WorldWideScience

Sample records for coal gasifier quarterly

  1. Commissioning an Engineering Scale Coal Gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Douglas J.; Bearden, Mark D.; Cabe, James E.

    2010-07-01

    This report explains the development, commissioning, and testing of an engineering scale slagging coal gasifier at PNNL. The initial objective of this project was to commission the gasifier with zero safety incidents. The commissioning work was primarily an empirical study that required an engineering design approach. After bringing the gasifier on-line, tests were conducted to assess the impact of various operating parameters on the synthesis gas (syngas) product composition. The long-term intent of this project is to produce syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in catalyst, materials, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for greater than 4 hours using coal feedstock. In addition, alternate designs that allow for increased flexibility regarding the fuel sources that can be used for syngas production is desired. Continued modifications to the fuel feed system will be pursued to address these goals. Alternative feed mechanisms such as a coal/methanol slurry are being considered.

  2. Coal gasification. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association, is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. A number of the processes for converting coal to high Btu and to low Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  3. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, Thomas

    1989-01-01

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  4. Study of ammonia removal from coal-gasified fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Takeharu; Sato, Mikio [Central Research Inst. of Electric Power Industry, Yokosuka, Kanagawa (Japan)

    1998-07-01

    In integrated coal gasification combined-cycle power-generation (IGCC) systems, ammonia in gasified fuel is passed through a hot/dry type gas clean-up facility into a gas turbine. The ammonia is converted to nitrogen oxides in the gas turbine combustion process. Therefore, ammonia removal from coal-gasified fuel effectively reduces NO{sub x} emissions in IGCC systems. The authors clarified the optimum NO/NH{sub 3} ratio, the optimum concentration of added O{sub 2}, and the influence of CO, H{sub 2}, and CH{sub 4} in the coal-gasified fuel on NH{sub 3} decomposition and NO reduction through experiments using a tubular flow reactor and numerical analysis based on reaction kinetics. The main results were as follows: (1) The optimum NO/NH{sub 3} ratio for maximizing NH{sub 3} decomposition and NO reduction was about 1. (2) The NH{sub 3} decomposition ratio depended only on H{sub 2}, and decreased rapidly with increasing H{sub 2} concentration. (3) The NO reduction ratio decreased with an increasing H{sub 2} concentration. (4) The remaining CH{sub 4}, which was not decomposed by pyrolysis, increased with an increasing CH{sub 4} concentration and caused the reaction temperature to rise, as opposed to cases of CO and H{sub 2}. (5) The method was effective in decreasing total fixed nitrogen (TFN) by up to 40% and minimizing the total concentration of remaining NH{sub 3} and NO in air-blown, coal-gasified fuel.

  5. Technical review of coal gasifiers for production of synthetic natural gas

    International Nuclear Information System (INIS)

    Lee, Geun Woo; Shin, Yong Seung

    2012-01-01

    Because of the increasing cost of oil and natural gas, energy production technologies using coal, including synthetic natural gas (SNG) and integrated gasification combined cycle (IGCC), have attracted attention because of the relatively low cost of coal. During the early stage of a project, the developer or project owner has many options with regard to the selection of a gasifier. In particular, from the viewpoint of feasibility, the gasifier is a key factor in the economic evaluation. This study compares the technical aspects of gasifiers for a real SNG production project in an early stage. A fixed bed slagging gasifier, wet type entrained gasifier, and dry type entrained gasifier, all of which have specific advantages, can be used for the SNG production project. Base on a comparison of the process descriptions and performances of each gasifier, this study presents a selection guideline for a gasifier for an SNG production project that will be beneficial to project developers and EPC (Engineering, Procurement, Construction) contractors

  6. Coal gasification. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    High-Btu natural gas has a heating value of 950 to 1,000 Btu per standard cubic foot, is composed essentially of methane, and contains virtually no sulfur, carbon monoxide, or free hydrogen. The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. A number of the processes for converting coal to high Btu and to low Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  7. Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, T.

    1988-04-05

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

  8. Liquid CO2/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Marasigan, Jose [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Goldstein, Harvey [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Dooher, John [Electric Power Research Institute, Inc., Palo Alto, CA (United States)

    2013-09-30

    This study investigates the practicality of using a liquid CO2/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO2 has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO2 is much lower than water. This means it should take less energy to pump liquid CO2 through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, which should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO2 is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO2 is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO2 slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO2 has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO2 over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO2/coal slurry properties.

  9. Process for electrochemically gasifying coal using electromagnetism

    Science.gov (United States)

    Botts, Thomas E.; Powell, James R.

    1987-01-01

    A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

  10. Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2013-02-01

    Full Text Available In the entrained-flow gasifiers used in integrated gasification combined cycle (IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter is entrained (as fly ash with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. To improve gasification availability through better design and operation of the gasification process, a better understanding of slag behavior and the characteristics of the slagging process is needed. Char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio all affect slagging behavior. Because coal has varying ash content and composition, different operating conditions are required to maintain the slag flow and limit problems downstream. In Part I, we review the main types and the operating conditions of entrained-flow gasifiers and coal properties used in IGCC plants; we identify and discuss the key coal ash properties and the operating conditions impacting slag behavior; finally, we summarize the coal quality criteria and the operating conditions in entrained-flow gasifiers. In Part II, we discuss the constitutive modeling related to the rheological studies of slag flow.

  11. Numerical Investigation for the Plasma Coal Gasifier of 150kW and 1400kW

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeong Yeong; Suh, Jae Seung [Hannam University, Daejeon (Korea, Republic of); Lho, Tai Hyeop [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-05-15

    This study has verification of simulation for the gasifier of 150kWe and focuses on prediction of performance for the gasifier of 1.4MWe with a computational fluid dynamics (CFD) method. It is possible to predict flow patterns, tracks of particles, combustion characteristics, temperature distributions and chemical distributions using the commercial CFD solver ANSYS/FLUENT. Integrated coal gasification combined cycle (IGCC) has gained a lot of interest because they can produce cleaner gaseous fuels such as hydrogen, carbon monoxide and methane. Therefore, the National Fusion Research Institute (NFRI) plant has been investigating the application of their plasma technology to gasify coal. It is a fusion plasma technology for better efficiency of low-carbon fuels. They recently completed experiment for the gasifier of 150kwe, and are currently trying experiment for the gasifier of 1.4MWe. They have tried to design the gasifier that has cold gases of a higher efficiency. However it is considerably complicated and expensive that performance of gasifier is experimentally studied, because it is difficult to measure or control gases of very high temperature. This study has numerical investigation for the phenomena of coal gasification for coal gasifier of 150kWe and 1.4MWe at experiment operating conditions. This study has verification of simulation for the gasifier of 150kWe, and predicts performance for the gasifier of 1.4MWe. The gasifier of 1.4MWe will have a cold gas of higher efficiency than gasifier of 150kWe because can generate many hydrogen gas. So this gasification has the potential to become cornerstone technology in many hydrogen industries.

  12. Fluid Dynamics of Pressurized, Entrained Coal Gasifiers

    International Nuclear Information System (INIS)

    1997-01-01

    Pressurized, entrained gasification is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal gasifier at a high inlet gas velocity to increase the inflow of reactants, and at an elevated pressure to raise the overall efficiency of the process. Unfortunately, because of the extraordinary difficulties involved in performing measurements in hot, pressurized, high-velocity pilot plants, its fluid dynamics are largely unknown. Thus the designer cannot predict with certainty crucial phenomena like erosion, heat transfer and solid capture. In this context, we are conducting a study of the fluid dynamics of Pressurized Entrained Coal Gasifiers (PECGs). The idea is to simulate the flows in generic industrial PECGs using dimensional similitude. To this end, we employ a unique entrained gas-solid flow facility with the flexibility to recycle--rather than discard--gases other than air. By matching five dimensionless parameters, suspensions in mixtures of helium, carbon dioxide and sulfur hexafluoride simulate the effects of pressure and scale-upon the fluid dynamics of PECGs. Because it operates under cold, atmospheric conditions, the laboratory facility is ideal for detailed measurements

  13. Quarterly coal report, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-20

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada.

  14. Quarterly coal report, January--March 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada

  15. Numerical simulations for the coal/oxidant distribution effects between two-stages for multi opposite burners (MOB) gasifier

    International Nuclear Information System (INIS)

    Unar, Imran Nazir; Wang, Lijun; Pathan, Abdul Ghani; Mahar, Rasool Bux; Li, Rundong; Uqaili, M. Aslam

    2014-01-01

    Highlights: • We simulated a double stage 3D entrained flow coal gasifier with multi-opposite burners. • The various reaction mechanisms have evaluated with experimental results. • The effects of coal and oxygen distribution between two stages on the performance of gasifier have investigated. • The local coal to oxygen ratio is affecting the overall efficiency of gasifier. - Abstract: A 3D CFD model for two-stage entrained flow dry feed coal gasifier with multi opposite burners (MOB) has been developed in this paper. At each stage two opposite nozzles are impinging whereas the two other opposite nozzles are slightly tangential. Various numerical simulations were carried out in standard CFD software to investigate the impacts of coal and oxidant distributions between the two stages of the gasifier. Chemical process was described by Finite Rate/Eddy Dissipation model. Heterogeneous and homogeneous reactions were defined using the published kinetic data and realizable k–ε turbulent model was used to solve the turbulence equations. Gas–solid interaction was defined by Euler–Lagrangian frame work. Different reaction mechanism were investigated first for the validation of the model from published experimental results. Then further investigations were made through the validated model for important parameters like species concentrations in syngas, char conversion, maximum inside temperature and syngas exit temperature. The analysis of the results from various simulated cases shows that coal/oxidant distribution between the stages has great influence on the overall performance of gasifier. The maximum char conversion was found 99.79% with coal 60% and oxygen 50% of upper level of injection. The minimum char conversion was observed 95.45% at 30% coal with 40% oxygen at same level. In general with oxygen and coal above or equal to 50% of total at upper injection level has shown an optimized performance

  16. Quarterly coal report, April--June, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for April through June 1998 and aggregated quarterly historical data for 1992 through the first quarter of 1998. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. 58 tabs.

  17. Quarterly coal report, October--December 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1998 and aggregated quarterly historical data for 1992 through the third quarter of 1998. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. 58 tabs.

  18. Quarterly coal report, January--March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.

    1998-08-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for January through March 1998 and aggregated quarterly historical data for 1992 through the fourth quarter of 1997. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the United States, historical information has been integrated in this report. 58 tabs.

  19. Quarterly coal report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.

  20. Quarterly coal report, July--September 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks. Coke production consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1997 and aggregated quarterly historical data for 1991 through the second quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. 72 tabs.

  1. Quarterly coal report, April--June 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for April through June 1997 and aggregated quarterly historical data for 1991 through the first quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

  2. Development of advanced air-blown entrained-flow two-stage bituminous coal IGCC gasifier

    Directory of Open Access Journals (Sweden)

    Abaimov Nikolay A.

    2017-01-01

    Full Text Available Integrated gasification combined cycle (IGCC technology has two main advantages: high efficiency, and low levels of harmful emissions. Key element of IGCC is gasifier, which converts solid fuel into a combustible synthesis gas. One of the most promising gasifiers is air-blown entrained-flow two-stage bituminous coal gasifier developed by Mitsubishi Heavy Industries (MHI. The most obvious way to develop advanced gasifier is improvement of commercial-scale 1700 t/d MHI gasifier using the computational fluid dynamics (CFD method. Modernization of commercial-scale 1700 t/d MHI gasifier is made by changing the regime parameters in order to improve its cold gas efficiency (CGE and environmental performance, namely H2/CO ratio. The first change is supply of high temperature (900°C steam in gasifier second stage. And the second change is additional heating of blast air to 900°C.

  3. Quarterly coal report, July--September 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1998 and aggregated quarterly historical data for 1992 through the second quarter of 1998. 58 tabs.

  4. Quarterly coal report, October--December 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities. This report presents detailed quarterly data for october through December 1997 and aggregated quarterly historical data for 1991 through the third quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data, as specified in Section 202 of the energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

  5. Quarterly coal report, January--March 1992

    International Nuclear Information System (INIS)

    Young, P.

    1992-01-01

    The United States produced 257 million short tons of coal in the first quarter of 1992. This was the second highest quarterly production level ever recorded. US coal exports in January through March of 1992 were 25 million short tons, the highest first quarter since 1982. The leading destinations for US coal exports were Japan, Italy, France, and the Netherlands, together receiving 46 percent of the total. Coal exports for the first quarter of 1992 were valued at $1 billion, based on an average price of $42.28 per short ton. Steam coal exports totaled 10 million short tons, an increase of 34 percent over the level a year earlier. Metallurgical coal exports amounted to 15 million short tons, about the same as a year earlier. US coal consumption for January through March 1992 was 221 million short tons, 2 million short tons more than a year earlier (Table 45). All sectors but the residential and commercial sector reported increased coal consumption

  6. Experimental and computational study and development of the bituminous coal entrained-flow air-blown gasifier for IGCC

    International Nuclear Information System (INIS)

    Abaimov, N A; Osipov, P V; Ryzhkov, A F

    2016-01-01

    In the paper the development of the advanced bituminous coal entrained-flow air- blown gasifier for the high power integrated gasification combined cycle is considered. The computational fluid dynamics technique is used as the basic development tool. The experiment on the pressurized entrained-flow gasifier was performed by “NPO CKTI” JSC for the thermochemical processes submodel verification. The kinetic constants for Kuznetsk bituminous coal (flame coal), obtained by thermal gravimetric analysis method, are used in the model. The calculation results obtained by the CFD model are in satisfactory agreements with experimental data. On the basis of the verified model the advanced gasifier structure was suggested which permits to increase the hydrogen content in the synthesis gas and consequently to improve the gas turbine efficiency. In order to meet the specified requirements vapor is added on the second stage of MHI type gasifier and heat necessary for air gasification is compensated by supplemental heating of the blasting air. (paper)

  7. Quarterly coal report, January--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-24

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1994 and aggregated quarterly historical data for 1986 through the fourth quarter of 1993. Appendix A displays, from 1986 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  8. Quarterly coal report, January--March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience,including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1997 and aggregated quarterly historical data for 1991 through the fourth quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  9. Carbon formation and metal dusting in hot-gas cleanup systems of coal gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Tortorelli, P.F.; Judkins, R.R.; DeVan, J.H.; Wright, I.G. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1995-11-01

    The product gas resulting from the partial oxidation of Carboniferous materials in a gasifier is typically characterized by high carbon and sulfur, but low oxygen, activities and, consequently, severe degradation of the structural and functional materials can occur. The objective of this task was to establish the potential risks of carbon deposition and metal dusting in advanced coal gasification processes by examining the current state of knowledge regarding these phenomena, making appropriate thermochemical calculations for representative coal gasifiers, and addressing possible mitigation methods. The paper discusses carbon activities, iron-based phase stabilities, steam injection, conditions that influence kinetics of carbon deposition, and influence of system operating parameters on carbon deposition and metal dusting.

  10. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Andrew Kramer [Gas Technology Inst., Des Plaines, IL (United States)

    2016-09-30

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition region at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.

  11. Quarterly coal report July--September 1996, February 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1996 and aggregated quarterly historical data for 1990 through the second quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. 8 figs., 72 tabs.

  12. Experimental study on the gasification characteristics of coal and orimulsion in 0.5 T/D gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ho Young; Kim, Jong Young; An, Dal Hong; Park, Tae Jun [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1995-12-31

    For the construction of commercial plant for IGCC imported from aboard in near future, it is aimed to get gasification data, practice the gasification design capability, and develop a fundamental key technology through the experiments for different kinds of coals (Datong, Roto, Alaska) by 0.5 T/D gasifier. We performed the experiments for physical properties and reactivities on selected coals by means of Drop Tube Reactor, numerical analysis for the reactor. Throughout the characteristic studies of orimulsion gasification, feasibility studies for orimulsion gasification as a fuel for power plant be performed. With the six experiment runs for the coal gasifier, several problems were found to remedy. After remedies, the gasifier could run at good operating conditions maintaining with 200% design feed rate over 1200-1550 degree. The third and fourth gasification runs with Roto were satisfactorily completed, during which gross heating values from produced gas were 7200-8200 Kcal/Nm{sup 3}. (author). 118 refs., 145 figs.

  13. Experimental study on the gasification characteristics of coal and orimulsion in 0.5 T/D gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ho Young; Kim, Jong Young; An, Dal Hong; Park, Tae Jun [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-12-31

    For the construction of commercial plant for IGCC imported from aboard in near future, it is aimed to get gasification data, practice the gasification design capability, and develop a fundamental key technology through the experiments for different kinds of coals (Datong, Roto, Alaska) by 0.5 T/D gasifier. We performed the experiments for physical properties and reactivities on selected coals by means of Drop Tube Reactor, numerical analysis for the reactor. Throughout the characteristic studies of orimulsion gasification, feasibility studies for orimulsion gasification as a fuel for power plant be performed. With the six experiment runs for the coal gasifier, several problems were found to remedy. After remedies, the gasifier could run at good operating conditions maintaining with 200% design feed rate over 1200-1550 degree. The third and fourth gasification runs with Roto were satisfactorily completed, during which gross heating values from produced gas were 7200-8200 Kcal/Nm{sup 3}. (author). 118 refs., 145 figs.

  14. Agglomeration and reaction characteristics of various coal chars in fluidized-bed coal gasifier; Ryudoso sekitan gas ka ronai deno sekitan no gyoshu tokusei to hanno tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Uemiya, S.; Aoki, K.; Mori, S.; Kojima, T. [Seikei University, Tokyo (Japan). Faculty of Engineering

    1996-10-28

    With relation to the coals delivered as common samples in the coal fundamental technology development project, an experimental study was conducted on agglomeration characteristics and reaction characteristics in the fluidized-bed coal gasifier. For the experiment, used was a fluidized bed gasifier inserted with a cone-shape dispersion plate with a nozzle in the center. After raising the temperature of the gasifier up to 773K, gasification was conducted sending to the gasifier air from the nozzle and steam from the dispersion plate. The mean particle diameter and gas concentration of chars were measured till the temperature reaches 1373K. As a result of the experiment, it was confirmed that the carbon conversion ratio increases with a decrease in coalification degree of the coal. Moreover, influence of the coal kind was markedly observed at the grid zone of the lower part of the bed, and it was clarified that the lower carbon content ratio the coal kind has, the faster the speed of CO formation and water gasification get. The agglomeration temperature of charcoal which is a product of the condensate is lower by as many as several hundred K than the point of softening, and it was considered to be necessary to study the relation with the temperature distribution in the bed. 3 refs., 3 figs., 1 tab.

  15. Quarterly coal statistics of OECD countries

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-27

    These quarterly statistics contain data from the fourth quarter 1990 to the fourth quarter 1991. The first set of tables (A1 to A30) show trends in production, trade, stock change and apparent consumption data for OECD countries. Tables B1 to B12 show detailed statistics for some major coal trade flows to and from OECD countries and average value in US dollars. A third set of tables, C1 to C12, show average import values and indices. The trade data have been extracted or derived from national and EEC customs statistics. An introductory section summarizes trends in coal supply and consumption, deliveries to thermal power stations; electricity production and final consumption of coal and tabulates EEC and Japanese steam coal and coking coal imports to major countries.

  16. Investigation of flow behaviour of coal particles in a pilot-scale fluidized bed gasifier (FBG) using radiotracer technique.

    Science.gov (United States)

    Pant, H J; Sharma, V K; Kamudu, M Vidya; Prakash, S G; Krishanamoorthy, S; Anandam, G; Rao, P Seshubabu; Ramani, N V S; Singh, Gursharan; Sonde, R R

    2009-09-01

    Knowledge of residence time distribution (RTD), mean residence time (MRT) and degree of axial mixing of solid phase is required for efficient operation of coal gasification process. Radiotracer technique was used to measure the RTD of coal particles in a pilot-scale fluidized bed gasifier (FBG). Two different radiotracers i.e. lanthanum-140 and gold-198 labeled coal particles (100 gm) were independently used as radiotracers. The radiotracer was instantaneously injected into the coal feed line and monitored at the ash extraction line at the bottom and gas outlet at the top of the gasifier using collimated scintillation detectors. The measured RTD data were treated and MRTs of coal/ash particles were determined. The treated data were simulated using tanks-in-series model. The simulation of RTD data indicated good degree of mixing with small fraction of the feed material bypassing/short-circuiting from the bottom of the gasifier. The results of the investigation were found useful for optimizing the design and operation of the FBG, and scale-up of the gasification process.

  17. Gas generation by co-gasification of biomass and coal in an autothermal fluidized bed gasifier

    International Nuclear Information System (INIS)

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    In this study, thermochemical biomass and coal co-gasification were performed on an autothermal fluidized bed gasifier, with air and steam as oxidizing and gasifying media. The experiments were completed at reaction temperatures of 875 °C–975 °C, steam-to-biomass ratio of 1.2, and biomass-to-coal ratio of 4. This research aims to determine the effects of reaction temperature on gas composition, lower heating value (LHV), as well as energy and exergy efficiencies, of the product gas. Over the ranges of the test conditions used, the product gas LHV varies between 12 and 13.8 MJ/Nm 3 , and the exergy and energy efficiencies of the product gas are in the ranges of 50.7%–60.8% and 60.3%–85.1%, respectively. The results show that high reaction temperature leads to higher H 2 and CO contents, as well as higher exergy and energy efficiencies of the product gas. In addition, gas LHV decreases with temperature. The molar ratio of H 2 /CO is larger than 1 at temperatures above 925 °C. Our experimental analysis shows that co-gasification of biomass and coal in an autothermal fluidized bed gasifier for gas production is feasible and promising. -- Highlights: • An innovative steam co-gasification process for gas production was proposed. • Co-gasification of biomass and coal in an autothermal fluidized bed gasifier was tested. • High temperature favors H 2 production. • H 2 and CO contents increase, whereas CO 2 and CH 4 levels decrease with increase in T. • Exergy and energy efficiencies of gases increase with increase in T

  18. Compartment modeling of coal gasification in an entrained flow gasifier: A study on the influence of operating conditions

    International Nuclear Information System (INIS)

    Kong, Xiangdong; Zhong, Weimin; Du, Wenli; Qian, Feng

    2014-01-01

    Highlights: • Gasification of Shenfu coal in an industrial Texaco gasifier for syngas production. • An equivalent compartment model is developed using Aspen Plus. • Effects of operating parameters on gasification performance indices are studied. • Choosing a reasonable ROC to enhance the gasification efficiency can be flexible. - Abstract: Coal gasifiers are core components of coal-based polygeneration systems for power and chemical production. To study the effects of operational parameters on the performance of entrained flow coal gasifiers, this paper presents an equivalent compartment model (CM) using the Aspen Plus process simulator. The CM blocking is established based on gasifier flow field analysis, using a number of compartments. A simple configuration of these compartments involving material recirculation should be able to simulate the main flow and provide the temperature and gas component distributions. The model predictions exhibit good agreement with industrial data in the model validation. The influences of the oxygen-to-carbon ratio (ROC) and the coal slurry concentration on the gasification performance are discussed. Within the calculation range, the increase in the coal slurry concentration enhances the yield of the effective compositions in product gas. For a given slurry concentration of 62%, the efficient gas yield is a maximum for ROC of 1.43 kg/kg, whereas the oxygen consumption is a minimum for ROC of 1.37 kg/kg. According to the intended final use, however, choosing a reasonable ROC to obtain a higher efficient syngas yield and lower oxygen consumption can be flexible

  19. TASK 3: PILOT PLANT GASIFIER TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Fusselman, Steve

    2015-11-01

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. Design, fabrication and initial testing of the pilot plant compact gasifier was completed in 2011 by a development team led by AR. Findings from this initial test program, as well as subsequent gasifier design and pilot plant testing by AR, identified a number of technical aspects to address prior to advancing into a demonstration-scale gasifier design. Key among these were an evaluation of gasifier ability to handle thermal environments with highly reactive coals; ability to handle high ash content, high ash fusion temperature coals with reliable slag discharge; and to develop an understanding of residual properties pertaining to gasification kinetics as carbon conversion approaches 99%. The gasifier did demonstrate the ability to withstand the thermal environments of highly reactive Powder River Basin coal, while achieving high carbon conversion in < 0.15 seconds residence time. Continuous operation with the high ash fusion temperature Xinyuan coal was demonstrated in long duration testing, validating suitability of outlet design as well as downstream slag discharge systems. Surface area and porosity data were obtained for the Xinyuan and Xinjing coals for carbon conversion ranging from 85% to 97%, and showed a pronounced downward trend in surface area per unit mass carbon as conversion increased. Injector faceplate measurements showed no incremental loss of material over the course of these experiments, validating the commercially traceable design approach and supportive of long injector life goals. Hybrid testing of PRB and natural gas was successfully completed over a wide range of natural gas feed content, providing test data to anchor predictions

  20. A new model for coal gasification on pressurized bubbling fluidized bed gasifiers

    International Nuclear Information System (INIS)

    Sánchez, Cristian; Arenas, Erika; Chejne, Farid; Londoño, Carlos A.; Cisneros, Sebastian; Quintana, Juan C.

    2016-01-01

    Highlights: • A new model was proposed for the simulation of fluidized bed reactors. • The model was validated against experimental data found in the literature. • The model was compared and found to be superior to other models reported in the literature. • Effects of pressure, temperature, steam/coal and air/coal ratios over gas composition were studied. - Abstract: Many industries have taken interest in the use of coal gasification for the production of chemicals and fuels. This gasification can be carried out inside a fluidized bed reactor. This non-ideal reactor is difficult to predict due to the complex physical phenomena and the different chemical changes that the feedstock undergoes. The lack of a good model to simulate the reactor’s behavior produces less efficient processes and plant designs. Various approaches to the proper simulation of such reactor have been proposed. In this paper, a new model is developed for the simulation of a pressurized bubbling fluidized bed (PBFB) gasifier that rigorously models the physical phenomena and the chemical changes of the feedstock inside the reactor. In the model, the reactor is divided into three sections; devolatilization, volatile reactions and combustion-gasification. The simulation is validated against experimental data reported in the literature and compared with other models proposed by different authors; once the model is validated, the dependence of the syngas composition on operational pressure, temperature, steam/coal and air/coal ratios are studied. The results of this article show how this model satisfactorily predicts the performance of PBFB gasifiers.

  1. Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition in High-Temperature Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Ronald [Stanford Univ., CA (United States); Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States)

    2014-12-01

    The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiple species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.

  2. Oil, Gas, Coal and Electricity - Quarterly statistics. Second Quarter 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    This publication provides up-to-date and detailed quarterly statistics on oil, coal, natural gas and electricity for the OECD countries. Oil statistics cover production, trade, refinery intake and output, stock changes and consumption for crude oil, NGL and nine selected oil product groups. Statistics for electricity, natural gas, hard coal and brown coal show supply and trade. Import and export data are reported by origin and destination. Moreover, oil and hard coal production are reported on a worldwide basis.

  3. Making the most of South Africa’s low-quality coal: Converting high-ash coal to fuel gas using bubbling fluidised bed gasifiers

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2010-08-31

    Full Text Available for process heating or for power generation using the IGCC (Integrated Gasification Combined Cycle) process. A high-ash coal from the Waterberg coalfield was tested in a bubbling fluidised bed gasifier using various gasification agents and operating conditions...

  4. Optimal operation for 3 control parameters of Texaco coal-water slurry gasifier with MO-3LM-CDE algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Cuiwen; Zhang, Yakun; Gu, Xingsheng [Ministry of Education, East China Univ. of Science and Technology, Shanghai (China). Key Lab. of Advanced Control and Optimization for Chemical Processes

    2013-07-01

    Optimizing operation parameters for Texaco coal-water slurry gasifier with the consideration of multiple objectives is a complicated nonlinear constrained problem concerning 3 BP neural networks. In this paper, multi-objective 3-layer mixed cultural differential evolution (MO-3LM-CDE) algorithms which comprise of 4 multi-objective strategies and a 3LM-CDE algorithm are firstly presented. Then they are tested in 6 benchmark functions. Finally, the MO-3LM-CDE algorithms are applied to optimize 3 control parameters of the Texaco coal-water slurry gasifier in methanol production of a real-world chemical plant. The simulation results show that multi-objective optimal results are better than the respective single-objective optimal operations.

  5. Experience in a 6.2 MW{sub e} pressurized fluidized bed gasifier with high ash Indian coals

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, G.; Rajasekaran, A.; Periyakaruppan, V.; Krishnamoorthy, S. [Bharat Heavy Electricals Ltd., Tiruchirappalli (India)

    2006-07-01

    Bharat Heavy Electrical Limited has installed a 165 tons/day air-blown pressurized fluidized bed gasifier (PFBG) as an add-on to their 6.2 MW IGCC demonstration plant and has operated it for more than 4000 hours. Improvements in the gasifier refractory lining, ash extraction and cooling devices, air distribution and temperature measuring devices were incorporated to improve the reliability and performance. Coal with 30-42% ash and high calorific value in the range of 15-20 MJ/kg was used during these operations with crushed coal of 1-4 mm as well as -6 mm coal with fines. Tests were conducted at gasifier pressure of 0.3-1.0 MPa, fluidized bed temperature of 980-1050{sup o}C and at various fluidized velocities and air to steam ratios. Once through carbon conversion efficiency of 90%, cold gas efficiency of 69% and dry gas calorific value of 4.4-4.6 MJ/Nm{sup 3} were obtained. About 15% char in fly ash (with 40% ash coal) was established by TGA. Seal pot system was added for recyling fly ash from the first cyclone to enhance carbon conversion, other parameters and to reduce the char in fly ash to acceptable level. Trends and correlations were established for constituents of gas, carbon conversion efficiency, cold gas efficiency, calorific value of gas and gas yield. BHEL is currently working with a partner to install a 125 MW IGCC plant. The paper elaborates the schematic and constructional details of the PFBG, operating experience and performance. 3 refs., 9 figs.

  6. Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Anbo [Center for Photonics Technology, Blacksburgh, VA (United States); Yu, Zhihao [Center for Photonics Technology, Blacksburgh, VA (United States)

    2015-11-30

    This report summarizes technical progress on the program “Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The scope of work entails analyses of traveling grating generation technologies in an optical fiber, as well as the interrogation of the gratings to infer a distributed temperature along the fiber, for the purpose of developing a real-time refractory health condition monitoring technology for coal gasifiers. During the project period, which is from 2011-2015, three different sensing principles were studied, including four-wave mixing (FWM), coherent optical time-domain reflectometer (C-OTDR) and Brillouin optical time-domain analysis (BOTDA). By comparing the three methods, the BOTDA was selected for further development into a complete bench-top sensing system for the proposed high-temperature sensing application. Based on the input from Eastman Chemical, the industrial collaborator on this project, a cylindrical furnace was designed and constructed to simulate typical gasifier refractory temperature conditions in the laboratory, and verify the sensor’s capability to fully monitor refractory conditions on the back-side at temperatures up to 1000°C. In the later stages of the project, the sensing system was tested in the simulated environment for its sensing performance and high-temperature survivability. Through theoretical analyses and experimental research on the different factors affecting the sensor performance, a sensor field deployment strategy was proposed for possible future sensor field implementations.

  7. Real Time Flame Monitoring of Gasifier and Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Zelepouga, Serguei; Saveliev, Alexei

    2011-12-31

    This project is a multistage effort with the final goal to develop a practical and reliable nonintrusive gasifier injector monitor to assess burner wear and need for replacement. The project team included the National Energy Technology Laboratory (NETL), Gas Technology Institute (GTI), North Carolina State University, and ConocoPhillips. This report presents the results of the sensor development and testing initially at GTI combustion laboratory with natural gas flames, then at the Canada Energy Technology Center (CANMET), Canada in the atmospheric coal combustor as well as in the pilot scale pressurized entrained flow gasifier, and finally the sensor capabilities were demonstrated at the Pratt and Whitney Rocketdyne (PWR) Gasifier and the Wabash River Repowering plant located in West Terre Haute, IN. The initial tests demonstrated that GTI gasifier sensor technology was capable of detecting shape and rich/lean properties of natural gas air/oxygen enriched air flames. The following testing at the Vertical Combustor Research Facility (VCRF) was a logical transition step from the atmospheric natural gas flames to pressurized coal gasification environment. The results of testing with atmospheric coal flames showed that light emitted by excited OH* and CH* radicals in coal/air flames can be detected and quantified. The maximum emission intensities of OH*, CH*, and black body (char combustion) occur at different axial positions along the flame length. Therefore, the excitation rates of CH* and OH* are distinct at different stages of coal combustion and can be utilized to identify and characterize processes which occur during coal combustion such as devolatilization, char heating and burning. To accomplish the goals set for Tasks 4 and 5, GTI utilized the CANMET Pressurized Entrained Flow Gasifier (PEFG). The testing parameters of the PEFG were selected to simulate optimum gasifier operation as well as gasifier conditions normally resulting from improper operation or

  8. TVA coal-gasification commercial demonstration plant project. Volume 5. Plant based on Koppers-Totzek gasifier. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This volume presents a technical description of a coal gasification plant, based on Koppers-Totzek gasifiers, producing a medium Btu fuel gas product. Foster Wheeler carried out a conceptual design and cost estimate of a nominal 20,000 TPSD plant based on TVA design criteria and information supplied by Krupp-Koppers concerning the Koppers-Totzek coal gasification process. Technical description of the design is given in this volume.

