal decomposition, mechanical wear, and hydrolysis. These release mechanisms may be especially relevant to nanocomposites that are likely to be subjected to weathering, including construction and infrastructural materials, sporting equipment, and materials that might potentially end up in landfills. This review pays particular attention to studies that shed light on specific release mechanisms and synergistic mechanistic relationships. The review concludes with a short section on knowledge gaps and future research needs.

  14. Modern mass spectrometry in the characterization and degradation of biodegradable polymers

    International Nuclear Information System (INIS)

    Rizzarelli, Paola; Carroccio, Sabrina

    2014-01-01

    Graphical abstract: -- Highlights: •Recent trends in the structural characterization of biodegradable polymers by MALDI and ESI MS are discussed. •MALDI MS as a noteworthy tool to follow the synthetic polymerization route of biodegradable materials is evidenced. •Elucidation of degradation mechanisms by modern MS techniques is examined. •ESI MS and HPLC–ESI MS are highlighted as highly suitable methods for structural and quantitative analysis of water-soluble biodegradation products. •Novel MS methods developed ad hoc and new MALDI matrices for biodegradable polymers are reviewed. -- Abstract: In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization

  15. Modern mass spectrometry in the characterization and degradation of biodegradable polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rizzarelli, Paola, E-mail: paola.rizzarelli@cnr.it; Carroccio, Sabrina

    2014-01-15

    Graphical abstract: -- Highlights: •Recent trends in the structural characterization of biodegradable polymers by MALDI and ESI MS are discussed. •MALDI MS as a noteworthy tool to follow the synthetic polymerization route of biodegradable materials is evidenced. •Elucidation of degradation mechanisms by modern MS techniques is examined. •ESI MS and HPLC–ESI MS are highlighted as highly suitable methods for structural and quantitative analysis of water-soluble biodegradation products. •Novel MS methods developed ad hoc and new MALDI matrices for biodegradable polymers are reviewed. -- Abstract: In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization

  16. Substrate Shift Reveals Roles for Members of Bacterial Consortia in Degradation of Plant Cell Wall Polymers.

    Science.gov (United States)

    Carlos, Camila; Fan, Huan; Currie, Cameron R

    2018-01-01

    Deconstructing the intricate matrix of cellulose, hemicellulose, and lignin poses a major challenge in biofuel production. In diverse environments in nature, some microbial communities, are able to overcome plant biomass recalcitrance. Identifying key degraders of each component of plant cell wall can help improve biological degradation of plant feedstock. Here, we sequenced the metagenome of lignocellulose-adapted microbial consortia sub-cultured on xylan and alkali lignin media. We observed a drastic shift on community composition after sub-culturing, independently of the original consortia. Proteobacteria relative abundance increased after growth in alkali lignin medium, while Bacteroidetes abundance increased after growth in xylan medium. At the genus level, Pseudomonas was more abundant in the communities growing on alkali lignin, Sphingobacterium in the communities growing on xylan and Cellulomonas abundance was the highest in the original microbial consortia. We also observed functional convergence of microbial communities after incubation in alkali lignin, due to an enrichment of genes involved in benzoate degradation and catechol ortho-cleavage pathways. Our results represent an important step toward the elucidation of key members of microbial communities on lignocellulose degradation and may aide the design of novel lignocellulolytic microbial consortia that are able to efficiently degrade plant cell wall polymers.

  17. Controlling Radiation Degradation of Natural Polymers for Industrial and Agricultural application

    International Nuclear Information System (INIS)

    Hegazy, E.A.; AbdEl-Rehim, H

    2008-01-01

    Radiation induced degradation technology is a new and promising application of ionizing radiation to develop viscose, pulp, paper, food preservation, pharmaceutical production, and natural bioactive agents industries. Controlling the degree of degradation, uniform molecular weight distribution, saving achieved in the chemicals (used in conventional methods) on a cost basis, and environmentally friendly process are the beneficial effects of using radiation technology in these industries. However, for some development countries such technology is not economic. Therefore, a great effort should be done to reduce the cost required for such technologies. One of the principle factors for reducing the cost is achieving the degradation at low irradiation doses. The addition of some additives such as potassium per-sulfate (KPS), ammonium per-sulfate (APS), or H 2O2 to natural polymers such as chitosan and Na-alginate during irradiation process accelerates their degradation. The highest degradation rate of polysaccharides obtained when APS was used. The end product of irradiated chitosan, and Na-alginate may be used as food additive or benefited in agricultural purposes. The prepared crosslinked copolymers possessed high and fast swelling properties in simulated urine media and the swelling ratios of CMC-Na /PAAm gels in urine are acceptable for diaper application. (author)

  18. Substrate Shift Reveals Roles for Members of Bacterial Consortia in Degradation of Plant Cell Wall Polymers

    Directory of Open Access Journals (Sweden)

    Camila Carlos

    2018-03-01

    Full Text Available Deconstructing the intricate matrix of cellulose, hemicellulose, and lignin poses a major challenge in biofuel production. In diverse environments in nature, some microbial communities, are able to overcome plant biomass recalcitrance. Identifying key degraders of each component of plant cell wall can help improve biological degradation of plant feedstock. Here, we sequenced the metagenome of lignocellulose-adapted microbial consortia sub-cultured on xylan and alkali lignin media. We observed a drastic shift on community composition after sub-culturing, independently of the original consortia. Proteobacteria relative abundance increased after growth in alkali lignin medium, while Bacteroidetes abundance increased after growth in xylan medium. At the genus level, Pseudomonas was more abundant in the communities growing on alkali lignin, Sphingobacterium in the communities growing on xylan and Cellulomonas abundance was the highest in the original microbial consortia. We also observed functional convergence of microbial communities after incubation in alkali lignin, due to an enrichment of genes involved in benzoate degradation and catechol ortho-cleavage pathways. Our results represent an important step toward the elucidation of key members of microbial communities on lignocellulose degradation and may aide the design of novel lignocellulolytic microbial consortia that are able to efficiently degrade plant cell wall polymers.

  19. Degradation Patterns in Water and Oxygen of an Inverted Polymer Solar Cell

    DEFF Research Database (Denmark)

    Norrman, Kion; Vesterager Madsen, Morten; Gevorgyan, Suren

    2010-01-01

    The spatial distribution of reaction products in multilayer polymer solar cells induced by water and oxygen atmospheres was mapped and used to elucidate the degradation patterns and failure mechanisms in an inverted polymer solar cell. The active material comprised a bulk heterojunction formed...... by poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) sandwiched between a layer of zinc oxide and a layer of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) that acted as, respectively, electron and hole transporting layers between the active material...... and the two electrodes indium−tin−oxide (ITO) and printed silver. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) in conjunction with isotopic labeling using H218O and 18O2 enabled detailed information on where and to what extent uptake took place...

  20. Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser.

    Science.gov (United States)

    Yoshioka, Hiroaki; Yang, Yu; Watanabe, Hirofumi; Oki, Yuji

    2012-02-13

    A novel solid-state dye laser with degradation recovery was proposed and demonstrated. Polydimethylsiloxane was used as a nanoporous solid matrix to enable the internal circulation of dye molecules in the solid state. An internal circulation model for the dye molecules was also proposed and verified numerically by assuming molecular mobility and using a proposed diffusion equation. The durability of the laser was increased 20.5-fold compared with that of a conventional polymethylmethacrylate laser. This novel laser solves the low-durability problem of dye-doped polymer lasers.

  1. A Comparison of Degradable Synthetic Polymer Fibers for Anterior Cruciate Ligament Reconstruction

    OpenAIRE

    Tovar, Nick; Bourke, Sharon; Jaffe, Michael; Murthy, N. Sanjeeva; Kohn, Joachim; Gatt, Charles; Dunn, Michael G.

    2010-01-01

    We compared mechanical properties, degradation rates, and cellular compatibilities of two synthetic polymer fibers potentially useful as ACL reconstruction scaffolds: poly(desaminotyrosyl-tyrosine dodecyl dodecanedioate)(12,10), p(DTD DD) and poly(L-lactic acid), PLLA. The yield stress of ethylene oxide (ETO) sterilized wet fibers was 150 ± 22 MPa and 87 ± 12 MPa for p(DTD DD) and PLLA, respectively, with moduli of 1.7 ± 0.1 MPa and 4.4 ± 0.43 MPa. Strength and molecular weight retention were...

  2. PCL-PLLA Semi-IPN Shape Memory Polymers (SMPs): Degradation and Mechanical Properties.

    Science.gov (United States)

    Woodard, Lindsay N; Page, Vanessa M; Kmetz, Kevin T; Grunlan, Melissa A

    2016-12-01

    Thermoresponsive shape memory polymers (SMPs) based on poly(ε-caprolactone) (PCL) whose shape may be actuated by a transition temperature (T trans ) have shown utility for a variety of biomedical applications. Important to their utility is the ability to modulate mechanical and degradation properties. Thus, in this work, SMPs are formed as semi-interpenetrating networks (semi-IPNs) comprised of a cross-linked PCL diacrylate (PCL-DA) network and thermoplastic poly(l-lactic acid) (PLLA). The semi-IPN uniquely allows for requisite crystallization of both PCL and PLLA. The influence of PLLA (PCL:PLLA wt% ratio) and PCL-DA molecular weight (n) on film properties are investigated. PCL-PLLA semi-IPNs are able to achieve enhanced mechanical properties and accelerated rates of degradation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 17O NMR investigation of oxidative degradation in polymers under γ-irradiation

    International Nuclear Information System (INIS)

    ALAM, TODD M.; CELINA, MATHIAS C.; ASSINK, ROGER A.; CLOUGH, ROGER LEE; GILLEN, KENNETH T.

    2000-01-01

    The γ-irradiated-oxidation of pentacontane (C 50 H 102 ) and the polymer polyisoprene was investigated as a function of oxidation level using 17 O nuclear magnetic resonance (NMR) spectroscopy. It is demonstrated that by using 17 O labeled O 2 gas during the γ-irradiation process, details about the oxidative degradation mechanisms can be directly obtained from the analysis of the 17 O NMR spectra. Production of carboxylic acids is the primary oxygen-containing functionality during the oxidation of pentacontane, while ethers and alcohols are the dominant oxidation product observed for polyisoprene. The formation of ester species during the oxidation process is very minor for both materials, with water also being produced in significant amounts during the radiolytic oxidation of polyisoprene. The ability to focus on the oxidative component of the degradation process using 17 O NMR spectroscopy demonstrates the selectivity of this technique over more conventional approaches

  4. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-12-08

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.

  5. Modern mass spectrometry in the characterization and degradation of biodegradable polymers.

    Science.gov (United States)

    Rizzarelli, Paola; Carroccio, Sabrina

    2014-01-15

    In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization time of flight) and ESI MS (electrospray mass spectrometry) for the determination of the structural architecture of biodegradable macromolecules, including their topology, composition, chemical structure of the end groups have been reported. However, MS methodologies have been recently applied to evaluate the biodegradation of polymeric materials. ESI MS represents the most useful technique for characterizing water-soluble polymers possessing different end group structures, with the advantage of being easily interfaced with solution-based separation techniques such as high-performance liquid

  6. Degradation behavior of polymer blend of isotactic polypropylenes with and without unsaturated chain end group

    International Nuclear Information System (INIS)

    Nakatani, Hisayuki; Kurniawan, Dodik; Taniike, Toshiaki; Terano, Minoru

    2008-01-01

    In this work, the relationship between the unsaturated chain end group content and the thermal oxidative degradation rate was systematically studied with binary polymer blends of isotactic polypropylene (iPP) with and without the unsaturated chain end group. The iPPs with and without the unsaturated chain end group were synthesized by a metallocene catalyst in the absence of hydrogen and by a Ziegler catalyst in the presence of one, respectively. The thermal oxidative degradation rate of the binary iPP blends was estimated from the molecular weight and the apparent activation energy (ΔE), which were obtained through size exclusion chromatography (SEC) and thermogravimetric analysis (TGA) measurements, respectively. These values exhibited a negative correlation against the mole content of the unsaturated chain end group. The thermal oxidative degradation rate apparently depends on the content of the unsaturated chain end group. This tendency suggests that the unsaturated chain end acts as a radical initiator of the iPP degradation reaction.

  7. 乳酸扩链聚合物的降解性能%DEGRADABLE BEHAVIORS OF LACTIDE CHAIN-EXTENED POLYMERS

    Institute of Scientific and Technical Information of China (English)

    封瑞江

    2001-01-01

    In this paper,the effects of change of degradable rate and relative molecular mass on the degradable behaviors of four lactide chain-extened polymers are contrasted with those of lactide polymers.The results indicated that the four lactide chain-extened polymers could degrade in this experiment and their degradable rate were lower than that of P-LA.LA-SDI has the highest degradable rates among the four lactide chain-extened polymers,but there was no significant difference among aromatic and aliphatic lactide chain-extened polymers.The results showed that the degradable rates were dependent on experiment methods and condition and also indicated that the relative molecular mass became smaller and smaller with the progress of degradation time.

  8. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Zhijian Tan

    2016-05-01

    Full Text Available The use of plastic film in agriculture has the serious drawback of producing vast quantities of waste. In this work, films were prepared from natural fibers and biodegradable polymers as potential substitutes for the conventional non-biodegradable plastic film used as mulching material in agricultural production. The physical properties (e.g., mechanical properties, heat preservation, water permeability, and photopermeability and degradation characteristics (evaluated by micro-organic culture testing and soil burial testing of the films were studied in both laboratory and field tests. The experimental results indicated that these fiber/polymer films exhibited favorable physical properties that were sufficient for use in mulching film applications. Moreover, the degradation degree of the three tested films decreased in the following order: fiber/starch (ST film > fiber/poly(vinyl alcohol (PVA film > fiber/polyacrylate (PA film. The fiber/starch and fiber/PVA films were made from completely biodegradable materials and demonstrated the potential to substitute non-biodegradable films.

  9. A Comparison of Degradable Synthetic Polymer Fibers for Anterior Cruciate Ligament Reconstruction

    Science.gov (United States)

    Tovar, Nick; Bourke, Sharon; Jaffe, Michael; Murthy, N. Sanjeeva; Kohn, Joachim; Gatt, Charles; Dunn, Michael G.

    2009-01-01

    We compared mechanical properties, degradation rates, and cellular compatibilities of two synthetic polymer fibers potentially useful as ACL reconstruction scaffolds: poly(desaminotyrosyl-tyrosine dodecyl dodecanedioate)(12,10), p(DTD DD) and poly(L-lactic acid), PLLA. The yield stress of ethylene oxide (ETO) sterilized wet fibers was 150 ± 22 MPa and 87 ± 12 MPa for p(DTD DD) and PLLA, respectively, with moduli of 1.7 ± 0.1 MPa and 4.4 ± 0.43 MPa. Strength and molecular weight retention were determined after incubation under physiological conditions at varying times. After 64 weeks strength decreased to 20 and 37% of the initial sterile fiber values and MW decreased to 41% and 36% of the initial values for p(DTD DD) and PLLA, respectively. ETO sterilization had no significant effect on mechanical properties. Differences in mechanical behavior may be due to the semicrystalline nature of PLLA and the small degree of crystallinity induced by mesogenic ordering in p(DTD DD) suggested by DSC analysis. Fibroblast growth was similar on 50-fiber scaffolds of both polymers through 16 days in vitro. These data suggest that p(DTD DD) fibers, with higher strength, lower stiffness, favorable degradation rate and cellular compatibility, may be a superior alternative to PLLA fibers for development of ACL reconstruction scaffolds. PMID:19623532

  10. Notes on the origin of inertinite macerals in coal: Evidence for fungal and arthropod transformations of degraded macerals

    Science.gov (United States)

    Hower, J.C.; O'Keefe, J.M.K.; Eble, C.F.; Raymond, A.; Valentim, B.; Volk, T.J.; Richardson, A.R.; Satterwhite, A.B.; Hatch, R.S.; Stucker, J.D.; Watt, M.A.

    2011-01-01

    The role of fungus in the formation of coal macerals, both as a primary contributor in the form of a fungus fossil/maceral funginite, and in their role in degrading wood, thus producing degraded maceral forms, has been established. Fungus, in the course of breaking down the lignin and cellulose in wood, make the wood more digestible for grazers, such as arthropods. In turn, the remnants of the digested wood and anything else eaten but not completely digested are excreted and can be preserved intact; eaten by other fauna with a repeat of the cycle; or colonized by bacteria and/or coprophilous fungi with or without subsequent preservation. Ultimately, the coprolites can be preserved as a form of macrinite. ?? 2011 Elsevier B.V.

  11. Coal mining activities change plant community structure due to air pollution and soil degradation.

    Science.gov (United States)

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  12. Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation

    Science.gov (United States)

    Cardoso, Elisabeth C. L.; Scagliusi, Sandra R.; Lima, Luis F. C. P.; Bueno, Nelson R.; Brant, Antonio J. C.; Parra, Duclerc F.; Lugão, Ademar B.

    2014-01-01

    Polymers are used for numerous applications in different industrial segments, generating enormous quantities of discarding in the environment. Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. Polypropylene (PP) undergoes crosslinking and extensive main chain scissions when submitted to ionizing irradiation; as one of the most widely used linear hydrocarbon polymers, PP, made from cheap petrochemical feed stocks, shows easy processing leading it to a comprehensive list of finished products. Consequently, there is accumulation in the environment, at 25 million tons per year rate, since polymeric products are not easily consumed by microorganisms. PP polymers are very bio-resistant due to involvement of only carbon atoms in main chain with no hydrolysable functional group. Several possibilities have been considered to minimize the environmental impact caused by non-degradable plastics, subjecting them to: physical, chemical and biological degradation or combination of all these due to the presence of moisture, air, temperature, light, high energy radiation or microorganisms. There are three main classes of biodegradable polymers: synthetic polymers, natural polymers and blends of polymers in which one or more components are readily consumed by microorganisms. This work aims to biodegradability investigation of a PP/HMSPP (high melt strength polypropylene) blended with sugarcane bagasse, PHB (poly-hydroxy-butyrate) and PLA (poly-lactic acid), both synthetic polymers, at a 10% level, subjected to gamma radiation at 50, 100, 150 and 200 kGy doses. Characterization will comprise IR, DSC, TGA, OIT and Laboratory Soil Burial Test (LSBT).

  13. An approach for degradation of grape seed and skin proanthocyanidin polymers into oligomers by sulphurous acid.

    Science.gov (United States)

    Luo, Lanxin; Cui, Yan; Cheng, Jinhui; Fang, Bairui; Wei, Zongmin; Sun, Baoshan

    2018-08-01

    To develop an efficient method for degradation of grape seed and skin proanthocyanidins polymers into oligomers, an optimized sulphurous acid degradation conditions for grape seed with the temperature of 60 °C, reaction time of 60 min and sample-sulphurous acid ratio of 1:0.2, and for grape skin with the temperature of 40 °C, reaction time of 60 min and sample-sulphurous acid ratio of 1:0.2, were established. Afterwards, HSCCC and prep-HPLC were used to fractionate and isolate individual proanthocyanidin oligomers from the degradation products. Total of ten dimeric or trimeric procyanidins were obtained, and most of them presented high yield (from 0.7 mg to 13.6 mg per run in grape seed and from 0.5 mg to 4.1 mg per run in grape skin) and high purity (over 90%). The proposed method provides a new way for large preparation of oligomeric proanthocyanidins from naturally abundant and wasted polymeric ones. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Mistry, Amit S; Cheng, Stacy H; Yeh, Tiffany; Christenson, Elizabeth; Jansen, John A; Mikos, Antonios G

    2009-04-01

    In this work, the fabrication and in vitro degradation of porous fumarate-based/alumoxane nanocomposites were evaluated for their potential as bone tissue engineering scaffolds. The biodegradable polymer poly (propylene fumarate)/propylene fumarate-diacrylate (PPF/PF-DA), a macrocomposite composed of PPF/PF-DA and boehmite microparticles, and a nanocomposite composed of PPF/PF-DA and surface-modified alumoxane nanoparticles were used to fabricate porous scaffolds by photo-crosslinking and salt-leaching. Scaffolds then underwent 12 weeks of in vitro degradation in phosphate buffered saline at 37 degrees C. The presence of boehmite microparticles and alumoxane nanoparticles in the polymer inhibited scaffold shrinkage during crosslinking. Furthermore, the incorporation of alumoxane nanoparticles into the polymer limited salt-leaching, perhaps due to tighter crosslinking within the nanocomposite. Analysis of crosslinking revealed that the acrylate and overall double bond conversions in the nanocomposite were higher than in the PPF/PF-DA polymer alone, though these differences were not significant. During 12 weeks of in vitro degradation, the nanocomposite lost 5.3% +/- 2.4% of its mass but maintained its compressive mechanical properties and porous architecture. The addition of alumoxane nanoparticles into the fumarate-based polymer did not significantly affect the degradation of the nanocomposite compared with the other materials in terms of mass loss, compressive properties, and porous structure. These results demonstrate the feasibility of fabricating degradable nanocomposite scaffolds for bone tissue engineering by photo-crosslinking and salt-leaching mixtures of fumarate-based polymers, alumoxane nanoparticles, and salt microparticles. Copyright 2008 Wiley Periodicals, Inc.

  15. Contribution to the study of particle resuspension kinetics during thermal degradation of polymers.

    Science.gov (United States)

    Ouf, F-X; Delcour, S; Azema, N; Coppalle, A; Ferry, L; Gensdarmes, F; Lopez-Cuesta, J-M; Niang, A; Pontreau, S; Yon, J

    2013-04-15

    Experimental results are reported on the resuspension of particles deposited on polymer samples representative of glove boxes used in the nuclear industry, under thermal degradation. A parametric study was carried out on the effects of heat flux, air flow rate, fuel type and particle size distribution. Small-scale experiments were conducted on 10 cm × 10 cm PolyMethyl MethAcrylate (PMMA) and PolyCarbonate (PC) samples covered with aluminium oxide particles with physical geometric diameters of 0.7 and 3.6 μm. It was observed for both polymer (fuel) samples that heat flux has no effect on the airborne release fraction (ARF), whereas particle size is a significant parameter. In the case of the PMMA sample, ARF values for 0.7 and 3.6 μm diameter particles range from 12.2% (± 6.2%) to 2.1% (± 0.6%), respectively, whereas the respective values for the PC sample range from 3.2% (± 0.8%) to 6.9% (± 3.9%). As the particle diameter increases, a significant decrease in particle release is observed for the PMMA sample, whereas an increase is observed for the PC sample. Furthermore, a peak airborne release rate is observed during the first instants of PMMA exposure to thermal stress. An empirical relationship has been proposed between the duration of this peak release and the external heat flux. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Mechanism of radiation-induced degradation in mechanical properties of polymer matrix composites

    International Nuclear Information System (INIS)

    Egusa, Shigenori

    1988-01-01

    Four kinds of polymer matrix composites (filler, E-glass or carbon fibre cloth; matrix, epoxy or polyimide resin) and pure epoxy and polyimide resins were irradiated with 60 Co γ-rays or 2 MeV electrons at room temperature. Mechanical tests were then carried out at 77K and at room temperature. Following irradiation, the Young's (tensile) modulus of these composites and pure resins remains practically unchanged even at 170 MGy for both test temperatures. The ultimate strength, however, decreases appreciably with increasing dose. The dose dependence of the composite strength depends not only on the combination of fibre and matrix in the composite but also on the test temperature. A relationship is found between the composite ultimate strain and the matrix ultimate strain, thus indicating that the dose dependence of the composite strength is virtually determined by a change in the matrix ultimate strain due to irradiation. Based on this finding, we propose a mechanism of radiation-induced degradation of a polymer matrix composite in order to explain the dose dependence of the composite strength measured at 77 K and at room temperature. (author)

  17. Sterol metabolism regulates neuroserpin polymer degradation in the absence of the unfolded protein response in the dementia FENIB.

    Science.gov (United States)

    Roussel, Benoit D; Newton, Timothy M; Malzer, Elke; Simecek, Nikol; Haq, Imran; Thomas, Sally E; Burr, Marian L; Lehner, Paul J; Crowther, Damian C; Marciniak, Stefan J; Lomas, David A

    2013-11-15

    Mutants of neuroserpin are retained as polymers within the endoplasmic reticulum (ER) of neurones to cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. The cellular consequences are unusual in that the ordered polymers activate the ER overload response (EOR) in the absence of the canonical unfolded protein response. We use both cell lines and Drosophila models to show that the G392E mutant of neuroserpin that forms polymers is degraded by UBE2j1 E2 ligase and Hrd1 E3 ligase while truncated neuroserpin, a protein that lacks 132 amino acids, is degraded by UBE2g2 (E2) and gp78 (E3) ligases. The degradation of G392E neuroserpin results from SREBP-dependent activation of the cholesterol biosynthetic pathway in cells that express polymers of neuroserpin (G392E). Inhibition of HMGCoA reductase, the limiting enzyme of the cholesterol biosynthetic pathway, reduced the ubiquitination of G392E neuroserpin in our cell lines and increased the retention of neuroserpin polymers in both HeLa cells and primary neurones. Our data reveal a reciprocal relationship between cholesterol biosynthesis and the clearance of mutant neuroserpin. This represents the first description of a link between sterol metabolism and modulation of the proteotoxicity mediated by the EOR.

  18. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.

    NARCIS (Netherlands)

    Mistry, A.S.; Cheng, S.H.; Yeh, T.; Christenson, E.; Jansen, J.A.; Mikos, A.G.

    2009-01-01

    In this work, the fabrication and in vitro degradation of porous fumarate-based/alumoxane nanocomposites were evaluated for their potential as bone tissue engineering scaffolds. The biodegradable polymer poly (propylene fumarate)/propylene fumarate-diacrylate (PPF/PF-DA), a macrocomposite composed

  19. Spatial profiling of degradation processes in hindered-amine-stabilized polymers by electron spin resonance imaging of nitroxides

    Czech Academy of Sciences Publication Activity Database

    Marek, Antonín; Kaprálková, Ludmila; Pfleger, Jiří; Pospíšil, Jan; Pilař, Jan

    2005-01-01

    Roč. 99, S (2005), s. 195-198 ISSN 0009-2770. [Meeting on Chemistry and Life /3./. Brno, 20.9.2005-22.9.2005] Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer degradation * nitroxides * electron spin resonance imaging Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.445, year: 2005

  20. Ultrasound degradation of xanthan polymer in aqueous solution: Its scission mechanism and the effect of NaCl incorporation.

    Science.gov (United States)

    Saleh, H M; Annuar, M S M; Simarani, K

    2017-11-01

    Degradation of xanthan polymer in aqueous solution by ultrasonic irradiation was investigated. The effects of selected variables i.e. sonication intensity, irradiation time, concentration of xanthan gum and molar concentration of NaCl in solution were studied. Combined approach of full factorial design and conventional one-factor-at-a-time was applied to obtain optimum degradation at sonication power intensity of 11.5Wcm -2 , irradiation time 120min and 0.1gL -1 xanthan in a salt-free solution. Molecular weight reduction of xanthan gum under sonication was described by an exponential decay function with higher rate constant for polymer degradation in the salt free solution. The limiting molecular weight where fragments no longer undergo scission was determined from the function. The incorporation of NaCl in xanthan solution resulted in a lower limiting molecular weight. The ultrasound-mediated degradation of aqueous xanthan polymer chain agreed with a random scission model. Side chain of xanthan polymer is proposed to be the primary site of scission action. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Decades-Scale Degradation of Commercial, Side-Chain, Fluorotelomer-Based Polymers in Soils and Water

    Science.gov (United States)

    Fluorotelomer-based polymers (FTPs) are a primary product of the jluorotelomer industry, yet the role of commercial FTPs in degrading to form perjluorocarboxylic acids (P FCAs), including perjluorooctanoic acid, and P FCA precursors, remains ill-defined. Here we report on a 376-d...

  2. Well-defined degradable brush polymer-drug conjugates for sustained delivery of Paclitaxel.

    Science.gov (United States)

    Yu, Yun; Chen, Chih-Kuang; Law, Wing-Cheung; Mok, Jorge; Zou, Jiong; Prasad, Paras N; Cheng, Chong

    2013-03-04

    To achieve a conjugated drug delivery system with high drug loading but minimal long-term side effects, a degradable brush polymer-drug conjugate (BPDC) was synthesized through azide-alkyne click reaction of acetylene-functionalized polylactide (PLA) with azide-functionalized paclitaxel (PTXL) and poly(ethylene glycol) (PEG). Well-controlled structures of the resulting BPDC and its precursors were verified by (1)H NMR and gel permeation chromatography (GPC) characterizations. With nearly quantitative click efficiency, drug loading amount of the BPDC reached 23.2 wt %. Both dynamic light scattering (DLS) analysis and transmission electron microscopy (TEM) imaging indicated that the BPDC had a nanoscopic size around 10-30 nm. The significant hydrolytic degradability of the PLA backbone of the BPDC was confirmed by GPC analysis of its incubated solution. Drug release study showed that PTXL moieties can be released through the cleavage of the hydrolyzable conjugation linkage in pH 7.4 at 37 °C, with 50% release in about 22 h. As illustrated by cytotoxicity study, while the polymeric scaffold of the BPDC is nontoxic, the BPDC exhibited higher therapeutic efficacy toward MCF-7 cancer cells than free PTXL at 0.1 and 1 μg/mL. Using Nile red as encapsulated fluorescence probe, cell uptake study showed effective internalization of the BPDC into the cells.

  3. Enzyme-catalyzed degradation of biodegradable polymers derived from trimethylene carbonate and glycolide by lipases from Candida antarctica and Hog pancreas.

    Science.gov (United States)

    Liu, Feng; Yang, Jian; Fan, Zhongyong; Li, Suming; Kasperczyk, Janusz; Dobrzynski, Piotr

    2012-01-01

    Enzyme-catalyzed degradation of poly(trimethylene carbonate) homo-polymer (PTMC) and poly(trimethylene carbonate-co-glycolide) co-polymer (PTGA) was investigated in the presence of lipases from Candida antarctica and Hog pancreas. Degradation was monitored by gravimetry, size-exclusion chromatography (SEC), nuclear magnetic resonance (NMR), tensiometry and environmental scanning electron microscopy (ESEM). PTMC can be rapidly degraded by Candida antarctica lipase with 98% mass loss after 9 days, while degradation by Hog pancreas lipase leads to 27% mass loss. Introduction of 16% glycolide units in PTMC chains strongly affects the enzymatic degradation. Hog pancreas lipase becomes more effective to PTGA co-polymer with a mass loss of 58% after 9 days, while Candida antarctica lipase seems not able to degrade PTGA. Bimodal molecular weight distributions are observed during enzymatic degradation of both PTMC and PTGA, which can be assigned to the fact that the surface is largely degraded while the internal part remains intact. The composition of the PTGA co-polymer remains constant, and ESEM shows that the polymers are homogeneously eroded during enzymatic degradation. Contact angle measurements confirm the enzymatic degradation mechanism, i.e., enzyme adsorption on the polymer surface followed by enzyme-catalyzed chain cleavage.

  4. Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study

    International Nuclear Information System (INIS)

    Alabbasi, Alyaa; Mehjabeen, Afrin; Kannan, M. Bobby; Ye, Qingsong; Blawert, Carsten

    2014-01-01

    Graphical abstract: - Highlights: • Poly(L-lactide) was used to seal the porous PEO layer on Mg. • The dual-layer coating improved the in vitro degradation resistance of Mg. • Localized degradation was inhibited in the dual-layer coated Mg. - Abstract: An attempt was made to seal the porous silicate-based plasma electrolytic oxidation (PEO) layer on pure magnesium (Mg) with a biodegradable polymer, poly(L-lactide) (PLLA), to delay the localized degradation of magnesium-based implants in body fluid for better in-service mechanical integrity. Firstly, a silicate-based PEO coating on pure magnesium was performed using a pulsed constant current method. In order to seal the pores in the PEO layer, PLLA was coated using a two-step spin coating method. The performance of the PEO–PLLA Mg was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The EIS results showed that the polarization resistance (R p ) of the PEO–PLLA Mg was close to two orders of magnitude higher than that of the PEO Mg. While the corrosion current density (i corr ) of the pure Mg was reduced by 65% with the PEO coating, the PEO–PLLA coating reduced the i corr by almost 100%. As expected, the R p of the PEO–PLLA Mg decreased with increase in exposure time. However, it was noted that the R p of the PEO–PLLA Mg even after 100 h was six times higher than that of the PEO Mg after 48 h exposure, and did not show any visible localized attack

  5. Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study

    Energy Technology Data Exchange (ETDEWEB)

    Alabbasi, Alyaa; Mehjabeen, Afrin [Biomaterials and Engineering Materials (BEM) Laboratory, James Cook University, Townsville 4811, Queensland (Australia); Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au [Biomaterials and Engineering Materials (BEM) Laboratory, James Cook University, Townsville 4811, Queensland (Australia); Ye, Qingsong [Discipline of Dentistry, James Cook University, Townsville 4811, Queensland (Australia); Blawert, Carsten [Magnesium Innovation Centre, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502 (Germany)

    2014-05-01

    Graphical abstract: - Highlights: • Poly(L-lactide) was used to seal the porous PEO layer on Mg. • The dual-layer coating improved the in vitro degradation resistance of Mg. • Localized degradation was inhibited in the dual-layer coated Mg. - Abstract: An attempt was made to seal the porous silicate-based plasma electrolytic oxidation (PEO) layer on pure magnesium (Mg) with a biodegradable polymer, poly(L-lactide) (PLLA), to delay the localized degradation of magnesium-based implants in body fluid for better in-service mechanical integrity. Firstly, a silicate-based PEO coating on pure magnesium was performed using a pulsed constant current method. In order to seal the pores in the PEO layer, PLLA was coated using a two-step spin coating method. The performance of the PEO–PLLA Mg was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The EIS results showed that the polarization resistance (R{sub p}) of the PEO–PLLA Mg was close to two orders of magnitude higher than that of the PEO Mg. While the corrosion current density (i{sub corr}) of the pure Mg was reduced by 65% with the PEO coating, the PEO–PLLA coating reduced the i{sub corr} by almost 100%. As expected, the R{sub p} of the PEO–PLLA Mg decreased with increase in exposure time. However, it was noted that the R{sub p} of the PEO–PLLA Mg even after 100 h was six times higher than that of the PEO Mg after 48 h exposure, and did not show any visible localized attack.

  6. Remote Determination of Time-Dependent Stiffness of Surface-Degrading-Polymer Scaffolds Via Synchrotron-Based Imaging.

    Science.gov (United States)

    Bawolin, N K; Chen, X B

    2017-04-01

    Surface-degrading polymers have been widely used to fabricate scaffolds with the mechanical properties appropriate for tissue regeneration/repair. During their surface degradation, the material properties of polymers remain approximately unchanged, but the scaffold geometry and thus mechanical properties vary with time. This paper presents a novel method to determine the time-dependent mechanical properties, particularly stiffness, of scaffolds from the geometric changes captured by synchrotron-based imaging, with the help of finite element analysis (FEA). Three-dimensional (3D) tissue scaffolds were fabricated from surface-degrading polymers, and during their degradation, the tissue scaffolds were imaged via the synchrotron-based imaging to characterize their changing geometry. On this basis, the stiffness behavior of scaffolds was estimated from the FEA, and the results obtained were compared to the direct measurements of scaffold stiffness from the load-displacement material testing. The comparison illustrates that the Young's moduli estimated from the FEA and characterized geometry are in agreement with the ones of direct measurements. The developed method of estimating the mechanical behavior was also demonstrated effective with a nondegrading scaffold that displays the nonlinear stress-strain behavior. The in vivo monitoring of Young's modulus by morphology characterization also suggests the feasibility of characterizing experimentally the difference between in vivo and in vitro surface degradation of tissue engineering constructs.

  7. Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems.

    Science.gov (United States)

    Chen, Yuhang; Zhou, Shiwei; Li, Qing

    2011-03-01

    The degradation of polymeric biomaterials, which are widely exploited in tissue engineering and drug delivery systems, has drawn significant attention in recent years. This paper aims to develop a mathematical model that combines stochastic hydrolysis and mass transport to simulate the polymeric degradation and erosion process. The hydrolysis reaction is modeled in a discrete fashion by a fundamental stochastic process and an additional autocatalytic effect induced by the local carboxylic acid concentration in terms of the continuous diffusion equation. Illustrative examples of microparticles and tissue scaffolds demonstrate the applicability of the model. It is found that diffusive transport plays a critical role in determining the degradation pathway, whilst autocatalysis makes the degradation size dependent. The modeling results show good agreement with experimental data in the literature, in which the hydrolysis rate, polymer architecture and matrix size actually work together to determine the characteristics of the degradation and erosion processes of bulk-erosive polymer devices. The proposed degradation model exhibits great potential for the design optimization of drug carriers and tissue scaffolds. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation.

    Science.gov (United States)

    Hooper, K A; Macon, N D; Kohn, J

    1998-09-05

    Previous studies demonstrated that poly(DTE carbonate) and poly (DTE adipate), two tyrosine-derived polymers, have suitable properties for use in biomedical applications. This study reports the evaluation of the in vivo tissue response to these polymers in comparison to poly(L-lactic acid) (PLLA). Typically, the biocompatibility of a material is determined through histological evaluations as a function of implantation time in a suitable animal model. However, due to changes that can occur in the tissue response at different stages of the degradation process, a fixed set of time points is not ideal for comparative evaluations of materials having different rates of degradation. Therefore the tissue response elicited by poly(DTE carbonate), poly(DTE adipate), and PLLA was evaluated as a function of molecular weight. This allowed the tissue response to be compared at corresponding stages of degradation. Poly(DTE adipate) consistently elicited the mildest tissue response, as judged by the width and lack of cellularity of the fibrous capsule formed around the implant. The tissue response to poly(DTE carbonate) was mild throughout the 570 day study. However, the response to PLLA fluctuated as a function of the degree of degradation, exhibiting an increase in the intensity of inflammation as the implant began to lose mass. At the completion of the study, tissue ingrowth into the degrading and disintegrating poly(DTE adipate) implant was evident while no comparative ingrowth of tissue was seen for PLLA. The similarity of the in vivo and in vitro degradation rates of each polymer confirmed the absence of enzymatic involvement in the degradation process. A comparison of molecular weight retention, water uptake, and mass loss in vivo with two commonly used in vitro systems [phosphate-buffered saline (PBS) and simulated body fluid (SBF)] demonstrated that for the two tyrosine-derived polymers the in vivo results were equally well simulated in vitro with PBS and SBF. However

  9. Long-term degradation of organic polymers under conditions found in deep repositories for low and intermediate-level wastes

    International Nuclear Information System (INIS)

    Warthmann, R.; Mosberger, L.; Baier, U.

    2013-06-01

    On behalf of Nagra, the Environmental Biotechnology Section of the Zürich University of Applied Sciences in Wädenswil investigated the potential for microbiological degradation of organic polymers under the conditions found in a deep geological repository for low- and intermediate-level waste (L/ILW). The existing scientific literature on the topic was analysed, some thermodynamic calculations carried out and input was elicited from internationally recognised experts in the field. The study was restricted to a few substances which, in terms of mass, are most significant in the Swiss L/ILW inventory; these are polystyrene (PS), polyvinyl chloride (PVC), other plastics and bitumen. There were no clear indications in the literature that the polymer structure of synthetic polymers is biodegraded under anoxic conditions. However, functional groups of ion exchangers and plasticizers in plastics are considered to be readily available and biodegradable. The greatest obstacle to biological degradation of synthetic polymers is depolymerisation to produce labile monomers. As energy is generally required for such breakdown, the chances of this process taking place outside the cells are very low. In so far as they are present, monomers are, in principle, anaerobically biodegradable. Thermodynamic considerations indicate that degradation of synthetic polymers under repository conditions is theoretically possible. However, the degradation of polystyrene is very close to thermodynamic equilibrium and the usable energy for microorganisms would barely be sufficient. Under high H2 partial pressures, it is predicted that there will be a thermodynamic inhibition of anaerobic degradation, as certain interim steps in degradation are endergonic. The starting conditions for microbial growth in a deep repository are unfavourable in terms of availability of water and prevailing pH values. Practically no known microorganisms can tolerate the combination of these conditions; most known

  10. Mass spectrometry for the elucidation of the subtle molecular structure of biodegradable polymers and their degradation products.

    Science.gov (United States)

    Kowalczuk, Marek; Adamus, Grażyna

    2016-01-01

    Contemporary reports by Polish authors on the application of mass spectrometric methods for the elucidation of the subtle molecular structure of biodegradable polymers and their degradation products will be presented. Special emphasis will be given to natural aliphatic (co)polyesters (PHA) and their synthetic analogues, formed through anionic ring-opening polymerization (ROP) of β-substituted β-lactones. Moreover, the application of MS techniques for the evaluation of the structure of biodegradable polymers obtained in ionic and coordination polymerization of cyclic ethers and esters as well as products of step-growth polymerization, in which bifunctional or multifunctional monomers react to form oligomers and eventually long chain polymers, will be discussed. Furthermore, the application of modern MS techniques for the assessment of polymer degradation products, frequently bearing characteristic end groups that can be revealed and differentiated by MS, will be discussed within the context of specific degradation pathways. Finally, recent Polish accomplishments in the area of mass spectrometry will be outlined. © 2015 Wiley Periodicals, Inc.

  11. Degradation of polycyclic aromatic hydrocarbons (PAHs) in an aged coal tar contaminated soil under in-vessel composting conditions

    International Nuclear Information System (INIS)

    Antizar-Ladislao, Blanca; Lopez-Real, Joe; Beck, Angus James

    2006-01-01

    In-vessel composting of polycyclic aromatic hydrocarbons (PAHs) present in contaminated soil from a manufactured gas plant site was investigated over 98 days using laboratory-scale in-vessel composting reactors. The composting reactors were operated at 18 different operational conditions using a 3-factor factorial design with three temperatures (T, 38 deg. C, 55 deg. C and 70 deg. C), four soil to green waste ratios (S:GW, 0.6:1, 0.7:1, 0.8:1 and 0.9:1 on a dry weight basis) and three moisture contents (MC, 40%, 60% and 80%). PAH losses followed first order kinetics reaching 0.015 day -1 at optimal operational conditions. A factor analysis of the 18 different operational conditions under investigation indicated that the optimal operational conditions for degradation of PAHs occurred at MC 60%, S:GW 0.8:1 and T 38 deg. C. Thus, it is recommended to maintain operational conditions during in-vessel composting of PAH-solid waste close to these values. - Maximum degradation of PAHs in an aged coal tar contaminated soil can be achieved using optimal operational conditions during composting

  12. Thermal degradation characteristics and products obtained after pyrolysis of specific polymers found in Waste Electrical and Electronic Equipment

    Institute of Scientific and Technical Information of China (English)

    Evangelia C.Vouvoudi; Aristea T.Rousi; Dimitris S.Achilias

    2017-01-01

    Modern societies strongly support the recycling practices over simple waste accumulation due to environmental harm caused.In the framework of sustainable recycling of plastics from WEEE,pyrolysis is proposed here as a means of obtaining secondary value-added products.The aim of this study was to investigate the thermal degradation and the products obtained after pyrolysis of specific polymers found in the plastic part of WEEE,using thermogravimetric analysis and a pyrolizer equipped with a GC/MS.Polymers studied include ABS,HIPS,PC and a blend having a composition similar to that appearing in WEEE.It was found that,PC shows greater heat endurance compared to the other polymers,whereas ABS depolymerizes in three-steps.The existence of several polymers in the blend results in synergistic effects which decrease the onset and final temperature of degradation.Moreover,the fragmentation occurred in the pyrolyzer,at certain temperatures,resulted in a great variety of compounds,depending on the polymer type,such as monomers,aromatic products,phenolic compounds and hydrocarbons.The main conclusion from this investigation is that pyrolysis could be an effective method for the sustainable recycling of the plastic part of WEEE resulting in a mixture of chemicals with varying composition but being excellent to be used as fuel retrieved from secondary recycling sources.

  13. Thickness dependent structural ordering, degradation and metastability in polysilane thin films: A photoluminescence study on representative σ-conjugated polymers

    International Nuclear Information System (INIS)

    Urbánek, Pavel; Kuřitka, Ivo

    2015-01-01

    We present a fundamental experimental study based on the fluorescence investigation of thin σ-conjugated polymer films, where the dependence of optoelectrical properties and UV degradation on film thickness ranging from nano- to microscale was studied. Such extensive and detailed study was performed for the first time and observed spectral shifts in emission and excitation spectra and UV degradation retardation point towards the conclusions that there exists a threshold thickness where the material degradation behavior, electron delocalization and structure suddenly change. The development of well aligned polymeric chain structure between the nano- and micrometer thickness (on the mesoscale) was shown responsible for the manifested phenomena. The material thicker than critical 500 nm has extremely small Stokes' shift, maximum extended σ-delocalization along the silicon polymer backbone and exhibits remarkable UV degradation slowdown and self-recovery ability. On the contrary, the electronic properties of thin films below 80 nm resemble those of random coils in solutions. The films of moderate thickness show relatively steep transition between these two modes of structural ordering and resulting properties. Altogether, we consider this complex phenomenon as a consequence of the mesoscale effect, which is an only recently introduced concept in polymer thin films. - Highlights: • Photoluminescence was used as a tool for structural investigation of polysilanes. • Primary study of strong dependence of thin polymer film structure on mesoscale. • A mesoscale effect observed for the first time on sigma conjugated polymers. • Conjugation length is dramatically extended in thicker films than in nanoscale. • Self-recovery effect was shown to be dependent on the mesoscale as well.

  14. Effect of electron beam irradiation on the enzymatic degradation of composites based on biodegradable polymers and coconut fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Yasko; Bardi, Marcelo Augusto Goncalves; Machado, Luci Diva Brocardo, E-mail: ykodama@ipen.b, E-mail: marcelo.bardi@usp.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rosa, Derval dos Santos, E-mail: derval.rosa@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2011-07-01

    The development of polymeric materials that are susceptible to microbiological degradation and that have properties similar to the conventional polymers would reduce waste deposit. Degradable plastics suffer significant change on chemical structure when submitted to specific environmental condition. PCL and PLLA have been extensively investigated due to their bio-assimilation and because they are considered as eco-friendly. So the degradation of PCL and PLLA homopolymers, PCL:PLLA 20:80 (w:w) blend and coconut fiber-modified composites were studied by means of their degradation under lipase enzyme from Pseudomonas cepacia. Non-irradiated and EB-irradiated samples at 50 kGy and 100 kGy were exposed during 24, 72, 120 and 168 hours to the enzyme-buffer solution and the retained mass of dried samples was accompanied over time. The results were compared to the not submitted to the enzyme solution samples. Degradation rate of PCL was higher than PLLA in the presence of Pseudomonas lipase. PLLA presence reduced PCL's enzymatic degradation in the PCL:PLLA 20:80 w:w blend. After 120 h exposure, blend mass loss variation approached pure PLLA behavior. Composites degradation behavior through time was similar to the blend. Values of retained mass for composites were superior to the blends suggesting that coconut fiber did not significantly degrade in the period of test. Degradation rate of 50 kGy-irradiated PCL slightly reduced, and it was observed increase of degradation rate of samples irradiated with 100 kGy, probably attributed to its crystallinity decrease. Degradation rate of irradiated composite was similar to the blend, suggesting that fiber presence did not affect significantly this parameter. Samples tested during 168 h were affected by the water absorption by PLLA or coconut fibers through time testing. Studied samples degraded accentuatedly in the enzyme presence and were not negatively affected by the radiation processing. (author)

  15. Effect of electron beam irradiation on the enzymatic degradation of composites based on biodegradable polymers and coconut fiber

    International Nuclear Information System (INIS)

    Kodama, Yasko; Bardi, Marcelo Augusto Goncalves; Machado, Luci Diva Brocardo; Rosa, Derval dos Santos

    2011-01-01

    The development of polymeric materials that are susceptible to microbiological degradation and that have properties similar to the conventional polymers would reduce waste deposit. Degradable plastics suffer significant change on chemical structure when submitted to specific environmental condition. PCL and PLLA have been extensively investigated due to their bio-assimilation and because they are considered as eco-friendly. So the degradation of PCL and PLLA homopolymers, PCL:PLLA 20:80 (w:w) blend and coconut fiber-modified composites were studied by means of their degradation under lipase enzyme from Pseudomonas cepacia. Non-irradiated and EB-irradiated samples at 50 kGy and 100 kGy were exposed during 24, 72, 120 and 168 hours to the enzyme-buffer solution and the retained mass of dried samples was accompanied over time. The results were compared to the not submitted to the enzyme solution samples. Degradation rate of PCL was higher than PLLA in the presence of Pseudomonas lipase. PLLA presence reduced PCL's enzymatic degradation in the PCL:PLLA 20:80 w:w blend. After 120 h exposure, blend mass loss variation approached pure PLLA behavior. Composites degradation behavior through time was similar to the blend. Values of retained mass for composites were superior to the blends suggesting that coconut fiber did not significantly degrade in the period of test. Degradation rate of 50 kGy-irradiated PCL slightly reduced, and it was observed increase of degradation rate of samples irradiated with 100 kGy, probably attributed to its crystallinity decrease. Degradation rate of irradiated composite was similar to the blend, suggesting that fiber presence did not affect significantly this parameter. Samples tested during 168 h were affected by the water absorption by PLLA or coconut fibers through time testing. Studied samples degraded accentuatedly in the enzyme presence and were not negatively affected by the radiation processing. (author)

  16. Investigation of the degradation and stability of acrylamide-based polymers in acid solution: Functional monomer modified polyacrylamide

    Directory of Open Access Journals (Sweden)

    Yuxin Pei

    2016-12-01

    Full Text Available Acrylamide copolymers are often used as acidizing diverting and thickening agents for their advantageous thickening, flocculation, adhesion and resistance reduction properties. Experimental results indicate that the acid concentration greatly affects the properties of acrylamide polymers, which varies from results reported by other researchers. Considering the theoretical and field application value of the present study, four comparable acrylamide-based polymers were synthesized, and their macro- and micro-changes as well as the related changes in viscosity and molecular weight were studied in high-concentration hydrochloric acid. A proposed mechanism of acrylamide copolymer stability and degradation is provided, and further suggestions are made for the modification of acrylamide copolymers.

  17. Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study

    Science.gov (United States)

    Alabbasi, Alyaa; Mehjabeen, Afrin; Kannan, M. Bobby; Ye, Qingsong; Blawert, Carsten

    2014-05-01

    An attempt was made to seal the porous silicate-based plasma electrolytic oxidation (PEO) layer on pure magnesium (Mg) with a biodegradable polymer, poly(L-lactide) (PLLA), to delay the localized degradation of magnesium-based implants in body fluid for better in-service mechanical integrity. Firstly, a silicate-based PEO coating on pure magnesium was performed using a pulsed constant current method. In order to seal the pores in the PEO layer, PLLA was coated using a two-step spin coating method. The performance of the PEO-PLLA Mg was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The EIS results showed that the polarization resistance (Rp) of the PEO-PLLA Mg was close to two orders of magnitude higher than that of the PEO Mg. While the corrosion current density (icorr) of the pure Mg was reduced by 65% with the PEO coating, the PEO-PLLA coating reduced the icorr by almost 100%. As expected, the Rp of the PEO-PLLA Mg decreased with increase in exposure time. However, it was noted that the Rp of the PEO-PLLA Mg even after 100 h was six times higher than that of the PEO Mg after 48 h exposure, and did not show any visible localized attack.

  18. Efficient tetracycline adsorption and photocatalytic degradation of rhodamine B by uranyl coordination polymer

    Science.gov (United States)

    Ren, Ya-Nan; Xu, Wei; Zhou, Lin-Xia; Zheng, Yue-Qing

    2017-07-01

    Two mixed uranyl-cadmium malonate coordination polymers [(UO2)2Cd(H-bipy)2(mal)4(H2O)2]·4H2O 1 and [(UO2)Cd(bipy)(mal)2]·H2O 2 (H2mal = malonic acid, bipy =4,4‧-bipyridine) have been synthesized in room temperature. Compound 1 represents a one-dimensional (1D) chain assembly of Cd(II) ions, uranyl centers and malonate ligands. Compound 2 exhibits a two-dimensional (2D) 2D +2D → 3D polycatenated framework based on inclined interlocked 2D 44 sql grids. The two compounds have been characterized by elemental analysis, IR and UV-vis spectroscopy, thermal analysis, powder X-ray diffraction and photoluminescence spectroscopy. And the ferroelectric property of 2 also has been studied. Moreover, compound 2 exhibits good photocatalytic activity for dye degradation under UV light and is excellent adsorbent for removing tetracycline antibiotics in the aqueous solution.

  19. Kinetic measurements of the hydrolytic degradation of cefixime: effect of Captisol complexation and water-soluble polymers.

    Science.gov (United States)

    Mallick, Subrata; Mondal, Arijit; Sannigrahi, Santanu

    2008-07-01

    We have taken kinetic measurements of the hydrolytic degradation of cefixime, and have studied the effect of Captisol complexation and water-soluble polymers on that degradation. The phase solubility of cefixime in Captisol was determined. Kinetic measurements were carried out as a function of pH and temperature. High-performance liquid chromatography (HPLC) was performed to assay all the samples of phase-solubility analysis and kinetic measurements. Chromatographic separation of the degradation products was also performed by HPLC. FT-IR spectroscopy was used to investigate the presence of any interaction between cefixime and Captisol and soluble polymer. The phase-solubility study showed A(L)-type behaviour. The pH-rate profile of cefixime exhibited a U-shaped profile whilst the degradation of cefixime alone was markedly accelerated with elevated temperature. A strong stabilizing influence of the cefixime-Captisol complexation and hypromellose was observed against aqueous mediated degradation, as compared with povidone and macrogol. The unfavourable effect of povidone and macrogol may have been due to the steric hindrance, which prevented the guest molecule from entering the cyclodextrin cavity, whereas hypromellose did not produce any steric hindrance.

  20. Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth C.L.; Scagliusi, Sandra R.; Lima, Luis F.C.P.; Bueno, Nelson R.; Brant, Antonio J.C.; Parra, Duclerc F.; Lugão, Ademar B.

    2014-01-01

    Polymers are used for numerous applications in different industrial segments, generating enormous quantities of discarding in the environment. Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. Polypropylene (PP) undergoes crosslinking and extensive main chain scissions when submitted to ionizing irradiation; as one of the most widely used linear hydrocarbon polymers, PP, made from cheap petrochemical feed stocks, shows easy processing leading it to a comprehensive list of finished products. Consequently, there is accumulation in the environment, at 25 million tons per year rate, since polymeric products are not easily consumed by microorganisms. PP polymers are very bio-resistant due to involvement of only carbon atoms in main chain with no hydrolysable functional group. Several possibilities have been considered to minimize the environmental impact caused by non-degradable plastics, subjecting them to: physical, chemical and biological degradation or combination of all these due to the presence of moisture, air, temperature, light, high energy radiation or microorganisms. There are three main classes of biodegradable polymers: synthetic polymers, natural polymers and blends of polymers in which one or more components are readily consumed by microorganisms. This work aims to biodegradability investigation of a PP/HMSPP (high melt strength polypropylene) blended with sugarcane bagasse, PHB (poly-hydroxy-butyrate) and PLA (poly-lactic acid), both synthetic polymers, at a 10% level, subjected to gamma radiation at 50, 100, 150 and 200 kGy doses. Characterization will comprise IR, DSC, TGA, OIT and Laboratory Soil Burial Test (LSBT). - Highlights: • Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. • Landfills will not be enough for an estimated accumulation of 25 million tons per year of plastics. • Incorporation of natural/synthetic polymers in PP/HMSPP to reduce

  1. Degradable conjugated polymers for the selective sorting of semiconducting carbon nanotubes

    Science.gov (United States)

    Gopalan, Padma; Arnold, Michael Scott; Kansiusarulsamy, Catherine Kanimozhi; Brady, Gerald Joseph; Shea, Matthew John

    2018-04-10

    Conjugated polymers composed of bi-pyridine units linked to 9,9-dialkyl fluorenyl-2,7-diyl units via imine linkages along the polymer backbone are provided. Also provided are semiconducting single-walled carbon nanotubes coated with the conjugated polymers and methods of sorting and separating s-SWCNTs from a sample comprising a mixture of s-SWCNTs and metallic single-walled carbon nanotubes using the conjugated polymers.

  2. High-molecular-weight polymers containing biodegradable disulfide bonds: synthesis and in vitro verification of intracellular degradation

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Kovář, Lubomír; Šubr, Vladimír; Braunová, Alena; Pechar, Michal; Chytil, Petr; Říhová, Blanka; Ulbrich, Karel

    2010-01-01

    Roč. 25, č. 1 (2010), s. 5-26 ISSN 0883-9115 R&D Projects: GA AV ČR IAA400500806; GA AV ČR KAN200200651 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50200510 Keywords : water-soluble polymers * reductive degradation * HPMA copolymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.610, year: 2010

  3. Control of enzymatic degradation of biodegradable polymers by treatment with biosurfactants, mannosylerythritol lipids, derived from Pseudozyma spp. yeast strains.

    Science.gov (United States)

    Fukuoka, Tokuma; Shinozaki, Yukiko; Tsuchiya, Wataru; Suzuki, Ken; Watanabe, Takashi; Yamazaki, Toshimasa; Kitamoto, Dai; Kitamoto, Hiroko

    2016-02-01

    Cutinase-like esterase from the yeasts Pseudozyma antarctica (PaE) shows strong degradation activity in an agricultural biodegradable plastic (BP) model of mulch films composed of poly(butylene succinate-co-adipate) (PBSA). P. antarctica is known to abundantly produce a glycolipid biosurfactant, mannosylerythritol lipid (MEL). Here, the effects of MEL on PaE-catalyzed degradation of BPs were investigated. Based on PBSA dispersion solution, the degradation of PBSA particles by PaE was inhibited in the presence of MEL. MEL behavior on BP substrates was monitored by surface plasmon resonance (SPR) using a sensor chip coated with polymer films. The positive SPR signal shift indicated that MEL readily adsorbed and spread onto the surface of a BP film. The amount of BP degradation by PaE was monitored based on the negative SPR signal shift and was decreased 1.7-fold by MEL pretreatment. Furthermore, the shape of PBSA mulch films in PaE-containing solution was maintained with MEL pretreatment, whereas untreated films were almost completely degraded and dissolved. These results suggest that MEL covering the surface of BP film inhibits adsorption of PaE and PaE-catalyzed degradation of BPs. We applied the above results to control the microbial degradation of BP mulch films. MEL pretreatment significantly inhibited BP mulch film degradation by both PaE solution and BP-degradable microorganism. Moreover, the degradation of these films was recovered after removal of the coated MEL by ethanol treatment. These results demonstrate that the biodegradation of BP films can be readily and reversibly controlled by a physical approach using MEL.

  4. Enzyme-assisted polymer film degradation-enabled biomolecule sensing with poly (N-isopropylacrylamide)-based optical devices.

    Science.gov (United States)

    Zhang, Wei; Wei, Menglian; Carvalho, Wildemar S P; Serpe, Michael J

    2018-01-25

    A biosensor for mouse Immunoglobulin G (IgG) was generated from responsive polymer-based interference filters (etalons). To accomplish this, an excess amount of alkaline phosphatase-modified goat anti-mouse IgG (AP-GAM, F(ab') 2 fragment specific to mouse IgG) was added to mouse IgG, and allowed to react for some time. After a given reaction time, the bound AP-GAM could be isolated from the unbound, excess AP-GAM by addition of goat anti-mouse IgG (Fc fragment specific)-modified magnetic microspheres (GAM-M) that bind the mouse IgG bound to AP-GAM. After application of a magnetic field, the free, unbound AP-GAM was isolated from the mixture and exposed to an etalon that has its upper Au surface modified with phosphate-containing polymer that can be degraded by AP-GAM. By the phosphate-containing polymer being degraded by the excess AP-GAM, the cleaved phosphate groups can diffuse into the interference filter's active polymer layer that yields a change in the optical properties that can be related to the amount of IgG in the sample. This concept is extremely straightforward to implement, and can be modified to detect a variety of other analytes of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Establishment, Growth, and Yield Potential of the Perennial Grass Miscanthus × Giganteus on Degraded Coal Mine Soils

    Directory of Open Access Journals (Sweden)

    Stanisław Jeżowski

    2017-06-01

    Full Text Available Miscanthus × giganteus is a giant C4 grass native to Asia. Unlike most C4 species, it is relatively cold tolerant due to adaptations across a wide range of altitudes. These grasses are characterized by high productivity and low input requirements, making them excellent candidates for bioenergy feedstock production. The aim of this study was to investigate the potential for growing Miscanthus on extremely marginal soils, degraded by open lignite (brown coal mining. Field experiments were established within three blocks situated on waste heaps originating from the lignite mine. Analyses were conducted over the first 3 years following Miscanthus cultivation, focusing on the effect of organic and mineral fertilization on crop growth, development and yield in this extreme environment. The following levels of fertilization were implemented between the blocks: the control plot with no fertilization (D0, a plot with sewage sludge (D1, a plot with an identical amount of sewage sludge plus one dose of mineral fertilizer (D2 and a plot with an identical amount of sewage sludge plus a double dose of mineral fertilizer (D3. Crop development and characteristics (plant height, tillering, and biomass yield [dry matter] were measured throughout the study period and analyzed using Analysis of Variance (ANOVA. Significant differences were apparent between plant development and 3rd year biomass production over the course of the study (0.964 kg plant-1 for DO compared to 1.503 kg plant-1 for D1. Soil analyses conducted over the course of the experiment showed that organic carbon levels within the soil increased significantly following the cultivation of Miscanthus, and overall, pH decreased. With the exception of iron, macronutrient concentrations remained stable throughout. The promising yields and positive effects of Miscanthus on the degraded soil suggests that long term plantations on land otherwise unsuitable for agriculture may prove to be of great

  6. Direct detection of additives and degradation products from polymers by liquid extraction surface analysis employing chip-based nanospray mass spectrometry.

    Science.gov (United States)

    Paine, Martin R L; Barker, Philip J; Maclauglin, Shane A; Mitchell, Todd W; Blanksby, Stephen J

    2012-02-29

    Polymer-based surface coatings in outdoor applications experience accelerated degradation due to exposure to solar radiation, oxygen and atmospheric pollutants. These deleterious agents cause undesirable changes to the aesthetic and mechanical properties of the polymer, reducing its lifetime. The use of antioxidants such as hindered amine light stabilisers (HALS) retards these degradative processes; however, mechanisms for HALS action and polymer degradation are poorly understood. Detection of the HALS TINUVIN®123 (bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate) and the polymer degradation products directly from a polyester-based coil coating was achieved by liquid extraction surface analysis (LESA) coupled to a triple quadrupole QTRAP® 5500 mass spectrometer. The detection of TINUVIN®123 and melamine was confirmed by the characteristic fragmentation pattern observed in LESA-MS/MS spectra that was identical to that reported for authentic samples. Analysis of an unstabilised coil coating by LESA-MS after exposure to 4 years of outdoor field testing revealed the presence of melamine (1,3,5-triazine-2,4,6-triamine) as a polymer degradation product at elevated levels. Changes to the physical appearance of the coil coating, including powder-like deposits on the coating's surface, were observed to coincide with melamine deposits and are indicative of the phenomenon known as polymer 'blooming'. For the first time, in situ detection of analytes from a thermoset polymer coating was accomplished without any sample preparation, providing advantages over traditional extraction-analysis approaches and some contemporary ambient MS methods. Detection of HALS and polymer degradation products such as melamine provides insight into the mechanisms by which degradation occurs and suggests LESA-MS is a powerful new tool for polymer analysis. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Novel Zeolitic Imidazolate Framework/Polymer Membranes for Hydrogen Separations in Coal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Musselman, Inga H.

    2013-01-31

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed-matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethylenediamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H2/CO2 selectivity similar to the uncrosslinked polymer.

  8. Leucoagaricus gongylophorus produces diverse enzymes for the degradation of recalcitrant plant polymers in leaf-cutter ant fungus gardens.

    Science.gov (United States)

    Aylward, Frank O; Burnum-Johnson, Kristin E; Tringe, Susannah G; Teiling, Clotilde; Tremmel, Daniel M; Moeller, Joseph A; Scott, Jarrod J; Barry, Kerrie W; Piehowski, Paul D; Nicora, Carrie D; Malfatti, Stephanie A; Monroe, Matthew E; Purvine, Samuel O; Goodwin, Lynne A; Smith, Richard D; Weinstock, George M; Gerardo, Nicole M; Suen, Garret; Lipton, Mary S; Currie, Cameron R

    2013-06-01

    Plants represent a large reservoir of organic carbon comprised primarily of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous fungus that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and, using genomic and metaproteomic tools, we investigate its role in lignocellulose degradation in the gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in ant gardens and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that likely play an important role in lignocellulose degradation. Our study provides a detailed analysis of plant biomass degradation in leaf-cutter ant fungus gardens and insight into the enzymes underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.

  9. Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Fungus Gardens

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, Frank O. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burnum-Johnson, Kristin E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tringe, Susannah G. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Teiling, Clotilde [Roche Diagnostics, Indianapolis, IN (United States); Tremmel, Daniel [Univ. of Wisconsin, Madison, WI (United States); Moeller, Joseph [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scott, Jarrod J. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barry, Kerrie W. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Piehowski, Paul D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nicora, Carrie D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Malfatti, Stephanie [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Monroe, Matthew E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Purvine, Samuel O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Goodwin, Lynne A. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weinstock, George [Washington Univ. School of Medicine, St. Louis, MS (United States); Gerardo, Nicole [Emory Univ., Atlanta, GA (United States); Suen, Garret [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Lipton, Mary S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Currie, Cameron R. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smothsonian Tropical Research Inst., Balboa (Panama)

    2013-06-12

    Plants represent a large reservoir of organic carbon comprised largely of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate fungus gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous symbiont that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and using genomic, metaproteomic, and phylogenetic tools we investigate its role in lignocellulose degradation in the fungus gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in fungus gardens, and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that may be playing an important but previously uncharacterized role in lignocellulose degradation. Our study provides a comprehensive analysis of plant biomass degradation in leaf-cutter ant fungus gardens and provides insight into the molecular dynamics underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.

  10. Isolation of a naphthalene-degrading strain from activated sludge and bioaugmentation with it in a MBR treating coal gasification wastewater.

    Science.gov (United States)

    Xu, Peng; Ma, Wencheng; Han, Hongjun; Jia, Shengyong; Hou, Baolin

    2015-03-01

    A highly effective naphthalene-degrading bacterial strain was isolated from acclimated activated sludge from a coal gasification wastewater plant, and identified as a Streptomyces sp., designated as strain QWE-35. The optimal pH and temperature for naphthalene degradation were 7.0 and 35°C. The presence of additional glucose and methanol significantly increased the degradation efficiency of naphthalene. The strain showed tolerance to the toxicity of naphthalene at a concentration as great as 200 mg/L. The Andrews mode could be fitted to the degradation kinetics data well over a wide range of initial naphthalene concentrations (10-200 mg/L), with kinetic values q max = 0.84 h(-1), K s = 40.39 mg/L, and K i = 193.76 mg/L. Metabolic intermediates were identified by gas chromatography and mass spectrometry, allowing a new degradation pathway for naphthalene to be proposed for the first time. Strain QWE-35 was added into a membrane bioreactor (MBR) to enhance the treatment of real coal gasification wastewater. The results showed that the removal of chemical oxygen demand and total nitrogen were similar between bioaugmented and non-bioaugmented MBRs, however, significant removal of naphthalene was obtained in the bioaugmented reactor. The findings suggest a potential bioremediation role of Streptomyces sp. QWE-35 in the removal of naphthalene from wastewaters.

  11. Effect of polymer degradation on prolonged release of paclitaxel from filomicelles of polylactide/poly(ethylene glycol) block copolymers.

    Science.gov (United States)

    Jelonek, Katarzyna; Li, Suming; Kasperczyk, Janusz; Wu, Xiaohan; Orchel, Arkadiusz

    2017-06-01

    Paclitaxel is one of the most efficient anticancer agents, but the conventional dosage formulations cause many side effects. PLA-PEG filomicelles are promising carriers of paclitaxel because high loading capacity and long term release can be achieved. Slow release of cytostatic drugs is very advantageous due to prolonged exposure of tumor cells to cytostatic over multiple cell cycles. The aim of this study was to evaluate the potential of bioresorbable PLA-PEG filomicelles for prolonged delivery of paclitaxel. Paclitaxel is encapsulated in PLLA-PEG filomicelles and PDLLA-PEG spherical micelles. Drug release was studied in PBS at 37°C at various pH values to elucidate the influence of polymer degradation on drug release. NMR, GPC and HPLC were used to follow polymer degradation and drug release. The release of paclitaxel is strongly dependent on the degradation of micelles. A biphasic drug release profile is observed for both PLLA-PEG and PDLLA-PEG micelles: slow release in the first phase and faster release in the second phase. Degradation is faster at acidic pH than at pH7.4, and PLLA-PEG filomicelles degrade less rapidly than PDLLA-PEG spherical micelles, leading to various rates of drug release. The correlation between degradation and drug release is very helpful for the development of novel drug carriers with tailored properties. Importantly, the cytotoxic activity of PLLA-PEG filomicelles was evidenced, thus showing their potential as carrier of antitumor drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Deformation and degradation of polymers in ultra-high-pressure liquid chromatography

    NARCIS (Netherlands)

    Uliyanchenko, E.; van der Wal, S.; Schoenmakers, P.J.

    2011-01-01

    Ultra-high-pressure liquid chromatography (UHPLC) using columns packed with sub-2 μm particles has great potential for separations of many types of complex samples, including polymers. However, the application of UHPLC for the analysis of polymers meets some fundamental obstacles. Small particles

  13. A Mechanistic Model for Drug Release in PLGA Biodegradable Stent Coatings Coupled with Polymer Degradation and Erosion

    Science.gov (United States)

    Zhu, Xiaoxiang; Braatz, Richard D.

    2015-01-01

    Biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) coating for applications in drug-eluting stents has been receiving increasing interest as a result of its unique properties compared with biodurable polymers in delivering drug for reducing stents-related side effects. In this work, a mathematical model for describing the PLGA degradation and erosion and coupled drug release from PLGA stent coating is developed and validated. An analytical expression is derived for PLGA mass loss that predicts multiple experimental studies in the literature. An analytical model for the change of the number-average degree of polymerization (or molecular weight) is also derived. The drug transport model incorporates simultaneous drug diffusion through both the polymer solid and the liquid-filled pores in the coating, where an effective drug diffusivity model is derived taking into account factors including polymer molecular weight change, stent coating porosity change, and drug partitioning between solid and aqueous phases. The model is used to describe in vitro sirolimus release from PLGA stent coating, and demonstrates the significance of simultaneous sirolimus release via diffusion through both polymer solid and pore space. The proposed model is compared to existing drug transport models, and the impact of model parameters, limitations and possible extensions of the model are also discussed. PMID:25345656

  14. Study of thermal stability and degradation of fire resistant candidate polymers for aircraft interiors

    Science.gov (United States)

    Hsu, M. T. S.

    1976-01-01

    The thermochemistry of bismaleimide resins and phenolphthalein polycarbonate was studied. Both materials are fire-resistant polymers and may be suitable for aircraft interiors. The chemical composition of the polymers has been determined by nuclear magnetic resonance and infrared spectroscopy and by elemental analysis. Thermal properties of these polymers have been characterized by thermogravimetric analyses. Qualitative evaluation of the volatile products formed in pyrolysis under oxidative and non-oxidative conditions has been made using infrared spectrometry. The residues after pyrolysis were analyzed by elemental analysis. The thermal stability of composite panel and thermoplastic materials for aircraft interiors was studied by thermogravimetric analyses.

  15. Interplay of Interfacial Layers and Blend Composition To Reduce Thermal Degradation of Polymer Solar Cells at High Temperature.

    Science.gov (United States)

    Ben Dkhil, Sadok; Pfannmöller, Martin; Schröder, Rasmus R; Alkarsifi, Riva; Gaceur, Meriem; Köntges, Wolfgang; Heidari, Hamed; Bals, Sara; Margeat, Olivier; Ackermann, Jörg; Videlot-Ackermann, Christine

    2018-01-31

    The thermal stability of printed polymer solar cells at elevated temperatures needs to be improved to achieve high-throughput fabrication including annealing steps as well as long-term stability. During device processing, thermal annealing impacts both the organic photoactive layer, and the two interfacial layers make detailed studies of degradation mechanism delicate. A recently identified thermally stable poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  16. Water-Induced Degradation of Polymer Solar Cells Studied by (H2O)-O-18 Labeling

    DEFF Research Database (Denmark)

    Norrman, Kion; Gevorgyan, Suren; Krebs, Frederik C

    2009-01-01

    Water-induced degradation of polymer photovoltaics based on the active materials poly(3-hexylthiophene) (P3HT) or poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) was studied. The solar cell devices comprised a bulk heterojunction formed by the active material and [6,6]-phenyl......-C61-butyric acid methyl ester (PCBM) in a standard device geometry. The use of H218O in conjunction with time-of-flight secondary ion mass spectrometry enabled mapping of the parts of the device that were induced by water. A comparison was made between the two active materials and between devices...

  17. Oxidative degradation property of the proton-exchange membranes based on fluorinated polymer using radiation-induced grafting

    International Nuclear Information System (INIS)

    Mitani, N.; Muto, F.; Fujii, K.; Sato, Y.; Kakigi, T.; Matsuura, A.; Li Jingye; Miura, T.; Oshima, A.; Washio, M.

    2006-01-01

    To grow popularity of polymer electrolyte fuel cells (PEFCs), it is important that the life-time of FC will be evaluated. In the PEFCs operation, the oxygenated water would be produced by fuel gases crossover reaction. Moreover, the metal ions such as Fe 2+ would dissolve from piping and humidification bubblers in FC systems. As the results, the dissolved metal ions catalyze with oxygenated water, and then active oxidative radicals such as hydroxy and hydroperoxy radicals are induced by Fenton reaction. The oxidative radicals have considered one of the reasons of deterioration of FC performance. In our previous study, the partial-fluorinated sulfonic acid membranes based on crosslinked PTFE (sulfonated RX-PTFE) have been fabricated by pre EB-grafting method. In this study, in order to evaluate the chemical durability exerted on the PEFC performance of sulfonated RX-PTFE, we carried out the accelerated degradation test by Fenton reaction. The test conditions were 6 vol% H 2 O 2 with 5 ppm Fe 2+ solution at 60 degree C. The properties of sulfonated RX-PTFE before and after degradation tests were measured by means of X-ray photoelectron spectroscopy (XPS) and other methods. According to oxidative degradation test, the sulfonated RX-PTFE with higher crosslinking density of main chain became hard to deteriorate. On the contrary, the higher grafting yields became easy to degrade. It is suggested that the oxidative degradation would be greatly influenced to the grafted chain length and crosslinking density of main chain. From XPS after Fenton treated sulfonated RX-PTFE, the signal of S 2p and S 2s was disappeared. And also, by TGA and TG-MS analysis, it was found that the reduction of grafted chains was taken place. Furthermore, the crosslinked PTFE chains may be degraded through the reduction of grafted chain. The PEFC operation tests of sulfonated RX-PTFE before and after degradation tests were carried out. When the weight loss of sulfonated RX-PTFE was almost the same

  18. Identification of thermal degradation products of polymers by capillary gas chromatography

    NARCIS (Netherlands)

    Pacakova, V.; Borecka, M.; Leclercq, P.A.; Kaiser, R.E.

    1981-01-01

    Samples of polyethylene, polypropylene, polystyrene and five styrene copolymers were thermally degraded in a quartz tubular reactor at 5100e in an inert atmosphere. The degradation products were separated on-line on capillary coltmlS coated with squalane, OV-17 and SE-30 as stationary phases. The

  19. Enzymatic degradation of polymer covered SOPC-liposomes in relation to drug delivery

    DEFF Research Database (Denmark)

    Davidsen, Jesper; Vermehren, C.; Frøkjær, S.

    2001-01-01

    Polyethylenoxide (PEG) covered liposomes are used as lipid-based drug-delivery systems. In comparison to conventional liposomes the polymer-covered liposomes display a long circulation half-life in the blood stream. We investigate the influence of polyethyleneoxide-distearoylphosphatidylethanolam......Polyethylenoxide (PEG) covered liposomes are used as lipid-based drug-delivery systems. In comparison to conventional liposomes the polymer-covered liposomes display a long circulation half-life in the blood stream. We investigate the influence of polyethyleneoxide...

  20. Elastomeric networks based on trimethylene carbonate polymers for biomedical applications : physical properties and degradation behaviour

    NARCIS (Netherlands)

    Bat, E.

    2010-01-01

    The number of applications for biomedical technologies is ever-increasing, and there is a need to develop new materials with properties that can conform to the requirements of a specific application. Synthetic polymers are of great importance in the biomedical field as they can be designed to

  1. Tissue ingrowth polymers and degradation of two biodegradable porous with different porosities and pore sizes

    NARCIS (Netherlands)

    van Tienen, TG; Heijkants, RGJC; Buma, P; de Groot, JH; Pennings, AJ; Veth, RPH

    Commonly, spontaneous repair of lesions in the avascular zone of the knee meniscus does not occur. By implanting a porous polymer scaffold in a knee meniscus defect, the lesion is connected with the abundantly vascularized knee capsule and heating can be realized. Ingrowth of fibrovascular tissue

  2. Radiation effects on polymer materials. Ionizing radiation induces degradation or improvement? (2) Gas evolution by irradiation

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo

    2005-01-01

    The present article reviews gas evolution from organic polymers induced by ionizing radiations, focusing on gamma-ray irradiation of PE (polyethylene) and PP (polypropylene)-model compounds at temperatures from -77 to 55degC. In the polyolefins, the main gas evolved by irradiation is hydrogen with G-value of 3-4 at room temperatures and G(H 2 ) is 1.8 at 77K. For PE, G(H 2 ) is higher for the low-density PE than for higher-density PE. For the halogenated polymers as PVC, etc., evolved gas is hydrogen halogenated: G(HCl)=6.8 for PVC. For the case where the irradiation is accompanied with the oxidation of polymers, the de-oxygenation and formation of carboxylic radicals are remarkably high and known to emit a bad smell which depends on the thickness of oxidized layers. In conclusion, the gas evolution can be estimated by considering the molecular structure of polymer materials. (S.Ohno)

  3. Degradation in tensile properties of aromatic polymers by electron beam irradiation

    International Nuclear Information System (INIS)

    Sasuga, T.; Hayakawa, N.; Yoshida, K.; Hagiwara, M.