  9. Review of a Proposed Quarterly Coal Publication

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This Review of a Proposed Quartery Coal Publication contains findings and recommendations regarding the content of a new summary Energy Information Administration (EIA) coal and coke publication entitled The Quarterly Coal Review (QCR). It is divided into five sections: results of interviews with selected EIA data users; identification of major functions of the coal and coke industries; analysis of coal and coke data collection activities; evaluation of issues conerning data presentation including recommendations for the content of the proposed QCR; and comparison of the proposed QCR with other EIA publications. Major findings and recommendations are as follows: (1) User interviews indicate a definite need for a compehensive publication that would support analyses and examine economic, supply and demand trends in the coal industry; (2) the organization of the publication should reflect the natural order of activities of the coal and coke industries. Based on an analysis of the industries, these functions are: production, stocks, imports, exports, distribution, and consumption; (3) current EIA coal and coke surveys collect sufficient data to provide a summary of the coal and coke industries on a quarterly basis; (4) coal and coke data should be presented separately. Coke data could be presented as an appendix; (5) three geographic aggregations are recommended in the QCR. These are: US total, coal producing districts, and state; (6) coal consumption data should be consolidated into four major consumer categories: electric utilities, coke plants, other industrial, and residential commercial; (7) several EIA publications could be eliminated by the proposed QCR.

  10. Quarterly coal report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-18

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended.

  11. Gasification of biomass and coal in a pressurised fluidised bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J; Jong, W de; Hein, K R.G. [Technische Univ. Delft (Netherlands)

    1998-09-01

    During a 3 year (1996-1998) multinational JOULE project, partly funded by the EU, experimental and theoretical research is being done on co-gasification of biomass (pelletised straw and Miscanthus) and coal in a pressurised fluidised bed reactor. The influence of feedstock and operating conditions on gasification characteristics has been studied using a 1.5 MW{sub th} gasifier, which has been operated at a pressure of 5 bar and temperatures up to 900 C. The project and the test rig are described and results obtained in the first part of the project are presented and analysed. (orig.)

  12. CANMET Gasifier Liner Coupon Material Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Mark Fitzsimmons; Dave Grimmett; Bryan McEnerney

    2007-01-31

    This report provides detailed test results consisting of test data and post-test inspections from Task 1 ''Cooled Liner Coupon Development and Test'' of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources--Advanced Gasification Systems Development (AGSD)''. The primary objective of this development and test program is to verify that ceramic matrix composite (CMC) liner materials planned for use in an advanced gasifier pilot plant will successfully withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) designed and fabricated the cooled liner test assembly article that was tested in a slagging gasifier at CANMET Energy Technology Center (CETC-O) in Ottawa, Ontario, Canada. The test program conducted in 2006 met the objective of operating the cooled liner test article at slagging conditions in a small scale coal gasifier at CETC-O for over the planned 100 hours. The test hardware was exposed to at least 30 high temperature excursions (including start-up and shut-down cycles) during the test program. The results of the testing has provided valuable information on gasifier startup and required cooling controls in steady state operation of future advanced gasifiers using similar liners. The test program also provided a significant amount of information in the areas of CMC materials and processing for improved capability in a gasifier environment and insight into CMC liner fabrication that will be essential for near-term advanced gasifier projects.

  13. Dry piston coal feeder

    Science.gov (United States)

    Hathaway, Thomas J.; Bell, Jr., Harold S.

    1979-01-01

    This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

  14. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

  15. Mathematical modeling of a fluidized bed gasifier for steam gasification of coal using high-temperature nuclear reactor heat

    International Nuclear Information System (INIS)

    Kubiak, H.; vanHeek, K.-H.; Juntgen, H.

    1986-01-01

    Coal gasification is a well-known technique and has already been developed and used since a long time. In the last few years, forced by the energy situation, new efforts have been made to improve known processes and to start new developments. Conventional gasification processes use coal not only as feedstock to be gasified but also for supply of energy for reaction heat, steam production, and other purposes. With a nuclear high temperature reactor (HTR) as a source for process heat, it is possible to transform the whole of the feed coal into gas. This concept offers advantages over existing gasification processes: saving of coal, as more gas can be produced from coal; less emission of pollutants, as the HTR is used for the production of steam and electricity instead of a coal-fired boiler; and lower production costs for the gas

  16. Techno-economic analysis of lignite fuelled IGCC with CO{sub 2} capture. Comparing fluidized bed and entrained flow gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guangjian; Wu, Zhen; Zhang, Haiying [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering

    2013-07-01

    Integrated coal gasification combined cycle (IGCC) plants with pre-combustion capture of CO{sub 2} represent one of the most promising options for generating low-cost decarbonized power using bituminous coals. This work systematically quantify the effect of coal rank on the efficiency and economics of IGCC systems with CO2 capture and storage (CCS), with a special focus on comparison of systems using fluidized-bed gasifier (U-GAS) and entrained flow gasifier (Shell). It was found that the Shell IGCCs are little affect by low rank coal after pre-drying in terms of thermal efficiency and the levelized cost of electricity (LCOE) is only increase by 2-6% for lignite cases with and without CCS compared with bituminous coal cases. The specific CO{sub 2} emissions of U-GAS gasifier based lignite fuelled IGCC with CCS is 198 g/kWhe, almost two times of shell gasifier cases, mainly due to lower carbon conversion in the gasifier and the higher methane in the raw gas of gasifier. However, the total capital cost and COE of U-Gas IGCCs are 15-20% less than that of Shell IGCCs because of lower capital cost of gasifier, coal drying units and air separate units per kWe.

  17. Down-flow moving-bed gasifier with catalyst recycle

    Science.gov (United States)

    Halow, John S.

    1999-01-01

    The gasification of coal and other carbonaceous materials by an endothermic gasification reaction is achieved in the presence of a catalyst in a down-flow, moving-bed gasifier. Catalyst is removed along with ash from the gasifier and is then sufficiently heated in a riser/burner by the combustion of residual carbon in the ash to volatilize the catalyst. This volatilized catalyst is returned to the gasifier where it uniformly contacts and condenses on the carbonaceous material. Also, the hot gaseous combustion products resulting from the combustion of the carbon in the ash along with excess air are introduced into the gasifier for providing heat energy used in the endothermic reaction.

  18. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-03-31

    Proposed activities for quarter 7 (12/15/01-3/14/2002): (1) Incorporation of moisture model into PCGC2 code. Parametric study of moisture effects on flame structure and pollutants emissions in cofiring of coal and Liter Biomass (LB) (Task 4); (2) Use the ash tracer method to determine the combustion efficiency and comparison it to results from gas analysis (Task 2); (3) Effect of swirl on combustion performance (Task 2); (4) Completion of the proposed modifications to the gasifier setup (Task 3); (5) Calibration of the Gas Chromatograph (GC) used for measuring the product gas species (Task 3); and (6) To obtain temperature profiles for different fuels under different operating conditions in the fixed bed gasifier (Task 3).

  19. Quarterly coal report, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-26

    In the second quarter of 1993, the United States produced 235 million short tons of coal. This brought the total for the first half of 1993 to 477 million short tons, a decrease of 4 percent (21 million short tons) from the amount produced during the first half of 1992. The decrease was due to a 26-million-short-ton decline in production east of the Mississippi River, which was partially offset by a 5-million-short-ton increase in coal production west of the Mississippi River. Compared with the first 6 months of 1992, all States east of the Mississippi River had lower coal production levels, led by West Virginia and Illinois, which produced 9 million short tons and 7 million short tons less coal, respectively. The principal reasons for the drop in coal output for the first 6 months of 1993 compared to a year earlier were: a decrease in demand for US coal in foreign markets, particularly the steam coal markets; a draw-down of electric utility coal stocks to meet the increase in demand for coal-fired electricity generation; and a lower producer/distributor stock build-up. Distribution of US coal in the first half of 1993 was 15 million short tons lower than in the first half of 1992, with 13 million short tons less distributed to overseas markets and 2 million short tons less distributed to domestic markets.

  20. Commercial gasifier for IGCC applications study report

    Energy Technology Data Exchange (ETDEWEB)

    Notestein, J.E.

    1990-06-01

    This was a scoping-level study to identify and characterize the design features of fixed-bed gasifiers appearing most important for a gasifier that was to be (1) potentially commercially attractive, and (2) specifically intended for us in integrated coal gasification/combined-cycle (IGCC) applications. It also performed comparative analyses on the impact or value of these design features and on performance characteristics options of the whole IGCC system since cost, efficiency, environmental traits, and operability -- on a system basis -- are what is really important. The study also reviewed and evaluated existing gasifier designs, produced a conceptual-level gasifier design, and generated a moderately advanced system configuration that was utilized as the reference framework for the comparative analyses. In addition, technical issues and knowledge gaps were defined. 70 figs., 31 tabs.

  1. A numerical model for chemical reaction on slag layer surface and slag layer behavior in entrained-flow gasifier

    Directory of Open Access Journals (Sweden)

    Liu Sheng

    2013-01-01

    Full Text Available The paper concerns with slag layer accumulation, chemical reaction on slag layer surface, and slag layer flow, heat and mass transfer on the wall of entrained-flow coal gasifier. A slag layer model is developed to simulate slag layer behaviors in the coal gasifier. This 3-D model can predict temperature, slag particle disposition rate, disposition particle composition, and syngas distribution in the gasifier hearth. The model is used to evaluate the effects of O2/coal ratio on slag layer behaviors.

  2. Low-rank coal research. Quarterly report, January--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

  3. Effect of hydrogen chloride on the corrosion of an FeCrAlY alloy in simulated coal gasifier atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Coley, K.S.; Rhoades-Brown, J.E.; Blick, K.

    1989-03-01

    An iron chromium aluminium yttrium steel was exposed to a simulated coal gasifier atmosphere containing 1000 ppm and 2200 ppm hydrogen chloride at 450/sup 0/C. Increasing hydrogen chloride content was found to accelerate reaction rates, and significantly alter the microstructure and composition of the corrosion product. Tentative explanations for these results, involving vapour phase transport of metal chlorides are proposed.

  4. Numerical investigation of slag formation in an entrained-flow gasifier

    Science.gov (United States)

    Zageris, G.; Geza, V.; Jakovics, A.

    2018-05-01

    A CFD mathematical model for an entrained-flow gasifier is constructed – the model of an actual gasifier is rendered in 3D and appropriately meshed. Then, the turbulent gas flow in the gasifier is modeled with the realizable k-ε approach, taking devolatilization, combustion and coal gasification in account. Various such simulations are conducted, obtaining results for different air inlet positions and by tracking particles of varying sizes undergoing devolatilization and gasification. The model identifies potential problematic zones where most particles collide with the gasifier walls, indicating risk regions where ash deposits could most likely form. In conclusion, effects on the formation of an ash layer of air inlet positioning and particle size allowed in the main gasifier tank are discussed, and viable solutions such as radial inlet positioning for decreasing the amount of undesirable deposits are proposed. We also conclude that the particular chemical reactions that take place inside the gasifier play a significant role in determining how slagging occurs inside a gasifier.

  5. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  6. Investigation of flow behaviour of coat/ash particles in an advanced pressurised fluidized bed gasifier (APFBG) using radiotracer technique

    International Nuclear Information System (INIS)

    Pant, H.J.; Sharma, V.K.; Gursharan Singh; Vidhya Kamadu, M.; Prakash, S.G.; Krishanamoorthy, S.; Ramani, N.V.S.; Sonde, R.R.

    2004-01-01

    Knowledge of Residence Time Distribution (RTD), Mean Residence Time (MRT) and degree of backmixing of solid phase is important for efficient operation of the coal gasifier. Radiotracer technique was used for measure RTD of coal/ash particles in a pilot-scale gasifier and obtain the values of MRT and backmixing. Lanthanum 140 labeled coal (100 g) was used as a tracer. The tracer was instantaneously injected into the coal feed line and monitored at ash and gas outlets of the gasifier using collimated scintillation detectors. The measured RTD data were treated and MRTs of coal/ash particles were determined. The treated data were simulated using tank-in-series model. The simulation RTD data indicated good degree of mixing with minor bypassing/short-circulating of coal particles. The results of the investigation were found useful for scale-up of the gasification process. (author)

  7. Coal waste slurries as a fuel for integrated gasification combined cycle plants

    Directory of Open Access Journals (Sweden)

    Lutynski Marcin A.

    2016-01-01

    Full Text Available The article summarizes recent development in integrated gasification combined cycle technology and lists existing and planned IGCC plants. A brief outlook on the IGCC gasification technology is given with focus on entrained-flow gasifiers where the low-quality coal waste slurry fuel can be used. Desired properties of coal and ash for entrained-flow gasifiers are listed. The coal waste slurries, which were deposited at impoundments in Upper Silesian Coal Basin, were considered as a direct feed for such gasifiers. The average ash content, moisture content and lower heating value were analysed and presented as an average values. Entrained-flow commercial gasifiers can be considered as suitable for the coal slurry feed, however the ash content of coal slurries deposited in impoundments is too high for the direct use as the feed for the gasifiers. The moisture content of slurries calculated on as received basis meets the requirements of entrained-flow slurry feed gasifiers. The content of fines is relatively high which allow to use the slurries in entrained-flow gasifiers.

  8. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2017

    International Nuclear Information System (INIS)

    2017-01-01

    The paper reports on the coal mining in the Federal Republic of Germany in the 1st quarter of 2017. Statistical data are presented for mining, exports and imports of hard coal and lignite and for employees.

  9. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The paper reports on the coal mining in the Federal Republic of Germany in the 1st quarter of 2015. Statistical data are presented for mining, exports and imports of hard coal and lignite and for employees.

  10. Combined compressed air storage-low BTU coal gasification power plant

    Science.gov (United States)

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  11. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2010

    International Nuclear Information System (INIS)

    2010-01-01

    The report on coal mining situation in the Federal Republic of Germany in the 1st quarter 2010 contains the statistical data concerning the following issues: (i) black coal mining: part I: production, resources, accomplishments; employees, part II: marketing and foreign trade; (ii) brown coal mining: part I: production, resources, accomplishments; employees, part II: marketing and foreign trade.

  12. Low-Chrome/Chrome Free Refractories for Slagging Gasifiers

    International Nuclear Information System (INIS)

    Bennett, J.P.; Kwong, K.-S.; Powell, C.P.; Thomas, H.; Petty, A.V. Jr.

    2007-01-01

    Gasifiers are containment vessels used to react carbon-containing materials with oxygen and water, producing syngas (CO and H2) that is used in chemical and power production. It is also a potential source of H2 in a future hydrogen economy. Air cooled slagging gasifiers are one type of gasifier, operating at temperatures from 1275-1575 C and at pressures of 400 psi or higher. They typically use coal or petroleum coke as the carbon source, materials which contain ash impurities that liquefy at the gasification temperatures, producing liquid slag in quantities of 100 or more tons/day, depending on the carbon fed rate and the percent ash present in the feedstock. The molten slag is corrosive to refractory linings, causing chemical dissolution and spalling. The refractory lining is composed of chrome oxide, alumina, and zirconia; and is replaced every 3-24 months. Gasifier users would like greater on-line availability and reliability of gasifier liners, something that has impacted gasifier acceptance by industry. Research is underway at NETL to improve refractory service life and to develop a no-chrome or low-chrome oxide alternative refractory liner. Over 250 samples of no- or low-chrome oxide compositions have been evaluated for slag interactions by cup testing; with potential candidates for further studies including those with ZrO2, Al2O3, and MgO materials. The development of improved liner materials is necessary if technologies such as IGCC and DOE's Near Zero Emissions Advanced Fossil Fuel Power Plant are to be successful and move forward in the marketplace

  13. Pressurised fluidised-bed gasification experiments with biomass, peat and coal at VTT in 1991-1994. Gasification of Danish wheat, straw and coal

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E; Laatikainen-Luntama, J; Staahlberg, P; Moilanen, A [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    Fluidised-bed air gasification of three different Danish straw feedstocks and Colombian bituminous coal was studied in the PDU-scale test facilities of VTT. The test programme was divided into two different modes of operation. First, the usability of straw as the only feedstock was investigated by operating the gasifier at relatively low temperature normally used in biomass gasifiers. In this operation mode the main aim was to find out the limits for gasification temperatures, set by the sintering behaviour of the straw. Secondly, the use of straw as an additional feedstock in a fluidised-bed coal gasifier was examined by operating the gasifier at about 1 000 deg C with different ratings of straw and coal feeding. The gasifier was operated at 5 bar pressure and at 80 990 deg C. The product gas was cleaned by ceramic candle filters operated at 465-540 deg C. Concentrations of tars, nitrogen com- pounds, sulphur gases, vapour-phase alkali metals as well as chlorine were determined in different operating conditions. (12 refs.)

  14. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Bakker Wate

    2004-01-01

    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  15. Slagging gasifier refractories. A new pathway to longer refractory life

    Energy Technology Data Exchange (ETDEWEB)

    Schnake, Mark [Harbinson-Walker Refractories Company, Mexico, MO (United States)

    2013-07-01

    Solid fuel slagging gasification to convert coal or petroleum coke feedstocks into syngas has rapidly evolved over the last 25 years. The gasifier is a high temperature, high pressure reaction chamber. Operating temperatures are between 1250 and 1575 C. Pressures will be between 20.4 and 68 atm. Syngas has been typically used for chemical feedstocks, fuel for power plants, or for steam and hydrogen generation in other industrial applications. Ash which comes from the solid fuel during gasification has many impurities. It melts during the gasifier reactor operation forming a liquid that penetrates the refractory lining. Given time, the refractory will wear away from thermal spalling, structural spalling, or overheating of the refractory. In some cases, all three wear mechanisms are seen in the same gasifier lining. Industry users have identified refractory life as one major limiting factor in worldwide use of this technology. Users have stated if the refractory liner can increase on-line availability of the gasifier operation, more industry acceptance of this technology is possible. Harbison-Walker Refractories Company will review destructive factors affecting lining life and discuss new refractory materials that have dramatically increased gasifier lining life and reliability. New refractory materials will be presented and supported by field trial results and post mortem analysis.

  16. Second stage gasifier in staged gasification and integrated process

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang

    2015-10-06

    A second stage gasification unit in a staged gasification integrated process flow scheme and operating methods are disclosed to gasify a wide range of low reactivity fuels. The inclusion of second stage gasification unit operating at high temperatures closer to ash fusion temperatures in the bed provides sufficient flexibility in unit configurations, operating conditions and methods to achieve an overall carbon conversion of over 95% for low reactivity materials such as bituminous and anthracite coals, petroleum residues and coke. The second stage gasification unit includes a stationary fluidized bed gasifier operating with a sufficiently turbulent bed of predefined inert bed material with lean char carbon content. The second stage gasifier fluidized bed is operated at relatively high temperatures up to 1400.degree. C. Steam and oxidant mixture can be injected to further increase the freeboard region operating temperature in the range of approximately from 50 to 100.degree. C. above the bed temperature.

  17. An update on field test results for an engineered refractory for slagging gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, O.N.; Alman, D.E.; Jablonski, P.D.; Hawk, J.A.

    2006-05-01

    The widespread commercial adaptation of slagging gasifier technology to produce power, fuel, and/or chemicals from coal will depend in large measure on the technology’s ability to prove itself both economic and reliable. Improvements in gasifier reliability, availability, and maintainability will in part depend on the development of improved performance structural materials with longer service life in this application. Current generation refractory materials used to line the air-cooled, slagging gasifier vessel, and contain the gasification reaction, often last no more than three to 18 months in commercial applications. The downtime required for tear-out and replacement of these critical materials contributes to gasifier on-line availabilities that fall short of targeted goals. In this talk we will discuss the development of an improved refractory material engineered by the NETL for longer service life in this application, and provide an update on recent field test results.

  18. Molecular biological enhancement of coal biodesulfurization. Seventh quarter report, May--July 1990

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J.; Bielaga, B.A.

    1990-07-01

    The overall objective of this project is to sue molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. The work planned for the current quarter (May 1990 to July 1990) includes the following activities: (1) Construct a cloning vector that can be used in Rhodococcus rhodochrous IGTS8 from the small cryptic plasmid found in Rhodococcus rhodochrous ATCC 190607; (2) Develop techniques for the genetic analysis of IGTS8; (3) Continue biochemical experiments, particularly those that may allow the identification of desulfurization-related enzymes; (4) Continue experiments with coal to determine the kinetics of organic sulfur removal.

  19. Gasification Studies Task 4 Topical Report, Utah Clean Coal Program

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States); Fletcher, Thomas [Univ. of Utah, Salt Lake City, UT (United States); Pugmire, Ronald [Univ. of Utah, Salt Lake City, UT (United States); Smith, Philip [Univ. of Utah, Salt Lake City, UT (United States); Sutherland, James [Univ. of Utah, Salt Lake City, UT (United States); Thornock, Jeremy [Univ. of Utah, Salt Lake City, UT (United States); Hunsacker, Isaac [Univ. of Utah, Salt Lake City, UT (United States); Li, Suhui [Univ. of Utah, Salt Lake City, UT (United States); Kelly, Kerry [Univ. of Utah, Salt Lake City, UT (United States); Puntai, Naveen [Univ. of Utah, Salt Lake City, UT (United States); Reid, Charles [Univ. of Utah, Salt Lake City, UT (United States); Schurtz, Randy [Univ. of Utah, Salt Lake City, UT (United States)

    2011-10-01

    A key objective of the Task 4 activities has been to develop simulation tools to support development, troubleshooting and optimization of pressurized entrained-flow coal gasifiers. The overall gasifier models (Subtask 4.1) combine submodels for fluid flow (Subtask 4.2) and heat transfer (Subtask 4.3) with fundamental understanding of the chemical (Subtask 4.4) and physical (Subtask 4.5) processes that take place as coal particles are converted to synthesis gas and slag. However, it is important to be able to compare predictions from the models against data obtained from actual operating coal gasifiers, and Subtask 4.6 aims to provide an accessible, non-proprietary system, which can be operated over a wide range of conditions to provide well-characterized data for model validation.

  20. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

    2011-09-30

    The U.S. Department of Energy‘s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE‘s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and

  1. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn [General Electric Global Research, Niskayuna, NY (United States); Subramanian, Ramanathan [General Electric Global Research, Niskayuna, NY (United States); Rizeq, George [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); McDermott, John [General Electric Global Research, Niskayuna, NY (United States); Eiteneer, Boris [General Electric Global Research, Niskayuna, NY (United States); Ladd, David [General Electric Global Research, Niskayuna, NY (United States); Vazquez, Arturo [General Electric Global Research, Niskayuna, NY (United States); Anderson, Denise [General Electric Global Research, Niskayuna, NY (United States); Bates, Noel [General Electric Global Research, Niskayuna, NY (United States)

    2011-12-11

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE's bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation

  2. Developments in modelling and simulation of coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-02-01

    In recent years, the considerable increase in the price of crude oil and natural gas and concerns about their security of supply focused attention on whether fuel for power production and feedstocks for the chemical industry could be obtained from the gasification of coal. The need to reduce greenhouse gas emissions has enhanced the prospects of power generation from Integrated Gasification Combined Cycle (IGCC) plant. However, the higher capital costs and concerns about reliability and availability of IGCC plant have limited their market penetration. The coal gasifier has been a significant source of operational issues. A thorough understanding of the processes occurring in a gasifier is essential both for addressing existing causes of gasifier unavailability and improving designs for the future. Many complex processes take place in a gasifier and developing models of gasifiers results in a greater insight into these processes. Computational models in conjunction with plant data can be used to evaluate gasifier operation, solve operational problems, probe new designs and provide performance data for commercial scale-up. This report has surveyed models which are currently available for modelling gasifiers. The report contains a brief description of the three types of gasifiers which are most commonly used. The models available for each type of gasifier are considered. Insight gained by modelling has advanced the design of gasifiers and can improve gasifier performance. In some cases, the results have been compared with plant data and it has been possible to choose model inputs to give reasonable fit with the measured data. However, there are fewer examples where modelling has directly solved operational problems.

  3. Coal demonstration plants. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The objective of DOE's demonstration plant program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Under the DOE program, contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50% from industry and 50% from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Six of these demonstration plant projects are described and progress in the quarter is summarized. Several support and complementary projects are described (fuel feeding system development, performance testing and comparative evaluation, engineering support, coal grinding equipment development and a critical components test facility). (LTN)

  4. LLNL Underground-Coal-Gasification Project. Quarterly progress report, July-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, D.R.; Clements, W. (eds.)

    1981-11-09

    We have continued our laboratory studies of forward gasification in small blocks of coal mounted in 55-gal drums. A steam/oxygen mixture is fed into a small hole drilled longitudinally through the center of the block, the coal is ignited near the inlet and burns toward the outlet, and the product gases come off at the outlet. Various diagnostic measurements are made during the course of the burn, and afterward the coal block is split open so that the cavity can be examined. Development work continues on our mathematical model for the small coal block experiments. Preparations for the large block experiments at a coal outcrop in the Tono Basin of Washington State have required steadily increasing effort with the approach of the scheduled starting time for the experiments (Fall 1981). Also in preparation is the deep gasification experiment, Tono 1, planned for another site in the Tono Basin after the large block experiments have been completed. Wrap-up work continues on our previous gasification experiments in Wyoming. Results of the postburn core-drilling program Hoe Creek 3 are presented here. Since 1976 the Soviets have been granted four US patents on various aspects of the underground coal gasification process. These patents are described here, and techniques of special interest are noted. Finally, we include ten abstracts of pertinent LLNL reports and papers completed during the quarter.

  5. Advanced One-Dimensional Entrained-Flow Gasifier Model Considering Melting Phenomenon of Ash

    Directory of Open Access Journals (Sweden)

    Jinsu Kim

    2018-04-01

    Full Text Available A one-dimensional model is developed to represent the ash-melting phenomenon, which was not considered in the previous one-dimensional (1-D entrained-flow gasifier model. We include sensible heat of slag and the fusion heat of ash in the heat balance equation. To consider the melting of ash, we propose an algorithm that calculates the energy balance for three scenarios based on temperature. We also use the composition and the thermal properties of anorthite mineral to express ash. gPROMS for differential equations is used to solve this algorithm in a simulation; the results include coal conversion, gas composition, and temperature profile. Based on the Texaco pilot plant gasifier, we validate our model. Our results show good agreement with previous experimental data. We conclude that the sensible heat of slag and the fusion heat of ash must be included in the entrained flow gasifier model.

  6. SYSTEM ANALYSIS OF NUCLEAR-ASSISTED SYNGAS PRODUCTION FROM COAL

    International Nuclear Information System (INIS)

    E. A. Harvego; M. G. McKellar; J. E. O'Brien

    2008-01-01

    A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 66.1% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency

  7. System Analysis of Nuclear-Assisted Syngas Production from Coal

    International Nuclear Information System (INIS)

    Harvego, E.A.; McKellar, M.G.; O'Brien, J.E.

    2009-01-01

    A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

  8. Dynamic modeling of Shell entrained flow gasifier in an integrated gasification combined cycle process

    International Nuclear Information System (INIS)

    Lee, Hyeon-Hui; Lee, Jae-Chul; Joo, Yong-Jin; Oh, Min; Lee, Chang-Ha

    2014-01-01

    Highlights: • Detailed dynamic model for the Shell entrained flow gasifier was developed. • The model included sub-models of reactor, membrane wall, gas quench and slag flow. • The dynamics of each zone including membrane wall in the gasifier were analyzed. • Cold gas efficiency (81.82%), gas fraction and temperature agreed with Shell data. • The model could be used as part of the overall IGCC simulation. - Abstract: The Shell coal gasification system is a single-stage, up-flow, oxygen-blown gasifier which utilizes dry pulverized coal with an entrained flow mechanism. Moreover, it has a membrane wall structure and operates in the slagging mode. This work provides a detailed dynamic model of the 300 MW Shell gasifier developed for use as part of an overall IGCC (integrated gasification combined cycle) process simulation. The model consists of several sub-models, such as a volatilization zone, reaction zone, quench zone, slag zone, and membrane wall zone, including heat transfers between the wall layers and steam generation. The dynamic results were illustrated and the validation of the gasifier model was confirmed by comparing the results in the steady state with the reference data. The product gases (H 2 and CO) began to come out from the exit of the reaction zone within 0.5 s, and nucleate boiling heat transfer was dominant in the water zone of the membrane wall due to high heat fluxes. The steady state of the process was reached at nearly t = 500 s, and our simulation data for the steady state, such as the temperature and composition of the syngas, the cold gas efficiency (81.82%), and carbon conversion (near 1.0) were in good agreement with the reference data

  9. Gasifier feed: Tailor-made from Illinois coals

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlinger, H.P. III.

    1991-01-01

    The purpose of this research is to develop a coal slurry from waste streams using Illinois coal that is ideally suited for a gasification feed. The principle items to be studied are (1) methods of concentrating pyrite and decreasing other ash forming minerals into a high grade gasification feed using froth flotation and gravity separation techniques; (2) chemical and particle size analyses of coal slurries; (3) determination of how that slurry can be densified and to what degree of densification is optimum from the pumpability and combustibility analyses; and (4) reactivity studies.

  10. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Zamansky; Vitali Lissianski; Pete Maly; Richard Koppang

    2002-09-10

    This project develops Fuel-Flexible Reburning (FFR) technology that is an improved version of conventional reburning. In FFR solid fuel is partially gasified before injection into the reburning zone of a boiler. Partial gasification of the solid fuel improves efficiency of NO{sub x} reduction and decreases LOI by increasing fuel reactivity. Objectives of this project were to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized LOI and move the FFR technology to the demonstration and commercialization stage. All project objectives and technical performance goals have been met, and competitive advantages of FFR have been demonstrated. The work included a combination of experimental and modeling studies designed to identify optimum process conditions, confirm the process mechanism and to estimate cost effectiveness of the FFR technology. Experimental results demonstrated that partial gasification of a solid fuel prior to injection into the reburning zone improved the efficiency of NO{sub x} reduction and decreased LOI. Several coals with different volatiles content were tested. Testing suggested that incremental increase in the efficiency of NO{sub x} reduction due to coal gasification was more significant for coals with low volatiles content. Up to 14% increase in the efficiency of NO{sub x} reduction in comparison with basic reburning was achieved with coal gasification. Tests also demonstrated that FFR improved efficiency of NO{sub x} reduction for renewable fuels with high fuel-N content. Modeling efforts focused on the development of the model describing reburning with gaseous gasification products. Modeling predicted that the composition of coal gasification products depended on temperature. Comparison of experimental results and modeling predictions suggested that the heterogeneous NO{sub x} reduction on the surface of char played important role. Economic analysis confirmed

  11. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    International Nuclear Information System (INIS)

    Vladimir Zamansky; Vitali Lissianski; Pete Maly; Richard Koppang

    2002-01-01

    This project develops Fuel-Flexible Reburning (FFR) technology that is an improved version of conventional reburning. In FFR solid fuel is partially gasified before injection into the reburning zone of a boiler. Partial gasification of the solid fuel improves efficiency of NO x reduction and decreases LOI by increasing fuel reactivity. Objectives of this project were to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized LOI and move the FFR technology to the demonstration and commercialization stage. All project objectives and technical performance goals have been met, and competitive advantages of FFR have been demonstrated. The work included a combination of experimental and modeling studies designed to identify optimum process conditions, confirm the process mechanism and to estimate cost effectiveness of the FFR technology. Experimental results demonstrated that partial gasification of a solid fuel prior to injection into the reburning zone improved the efficiency of NO x reduction and decreased LOI. Several coals with different volatiles content were tested. Testing suggested that incremental increase in the efficiency of NO x reduction due to coal gasification was more significant for coals with low volatiles content. Up to 14% increase in the efficiency of NO x reduction in comparison with basic reburning was achieved with coal gasification. Tests also demonstrated that FFR improved efficiency of NO x reduction for renewable fuels with high fuel-N content. Modeling efforts focused on the development of the model describing reburning with gaseous gasification products. Modeling predicted that the composition of coal gasification products depended on temperature. Comparison of experimental results and modeling predictions suggested that the heterogeneous NO x reduction on the surface of char played important role. Economic analysis confirmed economic benefits of the FFR

  12. Characteristics of Malaysian coals with their pyrolysis and gasification behaviour

    International Nuclear Information System (INIS)

    Nor Fadzilah Othman; Mohd Hariffin Bosrooh; Kamsani Abdul Majid

    2010-01-01

    This study was conducted since comprehensive study on the gasification behaviour of Malaysian coals is still lacking. Coals were characterised using heating value determination, proximate analysis, ultimate analysis and ash analysis. Pyrolysis process was investigated using thermogravimetric analyser. While, atmospheric bubbling fluidized bed gasifier was used to investigate the gasification behaviour. Three Malaysian coals, Merit Pila, Mukah Balingian, Silantek; and Australian coal, Hunter Valley coals were used in this study. Thermal degradation of four coal samples were performed, which involved weight loss profile and derivative thermogravimetric (DTG) curves. The kinetic parameters, such as maximum reactivity value, R max , Activation Energy, E a and Arrhenius constant, ln R o for each coal were determined using Arrhenius Equation. Merit Pila coal shows the highest maximum reactivity among other Malaysian coals. E a is the highest for Merit Pila coal (166.81kJmol -1 ) followed with Mukah Balingian (101.15 kJmol -1 ), Hunter Valley (96.45 kJmol -1 ) and Silantek (75.23 kJmol -1 ) coals. This finding indicates direct correlation of lower rank coal with higher E a . Merit Pila coal was studied in detail using atmospheric bubbling fluidized bed gasifier. Different variables such as equivalence ratio (ER) and gasifying agents were used. The highest H 2 proportion (38.3 mol.%) in the producer gas was reached at 715 degree Celsius and ER=0.277 where the maximization of LHV pg (5.56 MJ/Nm 3 ) was also detected. ER and addition of steam had shown significant contributions to the producer gas compositions and LHV pg . (author)

  13. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 3, Appendix B: NO{sub x} and alkali vapor control strategies: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

  14. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report Number 8, 1 July, 1993--30 September, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    Task 1, the preparation of catalyst materials, is proceeding actively. At WVU, catalysts based on Mo are being prepared using a variety of approaches to alter the oxidation state and environment of the Mo. At UCC and P, copper-based zinc chromite spinel catalysts will be prepared and tested. The modeling of the alcohol-synthesis reaction in a membrane reactor is proceeding actively. Under standard conditions, pressure drop in the membrane reactor has been shown to be negligible. In Task 2, base case designs had previously been completed with a Texaco gasifier. Now, similar designs have been completed using the Shell gasifier. A comparison of the payback periods or production cost of these plants shows significant differences among the base cases. However, a natural gas only design, prepared for comparison purposes, gives a lower payback period or production cost. Since the alcohol synthesis portion of the above processes is the same, the best way to make coal-derived higher alcohols more attractive economically than natural gas-derived higher alcohols is by making coal-derived syngas less expensive than natural gas-derived syngas. The maximum economically feasible capacity for a higher alcohol plant from coal-derived syngas appears to be 32 MM bbl/yr. This is based on consideration of regional coal supply in the eastern US, coal transportation, and regional product demand. The benefits of economics of scale are illustrated for the base case designs. A value for higher alcohol blends has been determined by appropriate combination of RVP, octane number, and oxygen content, using MTBE as a reference. This analysis suggests that the high RVP of methanol in combination with its higher water solubility make higher alcohols more valuable than methanol.