    1985-01-01

    Electron beam irradiation effects of ten kinds of polymers containing various aromatic rings linked by functional groups in the main chain (aromatic polymer) were studied with reference to change in tensile properties. The polymers studied were polyimides 'Kapton H', and 'UPILEX', polyetherimide 'ULTEM', polyamides 'A-Film' and 'APH-50 (nomex type paper)', poly-ether-ether-ketone 'PEEK', polyarylate 'U-Polymer', polysulphones 'Udel-Polysulphone' and 'PES', and modified poly(phenylene oxide) 'NORYL'. Irradiation was carried out by use of electron beam at a dose rate of 5 x 10 3 Gy s -1 at room temperature. The elongation at break was the most severely influenced by the irradiation and it decreased with increasing dose. The order of radiation resistivity which was evaluated from the dose required for the elongation to become 50% and 20% of the initial value was as follows: Polyimide > PEEK > polyamide > polyetherimide > polyarylate > polysulphone, poly(phenylene oxide). Based on the above experimental results, an order is proposed for the radiation stability of the aromatic repeating units composing the main chain. (author)

  4. Effect of the type of radiation on the degradation behavior of polymer matrix composites

    International Nuclear Information System (INIS)

    Egusa, Shigenori

    1992-01-01

    Four kinds of polymer matrix composites (filler: E-glass or carbon fiber cloth; matrix; epoxy or polyimide resin) were irradiated with neutrons and 60 Co γ-rays at room temperature or at 5 K. Three-point bend tests were then carried out at 77 K. Comparison of the neutron and γ-ray irradiation effects shows that the radiation sensitivity of the glass/epoxy and glass/polyimide composites is 1.8-2.6 times higher to neutrons than to γ-rays, indicating a higher sensitivity of the epoxy and polyimide matrix resins to recoil protons than to γ-rays. Absorbed dose calculations, on the other hand, show that the spatial distribution of the microscopic energy deposition in polymer matrix composites is inhomogeneous for neutrons, although almost homogeneous for γ-rays. In addition, the neutron irradiation of boron-containing E-glass fiber composites produces additional radiation damage due to a 10 B(n,α) 7 Li reaction in the glass fibers, thus significantly enhancing a decrease in the composite strength. These facts indicate that as far as polymer matrix composites are concerned, the irradiation effects of neutrons will be rather difficult to simulate with different types of radiation such as protons and carbon ions from an ion accelerator. Thus, it may be prudent that such simulation irradiation be carried out mainly for pure resins to be used as matrix in polymer matrix composites. (author)

  5. Determination of membrane degradation products in the product water of polymer electrolyte membrane fuel cells using liquid chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zedda, Marco

    2011-05-12

    The predominant long term failure of polymer electrolyte membranes (PEM) is caused by hydroxyl radicals generated during fuel cell operation. These radicals attack the polymer, leading to chain scission, unzipping and consequently to membrane decomposition products. The present work has investigated decomposition products of novel sulfonated aromatic hydrocarbon membranes on the basis of a product water analysis. Degradation products from the investigated membrane type and the possibility to detect these compounds in the product water for diagnostic purposes have not been discovered yet. This thesis demonstrates the potential of solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) for the extraction, separation, characterization, identification and quantification of membrane degradation products in the product water of fuel cells. For this purpose, several polar aromatic hydrocarbons with different functional groups were selected as model compounds for the development of reliable extraction, separation and detection methods. The results of this thesis have shown that mixed mode sorbent materials with both weak anion exchange and reversed phase retention properties are well suited for reproducible extraction of both molecules and ions from the product water. The chromatographic separation of various polar aromatic hydrocarbons was achieved by means of phase optimized liquid chromatography using a solvent gradient and on a C18 stationary phase. Sensitive and selective detection of model compounds could be successfully demonstrated by the analysis of the product water using tandem mass spectrometry. The application of a hybrid mass spectrometer (Q Trap) for the characterization of unknown polar aromatic hydrocarbons has led to the identification and confirmation of 4-hydroxybenzoic acid in the product water. In addition, 4-HBA could be verified as a degradation product resulting from PEM decomposition by hydroxyl radicals using an

  6. Rapid, Efficient and Versatile Strategies for Functionally Sophisticated Polymers and Nanoparticles: Degradable Polyphosphoesters and Anisotropic Distribution of Chemical Functionalities

    Science.gov (United States)

    Zhang, Shiyi

    The overall emphasis of this dissertation research included two kinds of asymmetrically-functionalized nanoparticles with anisotropic distributions of chemical functionalities, three degradable polymers synthesized by organocatalyzed ring-opening polymerizations, and two polyphosphoester-based nanoparticle systems for various biomedical applications. Inspired by the many hierarchical assembly processes that afford complex materials in Nature, the construction of asymmetrically-functionalized nanoparticles with efficient surface chemistries and the directional organization of those building blocks into complex structures have attracted much attention. The first method generated a Janus-faced polymer nanoparticle that presented two orthogonally click-reactive surface chemistries, thiol and azido. This robust method involved reactive functional group transfer by templating against gold nanoparticle substrates. The second method produced nanoparticles with sandwich-like distribution of crown ether functionalities through a stepwise self-assembly process that utilized crown ether-ammonium supramolecular interactions to mediate inter-particle association and the local intra-particle phase separation of unlike hydrophobic polymers. With the goal to improve the efficiency of the production of degradable polymers with tunable chemical and physical properties, a new type of reactive polyphosphoester was synthesized bearing alkynyl groups by an organocatalyzed ring-opening polymerization, the chemical availability of the alkyne groups was investigated by employing "click" type azide-alkyne Huisgen cycloaddition and thiol-yne radical-mediated reactions. Based on this alkyne-functionalized polyphosphoester polymer and its two available "click" type reactions, two degradable nanoparticle systems were developed. To develop the first system, the well defined poly(ethylene oxide)-block-polyphosphester diblock copolymer was transformed into a multifunctional Paclitaxel drug

  7. Investigation of Oxidative Degradation in Polymers Using (17)O NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd M.; Celina, Mathew; Assink, Roger A.; Clough, Roger L.; Gillen, Kenneth T.; Wheeler David R.

    1999-07-20

    The thermal oxidation of pentacontane (C{sub 50}H{sub 102}), and of the homopolymer polyisoprene, has been investigated using {sup 17}O NMR spectroscopy. By performing the oxidation using {sup 17}O labeled O{sub 2} gas, it is possible to easily identify degradation products, even at relatively low concentrations. It is demonstrated that details of the degradation mechanism can be obtained from analysis of the {sup 17}O NMR spectra as a function of total oxidation. Pentacontane reveals the widest variety of reaction products, and exhibits changes in the relative product distributions with increasing O{sub 2} consumption. At low levels of oxygen incorporation, peroxides are the major oxidation product, while at later stages of degradation these species are replaced by increasing concentrations of ketones, alcohols, carboxylic acids and esters. Analyzing the product distribution can help in identification of the different free-radical decomposition pathways of hydroperoxides, including recombination, proton abstraction and chain scission, as well as secondary reactions. The {sup 17}O NMR spectra of thermally oxidized polyisoprene reveal fewer degradation functionalities, but exhibit an increased complexity in the type of observed degradation species due to structural features such as unsaturation and methyl branching. Alcohols and ethers formed from hydrogen abstraction and free radical termination.

  8. Microwave-assisted degradation of acid orange using a conjugated polymer, polyaniline, as catalyst

    Directory of Open Access Journals (Sweden)

    Ufana Riaz

    2014-01-01

    Full Text Available Microwave-assisted photocatalytic degradation of dyes is one of the emerging technologies for waste water remediation. Microwave effectively accelerates photocatalytic degradation, when microwave electrodeless lamp (MEL substitutes traditional UV lamp as light source. This setup can be extremely simplified if MEL and photocatalyst can be replaced by a catalyst which can work under microwave irradiation in the absence of any light source. The present work reports for the first time degradation of acid orange 7 (AO under microwave irradiation using polyaniline (PANI as catalyst in the absence of any UV lamp as light source. The degradation/decolourization was carried out in neutral acidic and basic media and was monitored spectrophotometrically to evaluate the ability of microwave irradiation to degrade AO. Microwave irradiation showed excellent performance as it completely decolourizes AO dye solution in 10 min. With the advantages of low cost and rapid processing, this novel catalyst is expected to gain promising application in the treatment of various dyestuff wastewaters on a large scale.

  9. Molecular weight kinetics and chain scission models for dextran polymers during ultrasonic degradation.

    Science.gov (United States)

    Pu, Yuanyuan; Zou, Qingsong; Hou, Dianzhi; Zhang, Yiping; Chen, Shan

    2017-01-20

    Ultrasonic degradation of six dextran samples with different initial molecular weights (IMW) has been performed to investigate the degradation behavior and chain scission mechanism of dextrans. The weight-average molecular weight (Mw) and polydispersity index (D value) were monitored by High Performance Gel Permeation Chromatography (HPGPC). Results showed that Mw and D value decreased with increasing ultrasonic time, resulting in a more homologous dextran solution with lower molecular weight. A significant degradation occurred in dextrans with higher IMW, particularly at the initial stage of the ultrasonic treatment. The Malhotra model was found to well describe the molecular weight kinetics for all dextran samples. Experimental data was fitted into two chain scission models to study dextran chain scission mechanism and the model performance was compared. Results indicated that the midpoint scission model agreed well with experimental results, with a linear regression factor of R 2 >0.99. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Electron Barrier Formation at the Organic-Back Contact Interface is the First Step in Thermal Degradation of Polymer Solar Cells

    KAUST Repository

    Sachs-Quintana, I. T.

    2014-03-24

    Long-term stability of polymer solar cells is determined by many factors, one of which is thermal stability. Although many thermal stability studies occur far beyond the operating temperature of a solar cell which is almost always less than 65 °C, thermal degradation is studied at temperatures that the solar cell would encounter in real-world operating conditions. At these temperatures, movement of the polymer and fullerenes, along with adhesion of the polymer to the back contact, creates a barrier for electron extraction. The polymer barrier can be removed and the performance can be restored by peeling off the electrode and depositing a new one. X-ray photoelectron spectroscopy measurements reveal a larger amount of polymer adhered to electrodes peeled from aged devices than electrodes peeled from fresh devices. The degradation caused by hole-transporting polymer adhering to the electrode can be suppressed by using an inverted device where instead of electrons, holes are extracted at the back metal electrode. The problem can be ultimately eliminated by choosing a polymer with a high glass transition temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hydrochemistry and coal mining activity induced karst water quality degradation in the Niangziguan karst water system, China.

    Science.gov (United States)

    Zhang, Xiaobo; Li, Xue; Gao, Xubo

    2016-04-01

    Hydrogeochemical analysis, statistical analysis, and geochemical modeling were employed to evaluate the impacts of coal mining activities on karst water chemistry in Niangziguan spring catchment, one of the largest karst springs in Northern China. Significant water quality deterioration was observed along the flow path, evidenced from the increasing sulfate, nitrate, and TDS content in karst water. Karst water samples are Ca-Mg-HCO3 type in the recharge areas, Ca-Mg-HCO3-SO4 type in the coal mining areas, and Ca-Mg-SO4-HCO3/HCO3-SO4 type in the rural areas and discharge areas. A four-factor principal component analysis (PCA) model is conducted which explains over 82.9% of the total variation. Factor 1, which explained the largest portion (45.33%) of the total variance, reveals that coal mining activities and natural water-rock interaction as the primary factors controlling karst water quality. Anthropogenic effects were recognized as the secondary factor with high positive loadings for NO3 (-) and Cl(-) in the model. The other two factors are co-precipitation removal of trace elements and silicate mineral dissolution, which explained 20.96% of the total variance. A two-end mixing modeling was proposed to estimate the percentage of coal wastewater giving on karst water chemistry, based on the groundwater sulfate chemistry constrains rather than sulfur isotopes. Uncertainty of sulfur isotope sources led to an overestimation of coal mining water contribution. According to the results of the modeling, the contribution of coal mining waste on karst water chemistry was quantified to be from 27.05 to 1.11% which is ca. three times lower than the values suggested using a sulfur isotope method.

  12. Star polymer-drug conjugates with pH-controlled drug release and carrier degradation

    Czech Academy of Sciences Publication Activity Database

    Kostková, Hana; Schindler, Lucie; Kotrchová, Lenka; Kovář, Marek; Šírová, Milada; Kostka, Libor; Etrych, Tomáš

    2017-01-01

    Roč. 2017, 3 January (2017), s. 1-10, č. článku 8675435. ISSN 1687-4110 R&D Projects: GA MŠk(CZ) LQ1604 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : star conjugate * HPMA copolymer * doxorubicin Subject RIV: CD - Macromolecular Chemistry; EE - Microbiology, Virology (MBU-M) OBOR OECD: Polymer science; Microbiology (MBU-M) Impact factor: 1.871, year: 2016

  13. Development of evaluation technique on ageing degradation of organic polymer in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yup; Nho, Young Chang; Jung, Sung Hee; Park, Eun Hee

    1999-03-01

    Radiation degradation of chlorosulfonated polyethylene (CSPE, Hypalon), crosslinked polyethylene (XLPE), poly (tetrafluoroethylene) (PTFE), poly (vinylidene fluoride) (PVDF), and ethylene rubber (EPR) of experimental formulation as cable insulating and sheathing materials were performed by accelerated ageing tests and was investigated by measuring the properties such as tensile strength, elongation, insulation resistance, melting temperature, oxygen index and thermal stimulated current. The status of radiation ageing test was reviewed and the requirement of qualification of nuclear equipment was documented.

  14. Oxygen- and water-induced degradation of an inverted polymer solar cell: the barrier effect

    DEFF Research Database (Denmark)

    Vesterager Madsen, Morten; Norrman, Kion; Krebs, Frederik C

    2011-01-01

    The work focuses on the degradation of performance induced by both water and oxygen in an inverted geometry organic photovoltaic device with emphasis on the accumulated barrier effect of the layers comprising the layer stack. By studying the exchange of oxygen in the zinc oxide (ZnO) layer...... in the humid atmosphere, correlating well with a long observed lifetime in the same atmosphere.© 2011 Society of Photo-Optical Instrumentation Engineers....

  15. Development of evaluation technique on ageing degradation of organic polymer in nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Ki Yup; Nho, Young Chang; Jung, Sung Hee; Park, Eun Hee

    1999-03-01

    Radiation degradation of chlorosulfonated polyethylene (CSPE, Hypalon), crosslinked polyethylene (XLPE), poly (tetrafluoroethylene) (PTFE), poly (vinylidene fluoride) (PVDF), and ethylene rubber (EPR) of experimental formulation as cable insulating and sheathing materials were performed by accelerated ageing tests and was investigated by measuring the properties such as tensile strength, elongation, insulation resistance, melting temperature, oxygen index and thermal stimulated current. The status of radiation ageing test was reviewed and the requirement of qualification of nuclear equipment was documented

  16. Sulfur-Doped Carbon Nitride Polymers for Photocatalytic Degradation of Organic Pollutant and Reduction of Cr(VI).

    Science.gov (United States)

    Zheng, Yun; Yu, Zihao; Lin, Feng; Guo, Fangsong; Alamry, Khalid A; Taib, Layla A; Asiri, Abdullah M; Wang, Xinchen

    2017-04-01

    As a promising conjugated polymer, binary carbon nitride has attracted extensive attention as a metal-free and visible-light-responsive photocatalyst in the area of photon-involving purification of water and air. Herein, we report sulfur-doped polymeric carbon nitride microrods that are synthesized through thermal polymerization based on trithiocyanuric acid and melamine (TM) supramolecular aggregates. By tuning the polymerization temperature, a series of sulfur-doped carbon nitride microrods are prepared. The degradation of Rhodamine B (RhB) and the reduction of hexavalent chromium Cr(VI) are selected as probe reactions to evaluate the photocatalytic activities. Results show that increasing pyrolysis temperature leads to a large specific surface area, strong visible-light absorption, and accelerated electron-hole separation. Compared to bulk carbon nitride, the highly porous sulfur-doped carbon nitride microrods fabricated at 650 °C exhibit remarkably higher photocatalytic activity for degradation of RhB and reduction of Cr(VI). This work highlights the importance of self-assembly approach and temperature-control strategy in the synthesis of photoactive materials for environmental remediation.

  17. Unraveling micro- and nanoscale degradation processes during operation of high-temperature polymer-electrolyte-membrane fuel cells

    Science.gov (United States)

    Hengge, K.; Heinzl, C.; Perchthaler, M.; Varley, D.; Lochner, T.; Scheu, C.

    2017-10-01

    The work in hand presents an electron microscopy based in-depth study of micro- and nanoscale degradation processes that take place during the operation of high-temperature polymer-electrolyte-membrane fuel cells (HT-PEMFCs). Carbon supported Pt particles were used as cathodic catalyst material and the bimetallic, carbon supported Pt/Ru system was applied as anode. As membrane, cross-linked polybenzimidazole was used. Scanning electron microscopy analysis of cross-sections of as-prepared and long-term operated membrane-electrode-assemblies revealed insight into micrometer scale degradation processes: operation-caused catalyst redistribution and thinning of the membrane and electrodes. Transmission electron microscopy investigations were performed to unravel the nanometer scale phenomena: a band of Pt and Pt/Ru nanoparticles was detected in the membrane adjacent to the cathode catalyst layer. Quantification of the elemental composition of several individual nanoparticles and the overall band area revealed that they stem from both anode and cathode catalyst layers. The results presented do not demonstrate any catastrophic failure but rather intermediate states during fuel cell operation and indications to proceed with targeted HT-PEMFC optimization.

  18. Amplified release through the stimulus triggered degradation of self-immolative oligomers, dendrimers, and linear polymers.

    Science.gov (United States)

    Wong, Andrew D; DeWit, Matthew A; Gillies, Elizabeth R

    2012-08-01

    In recent years, numerous delivery systems based on polymers, dendrimers, and nano-scale assemblies have been developed to improve the properties of drug molecules. In general, for the drug molecules to be active, they must be released from these delivery systems, ideally in a selective manner at the therapeutic target. As the changes in physiological conditions are relatively subtle from one tissue to another and the concentrations of specific enzymes are often quite low, a release strategy involving the amplification of a biological signal is particularly attractive. This article describes the development of oligomers, dendrimers, and linear polymers based on self-immolative spacers. This new class of molecules is designed to undergo a cascade of intramolecular reactions in response to the cleavage of a trigger moiety, resulting in molecular fragmentation and the release of multiple reporter or drug molecules. Progress in the development of these materials as drug delivery vehicles and sensors will be highlighted. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Durability and degradation analysis of hydrocarbon ionomer membranes in polymer electrolyte fuel cells accelerated stress evaluation

    Science.gov (United States)

    Shimizu, Ryo; Tsuji, Junichi; Sato, Nobuyuki; Takano, Jun; Itami, Shunsuke; Kusakabe, Masato; Miyatake, Kenji; Iiyama, Akihiro; Uchida, Makoto

    2017-11-01

    The chemical durabilities of two proton-conducting hydrocarbon polymer electrolyte membranes, sulfonated benzophenone poly(arylene ether ketone) (SPK) semiblock copolymer and sulfonated phenylene poly(arylene ether ketone) (SPP) semiblock copolymer are evaluated under accelerated open circuit voltage (OCV) conditions in a polymer electrolyte fuel cell (PEFC). Post-test characterization of the membrane electrodes assemblies (MEAs) is carried out via gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. These results are compared with those of the initial MEAs. The SPP cell shows the highest OCV at 1000 h, and, in the post-test analysis, the SPP membrane retains up to 80% of the original molecular weight, based on the GPC results, and 90% of the hydrophilic structure, based on the NMR results. The hydrophilic structure of the SPP membrane is more stable after the durability evaluation than that of the SPK. From these results, the SPP membrane, with its simple hydrophilic structure, which does not include ketone groups, is seen to be significantly more resistant to radical attack. This structure leads to high chemical durability and thus impedes the chemical decomposition of the membrane.

  20. Radiation resistance of polymer materials. Degradation evaluation by accelerated testing for application condition

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Sorimachi, Masami

    2010-02-01

    This paper presents re-evaluated radiation resistance property data of polymer materials, which had been tested in past times in TAKASAKI Quantum Beam Science Directorate, for the future study of ageing evaluation of low voltage electric cable insulation materials used in light-water nuclear reactors. The radiation resistance of 25 types of plastics and rubbers materials applied in practical environments was evaluated by the accelerated testing of gamma-ray irradiation under oxygen pressure, and was compared with the radiation resistance determined from the traditional testing by irradiation with a high dose rate in air. The polymer materials were formulated to be similar or equivalent to practical materials, and the most of formulation (chemical compounds and quantities) were described. For all materials, the tensile properties (elongation at break, ultimate strength, 100% or 200% modulus), electric resistivity, gel-fraction, and density were measured after irradiation in oxidation conditions and irradiation in air with a high dose rate (non-oxidation conditions). The data of relations between each properties and total dose at various conditions were compiled, and the relations among the changes of mechanical properties, electrical properties, and radiation induced chemical reactions were discussed. (author)

  1. Control of radio degradation of natural polymers by measurement of viscosity and molecular weight determination

    International Nuclear Information System (INIS)

    Nabinger Machado, Patricia; Cerchietti, Maria Luciana; Mondino, Angel V.; Smolko, Eduardo E.

    2009-01-01

    Applications are now being made in various fields of oligosaccharides obtained by the depolymerization of large molecules such as natural alginates, carrageenan, pectin and chitosan. Find use in various disciplines such as crop production, sanitation, pharmacy, cosmetics, etc. Given the diversity of origins of these materials, almost all of marine origin, was the need for universal methods for recognition and composition, then the possible ways to get processed. A centralized program by the IAEA is promoting the use of ionizing radiation for these changes. This paper resents the calculations used to obtain the molecular weight of polysaccharides from determinations of viscosity. It has been found the molecular weight of sodium alginate and kappa-carrageenan irradiated with cobalt-60 gamma rays at doses between 2 and 35 kGy in solid state. We used a capillary Cannon Viscometer Ubbelohde-type and a protocol for standardized calculation procedure for this purpose. Were obtained reading times for passage through the capillary Viscometer, with various concentrations of polymer solutions of virgin material and the irradiated and from there calculated the relative viscosities, specific, inherent, reduced and intrinsic and then using the ratio of Mark-Houwink-SAKURADA calculate the viscosity average molecular weight of the different polymers. The changes found in the molecular weights by radio-depolymerization reach two orders of magnitude in some cases giving oligosaccharides of 8-12 monomer units. It is considered that this depolymerization method is effective and inexpensive compared to enzymatic or chemical methods. (author)

  2. Stabilization of nanosized titanium dioxide by cyclodextrin polymers and its photocatalytic effect on the degradation of wastewater pollutants.

    Science.gov (United States)

    Agócs, Tamás Zoltán; Puskás, István; Varga, Erzsébet; Molnár, Mónika; Fenyvesi, Éva

    2016-01-01

    Advanced oxidation processes (AOPs) are considered highly competitive water treatment technologies for the removal of organic pollutants. Among AOP techniques, photocatalysis has recently been the most widely studied. Our aims were to investigate how the dispersion of nanosized titanium dioxide (nanoTiO 2 ) applied in photodegradation-based procedures can be stabilized with cyclodextrins in order to obtain a new, more efficient photocatalyst for the purification of waters polluted by xenobiotics applying UV irradiation. During our work, on the one hand, we studied the behavior and stability of nanoTiO 2 in cyclodextrin solutions. On the other hand, we used various monomer and polymer cyclodextrin derivatives, and assessed the options for nanoTiO 2 stabilization in the presence of various salts and tap water on the basis of turbidity tests. The physical stability of nanoTiO 2 dispersions is diminished in the presence of the salts found in tap water (and occurring also in surface waters and ground water) and they are precipitated immediately. This colloidal instability can be improved by cyclodextrin derivatives. Based on the results of our studies we have selected carboxymethyl β-cyclodextrin polymer (CMBCD-P) for stabilization of nanoTiO 2 dispersions. The photocatalytic degradation of methylene blue and ibuprofen as model organic pollutants in various media (distilled water, NaCl solution and tap water) has been studied using nanoTiO 2 as catalyst stabilized by CMBCD-P. CMBCD-P itself showed a catalytic effect on the UV degradation of methylene blue. In addition to enhancing the colloid stability of nanoTiO 2 CMBCD-P showed also synergistic effects in catalyzing the photodecomposition process of the dye. On the other hand, ibuprofen as a model pharmaceutical, a pollutant of emerging concern (EP), was protected by CMBCD-P against the photocatalytic degradation showing that inclusion complex formation can result in opposite effects depending on the structure of the

  3. Stabilization of nanosized titanium dioxide by cyclodextrin polymers and its photocatalytic effect on the degradation of wastewater pollutants

    Directory of Open Access Journals (Sweden)

    Tamás Zoltán Agócs

    2016-12-01

    Full Text Available Advanced oxidation processes (AOPs are considered highly competitive water treatment technologies for the removal of organic pollutants. Among AOP techniques, photocatalysis has recently been the most widely studied. Our aims were to investigate how the dispersion of nanosized titanium dioxide (nanoTiO2 applied in photodegradation-based procedures can be stabilized with cyclodextrins in order to obtain a new, more efficient photocatalyst for the purification of waters polluted by xenobiotics applying UV irradiation. During our work, on the one hand, we studied the behavior and stability of nanoTiO2 in cyclodextrin solutions. On the other hand, we used various monomer and polymer cyclodextrin derivatives, and assessed the options for nanoTiO2 stabilization in the presence of various salts and tap water on the basis of turbidity tests. The physical stability of nanoTiO2 dispersions is diminished in the presence of the salts found in tap water (and occurring also in surface waters and ground water and they are precipitated immediately. This colloidal instability can be improved by cyclodextrin derivatives. Based on the results of our studies we have selected carboxymethyl β-cyclodextrin polymer (CMBCD-P for stabilization of nanoTiO2 dispersions. The photocatalytic degradation of methylene blue and ibuprofen as model organic pollutants in various media (distilled water, NaCl solution and tap water has been studied using nanoTiO2 as catalyst stabilized by CMBCD-P. CMBCD-P itself showed a catalytic effect on the UV degradation of methylene blue. In addition to enhancing the colloid stability of nanoTiO2 CMBCD-P showed also synergistic effects in catalyzing the photodecomposition process of the dye. On the other hand, ibuprofen as a model pharmaceutical, a pollutant of emerging concern (EP, was protected by CMBCD-P against the photocatalytic degradation showing that inclusion complex formation can result in opposite effects depending on the structure

  4. Use of phytoproductivity data in the choice of native plant species to restore a degraded coal mining site amended with a stabilized industrial organic sludge.

    Science.gov (United States)

    Chiochetta, Claudete G; Toumi, Hela; Böhm, Renata F S; Engel, Fernanda; Poyer-Radetski, Gabriel; Rörig, Leonardo R; Adani, Fabrizio; Radetski, Claudemir M

    2017-11-01

    Coal mining-related activities result in a degraded landscape and sites associated with large amounts of dumped waste material. The arid soil resulting from acid mine drainage affects terrestrial and aquatic ecosystems, and thus, site remediation programs must be implemented to mitigate this sequential deleterious processes. A low-cost alternative material to counterbalance the affected physico-chemical-microbiological aspects of the degraded soil is the amendment with low contaminated and stabilized industrial organic sludge. The content of nutrients P and N, together with stabilized organic matter, makes this material an excellent fertilizer and soil conditioner, fostering biota colonization and succession in the degraded site. However, choice of native plant species to restore a degraded site must be guided by some minimal criteria, such as plant survival/adaptation and plant biomass productivity. Thus, in this 3-month study under environmental conditions, phytoproductivity tests with five native plant species (Surinam cherry Eugenia uniflora L., C. myrianthum-Citharexylum myrianthum, Inga-Inga spp., Brazilian peppertree Schinus terebinthifolius, and Sour cherry Prunus cerasus) were performed to assess these criteria, and additional biochemical parameters were measured in plant tissues (i.e., protein content and peroxidase activity) exposed to different soil/sludge mixture proportions. The results show that three native plants were more adequate to restore vegetation on degraded sites: Surinam cherry, C. myrianthum, and Brazilian peppertree. Thus, this study demonstrates that phytoproductivity tests associated with biochemical endpoint measurements can help in the choice of native plant species, as well as aiding in the choice of the most appropriate soil/stabilized sludge proportion in order to optimize biomass production.

  5. Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: a comparative study of waste-polymer-based, coal-based activated carbon, and carbon nanotubes.

    Science.gov (United States)

    Lian, Fei; Chang, Chun; Du, Yang; Zhu, Lingyan; Xing, Baoshan; Liu, Chang

    2012-01-01

    Adsorption of the hydrophobic organic compounds (HOCs) trichloroethylene (TCE), 1,3-dichlorobenzene (DCB), 1,3-dinitrobenzene (DNB) and gamma-hexachlorocyclohexane (HCH) on five different carbonaceous materials was compared. The adsorbents included three polymer-based activated carbons, one coal-based activated carbon (F400) and multiwalled carbon nanotubes (MWNT). The polymer-based activated carbons were prepared using KOH activation from waste polymers: polyvinyl chloride (PVC), polyethyleneterephthalate (PET) and tire rubber (TR). Compared with F400 and MWNT, activated carbons derived from PVC and PET exhibited fast adsorption kinetics and high adsorption capacity toward the HOCs, attributed to their extremely large hydrophobic surface area (2700 m2/g) and highly mesoporous structures. Adsorption of small-sized TCE was stronger on the tire-rubber-based carbon and F400 resulting from the pore-filling effect. In contrast, due to the molecular sieving effect, their adsorption on HCH was lower. MWNT exhibited the lowest adsorption capacity toward HOCs because of its low surface area and characteristic of aggregating in aqueous solution.

  6. Injectable, degradable, electroactive nanocomposite hydrogels containing conductive polymer nanoparticles for biomedical applications.

    Science.gov (United States)

    Wang, Qinmei; Wang, Qiong; Teng, Wei

    2016-01-01

    Injectable electroactive hydrogels (eGels) are promising in regenerative medicine and drug delivery, however, it is still a challenge to obtain such hydrogels simultaneously possessing other properties including uniform structure, degradability, robustness, and biocompatibility. An emerging strategy to endow hydrogels with desirable properties is to incorporate functional nanoparticles in their network. Herein, we report the synthesis and characterization of an injectable hydrogel based on oxidized alginate (OA) crosslinking gelatin reinforced by electroactive tetraaniline-graft-OA nanoparticles (nEOAs), where nEOAs are expected to impart electroactivity besides reinforcement without significantly degrading the other properties of hydrogels. Assays of transmission electron microscopy, (1)H nuclear magnetic resonance, and dynamic light scattering reveal that EOA can spontaneously and quickly self-assemble into robust nanoparticles in water, and this nanoparticle structure can be kept at pH 3~9. Measurement of the gel time by rheometer and the stir bar method confirms the formation of the eGels, and their gel time is dependent on the weight content of nEOAs. As expected, adding nEOAs to hydrogels does not cause the phase separation (scanning electron microscopy observation), but it improves mechanical strength up to ~8 kPa and conductivity up to ~10(-6) S/cm in our studied range. Incubating eGels in phosphate-buffered saline leads to their further swelling with an increase of water content <6% and gradual degradation. When growing mesenchymal stem cells on eGels with nEOA content ≤14%, the growth curves and morphology of cells were found to be similar to that on tissue culture plastic; when implanting these eGels on a chick chorioallantoic membrane for 1 week, mild inflammation response appeared without any other structural changes, indicating their good in vitro and in vivo biocompatibility. With injectability, uniformity, degradability, electroactivity, relative

  7. Injectable, degradable, electroactive nanocomposite hydrogels containing conductive polymer nanoparticles for biomedical applications

    Directory of Open Access Journals (Sweden)

    Wang QM

    2016-01-01

    Full Text Available Qinmei Wang,1 Qiong Wang,2 Wei Teng2 1Laboratory of Biomaterials, Key Laboratory on Assisted Circulation, Ministry of Health, Cardiovascular Division, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China; 2Department of Prosthodontics, Hospital of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China Abstract: Injectable electroactive hydrogels (eGels are promising in regenerative medicine and drug delivery, however, it is still a challenge to obtain such hydrogels simultaneously possessing other properties including uniform structure, degradability, robustness, and biocompatibility. An emerging strategy to endow hydrogels with desirable properties is to incorporate functional nanoparticles in their network. Herein, we report the synthesis and characterization of an injectable hydrogel based on oxidized alginate (OA crosslinking gelatin reinforced by electroactive tetraaniline-graft-OA nanoparticles (nEOAs, where nEOAs are expected to impart electroactivity besides reinforcement without significantly degrading the other properties of hydrogels. Assays of transmission electron microscopy, 1H nuclear magnetic resonance, and dynamic light scattering reveal that EOA can spontaneously and quickly self-assemble into robust nanoparticles in water, and this nanoparticle structure can be kept at pH 3~9. Measurement of the gel time by rheometer and the stir bar method confirms the formation of the eGels, and their gel time is dependent on the weight content of nEOAs. As expected, adding nEOAs to hydrogels does not cause the phase separation (scanning electron microscopy observation, but it improves mechanical strength up to ~8 kPa and conductivity up to ~10-6 S/cm in our studied range. Incubating eGels in phosphate-buffered saline leads to their further swelling with an increase of water content <6% and gradual degradation

  8. Synthesis of the Markov model of the thermochemical degradation of a polymer in solution

    Directory of Open Access Journals (Sweden)

    V. K. Bityukov

    2017-01-01

    Full Text Available The paper deals with the problem of mathematical modeling of thermochemical destruction process. The apparatus of Markov's chains is used to synthesize a mathematical model. The authors of the study suggest to consider the destruction process as a random one, where the system state changes, which is characterized by the proportion of macromolecules in each fraction of the molecular- and weight distribution. The intensities of transitions from one state to another characterize the corresponding rates of destruction processes for each fraction of the molecular- and weight distribution. The processes of crosslinking and polymerization in this work were neglected, and it was accepted that there is a probability of transition from any state with a lower order index (corresponding to fractions with higher molecular weights to any state with a higher index (corresponding to fractions with lower molecular weights. Markov's chain with discrete states and continuous time was taken as the mathematical model basis. Interactive graphical simulation environment MathWorksSimulink was used as a simulation environment. Experimental studies of polybutadiene destruction in solution were carried out to evaluate the mathematical model parameters. The GPC (gel-penetration chromatography data of the polybutadiene solution were used as the initial (starting data for estimating the polymer WMD (molecular weight distribution. Mean-square deviation of the calculated data from the experimental data for each fraction and at specified times was minimized for the numerical search of parameter values. The results of comparison of experimental and calculated on mathematical model data showed an error of calculations on the average about 5%, which indicates an acceptable error in estimating of polymer fractions proportions change during the process of destruction for the process under consideration and conditions.

  9. Long-term degradation of organic polymers under conditions found in deep repositories for low and intermediate-level wastes; Langzeit-Degradation von organischen Polymeren unter SMA-Tiefenlagerbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Warthmann, R.; Mosberger, L.; Baier, U.

    2013-06-15

    On behalf of Nagra, the Environmental Biotechnology Section of the Zürich University of Applied Sciences in Wädenswil investigated the potential for microbiological degradation of organic polymers under the conditions found in a deep geological repository for low- and intermediate-level waste (L/ILW). The existing scientific literature on the topic was analysed, some thermodynamic calculations carried out and input was elicited from internationally recognised experts in the field. The study was restricted to a few substances which, in terms of mass, are most significant in the Swiss L/ILW inventory; these are polystyrene (PS), polyvinyl chloride (PVC), other plastics and bitumen. There were no clear indications in the literature that the polymer structure of synthetic polymers is biodegraded under anoxic conditions. However, functional groups of ion exchangers and plasticizers in plastics are considered to be readily available and biodegradable. The greatest obstacle to biological degradation of synthetic polymers is depolymerisation to produce labile monomers. As energy is generally required for such breakdown, the chances of this process taking place outside the cells are very low. In so far as they are present, monomers are, in principle, anaerobically biodegradable. Thermodynamic considerations indicate that degradation of synthetic polymers under repository conditions is theoretically possible. However, the degradation of polystyrene is very close to thermodynamic equilibrium and the usable energy for microorganisms would barely be sufficient. Under high H2 partial pressures, it is predicted that there will be a thermodynamic inhibition of anaerobic degradation, as certain interim steps in degradation are endergonic. The starting conditions for microbial growth in a deep repository are unfavourable in terms of availability of water and prevailing pH values. Practically no known microorganisms can tolerate the combination of these conditions; most known

  10. Gold nanoworms immobilized graphene oxide polymer brush nanohybrid for catalytic degradation studies of organic dyes

    International Nuclear Information System (INIS)

    Mogha, Navin Kumar; Gosain, Saransh; Masram, Dhanraj T.

    2017-01-01

    Highlights: • AuNPs on PDMAEMA brushes immobilized reduced graphene oxide was used as catalyst. • A novel highly efficient, reusable heterogeneous catalyst for dyes degradation. • Rhodamine B, Methyl Orange and Eosin Y was used for study. • Apparent rate constant observed was 21.8, 26.2, and 8.7 (×10 −3 s −1 ) respectively. - Abstract: In the present work, we report gold nanoparticles (AuNPs) on poly (dimethylaminoethyl methacrylate) (PDMAEMA) brushes immobilized reduced graphene oxide (Au/PDMAEMA/RGO) as catalyst for degradation kinetic studies of Rhodamine B (RB), Methyl Orange (MO) and Eosine Y (EY) dyes, having an excellent catalytic activity, as evident by the apparent rate constant (k app ), which is found to be 21.8, 26.2, and 8.7 (×10 −3 s −1 ), for RB, MO and EY respectively. Au/PDMAEMA/RGO catalyst is easy to use, highly efficient, recyclable, which make it suitable for applications in waste water management. Foremost, synthesis of PDMAEMA brushes on graphene oxide is accomplished by Atom transfer radical polymerization method (ATRP), whereas AuNPs are synthesized by simple chemical reduction method.

  11. Gold nanoworms immobilized graphene oxide polymer brush nanohybrid for catalytic degradation studies of organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Mogha, Navin Kumar; Gosain, Saransh; Masram, Dhanraj T., E-mail: dhnaraj_masram27@rediffmail.com

    2017-02-28

    Highlights: • AuNPs on PDMAEMA brushes immobilized reduced graphene oxide was used as catalyst. • A novel highly efficient, reusable heterogeneous catalyst for dyes degradation. • Rhodamine B, Methyl Orange and Eosin Y was used for study. • Apparent rate constant observed was 21.8, 26.2, and 8.7 (×10{sup −3} s{sup −1}) respectively. - Abstract: In the present work, we report gold nanoparticles (AuNPs) on poly (dimethylaminoethyl methacrylate) (PDMAEMA) brushes immobilized reduced graphene oxide (Au/PDMAEMA/RGO) as catalyst for degradation kinetic studies of Rhodamine B (RB), Methyl Orange (MO) and Eosine Y (EY) dyes, having an excellent catalytic activity, as evident by the apparent rate constant (k{sub app}), which is found to be 21.8, 26.2, and 8.7 (×10{sup −3} s{sup −1}), for RB, MO and EY respectively. Au/PDMAEMA/RGO catalyst is easy to use, highly efficient, recyclable, which make it suitable for applications in waste water management. Foremost, synthesis of PDMAEMA brushes on graphene oxide is accomplished by Atom transfer radical polymerization method (ATRP), whereas AuNPs are synthesized by simple chemical reduction method.