  15. The future of integrated coal gasification combined cycle power plants

    International Nuclear Information System (INIS)

    Mueller, R.; Termuehlen, H.

    1991-01-01

    This paper examines the future of integrated coal gasification combined cycle (IGCC) power plants as affected by various technical, economical and environmental trends in power generation. The topics of the paper include a description of natural gas-fired combined cycle power plants, IGCC plants, coal gasifier concepts, integration of gasifiers into combined cycle power plants, efficiency, environmental impacts, co-products of IGCC power plants, economics of IGCC power plants, and a review of IGCC power plant projects

  16. Gasification of coal making use of nuclear processing heat

    International Nuclear Information System (INIS)

    Schilling, H.D.; Bonn, B.; Krauss, U.

    1981-01-01

    In the chapter 'Gasification of coal making use of nuclear processing heat', the steam gasification of brown coal and bituminous coal, the hydrogenating gasification of brown coal including nuclear process heat either by steam cracking methane in the steam reformer or by preheating the gasifying agent, as well as the hydrogenating gasification of bituminous coal are described. (HS) [de

  17. Electrofluid gasification of coal with nuclear energy

    International Nuclear Information System (INIS)

    Pulsifer, A.H.; Wheelock, T.D.

    1978-01-01

    The gasification of coal by reaction with steam requires addition of large amounts of energy. This energy can be supplied by a high-temperature nuclear reactor which is coupled to a fluidized bed gasifier either thermally or electrically via an electrofluid gasifier. A comparison of the economics of supplying energy by these two alternatives demonstrates that electrofluid gasification in combination with a high-temperature nuclear reactor may in some circumstances be economically attractive. In addition, a review of recent experiments in small-scale electrofluid gasifiers indicates that this method of gasification is technically feasible. (Auth.)

  18. Electrofluid gasification of coal with nuclear energy

    International Nuclear Information System (INIS)

    Pulsifer, A.H.; Wheelock, T.D.

    1978-01-01

    The gasification of coal by reaction with steam requires the addition of large amounts of energy. This energy can be supplied by a high-temperature nuclear reactor which is coupled to a fluidized bed gasifier either thermally or electrically via an electrofluid gasifier. A comparison of the economics of supplying energy by these two alternatives demonstrates that electrofluid gasification in combination with a high-temperature nuclear reactor may in some circumstances be economically attractive. In addition, a review of recent experiments in small-scale electrofluid gasifiers indicates that this method of gasification is technically feasible

  19. Low-rank coal research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  20. Coal demonstration plants. Quarterly report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    The objective of DOE's demonstration plant program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50% from industry and 50% from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Twenty-two projects involving demonstration plants or support projects for such plants are reviewed, including a summary for each of progress in the quarter. (LTN)

  1. Lignite chemical conversion in an indirect heat rotary kiln gasifier

    Directory of Open Access Journals (Sweden)

    Hatzilyberis Kostas S.

    2006-01-01

    Full Text Available The results on the gasification of Greek lignite using two indirect heat (allothermal pilot rotary kiln gasifiers are reported in the present work. The development of this new reactor-gasifier concept intended for solid fuels chemical conversion exploits data and experience gained from the following two pilot plants. The first unit A (about 100 kg/h raw lignite demonstrated the production of a medium heating value gas (12-13 MJ/Nm3 with quite high DAF (dry ash free coal conversions, in an indirect heat rotary gasifier under mild temperature and pressure conditions. The second unit B is a small pilot size unit (about 10 kg/h raw lignite comprises an electrically heated rotary kiln, is an operation flexible and exhibits effective phase mixing and enhanced heat transfer characteristics. Greek lignite pyrolysis and gasification data were produced from experiments performed with pilot plant B and the results are compared with those of a theoretical model. The model assumes a scheme of three consecutive-partly parallel processes (i. e. drying, pyrolysis, and gasification and predicts DAF lignite conversion and gas composition in relatively good agreement with the pertinent experimental data typical of the rotary kiln gasifier performance. Pilot plant B is currently being employed in lime-enhanced gasification studies aiming at the production of hydrogen enriched synthesis gas. Presented herein are two typical gas compositions obtain from lignite gasification runs in the presence or not of lime. .

  2. Thermochemical Equilibrium Model of Synthetic Natural Gas Production from Coal Gasification Using Aspen Plus

    Directory of Open Access Journals (Sweden)

    Rolando Barrera

    2014-01-01

    Full Text Available The production of synthetic or substitute natural gas (SNG from coal is a process of interest in Colombia where the reserves-to-production ratio (R/P for natural gas is expected to be between 7 and 10 years, while the R/P for coal is forecasted to be around 90 years. In this work, the process to produce SNG by means of coal-entrained flow gasifiers is modeled under thermochemical equilibrium with the Gibbs free energy approach. The model was developed using a complete and comprehensive Aspen Plus model. Two typical technologies used in entrained flow gasifiers such as coal dry and coal slurry are modeled and simulated. Emphasis is put on interactions between the fuel feeding technology and selected energy output parameters of coal-SNG process, that is, energy efficiencies, power, and SNG quality. It was found that coal rank does not significantly affect energy indicators such as cold gas, process, and global efficiencies. However, feeding technology clearly has an effect on the process due to the gasifying agent. Simulations results are compared against available technical data with good accuracy. Thus, the proposed model is considered as a versatile and useful computational tool to study and optimize the coal to SNG process.

  3. Gas distributor for fluidized bed coal gasifier

    Science.gov (United States)

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  4. Properties and effects of remaining carbon from waste plastics gasifying on iron scale reduction.

    Science.gov (United States)

    Zhang, Chongmin; Chen, Shuwen; Miao, Xincheng; Yuan, Hao

    2011-06-01

    The carbonous activities of three kinds of carbon-bearing materials gasified from plastics were tested with coal coke as reference. The results showed that the carbonous activities of these remaining carbon-bearing materials were higher than that of coal-coke. Besides, the fractal analyses showed that the porosities of remaining carbon-bearing materials were higher than that of coal-coke. It revealed that these kinds of remaining carbon-bearing materials are conducive to improve the kinetics conditions of gas-solid phase reaction in iron scale reduction. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  5. Fluidised bed gasification of high-ash South African coals: An experimental and modelling study

    CSIR Research Space (South Africa)

    Engelbrecht, AS

    2011-11-01

    Full Text Available model (CeSFaMB). The predictive capability of the model was analysed in terms of the degree of variation between experimental and simulated results for each test. The calibrated model was used to design a 15 MW fluidised bed coal gasifier...-scale BFBG are given in Figure 1 and Table 1. Process description Coal, air, oxygen and steam are the input streams to the process which produce the output streams: gas and char (ash). Coal is fed to the gasifier by means of a screw conveyor at a...

  6. DOE Coal Gasification Multi-Test Facility: fossil fuel processing technical/professional services

    Energy Technology Data Exchange (ETDEWEB)

    Hefferan, J.K.; Lee, G.Y.; Boesch, L.P.; James, R.B.; Rode, R.R.; Walters, A.B.

    1979-07-13

    A conceptual design, including process descriptions, heat and material balances, process flow diagrams, utility requirements, schedule, capital and operating cost estimate, and alternative design considerations, is presented for the DOE Coal Gasification Multi-Test Facility (GMTF). The GMTF, an engineering scale facility, is to provide a complete plant into which different types of gasifiers and conversion/synthesis equipment can be readily integrated for testing in an operational environment at relatively low cost. The design allows for operation of several gasifiers simultaneously at a total coal throughput of 2500 tons/day; individual gasifiers operate at up to 1200 tons/day and 600 psig using air or oxygen. Ten different test gasifiers can be in place at the facility, but only three can be operated at one time. The GMTF can produce a spectrum of saleable products, including low Btu, synthesis and pipeline gases, hydrogen (for fuel cells or hydrogasification), methanol, gasoline, diesel and fuel oils, organic chemicals, and electrical power (potentially). In 1979 dollars, the base facility requires a $288 million capital investment for common-use units, $193 million for four gasification units and four synthesis units, and $305 million for six years of operation. Critical reviews of detailed vendor designs are appended for a methanol synthesis unit, three entrained flow gasifiers, a fluidized bed gasifier, and a hydrogasifier/slag-bath gasifier.

  7. Inhalation exposure and risk of polycyclic aromatic hydrocarbons (PAHs) among the rural population adopting wood gasifier stoves compared to different fuel-stove users

    Science.gov (United States)

    Lin, Nan; Chen, Yuanchen; Du, Wei; Shen, Guofeng; Zhu, Xi; Huang, Tianbo; Wang, Xilong; Cheng, Hefa; Liu, Junfeng; Xue, Chunyu; Liu, Guangqing; Zeng, Eddy Y.; Xing, Baoshan; Tao, Shu

    2016-12-01

    Polycyclic aromatica hydrocarbons (PAHs) are a group of compounds with carcinogenic potentials and residential solid fuel combustion is one major source of PAHs in most developing countries. Replacement of traditional stoves with improved ones is believed to be a practical approach to reduce pollutant emissions, however, field assessments on the performance and consequent impacts on air quality and human health after adopting improved stoves are rare. The study is the first time to quantify inhalation exposure to PAHs among the residents who adopted wood gasifier stoves. The results were compared to those still burning coals in the region and compared to exposure levels for different fuel/stove users in literature. The results showed that the PAHs exposure levels for the wood gasifier stove users were significantly lower than the values for those using traditional wood stoves reported in literature, and the daily exposure concentrations of BaPeq (Benzo[a]pyrene equivalent concentration) can be reduced by 48%-91% if traditional wood stoves were replaced by wood gasifier stoves. The corresponding Incremental Lifetime Cancer Risk (ILCR) decreased approximately four times from 1.94 × 10-4 to 5.17 × 10-5. The average concentration of the total 26 PAHs for the wood users was 1091 ± 722 ng/m3, which was comparable to 1060 ± 927 ng/m3 for those using anthracite coals, but the composition profiles were considerably different. The average BaPeq were 116 and 25.8 ng/m3 for the wood and coal users, respectively, and the corresponding ILCR of the anthracite coal users was 1.69 × 10-5, which was nearly one third of those using the wood gasifier stoves. The wood users exposed to not only high levels of high molecular weight PAHs, but relatively high fractions of particulate phase PAHs in small particles compared to the coal users, resulting in high exposure risks.

  8. Quarter 9 Mercury information clearinghouse final report

    Energy Technology Data Exchange (ETDEWEB)

    Laudal, D.L.; Miller, S.; Pflughoeft-Hassett, D.; Ralston, N.; Dunham, G.; Weber, G.

    2005-12-15

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. A total of eight reports were completed and are summarized and updated in this final CEA quarterly report. Selected topics were discussed in detail in each quarterly report. Issues related to mercury from coal-fired utilities include the general areas of measurement, control, policy, and transformations. Specific topics that have been addressed in previous quarterly reports include the following: Quarterly 1 - Sorbent Control Technologies for Mercury Control; Quarterly 2 - Mercury Measurement; Quarterly 3 - Advanced and Developmental Mercury Control Technologies; Quarterly 4 - Prerelease of Mercury from Coal Combustion By-Products; Quarterly 5 - Mercury Fundamentals; Quarterly 6 - Mercury Control Field Demonstrations; Quarterly 7 - Mercury Regulations in the United States: Federal and State; and Quarterly 8 - Commercialization Aspects of Sorbent Injection Technologies in Canada. In this last of nine quarterly reports, an update of these mercury issues is presented that includes a summary of each topic, with recent information pertinent to advances made since the quarterly reports were originally presented. In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. 86 refs., 11 figs., 8 tabs.

  9. Numerical simulation of coal gasification process using the modifying Watanabe - Otaka model.

    Energy Technology Data Exchange (ETDEWEB)

    T. Papadopoulos; M. Losurdo; H. Spliethoff

    2009-07-01

    High-pressure entrained flow coal gasification is becoming increasingly important particularly in the development of Integrated Coal Gasification Combined Cycle (IGCC) technology for the production of electricity. However, there is a lack of knowledge worldwide for the gasification process and more especially for the chemical reactions (reactions rates) that take place under high pressure and temperature. Therefore a gasifier has been designed and is being built at the Institute for Energy Systems (Lehrstuhl fuer Energisysteme - LES) at the Technische Universitaet Muenchen (TUM). This gasifier is an entrained flow gasifier and has the advantage that it can operate to very high conditions of pressure and temperature, up to 50 bar pressure and 1800{sup o}C temperature. In an ongoing project, a great variety of experiments are planned to determine chemical reactions rates at high pressure conditions. In addition to the experimental work, CFD numerical simulations of pulverized coal gasification are being performed. The aim is to use numerical investigations for preliminary assessment of the facility. The goal is to develop a gasification model suitable for high pressure and condition tailored on the experiments to be used in CFD computations to predict chemical reactions, the heat transfer and the turbulence inside the gasifier. 9 refs., 2 figs., 2 tabs.

  10. Gasifier selection, design and gasification of oil palm fronds with preheated and unheated gasifying air.

    Science.gov (United States)

    Guangul, Fiseha M; Sulaiman, Shaharin A; Ramli, Anita

    2012-12-01

    Oil palm frond biomass is abundantly available in Malaysia, but underutilized. In this study, gasifiers were evaluated based on the available literature data and downdraft gasifiers were found to be the best option for the study of oil palm fronds gasification. A downdraft gasifier was constructed with a novel height adjustment mechanism for changing the position of gasifying air and steam inlet. The oil palm fronds gasification results showed that preheating the gasifying air improved the volumetric percentage of H(2) from 8.47% to 10.53%, CO from 22.87% to 24.94%, CH(4) from 2.02% to 2.03%, and higher heating value from 4.66 to 5.31 MJ/Nm(3) of the syngas. In general, the results of the current study demonstrated that oil palm fronds can be used as an alternative energy source in the energy diversification plan of Malaysia through gasification, along with, the resulting syngas quality can be improved by preheating the gasifying air. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Fluidised bed gasification of low grade South African coals

    CSIR Research Space (South Africa)

    North, BC

    2006-09-01

    Full Text Available gasifiers. Fluidised bed Entrained flow Coal particle size 0.5 mm – 5 mm 0 – 0.5 mm Coal moisture Dry Dry/slurry Coal type Non-caking coals Any coal Ash in coal < 60% < 30% Gasification agents Air/steam/oxygen Steam/oxygen Gasification... properties important for fluidised bed gasification are: square4 Coal reactivity in atmospheres of CO2 and H2O square4 Caking index and free swelling index (FSI) square4 Ash fusion temperature (AFT) 5.1 Coal reactivity The gasifcation reactions (1...

  12. Gasification of various types of tertiary coals: A sustainability approach

    International Nuclear Information System (INIS)

    Öztürk, Murat; Özek, Nuri; Yüksel, Yunus Emre

    2012-01-01

    Highlights: ► Production energy by burning of coals including high rate of ash and sulfur is harmful to environment. ► Energy production via coal gasification instead of burning is proposed for sustainable approach. ► We calculate exergy and environmental destruction factor of gasification of some tertiary coals. ► Sustainability index, improvement potential of gasification are evaluated for exergy-based approach. - Abstract: The utilization of coal to produce a syngas via gasification processes is becoming a sustainability option because of the availability and the economic relevance of this fossil source in the present world energy scenario. Reserves of coal are abundant and more geographically spread over the world than crude oil and natural gas. This paper focuses on sustainability of the process of coal gasification; where the synthesis gas may subsequently be used for the production of electricity, fuels and chemicals. The coal gasifier unit is one of the least efficient step in the whole coal gasification process and sustainability analysis of the coal gasifier alone can substantially contribute to the efficiency improvement of this process. In order to evaluate sustainability of the coal gasification process energy efficiency, exergy based efficiency, exergy destruction factor, environmental destruction factor, sustainability index and improvement potential are proposed in this paper.

  13. Thermodynamic analysis and conceptual design for partial coal gasification air preheating coal-fired combined cycle

    Science.gov (United States)

    Xu, Yue; Wu, Yining; Deng, Shimin; Wei, Shirang

    2004-02-01

    The partial coal gasification air pre-heating coal-fired combined cycle (PGACC) is a cleaning coal power system, which integrates the coal gasification technology, circulating fluidized bed technology, and combined cycle technology. It has high efficiency and simple construction, and is a new selection of the cleaning coal power systems. A thermodynamic analysis of the PGACC is carried out. The effects of coal gasifying rate, pre-heating air temperature, and coal gas temperature on the performances of the power system are studied. In order to repower the power plant rated 100 MW by using the PGACC, a conceptual design is suggested. The computational results show that the PGACC is feasible for modernizing the old steam power plants and building the new cleaning power plants.

  14. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2016; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. 1. Vierteljahr 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-06

    The paper reports on the coal mining in the Federal Republic of Germany in the 1st quarter of 2016. Statistical data are presented for mining, exports and imports of hard coal and lignite and for employees.

  15. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2017; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. 1. Vierteljahr 2017

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-06-14

    The paper reports on the coal mining in the Federal Republic of Germany in the 1st quarter of 2017. Statistical data are presented for mining, exports and imports of hard coal and lignite and for employees.

  16. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2015; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. 1. Vierteljahr 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-07

    The paper reports on the coal mining in the Federal Republic of Germany in the 1st quarter of 2015. Statistical data are presented for mining, exports and imports of hard coal and lignite and for employees.

  17. Toxicological and chemical characterization of the process stream materials and gas combustion products of an experimental low-btu coal gasifier.

    Science.gov (United States)

    Benson, J M; Hanson, R L; Royer, R E; Clark, C R; Henderson, R F

    1984-04-01

    The process gas stream of an experimental pressurized McDowell-Wellman stirred-bed low-Btu coal gasifier, and combustion products of the clean gas were characterized as to their mutagenic properties and chemical composition. Samples of aerosol droplets condensed from the gas were obtained at selected positions along the process stream using a condenser train. Mutagenicity was assessed using the Ames Salmonella mammalian microsome mutagenicity assay (TA98, with and without rat liver S9). All materials required metabolic activation to be mutagenic. Droplets condensed from gas had a specific mutagenicity of 6.7 revertants/microgram (50,000 revertants/liter of raw gas). Methylnaphthalene, phenanthrene, chrysene, and nitrogen-containing compounds were positively identified in a highly mutagenic fraction of raw gas condensate. While gas cleanup by the humidifier-tar trap system and Venturi scrubber led to only a small reduction in specific mutagenicity of the cooled process stream material (4.1 revertants/microgram), a significant overall reduction in mutagenicity was achieved (to 2200 revertants/liter) due to a substantial reduction in the concentration of material in the gas. By the end of gas cleanup, gas condensates had no detectable mutagenic activity. Condensates of combustion product gas, which contained several polycyclic aromatic compounds, had a specific mutagenicity of 1.1 revertants/microgram (4.0 revertants/liter). Results indicate that the process stream material is potentially toxic and that care should be taken to limit exposure of workers to the condensed tars during gasifier maintenance and repair and to the aerosolized tars emitted in fugitive emissions. Health risks to the general population resulting from exposure to gas combustion products are expected to be minimal.

  18. Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Palonen, J. [Foster Wheeler Energia Oy, Varkaus (Finland). Varkaus Global New Products

    1997-12-31

    The successful experience in developing the advanced Foster Wheeler Energi Oy`s (former Ahlstroem Pyropower) Circulating Fluidized Bed combustion system subsequently led to the development of the CFB gasification technology in the early 1980s. The driving force for the developing work was the dramatic increase in oil price during the oil crises. The primary advantage of CFB gasification technology is that the it enables the substitution of expensive fuels e.g. oil or gas with cheap solid fuels. These cheap fuels are typically different types of waste woods, bark or other biofuels. In the CFB gasifier these solid fuels are converted to gaseous fuel which can be used instead of other expensive fuels. In some cases this also solves a waste disposal problem, providing a secondary economic and environmental benefit. Foster Wheeler Energia Oy has supplied four commercial scale atmospheric CFB gasifiers in the mid 80s to the pulp and paper industry with capacities from 17 to 35 MW based on fuel input. These applications utilize waste wood as feedstock and the units are still successfully operation today. Lahden Laempoevoima Oy is a Finnish power company producing power and district heat for the city of Lahti. The company is 50 % owned by the city of Lahti and 50 % by Imatran Voima Oy, which is the largest utility power company in Finland. Lahden Laempoevoima Oy operates the Kymijaervi power plant locating nearby the city of Lahti in Southern Finland. To keep the energy prices as low as possible, Lahden Laempoevoima is continuously looking for the most economical fuel sources, and simultaneously, trying to improve the environmental acceptability of the energy production. At the moment, about 300 GWh/a different type of biofuels and refuse fuels are available in the Lahti area. On an annual basis, the available amount of biofuels and refuse fuels is enough to substitute for about 15 % of the fuels burned in the main boiler equalling max 30 % of coal. The aim in this Lahden

  19. Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Palonen, J [Foster Wheeler Energia Oy, Varkaus (Finland). Varkaus Global New Products

    1998-12-31

    The successful experience in developing the advanced Foster Wheeler Energi Oy`s (former Ahlstroem Pyropower) Circulating Fluidized Bed combustion system subsequently led to the development of the CFB gasification technology in the early 1980s. The driving force for the developing work was the dramatic increase in oil price during the oil crises. The primary advantage of CFB gasification technology is that the it enables the substitution of expensive fuels e.g. oil or gas with cheap solid fuels. These cheap fuels are typically different types of waste woods, bark or other biofuels. In the CFB gasifier these solid fuels are converted to gaseous fuel which can be used instead of other expensive fuels. In some cases this also solves a waste disposal problem, providing a secondary economic and environmental benefit. Foster Wheeler Energia Oy has supplied four commercial scale atmospheric CFB gasifiers in the mid 80s to the pulp and paper industry with capacities from 17 to 35 MW based on fuel input. These applications utilize waste wood as feedstock and the units are still successfully operation today. Lahden Laempoevoima Oy is a Finnish power company producing power and district heat for the city of Lahti. The company is 50 % owned by the city of Lahti and 50 % by Imatran Voima Oy, which is the largest utility power company in Finland. Lahden Laempoevoima Oy operates the Kymijaervi power plant locating nearby the city of Lahti in Southern Finland. To keep the energy prices as low as possible, Lahden Laempoevoima is continuously looking for the most economical fuel sources, and simultaneously, trying to improve the environmental acceptability of the energy production. At the moment, about 300 GWh/a different type of biofuels and refuse fuels are available in the Lahti area. On an annual basis, the available amount of biofuels and refuse fuels is enough to substitute for about 15 % of the fuels burned in the main boiler equalling max 30 % of coal. The aim in this Lahden

  20. On a clean power generation system with the co-gasification of biomass and coal in a quadruple fluidized bed gasifier.

    Science.gov (United States)

    Yan, Linbo; He, Boshu

    2017-07-01

    A clean power generation system was built based on the steam co-gasification of biomass and coal in a quadruple fluidized bed gasifier. The chemical looping with oxygen uncoupling technology was used to supply oxygen for the calciner. The solid oxide fuel cell and the steam turbine were combined to generate power. The calcium looping and mineral carbonation were used for CO 2 capture and sequestration. The aim of this work was to study the characteristics of this system. The effects of key operation parameters on the system total energy efficiency (ŋ ten ), total exergy efficiency (ŋ tex ) and carbon sequestration rate (R cs ) were detected. The energy and exergy balance calculations were implemented and the corresponding Sankey and Grassmann diagrams were drawn. It was found that the maximum energy and exergy losses occurred in the steam turbine. The system ŋ ten and ŋ tex could be ∼50% and ∼47%, and R cs could be over unit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. From coal to biomass gasification: Comparison of thermodynamic efficiency

    International Nuclear Information System (INIS)

    Prins, Mark J.; Ptasinski, Krzysztof J.; Janssen, Frans J.J.G.

    2007-01-01

    The effect of fuel composition on the thermodynamic efficiency of gasifiers and gasification systems is studied. A chemical equilibrium model is used to describe the gasifier. It is shown that the equilibrium model presents the highest gasification efficiency that can be possibly attained for a given fuel. Gasification of fuels with varying composition of organic matter, in terms of O/C and H/C ratio as illustrated in a Van Krevelen diagram, is compared. It was found that exergy losses in gasifying wood (O/C ratio around 0.6) are larger than those for coal (O/C ratio around 0.2). At a gasification temperature of 927 deg. C, a fuel with O/C ratio below 0.4 is recommended, which corresponds to a lower heating value above 23 MJ/kg. For gasification at 1227 deg. C, a fuel with O/C ratio below 0.3 and lower heating value above 26 MJ/kg is preferred. It could thus be attractive to modify the properties of highly oxygenated biofuels prior to gasification, e.g. by separation of wood into its components and gasification of the lignin component, thermal pre-treatment, and/or mixing with coal in order to enhance the heating value of the gasifier fuel

  2. Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass

    International Nuclear Information System (INIS)

    Andersson, E.; Harvey, S.

    2007-01-01

    When gasified black liquor is used for hydrogen production, significant amounts of biomass must be imported. This paper compares two alternative options for producing hydrogen from biomass: (A) pulp-mill-integrated hydrogen production from gasified back liquor; and (B) stand-alone production of hydrogen from gasified biomass. The comparison assumes that the same amount of biomass that is imported in Alternative A is supplied to a stand-alone hydrogen production plant and that the gasified black liquor in Alternative B is used in a black liquor gasification combined cycle (BLGCC) CHP unit. The comparison is based upon equal amounts of black liquor fed to the gasifier, and identical steam and power requirements for the pulp mill. The two systems are compared on the basis of total CO 2 emission consequences, based upon different assumptions for the reference energy system that reflect different societal CO 2 emissions reduction target levels. Ambitions targets are expected to lead to a more CO 2 -lean reference energy system, in which case hydrogen production from gasified black liquor (Alternative A) is best from a CO 2 emissions' perspective, whereas with high CO 2 emissions associated with electricity production, hydrogen from gasified biomass and electricity from gasified black liquor (Alternative B) is preferable. (author)

  3. Molecular accessibility in solvent swelled coals. Quarterly report, [September--November, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1993-11-01

    This quarter, experiments were performed on the use of binary swelling solvents in molecular accessibility in coal conversion. These experiments consisted of accessibility measurements of spin probe VII (TEMPAMINE) in Toluene swelled Illinois No. 6 APCS coal. The toluene was spiked with amounts of pyridine which ranged in concentration from 500 ppm to 10%. The experiments were done in triplicate to gain information about the experimental error involved in the procedure. It was shown that oscillations occur in the concentration of spin probe retained as the amount of pyridine that is added to the swelling solvent is increased. These oscillations decrease in intensity as the concentration of pyridine in the solvent solution is increased up to 2% pyridine (0.2mLs pyridine in 10mLs toluene). From a 2% pyridine concentration to a 5% concentration, there is no significant change in the retention of spin probe VII. An increase in retention is observed when the concentration of pyridine is increased to 6% and 7% successively, followed by a large decrease at 8% and 9% pyridine. The largest changes in spin probe retention are observed for concentrations of pyridine less than 0.5%. A three fold increase in spin probe retention is observed upon the addition of 500 ppm pyridine in the toluene swelling solvent, which indicates that small amounts of a strong swelling solvent could be used to improve molecular accessibility 91% in coals swelled in an otherwise weak swelling solvent.

  4. Evaluating the costs and achievable benefits of extending technologies for uneconomical coal resources in South Africa: the case of underground coal gasification

    CSIR Research Space (South Africa)

    Zieleniewski, M

    2008-11-01

    Full Text Available -3433. Shoko, E., McLellan, B., Dicks, A.L., Diniz da Costa, J.C., 2006. Hydrogen from coal: Production and utilisation technologies. International Journal of Coal Geology, 65(3-4): 213-222. Simeons, C., 1978. Coal: Its role in tomorrow’s technol- ogy... the consideration of other, alternative solutions to the energy shortage problem. Underground coal gasifi- cation (UCG) is among the most promising tech- nologies and, to an acceptable degree, the proven feasible one (Walker et al., 2001; Ergo Exergy, 2005...

  5. Unconventional Coal in Wyoming: IGCC and Gasification of Direct Coal Liquefaction Residue

    Science.gov (United States)

    Schaffers, William Clemens

    Two unconventional uses for Wyoming Powder River Basin coal were investigated in this study. The first was the use of coal fired integrated gasification combined cycle (IGCC) plants to generate electricity. Twenty-eight different scenarios were modeled using AspenPlusRTM software. These included slurry, mechanical and dried fed gasifiers; Wyodak and Green River coals, 0%, 70%, and 90% CO2 capture; and conventional evaporative vs air cooling. All of the models were constructed on a feed basis of 6,900 tons of coal per day on an "as received basis". The AspenPlus RTM results were then used to create economic models using Microsoft RTM Excel for each configuration. These models assumed a 3 year construction period and a 30 year plant life. Results for capital and operating costs, yearly income, and internal rates of return (IRR) were compared. In addition, the scenarios were evaluated to compare electricity sales prices required to obtain a 12% IRR and to determine the effects of a carbon emissions tax on the sales price. The second part of the study investigated the gasification potential of residue remaining from solvent extraction or liquefaction of Powder River Basin Coal. Coal samples from the Decker mine on the Wyoming-Montana border were extracted with tetralin at a temperature of 360°C and pressure of 250 psi. Residue from the extraction was gasified with CO2 or steam at 833°C, 900°C and 975°C at pressures of 0.1 and 0.4 MPa. Product gases were analyzed with a mass spectrometer. Results were used to determine activation energies, reaction order, reaction rates and diffusion effects. Surface area and electron microscopic analyses were also performed on char produced from the solvent extraction residue.

  6. PNNL Coal Gasification Research

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

    2010-07-28

    This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

  7. Prototype plant for nuclear process heat (PNP) - operation of the pilot plant for hydrogasification of coal

    International Nuclear Information System (INIS)

    Bruengel, N.; Dehms, G.; Fiedler, P.; Gerigk, H.P.; Ruddeck, W.; Schrader, L.; Schumacher, H.J.

    1988-04-01

    The Rheinische Braunkohlenwerke AG developed the process of hydrogasification of coal in a fluidized bed for generation of SNG. On basis of test results obtained in a semi-technical pilot plant of a through-put of 250 kg/h dried coal a large pilot plant was erected processing 10 t/h dried brown coal. This plant was on stream for about 14700 h, of which about 7800 h were with gasifier operation; during this time about 38000 t of dried brown coal of the Rhenish district were processed containing 4 to 25% of ash. At pressures of 60 to 120 bar and temperatures of 800 to 935 0 C carbon conversion rates up to 81 percent and methane amounts of 5000 m 3 (STP)/h were reached. The decisive parameter for methane generation was the hydrogen/coal-ratio. Even at high moisture contents, usually diminishing the methane yield from the coal essentially, by high hydrogen/coal-ratios high methane yields could be obtained. The gasifier itself caused no troubles during the total time operation. Difficulties with the original design of the residual char cooler could be overcome by change-over from water injection to liquid carbon dioxide. The design of the heat recovery system proved well. Alltogether so the size increasement of the gasifier from the semi-technical to the large pilot plant as well as the harmonization of gas generation and gas refining was proved. (orig.) With 20 refs., 20 tabs., 81 figs [de

  8. Production and screening of carbon products precursors from coal. Quarterly progress report, July 1, 1996--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Zondlo, J.; Stiller, A.