  12. Study on performance simulation of polymer electrolyte fuel cell for preventing degradation

    International Nuclear Information System (INIS)

    Kobayashi, T; Doi, M; Fukuda, T; Hashimoto, R; Kanematsu, H; Utsumi, Y

    2013-01-01

    In the present study, the distribution of water content in the membrane of PEFC was analyzed by using a numerical simulation as well as understanding the behavior of internal moisture of PEFC. Eight parameters were selected for the simulation then 18 combinations of the parameters were allocated by design of experiments, thus the data obtained were analyzed by multiple regression analysis to understand the influence factor of operating conditions quantitatively. As a result, the influence of the operating parameters on the dryness of the membrane for the anode side and the cathode side of PEFC was quantitatively shown by using the method of the multiple regression analysis. Further it was found that the area where cerium carbonate ought to be coated for preventing the degradation without decreasing performance.

  13. Gold nanoworms immobilized graphene oxide polymer brush nanohybrid for catalytic degradation studies of organic dyes

    Science.gov (United States)

    Mogha, Navin Kumar; Gosain, Saransh; Masram, Dhanraj T.

    2017-02-01

    In the present work, we report gold nanoparticles (AuNPs) on poly (dimethylaminoethyl methacrylate) (PDMAEMA) brushes immobilized reduced graphene oxide (Au/PDMAEMA/RGO) as catalyst for degradation kinetic studies of Rhodamine B (RB), Methyl Orange (MO) and Eosine Y (EY) dyes, having an excellent catalytic activity, as evident by the apparent rate constant (kapp), which is found to be 21.8, 26.2, and 8.7 (×10-3 s-1), for RB, MO and EY respectively. Au/PDMAEMA/RGO catalyst is easy to use, highly efficient, recyclable, which make it suitable for applications in waste water management. Foremost, synthesis of PDMAEMA brushes on graphene oxide is accomplished by Atom transfer radical polymerization method (ATRP), whereas AuNPs are synthesized by simple chemical reduction method.

  14. Oxidative degradation processes in synthetic and biological polymers as studied by pulse radiolysis experiments

    International Nuclear Information System (INIS)

    Schnabel, W.

    1986-01-01

    On the basis of pulse radiolysis experiments carried out with various polymers in dilute solution three modes of action of molecular oxygen, O 2 can be discriminated with respect to main-chain scission: (a) O 2 acts as a promoter, (b) O 2 acts as an inhibitor, and (c) O 2 acts as a fixing agent for main-chain breaks. The promoting mode of action (a) is due to the inhibition of simultaneously occurring intermolecular crosslinking and/or to the combination of peroxyl radicals with the subsequent formation of readily decomposing oxyl radicals. The inhibiting mode of action (b) pertains to the reaction of O 2 with macroradicals that otherwise undergo main-chain rupture. Fixing of main-chain ruptures (mode c) becomes important if macroradicals generated by a very fast rupture of bonds in the main chain are prone to recombine quickly. This mode of action was evidenced in the case of polybutenesulfone, where main-chain scission involves the extrusion of small segments of the chain. (author)

  15. Coal background paper. Coal demand

    International Nuclear Information System (INIS)

    1997-01-01

    Statistical data are presented on coal demands in IEA and OECD member countries and in other countries. Coal coaking and coaking coal consumption data are tabulated, and IEA secretariat's coal demand projections are summarized. Coal supply and production data by countries are given. Finally, coal trade data are presented, broken down for hard coal, steam coal, coking coal (imports and export). (R.P.)

  16. Accumulated polymer degradation products as effector molecules in cytotoxicity of polymeric nanoparticles.

    Science.gov (United States)

    Singh, Raman Preet; Ramarao, Poduri

    2013-11-01

    Polymeric nanoparticles (PNPs) are a promising platform for drug, gene, and vaccine delivery. Although generally regarded as safe, the toxicity of PNPs is not well documented. The present study investigated in vitro toxicity of poly-ε-caprolactone, poly(DL-lactic acid), poly(lactide-cocaprolactone), and poly(lactide-co-glycide) NPs and possible mechanism of toxicity. The concentration-dependent effect of PNPs on cell viability was determined in a macrophage (RAW 264.7), hepatocyte (Hep G2), lung epithelial (A549), kidney epithelial (A498), and neuronal (Neuro 2A) cell lines. PNPs show toxicity at high concentrations in all cell lines. PNPs were efficiently internalized by RAW 264.7 cells and stimulated reactive oxygen species and tumor necrosis factor-alpha production. However, reactive nitrogen species and interleukin-6 production as well as lysosomal and mitochondrial stability remained unaffected. The intracellular degradation of PNPs was determined by monitoring changes in osmolality of culture medium and a novel fluorescence recovery after quenching assay. Cell death showed a good correlation with osmolality of culture medium suggesting the role of increased osmolality in cell death.

  17. Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: A comparative study of waste-polymer-based,coal-based activated carbon, and carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Fei Lian; Chun Chang; Yang Du; Lingyan Zhu; Baoshan Xing; Chang Liu

    2012-01-01

    Adsorption of the hydrophobic organic compounds (HOCs) trichloroethylene (TCE),1,3-dichlorobenzene (DCB),1,3-dinitrobenzene (DNB) and γ-hexachlorocyclohexane (HCH) on five different carbonaceous materials was compared.The adsorbents included three polymer-based activated carbons,one coal-based activated carbon (F400) and multiwalled carbon nanotubes (MWNT).The polymerbased activated carbons were prepared using KOH activation from waste polymers:polyvinyl chloride (PVC),polyethyleneterephthalate (PET) and tire rubber (TR).Compared with F400 and MWNT,activated carbons derived from PVC and PET exhibited fast adsorption kinetics and high adsorption capacity toward the HOCs,attributed to their extremely large hydrophobic surface area (2700 m2/g) and highly mesoporous structures.Adsorption of small-sized TCE was stronger on the tire-rubber-based carbon and F400 resulting from the pore-filling effect.In contrast,due to the molecular sieving effect,their adsorption on HCH was lower.MWNT exhibited the lowest adsorption capacity toward HOCs because of its low surface area and characteristic of aggregating in aqueous solution.

  18. The guanidinium group as a key part of water-soluble polymer carriers for siRNA complexation and protection against degradation.

    Science.gov (United States)

    Tabujew, Ilja; Freidel, Christoph; Krieg, Bettina; Helm, Mark; Koynov, Kaloian; Müllen, Klaus; Peneva, Kalina

    2014-07-01

    Here, the preparation of a novel block copolymer consisting of a statistical copolymer N-(2-hydroxypropyl) methacrylamide-s-N-(3-aminopropyl) methacrylamide and a short terminal 3-guanidinopropyl methacrylamide block is reported. This polymer structure forms neutral but water-soluble nanosized complexes with siRNA. The siRNA block copolymer complexes are first analyzed using agarose gel electrophoresis and their size is determined with fluorescence correlation spectroscopy. The protective properties of the polymer against RNA degradation are investigated by treating the siRNA block copolymer complexes with RNase V1. Heparin competition assays confirm the efficient release of the cargo in vitro. In addition, the utilization of microscale thermophoresis is demonstrated for the determination of the binding strength between a fluorescently labeled polyanion and a polymer molecule. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Special Issue: The 7th International Conference on Modification, Degradation and Stabilisation of polymers (MoDeSt)

    Czech Academy of Sciences Publication Activity Database

    Al-Malaika, S. (ed.); George, G. (ed.); Pilař, Jan (ed.)

    2013-01-01

    Roč. 98, č. 12 (2013) ISSN 0141-3910. [MoDeSt Conference /7./. Prague, 02.09.2012-06.09.2012] Institutional support: RVO:61389013 Keywords : stabilization of polymer systems * polymer nanoparticles * fire retardant polymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.633, year: 2013

  20. Study of the raw material base for a by-product coke plant by the method of thermal degradation of coal in a centrifugal field

    Energy Technology Data Exchange (ETDEWEB)

    Epimakhov, N.M.; Kardashova, V.F.; Sulimova, E.I.

    1982-01-01

    Coals from the Donbass and Karaganda basins, being supplied to a Bagley by-product coke plant were studied. A sharp distinction between coals of different degrees of metamorphism in respect to the yield of liquid nonvolatile products was demonstrated. A difference in respect to this index was recognized for individual coals from one and the same technological group from a single basin.

  1. Enhanced degradation of phenolic compounds in coal gasification wastewater by a novel integration of micro-electrolysis with biological reactor (MEBR) under the micro-oxygen condition.

    Science.gov (United States)

    Ma, Weiwei; Han, Yuxing; Xu, Chunyan; Han, Hongjun; Ma, Wencheng; Zhu, Hao; Li, Kun; Wang, Dexin

    2018-03-01

    The aim of this work was to study an integration of micro-electrolysis with biological reactor (MEBR) for strengthening removal of phenolic compounds in coal gasification wastewater (CGW). The results indicated MEBR achieved high efficiencies in removal of COD and phenolic compounds as well as improvement of biodegradability of CGW under the micro-oxygen condition. The integrated MEBR process was more favorable to improvement of the structural stability of activated sludge and biodiversity of specific functional microbial communities. Especially, Shewanella and Pseudomonas were enriched to accelerate the extracellular electron transfer, finally facilitating the degradation of phenolic compounds. Moreover, MEBR process effectively relieved passivation of Fe-C filler surface and prolonged lifespan of Fe-C filler. Accordingly, the synergetic effect between iron-carbon micro-electrolysis (ICME) and biological action played a significant role in performance of the integrated process. Therefore, the integrated MEBR was a promising practical process for enhancing CGW treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Hydrothermal synthesis of Bismuth(III) coordination polymer and its transformation to nano α-Bi{sub 2}O{sub 3} for photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ya-Jing; Zheng, Yue-Qing, E-mail: zhengnbu@163.com; Zhu, Hong-Lin; Wang, Jin-Jian

    2016-07-15

    A new Bi(III) coordination polymer Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O (H{sub 2}pdc=pyridine-2,6-dicarboxylic acid) was synthesized by hydrothermal method. Solid state thermal decomposition of this complex under 500 °C for 1 h led to the foliated Bi{sub 2}O{sub 3} nanoparticles, which were then characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Comparative study on their photocatalytic activity toward the degradation of rhodamine B (RhB), methylene blue (MB) and methyl orange (MO) in polluted water was explored, and the mechanism of these photocatalytic degradation was discussed. These results provided some interesting insights into their photocatalytic applications. - Graphical abstract: We regard Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O with 1D chain structures as the precursor, then calcinate the complex to prepare nano-powder α-Bi{sub 2}O{sub 3}. The photochemical experiment indicates that Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O can be used as an efficient photocatalyst for the degradation of RhB and MB. Interestingly, nano α-Bi{sub 2}O{sub 3} shows higher activity than the commercial Bi{sub 2}O{sub 3} for the degradation of RhB, MB or MO. Display Omitted - Highlights: • A novel dinuclear Bi(III) coordination polymer is hydrothermally synthesized. • Calcinating the precursor Bi-CP will result in the nano Bi{sub 2}O{sub 3} with foliated morphology. • Nano Bi{sub 2}O{sub 3} shows higher activity than the commercial Bi{sub 2}O{sub 3} for the degradation of dyes.

  3. Coal geopolitics

    International Nuclear Information System (INIS)

    Giraud, P.N.; Suissa, A.; Coiffard, J.; Cretin, D.

    1991-01-01

    This book divided into seven chapters, describes coal economic cycle. Chapter one: coals definition; the principle characteristics and properties (origin, calorific power, international classification...) Chapter two: the international coal cycle: coal mining, exploration, coal reserves estimation, coal handling coal industry and environmental impacts. Chapter three: the world coal reserves. Chapter four: the consumptions, productions and trade. Chapter five: the international coal market (exporting mining companies; importing companies; distributors and spot market operators) chapter six: the international coal trade chapter seven: the coal price formation. 234 refs.; 94 figs. and tabs [fr

  4. Effect of chemical functionalization on the electrochemical properties of conducting polymers. Modification of polyaniline by diazonium ion coupling and subsequent reductive degradation

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, Diego F.; Rivarola, Claudia R.; Miras, Maria C. [Departamento de Quimica, Universidad Nacional de Rio Cuarto, Ruta Nacional 8, Km 601, X5804ZAB, Rio Cuarto, Cordoba (Argentina); Barbero, Cesar A., E-mail: cbarbero@exa.unrc.edu.a [Departamento de Quimica, Universidad Nacional de Rio Cuarto, Ruta Nacional 8, Km 601, X5804ZAB, Rio Cuarto, Cordoba (Argentina)

    2011-04-01

    The electrochemical properties of polyaniline (PANI) can be altered by coupling the polymer with aryldiazonium ions. The ions are synthesized by diazotization of aromatic primary amines (1-aminoanthraquinone, sulphadiazine and 4-cyanoaniline) bearing functional groups which are then linked to the polyaniline backbone. All materials produced are electroactive, suggesting that the reaction involves coupling of the diazonium ion with the aromatic rings and not nucleophilic substitution by the aminic nitrogen of PANI on the aryl cations. The electrochemical properties of the modified polymers are different to those of PANI, likely due to electronic and steric effects of the attached groups. Reductive degradation of the azo linkages, using dithionite ion, removes the attached moieties leaving primary amino groups attached to the polyaniline backbone. In that way, the effect of the attached groups on the electrochemical properties of PANI is eliminated. FTIR spectroscopy measurement of the different polymers supports the proposed mechanism. Using the method a polymer containing redox (anthraquinone) groups, which could be used for charge storage, is obtained. Additionally a material containing sulphadiazine moieties, which can be released in vivo by bacterial activity, is also produced. The molecule is a well-known sulfa drug with bacteriostatic activity. The reaction sequence seems to be of general application to modify polyanilines, by attaching functional groups, and then to produce a PANI backbone bearing primary amino groups. Evidence is presented on the kinetic control of attached group removal.

  5. Effect of chemical functionalization on the electrochemical properties of conducting polymers. Modification of polyaniline by diazonium ion coupling and subsequent reductive degradation

    International Nuclear Information System (INIS)

    Acevedo, Diego F.; Rivarola, Claudia R.; Miras, Maria C.; Barbero, Cesar A.

    2011-01-01

    The electrochemical properties of polyaniline (PANI) can be altered by coupling the polymer with aryldiazonium ions. The ions are synthesized by diazotization of aromatic primary amines (1-aminoanthraquinone, sulphadiazine and 4-cyanoaniline) bearing functional groups which are then linked to the polyaniline backbone. All materials produced are electroactive, suggesting that the reaction involves coupling of the diazonium ion with the aromatic rings and not nucleophilic substitution by the aminic nitrogen of PANI on the aryl cations. The electrochemical properties of the modified polymers are different to those of PANI, likely due to electronic and steric effects of the attached groups. Reductive degradation of the azo linkages, using dithionite ion, removes the attached moieties leaving primary amino groups attached to the polyaniline backbone. In that way, the effect of the attached groups on the electrochemical properties of PANI is eliminated. FTIR spectroscopy measurement of the different polymers supports the proposed mechanism. Using the method a polymer containing redox (anthraquinone) groups, which could be used for charge storage, is obtained. Additionally a material containing sulphadiazine moieties, which can be released in vivo by bacterial activity, is also produced. The molecule is a well-known sulfa drug with bacteriostatic activity. The reaction sequence seems to be of general application to modify polyanilines, by attaching functional groups, and then to produce a PANI backbone bearing primary amino groups. Evidence is presented on the kinetic control of attached group removal.

  6. Degradation and stabilization of coal derived liquid. (IV). ; Effect of alcohol on coloration of coal derived light oil. Sekitan ekikayu no anteika. (IV). ; Sekitan ekikayu no chakushoku yokusei ni oyobosu alcohol no tenka koka

    Energy Technology Data Exchange (ETDEWEB)

    Ukegawa, K.; Matsumura, A.; Kondo, T. (National Research Institute for Pollution and Resources, Tsukuba (Japan)); TAhara, N. (Nitto Denko Corp., Osaka (Japan)); Nakamura, E. (New Energy and Industrial Technology Development Organization, Tokyo (Japan)); Niki, E. (The University of Tokyo, Tokyo (Japan). Research Center for ADvanced Science and Technology)

    1990-01-20

    In order to improve the color stability of a coal derived light oil, the effect of hydrotreating and various additives has been studied. The color stability has been evaluated through measuring changes in absorbance by flow-cell spectrophotometer. Following results have been obtained: The color stabilities of hydrotreated coal derived light oils were improved remarkably with increasing hydrotreating temperature and pressure. Mild hydrotreating made the color stability of the coal derived light oil much better than the fuel oil, even though the nitrogen removal was very small. Phenolic compounds additives could not improve the color stability of the coal derived light oil. Alcohol, especially methanol, made the coloration rate of the coal derived light oil small to a great extent, on account of hydrogen bonding between methanol and nitrogen compounds in the fuel oil. 4 refs., 4 figs., 3 tabs.

  7. Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2015-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2 and meth...

  8. In-situ radiation grafting of polymer films and degradation studies of monomers for applications in fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Mitov, S.

    2007-02-15

    The present work consists of three parts which deal with the optimization of the properties of polymers finding application as proton exchange membranes in PEMFCs. The focus is the oxidative and photochemical stability of non-fluorinated polymer membranes, as well as the radiation-induced grafting of commercially available fluoropolymer films. The use of the ESR technique is common for the first two parts of the dissertation. ESR spectroscopy is the major method of study, because of its sensitivity and specificity for the detection of radical intermediates. It is a suitable spectroscopic technique to identify the nature of radiation generated radicals in organic polymers, and to monitor their concentration in-situ during the grafting process. The third part comprises the results and discussions of DFT calculations for non-fluorinated and fluorinated fragments.

  9. Degradation of Fluorotelomer-Based Polymers Contributes to the Global Occurrence of Fluorotelomer Alcohol and Perfluoroalkyl Carboxylates: A Combined Dynamic Substance Flow and Environmental Fate Modeling Analysis.

    Science.gov (United States)

    Li, Li; Liu, Jianguo; Hu, Jianxin; Wania, Frank

    2017-04-18

    Using coupled dynamic substance flow and environmental fate models, CiP-CAFE and BETR-Global, we investigated whether the degradation of side-chain fluorotelomer-based polymers (FTPs), mostly in waste stocks (i.e., landfills and dumps), serves as a long-term source of fluorotelomer alcohols (FTOHs) and perfluoroalkyl carboxylates (PFCAs) to the global environment. The modeling results indicate that, in the wake of the worldwide transition from long-chain to short-chain products, in-use stocks of C8 FTPs will peak and decline afterward, while the in-use stocks of C6 FTPs, and the waste stocks of both FTPs will generally grow. FTP degradation in waste stocks is making an increasing contribution to FTOH generation, the bulk of which readily migrates from waste stocks and degrades into PFCAs in the environment; the remaining part of the generated FTOHs degrade in waste stocks, which makes those stocks reservoirs that slowly release PFCAs into the environment over the long run because of the low leaching rate and extreme persistence of PFCAs. Short-chain FTPs have higher relative release rates of PFCAs from waste stocks than long-chain ones. Estimates of in-use and waste stocks of FTPs were more sensitive to the selected lifespan of finished products, while those of the emissions of FTOHs and PFCAs were more sensitive to the degradation half-life of FTPs in waste stocks. Our preliminary calculations highlight the need for environmentally sound management of obsolete FTP-containing products into the foreseeable future.

  10. Statistical optimization and artificial neural network modeling for acridine orange dye degradation using in-situ synthesized polymer capped ZnO nanoparticles.

    Science.gov (United States)

    Dhiman, Nitesh; Markandeya; Singh, Amrita; Verma, Neeraj K; Ajaria, Nidhi; Patnaik, Satyakam

    2017-05-01

    ZnO NPs were synthesized by a prudent green chemistry approach in presence of polyacrylamide grafted guar gum polymer (pAAm-g-GG) to ensure uniform morphology, and functionality and appraised for their ability to degrade photocatalytically Acridine Orange (AO) dye. These ZnO@pAAm-g-GG NPs were thoroughly characterized by various spectroscopic, XRD and electron microscopic techniques. The relative quantity of ZnO NPs in polymeric matrix has been estimated by spectro-analytical procedure; AAS and TGA analysis. The impact of process parameters viz. NP's dose, contact time and AO dye concentration on percentage photocatalytic degradation of AO dyes were evaluated using multivariate optimizing tools, Response Surface Methodology (RSM) involving Box-Behnken Design (BBD) and Artificial Neural Network (ANN). Congruity of the BBD statistical model was implied by R 2 value 0.9786 and F-value 35.48. At RSM predicted optimal condition viz. ZnO@pAAm-g-GG NP's dose of 0.2g/L, contact time of 210min and AO dye concentration 10mg/L, a maximum of 98% dye degradation was obtained. ANOVA indicated appropriateness of the model for dye degradation owing to "Prob.>F" less than 0.05 for variable parameters. We further, employed three layers feed forward ANN model for validating the BBD process parameters and suitability of our chosen model. The evaluation of Levenberg-Marquardt algorithm (ANN1) and Gradient Descent with adaptive learning rate (ANN2) model employed to scrutinize the best method and found experimental values of AO dye degradation were in close to those with predicated value of ANN 2 modeling with minimum error. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. IR Laser-Induced Degradation of Poly(vinyl acetate): Novel Thermal Reactions in the Solid Polymers

    Czech Academy of Sciences Publication Activity Database

    Kupčík, Jaroslav; Blazevska-Gilev, J.; Pola, Josef

    2005-01-01

    Roč. 26, č. 5 (2005), s. 386-389 ISSN 1022-1336 R&D Projects: GA ČR(CZ) GA104/04/2028 Institutional research plan: CEZ:AV0Z40720504 Keywords : laser ablation * laser-induced polymers * poly(vinyl acetate) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.126, year: 2005

  12. Lignocellulose Biomass: Constitutive Polymers. Biological Processes of Lignin Degradation; Biomasa lignocelulosica, polimeros constitutivos. Procesos biologicos de degradacion de la lignina

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C; Manzanares, P

    1994-07-01

    The structure of the lignocellulosic materials and the chemical composition of their main constitutive polymers, cellulose, hemicelluloses and lignin are described. The most promising transformation processes according to the type of biomass considered: hardwood, softwood an herbaceous and the perspectives of biotechnological processes for bio pulping, bio bleaching and effluents decolorisation in the paper pulp industry are also discussed. (Author) 7 refs.

  13. Coating, Degrading and Testing of Organic Polymer Devices - Reducing the route from Laboratory to Production scale devices

    DEFF Research Database (Denmark)

    Dam, Henrik Friis

    volume, which for spin coating allowed making a single 1 cm2 device, using the mini roll coater (MRC) enable the coating of a 100 cm2 area, resulting in 60 1cm2 devices with the present mask designs. With the relative expensive polymers, this translates into a large saving for performing the same amount...

  14. A novel bio-degradable polymer stabilized Ag/TiO2 nanocomposites and their catalytic activity on reduction of methylene blue under natural sun light.

    Science.gov (United States)

    Geetha, D; Kavitha, S; Ramesh, P S

    2015-11-01

    In the present work we defined a novel method of TiO2 doped silver nanocomposite synthesis and stabilization using bio-degradable polymers viz., chitosan (Cts) and polyethylene glycol (PEG). These polymers are used as reducing agents. The instant formation of AgNPs was analyzed by visual observation and UV-visible spectrophotometer. TiO2 nanoparticles doped at different concentrations viz., 0.03, 0.06 and 0.09mM on PEG/Cts stabilized silver (0.04wt%) were successfully synthesized. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the nanomaterial, producing ternary hybrid inorganic-organic nanomaterials. The results reveal that they have higher photocatalytic efficiencies under natural sun light. The synthesized TiO2 doped Ag nanocomposites (NCs) were characterized by SEM/EDS, TEM, XRD, FTIR and DLS with zeta potential. The stability of Ag/TiO2 nanocomposite is due to the high negative values of zeta potential and capping of constituents present in the biodegradable polymer which is evident from zeta potential and FT-IR studies. The XRD and EDS pattern of synthesized Ag/TiO2 NCs showed their crystalline structure, with face centered cubic geometry oriented in (111) plane. AFM and DLS studies revealed that the diameter of stable Ag/TiO2 NCs was approximately 35nm. Moreover the catalytic activity of synthesize Ag/TiO2 NCs in the reduction of methylene blue was studied by UV-visible spectrophotometer. The synthesized Ag/TiO2 NCs are observed to have a good catalytic activity on the reduction of methylene blue by bio-degradable which is confirmed by the decrease in absorbance maximum value of methylene blue with respect to time using UV-vis spectrophotometer. The significant enhancement in the photocatalytic activity of Ag/TiO2 nanocomposites under sun light irradiation can be ascribed to the effect of noble metal Ag by acting as electron traps in TiO2 band gap. Copyright © 2015. Published by Elsevier Inc.

  15. Reactivities of polystyrenic polymers with supercritical water under nitrogen or air. Identification and formation of degradation compounds

    International Nuclear Information System (INIS)

    Dubois, M.A.; Dozol, J.F.; Massiani, C.; Ambrosio, M.

    1996-01-01

    Supercritical water oxidation (SCWO) could offer a viable treatment alternative to destroy the organic structure of ion-exchange resins (IER) that are radioactive process wastes and which contain radioactivity. The GC/MS technique was used successfully to identify the low-concentration degradation compounds that are present in the cold liquid effluent after SCWO of polystyrenic IER at 380 C (25.5 MPa). The study of the behavior of these IER in supercritical water enhances the role of temperature and the role of supercritical water in the degradation process. With the exception of acetic acid, the identified compounds are aromatic. The functional groups are released during the heating time, and they do not interfere in the degradation process. The oxidation involves a complex set of reaction pathways. A mechanism including parallel and competitive reactions is proposed

  16. A study of the degradation of polymers irradiated by Cn+ and On+ 9.6 MeV heavy ions

    Czech Academy of Sciences Publication Activity Database

    Mikšová, Romana; Macková, Anna; Malinský, Petr; Slepička, P.; Švorčík, V.

    2015-01-01

    Roč. 122, DEC (2015), s. 110-121 ISSN 0141-3910 R&D Projects: GA MŠk LM2011019; GA ČR GA15-01602S Institutional support: RVO:61389005 Keywords : energy loss * heavy ions * polymers * RBS/ERDA methods * AFM method Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.120, year: 2015

  17. Identification of Unsaturated and 2H Polyfluorocarboxylate Homologous Series and Their Detection in Environmental Samples and as Polymer Degradation Products

    Science.gov (United States)

    A pair of homologous series of polyfluorinated degradation products have been identified, both having structures similar to perfluorocarboxylic acids but (i) having a H substitution for F on the α carbon for 2H polyfluorocarboxylic acids (2HPFCAs) and (ii) bearing a double ...

  18. Hybrid composites of nano-sized zero valent iron and covalent organic polymers for groundwater contaminant degradation

    DEFF Research Database (Denmark)

    Mines, Paul D.; Byun, J.; Hwang, Yuhoon

    Zero valent iron is commonly used in a variety of treatment technologies (e.g. permeable reactive barriers), though recently a heavier focus has been placed on nano-sized zero valent iron (nZVI). Having superior reductive properties and large surface areas, nZVI is ideal for the degradation of ch...

  19. Degradation and protein release properties of microspheres prepared from biodegradable poly(lactide-co-glycolide) and ABA triblock copolymers: influence of buffer media on polymer erosion and bovine serum albumin release.

    Science.gov (United States)

    Bittner, B; Witt, C; Mäder, K; Kissel, T

    1999-08-05

    The aim of the present study was to investigate the influence of the chemical insertion of poly(ethylene oxide), PEO, into a poly(lactide-co-glycolide), PLG, backbone on the mechanisms of in vitro degradation and erosion of the polymer. For this purpose microspheres prepared by a modified W/O/W double emulsion technique using ABA triblock copolymers, consisting of PLG A-blocks attached to central PEO B-blocks were compared with microspheres prepared from PLG. Due to their molecular architecture the ABA triblock copolymers differed in their erosion and degradation behavior from PLG. Degradation occurred faster in the ABA polymers by cleavage of ester bonds inside the polymer backbone. Even erosion was shown to start immediately after incubation in different buffer media. By varying pH and ionic strength of the buffer it was found that both mass loss and molecular weight decay were accelerated in alkaline and acidic pH in the case of the ABA triblock copolymers. Although the pH of the medium had a moderate influence on the degradation of PLG, the molecular weight decay was not accompanied by a mass loss during the observation time. In a second set of experiments we prepared bovine serum albumin, BSA, loaded microspheres from both polymers. The release of BSA from ABA microspheres under in vitro conditions parallels the faster swelling and erosion rates. This could be confirmed by electron paramagnetic resonance, EPR, measurements with spin labeled albumin where an influx of buffer medium into the ABA microspheres was already observed within a few minutes. In contrast, PLG microspheres revealed a burst release without any erosion. The current study shows that the environmental conditions affected the degradation and erosion of the pure polymer microspheres in the same way as the release of the model protein. This leads to the conclusion that the more favorable degradation profile of the ABA triblock copolymers was responsible for the improvement of the release profile.

  20. Photo-isomerization induced rapid photo-degradation of optical nonlinearity in cyano substituted stilbene derivative doped poled polymer

    International Nuclear Information System (INIS)

    Yan Jieyun; Liu Liying; Ji Liyong; Ye Mingxin; Xu Lei; Wang Wencheng

    2004-01-01

    We found that, although alpha'-cyano-4'-nitro-4-N, N-dimethylaminostilbene has larger hyperpolarizability than that of conventional 4'-N, N-dimethylamino-nitrostilbene, the addition of the cyano group makes it much more easy to photo-isomerize, thus destroying the molecular ordering in poled chromophore doped polymers. Experimental evidence was obtained by monitoring the second-harmonic generation intensity, UV-Vis absorption spectrum, and FTIR spectrum. The photo-isomerization reaction process was monitored by optical pump induced absorption anisotropy measurement. Comparisons with the behaviour of a azobenzene dye are also made

  1. In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide)

    NARCIS (Netherlands)

    Zweers, M.L.T.; Engbers, G.H.M.; Grijpma, Dirk W.; Feijen, Jan

    2004-01-01

    Nanoparticles of poly(DL-lactic acid) (PDLLA), poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene oxide)–PLGA diblock copolymer (PEO–PLGA) were prepared by the salting-out method. The in vitro degradation of PDLLA, PLGA and PEO–PLGA nanoparticles in PBS (pH 7.4) at 37 °C was studied. The

  2. Radiation degradation of polymethacrylamide

    International Nuclear Information System (INIS)

    O'Connor, D.J.

    1984-01-01

    The effects of radiation on polymers have been studied for many years. When polymers are subjected to ultraviolet light or ionizing radiation, chain scission and crosslinking are possible. The radiation degradations of several methacrylate type polymers were investigated. The primary polymer studied was polymethacrylamide (PMAAm). Ultraviolet irradiated PMAAm yielded a five line ESR spectrum with 22 gauss splitting which is believed to arise from a polymeric radical ending with a methacrylamide unit. The results obtained indicate that polymethacrylamide is a polymer which undergoes main chain cleavage upon irradiation. As such this polymer may have potential applicability as a positive resist for fabrication of microelectronic devices

  3. New coal

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    Specially dedicated to coal, this edition comprises a series of articles of general interest dealing with the position of the French coalmining industry (interview with M.P. Gardent), the coal market in France, the work of CERCHAR, etc. New techniques, in-situ gasification of deep coal, gasification of coal by nuclear methods, the conversion of coal into petrol, the Emile Huchet power plant of Houilleres du Bassin de Lorraine, etc., are dealt with.

  4. Coal upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, S. [IEA Clean Coal Centre, London (United Kingdom)

    2009-10-15

    This report examines current technologies and those likely to be used to produce cleaner coal and coal products, principally for use in power generation and metallurgical applications. Consideration is also given to coal production in the leading coal producing countries, both with developed and developing industries. A range of technologies are considered. These include the coal-based liquid fuel called coal water mixture (CWM) that may compete with diesel, the production of ultra-clean coal (UCC) and coal liquefaction which competes with oil and its products. Technologies for upgrading coal are considered, especially for low rank coals (LRC), since these have the potential to fill the gap generated by the increasing demand for coal that cannot be met by higher quality coals. Potential advantages and downsides of coal upgrading are outlined. Taking into account the environmental benefits of reduced pollution achieved through cleaner coal and reduced transport costs, as well as other positive aspects such as a predictable product leading to better boiler design, the advantages appear to be significant. The drying of low rank coals improves the energy productively released during combustion and may also be used as an adjunct or as part of other coal processing procedures. Coal washing technologies vary in different countries and the implications of this are outlined. Dry separation technologies, such as dry jigging and electrostatic separation, are also described. The demonstration of new technologies is key to their further development and demonstrations of various clean coal technologies are considered. A number of approaches to briquetting and pelletising are available and their use varies from country to country. Finally, developments in upgrading low rank coals are described in the leading coal producing countries. This is an area that is developing rapidly and in which there are significant corporate and state players. 81 refs., 32 figs., 3 tabs.

  5. Coal-92

    International Nuclear Information System (INIS)

    Hillring, B.; Sparre, C.

    1992-11-01

    Swedish consumption of coal and coke during 1991 and trends in technology, environment and market aspects of coal use are reported. Steam coal use in the heating sector was unchanged from 1991, 1.2 Mtons. Reduced consumption in smaller district heating units (due to conversion to biofuels and gas) was compensated by increased use for power generation in cogeneration plants. Coal consumption in industry fell 0.10 Mton to 0.84 Mton due to lower production in one industry branch. Import of steam coal was 1.1 Mton (down 0.5 Mton from 1990) since new rules for strategic reserves allowed a reduction of stocks. During the last five years stocks have been reduced by 2 Mtons. Import of metallurgical coal was 1.6 Mton, unchanged from 1990. The report also gives statistics for the coal using plants in Sweden, on coal R and D, and on emission laws for coal firing. (9 tabs., 2 figs.)

  6. Oxidation of coals in the course of mechanical treatment

    Energy Technology Data Exchange (ETDEWEB)

    A.G. Proidakov; G.A. Kalabin [Irkutsk State University, Irkutsk (Russian Federation)

    2009-04-15

    The results of a study of coal oxidation under stationary conditions and during mechanical treatment are presented. A considerable increase in the reaction rate constants of coal oxidation during mechanical treatment because of oxidative mechanical degradation was found.

  7. The radiation degradation of polypropylene

    International Nuclear Information System (INIS)

    De Hollain, G.

    1977-04-01

    Polypropylene is used extensively in the manufacture of disposable medical devices because of its superior properties. Unfortunately this polymer does not lend itself well to radiation sterilization, undergoing serious degradation which affects the mechanical properties of the polymer. In this paper the effects of radiation on the mechanical and physical properties of polypropylene are discussed. A programme of research to minimize the radiation degradation of this polymer through the addition of crosslinking agents to counteract the radiation degradation is proposed. It is furthermore proposed that a process of annealing of the irradiated polymer be investigated in order to minimize the post-irradiation degradation of the polypropylene [af

  8. Thermosetting Phthalocyanine Polymers

    Science.gov (United States)

    Fohlen, G.; Parker, J.; Achar, B.

    1985-01-01

    Group of phthalocyanine polymers resist thermal degradation. Polymers expected semiconducting. Principal applications probably in molded or laminated parts that have to withstand high temperatures. Polymers made from either of two classes of monomer: Bisphthalonitriles with imide linkages or Bisphthalonitriles with ester-imide linkages.

  9. Utilisation of chemically treated coal

    Directory of Open Access Journals (Sweden)

    Bežovská Mária

    2002-03-01

    Full Text Available The numerous application of coal with high content of humic substances are known. They are used in many branches of industry. The complex study of the composition of coal from upper Nitra mines has directed research to its application in the field of ecology and agriculture. The effective sorption layers of this coal and their humic acids can to trap a broad spectrum of toxic harmful substances present in industrial wastes, particularly heavy metals. A major source of humic acids is coal - the most abundant and predominant product of plant residue coalification. All ranks of coal containt humic acids but lignite from Nováky deposit represents the most easily available and concentrated form of humic acids. Deep oxidation of coal by HNO3 oxidation - degradation has been performed to produce water-soluble-organic acids. The possibilities of utilisation of oxidised coal and humic acids to remove heavy metals from waste waters was studied. The residual concentrations of the investigated metals in the aqueous phase were determined by AAs. From the results follows that the samples of oxidised coal and theirs humic acids can be used for the heavy metal removal from metal solutions and the real acid mine water.Oxidised coal with a high content of humic acids and nitrogen is used in agriculture a fertilizer. Humic acids are active component in coal and help to utilize almost quantitatively nitrogen in soil. The humic substances block and stabiliz toxic metal residues already present in soil.

  10. Coal 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    ACR's Coal 1992, the successor to the ACR Coal Marketing Manual, contains a comprehensive set of data on many aspects of the Australian coal industry for several years leading up to 1992. Tables and text give details of coal production and consumption in New South Wales, Queensland and other states. Statistics of the Australian export industry are complemented by those of South Africa, USA, New Zealand, Canada, Indonesia, China, Colombia, Poland and ex-USSR. Also listed are prices of Australian coking and non-coking coal, Australian coal stocks (and those of other major countries), loading port capacities, freight rates and coal quality requirements (analysis of coals by brand and supplier). A listing of Australian coal exporting companies is provided. A description of the spot Coal Screen Dealing System is given. World hard coal imports are listed by country and coal imports by major Asian countries tabulated. A forecast of demand by coal type and country up to the year 2000 is included.

  11. Pyrrole-regulated precipitation of titania nanorods on polymer fabrics for photocatalytic degradation of trace toluene in air

    Science.gov (United States)

    Gu, Yi-Jie; Wen, Wei; Xu, Yang; Wu, Jin-Ming

    2018-03-01

    When compared with nanoparticulate counterparts, TiO2 thin films with vertically aligned one-dimensional (1D) nanostructures exhibit enhanced photocatalytic activity because of the highly accessible surface area. The perpendicular of the 1D nanostructure reduces the charge migration path and hence the carrier recombination rate, which also contributes to the photocatalytic activity. Furthermore, TiO2 thin films on flexible substrates are more suitable to degrade pollutants in either water or air because of its easy recovery and free-bending shape. In this study, flexible polyethylene fabrics were firstly coated with a sol-gel nanoparticulate TiO2 seed layer. Quasi-aligned TiO2 nanorods were then precipitated homogeneously under an atmospheric pressure and a low temperature not exceeding 80 °C, using a peroxy-titanium complex precursor with the additive of pyrrole. It is found that the density of TiO2 nanorods increased with the increasing amount of pyrrole monomers. The resultant TiO2 film on polyethylene fabrics exhibited a much reduced band gap of ca. 2.86 eV, which can be attributed to the surface oxygen deficiencies. When utilized to assist photocatalytic degradation of trace toluene in air under the UV light illumination, the TiO2 film exhibited a gradually increased photocatalytic activity upon the increasing cycles for up to six, because of the gradual removal of trace organics on the TiO2 surface. The highest photocatalytic efficiency is recorded to be 5 times that of TiO2 nanotube arrays, which are regarded as an excellent photocatalyst for air cleaning.