    1996-10-25

    This quarterly report covers activities during the period from July 1, 1996 through September 30, 1996 on the development of carbon products precursor materials from coal. The first year of the project ended in February, 1996; however, the WVU research effort continued through August 14, 1997 on a no-cost extension of the original contract. PETC chose to exercise the option for continuation of the projects and $100,000 became available on August 9, 1996. The objective for year two is to focus on development of those carbon products from coal-based solvent extract precursors which have the greatest possibility for commercial success.

  9. Performance of entrained flow and fluidised bed biomass gasifiers on different scales

    International Nuclear Information System (INIS)

    Tremel, Alexander; Becherer, Dominik; Fendt, Sebastian; Gaderer, Matthias; Spliethoff, Hartmut

    2013-01-01

    Highlights: ► Gasification of biomass in fluidised bed and entrained flow reactors is modelled. ► The systems are evaluated for a thermal input from 10 MW to 500 MW. ► Special attention is given to the preconditioning methods for biomass. ► Fluidised bed and entrained flow gasifiers are compared in terms of efficiency and costs. - Abstract: This biomass gasification process study compares the energetic and economic efficiencies of a dual fluidised bed and an oxygen-blown entrained flow gasifier from 10 MW th to 500 MW th . While fluidised bed gasification became the most applied technology for biomass in small and medium scale facilities, entrained flow gasification technology is still used exclusively for industrial scale coal gasification. Therefore, it is analysed whether and for which capacity the entrained flow technology is an energetically and economically efficient option for the thermo-chemical conversion of biomass. Special attention is given to the pre-conditioning methods for biomass to enable the application in an entrained flow gasifier. Process chains are selected for the two gasifier types and subsequently transformed to simulation models. The simulation results show that the performance of both gasifier types is similar for the production of a pressurised product gas (2.5 MPa). The cold gas efficiency of the fluidised bed is 76–79% and about 0.5–2 percentage points higher than for the entrained flow reactor. The net efficiencies of both technologies are similar and between 64% and 71% depending on scale. The auxiliary power consumption of the entrained flow reactor is caused mainly by the air separation unit, the oxygen compression, and the fuel pulverisation, whereas the fluidised bed requires additional power mainly for gas compression. The costs for the product gas are determined as between €4.2 cent/kWh (500 MW th ) and €7.4 cent/kWh (10 MW th ) in the economic analysis of both technologies. The study indicates that the

  10. Refractory for Black Liquor Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Musa Karakus; Xiaoting Laing

    2005-10-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  11. OUT Success Stories: Biomass Gasifiers

    International Nuclear Information System (INIS)

    Jones, J.

    2000-01-01

    The world's first demonstration of an efficient, low-pressure biomass gasifier capable of producing a high-quality fuel is now operating in Vermont. The gasifier converts 200 tons of solid biomass per day into a clean-burning gas with a high energy content for electricity generation

  12. Coal gasification coal by steam using process heat from high-temperature nuclear reactors

    International Nuclear Information System (INIS)

    Heek, K.H. van; Juentgen, H.; Peters, W.

    1982-01-01

    This paper outlines the coal gasification process using a high-temperature nuclear reactor as a source of the process heat needed. Compared to conventional gasification processes coal is saved by 30-40%, coal-specific emissions are reduced and better economics of gas production are achieved. The introductory chapter deals with motives, aims and tasks of the development, followed by an explanation of the status of investigations, whereby especially the results of a semi-technical pilot plant operated by Bergbau-Forschung are given. Furthermore, construction details of a full-scale commercial gasifier are discussed, including the development of suitable alloys for the heat exchanger. Moreover problems of safety, licensing and economics of future plants have been investigated. (orig.) [de

  13. Next-generation coal utilization technology development study. Environmentally-friendly coal combustion technology; topping cycles; Sekitan riyo jisedai gijutsu kaihatsu chosa. Kankyo chowagata sekitan nensho gijutsu bun`ya (topping nensho gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    As a realistic measure to reduce environmental pollutants emitted from coal-fueled boilers, a developmental study was conducted of high-efficient combustion systems. In fiscal 1994, four types of topping cycles which are different in system structure and gasifier type were selected, and topping cycles assuming a 300MW-class power plant were trially designed. Further, an evaluation of adaptability of these systems was made, and an selection of the optimum system for the early development was made among the systems. As a result, the evaluation was obtained that `a system using air blown gasifier` is most suitable for conducting the next-stage research. In the element test on the topping combustion technology, collection was made of data of desulfurization activity, desulfurization oxidation mechanism and alkali metal behavior at the laboratory level, data of temperatures and gas concentration distribution in coal gasification, data of simulation of the gasifier reaction, and the other data. 262 figs., 66 tabs.

  14. Development and Testing of Prototype Commercial Gasifier Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zelepouga, Serguei [Gas Technology Inst., Des Plaines, IL (United States); Moery, Nathan [Gas Technology Inst., Des Plaines, IL (United States); Wu, Mengbai [Gas Technology Inst., Des Plaines, IL (United States); Saveliev, Alexei [Gas Technology Inst., Des Plaines, IL (United States)

    2015-01-31

    This report presents the results of the sensor development and testing at the Wabash River gasifier. The project work was initiated with modification of the sensor software (Task 2) to enable real time temperature data acquisition, and to process and provide the obtained gasifier temperature information to the gasifier operators. The software modifications were conducted by the North Carolina State University (NCSU) researchers. The modified software was tested at the Gas Technology Institute (GTI) combustion laboratory to assess the temperature recognition algorithm accuracy and repeatability. Task 3 was focused on the sensor hardware modifications needed to improve reliability of the sensor system. NCSU conducted numerical modeling of the sensor probe’s purging flow. Based on the modeling results the probe purging system was redesigned to prevent carbon particulates deposition on the probe’s sapphire window. The modified design was evaluated and approved by the Wabash representative. The modified gasifier sensor was built and installed at the Wabash River gasifier on May 1 2014. (Task 4) The sensor was tested from the startup of the gasifier on May 5, 2015 until the planned autumn gasifier outage starting in the beginning of October, 2015. (Task 5) The project team successfully demonstrated the Gasifier Sensor system’s ability to monitor gasifier temperature while maintaining unobstructed optical access for six months without any maintenance. The sensor examination upon completion of the trial revealed that the system did not sustain any damage.

  15. Sampling of contaminants from product gases of biomass gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Staahlberg, P.; Lappi, M.; Kurkela, E.; Simell, P.; Oesch, P.; Nieminen, M. [VTT Energy, Espoo (Finland). New Energy Technologies

    1998-12-01

    Reliable sampling and analysis of products from biomass gasification are essential for the successful process development and economical operation of commercial gasifiers. One of the most important and most difficult analytical tasks is to characterise the emissions from the gasifiers. This report presents a review of the sampling and analytical systems employed and developed when doing research on coal and biomass gasification. In addition to the sampling systems published in the literature, experiences obtained in various biomass gasification R and D projects of VTT in 1985-1995 are described. The present sampling methods used for different gas contaminants at VTT are also briefly presented. This report focuses mainly on the measurement of tars, nitrogen compounds and sulphur gases. Isokinetic and non-isokinetic sampling train systems are described and, in addition, special sampling apparatus based on liquid-quenched probe and gas dilution is briefly outlined. Sampling of tars with impinger systems and sampling of heavy tars with filter techniques are described in detail. Separate sampling of particulates is briefly discussed. From inorganic compounds the sampling systems used for H{sub 2}S and other sulphur gases, NH{sub 3} and HCN and HCl are presented. Proper storage of the samples is also included in the report. (orig.) 90 refs.

  16. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr.; Alireza Rezaie

    2003-12-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  17. Refractory for Black Liquor Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Alireza Rezaie

    2003-12-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  18. Refractory for Black Liquor Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Alireza Rezaie; Xiaoting Liang; Musa Karakus; Jun Wei

    2005-12-01

    The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected or developed that reacted with the gasifier environment to form protective surfaces in

  19. Refractory for Black Liquor Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-10-01

    The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected/developed that either react with the gasifier environment to form protective surfaces in

  20. Refractory for Black Liquor Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick; Musa Karakus; Alireza Rezaie

    2004-03-30

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  1. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Alireza Rezaie

    2004-07-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  2. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Alireza Rezaie

    2004-10-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  3. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-01-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  4. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-04-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  5. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-07-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  6. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr.; Alireza Rezaie

    2004-04-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  7. Coal gasification systems engineering and analysis. Appendix G: Commercial design and technology evaluation

    Science.gov (United States)

    1980-01-01

    A technology evaluation of five coal gasifier systems (Koppers-Totzek, Texaco, Babcock and Wilcox, Lurgi and BGC/Lurgi) and procedures and criteria for evaluating competitive commercial coal gasification designs is presented. The technology evaluation is based upon the plant designs and cost estimates developed by the BDM-Mittelhauser team.

  8. Coal rebounds for the final quarter

    Energy Technology Data Exchange (ETDEWEB)

    Soras, C.; Stodden, J.

    1987-11-01

    Coal production in the USA is up 0.3% by the end of September 1987 from the pace of one year ago. Most impressive has been the growth in demand at power plants where coal consumption is up by 13.5 million tons through the month of July. The coal markets turnabout is based upon the entire economic spectrum not upon a single large market. US steel mills represent intense power consuming activities as do the US chemicals, plastics, paper and pulp industries.

  9. Improving the stability of coal slurries: Quarterly progress report for the period Sep. 15, 1986-Dec. 15, 1986. [Adsorption of gum tragacanth on coal particles

    Energy Technology Data Exchange (ETDEWEB)

    Fogler, H.S.

    1986-01-01

    The last quarterly progress report focused on the adsorption study of the polystyrene latex spheres with gum tragacanth (GT), and the adsorption mechanism was found to be hydrophobic rather than electrostatic. Also, the effect of the amount of GT adsorbed, the bulk concentration of GT, incubation time and pH on the stability factor was examined, and the results indicated that the conformation of GT on the surface of latex spheres plays an important role in the stabilization. This report presents the results of the coal-water slurries, mainly focusing on the adsorption study of GT by changing pH and ionic strength. It was found from the experiment in which the ionic strength was changed that the adsorption of GT on the coal particles is hindered by the coulombic repulsion between GT and coal. In addition, the experiment in which pH was changed also indicated that the adsorption mechanism is electrostatic in nature. 7 refs., 2 figs.

  10. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  11. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  12. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, July 1--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-12-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Some of the contract activities for this quarter are: We completed many of the analyses on the 81 samples received from HTI bench-scale run CMSL-9, in which coal, coal/mixed plastics, and coal/high density polyethylene were fed; Liquid chromatographic separations of the 15 samples in the University of Delaware sample set were completed; and WRI completed CP/MAS {sup 13}C-NMR analyses on the Delaware sample set.

  13. Release of inorganic trace elements from high-temperature gasification of coal

    Energy Technology Data Exchange (ETDEWEB)

    Blaesing, Marc

    2012-05-30

    The development of cleaner, more efficient techniques in next-generation coal power plants is becoming increasingly important, especially regarding to the discussion of the influence of CO{sub 2} emissions on global warming. A promising coal utilisation process is the integrated gasification combined cycle process. The direct use of the raw gas requires gas clean-up to prevent downstream parts of the gasifier from several problems. An increased efficiency and a decreased amount of harmful species can be achieved through hot fuel gas cleaning. This clean-up technique requires a comprehensive knowledge of the release characteristics of inorganic coal constituents. The aim of this thesis was to provide enhanced knowledge of the effect of key process parameters and of the chemical constitution of coal on the release of Na, K, S, and Cl species from high-temperature coal gasification. The experimental setup consisted of atmospheric flow tube furnaces and a pressurised furnace. In-situ analysis of the product gas was carried out using molecular beam mass spectrometry. A broad spectrum of different coals with assumed qualitative and quantitative differences in the release characteristics was investigated. Additionally, experiments with model substances were performed. The results of the experimental investigation were compared with thermodynamic calculations. Finally, recommendations, for the operation of a high-temperature gasifier are formulated. (orig.)

  14. Radiant-and-plasma technology for coal processing

    Directory of Open Access Journals (Sweden)

    Vladimir Messerle

    2012-12-01

    Full Text Available Radiant-and-plasma technology for coal processing is presented in the article. Thermodynamic computation and experiments on plasma processing of bituminous coal preliminary electron-beam activated were fulfilled in comparison with plasma processing of the coal. Positive influence of the preliminary electron-beam activation of coal on synthesis gas yield was found. Experiments were carried out in the plasma gasifier of 100 kW power. As a result of the measurements of material and heat balance of the process gave the following integral indicators: weight-average temperature of 2200-2300 K, and carbon gasification degree of 82,4-83,2%. Synthesis gas yield at thermochemical preparation of raw coal dust for burning was 24,5% and in the case of electron-beam activation of coal synthesis gas yield reached 36,4%, which is 48% higher.

  15. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES; FINAL

    International Nuclear Information System (INIS)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-01-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO(sub x)). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process

  16. Novel technique for coal pyrolysis and hydrogenation product analysis. Quarterly report, June 1, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, L.D.

    1992-12-31

    This report covers the last quarter of the last year of the three-year grant period. In the final project year, we concentrated on the pyrolysis and oxidative pyrolysis of large hydrocarbons and mixtures of large and small hydrocarbons in order to develop the VUV-MS technique for compounds more representative of those in coal pyrolysis applications. Special focus was directed at the pyrolysis and oxidative pyrolysis of benzene and benzene acetylene mixtures. The acetylene/benzene mixtures were used to gain a better understanding of the mechanisms of molecular growth in such systems specifically to look at the kinetics of aryl-aryl reactions as opposed to small molecule addition to phenyl radicals. Sarofim and coworkers at MIT have recently demonstrated the importance of these reactions in coal processing environments. In the past, the growth mechanism for the formation of midsized PAH has been postulated to involve primarily successive acetylene additions to phenyl-type radicals, our work confmns this as an important mechanism especially for smaller PAH but also investigates conditions where biaryl formation can play an important role in higher hydrocarbon formation.

  17. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  18. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    International Nuclear Information System (INIS)

    Zamansky, Vladimir M.; Lissianski, Vitali V.

    2001-01-01

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The overall objective of this project is to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized carbon in ash and move the FFR technology to the demonstration and commercialization stage. Specifically, the project entails: (1) optimizing FFR with injection of gasified and partially gasified fuels with respect to NO x and carbon in ash reduction; (2) characterizing flue gas emissions; (3) developing a process model to predict FFR performance; (4) completing an engineering and economic analysis of FFR as compared to conventional reburning and other commercial NO x control technologies, and (5) developing a full-scale FFR design methodology. The project started in August 2000 and will be conducted over a two-year period. The work includes a combination of analytical and experimental studies to identify optimum process configurations and develop a design methodology for full-scale applications. The first year of the program included pilot-scale tests to evaluate performances of two bituminous coals in basic reburning and modeling studies designed to identify parameters that affect the FFR performance and to evaluate efficiency of coal pyrolysis products as a reburning fuel. Tests were performed in a 300 kW Boiler Simulator Facility to characterize bituminous coals as reburning fuels. Tests showed that NO x reduction in basic coal reburning depends on process conditions, initial NO x and coal type. Up to 60% NO x reduction was achieved at optimized conditions. Modeling activities during first year concentrated on the development of coal reburning model and on the prediction of NO x reduction in reburning by coal gasification products. Modeling predicted that composition of coal

  19. Fixed-bed gasifier and cleanup system engineering summary report through Test Run No. 100

    Energy Technology Data Exchange (ETDEWEB)

    Pater, K. Jr.; Headley, L.; Kovach, J.; Stopek, D.

    1984-06-01

    The state-of-the-art of high-pressure, fixed-bed gasification has been advanced by the many refinements developed over the last 5 years. A novel full-flow gas cleanup system has been installed and tested to clean coal-derived gases. This report summarizes the results of tests conducted on the gasifier and cleanup system from its inception through 1982. Selected process summary data are presented along with results from complementary programs in the areas of environmental research, process simulation, analytical methods development, and component testing. 20 references, 32 figures, 42 tables.

  20. Investigation of pyrite as a contributor to slagging in eastern bituminous coals. Quarterly progress report 9, October 1-December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Bryers, R.W.

    1984-06-01

    The objective of this program is to examine slags formed as a result of firing coals with varying concentration levels, size distribution, and orientation of pyrite with regard to mineral matter in the coal in a laboratory furnace. The program tasks are: (1) selection of eight candidate coals; (2) chemical characterization of the coal samples and identification of the pyrite size, distribution, and orientation with respect to other mineral matter and concentration levels; (3) testing of the candidate coals in a laboratory furnace; (4) chemical and physical characterization of the slag and fly ash samples created by the impurities in the coal sample; (5) influence of coal beneficiation on furnace slagging; and (6) analysis of data and identification of parameters influencing the contribution of pyrite to slagging problems. Washing of the Upper Freeport coal from Indiana County, Pennsylvania, was completed by the last quarter of 1983. The washed product was characterized for mineral content, and a combustion test was performed. Kentucky No. 9 from Henderson County, Kentucky, selected as the sixth coal to be investigated, was characterized using size and gravity fractionation techniques and was combusted in the laboratory furnace to evaluate its slagging and fouling potential. The remaining two coals to be characterized and combusted were identified as Illinois No. 5 and Lower Kittanning from Clarion County, Pennsylvania. 80 figures, 27 tables.

  1. Condensate from a two-stage gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Henriksen, Ulrik Birk; Hindsgaul, Claus

    2000-01-01

    Condensate, produced when gas from downdraft biomass gasifier is cooled, contains organic compounds that inhibit nitrifiers. Treatment with activated carbon removes most of the organics and makes the condensate far less inhibitory. The condensate from an optimised two-stage gasifier is so clean...... that the organic compounds and the inhibition effect are very low even before treatment with activated carbon. The moderate inhibition effect relates to a high content of ammonia in the condensate. The nitrifiers become tolerant to the condensate after a few weeks of exposure. The level of organic compounds...... and the level of inhibition are so low that condensate from the optimised two-stage gasifier can be led to the public sewer....

  2. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    Energy Technology Data Exchange (ETDEWEB)

    William L. Headrick Jr; Musa Karakus; Jun Wei

    2005-03-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective

  3. Biomass Gasifier for Computer Simulation; Biomassa foergasare foer Computer Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Jens; Leveau, Andreas; Hulteberg, Christian [Nordlight AB, Limhamn (Sweden)

    2011-08-15

    This report is an effort to summarize the existing data on biomass gasifiers as the authors have taken part in various projects aiming at computer simulations of systems that include biomass gasification. Reliable input data is paramount for any computer simulation, but so far there is no easy-accessible biomass gasifier database available for this purpose. This study aims at benchmarking current and past gasifier systems in order to create a comprehensive database for computer simulation purposes. The result of the investigation is presented in a Microsoft Excel sheet, so that the user easily can implement the data in their specific model. In addition to provide simulation data, the technology is described briefly for every studied gasifier system. The primary pieces of information that are sought for are temperatures, pressures, stream compositions and energy consumption. At present the resulting database contains 17 gasifiers, with one or more gasifier within the different gasification technology types normally discussed in this context: 1. Fixed bed 2. Fluidised bed 3. Entrained flow. It also contains gasifiers in the range from 100 kW to 120 MW, with several gasifiers in between these two values. Finally, there are gasifiers representing both direct and indirect heating. This allows for a more qualified and better available choice of starting data sets for simulations. In addition to this, with multiple data sets available for several of the operating modes, sensitivity analysis of various inputs will improve simulations performed. However, there have been fewer answers to the survey than expected/hoped for, which could have improved the database further. However, the use of online sources and other public information has to some extent counterbalanced the low response frequency of the survey. In addition to that, the database is preferred to be a living document, continuously updated with new gasifiers and improved information on existing gasifiers.

  4. Cogeneration applications of biomass gasifier/gas turbine technologies in the cane sugar and alcohol industries

    International Nuclear Information System (INIS)

    Ogden, J.M.; Williams, R.H.; Fulmer, M.E.

    1994-01-01

    Biomass integrated gasifier/gas turbine (BIG/GT) technologies for cogeneration or stand-alone power applications hold forth the promise of being able to produce electricity at lower cost in many instances than most alternatives, including large central-station, coal-fired, steam-electric power plants with fuel gas desulphurization, nuclear power plants, and hydroelectricity power plants. BIG/GT technologies offer environmental benefits as well, including the potential for zero net carbon dioxide emissions, if the biomass feedstock is grown renewably. (author). 77 refs., 9 figs., 16 tabs

  5. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  6. Clean coal technology - Study on the pilot project experiment of underground coal gasification

    International Nuclear Information System (INIS)

    Yang Lanhe; Liang Jie; Yu Li

    2003-01-01

    In this paper, the gasification conditions, the gasifier structure, the measuring system and the gasification rationale of a pilot project experiment of underground coal gasification (UCG) in the Liuzhuang Colliery, Tangshan, are illustrated. The technique of two-phase underground coal gasification is proposed. The detection of the moving speed and the length of the gasification working face is made using radon probing technology. An analysis of the experiment results indicates that the output of air gas is 3000 m 3 /h with a heating value of about 4.18 MJ/m 3 , while the output of water gas is 2000 m 3 /h with a heating value of over 11.00 MJ/m 3 , of which H 2 content is above 40% with a maximum of 71.68%. The cyclical time of two-phase underground gasification is 16 h, with 8 h for each phase. This prolongs the time when the high-heating value gas is produced. The moving speed of the gasification working face in two alternative gasifiers is identified, i.e. 0.204 and 0.487 m/d, respectively. The success of the pilot project experiment of the underground gasification reveals the strides that have been made toward the commercialization of the UCG in China. It also further justifies the reasonability and feasibility of the new technology of long channel, big section, two-phase underground gasification. A conclusion is also drawn that the technology of the pilot project experiment can be popularized in old and discarded coal mines

  7. Design and techno economic evaluation of biomass gasifier for ...

    African Journals Online (AJOL)

    This paper addresses the design, performance and economic evaluation of biomass based open core downdraft gasifier for industrial process heat application. The gasifier is having feed rate as 90 kg h-1 and producing about 850 MJ h-1 of heat. The gasifier has been installed in M/S Phosphate India Pvt. Limited, Udaipur ...

  8. Detailed model for practical pulverized coal furnaces and gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Smoot, L.D.

    1989-08-01

    This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report: (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.

  9. Measurement and modeling the coefficient of restitution of char particles under simulated entrained flow gasifier conditions

    Science.gov (United States)

    Gibson, LaTosha M.

    Inefficiencies in plant operations due to carbon loss in flyash, necessitate control of ash deposition and the handling of the slag disposal. Excessive char/ash deposition in convective coolers causes reduction in the heat transfer, both in the radiative (slagging) section and in the low-temperature convective (fouling) heating section. This can lead to unplanned shutdowns and result in an increased cost of electricity generation. CFD models for entrained flow gasification have used the average bulk coal composition to simulate slagging and ash deposition with a narrow particle size distribution (PSD). However, the variations in mineral (inorganic) and macerals (organic) components in coal have led to particles with a variation in their inorganic and organic composition after grinding as governed by their Particle Size Distribution (PSD) and mineral liberation kinetics. As a result, each particle in a PSD of coal exhibits differences in its conversion, particle trajectory within the gasifier, fragmentation, swelling, and slagging probability depending on the gasifier conditions (such as the temperature, coal to oxygen ratio, and swirling capacity of the coal injector). Given the heterogeneous behavior of char particles within a gasifier, the main objective of this work was to determine boundary conditions of char particle adhering and/or rebounding from the refractory wall or a layer of previously adhered particles. In the past, viscosity models based on the influence of ash composition have been used as the method to characterize sticking. It is well documented that carbon contributes to the non-wettability of particles. Therefore, it has been hypothesized that viscosity models would not be adequate to accurately predict the adhesion behavior of char. Certain particle wall impact models have incorporated surface tension which can account the contributions of the carbon content to the adhesive properties of a char particle. These particle wall impact models also

  10. Thermochemical equilibrium modelling of a gasifying process

    International Nuclear Information System (INIS)

    Melgar, Andres; Perez, Juan F.; Laget, Hannes; Horillo, Alfonso

    2007-01-01

    This article discusses a mathematical model for the thermochemical processes in a downdraft biomass gasifier. The model combines the chemical equilibrium and the thermodynamic equilibrium of the global reaction, predicting the final composition of the producer gas as well as its reaction temperature. Once the composition of the producer gas is obtained, a range of parameters can be derived, such as the cold gas efficiency of the gasifier, the amount of dissociated water in the process and the heating value and engine fuel quality of the gas. The model has been validated experimentally. This work includes a parametric study of the influence of the gasifying relative fuel/air ratio and the moisture content of the biomass on the characteristics of the process and the producer gas composition. The model helps to predict the behaviour of different biomass types and is a useful tool for optimizing the design and operation of downdraft biomass gasifiers

  11. Design, development and testing of small downdraft gasifiers for domestic cookstoves

    International Nuclear Information System (INIS)

    Sutar, Kailasnath B.; Kohli, Sangeeta; Ravi, M.R.

    2017-01-01

    The design methodology available in the literature for downdraft gasifiers of large capacity (∼40–600 kW_t_h) is not directly applicable to very small sized gasifiers. In the present work, design and development of small downdraft gasifiers of 4 kW_t_h and 2.5 kW_t_h nominal capacities, for domestic cookstove application, have been carried out by non-linear extrapolation of data in literature for large gasifiers. The prototypes thus developed were found to give maximum gasification efficiency close to 80%. Extensive experimentation was conducted in the laboratory to study the effect of two operating parameters, viz., gasification air flow rate and the fuel particle size, on the performance of these gasifiers. The performance parameters studied included calorific value of the gas, gasification efficiency, air-biomass ratio and the hearth load. Through detailed analysis of the results, it has been shown that the two operating parameters affect the gasifier performance primarily through their impact on reactor temperature and the total particle surface area available for the reactions. This explains the observation of an optimal gasification air flow rate for best gasification efficiency. It is also shown that the producer gas flow rate varies linearly with gasification air flow rate for a wide range of operating conditions on different sizes of gasifiers. It is also seen that different sizes of the gasifiers can have a different hearth load corresponding to best efficiency. - Highlights: • Developed a design methodology for small downdraft gasifiers by adapting guidelines meant for larger gasifiers. • Developed two prototypes of gasifiers: 4 kW_t_h and 2.5 kW_t_h with gasification efficiency ∼80%. • Reactor temperature and total particle surface area available for reactions affect the gasifier performance. • The optimal gasification air flow rate and particle size for best gasification efficiency are explained using the above. • Producer gas versus

  12. Improved Gasifier Availability with Bed Material and Additives

    Energy Technology Data Exchange (ETDEWEB)

    Grootjes, A.J.; Van der Meijden, C.M.; Visser, H.J.M.; Van der Drift, A. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-07-15

    In order to valorize several feedstock, gasification is one of the technologies developed over the past decades. ECN developed the MILENA gasifier. In order for MILENA to become a commercial success, the gasifier needs to be feedstock flexible, robust and economically sound, operating with high availability. One of the characteristics of MILENA is high efficiency but with a higher tar content, compared to some other Dual Fluidized Bed (DFB) gasifiers. In order to reduce the issues that are associated with high tar levels in the product gas, the effect of a number of primary measures was studied. This paper presents results obtained in the last two years, focused on improving the gasifier availability by conducting experiments in a 25 kWth lab scale MILENA gasifier. Amongst others, gas composition, tar content and calorific value of the product gas were compared. Scanning Electron Microscope analysis was used to investigate bed material changes. Results show that Austrian olivine can be activated by Fuel B as well as by Additive A and B. The water-gas shift reaction is enhanced and the tar content is reduced significantly, especially the heavy tars that dominate the tar dew point. Activated olivine has a calcium-rich layer. The results show that with MILENA, we are able to lower and control the tar dew point, which will possibly increase the availability of a MILENA gasifier.

  13. Opportunities for the power-plant industry

    International Nuclear Information System (INIS)

    Zeltmann, E.W.

    1992-01-01

    The author considers the major factors that will affect future demand for electricity in Europe, North America, Asia, Latin America, Africa and the Middle East. Worldwide growth in generating capacity in the next ten years is anticipated to be between 800 and 900 gigawatts, with the biggest growth rate being in Asia, and Europe requiring a quarter of the total worldwide additional capacity. The energy sources and technologies available to meet these demands are discussed. The author foresees a 'technology mix' with hydro and nuclear power contributing about one quarter of the additional capacity and systems based on gas or steam turbines contributing the remainder. Of the steam turbine based systems, basically burning coal in a boiler, an increasing share of coal-fueled generation will involve combined-cycle systems burning gasified coal. 5 figs

  14. Characterization of substances in products, effluents, and wastes from coal conversion processes

    International Nuclear Information System (INIS)

    Petersen, M.R.

    1978-01-01

    Researchers at Pacific Northwest Laboratory (PNL) are investigating materials from synthetic fossil fuel processes. During the past year, samples have been collected from the Solvent Refining Coal Pilot Plant (SRC-I mode), Lignite Gasification Pilot Plant, Eyring Research Institute Gasifier, and Hanna III In Situ Coal Gasification Experiment. Inorganic and organic analyses have been performed, and comparisons of the data show some important differences in the potential emissions

  15. The research and development of pressurized ash agglomerating fluidized bed coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Fang Yitian; Wu Jinhu; Chen Hanshi [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    1999-11-01

    Coal gasification tests in a pressurized ash agglomeration fluidized bed coal gasifier were carried out. The effects of pressure and temperature on the gasification capacity, carbon conversion, carbon content in discharged ash and gas composition were investigated. Gasification capacity was shown to be in direct proportion to operation pressure. Tests of hot gas dedusting using a moving granular bed were also carried out. 3 refs., 6 figs., 2 tabs.

  16. Carbon Formation and Metal Dusting in Hot-Gas Cleanup Systems of Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, Peter F.; Judkins, Roddie R.; DeVan, Jackson H.; Wright, Ian G.

    1995-12-31

    There are several possible materials/systems degradation modes that result from gasification environments with appreciable carbon activities. These processes, which are not necessarily mutually exclusive, include carbon deposition, carburization, metal dusting, and CO disintegration of refractories. Carbon formation on solid surfaces occurs by deposition from gases in which the carbon activity (a sub C) exceeds unity. The presence of a carbon layer CO can directly affect gasifier performance by restricting gas flow, particularly in the hot gas filter, creating debris (that may be deposited elsewhere in the system or that may cause erosive damage of downstream components), and/or changing the catalytic activity of surfaces.

  17. Performance evaluation of open core gasifier on multi-fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bhoi, P.R.; Singh, R.N.; Sharma, A.M.; Patel, S.R. [Thermo Chemical Conversion Division, Sardar Patel Renewable Energy Research Institute (SPRERI), Vallabh Vidyanagar 388 120, Gujarat (India)

    2006-06-15

    Sardar Patel renewable energy research institute (SPRERI) has designed and developed open core, throat-less, down draft gasifier and installed it at the institute. The gasifier was designed for loose agricultural residues like groundnut shells. The purpose of the study is to evaluate the gasifier on multi-fuels such as babul wood (Prosopis juliflora), groundnut shell briquettes, groundnut shell, mixture of wood (Prosopis juliflora) and groundnut shell in the ratio of 1:1 and cashew nut shell. The gasifier performance was evaluated in terms of fuel consumption rate, calorific value of producer gas and gasification efficiency. Gasification efficiency of babul wood (Prosopis juliflora), groundnut shell briquettes, groundnut shell, mixture of Prosopis juliflora and groundnut shell in the ratio of 1:1 and cashew nut shell were 72%, 66%, 70%, 64%, 70%, respectively. Study revealed that babul wood (Prosopis juliflora), groundnut shell briquettes, groundnut shell, mixture of wood (Prosopis juliflora) and groundnut shell in the ratio of 1:1 and cashew nut shell were satisfactorily gasified in open core down draft gasifier. The study also showed that there was flow problem with groundnut shell. (author)

  18. Co-gasification of biomass and coal in a pressurised fluidised bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Andries, L; Hein, K R.G. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Delft Univ. of Technology (Netherlands)

    1997-12-31

    The Laboratory for Thermal Power Engineering of the Delft University of Technology is participating in an EU funded, international, R + D project which is designed to aid European industry in addressing issues regarding co-utilisation of biomass and/or waste in advanced coal conversion processes. The project comprises three main programmes, each of which includes a number of smaller subprogrammes. The three main programmes are: Coal-biomass systems component development and design; Coal-biomass environmental studies; Techno-economic assessment studies. (orig)

  19. Co-gasification of biomass and coal in a pressurised fluidised bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Andries, L.; Hein, K.R.G. [Lab. for Thermal Power Engineering, Dept. of Mechanical Engineering and Marine Technology, Delft Univ. of Technology (Netherlands)

    1996-12-31

    The Laboratory for Thermal Power Engineering of the Delft University of Technology is participating in an EU funded, international, R + D project which is designed to aid European industry in addressing issues regarding co-utilisation of biomass and/or waste in advanced coal conversion processes. The project comprises three main programmes, each of which includes a number of smaller subprogrammes. The three main programmes are: Coal-biomass systems component development and design; Coal-biomass environmental studies; Techno-economic assessment studies. (orig)

  20. Energy Information Administration quarterly coal report, October--December 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The United States produced just over 1 billion short tons of coal in 1992, 0.4 percent more than in 1991. Most of the 4-million-short-ton increase in coal production occurred west of the Mississippi River, where a record level of 408 million short tons of coal was produced. The amount of coal received by domestic consumers in 1992 totaled 887 million short tons. This was 7 million short tons more than in 1991, primarily due to increased coal demand from electric utilities. The average price of delivered coal to each sector declined by about 2 percent. Coal consumption in 1992 was 893 million short tons, only 1 percent higher than in 1991, due primarily to a 1-percent increase in consumption at electric utility plants. Consumer coal stocks at the end of 1992 were 163 million short tons, a decrease of 3 percent from the level at the end of 1991, and the lowest year-end level since 1989. US coal exports fell 6 percent from the 1991 level to 103 million short tons in 1992. Less coal was exported to markets in Europe, Asia, and South America, but coal exports to Canada increased 4 million short tons

  1. Glas generator for the steam gasification of coal with nuclear generated heat

    International Nuclear Information System (INIS)

    Buchner, G.

    1980-01-01

    The use of heat from a High Temperature Reactor (HTR) for the steam gasification of coal saves coal, which otherwise is burnt to generate the necessary reaction heat. The gas generator for this process, a horizontal pressure vessel, contains a fluidized bed of coal and steam. An ''immersion-heater'' type of heat exchanger introduces the nuclear generated heat to the process. Some special design problems of this gasifier are presented. Reference is made to the present state of development of the steam gasification process with heat from high temperature reactors. (author)

  2. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir M. Zamansky; Vitali V. Lissianski

    2001-09-07

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The overall objective of this project is to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized carbon in ash and move the FFR technology to the demonstration and commercialization stage. Specifically, the project entails: (1) optimizing FFR with injection of gasified and partially gasified fuels with respect to NO{sub x} and carbon in ash reduction; (2) characterizing flue gas emissions; (3) developing a process model to predict FFR performance; (4) completing an engineering and economic analysis of FFR as compared to conventional reburning and other commercial NO{sub x} control technologies, and (5) developing a full-scale FFR design methodology. The project started in August 2000 and will be conducted over a two-year period. The work includes a combination of analytical and experimental studies to identify optimum process configurations and develop a design methodology for full-scale applications. The first year of the program included pilot-scale tests to evaluate performances of two bituminous coals in basic reburning and modeling studies designed to identify parameters that affect the FFR performance and to evaluate efficiency of coal pyrolysis products as a reburning fuel. Tests were performed in a 300 kW Boiler Simulator Facility to characterize bituminous coals as reburning fuels. Tests showed that NO{sub x} reduction in basic coal reburning depends on process conditions, initial NO{sub x} and coal type. Up to 60% NO{sub x} reduction was achieved at optimized conditions. Modeling activities during first year concentrated on the development of coal reburning model and on the prediction of NO{sub x} reduction in reburning by coal gasification products. Modeling predicted that

  3. The coal-fired gas turbine locomotive - A new look

    Science.gov (United States)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.

    1983-01-01

    Advances in turbomachine technology and novel methods of coal combustion may have made possible the development of a competitive coal fired gas turbine locomotive engine. Of the combustor, thermodynamic cycle, and turbine combinations presently assessed, an external combustion closed cycle regenerative gas turbine with a fluidized bed coal combustor is judged to be the best suited for locomotive requirements. Some merit is also discerned in external combustion open cycle regenerative systems and internal combustion open cycle regenerative gas turbine systems employing a coal gasifier. The choice of an open or closed cycle depends on the selection of a working fluid and the relative advantages of loop pressurization, with air being the most attractive closed cycle working fluid on the basis of cost.

  4. Computer models and simulations of IGCC power plants with Canadian coals

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Furimsky, E.

    1999-07-01

    In this paper, three steady state computer models for simulation of IGCC power plants with Shell, Texaco and BGL (British Gas Lurgi) gasifiers will be presented. All models were based on a study by Bechtel for Nova Scotia Power Corporation. They were built by using Advanced System for Process Engineering (ASPEN) steady state simulation software together with Fortran programs developed in house. Each model was integrated from several sections which can be simulated independently, such as coal preparation, gasification, gas cooling, acid gas removing, sulfur recovery, gas turbine, heat recovery steam generation, and steam cycle. A general description of each process, model's overall structure, capability, testing results, and background reference will be given. The performance of some Canadian coals on these models will be discussed as well. The authors also built a computer model of IGCC power plant with Kellogg-Rust-Westinghouse gasifier, however, due to limitation of paper length, it is not presented here.

  5. Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

  6. Gasification of coal with steam using heat from HTRs

    International Nuclear Information System (INIS)

    Juentgen, H.; Heek, K.H. van

    1975-01-01

    In existing coal gasification processes a substantial part of the coal is used to provide the heat for the reaction, for the generation and superheating of steam and for the production of oxygen. By using heat from HTRs to substitute this part, the coal is then completely used as raw material for gas production. This offers the following advantages compared with the existing processes: a saving of coal, less CO 2 emission and, in countries with high coal costs, lower gas production costs. A survey is given of the state of the project, discussing the first design of a commercial gasifier, the influence of the helium outlet temperature of the HTR, kinds of products, and the overall efficiency of the plant. The aim of the development is to demonstrate the use of heat from an HTR for full scale coal gasification, starting in 1985. (Auth.)

  7. Solvent refined coal (SRC) process. Quarterly technical progress report, January 1980-March 1980. [In process streams

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This report summarizes the progress of the Solvent Refined Coal (SRC) project at the SRC Pilot Plant in Fort Lewis, Wahsington, and the Process Development Unit (P-99) in Harmarville, Pennsylvania. After the remaining runs of the slurry preheater survey test program were completed January 14, the Fort Lewis Pilot Plant was shut down to inspect Slurry Preheater B and to insulate the coil for future testing at higher rates of heat flux. Radiographic inspection of the coil showed that the welds at the pressure taps and the immersion thermowells did not meet design specifications. Slurry Preheater A was used during the first 12 days of February while weld repairs and modifications to Slurry Preheater B were completed. Two attempts to complete a material balance run on Powhatan No. 6 Mine coal were attempted but neither was successful. Slurry Preheater B was in service the remainder of the quarter. The start of a series of runs at higher heat flux was delayed because of plugging in both the slurry and the hydrogen flow metering systems. Three baseline runs and three slurry runs of the high heat flux program were completed before the plant was shut down March 12 for repair of the Inert Gas Unit. Attempts to complete a fourth slurry run at high heat flux were unsuccessful because of problems with the coal feed handling and the vortex mix systems. Process Development Unit (P-99) completed three of the four runs designed to study the effect of dissolver L/D ratio. The fourth was under way at the end of the period. SRC yield correlations have been developed that include coal properties as independent variables. A preliminary ranking of coals according to their reactivity in PDU P-99 has been made. Techniques for studying coking phenomenona are now in place.

  8. Small-Scale Coal-Biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, Santosh K. [Southern Research Institute, Durham, NC (United States); McCabe, Kevin [Southern Research Institute, Durham, NC (United States)

    2015-04-30

    The research project advanced coal-to-liquids (CTL) and coal-biomass to liquids (CBTL) processes by testing and validating Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to convert gasifier syngas predominantly to gasoline, jet fuel and diesel range hydrocarbon liquids, thereby eliminating expensive wax upgrading operations The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream testing/demonstration. Southern Research designed, installed and commissioned a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport integrated gasifier (TRIGTM). The test-rig was designed to receive up to 5 lb/h raw syngas augmented with bottled syngas to adjust the H2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of 2 to 4 L/day. It employed a 2-inch diameter boiling water jacketed fixed-bed heat-exchange FT reactor incorporating Chevron’s catalyst in Intramicron’s high thermal conductivity micro-fibrous entrapped catalyst (MFEC) packing to efficiently remove heat produced by the highly exothermic FT reaction.

  9. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  10. Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program

    International Nuclear Information System (INIS)

    1993-05-01

    The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO 2 emissions by greater than 90% and limiting NO x emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today's conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated

  11. Modeling work of a small scale gasifier/SOFC CHP system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.; Aravind, P.V.; Qu, Z.; Woudstra, N.; Verkooijen, A.H.M. [Delft University of Technology (Netherlands). Dept. of Mechanical Engineering], Emails: ming.liu@tudelft.nl, p.v.aravind@tudelft.nl, z.qu@tudelft.nl, n.woudstra@tudelft.nl, a. h. m. verkooijen@tudelft.nl; Cobas, V.R.M. [Federal University of Itajuba (UNIFEI), Pinheirinhos, MG (Brazil). Dept. of Mechanical Engineering], E-mail: vlad@unifei.edu.br

    2009-07-01

    For a highly efficient biomass gasification/Solid Oxide Fuel Cell (SOFC) Combined Heat and Power (CHP) generation system, the gasifier, the accompanying gas cleaning technologies and the CHP unit must be carefully designed as an integrated unit. This paper describes such a system involving a two-stage fixed-bed down draft gasifier, a SOFC CHP unit and a gas cleaning system. A gas cleaning system with both low temperature and high temperature sections is proposed for coupling the gasifier and the SOFC. Thermodynamic modeling was carried out for the gasifier/SOFC system with the proposed gas cleaning system. The net AC electrical efficiency of this system is around 30% and the overall system efficiency is around 60%. This paper also describes various exergy losses in the system and the future plans for integrated gasifier-GCU-SOFC experiments from which the results will be used to validate the modeling results of this system. (author)

  12. Steam gasification of coal using a pressurized circulating fluidized bed

    International Nuclear Information System (INIS)

    Werner, K.F.J.

    1989-09-01

    Subject of this investigation is the process engineering of a coal gasification using nuclear heat. A special aspect is the efficiency. To this purpose a new method for calculating the kinetics of hard coal steam gasification in a fluidized bed is presented. It is used for evaluations of gasification kinetics in a large-scale process on the basis of laboratory-scale experiments. The method is verified by experimental data from a large-scale gasifier. The investment costs and the operating costs of the designed process are estimated. (orig.) [de

  13. A rice husk gasifier for paddy drying

    International Nuclear Information System (INIS)

    Mirani, A.A.; Kalwar, S.A.; Ahmad, M.

    2013-01-01

    Due to energy crisis and constant increase in the price of fossil fuels, the world's trend changes to renewable sources of energy like solar, wind and biomass gasification. Substantial biomass potential is available in Pakistan in the form of agriculture or forest residue (rice straw, rice husk, cotton stalks, corn cobs, wood chips, wood saw, etc.). These can be best utilised for the production of producer gas or synthetic gas that can be used for drying of agricultural crops. The drying process is an important activity of post harvest processing for long-term storage. Rice husk is nowadays commonly used for biomass gasification and its heat content value is about 15MJ/kg. It constitutes about 30 percent of rice production. A rice husk gasifier was developed and evaluated on paddy drying at Japan International Cooperation Agency (JICA), Tsukuba International Center (TBIC), Japan. Rice husk gasifier has following major components; husk feeding system, ash chamber, burner, centrifugal fan, drying chamber, gasifier reactor, air duct and an electric motor of 0.37kW. The average drying plenum air temperature was recorded as 45 degree C during the drying process. The paddy 'IR 28' from initial moisture content of 24% was dried up to 14% moisture content for about 3.33h consuming 3kg/h of rice husk. The efficiency was found to be 58%. The rice husk gasifier can also be used for drying the fruits and vegetables, provided that heat exchanger should be attached with it. The overall performance of rice husk gasifier was satisfactory and will be beneficial for small scale farmers, food processors and millers as well. (author)

  14. Performance and Characteristics of a Cyclone Gasifier for Gasification of Sawdust

    Science.gov (United States)

    Azman Miskam, Muhamad; Zainal, Z. A.; Idroas, M. Y.

    The performance and characteristics of a cyclone gasifier for gasification of sawdust has been studied and evaluated. The system applied a technique to gasify sawdust through the concept of cyclonic motion driven by air injected at atmospheric pressure. This study covers the results obtained for gasification of ground sawdust from local furniture industries with size distribution ranging from 0.25 to 1 mm. It was found that the typical wall temperature for initiating stable gasification process was about 400°C. The heating value of producer gas was about 3.9 MJ m-3 that is sufficient for stable combustion in a dual-fuel engine generator. The highest thermal output from the cyclone gasifier was 57.35 kWT. The highest value of mass conversion efficiency and enthalpy balance were 60 and 98.7%, respectively. The highest efficiency of the cyclone gasifier obtained was 73.4% and this compares well with other researchers. The study has identified the optimum operational condition for gasifying sawdust in a cyclone gasifier and made conclusions as to how the steady gasification process can be achieved.

  15. Low-Btu coal gasification in the United States: company topical. [Brick producers

    Energy Technology Data Exchange (ETDEWEB)

    Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

    1983-07-01

    Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

  16. Scaling up biomass gasifier use: an application-specific approach

    International Nuclear Information System (INIS)

    Ghosh, Debyani; Sagar, Ambuj D.; Kishore, V.V.N.

    2006-01-01

    Biomass energy accounts for about 11% of the global primary energy supply, and it is estimated that about 2 billion people worldwide depend on biomass for their energy needs. Yet, most of the use of biomass is in a primitive and inefficient manner, primarily in developing countries, leading to a host of adverse implications on human health, environment, workplace conditions, and social well being. Therefore, the utilization of biomass in a clean and efficient manner to deliver modern energy services to the world's poor remains an imperative for the development community. One possible approach to do this is through the use of biomass gasifiers. Although significant efforts have been directed towards developing and deploying biomass gasifiers in many countries, scaling up their dissemination remains an elusive goal. Based on an examination of biomass gasifier development, demonstration, and deployment efforts in India-a country with more than two decades of experiences in biomass gasifier development and dissemination, this article identifies a number of barriers that have hindered widespread deployment of biomass gasifier-based energy systems. It also suggests a possible approach for moving forward, which involves a focus on specific application areas that satisfy a set of criteria that are critical to deployment of biomass gasifiers, and then tailoring the scaling up strategy to the characteristics of the user groups for that application. Our technical, financial, economic and institutional analysis suggests an initial focus on four categories of applications-small and medium enterprises, the informal sector, biomass-processing industries, and some rural areas-may be particularly feasible and fruitful

  17. Design and techno economic evaluation of biomass gasifier for ...

    African Journals Online (AJOL)

    user

    2Department of Renewable Energy Sources, College of Technology and Engineering, Maharana Pratap University of. Agriculture ... downdraft gasifier for industrial process heat application. The gasifier is ... generation and biofuels production, and it may be pro- ... Nomenclature: ηg, The hot gas efficiency of the gasification.

  18. Achievement report for fiscal 1981 on Sunshine Program-assisted project. Research and development of coal gasification (Feasibility study and conceptual design regarding high-temperature gasification technology); 1981 nendo sekitan gas ka no kenkyu kaihatsu seika hokokusho. Koon gas ka gijutsu ni kansuru feasibility study oyobi gainen sekkei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    The melting point of ash is one of the most important physical properties in the process of coal gasification. A fluidized bed gasification furnace is suitable for the gasification of coal whose ash has a high melting point, but it does not work at temperatures higher than the melting point of the ash. A high-temperature gasification furnace, though not suitable for gasifying coal whose ash has a high melting point, gasifies the kinds of coal that the fluidized bed gasification furnace fails to deal with. Accordingly, almost all kinds of coal are to be appropriately gasified when these two types of gasification furnaces are available. The goal of the development effort is the achievement of a coal utilization factor of 99% or more and a thermal efficiency of 80% or more. The technology elements have to deal with the structure of furnace walls and refractory materials for them, discharge of slag, feeding of raw materials, recovery of exhaust heat, measurement and control, gasification furnace simulation, etc. A proposition is presented on a conceptual design and prototype for a 50t/d pilot plant in which the above-mentioned factors are organically integrated. (NEDO)

  19. Test of pyrolysis gasifier stoves in two institutional kitchens in Uganda

    DEFF Research Database (Denmark)

    Wendelbo, Pall; Nielsen, Per Sieverts

    1998-01-01

    : The main purpose of the paper is to evaluate tests of institutional kitchens carried out at schools in Uganda 1997. The results of the tests for the institutional kitchen with pyrolysis gasifier stoves are compared with the fuel use in traditional kitchens with three-stone stoves. The project......, respectively. The cooking place was build up with a rotating plate on which tree gasifier units were placed. In this way it was possible to change on of the gasifier units when necessary. The pot was then mounted on a tripod app. 10 cm above the gasifier units. The results of the tests show that the improved...

  20. Co-gasification of pine and oak biochar with sub-bituminous coal in carbon dioxide.

    Science.gov (United States)

    Beagle, E; Wang, Y; Bell, D; Belmont, E

    2018-03-01

    Pine and oak biochars derived as byproducts of demonstration-scale pyrolysis, and blends of these two feedstocks with Powder River Basin coal, were gasified in a carbon dioxide environment using a modified drop tube reactor (MDTR) and a thermogravimetric analyzer (TGA). The impact of gasification temperature on conversion kinetics was evaluated from the temporal evolution of major product gases in the MDTR as measured using a mass spectrometer. Random pore modeling was conducted to simulate gasification in the MDTR with favorable results. The MDTR and TGA were used to conduct gasification for assessment of non-linear additive effects in the blends. Additive analysis of the blends showed deviation from the experimental blend results, indicating inhibiting effects of co-gasifying the biochar and coal. Inhibitory effects are more significant for oak than pine and more pronounced in the TGA at lower gasification temperatures. Results are discussed in the context of feedstock and reactor type. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. CFD simulation of coal gasification in an entrained-flow gasifier

    DEFF Research Database (Denmark)

    Sreedharan, V.; Hjertager, B.H.; Solberg, T.

    2010-01-01

    in reliability, emission control, efficiency, and feedstock flexibility. The feedstock used for a gasification system can be coal, petroleum coke, biomass, heavy oil, or even natural gas. This is an abstract of a paper presented at the 2010 AIChE Annual Meeting (Salt Lake City, UT 11/7-12/2010)....

  2. Promoting effect of various biomass ashes on the steam gasification of low-rank coal

    International Nuclear Information System (INIS)

    Rizkiana, Jenny; Guan, Guoqing; Widayatno, Wahyu Bambang; Hao, Xiaogang; Li, Xiumin; Huang, Wei; Abudula, Abuliti

    2014-01-01

    Highlights: • Biomass ash was utilized to promote gasification of low rank coal. • Promoting effect of biomass ash highly depended on AAEM content in the ash. • Stability of the ash could be improved by maintaining AAEM amount in the ash. • Different biomass ash could have completely different catalytic activity. - Abstract: Application of biomass ash as a catalyst to improve gasification rate is a promising way for the effective utilization of waste ash as well as for the reduction of cost. Investigation on the catalytic activity of biomass ash to the gasification of low rank coal was performed in details in the present study. Ashes from 3 kinds of biomass, i.e. brown seaweed/BS, eel grass/EG, and rice straw/RS, were separately mixed with coal sample and gasified in a fixed bed downdraft reactor using steam as the gasifying agent. BS and EG ashes enhanced the gas production rate greater than RS ash. Higher catalytic activity of BS or EG ash was mainly attributed to the higher content of alkali and alkaline earth metal (AAEM) and lower content of silica in it. Higher content of silica in the RS ash was identified to have inhibiting effect for the steam gasification of coal. Stable catalytic activity was remained when the amount of AAEM in the regenerated ash was maintained as that of the original one

  3. Handbook of biomass downdraft gasifier engine systems

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T B; Das, A

    1988-03-01

    This handbook has been prepared by the Solar Energy Research Institute under the US Department of Energy /bold Solar Technical Information Program/. It is intended as a guide to the design, testing, operation, and manufacture of small-scale (less than 200 kW (270 hp)) gasifiers. A great deal of the information will be useful for all levels of biomass gasification. The handbook is meant to be a practical guide to gasifier systems, and a minimum amount of space is devoted to questions of more theoretical interest.

  4. Slag characterization and removal using pulse detonation for coal gasification. Quarterly research report, January 1, 1996--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Huque, Z.; Mei, D.; Biney, P.O.; Zhou, J.

    1996-03-25

    Microbeam Technologies Incorporated (MTI) is working with Prairie View to develop and demonstrate a new method to remove deposits from coal-fired utility boilers. MTI is providing background information on fuel properties, ash formation, ash deposition, and ash removal. In addition, MTI is providing deposits collected from a full scale utility boilers. Ash deposits on fireside heat exchange surfaces of power plants significantly decrease plant efficiency and are aggravated by variability in coal quality. Deposit formation is related to coal quality (chemical and physical characteristics of the inorganic material), system operating conditions, and system design. Variations in coal quality can significantly influence ash deposition on heat transfer surfaces resulting in decreased plant performance and availability. Ash accumulations on heat transfer surfaces require annual or semi-annual shutdowns for cleaning which result in cleaning costs and lost revenues from being off-line. In addition, maintaining slag flow in wet bottom boilers and cyclone-fired boilers can require co-firing of other fuels and outages to remove frozen slag resulting in decreased efficiency and availability. During this reporting period MTI performed analysis of deposits collected from full-scale utility boilers. Deposit samples were obtained from Basin Electric and from Northern States Power (NSP). The analyses were conducted using scanning electron microscopy/microprobe techniques as described in the past quarterly report. The chemical and physical properties of the deposits were determined. The results for sample collected from NSP`s Riverside plant are reported here.

  5. Investigation of factors influencing the attrition breakage of coal

    Energy Technology Data Exchange (ETDEWEB)

    Oberholzer, V.; van der Walt, J. [North West University, Mmabatho (South Africa). School of Chemical & Minerals Engineering

    2009-04-15

    The presence of fines (particles smaller than 6 mm in diameter) causes hydrodynamic problems in gasifiers and therefore it is of great importance to minimize the amount of fine coal in the feed. This serves as motivation for understanding coal's breakage mechanisms, which could lead to the ability to predict the generation of fines. The aim of this project was to simulate the pulsating effect of the conveyor belt in order to investigate factors influencing the breakage. Results indicated that an increased initial particle size had an increasing effect in the amount of fines generated. Weathering had an insignificant effect on the breakage of coal. To conclude, a breakage model was developed to describe the rate of breakage out of the top size when a combination of two breakage modes is present.

  6. Performance and emission reduction potential of micro-gasifier improved through better design

    Directory of Open Access Journals (Sweden)

    Kamil Dino Adem

    2017-01-01

    Full Text Available Biomass gasification is getting popular for household cooking application in most developing countries including Ethiopia. The preference for biomass gasification is due to the generation of less CO (Carbon Monoxide and PM (Particulate Matter in comparison with other biomass cookstoves. Our study showed the improvement in thermal efficiency and emission reduction potential of micro-gasifier. A prototype micro-gasifier was built and tested using the water boiling test protocol. The test results gave a thermal efficiency of 39.6% and a specific fuel consumption of 57 g of fuel/ liter of water. With regard to indoor air pollution, the maximum CO & PM registered were 12.5 ppm and 1.85 mg/m3, respectively. Using clean development mechanism (CDM methodology, the estimated emission reduction potential of the micro-gasifier is 1.30 tCO2 per micro-gasifier per year. Generally, the micro-gasifier has better performance compared to the previous designs proposed by other researchers. Thus, disseminating our micro-gasifier at a larger scale in developing countries such as Ethiopia will be beneficial in reducing deforestation and emission that will be brought about by using open-fire stoves and thus, helps to obtain carbon credit.

  7. Effects of Design/Operating Parameters and Physical Properties on Slag Thickness and Heat Transfer during Coal Gasification

    Directory of Open Access Journals (Sweden)

    Insoo Ye

    2015-04-01

    Full Text Available The behaviors of the slag layers formed by the deposition of molten ash onto the wall are important for the operation of entrained coal gasifiers. In this study, the effects of design/operation parameters and slag properties on the slag behaviors were assessed in a commercial coal gasifier using numerical modeling. The parameters influenced the slag behaviors through mechanisms interrelated to the heat transfer, temperature, velocity, and viscosity of the slag layers. The velocity profile of the liquid slag was less sensitive to the variations in the parameters. Therefore, the change in the liquid slag thickness was typically smaller than that of the solid slag. The gas temperature was the most influential factor, because of its dominant effect on the radiative heat transfer to the slag layer. The solid slag thickness exponentially increased with higher gas temperatures. The influence of the ash deposition rate was diminished by the high-velocity region developed near the liquid slag surface. The slag viscosity significantly influenced the solid slag thickness through the corresponding changes in the critical temperature and the temperature gradient (heat flux. For the bottom cone of the gasifier, steeper angles were favorable in reducing the thickness of the slag layers.

  8. Gasification of ‘Loose' Groundnut Shells in a Throathless Downdraft Gasifier

    OpenAIRE

    Kuhe, Aondoyila; Aliyu, Samuel Jacob

    2015-01-01

    In this paper, gasification potential of biomass residue was investigated using a laboratory scale throatless downdraft gasifier. Experimental results of groundnut shell was gasified in the throatless downdraft gasifier to produce a clean gas with a calorific value of around 5.92 MJ/Nm3 and a combustible fraction of 45% v/v. Low moisture (8.6%) and ash content (3.19%) are the main advantages of groundnut shells for gasification. It is suggested that gasification of shell waste products is a ...

  9. Preliminary experimental studies of waste coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Su, S.; Jin, Y.G.; Yu, X.X.; Worrall, R. [CSIRO, Brisbane, QLD (Australia). Advanced Coal Technology

    2013-07-01

    Coal mining is one of Australia's most important industries. It was estimated that coal washery rejects from black coal mining was approximately 1.82 billion tonnes from 1960 to 2009 in Australia, and is projected to produce another one billion tonnes by 2018 at the current production rate. To ensure sustainability of the Australian coal industry, we have explored a new potential pathway to create value from the coal waste through production of liquid fuels or power generation using produced syngas from waste coal gasification. Consequently, environmental and community impacts of the solid waste could be minimized. However, the development of an effective waste coal gasification process is a key to the new pathway. An Australian mine site with a large reserve of waste coal was selected for the study, where raw waste coal samples including coarse rejects and tailings were collected. After investigating the initial raw waste coal samples, float/sink testing was conducted to achieve a desired ash target for laboratory-scale steam gasification testing and performance evaluation. The preliminary gasification test results show that carbon conversions of waste coal gradually increase as the reaction proceeds, which indicates that waste coal can be gasified by a steam gasification process. However, the carbon conversion rates are relatively low, only reaching to 20-30%. Furthermore, the reactivity of waste coal samples with a variety of ash contents under N{sub 2}/air atmosphere have been studied by a home-made thermogravimetric analysis (TGA) apparatus that can make the sample reach the reaction temperature instantly.

  10. Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lapuerta, Magin; Hernandez, Juan J.; Pazo, Amparo; Lopez, Julio [Universidad de Castilla-La Mancha, Escuela Tecnica Superior de Ingenieros Industriales (Edificio Politecnico), Avenida Camilo Jose Cela s/n. 13071 Ciudad Real (Spain)

    2008-09-15

    Air gasification of different biomass fuels, including forestry (pinus pinaster pruning) and agricultural (grapevine and olive tree pruning) wastes as well as industry wastes (sawdust and marc of grape), has been carried out in a circulating flow gasifier in order to evaluate the potential of using these types of biomass in the same equipment, thus providing higher operation flexibility and minimizing the effect of seasonal fuel supply variations. The potential of using biomass as an additional supporting fuel in coal fuelled power plants has also been evaluated through tests involving mixtures of biomass and coal-coke, the coke being a typical waste of oil companies. The effect of the main gasifier operating conditions, such as the relative biomass/air ratio and the reaction temperature, has been analysed to establish the conditions allowing higher gasification efficiency, carbon conversion and/or fuel constituents (CO, H{sub 2} and CH{sub 4}) concentration and production. Results of the work encourage the combined use of the different biomass fuels without significant modifications in the installation, although agricultural wastes (grapevine and olive pruning) could to lead to more efficient gasification processes. These latter wastes appear as interesting fuels to generate a producer gas to be used in internal combustion engines or gas turbines (high gasification efficiency and gas yield), while sawdust could be a very adequate fuel to produce a H{sub 2}-rich gas (with interest for fuel cells) due to its highest reactivity. The influence of the reaction temperature on the gasification characteristics was not as significant as that of the biomass/air ratio, although the H{sub 2} concentration increased with increasing temperature. (author)

  11. Status of health and environmental research relative to coal gasification 1976 to the present

    Energy Technology Data Exchange (ETDEWEB)

    Wilzbach, K.E.; Reilly, C.A. Jr. (comps.)

    1982-10-01

    Health and environmental research relative to coal gasification conducted by Argonne National Laboratory, the Inhalation Toxicology Research Institute, and Oak Ridge National Laboratory under DOE sponsorship is summarized. The studies have focused on the chemical and toxicological characterization of materials from a range of process streams in five bench-scale, pilot-plant and industrial gasifiers. They also address ecological effects, industrial hygiene, environmental control technology performance, and risk assessment. Following an overview of coal gasification technology and related environmental concerns, integrated summaries of the studies and results in each area are presented and conclusions are drawn. Needed health and environmental research relative to coal gasification is identified.

  12. US energy industry financial developments, 1991 third quarter

    International Nuclear Information System (INIS)

    1991-01-01

    Net income for the 218 energy companies included in this report was 15 percent lower in the third quarter of 1991 than in the third quarter of 1990. Declining income from oil and natural gas production, chemical operations, and coal operations resulted in a 33-percent fall in income for fossil fuel companies. The other category of energy companies included in this report, rate-regulated utilities, recorded essentially no change in income

  13. A moving-bed gasifier with internal recycle of pyrolysis gas

    NARCIS (Netherlands)

    Susanto, H.; Beenackers, A.A C M

    A co-current moving bed gasifier with internal recycle and separate combustion of pyrolysis gas has been developed with the aim of producing a design suitable for scaling-up downdraft gasifiers while maintaining a low tar content in the producer gas. Using wood chips with a moisture content of 7-9

  14. Proceedings of the third annual underground coal conversion symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Third Annual Underground Coal Conversion Symposium was held at Fallen Leaf Lake, CA, June 6--9, 1977. It was sponsored by the U.S. Department of Energy and hosted by Lawrence Livermore Laboratory. Forty-one papers have been entered individually into EDB and ERA; ten papers had been entered previously from other sources. The papers cover the in-situ gasification of lignite, subbituminous coal and bituminous coal, in flat lying seams and a steeply dipping beds, at moderate and at greater depths, and describe various technologies of (borehole linking, well spacings, gasifying agents (air, oxygen, steam, hydrogen, including mixtures). Measuring instruments for diagnostic and process control purposes are described. Environmental impacts (ground subsidence and possible groundwater pollution) are the subject of several papers. Finally, mathematical modelling and projected economics of the process are developed. (LTN)

  15. Development of coal partial hydropyrolysis process

    Energy Technology Data Exchange (ETDEWEB)

    Hideaki Yabe; Takafumi Kawamura; Kohichiroh Gotoh; Akemitsu Akimoto [Nippon Steel Corporation, Chiba (Japan)

    2005-07-01

    Coal partial hydropyrolysis process aims at co-production of high yield of light oil such as BTX and naphthalene and synthesis gas from a low rank coal under a mild hydropyrolysis condition. The characteristic of this process is in the two-staged entrained hydropyrolysis reactor composed of the reformer and gasifier. This reactor arrangement gives us high heat efficiency of this process. So far, in order to evaluate the process concept a small-scale basic experiment and a 1t/day process development unit study were carried out. The experimental results showed that coal volatiles were partially hydrogenated to increase the light oil and hydrocarbon gases at the condition of partial hydropyrolysis such as pressure of 2-3MPa, temperature of 700-900{sup o}C and hydrogen concentration of 30-50%. This process has a possibility of producing efficiently and economically liquid and gas products as chemicals and fuel for power generation. As a further development in the period of 2003 to 2008, a 20t/day pilot plant study named ECOPRO (efficient co-production with coal flash hydropyrolysis technology) has been started to establish the process technologies for commercialization. 12 refs., 6 figs., 3 tabs.

  16. Report on results of research. Basic studies on characteristics of coal char gasification under pressure; Sekitan char no kaatsuka ni okeru gas ka tokuseino kiso kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This paper explains basic studies on characteristics of coal char gasification under pressure. Hydro-gasification of coal needs as a gasifying agent a large amount of hydrogen, which is effectively produced by the water gasification of exhaust unreacted residual char. In fiscal 1975, gasification was tested on Taiheiyo coal carbonized char by an atmospheric fluidized gasifier of 28 mm bore. In fiscal 1976, experiment was conducted under pressure by fully improving the auxiliary safety equipment. The char and gas yield increased with higher pressure in pressurized carbonization by an autoclave. In fiscal 1977, clinker was successfully prevented by using quartz sand for a fluidized medium. In fiscal 1978, two-stage continuous gasification was examined. In fiscal 1979, correlation was determined between operation factors such as gasification pressure, temperature, etc., and clinker formation/char reactivity. An experiment was conducted for particle pop-out using a pressurized fluidized bed of 100 mm inner diameter, with the pop-out quantity found to be proportional to the 0.38th power of a pressure. A high pressure fluidized gasifier was built having a char processing capacity of 1 t/day, 20 atmospheric pressure, and an inner diameter of 100 mm. In fiscal 1980, this device was continuously operated, elucidating problems for the practicability. (NEDO)

  17. Quarterly coal report, April 1996--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This report provides information about U.S. coal production, distribution; exports, imports, prices, consumption, and stocks. Data on coke production is also provided. This report presents data for April 1996 thru June 1996.

  18. Artificial neural network models for biomass gasification in fluidized bed gasifiers

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Hernández, J. Alfredo; Bruno, Joan Carles

    2013-01-01

    Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine...