  12. Coal pump

    Science.gov (United States)

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  13. EPR-spin probe studies of model polymers: separation of covalent cross-linking effects from hydrogen bonding effects in swelled Argonne Premium Coal samples

    Energy Technology Data Exchange (ETDEWEB)

    Spears, D.R.; Sady, W.; Tucker, D.; Kispert, L.D. (University of Alabama, Tuscaloosa, AL (United States). Chemistry Dept.)

    The swelling behaviour of 2-12% cross-linked polystyrene-divinylbenzene (PSDVB) copolymers was examined by an EPR-spin probe technique. It was observed that the mechanism of spin probe inclusion was the intercalation into the matrix rather than diffusion into the pores. The disruption of van der Waals forces between adjacent aromatic rings appeared to be the primary mechanism for pyridine swelling of PSDVB. By comparing the data to results from coal swelling studies it was also inferred that the extent of hydrogen bonding in coal will have a much greater impact on its swelling properties than its covalently cross-linked character. 24 refs., 6 figs.

  14. The In Vitro Bioactivity, Degradation, and Cytotoxicity of Polymer-Derived Wollastonite-Diopside Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Amanda De Castro Juraski

    2017-04-01

    Full Text Available Ca-Mg silicates are receiving a growing interest in the field of bioceramics. In a previous study, wollastonite-diopside (WD glass-ceramics were successfully prepared by a new processing route, consisting of the heat treatment of a silicone resin embedding reactive oxide particles and a Ca/Mg-rich glass. The in vitro degradation, bioactivity, and cell response of these new WD glass-ceramics, fired at 900–1100 °C for 1 h, as a function of the Ca/Mg-rich glass content, are the aim of this investigation The results showed that WD glass-ceramics from formulations comprising different glass contents (70–100% at 900 °C, 30% at 1100 °C exhibit the formation of an apatite-like layer on their surface after immersion in SBF for seven days, thus confirming their surface bioactivity. The XRD results showed that these samples crystallized, mainly forming wollastonite (CaSiO3 and diopside (CaMgSi2O6, but combeite (Na2Ca2Si3O9 crystalline phase was also detected. Besides in vitro bioactivity, cytotoxicity and osteoblast adhesion and proliferation tests were applied after all characterizations, and the formulation comprising 70% glass was demonstrated to be promising for further in vivo studies.

  15. The In Vitro Bioactivity, Degradation, and Cytotoxicity of Polymer-Derived Wollastonite-Diopside Glass-Ceramics

    Science.gov (United States)

    Juraski, Amanda De Castro; Dorion Rodas, Andrea Cecilia; Elsayed, Hamada; Bernardo, Enrico; Oliveira Soares, Viviane; Daguano, Juliana

    2017-01-01

    Ca-Mg silicates are receiving a growing interest in the field of bioceramics. In a previous study, wollastonite-diopside (WD) glass-ceramics were successfully prepared by a new processing route, consisting of the heat treatment of a silicone resin embedding reactive oxide particles and a Ca/Mg-rich glass. The in vitro degradation, bioactivity, and cell response of these new WD glass-ceramics, fired at 900–1100 °C for 1 h, as a function of the Ca/Mg-rich glass content, are the aim of this investigation The results showed that WD glass-ceramics from formulations comprising different glass contents (70–100% at 900 °C, 30% at 1100 °C) exhibit the formation of an apatite-like layer on their surface after immersion in SBF for seven days, thus confirming their surface bioactivity. The XRD results showed that these samples crystallized, mainly forming wollastonite (CaSiO3) and diopside (CaMgSi2O6), but combeite (Na2Ca2Si3O9) crystalline phase was also detected. Besides in vitro bioactivity, cytotoxicity and osteoblast adhesion and proliferation tests were applied after all characterizations, and the formulation comprising 70% glass was demonstrated to be promising for further in vivo studies. PMID:28772783

  16. DEGRADABILIDAD DE UN POLÍMERO DE ALMIDÓN DE YUCA DEGRADABILIDADE DE UM POLÍMERO DE AMIDO DE MANDIOCA DEGRADABILITY OF A TAPIOCA STARCH POLYMER

    Directory of Open Access Journals (Sweden)

    Gladys Ruiz

    2009-12-01

    mineralização, assim como mudanças nas propriedades mecânicas, morfologia superficial, absorvância em IV e perda de peso, dependendo do tipo de meio. Dos resultados obtidos se encontrou que o polímero é degradado ao estar submetido à simulação de aterro sanitário, água salgada e, em menor medida, à luz solar, enquanto na água doce o polímero não se degrada.The use of polymeric materials has been increased due to their good properties and low cost. As a result, the amount of plastic that gets to landfills has increased until 30 %. As a solution to this problem, biodegradable polymers have been developed; and compared to synthetic polymers, they are degraded in the environment when exposed to certain conditions in a shorter period. One of the raw materials that is widely used in the manufacturing of biodegradable materials is starch. In this research study, the biodegradability of a polymer made of tapioca starch has been studied. To determine this, the polymer has been characterized and exposed to salt and fresh water, sunlight and a simulation of a landfill for a series of periods. To determine its biodegradability, percentage of mineralization was measured as well as changes in tensile properties, superficial morphology, IR absorption and weight loss depending on the type of environment. From the results it was found that the polymer is degraded by being subjected to simulated landfill, salt water and to a lesser extent in sunlight, while in fresh water it does not get degraded.

  17. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  18. Polymeric Materials - introduction and degradation

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios

    1999-01-01

    These notes support the polymer part of the courses 91742 and 91762 (Materials and Corrosion/degradation of materials) taught in IFAKthey contain a short introduction on group contribution methods for estimating properties of polymers, polymer thermodynamics, viscoelasticity models as well...

  19. Australian coal

    Energy Technology Data Exchange (ETDEWEB)

    1985-11-01

    Total export shipments of coal in Australia in the year ending June 30 1985 reached a record of 83.8 Mt. The export trade is expected to bring in an income of 4 billion Australian dollars in the current year making coal Australia's biggest revenue-earning export commodity. This article presents a brief overview of the Australian coal industry with production and export statistics and information on major open pit and underground mines.

  20. A statistical design of experiments for optimizing the MALDI-TOF-MS sample preparation of polymers. An application in the assessment of the thermo-mechanical degradation mechanisms of poly (ethylene terephthalate)

    International Nuclear Information System (INIS)

    Badia, J.D.; Stroemberg, E.; Ribes-Greus, A.; Karlsson, S.

    2011-01-01

    The sample preparation procedure for MALDI-TOF MS of polymers is addressed in this study by the application of a statistical Design of Experiments (DoE). Industrial poly (ethylene terephthalate) (PET) was chosen as model polymer. Different experimental settings (levels) for matrixes, analyte/matrix proportions and concentrations of cationization agent were considered. The quality parameters used for the analysis were signal-to-noise ratio and resolution. A closer inspection of the statistical results provided the study not only with the best combination of factors for the MALDI sample preparation, but also with a better understanding of the influence of the different factors, individually or in combination, to the signal. The application of DoE for the improvement of the MALDI measure of PET stated that the best combination of factors and levels was the following: matrix (dithranol), proportion analyte/matrix/cationization agent (1/15/1, V/V/V), and concentration of cationization agent (2 g L -1 ). In a second part, multiple processing by means of successive injection cycles was used to simulate the thermo-mechanical degradation effects on the oligomeric distribution of PET under mechanical recycling. The application of MALDI-TOF-MS showed that thermo-mechanical degradation primarily affected initially predominant cyclic species. Several degradation mechanisms were proposed, remarking intramolecular transesterification and hydrolysis. The ether links of the glycol unit in PET were shown to act as potential reaction sites, driving the main reactions of degradation.

  1. Coal - 96

    International Nuclear Information System (INIS)

    Sparre, C.

    1996-09-01

    The report deals mainly with coal consumption, but also gives some information about technology, environmental aspects and markets. Data have been collected by questionnaires or via telephone. The use of steam coal for heating was 0.8 Mtons (down 20% from 1994). Cogeneration plants were the main users. Taxes and environmental reasons cause a reduction of the coal use that will probably continue the next years. Use of steam coal in industry has been constant at a level of 0.7 Mtons. The import of metallurgical coal rests constant at a level of 1.6 Mtons. 1.2 Mtons of coke was produced, and 0.3 Mtons imported. The PFBC-plant at Vaertan, Stockholm used 0.13 Mtons of coal, while some coal fired power plants have been converted to peat and wood fuels. The average price of steam coal imported to Sweden in 1995 was 333 SEK/ton, 6% higher than in 1994. The contract prices for delivery 1996 are about the same as at the end of 1995. All cogeneration plants have some sort of SO 2 removal system, mostly wet-dry. The largest plant, at Vaesteraas, has recently invested in a SCR system for NO x removal. Most other plants are using low NO x burners or SNCR systems, based on ammonia or urea, which reduce the emissions 50 - 70%. Some statistic about the world coal market is also given in the report

  2. Venezuelan coal

    International Nuclear Information System (INIS)

    Vazquez, L.U.

    1991-01-01

    The existence of coal deposits in Venezuela has been known since the early nineteenth century, when the Naricual Mines were discovered in the State of Anzoategui Eastern Venezuela. Through the years the Venezuelan coal business had its ups and downs, but it was not until 1988 that we could properly say that our coal began to play a role in the international market. This paper reports that it is only now, in the nineties, that Venezuelan coal projects have come under a planning, promotional and developmental policy preparing the ground for the great projects Venezuela will have in the not-too-distant future

  3. Material Properties and Characteristics for Development of an Expert System for Coal-Tar Sealers

    National Research Council Canada - National Science Library

    Shoenberger, James

    2001-01-01

    .... Several coal-tar mixtures that varied with source of the coal-tar emulsion, amount of aggregate, and amount of polymer used in the mixtures were evaluated for their field performance and material properties...

  4. Degradable polyphosphazene/poly(alpha-hydroxyester) blends: degradation studies.

    Science.gov (United States)

    Ambrosio, Archel M A; Allcock, Harry R; Katti, Dhirendra S; Laurencin, Cato T

    2002-04-01

    Biomaterials based on the polymers of lactic acid and glycolic acid and their copolymers are used or studied extensively as implantable devices for drug delivery, tissue engineering and other biomedical applications. Although these polymers have shown good biocompatibility, concerns have been raised regarding their acidic degradation products, which have important implications for long-term implantable systems. Therefore, we have designed a novel biodegradable polyphosphazene/poly(alpha-hydroxyester) blend whose degradation products are less acidic than those of the poly(alpha-hydroxyester) alone. In this study, the degradation characteristics of a blend of poly(lactide-co-glycolide) (50:50 PLAGA) and poly[(50% ethyl glycinato)(50% p-methylphenoxy) phosphazene] (PPHOS-EG50) were qualitatively and quantitatively determined with comparisons made to the parent polymers. Circular matrices (14mm diameter) of the PLAGA, PPHOS-EG50 and PLAGA-PPHOS-EG50 blend were degraded in non-buffered solutions (pH 7.4). The degraded polymers were characterized for percentage mass loss and molecular weight and the degradation medium was characterized for acid released in non-buffered solutions. The amounts of neutralizing base necessary to bring about neutral pH were measured for each polymer or polymer blend during degradation. The poly(phosphazene)/poly(lactide-co-glycolide) blend required significantly less neutralizing base in order to bring about neutral solution pH during the degradation period studied. The results indicated that the blend degraded at a rate intermediate to that of the parent polymers and that the degradation products of the polyphosphazene neutralized the acidic degradation products of PLAGA. Thus, results from these in vitro degradation studies suggest that the PLAGA-PPHOS-EG50 blend may provide a viable improvement to biomaterials based on acid-releasing organic polymers.

  5. Coal summit II

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Various papers were presented on world coal trade. Papers include: Poland as a producer and exporter of coal; the dynamics of world coal trade; Cerrejon coal production perspectives; present state of the Australian coal industry; present state of the EC coal market and future prospects; prospects of US coal exports to Europe; forecast of Italian coal supply and demand through 1990; statistics from coal transportation outlook; status of world coal ports.

  6. A newer concept of setting up coal refineries in coal utilising industries through environmentally sound clean coal technology of organosuper refining of coals

    International Nuclear Information System (INIS)

    Sharma, D.K.

    1994-01-01

    In order to reduce the losses of premium organic matter of coal and its immense potential energy which is present in the form of stronger interatomic and intramolecular bonding energies, a newer and convenient technique of recovering the premium organic matter from low grade coals by organosuper-refining technique which operates under ambient pressure conditions has been developed. The residual coal obtained can be used as environmentally clean fuel or as a feedstock for the industries based on carbonization and gasification. It is suggested that a beginning be made by setting up coal refineries in coal utilizing industries on the basis of the presently developed new technology of organosuper-refining of coals to recover premium grade organic chemical feed stocks from coals before utilizing coal by techniques such as bubble bed or recirculatory fluidized bed or pulverized coal combustion in thermal power stations, carbonization in steel plants or other carbonization units, gasification in fertilizer industries or in integrated coal gasification combined cycle power generation. Thus, coal refineries may produce value added aromatic chemical feed stocks, formed coke or coke manufacturing; and carbon fillers for polymers. (author). 100 refs., 1 fig

  7. Biostable glucose permeable polymer

    DEFF Research Database (Denmark)

    2017-01-01

    A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...

  8. International Coal Report's coal year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McCloskey, G [ed.

    1991-05-31

    Following introductory articles on factors affecting trade in coal and developments in the freight market, tables are given for coal exports and coal imports for major countries worldwide for 1989 and 1990. Figures are also included for coal consumption in Canada and the Eastern bloc,, power station consumption in Japan, coal supply and demand in the UK, electric utility coal consumption and stocks in the USA, coal production in Australia, Canada and USA by state, and world hard coal production. A final section gives electricity production and hard coal deliveries in the EEC, sales of imported and local coal and world production of pig iron and steel.

  9. Phyto-bioconversion of hard coal in the Cynodon dactylon/coal rhizosphere.

    Science.gov (United States)

    Igbinigie, Eric E; Mutambanengwe, Cecil C Z; Rose, Peter D

    2010-03-01

    Fundamental processes involved in the microbial degradation of coal and its derivatives have been well documented. A mutualistic interaction between plant roots and certain microorganisms to aid growth of plants such as Cynodon dactylon (Bermuda grass) on hard coal dumps has recently been suggested. In the present study coal bioconversion activity of nonmycorrhizal fungi was investigated in the C. dactylon/coal rhizosphere. Fungal growth on 2% Duff-agar, gutation formation on nitric acid treated coal and submerged culture activity in nitrogen-rich and -deficient broth formed part of the screening and selection of the fungi. The selected fungal isolates were confirmed to be found in pristine C. dactylon/coal rhizosphere. To simulate bioconversion, a fungal aliquot of this rhizosphere was used as inoculum for a Perfusate fixed bed bioreactor, packed with coal. The results demonstrate an enhanced coal bioconversion facilitated by low molecular weight organics and the bioconversion of coal may be initiated by an introduction of nitrogen moieties to the coal substrate. These findings suggest a phyto-bioconversion of hard coal involving plant and microbes occurring in the rhizosphere to promote the growth of C. dactylon. An understanding of this relationship can serve as a benchmark for coal dumps rehabilitation as well as for the industrial scale bioprocessing of hard coal.

  10. Preparation of degradable porous structures based on 1,3-trimethylene carbonate and D,L-lactide (co)polymers for heart tissue engineering

    NARCIS (Netherlands)

    Pego, AP; Siebum, B; Van Luyn, MJA; Van Seijen, XJGY; Poot, AA; Grijpma, DW; Feijen, J

    2003-01-01

    Biodegradable porous scaffolds for heart tissue engineering were prepared from amorphous elastomeric (co)polymers of 1,3-trimethylene carbonate (TMC) and D,L-lactide (DLLA). Leaching of salt from compression-molded polymer-salt composites allowed the preparation of highly porous structures in a

  11. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, G.P. [ed.

    1994-07-01

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  12. Effects of a vanadium post-metallocene catalyst-induced polymer backbone inhomogeneity on UV oxidative degradation of the resulting polyethylene film

    KAUST Repository

    Atiqullah, M.

    2012-07-01

    A Group 5 post-metallocene precatalyst, (ONO)VCl(THF) 2 (ONO = a bis(phenolate)pyridine LX 2 pincer ligand), activated with modified methylaluminoxane (MMAO-3A) produced a linear ethylene homopolymer (nm-HomoPE)and an unusual inhomogeneous copolymer (nm-CopolyPE) with 1-hexene having very low backbone unsaturation. The nm-CopolyPE inhomogeneity was reflected in the distributions of short chain branches, 1-hexene composition, and methylene sequence length. The 1-hexene incorporation into the polyethylene backbone strongly depended on the molecular weight of the growing polymer chain. (ONO)VCl(THF) 2, because of site diversity and easier removal of a tertiary (vs. a secondary) hydrogen, produced a skewed short chain branching (SCB) profile, incorporating 1-hexene more efficiently in the low molecular weight region than in the high molecular weight region. The significant decrease in molecular weight by 1-hexene showed that the (ONO)VCl(THF) 2 catalytic sites were also highly responsive to chain-transfer directly to 1-hexene itself, producing vinyl and trans-vinylene termini. Subsequently, the effect of backbone inhomogeneity on the UV oxidative degradation of films made from both polyethylenes was investigated. The major functional group accumulated in the branched nm-CopolyPE film was carbonyl followed by carboxyl, then vinyl/ester, whereas that in the linear nm-HomoPE film was carboxyl. However, (carbonyl, carboxyl, vinyl, and ester) nm-CopolyPE film >> (carboxyl) nm-HomoPE film). The distributions of the tertiary C-H sites and methylene sequence length in the branched nm-CopolyPE film enhanced abstraction of H, decomposition of hydroperoxide group ROOH, and generation of carbonyl compounds as compared with those in the linear nm-HomoPE film. This clearly establishes the role played by the backbone inhomogeneity. The effect of short chain branches and sequence length distributions on peak melting temperature T pm, and most probably lamellar thickness L o, was

  13. Converting coal

    Energy Technology Data Exchange (ETDEWEB)

    Avigliano, A. [Bedeschi (Italy)

    2006-10-15

    In September 2005, Bedeschi was commissioned to design and supply a coal unloading, conveying and storage facility for a new raw coal line system within Hatien II Cement Co. The new plant is composed of a grab unloader, a conveyor system, a storage shed with stacking and reclaiming facilities, a complete dedusting system and civil and steel structure engineering. The scope of supply includes a local fabrication portion; however, main components will be imported. The project will be completed in 21 months. The paper looks into the mechanics of loading and unloading coal. 4 figs., 4 photos.

  14. Thermal degradation of organo-soluble polyimides

    Institute of Scientific and Technical Information of China (English)

    黄俐研; 史燚; 金熹高

    1999-01-01

    The thermal degradation behavior of two organo-soluble polyimides was investigated by high resolution pyrolysis-gas chromatography/mass spectrometry. The pyrolyzates of the polymers at various temperatures were identified and characterized quantitatively. The relationship between the polymer structure and pyrolyzate distribution was discussed. The kinetic parameters of the thermal degradation were calculated based on thermogravimetric measurements. Finally, the thermal degradation mechanism for the polymers was suggested.

  15. Coal competitiveness?

    International Nuclear Information System (INIS)

    Rogeaux, B.

    2006-01-01

    Will coal electrical plants be more competitive in the coming years? Answering this one cannot be limited to merely comparing estimates based on reference electricity production costs. The competitiveness of coal will indeed depend on the final product marketed, as the MWhs are not equal: is the purpose to produce base, half-base MWh? Does the electrical equipment structure require flexible MWh (for instance in the event of significant intermittent renewable energy amounts), and therefore plants able to adjust their power rapidly? But the competitiveness of coal will also depend on many factors that will correct reference cost estimates: uncertainties, risks, externalities. These factors will need to be appreciated on a case by case basis. We introduce some of the reasoning used to better appreciate the future competitiveness of coal, and the main factors conditioning it in three contrasting regions of the world: Europe, USA, china. (author)

  16. Pulverized coal devolatilization prediction

    International Nuclear Information System (INIS)

    Rojas, Andres F; Barraza, Juan M

    2008-01-01

    The aim of this study was to predict the two bituminous coals devolatilization at low rate of heating (50 Celsius degrade/min), with program FG-DVC (functional group Depolymerization. Vaporization and crosslinking), and to compare the devolatilization profiles predicted by program FG-DVC, which are obtained in the thermogravimetric analyzer. It was also study the volatile liberation at (10 4 k/s) in a drop-tube furnace. The tar, methane, carbon monoxide, and carbon dioxide, formation rate profiles, and the hydrogen, oxygen, nitrogen and sulphur, elemental distribution in the devolatilization products by FG-DVC program at low rate of heating was obtained; and the liberation volatile and R factor at high rate of heating was calculated. it was found that the program predicts the bituminous coals devolatilization at low rate heating, at high rate heating, a volatile liberation around 30% was obtained

  17. Coal - 97

    International Nuclear Information System (INIS)

    Sparre, C.

    1997-01-01

    The report deals with the use of coal and coke during 1996. Some information about techniques, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from SCB have also been used. The use of steam coal for heating purposes during 1996 was 1,2 mill tons and 50% higher than in 1995. The increase is probably temporary and due to high prices of electricity because of lack of water power. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generation plants. During the top year 1987 coal was used in 18 hotwater plants and 11 co-generation plants. 1996 these figures are 3 and 12. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1996 was 1,6 mill tons like the year before. 1,2 mill tons coke were produced. The coke consumption in the industry was 1,5 mill tons. 0,3 mill tons of coke were imported. The average price of steam coal imported in Sweden in 1996 was 340 SEK/ton or 2% higher than in 1995. For the world, the average import price was 51,5 USD/ton, nearly the same as the year before. The contract prices for delivery during 1997 are about equal as the end of 1996. All Swedish plants meet their emission limits of dust, SO 2 and NO x given by county administrations or concession boards

  18. Field Evaluation of Low-Dose Metering and Polymer Endothall Applications and Comparison of Fluridone Degradation from Liquid and Slow-Release Pellet Applications

    National Research Council Canada - National Science Library

    Netherland, Michael

    1998-01-01

    ... vary greatly within a 24-hr period. In addition to metering technology, a new granular supersorbent polymer formulation of endothall that contains 61 percent active ingredient was evaluated in Lake Weohyapapka, Florida...

  19. Characterizing Fluorotelomer and Polyfluoroalkyl Substances in New and Aged Fluorotelomer-Based Polymers for Degradation Studies with GC/MS and LC/MS/MS

    Science.gov (United States)

    Fluorotelomer-based polymers (FTPs), the dominant product of the fluorotelomer industry, are antistaining and antiwetting agents that permeate the products and surfaces of modern society. However, the degree to which these materials expose humans and the environment to fluorotelo...

  20. Ex situ remediation of polluted soils by absorptive polymers, and a comparison of slurry and two-phase partitioning bioreactors for ultimate contaminant degradation

    Energy Technology Data Exchange (ETDEWEB)

    Tomei, M. Concetta, E-mail: tomei@irsa.cnr.it [Water Research Institute, C.N.R., Via Salaria km 29.300, Monterotondo Scalo, 00015 Rome (Italy); Mosca Angelucci, Domenica [Water Research Institute, C.N.R., Via Salaria km 29.300, Monterotondo Scalo, 00015 Rome (Italy); Annesini, M. Cristina [Department of Chemical Engineering Materials and Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome (Italy); Daugulis, Andrew J. [Department of Chemical Engineering, Queen' s University, Kingston, Ontario, Canada K7L 3N6 (Canada)

    2013-11-15

    Highlights: • We investigate absorptive polymers for ex-situ soil bioremediation. • We compare the performance of the novel technology with a slurry bioreactor. • The polymer is very effective in decontaminating the soil (77% removal in 4 h). • The polymer is readily regenerated in a two phase partitioning bioreactor. -- Abstract: The present study has provided a comparison between a conventional ex situ method for the treatment of contaminated soil, a soil slurry bioreactor, with a novel technology in which a contaminant is rapidly and effectively removed from the soil by means of absorptive polymer beads, which are then added to a two-phase partitioning bioreactor (TPPB) for biodegradation of the target molecule. 4-nitrophenol (4NP) was selected as a model contaminant, being representative of a large class of xenobiotics, and the DuPont thermoplastic Hytrel™ 8206 was utilized for its extraction from soil over ranges of soil contamination level, soil moisture content, and polymer:soil ratios. Since the polymers were able to rapidly (up to 77% and 85% in 4 and 24 h respectively) and selectively remove the contaminant, the soil retained its nutrient and microflora content, which is in contrast to soil washing which can remove these valuable soil resources. After 4 h of reaction time, the TPPB system demonstrated removal efficiency four times higher (77% vs 20%) than the slurry system, with expected concomitant savings in time and energy. A volumetric removal rate of 75 mg4NP h{sup −1} L{sup −1} was obtained in the TPPB, significantly greater than the value of 1.7 obtained in the slurry bioreactor. The polymers were readily regenerated for subsequent reuse, demonstrating the versatility of the polymer-based soil treatment technology.

  1. Coal -98

    International Nuclear Information System (INIS)

    Sparre, C.

    1998-01-01

    The following report deals with the use of coal and coke during 1997. Some information about technic, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from SCB have also been used. The use of steam coal for heating purposes during 1997 was 730 000 tons and about 500 000 tons lower than in 1996. The extremely high figures of 1996 were due to twice the production of electricity because of lack of hydro power. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. Some foreign analysts, however, estimate a doubled use of coal for energy use after 2020 because of the plans to phase out the nuclear power. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. 1997 these figures are 2 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1997 was 1.6 mill tons like the year before. 1.2 mill tons coke were produced. The coke consumption in the industry was 1.5 Mill tons. 0.3 mill tons of coke were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has plans to build a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has taken a fluid bed boiler for different fuels in operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm

  2. Rapidly Degradable Pyrotechnic System

    Science.gov (United States)

    2009-02-01

    material system (structural polymer and degradation agent ) for producing a high strength, non-corroding, highly inert, environmentally safe, extended...polymer sites in the active enzyme center differs dramatically between alkyl and aromatic polyesters. More specifically, as the degree of backbone...capped and centrifuged at 3,000 g. This procedure was repeated twice. To the remaining biomass pellet 15 mL of 1 mg/mL solution of N-ethyl-N- nitrosourea

  3. Coal 95

    International Nuclear Information System (INIS)

    Sparre, C.

    1995-01-01

    The report deals with the use of coal and coke in Sweden during 1994. Some information about technology, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used.The use of steam coal for heating purposes has been unchanged during 1994 at a level of 1 Mtons. The production in the cogeneration plants has been constant, but has increased for electricity production. The minor plants have increased their use of forest fuels. The use of steam coal will probably go down in the next years both for heat and cogeneration plants. During the top year 1987 coal was used in 18 hot water and 11 cogeneration plants. 1994 these figures are 3 and 12. Taxes and environmental reasons explain this trend. The use of steam coal in industry has been constant at the level 0.7 Mtons. The import of metallurgical coal in 1993 was 1.6 Mtons, like 1992. Import of 0.3 Mtons of coke gives the total consumption of coke in industry as 1.5 Mtons. the average price of steam coal imported to Sweden was 317 SEK/ton, 3% higher than 1993. All Swedish plants meet their emission limit of dust, SO 2 and NO x as given by county administrations or concession boards. The cogeneration plants all have some SO 2 removal system. The biggest cogeneration plant (Vaesteraas) has recently invested in a SCR NO x cleaning system. Most other plants use low NO x burners or SNR injection systems based on ammonia or urea. 2 figs, 13 tabs

  4. Ex situ remediation of polluted soils by absorptive polymers, and a comparison of slurry and two-phase partitioning bioreactors for ultimate contaminant degradation.

    Science.gov (United States)

    Tomei, M Concetta; Mosca Angelucci, Domenica; Annesini, M Cristina; Daugulis, Andrew J

    2013-11-15

    The present study has provided a comparison between a conventional ex situ method for the treatment of contaminated soil, a soil slurry bioreactor, with a novel technology in which a contaminant is rapidly and effectively removed from the soil by means of absorptive polymer beads, which are then added to a two-phase partitioning bioreactor (TPPB) for biodegradation of the target molecule. 4-nitrophenol (4NP) was selected as a model contaminant, being representative of a large class of xenobiotics, and the DuPont thermoplastic Hytrel™ 8206 was utilized for its extraction from soil over ranges of soil contamination level, soil moisture content, and polymer:soil ratios. Since the polymers were able to rapidly (up to 77% and 85% in 4 and 24h respectively) and selectively remove the contaminant, the soil retained its nutrient and microflora content, which is in contrast to soil washing which can remove these valuable soil resources. After 4h of reaction time, the TPPB system demonstrated removal efficiency four times higher (77% vs 20%) than the slurry system, with expected concomitant savings in time and energy. A volumetric removal rate of 75 mg4NPh(-1) L(-1) was obtained in the TPPB, significantly greater than the value of 1.7 obtained in the slurry bioreactor. The polymers were readily regenerated for subsequent reuse, demonstrating the versatility of the polymer-based soil treatment technology. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Electrical condition monitoring method for polymers

    Science.gov (United States)

    Watkins, Jr. Kenneth S.; Morris, Shelby J.; Masakowski, Daniel D.; Wong, Ching Ping; Luo, Shijian

    2010-02-16

    An electrical condition monitoring method utilizes measurement of electrical resistivity of a conductive composite degradation sensor to monitor environmentally induced degradation of a polymeric product such as insulated wire and cable. The degradation sensor comprises a polymeric matrix and conductive filler. The polymeric matrix may be a polymer used in the product, or it may be a polymer with degradation properties similar to that of a polymer used in the product. The method comprises a means for communicating the resistivity to a measuring instrument and a means to correlate resistivity of the degradation sensor with environmentally induced degradation of the product.

  6. Coal preparation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The acid rain control legislation has prompted the Department of Energy (DOE) to seek new technology using the Clean Coal Technology program solicitation. The main goal of the program is to reduce SO 2 emissions below 9 Mt/a (10 million stpy) and NO x emission below 5.4 Mt/a (6 million stpy) by the year 2000. This would be accomplished by using precombustion, combustion, post combustion and conversion technology. Utilities are considering installing new scrubbers, switching fuel or possibly deep clean. However, the time required to implement the control technology is short. Due to the legislation, about 110 plants will have to adopt one of the approaches. This paper reports that in characterization of coal, Ames Laboratory used a scanning electron microscope- based, automated image analysis (SEM-AIA) technique to identify coal and mineral matter association. Various forms of organic sulfur were identified using peroxyacetic acid oxidation of coal. This was followed by subsequent microscopic, GC-MS, and HRMS analysis by Southern Illinois University. In ultrafine grinding of coal, it was reported by the Mining and Mineral Institute of Alabama that silica sand or flint shot used less energy compared to steel ball mills

  7. Distilling coal

    Energy Technology Data Exchange (ETDEWEB)

    Blythe, F C

    1914-09-14

    In the destructive distillation of bituminous coal, heavy hydrocarbon oil, such as petroleum, kerosine, shale oil, and heavy tar oil, obtained in some cases during the process, is added to the coal, which is then distilled under pressure and at a comparatively low temperature regulated so as to produce a large proportion of hydrocarbon oils and a small proportion of permanent gas. In one method, about 5 to 10 parts of hydrocarbon oil are mixed with 100 parts of crushed or ground coal, and the mixture is heated in a closed vessel, provided in some cases with an agitator, under a pressure of about 60 lb/in/sup 2/, and the temperature may be gradually raised to 350/sup 0/C and then to about 500/sup 0/C. The heating may be by means of superheated steam with or without external heat.

  8. Microbial transformation of coal and coal relevant structures - presentation of a BMBF joint research project

    Energy Technology Data Exchange (ETDEWEB)

    Sinder, C.; Schacht, S.; Pfeifer, F.; Klein, J. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    1997-12-31

    Investigations in the joint research project `Microbial transformation of coal and coal relevant structures` supported by the Ministry of Education, Science, Research and Technology (BMBF) of the Federal Republic of Germany and coordinated by the DMT-Gesellschaft fuer Forschung und Pruefung mbH (DMT) are focussed on research and development of biotechnological coal conversion processes. Up to now investigations carried out in the project lead to a number of important results. During work on the project a great number of different microorganisms was found able to degrade or solubilize coal or lignite. Enzymatic as well as regulation mechanisms of the microbial depolymerization processes have been characterized successfully. (orig.)

  9. The Effect of Different Delivery Conditions on the Accelerated Degradation of Structural Steel in the Coal Mine Environment / Wpływ Różnego Stanu Dostawy Na Przyspieszoną Degradację Stali Konstrukcyjnej W Środowisku Kopalnianym

    Science.gov (United States)

    Pawłowski, Bogdan; Bała, Piotr

    2012-12-01

    The main objective of this work was to determine the effect of different delivery conditions on the accelerated degradation of structural steels used for lifting beams (rails) of the monorail transport systems. Some of these rails, made of the same steel grade as others, undergoes accelerated corrosion in the coal mine environment. Corrosion degradation occurs much faster (more than two times faster), comparing to the same steel grade rails operated under the same conditions but with different microstructures. However, all the provided rails meet the requirements of appropriate standards for steel on the lifting beams of the monorail transport systems. The investigations were carried out on rails made of the same steel grade but with different microstructures and showed that the main factor influencing the accelerated corrosion degradation of tested steels is the delivery condition, so-called "as rolled" condition. The greatest resistance to the accelerated corrosion showed rails in the normalized or normalizing rolling condition.

  10. Electron Barrier Formation at the Organic-Back Contact Interface is the First Step in Thermal Degradation of Polymer Solar Cells

    KAUST Repository

    Sachs-Quintana, I. T.; Heumü ller, Thomas; Mateker, William R.; Orozco, Darian E.; Cheacharoen, Rongrong; Sweetnam, Sean; Brabec, Christoph J.; McGehee, Michael D.

    2014-01-01

    Long-term stability of polymer solar cells is determined by many factors, one of which is thermal stability. Although many thermal stability studies occur far beyond the operating temperature of a solar cell which is almost always less than 65 °C

  11. Microbiological desulfurization and conversion of coal

    International Nuclear Information System (INIS)

    Quigley, D.R.; Stoner, D.L.; Dugan, P.R.

    1991-01-01

    Bio processing of coal is a young and emerging technology. Until the early 1980's it consisted primarily of coal depyritization using Thiobacillus ferro oxidans to either oxidize pyritic sulfur or to alter particle wettability or floatation properties by binding to exposed pyrite inclusions. Since then, other major avenues of research have been pursued. One of these is the microbiologically mediated liquefaction of coal. Initial work indicated that microorganisms were able to transform low rank coal into a black liquid that was later identified as water solubilized by alkaline substances produced by the microbes and could be enhanced by the removal of multi valent cations from coal. Current work at the INEL involves of the identification and characterization of microorganisms that are able to alter the structure of polymeric desulfurization of coal. This work initially focused on the ability of microorganisms to oxidatively remove organic sulfur from model compounds that were representative of those sulfur containing moieties identified as being in coals (e.g., dibenzo thiophene). The work also focused on those organisms that were could remove the organic sulfur without degrading the carbon structure. While some organisms that are able to perform such these reactions will effectively remove organo sulfur from coal. These concerns stem from steric hindrance considerations and the thermodynamically unfavourable nature of reaction. Current work at the INEL involves the isolation and biochemical characterization of microorganisms that are able to desulfurize and solubilized coals that have high organic sulfur contents. (author)

  12. Coal Mines Security System

    OpenAIRE

    Ankita Guhe; Shruti Deshmukh; Bhagyashree Borekar; Apoorva Kailaswar; Milind E.Rane

    2012-01-01

    Geological circumstances of mine seem to be extremely complicated and there are many hidden troubles. Coal is wrongly lifted by the musclemen from coal stocks, coal washeries, coal transfer and loading points and also in the transport routes by malfunctioning the weighing of trucks. CIL —Coal India Ltd is under the control of mafia and a large number of irregularities can be contributed to coal mafia. An Intelligent Coal Mine Security System using data acquisition method utilizes sensor, auto...

  13. Coal at the crossroads

    International Nuclear Information System (INIS)

    Scaroni, A.W.; Davis, A.; Schobert, H.; Gordon, R.L.; Ramani, R.V.; Frantz, R.L.

    1992-01-01

    Worldwide coal reserves are very large but coal suffers from an image of being an environmentally unfriendly and inconvenient fuel. Aspects discussed in the article include: coal's poor image; techniques for coal analysis, in particular instrumented techniques; developments in clean coal technology e.g. coal liquefaction, fluidized bed combustion, co-generation and fuel slurries; the environmental impact of mining and land reclamation; and health aspects. It is considered that coal's future depends on overcoming its poor image. 6 photos

  14. Field solar degradation of pesticides and emerging water contaminants mediated by polymer films containing titanium and iron oxide with synergistic heterogeneous photocatalytic activity at neutral pH.

    Science.gov (United States)

    Mazille, F; Schoettl, T; Klamerth, N; Malato, S; Pulgarin, C

    2010-05-01

    Photocatalytic degradation of phenol, nalidixic acid, mixture of pesticides, and another of emerging contaminants in water was mediated by TiO(2) and iron oxide immobilized on functionalized polyvinyl fluoride films (PVF(f)-TiO(2)-Fe oxide) in a compound parabolic collector (CPC) solar photoreactor. During degradation, little iron leaching (compounds and less efficient for six other compounds. The significant reactivity differences between tested compounds were assigned to the differences in structure namely that the presence of complexing or chelating groups enhanced the rates. PVF(f)-TiO(2)-Fe oxide photoactivity gradually increased during 20 days of experiments. X-ray photoelectron spectroscopy (XPS) measurements revealed significant changes on the catalyst surface. These analyses confirm that during photocatalysis mediated by PVF(f)-TiO(2)-Fe oxide, some iron leaching led to enlargement of the TiO(2) surface exposed to light, increasing its synergy with iron oxides and leading to enhanced pollutant degradation.

  15. Polymer light emitting diodes

    International Nuclear Information System (INIS)

    Gautier-Thianche, Emmmanuelle

    1998-01-01

    We study sandwich type semiconducting polymer light emitting diodes; anode/polymer/cathode. ITO is selected as anode, this polymer is a blend of a commercially available polymer with a high hole transport ability: polyvinyl-carbazole and a laser dye: coumarin-515. Magnesium covered with silver is chosen for the anode. We study the influence of polymer thickness and coumarin doping ratio on electroluminescence spectrum, electric characteristics and quantum efficiency. An important drawback is that diodes lifetime remains low. In the second part of our study we determine degradations causes with X-Ray reflectivity experiments. It may be due to ITO very high roughness. We realize a new type of planar electroluminescent device: a channel type electroluminescent device in which polymer layer is inserted into an aluminium channel. Such a device is by far more stable than using classical sandwich structures with the same polymer composition: indeed, charges are generated by internal-field ionization and there is no injection from the electrode to the polymer. This avoids electrochemical reactions at electrodes, thus reducing degradations routes. (author) [fr

  16. Three dimensional nano-assemblies of noble metal nanoparticle-infinite coordination polymers as specific oxidase mimetics for degradation of methylene blue without adding any cosubstrate.

    Science.gov (United States)

    Wang, Lihua; Zeng, Yi; Shen, Aiguo; Zhou, Xiaodong; Hu, Jiming

    2015-02-07

    Novel three-dimensional (3D) nano-assemblies of noble metal nanoparticle (NP)-infinite coordination polymers (ICPs) are conveniently fabricated through the infiltration of HAuCl4 into hollow Au@Ag@ICPs core-shell nanostructures and its replacement reaction with Au@Ag NPs. The present 3D nano-assemblies exhibit highly efficient and specific intrinsic oxidase-like activity even without adding any cosubstrate.