  19. Japan's New Sunshine Project. 1994 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This paper summarizes the report for fiscal 1994 on research and development related to coal liquefaction and gasification. In the research and development of coal liquefaction technologies, reports were given on research of liquefaction characteristics of different coals and liquefaction process thereof, and on research of catalysts for the coal liquefaction. In the research and development of coal gasification technologies, reports were given on fundamental studies on gasification characteristics of different coals. In the research and development of liquefaction technologies for bituminous coal, reports were given on design, construction and operation of a bituminous coal liquefaction pilot plant with a capacity of 150 t/d, and the operation supporting studies on the pilot plant. In the fundamental research on the coal liquefaction process, reports were given on refining technologies and utilization of the refined materials, and studies on environment preservation in applying the coal liquefaction technologies. In the research on hydrogen manufacturing technologies by using the fundamental coal technology, reports were given on design, construction and operational studies of a pilot plant. In the research and development of the coal gasification technologies, reports were given on development of a jet-flow gasified coal electric power plant, selection of coals, and development of a data processing system. (NEDO)

  20. Emission characterization for a down draft gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Charles Denys da Luz; Nogueira, Manoel Fernandes Martins [Federal University of Para (UFPA), Belem, PA (Brazil). Lab. de Engenharia Mecanica], E-mail: mfmn@ufpa.br

    2010-07-01

    Gasification is the thermal-chemical conversion of biomass into combustible gas, which can be used as combustion fuel in internal combustion motors or syngas with applications across the chemical industry. To check the performance of a gasifier one needs to quantify the contained energy in the produced gas as well as the quantity of produced carbon for the calculation of mean energy efficiency and the carbon conversion factor of the gas using experimentally obtained data. Energy efficiency is quantified value that describes the relationship between the respective quantities of energy contained in the biomass used and the gas produced, in the same sense, the carbon conversion is a quantity of carbonaceous compounds present in used biomass and the amount of carbon in the produced gas. The present document evaluates the energy efficiency and the carbon conversion factor of a prototype model of a downdraft gasifier from India that was modified by a local company. The nominal parameters of the gasifier's function are as follows: gas production capacity running on 45 kW, biomass consumption (acai seeds) of 15 kg/h. The gasifier dimensions are as follows: diameter of 150 mm and height of 2000 mm. The energy efficiency and the carbon conversion rate are quantified, the pressure loss due to the bed reactor and the temperature of the gases are also measured at the reactor exit; the tar, particle composite and non-condensable gas (CO, CO{sub 2}, CH{sub 4}, SO{sub 2}, N{sub 2} e NO{sub x}) concentrations were measured in the produced gas at the cleaning process. (author)

  1. Molecular accessibility in solvent swelled coals. Quarterly report, [April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1993-08-01

    The effect of weathering (oxidation and dehydration upon exposure to air) on the molecular accessibility of potential catalysts was studied by the EPR spin probe technique. Fresh samples of all 8 APCS coals were exposed to air for periods up to 36 days. Weathering produced significant effects on the retention of spin probes in most of the APCS coals under 91 % carbon (dmmf). It was determined that the lower ranked coal (Beulah Zap and Wyodak) under went a structural collapse which precluded retention of even spin probe VIII. However, medium ranked coals exhibited improved retention upon weathering when swelled in toluene. Swelling with pyridine opened up small pores for 81--86% carbon which is not observed for swelling with toluene. Changes in coal structure were successfully followed by the EPR spin probe method. A detailed analysis of the data collected from the swelling of coals oxidized in a moisture free environment was completed to differentiate between weathering and oxidation. Eight vacuum dried APCS coals were oxidized in an enclosed, pure oxygen, moisture free environment, and the effects of oxidation alone on coal structure were studied by the intercalation of EPR spin probes. The data shows a factor of 5 increase in spin probe retention for some coals oxidized in O{sub 2} versus air., suggesting a large increase in oxidized material. Particular care was taken during the swelling procedures to avoid exposure of the coal samples to air or moisture. EPR spectra were then obtained for these 300 samples.

  2. Biomass-gasifier steam-injected gas turbine cogeneration for the cane sugar industry

    International Nuclear Information System (INIS)

    Larson, E.D.; Williams, R.H.; Ogden, J.M.; Hylton, M.G.

    1991-01-01

    Steam injection for power and efficiency augmentation in aeroderivative gas turbines has been commercially established for natural gas-fired cogeneration since 1980. Steam-injected gas turbines fired with coal and biomass are being developed. A performance and economic assessment of biomass integrated-gasifier steam-injected gas turbine (BIG/STIG) cogeneration systems is carried out here. A detailed economic case study is presented for the second largest sugar factory in Jamaica, with cane residues as the fuel. BIG/STIG cogeneration units would be attractive investments for sugar producers, who could sell large quantities of excess electricity to the utility, or for the utility, as a low-cost generating option. Worldwide, the cane sugar industry could support some 50,000 MW of BIG/STIG electric generation capacity. The relatively modest development effort required to commercialize the BIG/STIG technology is discussed in a companion paper prepared for this conference

  3. FY 1991 report on the results of the development of an entrained bed coal gasification power plant. Part 4. Operation of pilot plant; 1991 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 4. Pilot plant unten sosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-01-01

    A record was summarized of the operation of the 200 t/d entrained bed coal gasification pilot plant that was constructed with the aim of establishing technology of the integrated coal gasification combined cycle power generation. As to the actual results of operation hours, the paper summarized the records of gasifier facilities, gas refining facilities, gas turbine facilities and safety environment facilities which were collected from April 1991 to January 1993. Relating to the actual results of start-up/stop, the paper summarized the records of gasifier facilities, gas refining facilities (desulfurization), gas refining facilities (dedusting), gas turbine facilities and safety environment facilities. Further, operation manuals were made for the schedule of plant start-up/stop, generalization, gasifier facilities, gas refining facilities (desulfurization), gas refining facilities (dedusting), gas turbine facilities, actual pressure/actual size combustor testing facilities and safety environment facilities. (NEDO)

  4. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1982-01-01

    This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

  5. Potentials of Selected Malaysian Biomasses as Co-Gasification Fuels with Oil Palm Fronds in a Fixed-Bed Downdraft Gasifier

    Directory of Open Access Journals (Sweden)

    Moni Mohamad Nazmi Zaidi

    2014-07-01

    Full Text Available Oil palm frond (OPF has been successfully gasified to produce syngas and has since deemed as a potential source of biomass fuel in Malaysia. However, if OPF is to be utilized as a main fuel for industrial-scale firing/gasification plant, interruption in fuel supply may occur due to numerous reasons, for instance inefficient fuel processing and ineffective transportation. A secondary supporting solid fuel is therefore necessary as a partial component to the main fuel in such cases, where the secondary fuel is combusted with the main fuel to adhere to main fuel shortage. Gasification of two fuels together, known as co-gasification, is practiced worldwide, some in industrial scale. However, current practice utilizes biomass fuel as the secondary fuel to coal in co-gasification. This investigation explores into the feasibility of co-gasifying two biomass fuels together to produce syngas. OPF was chosen as the primary fuel and a selection of Malaysian biomasses were studied to discover their compatibility with OPF in co-gasification. Biomass selection was made using score-and-rank method and their selection criteria are concisely discussed.

  6. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri,; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-11-30

    This report describes the development of the design of an advanced dry feed system that was carried out under Task 4.0 of Cooperative Agreement DE-FE0007902 with the US DOE, “Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the use of Low- Rank Coal.” The resulting design will be used for the advanced technology IGCC case with 90% carbon capture for sequestration to be developed under Task 5.0 of the same agreement. The scope of work covered coal preparation and feeding up through the gasifier injector. Subcomponents have been broken down into feed preparation (including grinding and drying), low pressure conveyance, pressurization, high pressure conveyance, and injection. Pressurization of the coal feed is done using Posimetric1 Feeders sized for the application. In addition, a secondary feed system is described for preparing and feeding slag additive and recycle fines to the gasifier injector. This report includes information on the basis for the design, requirements for down selection of the key technologies used, the down selection methodology and the final, down selected design for the Posimetric Feed System, or PFS.

  7. Gasifier feed: Tailor-made from Illinois coals. Technical report, September 1, 1991--November 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlinger, H.P. III

    1991-12-31

    The purpose of this research is to develop a coal slurry from waste streams using Illinois coal that is ideally suited for a gasification feed. The principle items to be studied are (1) methods of concentrating pyrite and decreasing other ash forming minerals into a high grade gasification feed using froth flotation and gravity separation techniques; (2) chemical and particle size analyses of coal slurries; (3) determination of how that slurry can be densified and to what degree of densification is optimum from the pumpability and combustibility analyses; and (4) reactivity studies.

  8. Gasification of ‘Loose’ Groundnut Shells in a Throathless Downdraft Gasifier

    Directory of Open Access Journals (Sweden)

    Aondoyila Kuhe

    2015-07-01

    Full Text Available In this paper, gasification potential of biomass residue was investigated using a laboratory scale throatless downdraft gasifier. Experimental results of groundnut shell was gasified in the throatless downdraft gasifier to produce a clean gas with a calorific value of around 5.92 MJ/Nm3 and a combustible fraction of 45% v/v. Low moisture (8.6% and ash content (3.19% are the main advantages of groundnut shells for gasification. It is suggested that gasification of shell waste products is a clean energy alternative to fossil fuels. The product gas can be used efficiently for heating and possible usage in internal combustion engines.

  9. Conversion of metallurgical coke and coal using a Coal Direct Chemical Looping (CDCL) moving bed reactor

    International Nuclear Information System (INIS)

    Luo, Siwei; Bayham, Samuel; Zeng, Liang; McGiveron, Omar; Chung, Elena; Majumder, Ankita; Fan, Liang-Shih

    2014-01-01

    Highlights: • Accumulated more than 300 operation hours were accomplished for the moving bed reducer reactor. • Different reactor operation variables were investigated with optimal conditions identified. • High conversions of sub-bituminous coal and bituminous coal were achieved without flow problems. • Co-current and counter-current contact modes were tested and their applicability was discussed. - Abstract: The CLC process has the potential to be a transformative commercial technology for a carbon-constrained economy. The Ohio State University Coal Direct Chemical Looping (CDCL) process directly converts coal, eliminating the need for a coal gasifier oran air separation unit (ASU). Compared to other solid-fuel CLC processes, the CDCL process is unique in that it consists of a countercurrent moving bed reducer reactor. In the proposed process, coal is injected into the middle of the moving bed, whereby the coal quickly heats up and devolatilizes, splitting the reactor roughly into two sections with no axial mixing. The top section consists of gaseous fuel produced from the coal volatiles, and the bottom section consists of the coal char mixed with the oxygen carrier. A bench-scale moving bed reactor was used to study the coal conversion with CO 2 as the enhancing gas. Initial tests using metallurgical cokefines as feedstock were conducted to test the effects of operational variables in the bottom section of the moving bed reducer, e.g., reactor temperature, oxygen carrier to char ratio, enhancer gas CO 2 flow rate, and oxygen carrier flow rates. Experiments directly using coal as the feedstock were subsequently carried out based on these test results. Powder River Basin (PRB) coal and Illinois #6 coal were tested as representative sub-bituminous and bituminous coals, respectively. Nearly complete coal conversion was achieved using composite iron oxide particles as the oxygen carriers without any flow problems. The operational results demonstrated that a

  10. A Philippines gasifier case study

    International Nuclear Information System (INIS)

    Bernardo, F.P.; Kilayko, G.U.

    1991-01-01

    The gasifier programme failed to achieve its objective of significantly reducing farmers' dependence on diesel fuel and in improving their financial positions both on Panay Island and elsewhere in the Philippines. The causes appear to be institutional and managerial rather than any inherent weakness in the technology itself. 2 tabs

  11. Evaluation of a Compact Coaxial Underground Coal Gasification System Inside an Artificial Coal Seam

    Directory of Open Access Journals (Sweden)

    Fa-qiang Su

    2018-04-01

    Full Text Available The Underground Coal Gasification (UCG system is a clean technology for obtaining energy from coal. The coaxial UCG system is supposed to be compact and flexible in order to adapt to complicated geological conditions caused by the existence of faults and folds in the ground. In this study, the application of a coaxial UCG system with a horizontal well is discussed, by means of an ex situ model UCG experiment in a large-scale simulated coal seam with dimensions of 550 × 600 × 2740 mm. A horizontal well with a 45-mm diameter and a 2600-mm length was used as an injection/production well. During the experiment, changes in temperature field and product gas compositions were observed when changing the outlet position of the injection pipe. It was found that the UCG reactor is unstable and expands continuously due to fracturing activity caused by coal crack initiation and extension under the influence of thermal stress. Therefore, acoustic emission (AE is considered an effective tool to monitor fracturing activities and visualize the gasification zone of coal. The results gathered from monitoring of AEs agree with the measured data of temperatures; the source location of AE was detected around the region where temperature increased. The average calorific value of the produced gas was 6.85 MJ/Nm3, and the gasification efficiency, defined as the conversion efficiency of the gasified coal to syngas, was 65.43%, in the whole experimental process. The study results suggest that the recovered coal energy from a coaxial UCG system is comparable to that of a conventional UCG system. Therefore, a coaxial UCG system may be a feasible option to utilize abandoned underground coal resources without mining.

  12. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR; F

    International Nuclear Information System (INIS)

    K.C. Kwon

    2002-01-01

    Removal of hydrogen sulfide (H(sub 2)S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that employ coal and natural gas and produce electric power and clean transportation fuels. These Vision 21 plants will require highly clean coal gas with H(sub 2)S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at Research Triangle Institute (RTI) in which the H(sub 2)S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H(sub 2)S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objective of this research is to support the near- and long-term DOE efforts to commercialize this direct oxidation technology. Specifically, we aim to: Measure the kinetics of direct oxidation of H(sub 2)S to elemental sulfur over selective catalysts in the presence of major

  13. ASPEN Plus simulation of coal integrated gasification combined blast furnace slag waste heat recovery system

    International Nuclear Information System (INIS)

    Duan, Wenjun; Yu, Qingbo; Wang, Kun; Qin, Qin; Hou, Limin; Yao, Xin; Wu, Tianwei

    2015-01-01

    Highlights: • An integrated system of coal gasification with slag waste heat recovery was proposed. • The goal of BF slag heat saving and emission reduction was achieved by this system. • The optimal parameters were obtained and the waste heat recovery rate reached 83.08%. • About 6.64 kmol/min syngas was produced when using one ton BF slag to provide energy. - Abstract: This article presented a model for the system of coal gasification with steam and blast furnace slag waste heat recovery by using the ASPEN Plus as the simulating and modeling tool. Constrained by mass and energy balance for the entire system, the model included the gasifier used to product syngas at the chemical equilibrium based on the Gibbs free energy minimization approach and the boiler used to recover the heat of the blast furnace slag (BF slag) and syngas. Two parameters of temperature and steam to coal ratio (S/C) were considered to account for their impacts on the Datong coal (DT coal) gasification process. The carbon gasification efficiency (CE), cold gasification efficiency (CGE), syngas product efficiency (PE) and the heating value of syngas produced by 1 kg pulverized coal (HV) were adopted as the indicators to examine the gasification performance. The optimal operating temperature and S/C were 800 °C and 1.5, respectively. At this condition, CE reached above 90% and the maximum values of the CGE, PE and HV were all obtained. Under the optimal operating conditions, 1000 kg/min BF slag, about 40.41 kg/min DT pulverized coal and 77.94 kg/min steam were fed into the gasifier and approximate 6.64 kmol/min syngas could be generated. Overall, the coal was converted to clean syngas by gasification reaction and the BF slag waste heat was also recovered effectively (reached up to 83.08%) in this system, achieving the objective of energy saving and emission reduction

  14. Upgraded coal interest group. Quarterly report, July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W. [Electric Power Research Inst., Chattanooga, TN (United States); Lebowitz, H.E. [Fossil Fuel Sciences, Palo Alto, CA (United States)

    1995-12-31

    The objectives of the Upgraded Coal Interest Group (UCIG) are as follows: Review and update the status of various coal upgrading technologies and developments and critically assess the results. Perform engineering screening analyses on various coal upgrading approaches. Perform commercialization analyses that will promote the availability and use of upgraded coal products by quantifying the benefits of using them. Identify market opportunities for introduction of upgraded coals. Perform critical analyses on a variety of coals and technologies in areas important to users but not readily available. Perform critical experiments which will show the differences between technologies.

  15. Coal gasification in Europe

    International Nuclear Information System (INIS)

    Furfari, S.

    1992-01-01

    This paper first analyzes European energy consumption and supply dynamics within the framework of the European Communities energy and environmental policies calling for the increased use of natural gas, reduced energy consumption, promotion of innovative renewable energy technologies, and the reduction of carbon dioxide emissions. This analysis evidences that, while, at present, the increased use of natural gas is an economically and environmentally advantageous policy, as well as, being strategically sound (in view of Middle East political instability), fuel interchangeability, in particular, the option to use coal, is vital to ensure stability of the currently favourable natural gas prices and offer a locally available energy alternative to foreign supplied sources. Citing the advantages to industry offered by the use of flexible, efficient and clean gaseous fuels, with interchangeability, the paper then illustrates the cost and environmental benefits to be had through the use of high efficiency, low polluting integrated gasification combined-cycle power plants equipped to run on a variety of fuels. In the assessment of technological innovations in this sector, a review is made of some of the commercially most promising gasification processes, e.g., the British Gas-Lurgi (BGL) slagging gasifier, the high-temperature Winkler (HTW) Rheinbraun, and the Krupp Koppers (PRENFLO) moving bed gasifier processes

  16. Coal gasification in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Furfari, S [Commissione delle Comunita' Europee, Bruxelles (Belgio). Direzione Generale dell' Energia, Direzione delle Tecnologie

    1992-02-01

    This paper first analyzes European energy consumption and supply dynamics within the framework of the European Communities energy and environmental policies calling for the increased use of natural gas, reduced energy consumption, promotion of innovative renewable energy technologies, and the reduction of carbon dioxide emissions. This analysis evidences that, while, at present, the increased use of natural gas is an economically and environmentally advantageous policy, as well as, being strategically sound (in view of Middle East political instability), fuel interchangeability, in particular, the option to use coal, is vital to ensure stability of the currently favourable natural gas prices and offer a locally available energy alternative to foreign supplied sources. Citing the advantages to industry offered by the use of flexible, efficient and clean gaseous fuels, with interchangeability, the paper then illustrates the cost and environmental benefits to be had through the use of high efficiency, low polluting integrated gasification combined-cycle power plants equipped to run on a variety of fuels. In the assessment of technological innovations in this sector, a review is made of some of the commercially most promising gasification processes, e.g., the British Gas-Lurgi (BGL) slagging gasifier, the high-temperature Winkler (HTW) Rheinbraun, and the Krupp Koppers (PRENFLO) moving bed gasifier processes.

  17. Evaluation of 450-MWe BGL GCC power plants fueled with Pittsburgh No. 8 coal

    International Nuclear Information System (INIS)

    Pechtl, P.A.; Chen, T.P.; Thompson, B.H.; Greil, C.F.; Niermann, S.E.; Jandrisevits, M.

    1992-11-01

    In this study, a conceptual design and cost estimate were developed for a nominal 450 MW integrated gasification combined cycle plant using the British Gas/Lurgi slagging gasification process. The present study is a design update of a previous study (EPRI Report AP-6011). The major design improvements incorporated include use of the latest GE 7F gas turbine rating, integrating the air separation plant with gas turbine, use of fuel gas saturation for NO x control, use of treated gasifier waste water as makeup water for the fuel gas saturation, and several process changes in the acid gas removal and sulfur recovery areas. Alternate design options for feeding the excess coal fines to the gasifier, treating the gasifier waste water, and the use of conventional air separation without integration with gas turbine were evaluated. The design improvements incorporated were found to increase significantly the overall plant efficiency and reduce the cost reported in the previous study. The various design options evaluated were found to have significant impacts on the plant efficiency but negligible impacts on the cost of electricity

  18. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  19. Japan's New Sunshine Project. 1994 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This paper summarizes the report for fiscal 1994 on research and development related to coal liquefaction and gasification. In the research and development of coal liquefaction technologies, reports were given on research of liquefaction characteristics of different coals and liquefaction process thereof, and on research of catalysts for the coal liquefaction. In the research and development of coal gasification technologies, reports were given on fundamental studies on gasification characteristics of different coals. In the research and development of liquefaction technologies for bituminous coal, reports were given on design, construction and operation of a bituminous coal liquefaction pilot plant with a capacity of 150 t/d, and the operation supporting studies on the pilot plant. In the fundamental research on the coal liquefaction process, reports were given on refining technologies and utilization of the refined materials, and studies on environment preservation in applying the coal liquefaction technologies. In the research on hydrogen manufacturing technologies by using the fundamental coal technology, reports were given on design, construction and operational studies of a pilot plant. In the research and development of the coal gasification technologies, reports were given on development of a jet-flow gasified coal electric power plant, selection of coals, and development of a data processing system. (NEDO)

  20. Sampling/classification of gasifier particulates

    International Nuclear Information System (INIS)

    Wegrzyn, J.

    1984-01-01

    A high temperature and pressure real time extractive sampling probe for particulate monitoring was built at Brookhaven National Laboratory and tested on Morgantown Energy Technology Center's 42 inch fixed bed gasifier. The probe was specifically designed for the conditions of highly loaded particulate and condensable streams, that exist at the outlet of a fixed bed gasifier. Some of the salient features of the probe are: porous tube gas injection, aerodynamic particle classification in the presence of condensable vapors, β gauge particle detection, and micro processor control. Three of the key design problems were the separation of the particles from the vapor without promoting condensation, the prevention of plugging, and real time monitoring. Some plugging did occur over the seven day sampling period, but by over pressurizing and back purging the clog was blown back into the process stream. The tests validate the proof of concept of the sampling probe and indicated that the particulate output from the bed came in the form of bursts (several minutes in duration) rather than in the form of a steady stream

  1. Energetic, ecologic and fluid-dynamic analysis of a fluidized bed gasifier operating with sugar cane bagasse

    International Nuclear Information System (INIS)

    Diniz Filho, Paulo Tasso; Silveira, Jose Luz; Tuna, Celso Eduardo; Lamas, Wendell de Queiroz

    2013-01-01

    This work aims to study the thermodynamic, ecological and fluid-dynamic aspects of a circulating fluidized bed gasifier using sugar cane bagasse as biomass, in order to estimate a model of its normal operation. In the initial stage was analysed the composition of biomass selected (sugar cane bagasse) and its lower heating value (LHV) was calculated. The energy balance of the gasifier was done, being the volumetric flow of air, synthesis gas and biomass estimated. Also the power produced by this gasifier was theoretically estimated. Then the circulating fluidized bed gasifier was designed for operation with approximately 100 kg/h of processed biomass. Cross-sectional area of the reactor, feeder size, diameter of the exit zone of the gases and minimum height of the expanded bed were selected. Some bed gasifier hydrodynamic factors were also studied. The minimum fluidization velocity, fluidization terminal velocity, and average fluidizing velocity were calculated, in order to understand the fluid-dynamic behaviour of gasification of this fuel. It was obtained a theoretical model that can support a possible prototype of circulating fluidized bed gasifier biomass. Finally, there were studied the ecological aspects of the gasifier, through an overall methodology. Ecological efficiencies were estimated for two scenarios: first considering the carbon cycle and thereafter disregarding the carbon cycle. In both cases, it can be proved the ecological viability of the project. -- Highlights: • we develop a methodology to size a fluidized bed gasifier. • we validate this methodology comparing to a fixed bed gasifier values. • we aggregate ecological efficiency to this methodology

  2. Self-ignition of coal during in-situ gasification. Thermoanalytical investigations. Selbstentzuendung von Kohlen bei der Untertagevergasung. Thermoanalytische Untersuchungen

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J O

    1986-01-10

    The underground gasification of deep coal strata via boreholes presupposes flow ways for the gasifying agent and the gasified media with a sufficiently high degree of permeability. Canal burning during countercurrent flow in low depths has been tested as a technical method for linking boreholes and enhancing gas permeability. For the execution of in situ gasification the control or prevention of the spontaneous ignition of the coal under high pressure should not be ignored, because of self-ignition resulting from canal burning in the linking phase. To investigate enthalpy change during the oxidation of coal under various conditions, a device for differential thermal analysis (DTA) was developed and constructed with which temperature development as a result of oxidation in a flowing pressure-gas atmosphere could be observed. A caloric calibration of the device permitted a direct inference of enthalpic difference from differential thermal potential as a measured value. With a regression model for reaction kinetics, the intensity of heat development was linked with kinetic data; this permitted a description of the dependence of the oxidation process on temperature and material concentration. From the interconnections discovered between the carbonization degree and enthalpy change during oxidation we may conclude that the oxidation process is controlled by the emergence of thermal decomposition products. The heat tonality diagram of the DTA of coal oxidation can be divided into three phases and interpreted in connection with the different degrees of carbonization. The results of the investigation reveal that inactivation of the coal before the actual process of linking is of considerable importance. (MOS).

  3. Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler; Swanson, Michael

    2012-04-30

    The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology® (NCHT®) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRI’s coal-upgrading/gasification technology for subbituminous and lignite coals in the EERC’s TRDU. This gasifier fires nominally 200–500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRI’s patent-pending coalupgrading/ gasification technology in the EERC’s TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.

  4. The production of synthetic material gas (SNG) from pit coal by a combined auto-allothermic steam gasification

    International Nuclear Information System (INIS)

    Buch, A.

    1975-01-01

    The steam gasification of pit coal requires temperatures which cannot yet be reached with the present state of HTGR technology for material technical reasons. The use of nuclear heat thus remains limited to some fields of application outside the gasifier, which are specified. The production costs of synthetic natural gas from autothermal gasification on the one hand, and from combined auto-allothermal gasification on the other hand are calculated considering the heat price of pit coal and of the selling price of electrical energy and are compared. (GG/LH) [de

  5. Molecular accessibility in solvent swelled coals. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1993-02-01

    An EPR technique developed in this lab is being used to determine the pore size and number distribution changes after swelling the coal samples with various solvents. Stable nitroxide radical spin probes of different sizes, shapes and reactivity are dissolved in an appropriate solvent, the coal sample is added to the resulting solution, stirred over night at elevated temperature, filtered, washed with a non swelling solvent to eliminate any spin probes that are not trapped in the pores and the spin concentration is measured. Comparing these spin probe measurements to DRIFT data have shown that the relative number distribution of acidic functionalities can be accurately predicted by the spin probe method. The spin probe method had also been used to predict the increase in elongated voids in Pittsburgh No. 8 (APCS No. 4) upon swelling with pyridine in agreement with independent SANS data. NMR relaxation data show that it is possible to deduce the pore (accessibility) distribution as a function of size (up to 6 mn). It has also been possible by variable temperature and ENDOR measurements to determine the presence of hydrogen bonding as a function of pore shape and size. The advantage of the EPR method is that it permits molecules of selected shape and size to be used as probes of accessible regions of coal, thus providing information on the importance of molecular shape.

  6. Modelling of a downdraft gasifier fed by agricultural residues

    International Nuclear Information System (INIS)

    Antonopoulos, I.-S.; Karagiannidis, A.; Gkouletsos, A.; Perkoulidis, G.

    2012-01-01

    Highlights: ► Development of software for downdraft gasification simulation. ► Prediction of the syngas concentration. ► Prediction of the syngas heating value. ► Investigation of the temperature effect in reduction zone in syngas concentration. - Abstract: A non-stoichiometric model for a downdraft gasifier was developed in order to simulate the overall gasification process. Mass and energy balances of the gasifier were calculated and the composition of produced syngas was predicted. The capacity of the modeled gasifier was assumed to be 0.5 MW, with an Equivalence Ratio (EQ) of 0.45. The model incorporates the chemical reactions and species involved, while it starts by selecting all species containing C, H, and O, or any other dominant elements. Olive wood, miscanthus and cardoon were tested in the formulated model for a temperature range of 800–1200 °C, in order to examine the syngas composition and the moisture impact on the supplied fuel. Model results were then used in order to design an olive wood gasification reactor.

  7. A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

    International Nuclear Information System (INIS)

    Mike Bockelie; Dave Swensen; Martin Denison

    2002-01-01

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, our efforts have become focused on developing an improved workbench for simulating a gasifier based Vision 21 energyplex. To provide for interoperability of models developed under Vision 21 and other DOE programs, discussions have been held with DOE and other organizations developing plant simulator tools to review the possibility of establishing a common software interface or protocol to use when developing component models. A component model that employs the CCA protocol has successfully been interfaced to our CCA enabled workbench. To investigate the software protocol issue, DOE has selected a gasifier based Vision 21 energyplex configuration for use in testing and evaluating the impacts of different software interface methods. A Memo of Understanding with the Cooperative Research Centre for Coal in Sustainable Development (CCSD) in Australia has been completed that will enable collaborative research efforts on gasification issues. Preliminary results have been obtained for a CFD model of a pilot scale, entrained flow gasifier. A paper was presented at the Vision 21 Program Review Meeting at NETL (Morgantown) that summarized our accomplishments for Year One and plans for Year Two and Year Three

  8. The R.D.F. gasifier of Florentine area

    Energy Technology Data Exchange (ETDEWEB)

    Barducci, G. [Studio Tecnico di Ingegneria Ambientale, Firenze (Italy)

    1993-12-31

    L.E.G. (Low Energy Gas) from large biomass gasification plants, to be used as a fuel for electricity production, is a suitable means for adding value -- from an energetic point of view -- to the R.D.F. (Refuse Derived Fuel) and to the agricultural and forestry residues. R.D.F. can be converted to a clean gas turbine fuel by gasification that consists in a partial combustion with oxygen or air and steam. In that sense it seems worthwhile to analyze the capacity of a gasifier such as the Greve in Chianti`s recirculating fluidized bed gasifier. The world`s first full-scale R.D.F. gasification plant has been designed in Florence; it is now realized in Greve in Chianti and, at the moment, is starting the industrial management. The plant is designed to gasify 200 t/d of pelletized R.D.F. producing about 17.000/19.000 Nmc/h of low energy gas (LEG) with a net calorific value (NCV) of about 5 MJ/Nmc and a total energy content (at the outlet of the gasifiers) of about 7.5 MJ/Nmc. The produced LEG will be partly burned on site for power production while partly will be cooled, dedusted and transported to the kiln of the adjacent cement factory. The design idea of R.D.F. gasification starts from field of waste treatment and recycling and develops new, advanced technical and economical sinergy with the field of industrial production and electric power generation. The gasification of fuels derived from selected wastes (and/or industrial refuse) and the exploitation of the lean gas produced is the most advanced point in the development of heat conversion processes.

  9. Short-term energy outlook, quarterly projections, second quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections. The details of these projections, as well as monthly updates, are available on the Internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The paper discusses outlook assumptions; US energy prices; world oil supply and the oil production cutback agreement of March 1998; international oil demand and supply; world oil stocks, capacity, and net trade; US oil demand and supply; US natural gas demand and supply; US coal demand and supply; US electricity demand and supply; US renewable energy demand; and US energy demand and supply sensitivities. 29 figs., 19 tabs.

  10. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    International Nuclear Information System (INIS)

    Lissianski, Vitali V.; Loc Ho; Maly, Peter M.; Zamansky, Vladimir M.

    2002-01-01

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The FFR can be retrofit to existing boilers and can be configured in several ways depending on the boiler, coal characteristics, and NO x control requirements. Fly ash generated by the technology will be a saleable byproduct for use in the cement and construction industries. FFR can also reduce NO x by 60%-70%, achieving an emissions level of 0.15 lb/10 6 Btu in many coal-fired boilers equipped with Low NO x Burners. Total process cost is expected to be one third to one half of that for Selective Catalytic Reduction (SCR). Activities during reporting period included design, manufacture, assembly, and shake down of the coal gasifier and pilot-scale testing of the efficiency of coal gasification products in FFR. Tests were performed in a 300 kW Boiler Simulator Facility. Several coals with different volatiles content were tested. Data suggested that incremental increase in the efficiency of NO x reduction due to the gasification was more significant for less reactive coals with low volatiles content. Experimental results also suggested that the efficiency of NO x reduction in FFR was higher when air was used as a transport media. Up to 14% increase in the efficiency of NO x reduction in comparison with that of basic reburning was achieved with air transport. Temperature and residence time in the gasification zone also affected the efficiency of NO x reduction

  11. High Performance Gasification with the Two-Stage Gasifier

    DEFF Research Database (Denmark)

    Gøbel, Benny; Hindsgaul, Claus; Henriksen, Ulrik Birk

    2002-01-01

    , air preheating and pyrolysis, hereby very high energy efficiencies can be achieved. Encouraging results are obtained at a 100 kWth laboratory facility. The tar content in the raw gas is measured to be below 25 mg/Nm3 and around 5 mg/Nm3 after gas cleaning with traditional baghouse filter. Furthermore...... a cold gas efficiency exceeding 90% is obtained. In the original design of the two-stage gasification process, the pyrolysis unit consists of a screw conveyor with external heating, and the char unit is a fixed bed gasifier. This design is well proven during more than 1000 hours of testing with various...... fuels, and is a suitable design for medium size gasifiers....