  17. Polycarbonate radiolytic degradation and stabilization

    International Nuclear Information System (INIS)

    Araujo, E.S. de

    1994-01-01

    Polycarbonate Durolon, useful for medical supplies fabrication, is submitted to gamma radiation for sterilization purposes. Scissions in main chain occur, in carbonyl groups, producing molecular degradations and yellowness. The radiolytic stabilization is obtained through additive to the polymer. In this work some degradation and stabilization aspects are presented. (L.C.J.A.). 7 refs, 7 figs, 2 tabs

  18. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  19. Coal industry annual 1997

    International Nuclear Information System (INIS)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs

  20. Coal marketing manual 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This manual provides information on the international coal market in tabulated format. Statistics are presented for the Australian coal industry, exports, currency movements, world coal production, coal and coke imports and exports. Detailed information is provided on the Australian coal industry including mine specific summaries. Pricing summaries for thermal and coking coal in 1987, coal quality standards and specifications, trends in coal prices and stocks. Imports and exports for World coal and coke, details of shipping, international ports and iron and steel production. An exporters index of Australian and overseas companies with industry and government contacts is included. 15 figs., 67 tabs.

  1. Coal industry annual 1996

    International Nuclear Information System (INIS)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs

  2. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  3. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  4. Coal Industry Annual 1995

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995

  5. Coal and Energy.

    Science.gov (United States)

    Bryant, Reba; And Others

    This teaching unit explores coal as an energy resource. Goals, student objectives, background information, and activity options are presented for each major section. The sections are: (1) an introduction to coal (which describes how and where coal was formed and explains the types of coal); (2) the mining of coal (including the methods and ways of…

  6. Hyphenation of infrared spectroscopy to liquid chromatography for qualitative and quantitative polymer analysis: Degradation of poly(bisphenol A)carbonate

    NARCIS (Netherlands)

    Coulier, L.; Kaal, E.; Hankemeier, T.

    2006-01-01

    Hyphenation of infrared spectroscopy (IR) to liquid chromatography (LC) has been applied to study chemical changes in poly(bisphenol A)carbonate (PC) as a result of degradation. Especially coupling of LC to FTIR through solvent elimination is a sensitive approach to identify changes in functionality

  7. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  8. Coal -94

    International Nuclear Information System (INIS)

    Sparre, C.

    1994-05-01

    This report deals with use of coal and coke during 1993; information about techniques, environmental questions and markets are also given. Use of steamcoal for heating purposes has been reduced about 3 % during 1993 to 1,0 mill tons. This is the case especially for the heat generating boilers. Production in co-generation plants has been constant and has increased for electricity production. Minor plants have increased their use of forest fuels, LPG and NG. Use of steamcoal will probably go down in the immediate years both in heat generating and co-generating plants. Coal-based electricity has been imported from Denmark during 1993 corresponding to about 400 000 tons of coal, when several of our nuclear plants were stopped. Use of steamcoal in the industry has been constant at 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1993 was 1,6 mill tons like the year before. 1,2 mill tons coke were produced. Coke consumption in industry was 1,4 mill tons. 0,2 mill tons of coke were imported. Average price of steamcoal imported to Sweden in 1993 was 308 SEK/ton or 13 % higher than in 1992; this can be explained by the dollar price level increasing 34% in 1993. For the world, the average import price was 50,0 USD/ton, a decrease of 6 %. The coal market during 1993 was affected by less consumption in Europe, shut downs of European mines and decreasing prices. High freight price raises in Russia has affected the Russian export and the market in northern Europe. The prices have been stabilized recently. All Swedish plants meet emission limits of dust, SO 2 and NO x . Co-generation plants all have some sort of SO 2 -removal system; the wet-dry method is mostly used. A positive effect of the recently introduced NO x -duties is a 40% reduction

  9. Coal statistics 1977

    Energy Technology Data Exchange (ETDEWEB)

    Statistical Office of the European Communities

    1978-01-01

    Presents tables of data relating to the coal market in the European Community in 1977. The tables cover hard coal production, supply and trade; briquettes; cokes; lignite, brown coal briquettes and peat; and mines and coke ovens.

  10. Australian coal yearbook 1989

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, A [ed.

    1989-01-01

    This yearbook contains a mine directory; details of coal export facilities and ports; annual coal statistics; a buyers' guide; names and addresses of industry organisations and an index of coal mine owners.

  11. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  12. Coal industry annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993

  13. Australian black coal statistics 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This second edition of Australian black coal statistics replaces the Joint Coal Board's publication 'Black coal in Australia'. It includes an expanded international coal trade supplement. Sections cover resources of black coal, coal supply and demand, coal production, employment and productivity of mines, export data, coal consumption and a directory of producers.

  14. Kinetics of polymer degradation in solution. 6. Laser flash photolysis and pulse radiolysis studies of polymethylvinylketone in solution using the light scattering detection method

    Energy Technology Data Exchange (ETDEWEB)

    Lindenau, D; Beavan, S W; Beck, G; Schnabel, W [Hahn-Meitner-Institut fuer Kernforschung Berlin G.m.b.H. (Germany, F.R.)

    1977-01-01

    Polymethylvinylketone (PMVK) was irradiated in solution with 2 ..mu..s pulses of 15 MeV electrons or with 15 ns flashes of 262 nm light. The change of the intensity of the light scattered by the solution (LSI) after the irradiation was measured. For the radiolysis experiments, a main chain scission process tausub(1/2) (decr) approximately 20 ..mu..s) and a subsequent crosslinking process (tausub(1/2) (incr) approximately 0.4 sec) could be discriminated. The LSI change pertaining to the main chain degradation was found to be due to disentanglement diffusion, whereas the LSI change pertaining to the crosslinking process could be correlated to a chemical reaction. The rate constant for combination of lateral macroradicals in acetone solution was estimated as 2 k/sub 2/ - (4.5 +- 1.5)10/sup 6/ M/sup -1/ sec/sup -1/. Stationary irradiation with /sup 60/Co-..gamma..-rays showed that PMVK is predominantly crosslinked to form a macrogel when irradiated in the solid state or in solution at concentrations greater than 100 g/l. At lower concentrations, microgel formation occurred. Photolysis of PMVK in solution yielded only main chain degradation. The LSI change was found to be due to disentanglement diffusion as during radiolysis. It was concluded that the same mechanism for main chain rupture is operative as in radiolysis. Stationary irradiations with uv light (lambda > 260 nm ) resulted in main chain degradation; no indication of crosslinking was obtained.

  15. 1982 Australian coal conference papers

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This third Australian coal conference included papers discussing the market for coal, finance and investment, use of computers, mining, coal research, coal preparation and waste disposal, marketing and trade, and the transport of coal. All papers have been individually abstracted.

  16. Preparation and development of FeS2 Quantum Dots on SiO2 nanostructures immobilized in biopolymers and synthetic polymers as nanoparticles and nanofibers catalyst for antibiotic degradation.

    Science.gov (United States)

    Gao, Wei; Razavi, Razieh; Fakhri, Ali

    2018-03-22

    The FeS 2 Quantum Dots (QDs) decorated SiO 2 nanostructure were prepared by hydrothermal synthesis method. Chitosan and polypyrrole as polymers were used for the immobilization process. The characteristic structure of prepared samples was analyzed using several techniques such as X-ray diffraction, scanning and transmittance electron microscopy, photoluminescence and UV-vis spectroscopy. The mean crystallite sizes of FeS 2 QDs/SiO 2 nanocomposites, FeS 2 QDs/SiO 2 -chitosan nanocomposites and FeS 2 QDs/SiO 2 -polypyrrole nanohybrids are 56.12, 76.38, and 83.24nm, respectively. The band gap energy of FeS 2 QDs/SiO 2 nanocomposites, FeS 2 QDs/SiO 2 -chitosan nanocomposites and FeS 2 QDs/SiO 2 -polypyrrole nanohybrids were found out to be 3.0, 2.8, and 2.7eV, respectively. The photocatalysis properties were investigated by degradation of ampicillin under UV light illumination. The effect of experimental variables, such as, pH and time, on photo-degradation efficiency was studied. The results show that the three prepared samples nanopowders under UV light was in pH3 at 60min. As it could be seen that the amount of ampicillin degradation was increased with the loading of FeS 2 QDs on SiO 2 and FeS 2 QDs/SiO 2 on chitosan nanoparticles and polypyrrole nanofiber. The antibacterial experiment was investigated under visible light illumination and the FeS 2 QDs/SiO 2 -chitosan nanocomposites and FeS 2 QDs/SiO 2 -polypyrrole nanohybrids demonstrate good antibacterial compared to FeS 2 QDs/SiO 2 nanocomposites. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Enzymatic degradation of polycaprolactone–gelatin blend

    International Nuclear Information System (INIS)

    Banerjee, Aditi; Chatterjee, Kaushik; Madras, Giridhar

    2015-01-01

    Blends of polycaprolactone (PCL), a synthetic polymer and gelatin, natural polymer offer a optimal combination of strength, water wettability and cytocompatibility for use as a resorbable biomaterial. The enzymatic degradation of PCL, gelatin and PCL–gelatin blended films was studied in the presence of lipase (Novozym 435, immobilized) and lysozyme. Novozym 435 degraded the PCL films whereas lysozyme degraded the gelatin. Though Novozym 435 and lysozyme individually could degrade PCL–gelatin blended films, the combination of these enzymes showed the highest degradation of these blended films. Moreover, the enzymatic degradation was much faster when fresh enzymes were added at regular intervals. The changes in physico-chemical properties of polymer films due to degradation were studied by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. These results have important implications for designing resorbable biomedical implants. (paper)

  18. Mechanical Degradation Onset of Polyethylene Oxide Used as a Hydrosoluble Model Polymer for Enhanced Oil Recovery Seuil de dégradation mécanique de solutions de polymères utilisés en récupération assistée des hydrocarbures

    Directory of Open Access Journals (Sweden)

    Dupas A.

    2013-02-01

    Full Text Available Water soluble polymers such as polyacrylamide are used in polymer flooding, which is an advanced technique of Enhanced Oil Recovery (EOR. It aims at improving crude oil displacement in reservoir by pushing it with a viscous injected fluid. Polymer flood is challenged by mechanical degradation of long macromolecules during intense flows. Many studies reported that above a critical extensional rate hbox{$varepsilon^{mathrm{cdot }}_{mathrm{c}}$} ε c · , polymer chains can break and lose their rheological properties. The molecular weight (M dependence of hbox{$varepsilon^{mathrm{cdot }}_{mathrm{c}}$} ε c · for dilute solutions in laminar flows was shown to follow a power law: hbox{$varepsilon^{mathrm{cdot }}_{mathrm{c}}$} ε c · ≈ Mw–k. An experimental study has been performed to investigate the onset of mechanical degradation in both laminar and turbulent flows and for both dilute and semi dilute polyethylene oxide aqueous solutions. It reveals that the exponent k strongly depends on the concentration and flow regimes and also on solvent quality. Results show that mechanical degradation mainly affects long chains, that it is favoured at high concentrations, under poor solvent conditions. They also evidence that the extensional viscosity at low strain rates decreases to the same extent as shear viscosities due to mechanical degradation. However, the decrease of the extensional viscous properties at high strain rates is much more pronounced. Les polymères hydrosolubles comme les polyacrylamides peuvent être utilisés en récupération assistée des hydrocarbures (Enhanced Oil Recovery (EOR par injection de polymère. Cette technique vise à augmenter la production de brut en le poussant du réservoir vers un puits producteur à l’aide d’une solution de polymère suffisamment visqueuse. Les polymères utilisés à cet effet ont des masses moléculaires supérieures à 106 g/mol, ce qui les rend sensibles à la dégradation. En raison

  19. Ultravitrinite coals from Chukotka

    Energy Technology Data Exchange (ETDEWEB)

    Lapo, A.V.; Letushova, I.A.

    1979-03-01

    Chemical and petrographic analysis was conducted on coals from the Anadyrya and Bukhti Ugol'noi deposits. Characteristics of the most prevalent type of vitrinite coals in both regions are presented here. Anadyrya coals belong to a transitional phase between brown coal and long flame. Ultravitrinite coals predominate. Gas coals from Bukti Ugol'noi have a higher carbon content than Anadyrya coals. They also have a higher hydrogen content and yield of initial resin. In several cases there was also a higher yield of volatile substances. Chukotka coals are characterized by a 10 percent higher initial resin yield than equally coalified Donetsk coals, other indicators were equal to those of Donetsk coals. Because of this, Chukotka coals are suitable for fuel in power plants and as raw materials in the chemical industry. (15 refs.) (In Russian)

  20. Irradiation of bioresorbable biomaterials for controlled surface degradation

    DEFF Research Database (Denmark)

    Simpson, M.; Gilmore, B.F.; Miller, Arne

    2014-01-01

    Bioresorbable polymers increasingly are the materials of choice for implantable orthopaedic fixation devices. Controlled degradation of these polymers is vital for preservation of mechanical properties during tissue repair and controlled release of incorporated agents such as osteoconductive or a...

  1. Coal Tar and Coal-Tar Pitch

    Science.gov (United States)

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  2. Chromatographic methods and techniques used in studies of coals, their progenitors and coal-derived materials

    Energy Technology Data Exchange (ETDEWEB)

    Zubkova, Valentina [Jan Kochanowski University of Humanities and Sciences, Institute of Chemistry, Kielce (Poland)

    2011-03-15

    The use of chromatography in studies of coals, their progenitors and coal-related products was reviewed. The specificity of the coal structure was discussed. The use of extraction in preparing study samples was discussed paying special attention to the occurrence of undesirable phenomena such as aggregation of coal derivate molecules, resulting from the formation of their dimers and trimers, and degradation of polar solvents at temperatures above 350 C. The following ways of fractionating samples of coal materials were considered: thermal, solvent, column with the use of preparative size exclusive chromatography and preparative thin layer chromatography as well as membrane separation. The use of chromatography coupled with experimental techniques such as mass spectrometry, infrared spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and pyrolysis was analysed. (orig.)

  3. SYNTHESES AND PROPERTIES OF SOME ORGANOSILANE POLYMERS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xinghua; Robert West

    1984-01-01

    Some organosilane polymers with high molecular weights have been synthesized by cocondensation of organosilicon dihalide monomers with sodium metal in toluene. These polymers are both soluble in common solvents and meltable at lower temperatures, and can be molded, cast into films or drawn into fibers. Exposure of the solid polymers to ultraviolet light leads to degradation or crosslinking.

  4. Green polymer chemistry: biocatalysis and biomaterials

    Science.gov (United States)

    This overview briefly surveys the practice of green chemistry in polymer science. Eight related themes can be discerned from the current research activities: 1) biocatalysis, 2) bio-based building blocks and agricultural products, 3) degradable polymers, 4) recycling of polymer products and catalys...

  5. High-efficiency and conveniently recyclable photo-catalysts for dye degradation based on urchin-like CuO microparticle/polymer hybrid composites

    Science.gov (United States)

    Liu, Xiong; Cheng, Yuming; Li, Xuefeng; Dong, Jinfeng

    2018-05-01

    In this work, we developed a new type of photo-catalysts composed of the urchin-like cupric oxide (CuO) microparticle and polyvinylidene fluoride (PVDF) hybrid composites by the convenient organic-inorganic hybrid strategy, which show high-efficiency and conveniently recyclable for dye degradation including methylene blue (MB), Congo red (CR), and malachite green (MG) by visible light irradiation. The micro-structural characteristics of urchin-like CuO microparticles are crucial and dominant over the photo-degrading efficiency of hybrid catalyst because of their highly exposed {0 0 2} facet and larger specific surface area. Simultaneously, the intrinsic porous framework of PVDF membrane not only remains the excellent photo-catalytic activity of urchin-like CuO microparticles but also facilitates the enrichment of dyes on the membrane, and thereby synergistically contributing to the photo-catalytic efficiency. The microstructures of both urchin-like CuO microparticles and hybrid catalysts are systematically characterized by various techniques including scanning electron microscopy (SEM), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption/desorption isotherms, which evidently support the mentioned mechanism.

  6. Degradation of H3PO4/PBI High Temperature Polymer Electrolyte Membrane Fuel Cell under Stressed Operating Conditions

    DEFF Research Database (Denmark)

    Zhou, Fan

    performance loss caused by CO poisoning can be alleviated by the presence of water vapor. The CO oxidation via the water gas shift reaction is the main reason for the mitigated CO poisoning with the presence of water vapor. Meanwhile, the CO poisoning can deteriorate with the presence of CO2, although the CO2...... for HT-PEM fuel cell based micro-CHP units for households, the daily startup/shutdown operation is necessary. Moreover, the faults in the H2 supply system or in controlling the reformer can cause the H2 starvation of the HT-PEM fuel cell. The effects of these operating conditions to the degradation...... results in the degradation in cell performance of the HT-PEM fuel cell by increasing the charge transfer resistance and mass transfer resistance. The CO with volume fraction of 1% – 3% can cause significant performance loss to the HT-PEM fuel cell at the operating temperature of 150 oC. The cell...

  7. Record coking coal settlements

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, C.

    2005-02-01

    The US$100/tonne psychological barrier in coking coal prices has been well and truly smashed. The article examines developments in coal pricing. It includes quotes from many senior executives in the coal industry as collected at McCloskey's Australian Coal.04 conference held in Sydney, 18-19 November 2004. 2 photos.

  8. COAL Conference Poster

    OpenAIRE

    Brown, Taylor Alexander; McGibbney, Lewis John

    2017-01-01

    COAL Conference Poster This archive contains the COAL conference poster for the AGU Fall Meeting 2017 by Taylor Alexander Brown. The Inkscape SVG source is available at https://github.com/capstone-coal/coal-conference-poster/ under the Creative Commons Attribution-ShareAlike 4.0 International license.

  9. Coal option. [Shell Co

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  10. Concerning coal: an anthology

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M.; Hawse, M.L.; Maloney, P.J. [eds.

    1997-12-31

    The anthology takes a humanistic look at coal mining in Illinois. One of its goals is to increase public awareness of coal in American society; it also seeks to enhance understanding of the historical aspects of coal and to study the impact of coal on mining families. Many of the 25 selections in the anthology come from Coal Research Center publications, `Concerning coal` and `Mineral matters`. Articles are arranged in three parts entitled: life in the mining community; mining in folklore, story telling, literature, art and music; and technology as it affected the people of the coal fields. 117 refs., 25 photos. 1 map.

  11. Coal information 1995

    International Nuclear Information System (INIS)

    1996-01-01

    This volume is a comprehensive reference book on current world coal market trends and long-term prospects to 2010. It contains an in-depth analysis of the 1995 international coal market covering prices, demand, trade, supply and production capacity as well as over 450 pages of country specific statistics on OECD and key non-OECD coal producing and consuming countries. The book also includes a summary of environmental policies on climate change and on coal-related air quality issues as well as essential facts on coal-fired power stations in coal-importing regions, on coal ports world-wide and on emission standards for coal-fired boilers in OECD countries. Coal Information is one of a series of annual IEA statistical publications on major energy sources; other reports are Oil and Gas Information and Electricity Information. Coal Information 1995 is published in July 1996. (author)

  12. Coal yearbook 1993

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This book is the first coal yearbook published by ATIC (France). In a first chapter, economical context of coal worldwide market is analyzed: comparative evaluations on coal exports and imports, coal industry, prices, production in USA, Australia, South Africa, China, former USSR, Poland, Colombia, Venezuela and Indonesia are given. The second chapter describes the french energy context: national coal production, imports, sectorial analysis, maritime transport. The third chapter describes briefly the technologies of clean coal and energy saving developed by Charbonnages de France: fossil-fuel power plants with combined cycles and cogeneration, fluidized beds for the recovery of coal residues, recycling of agricultural wastes (sugar cane wastes) in thermal power plant, coal desulfurization for air pollution abatement. In the last chapter, statistical data on coal, natural gas and crude oil are offered: world production, world imports, world exports, french imports, deliveries to France, coal balance, french consumption of primary energy, power generation by fuel type

  13. Chemical and Pyrolytic Thermogravimetric Characterization of Nigerian Bituminous Coals

    Directory of Open Access Journals (Sweden)

    Nyakuma Bemgba Bevan

    2016-12-01

    Full Text Available The discovery of new coal deposits in Nigeria presents solutions for nation’s energy crises and prospects for socioeconomic growth and sustainable development. Furthermore, the quest for sustainable energy to limit global warming, climate change, and environmental degradation has necessitated the exploration of alternatives using cleaner technologies such as coal pyrolysis. However, a lack of comprehensive data on physico-chemical and thermal properties of Nigerian coals has greatly limited their utilization. Therefore, the physico-chemical properties, rank (classification, and thermal decomposition profiles of two Nigerian bituminous coals – Afuze (AFZ and Shankodi-Jangwa (SKJ – were examined in this study. The results indicate that the coals contain high proportions of C, H, N, S, O and a sufficiently high heating value (HHV for energy conversion. The coal classification revealed that the Afuze (AFZ coal possesses a higher rank, maturity, and coal properties compared to the Shankodi-Jangwa (SKJ coal. A thermal analysis demonstrated that coal pyrolysis in both cases occurred in three stages; drying (30-200 °C, devolatilization (200-600 °C, and char decomposition (600-1000 °C. The results also indicated that pyrolysis at 1000 °C is not sufficient for complete pyrolysis. In general, the thermochemical and pyrolytic fuel properties indicate that the coal from both places can potentially be utilized for future clean energy applications.

  14. Technological and economic aspects of coal biodesulfurisation.

    Science.gov (United States)

    Klein, J

    1998-01-01

    The sulfur found in coal is either part of the molecular coal structure (organically bound sulfur), is contained in minerals such as pyrite (FeS2), or occurs in minor quantities in the form of sulfate and elemental sulfur. When pyrite crystals are finely distributed within the coal matrix, mechanical cleaning can only remove part of the pyrite. It can, however, be removed by microbial action requiring only mild conditions. The process involves simple equipment, almost no chemicals, but relatively long reaction times, and treatment of iron sulfate containing process water. Different process configurations are possible, depending on the coal particle size. Coal with particle sizes of less than 0.5 mm is preferably desulfurised in slurry reactors, while lump coal (> 0.5 mm) should be treated in heaps. Investment and operating costs are estimated for different process configurations on an industrial scale. Concerning the organically bound sulfur in coal there is up to now no promising biochemical pathway for the degradation and/or desulfurisation of such compounds.

  15. ACR coal 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This publication is a comprehensive reference document on production, exports, prices and demand of coal in world markets. A forecast of demand by coal type and country up to the year 2000 is provided. Statistics of the Australian export industry are complemented by those of South Africa, USA, Canada, Indonesia, China, C.I.S. and Colombia. A very comprehensive coal quality specification for nearly all the coal brands exported from Australia, as well as leading non-Australian coal brands, is included.

  16. Assessing coal burnout

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, A. [Pacific Power, Sydney, NSW (Australia)

    1999-11-01

    Recent research has allowed a quantitative description of the basic process of burnout for pulverized coals to be made. The Cooperative Research Centre for Black Coal Utilization has built on this work to develop a coal combustion model which will allow plant engineers and coal company representatives to assess their coals for combustion performance. The paper describes the model and its validation and outlines how it is run. 2 figs.

  17. Synthesis, characterisation and non-isothermal degradation kinetics ...

    Indian Academy of Sciences (India)

    Thus, obtained co-polymer was charac- terized by Fourier transform ... used, the Kissinger method yielded the lowest degradation kinetics. The degradation ... addition of amines with alkenes in methanol water medium, report is available in the ...

  18. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  19. Photodegradation of polymers physical characteristics and applications

    CERN Document Server

    Rabek, Jan F

    1996-01-01

    In this book on physical characteristics and practical aspects of polymer photodegradation Rabek emphasizes the experimental work on the subject. The most important feature of the book is the physical interpretation of polymer degradation, e.g. mechanism of UV/light absorption, formation of excited states, energy transfer mechanism, kinetics, dependence on physical properties of macromolecules and polymer matrices, formation of mechanical defects, practics during environmental ageing. He includes also some aspects of polymer photodegradation in environmental and space condition.

  20. Cleaner Coal in China [Chinese Version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    China’s rapid economic growth has aroused intense interest around the world. Policy makers, industrialists, investors, environmentalists, researchers and others want to better understand the issues that this populous nation faces as it further develops an already thriving economy largely fuelled by coal. This study sheds light on the Chinese coal supply and transformation sectors. China’s rapid economic growth has aroused intense interest around the world. Policy makers, industrialists, investors, environmentalists, researchers and others want to better understand the issues that this populous nation faces as it further develops an already thriving economy largely fuelled by coal. This study sheds light on the Chinese coal supply and transformation sectors. China’s coal, mined locally and available at a relatively low cost, has brought enormous benefits to energy consumers in China and to those outside the country who enjoy the products of its coal-based economy. Yet from another perspective, China’s coal use has a high cost. Despite progress, health and safety in the thousands of small coal mines lag far behind the standards achieved in China’s modern, large mines. Environmental degradation is a real and pressing problem at all stages of coal production, supply and use. Adding to these burdens, emissions of carbon dioxide are of concern to the Chinese government as it embarks on its own climate protection strategy. Technology solutions are already transforming the way coal is used in China and elsewhere. This study explores the context in which the development and deployment of these technologies can be accelerated. Providing a large amount of new data, it describes in detail the situation in China as well as the experiences of other countries in making coal cleaner. Above all, the report calls for much greater levels of collaboration – existing bi-lateral and multi-lateral co-operation with China on coal is found lacking. China’s growing openness

  1. Coal information 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Coal Information (1997 edition) is the latest edition of a publication that has been produced annually by the IEA since 1983. The report is intended to provide both Member countries of the OECD and those employed in all sectors of the coal industry with information on current world coal market trends and long-term prospects. It includes information on coal prices, demand, trade, supply, production capacity, transport, environmental issues (including emission standards for coal-fired boilers), coal ports, coal-fired power stations and coal used in non -OECD countries. Part I of the publication contains a wide ranging review of world coal market developments in 1996 and current prospects to 2010. The review is based on historical data of OECD energy supply and demand, data on other world regions, projections of OECD coal supply, demand and trade and information provided by the CIAB. Part II provides, in tabular and graphical form, a more detailed and comprehensive statistical picture of coal developments and future prospects for coal in the OECD, by region and for individual Member countries. Readers interested in projections are strongly advised to read the notes for individual countries in Principles and Definitions in Part II. Coal statistics for non-OECD countries are presented in Part III of the book. Summary data are available on hard coal supply and end-use statistics for about 40 countries and regions world-wide. Data are based on official national submissions to the United Nations in Geneva and New York, national energy publications, information provided to the IEA Secretariat by national statistical offices as well as other unofficial Secretariat sources. Further information on coal used in non-OECD countries is published annually by the IEA in Energy Statistics and Balances of Non-OECD Countries. Also included in Part III are the Survey of Coal Ports world-wide and the Survey of Coal-fired Power Stations in coal-importing countries

  2. Photoluminescence in conjugated polymers

    International Nuclear Information System (INIS)

    Furst, J.E.; Laugesen, R.; Dastoor, P.; McNeill, C.

    2002-01-01

    Full text: Conjugated polymers combine the electronic and optical properties of semiconductors with the processability of polymers. They contain a sequence of alternate single and double carbon bonds so that the overlap of unhybridised p z orbitals creates a delocalised ρ system which gives semiconducting properties with p-bonding (valence) and p* -antibonding (conduction) bands. Photoluminesence (PL) in conjugated polymers results from the radiative decay of singlet excitons confined to a single chain. The present work is the first in a series of studies in our laboratory that will characterize the optical properties of conjugated polymers. The experiment involves the illumination of thin films of conjugated polymer with UV light (I=360 nm) and observing the subsequent fluorescence using a custom-built, fluorescence spectrometer. Photoluminesence spectra provide basic information about the structure of the polymer film. A typical spectrum is shown in the accompanying figure. The position of the first peak is related to the polymer chain length and resolved multiple vibronic peaks are an indication of film structure and morphology. We will also present results related to the optical degradation of these materials when exposed to air and UV light

  3. Durability of radiation-sterilized polymers, 2

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Sasaki, Takashi; Makuuchi, Keizo; Tamura, Naoyuki

    1985-01-01

    The degradation during storage after electron beam and γ-ray irradiation on to polymers for disposables syringes was investigated in connection with the decay curves of chemiluminescence amounts. The degradation during storage of homopolypropylene was relatively small, large part of polymers having been degraded during irradiation. The degradation during storage of copolypropylene occurred at earlier stage up to three months, while in later stage, it hardly proceeded. The degradation during storage of electron beam irradiated samples were far smaller than that γ-ray irradiated ones. Irradiation of 2.5 Mrad with electron beam caused degradation only a little during storage. It was suggested that the degradation during storage depend on degree of oxidation during irradiation. The degradation during storage was not observed for radiation resistant polypropylene and polymethylpentene. The degradation during storage of coprolypropylene was affected by atmosphere, being smaller in vacuo than in air. (author)

  4. Organosilicon fluid for cooling coal combine motors

    Energy Technology Data Exchange (ETDEWEB)

    Donets, I K; Dmitrenko, Yu N; Kovalev, Ye B; Sukhanov, V V; Tsingarelli, Ye P

    1983-01-01

    Results are presented of toxicological evaluation of the polymer organosilicon fluid FM-5.6AP which should be used as the cooling agent of the electric motors of coal combines. It was established that fluid FM-5.6AP belongs to the low-toxic substances that do not have skinresorptive, skin-damaging and cumulative effect, do not have a significant influence on phagocytosis of the coal dust, in depositing in the lungs and elimination. During experimental industrial tests of the motor using the fluid FM-5.6AP, no toxic effect of it on the body was revealed. The possibility is shown of using organosilicon fluid FM-5.6AP for cooling electric motors of coal combines.

  5. Polymer compound

    NARCIS (Netherlands)

    1995-01-01

    A Polymer compound comprising a polymer (a) that contains cyclic imidesgroups and a polymer (b) that contains monomer groups with a 2,4-diamino-1,3,5-triazine side group. According to the formula (see formula) whereby themole percentage ratio of the cyclic imides groups in the polymer compoundwith

  6. Trends in Japanese coal trade

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, S

    1986-01-01

    The author discusses 1) the latest forecast for coal demand in Japan; 2) trends in Japanese steam coal demand, with breakdown by industry; 3) the organization of steam coal supply, with details of the distribution network and of the new coal cartridge system; 4) the demand for metallurgical coal. Other topics outlined include the current status of Japanese coal production, Japanese coal trade, and the development of overseas coal resources. 1 figure, 5 tables.

  7. Degadation of semiconducting polymers by concentrated sunlight

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Manceau, Matthieu; Petersen, Martin Helgesen

    2011-01-01

    infra-red spectra of MEH-PPV degraded at 1 sun intensity and at high solar concentration only showed minor deviations in degradation mechanisms. The acceleration factor was found to vary linearly with the solar concentration. Finally, a comparison of the degradation rates at 1 sun and 100 suns...... was carried out in a materials study employing five different conjugated polymers relevant to polymer solar cells for which acceleration factors in the range 19–55 were obtained.......A lens based sunlight concentration setup was used to accelerate the degradation of semiconducting polymers. Sunlight was collected outdoor and focused into an optical fiber bundle allowing for indoor experimental work. Photo-degradation of several polymers was studied by UV–vis absorbance...

  8. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  9. Coal and Open-pit surface mining impacts on American Lands (COAL)

    Science.gov (United States)

    Brown, T. A.; McGibbney, L. J.

    2017-12-01

    Mining is known to cause environmental degradation, but software tools to identify its impacts are lacking. However, remote sensing, spectral reflectance, and geographic data are readily available, and high-performance cloud computing resources exist for scientific research. Coal and Open-pit surface mining impacts on American Lands (COAL) provides a suite of algorithms and documentation to leverage these data and resources to identify evidence of mining and correlate it with environmental impacts over time.COAL was originally developed as a 2016 - 2017 senior capstone collaboration between scientists at the NASA Jet Propulsion Laboratory (JPL) and computer science students at Oregon State University (OSU). The COAL team implemented a free and open-source software library called "pycoal" in the Python programming language which facilitated a case study of the effects of coal mining on water resources. Evidence of acid mine drainage associated with an open-pit coal mine in New Mexico was derived by correlating imaging spectrometer data from the JPL Airborne Visible/InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG), spectral reflectance data published by the USGS Spectroscopy Laboratory in the USGS Digital Spectral Library 06, and GIS hydrography data published by the USGS National Geospatial Program in The National Map. This case study indicated that the spectral and geospatial algorithms developed by COAL can be used successfully to analyze the environmental impacts of mining activities.Continued development of COAL has been promoted by a Startup allocation award of high-performance computing resources from the Extreme Science and Engineering Discovery Environment (XSEDE). These resources allow the team to undertake further benchmarking, evaluation, and experimentation using multiple XSEDE resources. The opportunity to use computational infrastructure of this caliber will further enable the development of a science gateway to continue foundational COAL

  10. Bacterial enzymes involved in lignin degradation

    NARCIS (Netherlands)

    de Gonzalo, Gonzalo; Colpa, Dana I; Habib, Mohamed H M; Fraaije, Marco W

    2016-01-01

    Lignin forms a large part of plant biomass. It is a highly heterogeneous polymer of 4-hydroxyphenylpropanoid units and is embedded within polysaccharide polymers forming lignocellulose. Lignin provides strength and rigidity to plants and is rather resilient towards degradation. To improve the

  11. Nitrogen in Chinese coals

    Science.gov (United States)

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  12. Coal marketing manual 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This manual presents information for the use of marketers, consumers, analysts and investors. The information is presented in a series of tables and figures. Statistics are given for: Australian export tonnages and average export values for 1978-1985; international pig iron production 1976 to 1985; and international crude steel production 1979 to 1985. Trends in Australian export tonnages and prices of coal are reviewed. Details of international loading and discharge ports are given, together with a historical summary of shipping freight-rates since 1982. Long term contract prices for thermal and coking coal to Japan are tabulated. A review of coal and standards is given, together with Australian standards for coal and coke. A section on coal quality is included containing information on consumer coal quality preferences and Australian and Overseas coal brands and qualities. Finally an index is given of contact details of Australian and Overseas exporting companies, government departments, and the Australian Coal Association.

  13. Coal worker's pneumoconiosis

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000130.htm Coal worker's pneumoconiosis To use the sharing features on this page, please enable JavaScript. Coal worker's pneumoconiosis (CWP) is a lung disease that ...

  14. Fording Canadian Coal Trust

    Energy Technology Data Exchange (ETDEWEB)

    Popowich, J.; Millos, R. [Elk Valley Coal Corporation, Calgary, AB (Canada)

    2004-07-01

    This is the first of five slide/overhead presentations presented at the Fording Canadian Coal Trust and Tech Cominco Ltd. investor day and mine tour. The Fording Canadian Coal Trust is described. The Trust's assets comprise six Elk Valley metallurgical coal mines and six wollastonite operations (in the NYCO Group). Trust structure, corporate responsibility, organizational structure, reserves and resources, management philosophy, operating strategies, steel market dynamics, coal market, production expansion, sales and distribution are outlined. 15 figs., 5 tabs.

  15. Coal. [1987 and 1989

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    Despite increases in recently negotiated coal prices in US dollar terms, unit export returns for Australian coal are expected to rise only marginally in 1988-89 due to the anticipated appreciation of the Australian dollar. Australian coal production is expected to recover in 1988-89, after falling in 1987-88. A table summarising coal statistics in 1985-87 is presented. 2 figs., 1 tab.

  16. Review biodepyritisation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, C.; Sukla, L.B.; Misra, V.N. [Regional Research Lab., Orissa (India)

    2004-01-01

    This review provides a detailed summary of the recent and past research activities in the area of biodesulfurisation of coal. It provides information about microorganisms important for biodesulfurisation of coal, with the emphasis on Thiobacillus ferrooxidans. The review presents an insight into various methods of desulfurisation of coal combining physical and biological methods. Also, there are discussions on coal structure, distribution, mechanism and kinetics of pyrite oxidation and jarosite precipitation. Finally, areas requiring further research are identified.

  17. Coal dust symposium

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    This paper gives a report of the paper presented at the symposium held in Hanover on 9 and 10 February 1981. The topics include: the behaviour of dust and coal dust on combustion and explosion; a report on the accidents which occurred at the Laegerdorf cement works' coal crushing and drying plant; current safety requirements at coal crushing and drying plant; and coal crushing and drying. Four papers are individually abstracted. (In German)

  18. Coal world market

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    A brief analysis of major tendencies in the world market of coal is presented. It is pointed out that recent years, by and large, were favourable for the development of the world coal industry. Prices for coal (both for power-grade and coking one) in 1995 after many years of depressive state increased by nearly 20 % and reached a maximum of the last decade. International coal trading continues to grow and the tendency may persist in the mext two years

  19. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  20. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)

    2013-04-01

    The year 2012 benefited from a growth of the consumption of hard coal at the national level as well as at the international level. Worldwide, the hard coal still is the number one energy source for power generation. This leads to an increasing demand for power plant coal. In this year, the conversion of hard coal into electricity also increases in this year. In contrast to this, the demand for coking coal as well as for coke of the steel industry is still declining depending on the market conditions. The enhanced utilization of coal for the domestic power generation is due to the reduction of the nuclear power from a relatively bad year for wind power as well as reduced import prices and low CO{sub 2} prices. Both justify a significant price advantage for coal in comparison to the utilisation of natural gas in power plants. This was mainly due to the price erosion of the inexpensive US coal which partly was replaced by the expansion of shale gas on the domestic market. As a result of this, the inexpensive US coal looked for an outlet for sales in Europe. The domestic hard coal has continued the process of adaptation and phase-out as scheduled. Two further hard coal mines were decommissioned in the year 2012. RAG Aktiengesellschaft (Herne, Federal Republic of Germany) running the hard coal mining in this country begins with the preparations for the activities after the time of mining.

  1. Coal economics and taxation

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    These proceedings contain opening remarks, the luncheon and dinner addresses, list of delegates and the papers presented at the four sessions on Coal Mines cost money - for what.; Coal mines cost money - Where the money comes from; taxation and royalty policies; and the coal industry view on operating costs. Sixteen papers are abstracted separately.

  2. Interaction and the structures of coal

    Science.gov (United States)

    Opaprakasit, Pakorn

    solvents, which in turn enhances the coal extraction yield. Finally, the evidence for the presence of a glass transition temperature in coal was examined. The results from Differential Scanning Calorimetry showed that no transition similar to the Tg can be observed in bulk coal or its low-molecular weight fraction, pyridine soluble extracted material, at a temperature near 110°C. In contrast, an irreversible transition that is due to water evaporation has been found. Thermomechanical measurements, which are very sensitive to the presence of a Tg in synthetic polymers, also provided no evidence for a Tg below temperatures where chemical reactions occur. Additionally, the results from Thermomechanical Analysis showed an expansion in size when the coal was heated to 300°C, which is associated with a "caking" process. The degree of expansion during this "caking" process is about five times greater in the direction perpendicular to the bedding plane than the parallel, indicating an accommodation of anisotropic strain relaxation, which was generated in the direction perpendicular to the bedding plane during the coalification process.