  12. Simulation of the biomass updraft gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Teislev, B.

    2006-07-15

    A consistent (steady state, one-dimensional) mathematical model for a biomass updraft gasifier has been developed based on mass- and energy balances and assuming ideal mixtures of gases and solids. The gases considered are 0{sub 2}, N{sub 2}, H{sub 2}O, CO{sub 2}, H{sub 2}, CO, CH{sub 4} and TAR and the solids are Ash, Carbon, dry Wood and HzO moisture and described by their partial densities in the gasifier bed, together with their axial velocities and temperature. The processes considered are Carbon Oxidation, H{sub 2}0 and CO{sub 2} reduction, the Water Gas Shift process, dry Wood Pyrolysis and Moist Biomass Drying and are described by their temperature and concentration dependant reaction rates. The same mathematical formulation is used throughout the reactor and the methodology used is to solve the resulting 16 partial and algebraic equations (with 16 variables, 8 gaseous partial densities, 4 solids partial densities, 2 velocities and 2 temperatures) in a Newton-Raphson approach using variable length of the integration step. The transition through oxidation and reduction and the passage through the drying zone has been preliminary verified to be in accordance with experimental evidence, but the software developed has not yet been able to describe the transition to pyrolysis and drying and therefore, the final product gas composition from the updraft gasifier has not been verified (apart from verification using a zero-dimensional model). For use in further work an Addendum describing the approach in the form of a 'pseudo code' (including several comments for readers not conversant with the programming language used in the present work - Visual Basic) is included. (au)

  13. Comprehensive report to Congress Clean Coal Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    This project will demonstrate Integrated Gasification Combined Cycle (IGCC) technology in a commercial application by the repowering of an existing City Water, Light and Power (CWL P) Plant in Springfield, Illinois. The project duration will be 126 months, including a 63-month demonstration period. The estimated cost of the project is $270,700,000 of which $129,357,204 will be funded by DOE. The IGCC system will consist of CE's air-blown, entrained-flow, two-stage, pressurized coal gasifier; an advanced hot gas cleanup process; a combustion turbine modified to use low Btu coal gas; and all necessary coal handling equipment. An existing 25-MWe steam turbine and associated equipment will also be part of the IGCC system. The result of repowering will be an IGCC power plant with low environmental emissions and high net plant efficiency. The repowering will increase plant output by 40 MWe through addition of the combustion turbine, thus providing a total IGCC capacity of a nominal 65 MWe. 3 figs., 2 tabs.

  14. Theoretical study on composition of gas produced by coal gasification; Sekitan gas ka de seiseisuru gas no sosei ni kansuru kosatsu (HYCOL data no doteki kaiseki)

    Energy Technology Data Exchange (ETDEWEB)

    Kaiho, M.; Yasuda, H.; Kobayashi, M.; Yamada, O.; Soneda, Y.; Makino, M. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    In relation to considerations on composition of gas produced by coal gasification, the HYCOL hydrogen generation process data were analyzed. From the fact that CO concentration (Y) decreases linearly with CO2 concentration (X), element balance of gasification of reacted coal was used to introduce a reaction analysis equation. The equation includes a term of oxygen excess {Delta}(amount of oxygen consumed for combustion of CO and H2 in excess of the theoretical amount), derived by subtracting the stoichiometric oxygen amount used to gasify coal into CO and H2 from the consumed oxygen amount. The {Delta} can be used as a reference to oxygen utilization efficiency. An equation for the {Delta} was introduced. Also introduced was a term for steam decomposition amount derived by subtracting the generated steam from the supplied steam. These terms may be used as a clue to permeate into the gasifying reaction process. This suggestion was discussed by applying the terms to gas composition value during operation. According to the HYCOL analysis, when a gasification furnace is operated at higher than the reference oxygen amount, coal supply variation is directly reflected to the combustion reaction, making the {Delta} distribution larger. In an inverse case, unreacted carbon remains in the furnace due to oxygen shortage, and shift reaction may occur more easily even if oxygen/coal supply ratio varies. 6 figs., 1 ref.

  15. Operation of a semi-technical pilot plant for nuclear aided steam gasification of coal

    International Nuclear Information System (INIS)

    Kirchhoff, R.; Heek, K.H. van; Juentgen, H.; Peters, W.

    1984-01-01

    After intensive investigations on a small scale, the principle of the process has been tested in a semi-technical pilot plant. In its gasifier a fluidized bed of approx. 1 m 2 cross-section and of up to 4 m height is operated at 40 bar. Heat is supplied to the bed from an immersed heat exchanger with helium flowing through it, which is heated electrically. The plant was commissioned in 1976 and has been in hot operation for approx. 23000 h, over 13000 h whereof account for coal gasification. Roughly 1600 t of coal have been put through. During recent years the processing of German caking long-flame gas coal and the marked improvement of the process by the use of catalysts have been demonstrated successfully. (orig.)

  16. Possibilities of using pulverized non coking coals in ironmaking

    Energy Technology Data Exchange (ETDEWEB)

    Wijk, Olle; Mathiesen, Mihkel; Eketorp, Sven

    1977-08-01

    The use of pulverized coal in iron making suggests solutions to the mounting problems created by the increasing scarcity of coking coals, and other fossil fuels such as oil and natural gas. The unavailability of coke can be met with two principally different measures. Blast furnace coke rates can be decreased by substituting injected pulverized coal or other carbon containing fuels for part of the coke burden, and the coke itself may be substituted by formed coke. A more radical solution is to abandon the blast furnace process, and instead produce the raw iron in processes not requiring coke. Two such processes are discussed in the paper, the Inred process, developed by Boliden Kemi AB, Sweden, and the smelting reduction process by means of injection, currently being developed at the Royal Institute of Technology in Stockholm. Both processes have potential advantages over the coke oven/sintering plant/blast furnace-complex especially concerning energy requirements and structure, but also in economical terms. The injection process seems to present a further advantage in the possibility of gasifying coal in the process, thus yielding a synthesis gas for methanol production in addition to the raw iron.

  17. Applications of micellar enzymology to clean coal technology. Second quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, C.T.

    1990-04-27

    This project is designed to develop methods for pre-combustion coal remediation by implementing recent advances in enzyme biochemistry. The novel approach of this study is incorporation of hydrophilic oxidative enzymes in reverse micelles in an organic solvent. Enzymes from commercial sources or microbial extracts are being investigated for their capacity to remove organic sulfur from coal by oxidation of the sulfur groups, splitting of C-S bonds and loss of sulfur as sulfuric acid. Dibenzothiophene (DBT) and ethylphenylsulfide (EPS) are serving as models of organic sulfur-containing components of coal in initial studies.

  18. The prediction and representation of phase equilibria and physicochemical properties in complex coal ash slag systems

    Energy Technology Data Exchange (ETDEWEB)

    E. Jak; A. Kondratiev; S. Christie; P.C. Hayes [Centre for Coal in Sustainable Development (CCSD), Brisbane (Australia)

    2003-07-01

    A range of problems in coal utilisation technologies, including ash slag flow in slagging gasifiers, deposit formation, slagging, fouling, fusibility tests, fluxing, blending etc, are related to the melting behaviour of the mineral matter in the coal. To assist with solving these practical issues i) thermodynamic modelling of phase equilibria, and ii) viscosity modelling studies are being undertaken at the Pyrometallurgy Research Centre (The University of Queensland, Australia) with support from the Collaborative Research Centre for Coal in Sustainable Development (CCSD). The thermodynamic modelling has been carried out using the computer system FactSage, which is used for the calculation of multi-phase slag / solid / gas / matte / alloy / salt equilibria in multi-component systems of industrial interest. A modified quasi-chemical solution model is used for the liquid slag phase. New model optimisations have been carried out, which have significantly improved the accuracy of the thermodynamic models for coal combustion processes. Viscosity modelling, using a modified Urbain formalism, is carried out in conjunction with FactSage calculations to predict the viscosities of fully liquid as well as heterogeneous, partly crystallised slags. Custom designed software packages are developed using these fundamental models for wider use by industrial researchers and engineers, and for incorporation as process control modules. The new custom-designed computer software package can be used to produce limiting operability diagrams for slag systems. These diagrams are used to describe phase equilibria and physico-chemical properties in complex slag systems. The approach is illustrated with calculations on the system SiO{sub 2}-Al{sub 2}O{sub 3}-FeO-Fe{sub 2}O{sub 3}-CaO at metallic iron saturation, slags produced in coal slagging gasifiers. 28 refs., 7 figs., 1 tab.

  19. Development of Mercury and Hydrogen Chloride Emission Monitors for Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    G. Norton; D. Eckels; C. Chriswell

    2001-02-26

    The gas conditioning issues involved with coal gasification streams are very complex and do not have simple solutions. This is particularly true in view of the fact that the gas conditioning system must deal with tars, high moisture contents, and problems with NH{sub 3} without affecting low ppb levels of Hg, low levels (low ppm or less) of HCl, or the successful operation of conditioner components and analytical systems. Those issues are far from trivial. Trying to develop a non-chemical system for gas conditioning was very ambitious in view of the difficult sampling environment and unique problems associated with coal gasification streams. Although a great deal was learned regarding calibration, sample transport, instrumentation options, gas stream conditioning, and CEM design options, some challenging issues still remain. Sample transport is one area that is often not adequately considered. Because of the gas stream composition and elevated temperatures involved, special attention will need to be given to the choice of materials for the sample line and other plumbing components. When using gas stream oxidation, there will be sample transport regions under oxidizing as well as reducing conditions, and each of those regions will require different materials of construction for sample transport. The catalytic oxidation approach worked well for removal of tars and NH{sub 3} on a short term basis, but durability issues related to using the catalyst tube during extended testing periods still require study.

  20. FY 1992 report on the results of the development of an entrained bed coal gasification power plant. Part 3. Operation test of pilot plant (1/2); 1992 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 3. Pilot plant unten shiken hen (1/2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    The study of operation test was made of the 200 t/d entrained bed coal gasification pilot plant that was constructed with the aim of establishing technology of the integrated coal gasification combined cycle power generation, and the details of the FY 1992 results were summarized. At RUN 10, conducted were the confirmation of the quantity of state of gasifier in the coal-fired high load operation and coal-fired constant load operation, and slagging survey. At RUN 11, the evaluation made after the work for prevention of slagging, and confirmation of the quantity of state of gasifier at a load of 80% heat input. At RUN 12, the evaluation of the measures taken against slagging, and test on the high load stable operation. At RUN 13, the evaluation of the measures taken against slagging, and large combustor response/total pressure control response tests. At RUN D1, test on the change of coal kind from A coal to D coal, and test on the initial adjusting operation of D coal. In the trial operation of these, the following were generated and the preventive measures were studied: impossibility of circulation of desulfurizing agent in gas refining facilities (dry desulfurizing system), bolt fracture of gas refining facilities (separator of dedusting facilities). (NEDO)

  1. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Doug Strickland; Albert Tsang

    2002-10-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis

  2. Simulation of the biomass updraft gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Teislev, B.

    2006-07-15

    A consistent (steady state, one-dimensional) mathematical model for a biomass updraft gasifier has been developed based on mass- and energy balances and assuming ideal mixtures of gases and solids. The gases considered are 0{sub 2}, N{sub 2}, H{sub 2}0, CO{sub 2}, H{sub 2}, CO, CH{sub 4} and TAR and the solids are Ash, Carbon, dry Wood and H{sub 2}O moisture and described by their partial densities in the gasifier bed - together with their axial velocities and temperature. The processes considered are Carbon Oxidation, H{sub 2}0 and CO{sub 2} reduction, the Water Gas Shift process, dry Wood Pyrolysis and Moist Biomass Drying and are described by their temperature and concentration dependant reaction rates. The same mathematical formulation is used throughout the reactor and the methodology used is to solve the resulting 16 partial and algebraic equations (with 16 variables - 8 gaseous partial densities, 4 solids partial densities, 2 velocities and 2 temperatures) in a Newton-Raphson approach using variable length of the integration step. The transition through oxidation and reduction and the passage through the drying zone has been preliminary verified to be in accordance with experimental evidence, but the software developed has not yet been able to describe the transition to pyrolysis and drying and therefore, the final product gas composition from the updraft gasifier has not been verified (apart from verification using a zero-dimensional model). For use in further work an Addendum describing the approach in the form of a 'pseudo code' (including several comments for readers not conversant with the programming language used in the present work - Visual Basic) is included. (au)

  3. Modeling and Prediction of Coal Ash Fusion Temperature based on BP Neural Network

    Directory of Open Access Journals (Sweden)

    Miao Suzhen

    2016-01-01

    Full Text Available Coal ash is the residual generated from combustion of coal. The ash fusion temperature (AFT of coal gives detail information on the suitability of a coal source for gasification procedures, and specifically to which extent ash agglomeration or clinkering is likely to occur within the gasifier. To investigate the contribution of oxides in coal ash to AFT, data of coal ash chemical compositions and Softening Temperature (ST in different regions of China were collected in this work and a BP neural network model was established by XD-APC PLATFORM. In the BP model, the inputs were the ash compositions and the output was the ST. In addition, the ash fusion temperature prediction model was obtained by industrial data and the model was generalized by different industrial data. Compared to empirical formulas, the BP neural network obtained better results. By different tests, the best result and the best configurations for the model were obtained: hidden layer nodes of the BP network was setted as three, the component contents (SiO2, Al2O3, Fe2O3, CaO, MgO were used as inputs and ST was used as output of the model.

  4. Possibility study of gasifier with axial circulating flue gas for reducing Tar

    Science.gov (United States)

    Poowadin, T.; Polsongkram, M.; Khantikomol, P.

    2018-01-01

    This present research article aims to study the possibility of gasification by axial core flue gas circulating kiln and find the efficiency of syngas production. An axial core flue gas circulating tube was installed in the center of the updraft gasifier in purposing of tar reducing. In the present study, the eucalyptus wood chip 4, 8, and 10 kg with the moisture content 16% were examined. Several type-K thermocouples were employed to measure the temperatures at preheat, combustion, reduction, pyrolysis, drying, and gas outlet zone. The results showed that the temperatures in the combustion and the reduction zone of the kiln with the axial core flue gas recirculating were lower than the kiln without the core owing to installing the core would reduce the combustion zone area in biomass burning. Obviously, the temperature in the pyrolysis and drying zone were nearly the same as both with and without the core. In consideration of syngas components, it was found that CO production from the gasifier with the core was higher than the gasifier without the core about 25%. Other gases, however, were almost same. The syngas production efficiency obtained from the gasifier with the core decreased with increasing the mass of biomass. It showed that the highest efficiency was 30% at 4 kg supplying biomass. In comparison, the efficiencies of both the kilns with and without the core were not different. For liquid product, the amount of liquid decreased about 47.23% comparing with the gasifier without the core.

  5. Detailed model for practical pulverized coal furnaces and gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Philips, S.D.; Smoot, L.D.

    1989-08-01

    The need to improve efficiency and reduce pollutant emissions commercial furnaces has prompted energy companies to search for optimized operating conditions and improved designs in their fossil-fuel burning facilities. Historically, companies have relied on the use of empirical correlations and pilot-plant data to make decisions about operating conditions and design changes. The high cost of collecting data makes obtaining large amounts of data infeasible. The main objective of the data book is to provide a single source of detailed three-dimensional combustion and combustion-related data suitable for comprehensive combustion model evaluation. Five tasks were identified as requirements to achieve the main objective. First, identify the types of data needed to evaluate comprehensive combustion models, and establish criteria for selecting the data. Second, identify and document available three-dimensional combustion data related to pulverized coal combustion. Third, collect and evaluate three-dimensional data cases, and select suitable cases based on selection criteria. Fourth, organize the data sets into an easy-to-use format. Fifth, evaluate and interpret the nature and quality of the data base. 39 refs., 15 figs., 14 tabs.

  6. FY 1989 report on the results of the development of the entrained bed coal gasification power plant. Part 3. Fabrication/installation of pilot plant (Fabrication/installation drawings and fabrication/installation pictures - 1/2); 1989 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 3. Pilot plant seisaku suetsuke hen (Seisaku suetsukezu oyobi seisaku suetsuke shashin) (1/2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, the fabrication, installation work, etc. were conducted of a 200t/d entrained bed coal gasification pilot plant, and drawings of fabrication/installation in the FY 1989 were summarized. In fabrication/installation drawings, drawings of the following were included: layout of the total system and the yard, gasifier facilities (assembly drawing of the pressure part of gasifier, drawing of machinery arrangement of gasifier facilities, system diagram of raw coal receiving device, system diagram of pulverized coal feed equipment, system diagram of char feed equipment, etc.), gas refining facilities - dry desulfurizer (assembly drawing of desulfurizing agent carrying filter, assembly drawing of regeneration tower filter, structural drawing of SO{sub 2} reduction tower filter, assembly drawing of start-up heater, etc.), gas refining facilities - dry dust removal system (assembly drawing of No.1 dust separation filter, installation drawing of elevator, etc.), gas turbine facilities (cross section of gas turbine, front view of gas turbine, structural cross section of gas turbogenerator, etc.), actual-pressure/actual-size combustor test equipment (structural drawing of test stand, structural drawing of exhaust temperature reduction device, assembly/sectioned drawing of low-pressure air compressor, etc.) (NEDO)

  7. Optimization of hydrogen and syngas production from PKS gasification by using coal bottom ash.

    Science.gov (United States)

    Shahbaz, Muhammad; Yusup, Suzana; Inayat, Abrar; Patrick, David Onoja; Pratama, Angga; Ammar, Muhamamd

    2017-10-01

    Catalytic steam gasification of palm kernel shell is investigated to optimize operating parameters for hydrogen and syngas production using TGA-MS setup. RSM is used for experimental design and evaluating the effect of temperature, particle size, CaO/biomass ratio, and coal bottom ash wt% on hydrogen and syngas. Hydrogen production appears highly sensitive to all factors, especially temperature and coal bottom ash wt%. In case of syngas, the order of parametric influence is: CaO/biomass>coal bottom ash wt%>temperature>particle size. The significant catalytic effect of coal bottom ash is due to the presence of Fe 2 O 3 , MgO, Al 2 O 3 , and CaO. A temperature of 692°C, coal bottom ash wt% of 0.07, CaO/biomass of 1.42, and particle size of 0.75mm are the optimum conditions for augmented yield of hydrogen and syngas. The production of hydrogen and syngas is 1.5% higher in the pilot scale gasifier as compared to TGA-MS setup. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Low and medium heating value coal gas catalytic combustor characterization

    Science.gov (United States)

    Schwab, J. A.

    1982-01-01

    Catalytic combustion with both low and medium heating value coal gases obtained from an operating gasifier was demonstrated. A practical operating range for efficient operation was determined, and also to identify potential problem areas were identified for consideration during stationary gas turbine engine design. The test rig consists of fuel injectors, a fuel-air premixing section, a catalytic reactor with thermocouple instrumentation and a single point, water cooled sample probe. The test rig included inlet and outlet transition pieces and was designed for installation into an existing test loop.

  9. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    International Nuclear Information System (INIS)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-01

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO(sub x) pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  10. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  11. Development of sustainable coal to liquid processes: Minimising process CO2 emissions

    Directory of Open Access Journals (Sweden)

    S. Kauchali

    2017-12-01

    Full Text Available Traditional coal-to-liquid (CTL plants are synonymous with the production of carbon dioxide. Coal may be gasified in the presence of steam and oxygen to produce gas comprising carbon dioxide (CO2, carbon monoxide (CO, methane (CH4, hydrogen (H2 and steam (H2O. The gases can be reacted to a myriad of chemicals and fuels via the Fischer-Tropsch (FT reaction. However, excess carbon dioxide is generated via the Water-Gas-Shift reaction during preparation of CO:H2 ratios for FT. Here, a process development is represented on a CHO phase diagram, where unique regions are identified for autothermal operations for coal conversion. Considerations are given to develop idealised processes for the production of liquid chemicals from coal which emit minimal process CO2, require minimal energy input and do not require steam. This is achieved by co-feeding coal with methane and identifying endothermic-exothermic process pairs for methane-coal dry reforming. Furthermore, it is shown that a preferred method to produce liquid fuels from coal is by first creating dimethyl ether (DME as an intermediate, followed by the dehydration of DME to liquid fuels (gasoline range. For this route, via DME, the CO2 emission was found to be four times less than idealised CTL processes. Keywords: Gasification, Reforming, Coal to liquid, Carbon dioxide, Autothermal, Fischer tropsch

  12. Staged fluidized-bed coal combustor for boiler retrofit

    International Nuclear Information System (INIS)

    Rehmat, A.; Dorfman, L.; Shibayama, G.; Waibel, R.

    1991-01-01

    The Advanced Staged Fluidized-Bed Coal Combustion System (ASC) is a novel clean coal technology for either coal-fired repowering of existing boilers or for incremental power generation using combined-cycle gas turbines. This new technology combines staged combustion for gaseous emission control, in-situ sulfur capture, and an ash agglomeration/vitrification process for the agglomeration/vitrification of ash and spent sorbent, thus rendering solid waste environmentally benign. The market for ASC is expected to be for clean coal-fired repowering of generating units up to 250 MW, especially for units where space is limited. The expected tightening of the environmental requirements on leachable solids residue by-products could considerably increase the marketability for ASC. ASC consists of modular low-pressure vessels in which coal is partially combusted and gasified using stacked fluidized-bed processes to produce low-to-medium-Btu, high-temperature gas. This relatively clean fuel gas is used to repower/refuel existing pulverized-coal, natural gas, or oil-fired boilers using bottom firing and reburning techniques. The benefits of ASC coal-fired repowering include the ability to repower boilers without obtaining additional space while meeting the more stringent environmental requirements of the future. Low NO x , SO x , and particulate levels are expected while a nonleachable solid residue with trace metal encapsulation is produced. ASC also minimizes boiler modification and life-extension expenditures. Repowered efficiencies can be restored to the initial operating plant efficiency, and the existing boiler capacity can be increased by 10%. Preliminary cost estimates indicate that ASC will have up to a $250/kW capital cost advantage over existing coal-fired repowering options. 4 figs., 4 tabs

  13. Prediction of the working parameters of a wood waste gasifier through an equilibrium model

    Energy Technology Data Exchange (ETDEWEB)

    Altafini, Carlos R.; Baretto, Ronaldo M. [Caxias do Sul Univ., Dept. of Mechanical Engineering, Caxias do Sul, RS (Brazil); Wander, Paulo R. [Caxias do Sul Univ., Dept. of Mechanical Engineering, Caxias do Sul, RS (Brazil); Federal Univ. of Rio Grande do Sul State (UFRGS), Mechanical Engineering Postgraduation Program (PROMEC), RS (Brazil)

    2003-10-01

    This paper deals with the computational simulation of a wood waste (sawdust) gasifier using an equilibrium model based on minimization of the Gibbs free energy. The gasifier has been tested with Pinus Elliotis sawdust, an exotic specie largely cultivated in the South of Brazil. The biomass used in the tests presented a moisture of nearly 10% (wt% on wet basis), and the average composition results of the gas produced (without tar) are compared with the equilibrium models used. Sensitivity studies to verify the influence of the moisture sawdust content on the fuel gas composition and on its heating value were made. More complex models to reproduce with better accuracy the gasifier studied were elaborated. Although the equilibrium models do not represent the reactions that occur at relatively high temperatures ( {approx_equal} 800 deg C) very well, these models can be useful to show some tendencies on the working parameter variations of a gasifier. (Author)

  14. CFD Analysis of Coal and Heavy Oil Gasification for Syngas Production

    DEFF Research Database (Denmark)

    Sreedharan, Vikram

    2012-01-01

    This work deals with the gasification of coal and heavy oil for syngas production using Computational Fluid Dynamics (CFD). Gasification which includes complex physical and chemical processes such as turbulence, multiphase flow, heat and mass transfer and chemical reactions has been modeled using...... phases. Gasification consists of the processes of passive heating, devolatilization, volatiles oxidation, char gasification and gas phase reactions. Attention is given here to the chemical kinetics of the gasification processes. The coal gasification model has been validated for entrained-flow gasifiers...... a discrete phase model. In this model, the continuous phase is described by Eulerian conservation equations and the discrete phase is described by tracking individual particles in a Lagrangian framework. A two-way coupling accounts for momentum, heat and mass transfer between the continuous and discrete...

  15. Thermodynamic Model for Updraft Gasifier with External Recirculation of Pyrolysis Gas

    Directory of Open Access Journals (Sweden)

    Fajri Vidian

    2016-01-01

    Full Text Available Most of the thermodynamic modeling of gasification for updraft gasifier uses one process of decomposition (decomposition of fuel. In the present study, a thermodynamic model which uses two processes of decomposition (decomposition of fuel and char is used. The model is implemented in modification of updraft gasifier with external recirculation of pyrolysis gas to the combustion zone and the gas flowing out from the side stream (reduction zone in the updraft gasifier. The goal of the model obtains the influences of amount of recirculation pyrolysis gas fraction to combustion zone on combustible gas and tar. The significant results of modification updraft are that the increases amount of recirculation of pyrolysis gas will increase the composition of H2 and reduce the composition of tar; then the composition of CO and CH4 is dependent on equivalence ratio. The results of the model for combustible gas composition are compared with previous study.

  16. Carbon formation and metal dusting in advanced coal gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

    1997-02-01

    The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

  17. URBAN WOOD/COAL CO-FIRING IN THE BELLEFIELD BOILERPLANT

    International Nuclear Information System (INIS)

    James T. Cobb, Jr.; Gene E. Geiger; William W. Elder III

    2001-01-01

    During the second quarter, important preparatory work was continued so that the experimental activities can begin toward the end of the third quarter or early in the fourth quarter. The Environmental Questionnaire was submitted to the U.S. DOE National Energy Technology Laboratory (NETL), after thorough review by the Bellefield Boiler Plant (BBP). Letters were submitted to the Allegheny County Health Department (ACHD) and the Pennsylvania Department of Environmental Protection (PADEP) to seek R and D variances for permits at the BBP, the J. A. Rutter Company (JARC), and Emery Tree Service (ETS) for their portion of the project. Memoranda of understanding were executed by the University of Pittsburgh (University) with the BBP, JARC and ETS. Construction wood was collected from Thompson Properties. Discussions were held with the BBP and Energy Systems Associates (ESA), the BBP's engineering consultant. Presentations describing the University of Pittsburgh Wood/Coal Co-Firing Program were provided to the American Chemical Society (ACS), the Federal Energy Management Program (FEMP), the Upgraded Coal Interest Group (UCIG) of the Electric Power Research Institute (EPRI), the Engineering Center for Environment and Energy (ECEE) of the University of Pittsburgh, the Pittsburgh Coal Conference (PCC), the Pennsylvania Ethanol Workshop, BioEnergy 2000 and the Kick-Off Meeting of the Biomass Cofiring Opportunities Solicitation Projects

  18. Research and development to prepare and characterize robust coal/biomass mixtures for direct co-feeding into gasification systems

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Larry [Inst. Of Gas Technology, Des Plaines, IL (United States); Farthing, William [Inst. Of Gas Technology, Des Plaines, IL (United States); Hoekman, S. Kent [Inst. Of Gas Technology, Des Plaines, IL (United States)

    2014-12-31

    This project was initiated on October 1, 2010 and utilizes equipment and research supported by the Department of Energy, National Energy Technology Laboratory, under Award Number DE- FE0005349. It is also based upon previous work supported by the Department of Energy, National Energy Technology Laboratory, under Award Numbers DOE-DE-FG36-01GOl1082, DE-FG36-02G012011 or DE-EE0000272. The overall goal of the work performed was to demonstrate and assess the economic viability of fast hydrothermal carbonization (HTC) for transforming lignocellulosic biomass into a densified, friable fuel to gasify like coal that can be easily blended with ground coal and coal fines and then be formed into robust, weather-resistant pellets and briquettes.

  19. Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs. Substantial progress in underground construction activities was achieved during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. MWK equipment at the grade level and the first tier are being set in the structure.

  20. Australian coal prospects and response to air quality issues

    International Nuclear Information System (INIS)

    Cain, D.A.

    1992-01-01

    Australia is unique in its high dependency on coal as a domestic energy source and as a major export commodity. Coal provides about 41% of Australia's primary energy and is the country's largest export. Australia's domestic air quality issues and standards are reviewed and current Australian research aimed at reducing emissions from both bituminous and brown coal combustion is summarized. Australia's greenhouse policy is also discussed. The future role of coal in the world, particularly in the Asia-Pacific region, where three quarters of Australia's coal exports are sold, is reviewed. Forecasts of the world import demand for both metallurgical coal and thermal coal to the year 2000 are provided. The supply capacity of major coal exporting countries in summarized and estimates of export coal market shares in 2000 given. Finally, the future of Australia's domestic use of coal is discussed, in the light of climate change concerns

  1. Coal marketing in Asia: Opportunities and challenges

    International Nuclear Information System (INIS)

    Klingner, D.

    1996-01-01

    In Asia, coal currently accounts for over 40 percent of the fossil fuel used for commercial energy. This paper briefly surveys the forces that are likely to decide the future role coal will play as a prime source of energy in the vigorous economies of Asia. As Australia is well placed to profit from Asia's growing need for coal, the challenge to Australian coal suppliers is how to maximize its potential contribution. Four-fifths of all new coal fired electrical generating capacity in the world in the next decade will be located in Asia. Three-quarters of Australia's coal exports are to Asian customers and, conversely, 40 percent of Asian imports are from Australia. Australian coal suppliers have established ties and a depth of marketing experience in the region on which to build. However, pricing policies, and the emergence of the private power producers, together with environmental pressures, will present challenges for the future. (author). 1 fig

  2. Biomass Power Generation through Direct Integration of Updraft Gasifier and Stirling Engine Combustion System

    Directory of Open Access Journals (Sweden)

    Jai-Houng Leu

    2010-01-01

    Full Text Available Biomass is the largest renewable energy source in the world. Its importance grows gradually in the future energy market. Since most biomass sources are low in energy density and are widespread in space, small-scale biomass conversion system is therefore more competitive than a large stand-alone conversion plant. The current study proposes a small-scale solid biomass power system to explore the viability of direct coupling of an updraft fixed bed gasifier with a Stirling engine. The modified updraft fixed bed gasifier employs an embedded combustor inside the gasifier to fully combust the synthetic gas generated by the gasifier. The flue gas produced by the synthetic gas combustion inside the combustion tube is piped directly to the heater head of the Stirling engine. The engine will then extract and convert the heat contained in the flue gas into electricity automatically. Output depends on heat input. And, the heat input is proportional to the flow rate and temperature of the flue gas. The preliminary study of the proposed direct coupling of an updraft gasifier with a 25 kW Stirling engine demonstrates that full power output could be produced by the current system. It could be found from the current investigation that no auxiliary fuel is required to operate the current system smoothly. The proposed technology and units could be considered as a viable solid biomass power system.

  3. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, G.P. [ed.

    1994-07-01

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  4. Simulation of the gasification of animal wastes in a dual gasifier using Aspen Plus®

    International Nuclear Information System (INIS)

    Fernandez-Lopez, M.; Pedroche, J.; Valverde, J.L.; Sanchez-Silva, L.

    2017-01-01

    Highlights: • The gasification of manure was evaluated using the software Aspen Plus®. • Composition and LHV of the obtained syngas depends on the operating conditions. • CO 2 net emissions for the steam and CO 2 gasification processes were calculated. • Manure steam gasification can be used as feedstock for Fischer-Tropsch. • Manure CO 2 gasification lead to a syngas suitable for energy production. - Abstract: The gasification of an animal waste biomass (manure) in a dual gasifier was studied using the software Aspen Plus®. For this purpose, a model based on a Gibbs free energy reactor was considered. Effects of the gasification temperature, the gasifying/biomass ratio and the use of steam and CO 2 as the gasifying agents on the composition and the low heating value (LHV) of the produced syngas were evaluated. In this sense, the H 2 /CO ratio and the LHV were the parameters calculated to stablish the best operating conditions for the production of either hydrocarbons via Fischer-Tropsch or energy. Furthermore, the CO 2 net emissions generated by the gasification process were also important in the selection of the best operating conditions from an environmental point of view. The obtained results showed that for both gasifying agents the H 2 and CO production was favoured at high temperatures whereas the production of CH 4 and CO 2 was favoured at low ones. On the other hand, the H 2 production was higher when steam was used as the gasifying agent and the formation of CO was enhanced when CO 2 was considered as gasification agent. An increase of the gasifying agent/biomass ratio had a negatively influence on the production of CH 4 , leading to a decrease of the LHV. Therefore, steam as the gasifying agent and high temperatures favoured the obtaining of a syngas suitable for the Fischer-Tropsch process whereas CO 2 and low gasification temperatures enhanced a syngas with a high LHV which could be used for energy production. Finally, the net CO 2

  5. Gasification of rice straw in a fluidized-bed gasifier for syngas application in close-coupled boiler-gasifier systems.

    Science.gov (United States)

    Calvo, L F; Gil, M V; Otero, M; Morán, A; García, A I

    2012-04-01

    The feasibility and operation performance of the gasification of rice straw in an atmospheric fluidized-bed gasifier was studied. The gasification was carried out between 700 and 850 °C. The stoichiometric air-fuel ratio (A/F) for rice straw was 4.28 and air supplied was 7-25% of that necessary for stoichiometric combustion. Mass and power balances, tar concentration, produced gas composition, gas phase ammonia, chloride and potassium concentrations, agglomeration tendencies and gas efficiencies were assessed. Agglomeration was avoided by replacing the normal alumina-silicate bed by a mixture of alumina-silicate sand and MgO. It was shown that it is possible to produce high quality syngas from the gasification of rice straw. Under the experimental conditions used, the higher heating value (HHV) of the produced gas reached 5.1 MJ Nm(-3), the hot gas efficiency 61% and the cold gas efficiency 52%. The obtained results prove that rice straw may be used as fuel for close-coupled boiler-gasifier systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Straw Gasification in a Two-Stage Gasifier

    DEFF Research Database (Denmark)

    Bentzen, Jens Dall; Hindsgaul, Claus; Henriksen, Ulrik Birk

    2002-01-01

    - and to maintain a high fuel reactivity, a mixture of phosphorus acid, calcium hydroxide, molasses and water was mixed into the ground pellets. Following the gasifier was running continuously for more than 50 hours as planned. Several tar, gas and particle measurements were carried out during the test, and the ash...