  3. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    Science.gov (United States)

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J.P.; Ritter, Daniel J.; McIntosh, Jennifer C.; Clark, Arthur C.; Ruppert, Leslie F.; Cunningham, Alfred B.; Vinson, David S.; Orem, William H.; Fields, Matthew W.

    2016-01-01

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulic conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112 to 120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ13C values (−67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO3−, or SO42−. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situbacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  4. Characteristics of Malaysian coals with their pyrolysis and gasification behaviour

    International Nuclear Information System (INIS)

    Nor Fadzilah Othman; Mohd Hariffin Bosrooh; Kamsani Abdul Majid

    2010-01-01

    This study was conducted since comprehensive study on the gasification behaviour of Malaysian coals is still lacking. Coals were characterised using heating value determination, proximate analysis, ultimate analysis and ash analysis. Pyrolysis process was investigated using thermogravimetric analyser. While, atmospheric bubbling fluidized bed gasifier was used to investigate the gasification behaviour. Three Malaysian coals, Merit Pila, Mukah Balingian, Silantek; and Australian coal, Hunter Valley coals were used in this study. Thermal degradation of four coal samples were performed, which involved weight loss profile and derivative thermogravimetric (DTG) curves. The kinetic parameters, such as maximum reactivity value, R max , Activation Energy, E a and Arrhenius constant, ln R o for each coal were determined using Arrhenius Equation. Merit Pila coal shows the highest maximum reactivity among other Malaysian coals. E a is the highest for Merit Pila coal (166.81kJmol -1 ) followed with Mukah Balingian (101.15 kJmol -1 ), Hunter Valley (96.45 kJmol -1 ) and Silantek (75.23 kJmol -1 ) coals. This finding indicates direct correlation of lower rank coal with higher E a . Merit Pila coal was studied in detail using atmospheric bubbling fluidized bed gasifier. Different variables such as equivalence ratio (ER) and gasifying agents were used. The highest H 2 proportion (38.3 mol.%) in the producer gas was reached at 715 degree Celsius and ER=0.277 where the maximization of LHV pg (5.56 MJ/Nm 3 ) was also detected. ER and addition of steam had shown significant contributions to the producer gas compositions and LHV pg . (author)

  5. Self-scrubbing coal

    International Nuclear Information System (INIS)

    Kindig, J.K.

    1992-01-01

    More than 502 million tons - 65 percent of all coal shipped to utilities in 1990 - were above 1.2 pounds of sulfur dioxide per million Btu. Most of the coal, even though cleaned in conventional coal preparation plants, still does not meet the emission limitation the Clean Air Act Amendments mandate for the year 2000. To cope with this fact, most utilities plan to switch to low sulfur (western U.S. or Central Appalachian) coal or install scrubbers. Both solutions have serous drawbacks. Switching puts local miners out of work and weakens the economy in the utility's service territory. Scrubbing requires a major capital expenditure by the utility. Scrubbers also increase the operating complexity and costs of the generating station and produce yet another environmental problem, scrubber sludge. Employing three new cost-effective technologies developed by Customer Coals International (CCl), most non-compliance coals east of the Mississippi River can be brought into year-2000 compliance. The compliance approach employed, depends upon the characteristics of the raw coal. Three types of raw coal are differentiated, based upon the amount of organic sulfur in the coals and the ease (or difficultly) of liberating the pyrite. They are: Low organic sulfur content and pyrite that liberates easily. Moderate organic sulfur content and pyrite that liberates easily. High organic sulfur content or the pyrite liberates with difficulty. In this paper examples of each type of raw coal are presented below, and the compliance approach employed for each is described. The names of the beneficiated coal products produced from each type of raw coal give above are: Carefree Coal, Self-Scrubbing Coal and Dry-Scrubbing Coal

  6. Australian Coal Company Risk Factors: Coal and Oil Prices

    OpenAIRE

    M. Zahid Hasan; Ronald A. Ratti

    2014-01-01

    Examination of panel data on listed coal companies on the Australian exchange over January 1999 to February 2010 suggests that market return, interest rate premium, foreign exchange rate risk, and coal price returns are statistically significant in determining the excess return on coal companies’ stock. Coal price return and oil price return increases have statistically significant positive effects on coal company stock returns. A one per cent rise in coal price raises coal company returns ...

  7. Coal Data: A reference

    International Nuclear Information System (INIS)

    1991-01-01

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ''Coal Terminology and Related Information'' provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  8. Microbial Enzymatic Degradation of Biodegradable Plastics.

    Science.gov (United States)

    Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch

    2017-01-01

    The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Influence of solvents on UV degradation of polysilanes films

    International Nuclear Information System (INIS)

    Tkacova, M.; Schauer, F.

    2014-01-01

    In the paper we deal with the UV degradation process in polymers in general and silicon based polymers in particular, using the well-known prototypical polymer poly[methylphenylsilylene] (PMPSi). Attention is focused on the influence of solvents used for films preparation an don the UV degradation process in these films examined by Photoluminescence (PL) spectroscopy and Electrochemical Impedance Spectroscopy (EIS). The goal of the study is oriented on the writing of information into thin polymer films and production of nano masks for semiconductor industry. PMPSi is a prototypical silicon-based polymer from the polysilanes (PS) group that attracted attention because of their nonlinear optical and photoelectrical properties (authors)

  10. Coal and public perceptions

    International Nuclear Information System (INIS)

    Porter, R.C.

    1993-01-01

    The Department of Energy's (DOE) clean coal outreach efforts are described. The reason why clean coal technology outreach must be an integral part of coal's future is discussed. It is important that we understand the significance of these advances in coal utilization not just in terms of of hardware but in terms of public perception. Four basic premises in the use of coal are presented. These are: (1) that coal is fundamentally important to this nation's future; (2) that, despite premise number 1, coal's future is by no means assured and that for the last 10 years, coal has been losing ground; (3) that coal's future hinges on the public understanding of the benefits of the public's acceptance of advanced clean coal technology; and (4) hat public acceptance of clean coal technology is not going to be achieved through a nationwide advertising program run by the Federal government or even by the private sector. It is going to be gained at the grassroots level one community at a time, one plant at a time, and one referendum at a time. The Federal government has neither the resources, the staff, nor the mandate to lead the charge in those debates. What is important is that the private sector step up to the plate as individual companies and an individual citizens working one-one-one at the community level, one customer, one civic club, and one town meeting at a time

  11. Indonesian coal export potential

    International Nuclear Information System (INIS)

    Millsteed, Ch.; Jolly, L.; Stuart, R.

    1993-01-01

    Indonesia's coal mining sector is expanding rapidly. Much of the increase in coal production since the mid-1980s has been exported. Indonesian coal mining companies have large expansion programs and continuing strong export growth is projected for the remainder of the 1990s. The low mining costs of indonesian coal, together with proximity to Asian markets, mean that Indonesia is well placed to compete strongly with other thermal coal exporters and win market share in the large and expanding thermal coal market in Asia. However, there is significant uncertainty about the likely future level of Indonesia's exportable surplus of coal. The government's planned expansion in coal fired power generation could constrain export growth, while the ability of producers to meet projected output levels is uncertain. The purpose in this article is to review coal supply and demand developments in Indonesia and, taking account of the key determining factors, to estimate the level of coal exports from Indonesia to the year 2000. This time frame has been chosen because all currently committed mine developments are expected to be on stream by 2000 and because it is difficult to project domestic demand for coal beyond that year. 29 refs., 8 tabs., 7 figs

  12. Graphene-Based Polymer Nanocomposites

    Science.gov (United States)

    2015-03-31

    polymerize in-situ around the fillers or even graft to them [71], thus it overcomes the problem of dramatically increased viscosity of the polymer...filler dispersion, increased polymer viscosity during processing and filler damage due to thermal degradation or strong shear forces [3, 82]. At...123, 124]. Figure 1.12 (a) SEM image of the fracture surface of GO/PVA nanocomposite film [85]. (b) TEM image of a clay reinforced Nylon-6

  13. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Teissie, J.; Bourgogne, D. de; Bautin, F. [TotalFinaElf, La Defense, 92 - Courbevoie (France)

    2001-12-15

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  14. Washability of Australian coals

    Energy Technology Data Exchange (ETDEWEB)

    Whitmore, R L

    1979-06-01

    Australian coals tend to be young in geological age and high in ash by world standards; preparation of the coal before marketing is almost universal. On the basis of float and sink data from 39 locations in the eastern Australian coalfields, the coals are place in four categories representing increasing difficulty in their washability characteristics. These seem to be related neither to the geological age nor the geographical position of the deposit and Hunter Valley coals, for example, span all categories. The influence of crushing on the washability of Australian coals is briefly considered and from limited data it is concluded to be appreciably smaller than for British or North American coals. A strategy for the float and sink analysis of Australian coals is proposed and the influence of washability characteristics on current trends in the selection of separating processes for coking and steaming products is discussed.

  15. Characteristic parameters of the coal briquetting process

    International Nuclear Information System (INIS)

    Davkova, Katica

    1998-01-01

    The complete knowledge about the energetic sources in our country - Republic of Macedonia, point to the fact that coals are the most attractive and highly productive, still keeping the leadership position. However, the process of lignite exploitation causes their degradation and formation of large amount of fine fractions. The industrial valorization of these fractions is the most actual problem that could be solved only through production of made-up enriched fuels of wide spectrum of application. Thus, briquetting formation, with or without use of binds, is a process of mechanical or combined modification of coal fine fractions. At the same time, this is a possible procedure of solid fuels enrichment. Lignite from the Macedonian coal deposits 'Suvodol', 'Priskupshtina' and 'Brik-Berovo' is analyzed, in order to examine the possibilities of its briquetting. The results show that the 'Suvodol' lignite satisfy the quality requirements given with the MKS B H1.031 standard as well as the 'Brik-Berovo' lignite

  16. Process for hydrogenating coal and coal solvents

    Energy Technology Data Exchange (ETDEWEB)

    Shridharani, K.G.; Tarrer, A.R.

    1983-02-15

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260/sup 0/ C to 315/sup 0/ C in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275/sup 0/ C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350/sup 0/ C.

  17. Process for hydrogenating coal and coal solvents

    Science.gov (United States)

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  18. Coal use and coal technology study (KIS)

    International Nuclear Information System (INIS)

    Kram, T.; Okken, P.A.; Gerbers, D.; Lako, P.; Rouw, M.; Tiemersma, D.N.

    1991-11-01

    The title study aims to assess the possible role for coal in the Netherlands energy system in the first decades of the next century and the part new coal conversion technologies will play under various conditions. The conditions considered relate to (sectoral) energy demand derived from national scenarios in an international context, to energy prices, to environmental constraints (acidification, solid waste management and disposal) and to the future role for nuclear power production. Targets for reduction of greenhouse gas emissions are not explicitly included, but resulting CO 2 emissions are calculated for each variant case. The part that coal can play in the Dutch energy supply is calculated and analyzed by means

  19. PHOTOREFRACTIVE POLYMERS

    NARCIS (Netherlands)

    Morichere, D; Malliaras, G.G; Krasnikov, V.V.; Bolink, H.J; Hadziioannou, G

    The use of polymers as photorefractive materials offers many advantages : flexibility in synthesis, doping, processing and low cost. The required functionalities responsible for photorefractivity, namely charge generation, transport, trapping and linear electrooptic effect are given in the polymer

  20. Photorefractive polymers

    NARCIS (Netherlands)

    Bolink, Hendrik Jan; Hadziioannou, G

    1997-01-01

    This thesis describes the synthesis and properties of photorefractive polymers. Photorefractive polymers are materials in which the refractive index can be varied by the interaction with light. Unlike in numerous other photosensitive materials, in photorefractive materials this occurs via

  1. Autonomous valve for detection of biopolymer degradation

    DEFF Research Database (Denmark)

    Keller, Stephan Urs; Noeth, Nadine-Nicole; Fetz, Stefanie

    2009-01-01

    We present a polymer microvalve that allows the detection of biopolymer degradation without the need of external energy. The valve is based on a polymer container filled with a colored marker solution and closed by a thin lid. This structure is covered by a film of poly(L-lactide) and degradation...... of the biopolymer triggers the release of the color which is detected visually. The autonomous valve has potential for the fast testing of biopolymer degradation under various environmental conditions or by specific enzymes....

  2. Structural degradation of Thar lignite using MW1 fungal isolate: optimization studies

    Science.gov (United States)

    Haider, Rizwan; Ghauri, Muhammad A.; Jones, Elizabeth J.; Orem, William H.; SanFilipo, John R.

    2015-01-01

    Biological degradation of low-rank coals, particularly degradation mediated by fungi, can play an important role in helping us to utilize neglected lignite resources for both fuel and non-fuel applications. Fungal degradation of low-rank coals has already been investigated for the extraction of soil-conditioning agents and the substrates, which could be subjected to subsequent processing for the generation of alternative fuel options, like methane. However, to achieve an efficient degradation process, the fungal isolates must originate from an appropriate coal environment and the degradation process must be optimized. With this in mind, a representative sample from the Thar coalfield (the largest lignite resource of Pakistan) was treated with a fungal strain, MW1, which was previously isolated from a drilled core coal sample. The treatment caused the liberation of organic fractions from the structural matrix of coal. Fungal degradation was optimized, and it showed significant release of organics, with 0.1% glucose concentration and 1% coal loading ratio after an incubation time of 7 days. Analytical investigations revealed the release of complex organic moieties, pertaining to polyaromatic hydrocarbons, and it also helped in predicting structural units present within structure of coal. Such isolates, with enhanced degradation capabilities, can definitely help in exploiting the chemical-feedstock-status of coal.

  3. Durability Improvements Through Degradation Mechanism Studies

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Spernjak, Dusan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baker, Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lujan, Roger W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Langlois, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahluwalia, Rajesh [Argonne National Lab. (ANL), Argonne, IL (United States); Papadia, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Weber, Adam Z. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kusoglu, Ahmet [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shi, Shouwnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); More, K. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Grot, Steve [Ion Power, New Castle, DE (United States)

    2015-08-03

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. By investigating cell component degradation modes and defining the fundamental degradation mechanisms of components and component interactions, new materials can be designed to improve durability. To achieve a deeper understanding of PEM fuel cell durability and component degradation mechanisms, we utilize a multi-institutional and multi-disciplinary team with significant experience investigating these phenomena.

  4. Polymer Brushes

    NARCIS (Netherlands)

    Vos, de W.M.; Kleijn, J.M.; Keizer, de A.; Cosgrove, T.; Cohen Stuart, M.A.

    2010-01-01

    A polymer brush can be defined as a dense array of polymers end-attached to an interface that stretch out into the surrounding medium. Polymer brushes have been investigated for the past 30 years and have shown to be an extremely useful tool to control interfacial properties. This review is intended

  5. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.; Arnold, G.; Baer, M.; Langguth, H.; Gey, M.; Huebert, S.

    1985-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given. (author)

  6. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  7. Coal prices rise

    International Nuclear Information System (INIS)

    McLean, A.

    2001-01-01

    Coking and semi hard coking coal price agreements had been reached, but, strangely enough, the reaching of common ground on semi soft coking coal, ultra low volatile coal and thermal coal seemed some way off. More of this phenomenon later, but suffice to say that, traditionally, the semi soft and thermal coal prices have fallen into place as soon as the hard, or prime, coking coal prices have been determined. The rise and rise of the popularity of the ultra low volatile coals has seen demand for this type of coal grow almost exponentially. Perhaps one of the most interesting facets of the coking coal settlements announced to date is that the deals appear almost to have been preordained. The extraordinary thing is that the preordination has been at the prescience of the sellers. Traditionally, coking coal price fixing has been the prerogative of the Japanese Steel Mills (JSM) cartel (Nippon, NKK, Kawasaki, Kobe and Sumitomo) who presented a united front to a somewhat disorganised force of predominantly Australian and Canadian sellers. However, by the time JFY 2001 had come round, the rules of the game had changed

  8. Characterisation of Chemical Degradation of Polymers

    DEFF Research Database (Denmark)

    Kjellander, Carina Koch

    2008-01-01

    Arbejdet har fokuseret på kemisk især hydrolytisk nedbrydning af industrielt vigtige polymerer eksponeret i forskellige aggressive men industrielt realistiske miljøer. Hovedvægten har ligget på eksponeringer af uforstærket polyamid 66 i 10% vandig NaOH ved 60 oC og i 5% NaOCl ved 20 oC i variende...

  9. South Blackwater Coal`s maintenance program

    Energy Technology Data Exchange (ETDEWEB)

    Nash, J. [South Blackwater Coal Limited, Blackwater, Qld. (Australia)

    1998-09-01

    The South Blackwater operation consists of two opencut mining areas and two underground mines (Laleham and Kenmure) near Blackwater in central Queensland, all of which supply coal to a central coal preparation plant. South Blackwater Coal Ltd. recently developed a maintenance improvement programme, described in this article. The programme involved implementation systems of key performance indicators (KPIs), benchmaking, condition monitoring, work planning and control, failure analysis and maintenance audit. Some improvements became almost immediately apparent, others were quite gradual. Major results included: improved availability (and reliability) of all opencast fleets, improvements in rear dump availability; reduced maintenance man-hours for opencast fleets; and increased availability of the coal handling and preparation plant. The paper is an edited version of that presented at the `Maintenance in mining conference` 16-19 March 1998, held in Bali, Indonesia. 4 figs., 2 photos.

  10. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  11. Coal comes clean

    International Nuclear Information System (INIS)

    Minchener, A.

    1991-01-01

    Coal's status as the dominant fuel for electricity generation is under threat because of concern over the environmental impacts of acid rain and the greenhouse effect. Sulphur dioxide and nitrogen oxides cause acid rain and carbon dioxide is the main greenhouse gas. All are produced when coal is burnt. Governments are therefore tightening the emission limits for fossil-fuel power plants. In the United Kingdom phased reductions of sulphur dioxide and nitrogen oxides emissions are planned. It will be the responsibility of the power generator to take the necessary steps to reduce the emissions. This will be done using a number of technologies which are explained and outlined briefly - flue gas desulfurization, separation of coal into high and low-sulphur coal, direct desulfurization of coal, circulating fluidised bed combustion, integrated-gasification combined cycle systems and topping cycles. All these technologies are aiming at cleaner, more efficient combustion of coal. (UK)

  12. Cuttability of coal

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1978-01-01

    The process of cutting dull M, dull bright MB, bright dull BM, and bright B coal under various compressive stress conditions was studied in laboratory tests. The efficiency of ploughs depends much more on the natural mining conditions than does that of shearer-loaders. For seams of medium workability, it is difficult to forecast whether ploughs will be successful. Cuttability tests are a good way of determining whether ploughs can be used. The effort necessary to cut coal in a stressed condition depends not only on such properties as the workability defined by the Protodyakonov index or compressive strength, but also, and mainly, on the petrographic structure and elastic properties of the coal. In bright coals with high elastic strain, and with BM and MB coals, a much greater increment of effort is necessary with increase in compressive stresses. The cuttability of dull coals from difficult mines was not very different.

  13. Coal tar in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Roelofzen, J.H.J.; Aben, K.K.H.; Van Der Valk, P.G.M.; Van Houtum, J.L.M.; Van De Kerkhof, P.C.M.; Kiemeney, L.A.L.M. [Radboud University Nijmegen Medical Center, Nijmegen (Netherlands). Dept. of Dermatology

    2007-07-01

    Coal tar is one of the oldest treatments for psoriasis and eczema. It has anti-inflammatory, antibacterial, antipruritic and antimitotic effects. The short-term side effects are folliculitis, irritation and contact allergy. Coal tar contains carcinogens. The carcinogenicity of coal tar has been shown in animal studies and studies in occupational settings. There is no clear evidence of an increased risk of skin tumors or internal tumors. Until now, most studies have been fairly small and they did not investigate the risk of coal tar alone, but the risk of coal tar combined with other therapies. New, well-designed, epidemiological studies are necessary to assess the risk of skin tumors and other malignancies after dermatological use of coal tar.

  14. Coal-to-liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.W.

    2006-03-15

    With crude oil prices rocketing, many of the oil poor, but coal rich countries are looking at coal-to-liquid as an alternative fuel stock. The article outlines the two main types of coal liquefaction technology: direct coal liquefaction and indirect coal liquefaction. The latter may form part of a co-production (or 'poly-generation') project, being developed in conjunction with IGCC generation projects, plus the production of other chemical feedstocks and hydrogen. The main part of the article, based on a 'survey by Energy Intelligence and Marketing Research' reviews coal-to-liquids projects in progress in the following countries: Australia, China, India, New Zealand, the Philippines, Qatar and the US. 2 photos.

  15. Coal, culture and community

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    16 papers are presented with the following titles: the miners; municipalisation and the millenium - Bolton-upon-Dearne Urban District Council 1899-1914; the traditional working class community revisited; the cultural capital of coal mining communities; activities, strike-breakers and coal communities; the limits of protest - media coverage of the Orgreave picket during the miners` strike; in defence of home and hearth? Families, friendships and feminism in mining communities; young people`s attitudes to the police in mining communities; the determinants of productivity growth in the British coal mining industry, 1976-1989; strategic responses to flexibility - a case study in coal; no coal turned in Yorkshire?; the North-South divide in the Central Coalfields; the psychological effects of redundancy and worklessness - a case study from the coalfields; the Dearne Valley initiative; the future under labour: and coal, culture and the community.

  16. Coal contract cost reduction through resale of coal

    International Nuclear Information System (INIS)

    Simon, R.

    1990-01-01

    The weak coal market of the 1980's has enabled utilities and other users of coal to enjoy stable or falling prices for coal supplies. Falling prices for coal stimulated the renegotiation of numerous coal contracts in recent years, as buyers look to take advantage of lower fuel prices available in the marketplace. This paper examines the use of coal resale transactions as a means of reducing fuel costs, and analyzes the benefits and risks associated with such transactions

  17. Synthesis and characterization of partially fluorinated poly(acryl) ionomers for polymer electrolyte membrane fuel cells and ESR-spectroscopic investigation of the radically induced degradation of model compounds; Synthese und Charakterisierung teilfluorierter Poly(acryl)-Ionomere als Polymerelektrolytmembranen fuer Brennstoffzellen und ESR-spektroskopische Untersuchung der radikalinduzierten Degradation von Modellverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberger, Frank

    2008-07-09

    In the first part of this work different strategies for the design of sulfonated partially fluorinated poly(aryl)s are developed and synthetically realized. The applied concept is that partially fluorinated poly(aryl)s are distinguished from the nonfluorinated ones by an enhanced acidity. Moreover they possess higher bond dissociation energies of both the C-F bonds and any adjacent C-H bonds which should be associated with a gain in radical stability and thus in chemical and thermal stability. In order to investigate the influence of the chemical structure of (partially fluorinated) monomeric building blocks, homo-polymers with different structural units (with aromatic C-F bonds, C(CF3)2-bridged and/or CF3-substituted phenylene rings) are synthesized by polycondensation and structurally characterized (elemental analysis, NMR spectroscopy, gel permeation chromatography). Established organic reactions, such as the Balz-Schiemann reaction, Suzuki reaction and Ullmann's biaryl synthesis, are applied for the synthesis of the specific monomers. After sulfonation of the homo-polymers (ionically crosslinked) membranes are prepared and characterized in terms of suitability as polymer electrolyte membrane in fuel cells (ion-exchange capacity, proton conductivity, thermal and chemical stability, water uptake, dimensional change). Both the chemical nature of the monomers and their constitution in the ionomer are important for the properties of the resulting membranes. Therefore microphase-separated multiblock-co-ionomers based on hydrophilic (sulfonated) and hydrophobic (partially fluorinated) telechelic macromonomers are prepared and characterized. Both the influence of the block length and the chemical nature of the used monomers on the membrane properties are comparatively investigated. On the basis of the findings gained in this part of the work, the advantages and disadvantages of partially fluorinated ionomer membranes are analyzed and discussed. The second part of

  18. Clean coal technologies

    International Nuclear Information System (INIS)

    Bourillon, C.

    1994-01-01

    In 1993 more than 3.4 billion tonnes of coal was produced, of which half was used to generate over 44 per cent of the world's electricity. The use of coal - and of other fossil fuels- presents several environmental problems such as emissions of sulphur dioxide (SO 2 ), nitrogen oxides (NO 2 ), and carbon dioxide (CO 2 ) into the atmosphere. This article reviews the measures now available to mitigate the environmental impacts of coal. (author)

  19. Marketing Canada's coal

    Energy Technology Data Exchange (ETDEWEB)

    1985-11-01

    The topics are presented which were discussed at the 36th Canadian Coal Conference, held in Vancouver, BC in September 1985. The theme was Challenges, today and tomorrow and the conference sought to examine the primary problems confronting the world coal industry today: overcapacity, soft demand, depressed prices and intense global competition. Coal production in Canada was presented and its role in the steelmaking and electric power industries evaluated. A general mood of optimism prevailed.

  20. Binning of shallowly sampled metagenomic sequence fragments reveals that low abundance bacteria play important roles in sulfur cycling and degradation of complex organic polymers in an acid mine drainage community

    Science.gov (United States)

    Dick, G. J.; Andersson, A.; Banfield, J. F.

    2007-12-01

    not expected to reflect the tetranucleotide frequency signature of the host genome. Four unknown tetranucleotide frequency clusters with significant sequence (6 Mb total) were noted and analyzed further. Based on phylogenetic markers and BLAST results, these clusters represent low abundance bacteria including Acintobacteria, Firmicutes, and Proteobacteria. Functional analysis of these clusters revealved that the low- abundance bacteria harbor genes that could potentially encode important ecosystem functions such as sulfur utilization (e.g. polysulfide reductase) and polymer degradation (e.g. chitinase and glycoside hydrolase). We conclude that ESOM clustering of tetranucleotide frequency patterns is an effective method for rapidly binning shotgun community genomic sequences and a valuable tool for analyzing minor community members, which despite their low abundance may play crucial ecological roles.

  1. Coal export facilitation

    International Nuclear Information System (INIS)

    Eeles, L.

    1998-01-01

    There is a wide range of trade barriers, particularly tariffs, in current and potential coal market. Commonwealth departments in Australia play a crucial role in supporting government industry policies. This article summarises some of more recent activities of the Department of Primary Industries and Energy (DPIE) in facilitating the export of Australian Coals. Coal export facilitation activities are designed to assist the Australian coal industry by directing Commonwealth Government resources towards issues which would be inappropriate or difficult for the industry to address itself

  2. Optimal coal import strategy

    International Nuclear Information System (INIS)

    Chen, C.Y.; Shih, L.H.

    1992-01-01

    Recently, the main power company in Taiwan has shifted the primary energy resource from oil to coal and tried to diversify the coal supply from various sources. The company wants to have the imported coal meet the environmental standards and operation requirements as well as to have high heating value. In order to achieve these objectives, establishment of a coal blending system for Taiwan is necessary. A mathematical model using mixed integer programming technique is used to model the import strategy and the blending system. 6 refs., 1 tab

  3. Electrostatic beneficiation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, M.K.; Tennal, K.B.; Lindquist, D.

    1994-10-01

    Dry physical beneficiation of coal has many advantages over wet cleaning methods and post combustion flue gas cleanup processes. The dry beneficiation process is economically competitive and environmentally safe and has the potential of making vast amounts of US coal reserves available for energy generation. While the potential of the electrostatic beneficiation has been studied for many years in laboratories and in pilot plants, a successful full scale electrostatic coal cleaning plant has not been commercially realized yet. In this paper the authors review some of the technical problems that are encountered in this method and suggest possible solutions that may lead toward its full utilization in cleaning coal.

  4. Australian coal year book 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This yearbook presents a review of the Australian coal industry during the 1984-85 financial year. Included are details on mines, future prospects, coal export facilities and ports, annual cost statistics and a index of coal mine owners.

  5. Physicochemical Characterization and Thermal Decomposition of Garin Maiganga Coal

    Directory of Open Access Journals (Sweden)

    Nyakuma Bemgba Bevan

    2016-12-01

    Full Text Available The paper examined physicochemical and thermal characteristics of the newly discovered Garin Maiganga (GMG coal from Nigeria. The physicochemical characterization comprised of elemental, proximate, calorific value, and classification (rank analyses. Thermal analysis was examined using combined Thermogravimetric (TG and Derivative Thermogravimetric analyses (DTG. Hence, the coal was heated from 30°C to 1000°C at 20°C/min under inert conditions to examine its thermal degradation behaviour and temperature profile characteristics (TPC. The results indicated that the GMG coal fuel properties consist of low Ash, Nitrogen, and Sulphur content. Moisture content was > 5%, Volatile Matter > 50%, Fixed Carbon > 22%, and Heating Value (HHV 23.74 MJ/kg. Based on its fuel properties, the GMG coal can be classified as a Sub-Bituminous B, non-agglomerating low rank coal (LRC. The GMG coal TPCs – onset, peak, and offset temperatures – were 382.70°C, 454.60°C, and 527.80°C, respectively. The DTG profile revealed four (4 endothermic peaks corresponding to loss of moisture (drying, volatile matter (devolatization, and coke formation. The residual mass Rm was 50.16%, which indicates that higher temperatures above 1000°C are required for the complete pyrolytic decomposition of the GMG coal. In conclusion, the results indicate that the GMG coal is potentially suitable for future utilization in electric power generation and the manufacture of cement and steel.

  6. Australian black coal statistics 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This third edition of Australian black coal statistics covers anthracite, bituminous and subbituminous coals. It includes maps and figures on resources and coal fields and statistics (mainly based on the calendar year 1991) on coal demand and supply, production, employment and productivity in Australian coal mines, exports, prices and ports, and domestic consumption. A listing of coal producers by state is included. A final section presents key statistics on international world trade in 1991. 54 tabs.

  7. Prospects for coal: technical developments

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, W G; Peirce, T J

    1983-07-01

    This article summarises the reasons for predicting an increase in the use of coal as an industrial energy source in the United Kingdom. The development of efficient and reliable coal-burning techniques is therefore of great importance. Various techniques are then discussed, including conventional combustion systems, fluidised bed combustion systems, fluidised bed boilers and furnaces, coal and ash handling, coal-liquid mixtures, coal gasification and coal liquefaction. (4 refs.)

  8. Coal combustion technology in China

    International Nuclear Information System (INIS)

    Huang, Z.X.

    1994-01-01

    Coal is the most important energy source in China, the environmental pollution problem derived from coal burning is rather serious in China. The present author discusses coal burning technologies both in boilers and industrial furnaces and their relations with environmental protection problems in China. The technological situations of Circulating Fluidized Bed Coal Combustor, Pulverized Coal Combustor with Aerodynamic Flame Holder and Coal Water Slurry Combustion have been discussed here as some of the interesting problems in China only. (author). 3 refs

  9. Use of Chiral Alcohols for Elucidating the Mode and Kinetics of Degradation of Fluorotelomer Compounds

    Science.gov (United States)

    Fluorotelomer polymers are the dominant product line of the fluorotelomer industry. Fluorotelomer polymers have been shown to degrade under environmental conditions to form numerous fluorotelomer and perfluorinated monomers that are of environmental and toxicological concern; how...

  10. Semi-degradable poly(β-amino ester) networks with temporally controlled enhancement of mechanical properties.

    Science.gov (United States)

    Safranski, David L; Weiss, Daiana; Clark, J Brian; Taylor, W Robert; Gall, Ken

    2014-08-01

    Biodegradable polymers are clinically used in numerous biomedical applications, and classically show a loss of mechanical properties within weeks of implantation. This work demonstrates a new class of semi-degradable polymers that show an increase in mechanical properties through degradation via a controlled shift in a thermal transition. Semi-degradable polymer networks, poly(β-amino ester)-co-methyl methacrylate, were formed from a low glass transition temperature crosslinker, poly(β-amino ester), and high glass transition temperature monomer, methyl methacrylate, which degraded in a manner dependent upon the crosslinker chemical structure. In vitro and in vivo degradation revealed changes in mechanical behavior due to the degradation of the crosslinker from the polymer network. This novel polymer system demonstrates a strategy to temporally control the mechanical behavior of polymers and to enhance the initial performance of smart biomedical devices. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Thermal coal utilization for the ESCAP region

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A selection of papers is presented originating from talks to coal utilization workshops for the ASEAN region in 1981. The papers cover: planning aspects - economic and technical aspects of coal usage, long term planning for fuel coal needs, planning and coal selection for coal-fired power plants, coal availability and marketing, and economic aspects of coal usage in developing countries; combustion and plant - changing from coal to oil, principles and problems of coal combustion, use of indigenous and imported coals and their effects on plant design, coal pulverizing mills, ash and dust disposal, environmental aspects of coal combustion, industrial sized coal-fired boilers; transport and storage -ocean shipment, coal receival facilities and associated operations, shipping and rail transport, coal handling and transport, environmental issue in the transport and handling of coal, coal preparation and blending; testing and properties - coal types, characterization properties and classification; training power plant operators; the cement industry and coal, the Australian black coal industry.

  12. The Indonesian coal industry

    International Nuclear Information System (INIS)

    Cook, A.; Daulay, B.

    2000-01-01

    In this comprehensive article the authors describe the origins and progress of the Indonesian coal industry and the role it plays, and will play, in the domestic energy scene and world coal trade. In the '80s, the Indonesian coal industry laid the basis for major expansion such that coal production rose from under a million tonnes in 1983 to 10.6 million tonnes in 1990, 50.9 million tonnes by 1996 and 61.2 million tonnes in 1992. At the same time, exports have increased from 0.4 million tonnes to 44.8 million tonnes. Current export levels are higher than originally expected, due in part to a slow down in the construction of electric power stations and a partial switch to natural gas. This has slowed the rate at which domestic coal demand has built up. The majority of coals currently exported are low rank steam coals, but some of the higher rank and very low ash coals are used for blast furnace injection, and a very small proportion may even be used within coking blends, even though they have poor coking properties. The Indonesian coal industry has developed very rapidly over the last six years to become a significant exporter, especially within the ASEAN context. The resources base appears to be large enough to support further increases in production above those already planned. It is probable that resources and reserves can be increased above the current levels. It is likely that some reserves of high value coals can be found, but it is also probable that the majority of additions to reserves will be lower in rank (and therefore quality) compared with the average of coals currently being mined. Reserves of qualities suitable for export will support that industry for a considerable period of time. However, in the longer term, the emphasis of production will increasingly swing to the domestic market

  13. Alternative method for assessing coking coal plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Dzuy Nguyen; Susan Woodhouse; Merrick Mahoney [University of Adelaide (Australia). BHP Billiton Newcastle Technology Centre

    2008-07-15

    Traditional plasticity measurements for coal have a number of limitations associated with the reproducibility of the tests and their use in predicting coking behaviour. This report reviews alternative rheological methods for characterising the plastic behaviour of coking coals. It reviews the application of more fundamental rheological measurements to the coal system as well as reviewing applications of rheology to other physical systems. These systems may act as potential models for the application of fundamental rheological measurements to cokemaking. The systems considered were polymer melts, coal ash melts, lava, bread making and ice cream. These systems were chosen because they exhibit some physically equivalent processes to the processes occurring during cokemaking, eg, the generation of bubbles within a softened system that then resolidifies. A number of recommendations were made; the steady and oscillatory shear squeeze flow techniques be further investigated to determine if the measured rheology characteristics are related to transformations within the coke oven and the characteristics of resultant coke; modification of Gieseler plastometers for more fundamental rheology measurements not be attempted.

  14. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon...... and nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  15. New hyperthermal thermosetting heterocyclic polymers

    Science.gov (United States)

    Bilow, N.; Landis, A. L.; Miller, L. J.

    1970-01-01

    Polyimidazopyrrolone polymers, formed by the condensation of aromatic dianhydrides with aromatic tetraamines in various solvents, form moldings that resist degradation in air and retain great strength at 400 to 700 degrees F. The resins have good insulating properties, are easy to mold, and make good protective coatings.

  16. New trends in radiation processing of polymers

    International Nuclear Information System (INIS)

    Chmielewski, Andrzej G.

    2005-01-01

    Nowadays, the modification of polymers covers radiation cross-linking, radiation induced polymerization (graft polymerization and curing) and the degradation of polymers. The success of radiation technology for the processing of synthetic polymers can be attributed to two reasons, namely the easiness of processing in various shapes and sizes and, secondly, most of these polymers undergo cross-linking reaction upon exposure to radiation. years, natural polymers are being looked at again with renewed interest because of their unique characteristics like inherent biocompatibility, biodegradability and easy availability. However the recent progress in the field regards development of new processing methods and technical solutions. No other break trough technologies or products based on synthetic polymers are reported recently. The future progress, both from scientific and practical points of view, concerns nanotechnology and natural polymer processing. Overview of the subject, including the works performed in the Institute of the author is presented in the paper. (author)

  17. Dry piston coal feeder

    Science.gov (United States)

    Hathaway, Thomas J.; Bell, Jr., Harold S.

    1979-01-01

    This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

  18. Development of coal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    It is an important issue to expand stable coal supply areas for Japan, especially to assure stable supply of overseas coals. The investigations on geological structures in foreign countries perform surveys on geological structures in overseas coal producing countries and basic feasibility studies. The investigations select areas with greater business risks in coal producing countries and among private business entities. The geological structure investigations were carried out on China, Indonesia and Malaysia and the basic feasibility studies on Indonesia during fiscal 1994. The basic coal resource development investigations refer to the results of previous physical explorations and drilling tests to develop practical exploration technologies for coal resources in foreign countries. The development feasibility studies on overseas coals conduct technological consultation, surface surveys, physical explorations, and trial drilling operations, and provide fund assistance to activities related thereto. Fiscal 1994 has provided fund assistance to two projects in Indonesia and America. Fund loans are provided on investigations for development and import of overseas coals and other related activities. Liability guarantee for development fund is also described.

  19. Coal in Canada

    International Nuclear Information System (INIS)

    Salaff, S.

    1991-01-01

    This article examines the potential market for coal-fired independent power projects in western Canada. The topics of the article include emissions issues, export potential for power produced, and financial and other assistance to independent power producers offered by British Columbia Hydro and coal mining companies in the region, including financing of projects and power distribution services including connecting to the USA grids

  20. Black coal. [Australia

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, R

    1973-01-01

    Statistics are given for the Australian black coal industry for 1970-3 (production, value, employment, wages and salaries, productivity, trade, stocks, consumption, export contracts, exploration, etc.). In less detail, world coal trade is reviewed and coke production is mentioned briefly. (LTN )

  1. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  2. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  3. Polymer chemistry (revised edition)

    International Nuclear Information System (INIS)

    Kim, Jae Mum

    1987-02-01

    This book deals with polymer chemistry, which is divided into fourteen chapters. The contents of this book are development of polymer chemistry, conception of polymer, measurement of polymer chemistry, conception of polymer, measurement of polymer, molecule structure of polymer, thermal prosperities of solid polymer, basic theory of polymerization, radical polymerization, ion polymerization, radical polymerization, copolymerization, polymerization by step-reaction, polymer reaction, crown polymer and inorganic polymer on classification and process of creation such as polymeric sulfur and carbon fiber.

  4. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  5. The renaissance of coal

    International Nuclear Information System (INIS)

    Schernikau, Lars

    2013-01-01

    There is hardly another energy resource where public opinion and reality lie as far apart as they do for coal. Many think of coal as an inefficient relic from the era of industrialisation. However, such views underestimate the significance of this energy resource both nationally and globally. In terms of global primary energy consumption coal ranks second behind crude oil, which plays a central role in the energy sector. Since global electricity use is due to rise further, coal, being the only energy resource that can meet a growing electricity demand over decades, stands at the beginning of a renaissance, and does so also in the minds of the political leadership. Coal is indispensable as a bridging technology until the electricity demand of the world population can be met primarily through renewable resources.

  6. Methane of the coal

    International Nuclear Information System (INIS)

    Vasquez, H.

    1997-01-01

    In the transformation process of the vegetable material to the coal (Carbonization), the products that are generated include CH 4, CO2, N2 and H2. The methane is generated by two mechanisms: below 50 centigrade degree, as product of microbial decomposition, the methanogenic is generated; and above 50 centigrade degree, due to the effects of the buried and increase of the range of the coal, the thermogenic methane is detachment, as a result of the catagenic. The generated methane is stored in the internal surfaces of the coal, macro and micro pores and in the natural fractures. The presence of accumulations of gas of the coal has been known in the entire world by many years, but only as something undesirable for its danger in the mining exploitation of the coal

  7. China's coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Karmazin, V A

    1988-09-01

    Presents data on China's coal industry. China's coal reserves are estimated to be 4,000 million Mt; annual production is over 800 Mt. Eleven new mining projects have been recently completed. They were financed with participation of foreign capital (US$ 1,400 million). Twenty-five new mines with 32.27 Mt production capacity were planned to be put into operation in 1988. Annual coal production is expected to increase to 870 Mt in 1990 at a cost of US$ 8,500 million. Numerical data on China's individual coal basins, new schemes, capital outlay and foreign capital participation are given. The dynamic development of China's coal industry since 1949 is briefly reviewed and management methods are explained.

  8. Industrial coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The effects of the National Energy Act on the use of coal in US industrial and utility power plants are considered. Innovative methods of using coal in an environmentally acceptable way are discussed: furnace types, fluidized-bed combustion, coal-oil-mixtures, coal firing in kilns and combustion of synthetic gas and liquid fuels. Fuel use in various industries is discussed with trends brought about by uncertain availability and price of natural gas and fuel oils: steel, chemical, cement, pulp and paper, glass and bricks. The symposium on Industrial Coal Utilization was sponsored by the US DOE, Pittsburgh Energy Technology Center, April 3 to 4, 1979. Twenty-one papers have been entered individually into the EDB. (LTN)

  9. USA coal producer perspective

    Energy Technology Data Exchange (ETDEWEB)

    Porco, J. [Alpha Natural Resources, Latrobe, PA (US). Alpha Energy Global Marketing

    2004-07-01

    The focus is on the Central Appalachian coal industry. Alpha Natural Resources was formed in 2002 from Pittston Coal's Virginia and Coastal operations. AMCI's U.S. operations and Mears Enterprises in Pennsylvania were acquired later. The company produces 20-21 million tonnes per year and sells 20 million tonnes of steam coal and 10 million tonnes of exports, including some coal that is brokered. Foundry coke is a major product. Capital investment has resulted in increased productivity. Central Appalachia is expected to continue as a significant coal-producing region for supplying metallurgical coke. Production is expected to stabilize, but not increase; so the mines will have a longer life. 31 slides/overheads are included.

  10. Coal in the Mediterranean

    International Nuclear Information System (INIS)

    Sore, J.C.; Coiffard, J.

    1992-01-01

    Mediterranean countries are not traditionally coal producers. In France, the main mines were located in the North and East, and belonged to the great coal fields of northern Europe. Spain is a modest producer (ten million tonnes), as is Turkey with its three million tonnes. The only way most of these mines can stand up to international competition is by an array of protectionistic measures and subsidies. This state of affairs has marked events of quite another nature, as it relates to energy economics. That is, coal has taken on increasing importance in the energy supplies of all the countries of the Mediterranean zone over the past twenty years. In this article, we set out by describing coke supply for the Mediterranean ensemble, and then go on to analyze the development aspects of coal for electrical production, the future of Mediterranean lignite, and the supply of imported coal. 4 refs., 11 figs., 3 tabs

  11. Underground Coal Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Deo, M. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Sarofim, A. [Univ. of Utah, Salt Lake City, UT (United States); Gueishen, K. [Univ. of Utah, Salt Lake City, UT (United States); Hradisky, M. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States); Mandalaparty, P. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, H. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  12. State coal profiles, January 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-02

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  13. Study of PP/montmorillonite composite degradation

    International Nuclear Information System (INIS)

    Baer, Marcia; Granado, Carlos J.F.

    2009-01-01

    The objective of this work was to produce composites of PP/sodium bentonite and PP/ organophilic bentonite through melt intercalation and analyze the degradation produced by ultraviolet irradiation. The XRD results showed that the samples of nature bentonite had better interaction with de polymer and produced intercalated nanocomposite. The effect of UV irradiation on degradation was observed after 24 hours of exposition. The samples showed the same photoproducts and at the same proportion until 240 hours of UV exposition; with 480 hours the organophilize bentonite composite showed higher degradation than other ones. The superficial cracks increased with degradation time. The degradation occurs due chromophores impurities presented in the samples, thus samples with sodium clay show higher degradation, and organophilic clay contains ammonium salt that contribute to increase the degradation. (author)

  14. Technological challenges for boosting coal production with environmental sustainability.

    Science.gov (United States)

    Ghose, Mrinal K

    2009-07-01

    The global energy requirement has grown at a phenomenon rate and the consumption of primary energy sources has been a very high positive growth. This paper focuses on the consumption of different primary energy sources and it identifies that coal will continue to remain as the prime energy source in foreseeable future. It examines the energy requirement perspective for India and demand of coal as the prime energy source. Economic development and poverty alleviation depend on securing affordable energy sources and Indian coal mining industry offers a bright future for the country's energy security, provided the industry is allowed to develop by supportive government policies and adopts latest technologies for mining. It is an irony that in-spite of having a plentiful reserves, India is not able to jack up coal production to meet its current and future demand. It discusses the strategies to be adopted for growth and meeting the coal demand. But such energy are very much concerned with environmental degradation and must be driven by contemporary managerial acumen addressing environmental and social challenges effectively The paper highlights the emissions of greenhouse gases due to burning of fossil fuels and environmental consequences of global warming and sea-level rise. Technological solutions for environment friendly coal mining and environmental laws for the abatement of environmental degradation are discussed in this paper.

  15. Land degradation due to open cast mines-a case study

    International Nuclear Information System (INIS)

    Dubey, Ashutosh; Nath, R.

    1998-01-01

    The contribution of open cast mines is increasing day by day in coal production. These open cast mines have direct and visible impacts on land surface. During mining stage, land is damaged and degraded. Excavation of coal and overburden dumping along with other infrastructural development is responsible for this damage and degradation. Impact of land degradation is observed as loss of forest cover, reduction and extinction of wildlife, reduction of agricultural land, destruction of geologic column, soil erosion, hydrological imbalance, socioeconomic problems, etc. in active mining areas. The present paper discusses the extent and impact of land degradation by open cast mining activity in Singrauli coal field. The paper also highlights the extent of land degradation particularly in one of the open cast mining projects of Singrauli coal field. It also suggests certain control measures to minimise the problem. (author)

  16. Study on the Degradation of Polylactide Microsphere In Vitro

    Institute of Scientific and Technical Information of China (English)

    HeYing; WeiShuli

    2001-01-01

    This report concentrated on the rules and mechanism of the degradation of polylactide and the microspheres. The rate of degradation was assessed with five methods: observation of microsphere surface morphology by SEM, determination of the weight loss of the microspheres, determination of the molecular mass of the polymers by GPC, determination of pH and determination of the contents of lactic acid by UV spectrophotometry. The degradation of polylactide microspheres showed two-phase characteristics. At the early stage of the degradation, the high molecular mass polymers were cleaved into lower molecular mass fractions and at the late stage, there was a period of erosion and weight loss of the microspheres. The degradation was much slower for polymers with a higher molecular mass. The polylactide degradation showed good regularity.

  17. NMR imaging studies of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.R.; Zhang, P.Z.; Ding, G.L.; Li, L.Y.; Ye, C.H. [University of Science and Technology, Beijing (China). Dept. of Chemistry

    1996-06-01

    The permeation transportation and swelling behavior of solvents into coal are investigated by NMR imaging using pyridine-d{sub 5} and acetone-d{sub 6}. Images of coal swollen with deuterated solvents illuminate proton distributions of mobile phases within the coal macromolecular networks. More information about the chemical and physical structure of coal can be obtained using NMR imaging techniques.

  18. Clean coal technology: The new coal era

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Clean Coal Technology Program is a government and industry cofunded effort to demonstrate a new generation of innovative coal processes in a series of full-scale showcase`` facilities built across the country. Begun in 1986 and expanded in 1987, the program is expected to finance more than $6.8 billion of projects. Nearly two-thirds of the funding will come from the private sector, well above the 50 percent industry co-funding expected when the program began. The original recommendation for a multi-billion dollar clean coal demonstration program came from the US and Canadian Special Envoys on Acid Rain. In January 1986, Special Envoys Lewis and Davis presented their recommendations. Included was the call for a 5-year, $5-billion program in the US to demonstrate, at commercial scale, innovative clean coal technologies that were beginning to emerge from research programs both in the US and elsewhere in the world. As the Envoys said: if the menu of control options was expanded, and if the new options were significantly cheaper, yet highly efficient, it would be easier to formulate an acid rain control plan that would have broader public appeal.

  19. Coal: Less than lackluster

    International Nuclear Information System (INIS)

    Doerell, P.

    1994-01-01

    Not many in the world coal industry will remember 1993 as a good year. The reasons for the poor state of affairs were first the weak economic climate, and second, the energy glut. For the first time after expanding steadily since the 70s, seaborne trade in hard coal fell by about 4% to 350M mt. Steam coal accounted for a good half of this volume. While demand continued to rise in the newly industrialized countries of the Pacific area, imports into Europe of both coking coal and steam coal fell sharply. The United States, CIS, and Canada had to accept substantial losses of export volume. Australia, as well as South Africa, Colombia, and Indonesia consolidated their market positions and Poland, too, recorded high volumes available for export. The positive news came from Australia, where in mid-December the New South Wales coal industry reported an increase in the net profit after tax from $A83M (about $55M) to $A98M (about $126M) in 1992/1993. This success was however ascribed less to an improvement in the fundamental mining indicators than to the fall in the Australian dollar and the lowering of corporate tax. The reduction in capital investment by 26% down to $A330M (after the previous year when it had also been cut by 25%) is seen by the chairman of the NSW Coal Assoc. as not auguring well for the industry's ability to meet the forecast growth in demand to the year 2000

  20. Coal in competition

    Energy Technology Data Exchange (ETDEWEB)

    Manners, G

    1985-06-01

    During the past decade world coal consumption has expanded by about 26% whilst energy demands overall have grown by only 17%. This is because of the increased price of oil products, plus a period during which the costs of mining coal in many parts of the world have been moderately well contained. Over-ambitious forecasts of coal demand have encouraged the considerable over-investment in coalmining capacity that exists today. Costs of winning coal and transporting it are low, but sales depend on the rate of growth of a country's demand for energy. Some countries are more successful at marketing coal than others. Amongst the major factors that influence the rate of substitution of one source of energy for another is the nature and age of the boiler stock. The outcome of the developing environmental debate and calls for reduction in SO/sub 2/ and NO/sub x/ emissions from coal-fired boilers is going to affect coal's fortunes in the 1990's.

  1. A coal combine

    Energy Technology Data Exchange (ETDEWEB)

    Wlachovsky, I; Bartos, J

    1980-02-15

    A design is presented for a coal combine, equipped with two drum operational units, on whose both ends of the upper surface of the body, two coal saws are mounted with the help of a lever system. These saws, found in an operational position, form a gap in the block of the coal block, which is not embraced by the drum operational unit. The coal block, found between the gap and the support, falls down onto the longwall scraper conveyor. The lever system of each coal saw is controlled by two hydraulic jacks. One of the jacks is mounted vertically on the facial wall of the body of the combine and is used for the hoisting for the required height of the horizontal arm of the lever, reinforced by one end in the hinge on the body of the combine. On the ''free'' end of that lever, a coal saw is mounted in a hinge-like fashion and which is connected by the hydraulic jack to the horizontal arm of the lever system. This hydraulic jack is used for the clamping of the coal saw to the face.

  2. Investigations into the ``in vitro-liquefaction`` of brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Fakoussa, R.M.; Frost, P.; Schwaemmle, A. [Bonn Univ. (Germany). Inst. fuer Mikrobiologie und Biotechnologie

    1997-12-31

    Brown coal can be liquefied/solubilized by a number of lignin-degrading fungi. However, with regard to technical applications in the future, the use of whole fungal cells is severely limited due to the mechanical and chemical sensitivity of the hyphae, and the expensive nutrition of the living cells. Therefore, many attempts have been made to make use of the coal-degrading enzymes produced by the fungus, mainly lignin peroxidases, manganese dependent peroxidases, and laccases. As it turned out, however, the isolated enzymes could not lower the mean molecular weight of the coal substances, but led to polymerization reactions due to the formation of reactive radical species. Apparently the living cell is able to prevent excessive levels of radical concentrations by the means of sensitive regulating mechanisms. (orig.)

  3. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers

    KAUST Repository

    Khan, Kamran; El Sayed, Tamer S.

    2012-01-01

    We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer

  4. Characterization and effectiveness of remining abandoned coal mines in Pennsylvania

    International Nuclear Information System (INIS)

    Hawkins, J.W.

    1995-01-01

    Under an approved remining program, mine operators can remine abandoned coal mines without assuming legal responsibility for treatment of the previously degraded water, as long as the discharging waters are not further degraded and other regulatory requirements are satisfied. A US Bureau of Mines review of 105 remining permits in Pennsylvania indicates that remining results in substantial reclamation of abandoned mine lands, utilization of significant quantities of coal, and reduction of contaminant loads (acidity and iron) from degraded mine drainage discharges. Normality tests performed on the water quality and flow data indicate generally nonnormal distributions and extreme right-skewness tending toward lower values. The water quality of underground coal mines was observed to be more highly degraded in terms of acidity, iron, and sulfate than that of surface coal mines. The optimum baseline sampling scenario is 12 months in duration at a frequency of one sample per month. Analysis of water quality and flow rates before and after remining indicates that a majority of the mines exhibited either no change or a significant decrease in pollution rate because of remining. The discharge flow rate was the dominant controlling factor when the post-remining contaminant load was significantly better or worse than the baseline (pre-mining) load

  5. CLASSIFICATION OF BIODEGRADABLE POLYMERS

    Directory of Open Access Journals (Sweden)

    I. I. Karpunin

    2015-01-01

    Full Text Available The executed investigations have made it possible to ascertain that a morphological structure of starch granules mainly determine technological peculiarities of starch isolation from raw material, its modification and its later use. Morphological structure of starch granules primarily depends on type of plant starch-containing raw material which has been used for its isolation. Class of raw material exerts a strong impact on the shape and size of the granules. Linear “light” amylose chains and “heavy” amylopectin branch chains form a starch granule ultrastructure. X-ray research has proved that starch granules are characterized by presence of interlacing amorphous and crystalline regions. In this case polymer orientation using stretching of the obtained end product influences on its physical and mechanical  indices which are increasing due to polymer orientation. For the purpose of packaging orientation of polymer films can solve such important problems as significant improvement of operational properties, creation of  thermosetting film materials, improvement of qualitative indices of the recycled film.Results of the conducted research have proved the fact that it is necessary to make changes in technology in order to increase biological degradability of the recycled packaging made from polymers and improve physical and mechanical indices. In this regard film production technology presupposes usage of such substances as stark and others which are characterized by rather large presence of branch chains of molecules and interlacing amorphous and crystalline regions. Such approach makes it possible to obtain after-use package which is strong and quickly degradable by micro-organisms.

  6. Microbial desulfurization of coal

    International Nuclear Information System (INIS)

    Bos, P.; Boogerd, F.C.; Kuenen, J.G.

    1992-01-01

    In recent years, studies have been initiated to explore the possibilities of the use of biological systems in coal technology. This chapter discusses the principles behind the bioprocessing of coal, the advantages and disadvantages, and the economic feasibility of the process. For large-scale, coal-using, energy-producing plants, stack gas cleaning should be the treatment of choice. Biodesulfurization is preferable with industrial, small-scale, energy-producing plants. Treatment of the stack gases of these plants is not advisable because of high investment costs. Finally, it should be realized that biodesulfurization produces a waste stream that needs further treatment. 91 refs

  7. Coal-fired generation

    CERN Document Server

    Breeze, Paul

    2015-01-01

    Coal-Fired Generation is a concise, up-to-date and readable guide providing an introduction to this traditional power generation technology. It includes detailed descriptions of coal fired generation systems, demystifies the coal fired technology functions in practice as well as exploring the economic and environmental risk factors. Engineers, managers, policymakers and those involved in planning and delivering energy resources will find this reference a valuable guide, to help establish a reliable power supply address social and economic objectives. Focuses on the evolution of the traditio

  8. Economic outlook for coal

    International Nuclear Information System (INIS)

    Denis Casey.

    1997-01-01

    Coal still a fundamental component of two major industries in New South Wales- electricity production and steel making. Its future will be shaped by its ability to meet expected international increases in demand for thermal coal, and by profitability and possible impact of greenhouse strategy decisions. By 2002 the demand for the State's coal is estimated at a total of 116 million tons and it expected to play an increased role in the fuel mix for electricity generation because of its competitive price, established technologies and abundant supply

  9. Coal potential of Antartica

    Energy Technology Data Exchange (ETDEWEB)

    Rose, G.; McElroy, C.T.

    1987-01-01

    This report attempts to bring together available information on the coal deposits of Antarctica and discuss factors that would be involved if these deposits were to be explored and mined. Most of the reported principal coal deposits in Antarctica lie generally within the Transantarctic Mountains: the majority are of Permian age and are present in the Victoria Group of the Beacon Supergroup. Several other deposits have been recorded in East Antarctica and in the Antarctic Peninsula, including minor occurrences of Mesozoic and Tertiary coal and carbonaceous shale.

  10. Extreme coal handling

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, S; Homleid, D. [Air Control Science Inc. (United States)

    2004-04-01

    Within the journals 'Focus on O & M' is a short article describing modifications to coal handling systems at Eielson Air Force Base near Fairbanks, Alaska, which is supplied with power and heat from a subbituminous coal-fired central plant. Measures to reduce dust include addition of an enclosed recirculation chamber at each transfer point and new chute designs to reduce coal velocity, turbulence, and induced air. The modifications were developed by Air Control Science (ACS). 7 figs., 1 tab.

  11. Coal liquefaction becomes viable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    In 2003 the May/June issue of CoalTrans International speculated that coal liquefaction would become viable due to falling coal prices. This has not proved the case but the sustained high oil price is sparking new interest. A survey by Energy Intelligence and Marketing Research during November 2005 revealed a growth in the number of projects under development or at the feasibility stage. The article reports projects in China, the USA, Australia, New Zealand, the Philippines and India. China is commissioning the first wave of large liquefaction plants. The key question is whether other countries, particularly the USA, will follow.

  12. Marketing strategy of low-grade coal of Orissa state

    Energy Technology Data Exchange (ETDEWEB)

    Maheshwari, L.N.

    2000-07-01

    Orissa has vast reserves of poor-grade coal. In this paper, the author has highlighted various aspects of Orissa coal reserves and also provided suggestions for the marketing strategy of this coal, taking into consideration the pros and cons of techno-economic viability of beneficiation of poor-grade coal of Orissa. He also addresses transport problems; power houses are situated more than 1000 km from the coal mines. Suggestions provided in this paper include the following: (1) fuel supply agreement to be set up, particularly for the long-distance customers, (2) considering the overall economics, MCL to try and convince the Ministry of Environment and Forests to drop the clause using 34% ash coal by distant thermal power stations from June 2001, (3) to properly utilize manpower, as the wages are high but the industry growth curve is negative, and (4) to set up proper safety measures in opencast mines to prevent fire. This will avoid weathering and degradation of coal.

  13. IMPORTANT DEGRADATIONS IN POLYETHYLENE TERAPHTALATE EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Şule ALTUN

    2003-01-01

    Full Text Available Polyethylene terephthalate (PET is one of the most used thermo-plastic polymers. The total consumption of PET has been about 30 million tons in the year 2000. Polyester fibers constitute about 60 % of total synthetic fibers consumption. During extrusion, PET polymer is faced to thermal, thermo-oxidative and hydrolytic degradation, which result in severe reduction in its molecular weight, thereby adversely affecting its subsequent melt processability. Therefore, it is essential to understand degradation processes of PET during melt extrusion.

  14. Revival of coal. [France and USA

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    This edition is devoted to the production and consumption of coal in France. It presents a study of the main topics involved, discusses the position of coal in France - under what form should it beused, and deals with coal consumption in cement works role of coal for urban district heating, future of coal gasification in France, France's coal policy, coal industry in the USA, underground gasification of coal, France's coal reserves, etc.. (In French)

  15. Thermal surface characteristics of coal fires 1 results of in-situ measurements

    Science.gov (United States)

    Zhang, Jianzhong; Kuenzer, Claudia

    2007-12-01

    Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO 2 and - under certain circumstances - to spontaneous combustion. Coal fires occur in many countries world wide - however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N 2O). They additionally contribute to the emission of green house relevant gasses such as CO 2 and CH 4 to the atmosphere. In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered. Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime

  16. Clean coal initiatives in Indiana

    Science.gov (United States)

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  17. Thermal expansion of coking coals

    Energy Technology Data Exchange (ETDEWEB)

    Orlik, M.; Klimek, J. (Vyzkumny a Zkusebni Ustav Nova Hut, Ostrava (Czechoslovakia))

    1992-12-01

    Analyzes expansion of coal mixtures in coke ovens during coking. Methods for measuring coal expansion on both a laboratory and pilot plant scale are comparatively evaluated. The method, developed, tested and patented in Poland by the Institute for Chemical Coal Processing in Zabrze (Polish standard PN-73/G-04522), is discussed. A laboratory device developed by the Institute for measuring coal expansion is characterized. Expansion of black coal from 10 underground mines in the Ostrava-Karvina coal district and from 9 coal mines in the Upper Silesia basin in Poland is comparatively evaluated. Investigations show that coal expansion reaches a maximum for coal types with a volatile matter ranging from 20 to 25%. With increasing volatile matter in coal, its expansion decreases. Coal expansion increases with increasing swelling index. Coal expansion corresponds with coal dilatation. With increasing coal density its expansion increases. Coal mixtures should be selected in such a way that their expansion does not cause a pressure exceeding 40 MPa. 11 refs.

  18. Modelling degradation of bioresorbable polymeric medical devices

    CERN Document Server

    Pan, J

    2015-01-01

    The use of bioresorbable polymers in stents, fixation devices and tissue engineering is revolutionising medicine. Both industry and academic researchers are interested in using computer modelling to replace some experiments which are costly and time consuming. This book provides readers with a comprehensive review of modelling polymers and polymeric medical devices as an alternative to practical experiments. Chapters in part one provide readers with an overview of the fundamentals of biodegradation. Part two looks at a wide range of degradation theories for bioresorbable polymers and devices.

  19. Clean utilization of coal

    International Nuclear Information System (INIS)

    Yueruem, Y.

    1992-01-01

    This volume contains 23 lectures presented at the Advanced Study Institute on 'Chemistry and Chemical Engineering of Catalytic Solid Fuel Conversion for the Production of Clean Synthetic Fuels', which was held at Akcay, Edremit, Turkey, between 21 July and August 3, 1991. Three main subjects: structure and reactivity of coal; cleaning of coal and its products, and factors affecting the environmental balance of energy usage and solutions for the future, were discussed in the Institute and these are presented under six groups in the book: Part 1. Structure and reactivity of coal; Part 2. Factors affecting environmental balance; Part 3. Pre-usage cleaning operations and processes; Part 4. Upgrading of coal liquids and gases; Part 5. Oxygen enriched processes; and Part 6. Probable future solution for energy and pollution problems. Separate abstracts have been prepared for all the lectures

  20. Coal exports still growing

    International Nuclear Information System (INIS)

    Blain, M.

    1998-01-01

    It is shown that the swings and roundabouts of the Asian economic shake out and Australian dollar devaluation are starting to work their way through the Australian export coal market. Perhaps somewhat surprisingly, at this stage the results are not proving to be as bad as were at first predicted by some market watchers. Export revenue and tonnages are up 12% for the year to July 98. Coal exports totaling $9.5 billion left Australia's shores in the 12 months confirming coal as Australia's single largest export revenue earner. Sales volumes in the present financial year are still increasing, the market being driven by steadily increasing Asian demand for steaming coal from places like Korea, Malaysia, Thailand and the Philippines

  1. Coal Mine Permit Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — ESRI ArcView shapefile depicting New Mexico coal mines permitted under the Surface Mining Control and Reclamation Act of 1977 (SMCRA), by either the NM Mining these...

  2. Coal industry - memoranda

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This paper contains 41 memoranda submitted to the UK House of Commons Energy Committee containing views on the UK coal industry and responses to questions from the Select Committee. The following organizations are represented: Department of Energy; National Coal Board; APEX; BACM; NACODS; NUM; UDM; TUC; CEGB; Electricity Council; Northern Ireland Electricity Service; SSEB; British Gas Corporation; BP; Conoco (UK) Ltd.; Costain Mining Ltd.; Shell UK Ltd.; BSC; ICI; Boots; CBI; PSA; Solid Fuel Advisory Service; Domestic Coal Consumers Council; Associated Heat Services; Association of Shell Boilermakers; Babcock Power Ltd.; GEC; Foster Wheeler Power Products; ABMEC; British Longwall Mining Association; Federation of Civil Engineering Contractors; Federation of Small Mines of Great Britain; Chamber of Coal Traders; Coalfield Communities Campaign; Nottinghamshire County Council; Federation of Self-Employed and Small Businesses; the Colombian, Belgian and Netherlands Embassies; and Plaid Cymru.

  3. Coal terminal directory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-06-15

    The directory gives a comprehensive listing of the world's coal terminals, in a total of 50 countries including information on throughput, facilities, storage capacity, and vessel size limitation.

  4. Advanced Functional Polymers for Increasing the Stability of Organic Photovoltaics

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Helgesen, Martin; Carlé, Jon Eggert

    2013-01-01

    The development of new advanced polymers for improving the stability of OPV is reviewed. Two main degradation pathways for the OPV active layer are identified: photochemically initiated reactions primarily starting in the side chains and morphological changes that degrade the important nanostruct......The development of new advanced polymers for improving the stability of OPV is reviewed. Two main degradation pathways for the OPV active layer are identified: photochemically initiated reactions primarily starting in the side chains and morphological changes that degrade the important...... nanostructure. Chemical units can be introduced that impart an increased stability. Similarly, the morphological degradation of the optimal nanostructure can be reduced. Active polymers and blends with acceptor material are used to create nanoparticle links with controlled size. Most of these advanced polymers...

  5. Mechanisms of Photo Degradation for Layered Silicate-Polycarbonate Nanocomposites

    National Research Council Canada - National Science Library

    Sloan, James M; Patterson, Philip

    2005-01-01

    ...., lightweight structure, rugged abrasion resistance, and high ballistic impact strength). However, as with any polymer system, these materials are susceptible to degradation over time when exposed to various environmental (i.e...

  6. Nanometre-sized pores in coal: Variations between coal basins and coal origin

    Science.gov (United States)

    Sakurovs, Richard; Koval, Lukas; Grigore, Mihaela; Sokolava, Anna; Ruppert, Leslie F.; Melnichenko, Yuri B.

    2018-01-01

    We have used small angle neutron scattering (SANS) to investigate the differences in methane and hexane penetration in pores in bituminous coal samples from the U.S., Canada, South Africa, and China, and maceral concentrates from Australian coals. This work is an extension of previous work that showed consistent differences between the extent of penetration by methane into 10–20 nm size pores in inertinite in bituminous coals from Australia, North America and Poland.In this study we have confirmed that there are differences in the response of inertinite to methane and hexane penetration in coals sourced from different coal basins. Inertinite in Permian Australian coals generally has relatively high numbers of pores in the 2.5–250 nm size range and the pores are highly penetrable by methane and hexane; coals sourced from Western Canada had similar penetrability to these Australian coals. However, the penetrability of methane and hexane into inertinite from the Australian Illawarra Coal Measures (also Permian) is substantially less than that of the other Australian coals; there are about 80% fewer 12 nm pores in Illawarra inertinite compared to the other Australian coals examined. The inertinite in coals sourced from South Africa and China had accessibility intermediate between the Illawarra coals and the other Australian coals.The extent of hexane penetration was 10–20% less than CD4 penetration into the same coal and this difference was most pronounced in the 5–50 nm pore size range. Hexane and methane penetrability into the coals showed similar trends with inertinite content.The observed variations in inertinite porosity between coals from different coal regions and coal basins may explain why previous studies differ in their observations of the relationships between gas sorption behavior, permeability, porosity, and maceral composition. These variations are not simply a demarcation between Northern and Southern Hemisphere coals.

  7. Coal flotation technical review

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, N. [C. Clarkson & Associates Pty. Ltd., Brisbane, Qld. (Australia)

    1996-10-01

    The Australian Coal Association Research Program (ACARP) recently commissioned a study into the status of flotation in coal preparation, in order to direct limited funds to areas of maximum benefit. The primary purpose of the study was the assessment of new flotation technologies, including those commercially available and those still under development. Technologies examined included: the Jameson Cell, Microcel, and Ekof cell. Problems and advantages are discussed, with suggestions for future areas of research. 3 figs.

  8. Increased radiation degradation in methyl methacrylate copolymers

    International Nuclear Information System (INIS)

    Helbert, J.N; Wagner, G.E.; Caplan, P.J.; Poindexter, E.H.

    1975-01-01

    The effect of polar substituents at the quaternary carbon on degradation processes in several polymers and 10 to 20 percent copolymers of methyl methacrylate was explored. EPR was used to monitor radiation degradation products and to determine radiation G values. Irradiations were carried out at 77 0 K in a gamma irradiator at a dose rate of 0.3 Mrad/hr. (U.S.)

  9. Rational use of coal from the Kansk-Achinsk basin

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, I.A.; Antonova, L.I.; Khapaeva, O.K.

    1983-02-01

    Brown coal from the Kansk-Achinsk basin will be used as fuel in power plants as well as raw material for production of coke and smokeless fuel. Production of semicoke should amount to 9 Mt/year, 4 Mt of which will be smokeless fuel. A method for coking brown coal from the Kansk-Achinsk basin developed by the MGI Institute is described: semicoke mixed with coal tar used as a binder and polymers (from 2 to 4%), playing the role of a modifier, is carbonized at 850 to 900 C. Briquets produced from brown coal semicoke are characterized by a high carbon content up to 94.7%, emission of volatile matter down to 9.0%, ash content of 8.8% and good mechanical properties. A method for production of coke for removal of sulfurous anhydride from coal power plant emission is described: semicoke is granulated using the heavy fraction of coal tar formed during semicoking, granules are carbonized and activated at a temperature of 900 C. Volume of mesopores and micropores in coke amounts to 0.4 cm/sup 3//g and the specific surface is 28 to 600 m/sup 2//g (with a combustion loss of of 20 to 24 %). This sorbent is also used as carrier for catalysts in metallurgy and for collecting and recovering solvents from industrial gases.

  10. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Arnold, G.; Baer, M.; Gey, M.; Hubert, S.; Langguth, H.

    1984-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment (e.g. radiation influence and influence of lyes) are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given

  11. Exploring bacterial lignin degradation.

    Science.gov (United States)

    Brown, Margaret E; Chang, Michelle C Y

    2014-04-01

    Plant biomass represents a renewable carbon feedstock that could potentially be used to replace a significant level of petroleum-derived chemicals. One major challenge in its utilization is that the majority of this carbon is trapped in the recalcitrant structural polymers of the plant cell wall. Deconstruction of lignin is a key step in the processing of biomass to useful monomers but remains challenging. Microbial systems can provide molecular information on lignin depolymerization as they have evolved to break lignin down using metalloenzyme-dependent radical pathways. Both fungi and bacteria have been observed to metabolize lignin; however, their differential reactivity with this substrate indicates that they may utilize different chemical strategies for its breakdown. This review will discuss recent advances in studying bacterial lignin degradation as an approach to exploring greater diversity in the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. 1988 coal price negotiation

    Energy Technology Data Exchange (ETDEWEB)

    Senmura, Akira

    1988-12-01

    In the negotiation on raw coal price for 1988, which began at the end of 1987, Australia requested price rise of 4 - 5 dollars for the reason of rise of Australian dollars, conditions of mines, price drop in the past five years, and world supply/demand of coal. Japan insisted to maintain the price of preceding year. The talk ended in a dead lock which could last a long time. Negotiation on the Canadian coal price also encountered difficulties but an agreement was obtained in March as Japan accepted the increased price. After which, Japan and Australia agreed to raise the price by 2.90 dollars and an increase over last year. Producing countries also requested a wide price rise as 7.50 dollars for general coal, making in this area very difficult to progress. Finally, they agreed to raise the price by 6.30 dollars and the electric power utility in Japan responded by importing of U.S. coal, which has a lower heat output but is also cheaper. It depends on Australia for 70% of coal supply but started to diversify the source. 3 tabs.

  13. Coal mining in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Mills, L J

    1981-12-01

    In 1959 black coal production in Australia totalled some 21.9 million tonnes per annum, 70% of this being produced from underground mines in the coalfields of New South Wales. By 1980 output levels had increased by nearly 350% to 75.4 million tonnes per annum (54% of which was exported) compared with 5% some 20 years earlier. Because it is blessed with large reserves of coal and other forms of energy, it is inevitable that the Australian coal mining industry will be required to play a major role in the development of the international coal market through to the end of the present century. Experts now predict a need for the black coal output in Australia to be developed from its present level to a minimum of 293 million tonnes per annum by the year 2000. This paper examines the present circumstances in the Australian coal industry and attempts to outline the development which has to be undertaken in order to meet the needs of an energy hungry world.

  14. Integrated coal preparation

    International Nuclear Information System (INIS)

    Buchanan, D.J.; Jones, T.F.

    1992-01-01

    Perceptions of quality have changed over the years. The attributes of a certain coal (its rank, slagging propensity, ash content etc) are traditionally referred to as its quality. However, the subject of this paper is quality in a much wider sense: quality as fitness for purpose: and all that such a wide definition entails. British Standard BS 5750 (ISO 9000) Quality Systems defines a systems approach to quality, and includes both the supplier of raw materials and the final customer within this boundary. Coal preparation starts at the production face. The greater the proportion of dirt in run-of-mine product the greater the challenge in satisfying the customer's needs. Significant advances have been made in minimizing mined dirt. For example, the sue of vertical steering on longwall faces improves productivity and quality. Unfortunately modern mining methods produce large quantities of fines, despite efforts to reduce them at the point of production and during transportation to the surface. Coal preparation also produces further fines. It has been estimated that fine coal costs 2.5 times as much to clean as large coal, and the costs of handing wet fine coal product will inflate this estimate. Handling considerations rightly concern our customers and are part of the wider meaning of quality. In this paper the authors address some novel solutions to the challenge posed by fines

  15. Prospects for coal and clean coal technology in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This report examines the current energy outlook for the Philippines in regard not only to coal but also other energy resources. The history of the power sector, current state of play and future plans to meet the increasing energy demand from a growing population are discussed. There is also analysis of the trends for coal demand and production, imports and exports of coal and the types of coal-fired power stations that have been built. This includes examination of the legislation involving coal and the promotion of clean coal technologies.

  16. Workability of coal seams in the Upper Silesian Coal Basin

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Fels, M; Soltysik, K

    1978-04-01

    This paper presents results of an investigation on workability of coal seams of stratigraphic groups from 100 to 700 in the: Upper Silesian Coal Basin. Analyzed are 2900 petrographic logs taken in the longwall workings and in narrow openings as well as about 9000 individual samples. Workability of coal seams, floors and partings is determined. Workability is described by the indicator f, (according to the Protodyakonov shatter method) and the indicator U, (compression strength of the unshaped test samples). The mean percentage content of indivi dual petrographic groups of coal as well as the mean workability indicator, f, of coals in the stratigraphic groups of coal seams in Upper Silesia are also determined.

  17. Polymer Nanocomposites

    Indian Academy of Sciences (India)

    methods for the synthesis of polymer nanocomposites. In this article we .... ers, raw materials recovery, drug delivery and anticorrosion .... region giving rise to dose-packed absorption bands called an IR ... using quaternary ammonium salts.

  18. Coal development potential in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M N; Pelofsky, A H [eds.

    1986-01-01

    A total of 48 papers were presented, and covered the following topics: the current situation in Pakistan with respect to development and utilization of coal resources; the policies that have been responsible for the development and utilization of coal resources in Pakistan; coal development and utilization in other developing nations e.g. Indonesia, Greece, Philippines, China, Thailand and Haiti; and technological developments in coal exploration; extraction, handling, transport and utilization which could accelerate future development of Pakistan's coal resources. Specific subjects covered include the use of coal in the cement industry of Pakistan; the production of briquettes for domestic use, development and training of personnel for the coal industry; and sources of finance for coal development projects. Particular emphasis is given throughout the conference to the Lakhra coal mine/power plant project which aims to develop and effectively utilize the lignite reserves of Sind Province. 47 papers have been abstracted separately.

  19. Environmental evaluation for sustainable development of coal mining in Qijiang, Western China

    Energy Technology Data Exchange (ETDEWEB)

    Si, Hu; Bi, Haipu [College of Resource and Environment Science, Chongqing University, Chongqing 400030 (China); Key Lab for the Exploitation of Southwestern Resource and the Environment Disaster Control Engineering, the Ministry of Education, Chongqing University, Chongqing 400030 (China); Li, Xiaohong; Yang, Chunhe [Key Lab for the Exploitation of Southwestern Resource and the Environment Disaster Control Engineering, the Ministry of Education, Chongqing University, Chongqing 400030 (China)

    2010-03-01

    Environmental degradation associated with mining activities may seriously threaten the health of local people and the sustainable development of coal mining, which may need to be addressed by improved environmental evaluation system. Based on analyzing environmental pollution from coal mining and the increasing need for raw coal, this paper establishes an environmental evaluation system, covering environmental situation, resource protection and economic benefit, for sustainable development in coal mining. This paper proposes methods for calculating the weight of each index and the environmental sustainable capability taking into account the method of Analytic Hierarchy Process (AHP). Finally, the index system is used to evaluate the environmental sustainability of coal mining in the Qijiang area, Western China, which has demonstrated the validity of the index system. It may also be useful as a tool to assess the environmental impact of mining areas, as well as a measure to promote sustainable development in coal mining. (author)

  20. Coal 99; Kol 99

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, C

    2000-07-01

    The following report deals with the use of coal and coke during 1998. Some information about techniques, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used. The use of steam coal for heating purposes during 1998 was 680 000 tons and somewhat lower than in 1997. The extremely high figures of 1996 were due to twice the production of electricity because of lack of waterpower. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. During 1998 these figures are 1 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. Steel-works, however, increase their use of steam coal in order to replace the more expensive coke. The import of metallurgical coal in 1998 was 1.6 mill tons like the year before. 1.1 mill tons of coke were produced. The coke consumption in the industry was 1.4 mill tons from which 0.3 mill tons were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has ordered a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has put a fluid bed boiler for various fuels into operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm Energi, Haesselbyverket, has invested