  7. Mathematic modulation of a simulation program for a coal and wood counter-current moving bed gasifier, which includes pyrolysis and drying processes and processes alternatives; Modelagem matematica e simulacao em computador de gaseificador de leito fixo contra-corrente para carvoes e biomassa com inclusao de processos de pirolise, secagem e alternativas do processo

    Energy Technology Data Exchange (ETDEWEB)

    Souza Santos, M.L. de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    1985-12-31

    A new version of a simulation program for coal and wood counter-current fixed bed gasifier has been completed and provides: all the principal information variables of the process throughout the bed as mass flow and composition for 13 gases and 6 solids, temperature of the gas and solid phases, reaction rates of combustion, gasification, pyrolysis and drying processes; composition, mass flow, temperature, combustion enthalpy and other produced gases physical and chemical properties; possibility of process alternatives analysis as volatiles recycling in order to eliminate tar, double withdrawn of gases and combinations. Comparisons between simulation and experimental results are presented. (author). 26 refs., 1 tab

  8. Coal conversion processes. Quarterly report, December 13, 1983-March 12, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.T. Jr.; Biloen, P.; Holder, G.D.; Klinzing, G.E.; Tierney, J.W.

    1984-05-01

    Experimental work is continuing on four separate projects related to coal conversion processes. The direct digital control of exothermic multiphase reactions is being studied in an experimental adiabatic flow reactor. The existence of two stable steady states for the Fischer-Tropsch reaction network at the same temperature and feed condition has been verified and quantified. Various absorbents for SO/sub 2/ and NO/sub X/ are being studied. The absorption of NO/sub 2/ by methanol and N-cyclohexyl-2-pyrrolidone has been extensively examined. Preliminary data have been obtained with triethylene-tetraamine. Hindered amines will be studied next. Procedures for the preparation of liquid membranes have been tested and the incorporation of hindered amines in them will now be examined. Isotopic switching is being used to study the way in which promoters affect supported metal catalysts. With improved resolution from the mass spectrometer, early quantitative results give indications of three different surface species and of non-statistical ingrowth of /sup 13/C into the product molecules. A program for the study of the extraction of coal and oil shale using supercritical fluids is being carried out. The effect of the presence of piperidine on the amount of toluene solubles produced by supercritical extraction of coal with toluene/piperidine mixture has been determined. A new kinetic model for the extraction/liquefaction of coal by supercritical toluene and THF has been developed and proven satisfactory. Bruceton coal and Hi Na lignite have been extracted with supercritical water. 3 references, 7 figures, 6 tables.

  9. Coal-fired high performance power generating system. Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO{sub x} SO {sub x} and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW{sub e} combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R&D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO{sub x} production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  10. The UNDP/World Bank monitoring program on small scale biomass gasifiers (BTG's experience on tar measurements)

    Energy Technology Data Exchange (ETDEWEB)

    Knoef, H.A.M. [Biomass Technology Group BTG, Enschede (Netherlands)

    2000-07-01

    By the time that small-scale biomass gasifiers were 'rediscovered' and promoted for use in developing countries (1970s), UNDP and the World Bank were well aware of the pitfalls of previous attempts to diffuse decentralized energy technologies. Therefore they decided to initiate a technology assessment programme before endorsing and/or stimulating a widespread gasifier introduction programme in developing countries. On July 1, 1983, the UNDP/WB worldwide Small-scale biomass gasifier monitoring was initiated, which was to {sup c}ollect uniform data on the actual field performance, economics, safety and public acceptability of biomass gasifiers currently operating in developing countries{sup .} For the UNDP/WB program BTG developed a tar measuring protocol which was used at twenty gasifiers worldwide (Indonesia, Philippines, Brazil, Mali, Seychelles, Vanuatu and Burundi). Other parameters monitored include pressure and temperatures at various spots, gasflow, fuel consumption, lubrication oil analyses, gas-composition analyses, emission measurements. The seven year programme showed that most of donor funded projects failed, mainly because there was not sufficient commitment from involved parties. National programs on the utilization of loca available biomass resources mostly failed because the fuel did not suit the requirements of gasifier reactor. In case of proper project design/set-up most of the small scale biomass gasifiers operated without major problems. Examples of such projects are the ones in Balong and Majalengka (Indonesia) Onesua (Vanuatu), Espara Feliz (Brazil) and Dogofiry (Mali). A motivated team of technicians, operators, managers is one the most important items within this respect. Most of the heat gasifiers are installed commercially and are much more successful compared to the subsidized power gasifiers. Local manufactured gasifiers are generally constructed of low quality materials causing frequent technical problems. However, locally

  11. Date palm waste gasification in downdraft gasifier and simulation using ASPEN HYSYS

    International Nuclear Information System (INIS)

    Bassyouni, M.; Waheed ul Hasan, Syed; Abdel-Aziz, M.H.; Abdel-hamid, S.M.-S.; Naveed, Shahid; Hussain, Ahmed; Ani, Farid Nasir

    2014-01-01

    Highlights: • Simulation of date palm waste gasification using ASPEN HYSYS was studied. • A steady state simulation of downdraft gasifier has been developed. • The results were used to predict synthesis gas composition. • Simulation results and experimental results are in good agreement. - Abstract: The present research aims to study the simulation of date palm waste gasification using ASPEN HYSYS. A steady state simulation of downdraft gasifier firing date palm leaves has been developed. The model is able to predict syngas composition with sound accuracy and can be used to find optimal operating conditions of the gasifier. Biomass is defined as an unconventional hypothetical solid component in HYSYS. A set of six reactor models simulates various reaction zones of the downdraft gasifier in accordance with its hydrodynamics. Biomass decomposition into constituents in the pyrolysis zone is modeled with a conversion reactor. The combustion of char and volatiles in the combustion zone are modeled with equilibrium and Gibbs reactor models respectively. The gasification zone is modeled with a Gibbs and equilibrium reactor. The results of simulation are validated against experimental results of a parametric variability study on a lab scale gasifier. The proportion of synthesis gas increase as temperature increases (concentration, molar fraction, and partial pressure). CO 2 and CH 4 in the product gases were also found to decrease with increasing temperature. At 800 °C, the exit gas reaches a stable molar composition (H 2 = 56.27%, CO = 21.71%, CO 2 = 18.24%, CH 4 = 3.78%). Increasing steam to biomass ratio increases CO 2 and H 2 at the expense of CO, governed by shift reaction. Steam induction increases the methane contents, thereby improves the heating value of the product gas

  12. Date palm waste gasification in downdraft gasifier and simulation using ASPEN HYSYS

    Energy Technology Data Exchange (ETDEWEB)

    Bassyouni, M. [Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911 (Saudi Arabia); Department of Chemical Engineering, Higher Technological Institute, Tenth of Ramdan City (Egypt); Waheed ul Hasan, Syed [Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911 (Saudi Arabia); Abdel-Aziz, M.H., E-mail: helmy2002@gmail.com [Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911 (Saudi Arabia); Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria (Egypt); Abdel-hamid, S. M.-S. [Department of Chemical Engineering, Higher Technological Institute, Tenth of Ramdan City (Egypt); Naveed, Shahid [Punjab Institute of Contemporary Sciences, 5.5 KM Raiwind Road, Lahore (Pakistan); Hussain, Ahmed [Department of Nuclear Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ani, Farid Nasir [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, UTM 81310 Johor Bahru (Malaysia)

    2014-12-15

    Highlights: • Simulation of date palm waste gasification using ASPEN HYSYS was studied. • A steady state simulation of downdraft gasifier has been developed. • The results were used to predict synthesis gas composition. • Simulation results and experimental results are in good agreement. - Abstract: The present research aims to study the simulation of date palm waste gasification using ASPEN HYSYS. A steady state simulation of downdraft gasifier firing date palm leaves has been developed. The model is able to predict syngas composition with sound accuracy and can be used to find optimal operating conditions of the gasifier. Biomass is defined as an unconventional hypothetical solid component in HYSYS. A set of six reactor models simulates various reaction zones of the downdraft gasifier in accordance with its hydrodynamics. Biomass decomposition into constituents in the pyrolysis zone is modeled with a conversion reactor. The combustion of char and volatiles in the combustion zone are modeled with equilibrium and Gibbs reactor models respectively. The gasification zone is modeled with a Gibbs and equilibrium reactor. The results of simulation are validated against experimental results of a parametric variability study on a lab scale gasifier. The proportion of synthesis gas increase as temperature increases (concentration, molar fraction, and partial pressure). CO{sub 2} and CH{sub 4} in the product gases were also found to decrease with increasing temperature. At 800 °C, the exit gas reaches a stable molar composition (H{sub 2} = 56.27%, CO = 21.71%, CO{sub 2} = 18.24%, CH{sub 4} = 3.78%). Increasing steam to biomass ratio increases CO{sub 2} and H{sub 2} at the expense of CO, governed by shift reaction. Steam induction increases the methane contents, thereby improves the heating value of the product gas.

  13. Uncertainty Quantification Analysis of Both Experimental and CFD Simulation Data of a Bench-scale Fluidized Bed Gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Shahnam, Mehrdad [National Energy Technology Lab. (NETL), Morgantown, WV (United States). Research and Innovation Center, Energy Conversion Engineering Directorate; Gel, Aytekin [ALPEMI Consulting, LLC, Phoeniz, AZ (United States); Subramaniyan, Arun K. [GE Global Research Center, Niskayuna, NY (United States); Musser, Jordan [National Energy Technology Lab. (NETL), Morgantown, WV (United States). Research and Innovation Center, Energy Conversion Engineering Directorate; Dietiker, Jean-Francois [West Virginia Univ. Research Corporation, Morgantown, WV (United States)

    2017-10-02

    Adequate assessment of the uncertainties in modeling and simulation is becoming an integral part of the simulation based engineering design. The goal of this study is to demonstrate the application of non-intrusive Bayesian uncertainty quantification (UQ) methodology in multiphase (gas-solid) flows with experimental and simulation data, as part of our research efforts to determine the most suited approach for UQ of a bench scale fluidized bed gasifier. UQ analysis was first performed on the available experimental data. Global sensitivity analysis performed as part of the UQ analysis shows that among the three operating factors, steam to oxygen ratio has the most influence on syngas composition in the bench-scale gasifier experiments. An analysis for forward propagation of uncertainties was performed and results show that an increase in steam to oxygen ratio leads to an increase in H2 mole fraction and a decrease in CO mole fraction. These findings are in agreement with the ANOVA analysis performed in the reference experimental study. Another contribution in addition to the UQ analysis is the optimization-based approach to guide to identify next best set of additional experimental samples, should the possibility arise for additional experiments. Hence, the surrogate models constructed as part of the UQ analysis is employed to improve the information gain and make incremental recommendation, should the possibility to add more experiments arise. In the second step, series of simulations were carried out with the open-source computational fluid dynamics software MFiX to reproduce the experimental conditions, where three operating factors, i.e., coal flow rate, coal particle diameter, and steam-to-oxygen ratio, were systematically varied to understand their effect on the syngas composition. Bayesian UQ analysis was performed on the numerical results. As part of Bayesian UQ analysis, a global sensitivity analysis was performed based on the simulation results, which shows

  14. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 4, July 1, 1992--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    A base case flow sheet for the production of higher alcohols from coal derived synthesis gas has been completed, including an economic analysis. The details of the flow sheet and economics are in Appendix 1. The pay back period for the capital investment for the plant has been calculated as a function of the market price of the product, and this figure is also shown as Figure I in Appendix 1. The estimated installed cost is almost $500 MM, and the estimated annual operating cost is $64 MM. At a price in the vicinity of $1.00/gal for the alcohol product, the pay back period for construction of the plant is four years. These values should be considered preliminary, since many of the capital costs were obtained from other paper studies sponsored by DOE and TVA and very few values could be found from actual plants which were built. This issue is currently being addressed. The most expensive capital costs were found to be the gasifier, the cryogenic air separation plant, the steam/power generation plant and the acid gas/sulfur removal processes taken as a whole. It is planned to focus attention on alternatives to the base case. The problem is that it is less expensive to make syngas from natural gas. Therefore, it is essential to reduce the cost of syngas from coal. This is where the energy park concept becomes important. In order for this process to be economical (at current market and political conditions) a method must be found to reduce the cost of syngas manufacture either by producing energy or by-products. Energy is produced in the base case, but the amount and method has not been optimized. The economic arguments for this concept are detailed in Appendix 2.

  15. Coal investment and long term supply and demand outlook for coal in the Asia-Pacific Region

    International Nuclear Information System (INIS)

    Johnson, C.J.

    1997-01-01

    The theme of this symposium to look ahead almost a quarter century to 2020 gives one the freedom to speculate more than usual in projections for coal. It is important to attempt to take a long term look into the future of coal and energy, so that one can begin to prepare for major changes on the horizon. However, it would be a mistake to believe that the crystal ball for making long term projections is accurate for 2020. Hopefully it can suggest plausible changes that have long term strategic importance to Asia's coal sector. This paper presents the medium scenario of long term projects of coal production, consumption, imports and exports in Asia. The second part of the paper examines the two major changes in Asia that could be most important to the long term role of coal. These include: (1) the impact of strict environmental legislation on energy and technology choices in Asia, and (2) the increased role of the private sector in all aspects of coal in Asia

  16. Decomposition of tar in gas from updraft gasifier by thermal cracking

    DEFF Research Database (Denmark)

    Brandt, Peder; Henriksen, Ulrik Birk

    2000-01-01

    Continuing earlier work with tar reduction by partial oxidation of pyrolysis gas [1] thermal cracking has been evaluated as a gas cleaning process. The work has been focusing on cleaning gas from updraft gasifiers, and the long term purpose is to develop a tar cleaning unit based on thermal...... cracking. An experimental set-up has been built, in which a flow of contaminated gas can be heated up to 1290°C in a reactor made of pure Al2O3. Four measurements were made. Three with gas from a pyrolysis unit simulating updraft gasifier, and one with gas from an updraft gasifier. Cracking temperatures...... was 1200, 1250 and 1290°C, and the residence time at this temperature was 0.5 second. The measurements show that at the selected residence time of 0.5 second, the gas flow in a thermal tar cracking unit has to be heated to at least 1250°C to achieve sufficient tar cleaning. At 1290°C, a tar content as low...

  17. Conditions for testing the corrosion rates of ceramics in coal gasification systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.; Nowok, J.W. [Univ. of North Dakota, Grand Forks, ND (United States)

    1996-08-01

    Coal gasifier operating conditions and gas and ash compositions affect the corrosion rates of ceramics used for construction in three ways: (1) through direct corrosion of the materials, (2) by affecting the concentration and chemical form of the primary corrodents, and (3) by affecting the mass transport rate of the primary corrodents. To perform an accurate corrosion test on a system material, the researcher must include all relevant corrodents and simulate conditions in the gasifier as closely as possible. In this paper, the authors present suggestions for conditions to be used in such corrosion tests. Two main types of corrosion conditions are discussed: those existing in hot-gas cleanup systems where vapor and dry ash may contribute to corrosion and those experienced by high-temperature heat exchangers and refractories where the main corrodent will be coal ash slag. Only the fluidized-bed gasification systems such as the Sierra Pacific Power Company Pinon Pine Power Project system are proposing the use of ceramic filters for particulate cleanup. The gasifier is an air-blown 102-MWe unit employing a Westinghouse{trademark} ceramic particle filter system operating at as high as 1100{degrees}F at 300 psia. Expected gas compositions in the filter will be approximately 25% CO, 15% H{sub 2}, 5% CO{sub 2}, 5% H{sub 2}O, and 50% N{sub 2}. Vapor-phase sodium chloride concentrations are expected to be 10 to 100 times the levels in combustion systems at similar temperatures, but in general the concentrations of the minor primary and secondary corrodents are not well understood. Slag corrosiveness will depend on its composition as well as viscosity. For a laboratory test, the slag must be in a thermodynamically stable form before the beginning of the corrosion test to assure that no inappropriate reactions are allowed to occur. Ideally, the slag would be flowing, and the appropriate atmosphere must be used to assure realistic slag viscosity.

  18. Thermodynamic modeling of small scale biomass gasifiers: Development and assessment of the ''Multi-Box'' approach.

    Science.gov (United States)

    Vakalis, Stergios; Patuzzi, Francesco; Baratieri, Marco

    2016-04-01

    Modeling can be a powerful tool for designing and optimizing gasification systems. Modeling applications for small scale/fixed bed biomass gasifiers have been interesting due to their increased commercial practices. Fixed bed gasifiers are characterized by a wide range of operational conditions and are multi-zoned processes. The reactants are distributed in different phases and the products from each zone influence the following process steps and thus the composition of the final products. The present study aims to improve the conventional 'Black-Box' thermodynamic modeling by means of developing multiple intermediate 'boxes' that calculate two phase (solid-vapor) equilibriums in small scale gasifiers. Therefore the model is named ''Multi-Box''. Experimental data from a small scale gasifier have been used for the validation of the model. The returned results are significantly closer with the actual case study measurements in comparison to single-stage thermodynamic modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. NOx results from two combustors tested on medium BTU coal gas

    Science.gov (United States)

    Sherlock, T. P.; Carl, D. E.; Vermes, G.; Schwab, J.; Notardonato, J. J.

    1982-01-01

    The results of tests of two combustor configurations using coal gas from a 25 ton/day fluidized bed coal gasifier are reported. The trials were run with a ceramic-lined, staged rich/lean burner and an integral, all metal multiannular swirl burner (MASB) using a range of temperatures and pressures representative of industrial turbine inlet conditions. A lean mixture was examined at 104, 197, and 254 Btu/Scf, yielding NO(x) emissions of 5, 20, and 70 ppmv, respectively. The MASB was employed only with a gas rated at 220-270 Btu/Scf, producing 80 ppmv NO(x) at rated engine conditions. The results are concluded to be transferrable to current machines. Further tests on the effects of gas composition, the scaling of combustors to utility size, and the development of improved wall cooling techniques and variable geometry are indicated.

  20. Company-level profile of international coal trade: 1985-1990

    International Nuclear Information System (INIS)

    Rutledge, J.; Wright, P.

    1992-01-01

    This article profiles the 61 parent companies from 21 countries which, in 1990, were responsible for 88% of world coal exports. The profile categorizes the parent companies according to their principal business activity, establishes the extent to which their operations are transnational, identifies those with the fastest growing coal exports and investigates the relationship between exporting and profitability. Its main findings are that the majority of coal exports are produced by companies for which coal is not their main business activity, that half of the companies in the study are transnationals but only a quarter are transnational in coal and that, in the context of declining profit margins between 1985 and 1990, there is no evidence of a relationship between the profitability of a company's coal operations and its propensity to export

  1. Tar formation in a steam-O2 blown CFB gasifier and a steam blown PBFB gasifier (BabyHPR) : Comparison between different on-line measurement techniques and the off-line SPA sampling and analysis method

    NARCIS (Netherlands)

    Meng, X.; Mitsakis, P.; Mayerhofen, M.; De Jong, W.; Gaderer, M.; Verkooijen, A.H.M.; Spliethoff, H.

    2012-01-01

    Two on-line tar measurement campaigns were carried out using an atmospheric pressure 100 “”kWth steam-O2 blown circulating fluidized bed (CFB) gasifier at the Delft University of Technology (TUD) and a 30–40kWth steam blown pressurized bubbling fluidized bed (PBFB) gasifier BabyHPR (Heatpipe

  2. Power systems development facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This quarterly technical progress report summarizes work completed during the last quarter of the Second Budget Period, January 1 through March 31, 1994, entitled {open_quotes}Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.{close_quotes} The objective of this project is to evaluate hot gas particulate control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

  3. Sulfate reduction in an entrained-flow black liquor gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Kymaelaeinen, M.; Janka, K. [Tampella Power, Tampere (Finland); Frederick, W.J.; Littau, M.; Sricharoenchaikul, V.; Jivakanun, N.; Waag, K. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemical Engineering

    1995-12-31

    Sulfate reduction and carbon conversion during pyrolysis and gasification of black liquor particles were experimentally studied in a laminar entrained-flow reactor. A model was also developed to simulate an entrained-flow black liquor gasifier. Experimental results were then compared to model calculations. Results indicated that carbon must be present to get a high degree of sulfate reduction during gasification. It is therefore important to balance the rates of carbon conversion and sulfate reduction. High local temperatures in the reactor should be avoided so that carbon does not convert too rapidly, but temperatures of nearly 1000 degrees C are required to achieve good sulfate reduction. It was suggested that a new equation was needed to adequately predict sulfate reduction in an entrained-flow black liquor gasifier. 12 refs., 8 figs., 5 tabs.

  4. Results with a bench scale downdraft biomass gasifier for agricultural and forestry residues

    Energy Technology Data Exchange (ETDEWEB)

    Olgun, Hayati [TUBITAK Marmara Research Center, Energy Institute, P.O. Box 21, 41470 Gebze, Kocaeli (Turkey); Ozdogan, Sibel; Yinesor, Guzide [Marmara University-Goztepe Campus, Faculty of Engineering - Department of Mechanical Engineering, 34722 Kuyubasi Kadikoy Istanbul (Turkey)

    2011-01-15

    A small scale fixed bed downdraft gasifier system to be fed with agricultural and forestry residues has been designed and constructed. The downdraft gasifier has four consecutive reaction zones from the top to the bottom, namely drying, pyrolysis, oxidation and reduction zones. Both the biomass fuel and the gases move in the same direction. A throat has been incorporated into the design to achieve gasification with lower tar production. The experimental system consists of the downdraft gasifier and the gas cleaning unit made up by a cyclone, a scrubber and a filter box. A pilot burner is utilized for initial ignition of the biomass fuel. The product gases are combusted in the flare built up as part of the gasification system. The gasification medium is air. The air to fuel ratio is adjusted to produce a gas with acceptably high heating value and low pollutants. Within this frame, different types of biomass, namely wood chips, barks, olive pomace and hazelnut shells are to be processed. The developed downdraft gasifier appears to handle the investigated biomass sources in a technically and environmentally feasible manner. This paper summarizes selected design related issues along with the results obtained with wood chips and hazelnut shells. (author)

  5. Wabash River Coal Gasification Repowering Project: A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2002-01-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of$438 million

  6. Environmental impact assessment for steeply dipping coal beds: North Knobs site

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-08

    The US Department of Energy is funding an underground coal gasification (UCG) project in steeply dipping coal beds (SDB), at North Knobs, about 8 miles west of Rawlins, Carbon County, Wyoming. The project is being conducted to determine the technical, economic and environmental viability of such a technology. The development of SDB is an interesting target for UCG since such beds contain coals not normally mineable economically by ordinary techniques. Although the underground gasification of SDB has not been attempted in the US, Soviet experience and theoretical work indicate that the gasification of SDB in place offers all the advantages of underground gasification of horizontal coal seams plus some unique characteristics. The steep angle of dip helps to channel the produced gases up dip to offtake holes and permits the ash and rubble to fall away from the reaction zone helping to mitigate the blocking of the reaction zone in swelling coals. The intersection of SDB with the surface makes the seam accessible for drilling and other preparation. The tests at the North Knobs site will consist of three tests, lasting 20, 80 and 80 days, respectively. A total of 9590 tons of coal is expected to be gasified, with surface facilities utilizing 15 acres of the total section of land. The environmental effects of the experiment are expected to be very small. The key environmental impact is potential groundwater contamination by reaction products from coal gasification. There is good evidence that the surrounding coal effectively blocks the migration of these contaminants.

  7. Combustion and emissions characterization of pelletized coal fuels. Technical report, December 1, 1992--February 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, S. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes

    1993-05-01

    The aim of this project is to demonstrate that sorbent-containing coal pellets made from low grade coal or coal wastes are viable clean burning fuels, and to compare their performance with that of standard run-of-mine coal. Fuels to be investigated are: (a) carbonated pellets containing calcium hydroxide sorbent, (b) coal fines-limestone pellets with cornstarch as binder, (c) pellets made from preparation plant recovered coal containing limestone sorbent and gasification tar as binder, and (d) a standard run-of-mine Illinois seam coal. The fuels will be tested in a laboratory scale 411 diameter circulating fluidized bed combustor. Progress this quarter has centered on the development of a hydraulic press based pellet mill capable of the high compaction pressures necessary to produce the gasification tar containing pellets outlined in (c) above. Limited quantities of the pellets have been made, and the process is being fine tuned before proceeding into the production mode. Tests show that the moisture content of the coal is an important parameter that needs to be fixed within narrow limits for a given coal and binder combination to produce acceptable pellets. Combustion tests with these pellet fuels and the standard coal are scheduled for the next quarter.

  8. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri, John; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Liber, Pawel; Lopez-Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-03-30

    The purpose of this project was to evaluate the ability of advanced low rank coal gasification technology to cause a significant reduction in the COE for IGCC power plants with 90% carbon capture and sequestration compared with the COE for similarly configured IGCC plants using conventional low rank coal gasification technology. GE’s advanced low rank coal gasification technology uses the Posimetric Feed System, a new dry coal feed system based on GE’s proprietary Posimetric Feeder. In order to demonstrate the performance and economic benefits of the Posimetric Feeder in lowering the cost of low rank coal-fired IGCC power with carbon capture, two case studies were completed. In the Base Case, the gasifier was fed a dilute slurry of Montana Rosebud PRB coal using GE’s conventional slurry feed system. In the Advanced Technology Case, the slurry feed system was replaced with the Posimetric Feed system. The process configurations of both cases were kept the same, to the extent possible, in order to highlight the benefit of substituting the Posimetric Feed System for the slurry feed system.

  9. Gasification Studies Task 4 Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, Kevin; Fletcher, Thomas; Pugmire, Ronald; Smith, Philip; Sutherland, James; Thornock, Jeremy; Boshayeshi, Babak; Hunsacker, Isaac; Lewis, Aaron; Waind, Travis; Kelly, Kerry

    2014-02-01

    A key objective of the Task 4 activities has been to develop simulation tools to support development, troubleshooting and optimization of pressurized entrained-flow coal gasifiers. The overall gasifier models (Subtask 4.1) combine submodels for fluid flow (Subtask 4.2) and heat transfer (Subtask 4.3) with fundamental understanding of the chemical processes (Subtask 4.4) processes that take place as coal particles are converted to synthesis gas and slag. However, it is important to be able to compare predictions from the models against data obtained from actual operating coal gasifiers, and Subtask 4.6 aims to provide an accessible, non-proprietary system, which can be operated over a wide range of conditions to provide well-characterized data for model validation. Highlights of this work include: • Verification and validation activities performed with the Arches coal gasification simulation tool on experimental data from the CANMET gasifier (Subtask 4.1). • The simulation of multiphase reacting flows with coal particles including detailed gas-phase chemistry calculations using an extension of the one-dimensional turbulence model’s capability (Subtask 4.2). • The demonstration and implementation of the Reverse Monte Carlo ray tracing (RMCRT) radiation algorithm in the ARCHES code (Subtask 4.3). • Determination of steam and CO{sub 2} gasification kinetics of bituminous coal chars at high temperature and elevated pressure under entrained-flow conditions (Subtask 4.4). In addition, attempts were made to gain insight into the chemical structure differences between young and mature coal soot, but both NMR and TEM characterization efforts were hampered by the highly reacted nature of the soot. • The development, operation, and demonstration of in-situ gas phase measurements from the University of Utah’s pilot-scale entrained-flow coal gasifier (EFG) (Subtask 4.6). This subtask aimed at acquiring predictable, consistent performance and characterizing the

  10. Power Systems Development Facility Gasification Test Campaign TC24

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2008-03-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC24, the first test campaign using a bituminous coal as the feedstock in the modified Transport Gasifier configuration. TC24 was conducted from February 16, 2008, through March 19, 2008. The PSDF gasification process operated for about 230 hours in air-blown gasification mode with about 225 tons of Utah bituminous coal feed. Operational challenges in gasifier operation were related to particle agglomeration, a large percentage of oversize coal particles, low overall gasifier solids collection efficiency, and refractory degradation in the gasifier solids collection unit. The carbon conversion and syngas heating values varied widely, with low values obtained during periods of low gasifier operating temperature. Despite the operating difficulties, several periods of steady state operation were achieved, which provided useful data for future testing. TC24 operation afforded the opportunity for testing of various types of technologies, including dry coal feeding with a developmental feeder, the Pressure Decoupled Advanced Coal (PDAC) feeder; evaluating a new hot gas filter element media configuration; and enhancing syngas cleanup with water-gas shift catalysts. During TC24, the PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane.

  11. Design of structure and simulation of the three-zone gasifier of dense layer of the inverted process

    Science.gov (United States)

    Zagrutdinov, R. Sh; Negutorov, V. N.; Maliykhin, D. G.; Nikishanin, M. S.; Senachin, P. K.

    2017-11-01

    Experts of LLC “New Energy Technologies” have developed gasifiers designs, with the implementation of the three-zone gasification method, which satisfy the following conditions: 1) the generated gas must be free from tar, soot and hydrocarbons, with a given ratio of CO/H2; 2) to use as the fuel source a wide range of low-grade low-value solid fuels, including biomass and various kinds of carbonaceous wastes; 3) have high reliability in operation, do not require qualified operating personnel, be relatively inexpensive to produce and use steam-air blowing instead of expensive steam-oxygen one; 4) the line of standard sizes should be sufficiently wide (with a single unit capacity of fuel from 1 to 50-70 MW). Two models of gas generators of the inverted gasification process with three combustion zones operating under pressure have been adopted for design: 1) gas generator with a remote combustion chamber type GOP-VKS (two-block version) and 2) a gas generator with a common combustion chamber of the GOP-OK type (single-block version), which is an almost ideal model for increasing the unit capacity. There have been worked out various schemes for the preparation of briquettes from practically the entire spectrum of low-grade fuel: high-ash and high-moisture coals, peat and biomass, including all types of waste - solid household waste, crop, livestock, poultry, etc. In the gas generators there are gasified the cylindrical briquettes with a diameter of 20-25 mm and a length of 25-35 mm. There have been developed a mathematical model and computer code for numerical simulation of synthesis gas generation processes in a gasifier of a dense layer of inverted process during a steam-air blast, including: continuity equations for the 8 gas phase components and for the solid phase; the equation of the heat balance for the entire heterogeneous system; the Darcy law equation (for porous media); equation of state for 8 components of the gas phase; equations for the rates of 3 gas

  12. Thermodynamic evaluation of CHP (combined heat and power) plants integrated with installations of coal gasification

    International Nuclear Information System (INIS)

    Ziębik, Andrzej; Malik, Tomasz; Liszka, Marcin

    2015-01-01

    Integration of a CHP steam plant with an installation of coal gasification and gas turbine leads to an IGCC-CHP (integrated gasification combined cycle-combined heat and power). Two installations of coal gasification have been analyzed, i.e. pressurized entrained flow gasifier – case 1 and pressurized fluidized bed gasifier with CO_2 recirculation – case 2. Basing on the results of mathematical modelling of an IGCC-CHP plant, the algorithms of calculating typical energy indices have been derived. The following energy indices are considered, i.e. coefficient of heat performance and relative savings of chemical energy of fuels. The results of coefficients of heat performance are contained between 1.87 and 2.37. Values exceeding 1 are thermodynamically justified because the idea of cogeneration of heat and electricity based on combining cycles of the heat engine and heat pump the efficiency of which exceeds 1. Higher values concerning waste heat replace more thermodynamically effective sources of heat in CHP plants. Relative savings of the chemical energy of fuels are similar in both cases of IGCC-CHP plants and are contained between the lower value of the CHP (combined heat and power) plants fuelled with coal and higher value of CHP plants fired with natural gas. - Highlights: • Energy savings of fuel is an adequate measure of cogeneration. • Relative energy savings of IGCC-CHP is near the result of a gas and steam CHP. • COHP (coefficient of heat performance) can help to divide fuel between heat fluxes. • Higher values of COHP in the case of waste heat recovery result from the lower thermal parameters.

  13. Comparison of Shell, Texaco, BGL and KRW gasifiers as part of IGCC plant computer simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Furimsky, E. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2005-07-01

    The performances of four IGCC plants employing Shell, Texaco, BGL and KRW gasifiers were simulated using ASPEN Plus software for three different feeds. Performance analyses and comparisons of all four IGCC plants were performed based on the established data bank from the simulation. Discussions were focused on gas compositions, gasifier selection and overall performance.

  14. Gas production strategy of underground coal gasification based on multiple gas sources.

    Science.gov (United States)

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  15. Comparison of Refractory Performance in Black Liquor Gasifiers and a Smelt Test System

    International Nuclear Information System (INIS)

    Peascoe, RA

    2001-01-01

    Prior laboratory corrosion studies along with experience at the black liquor gasifier in New Bern, North Carolina, clearly demonstrate that serious material problems exist with the gasifier's refractory lining. Mullite-based and alumina-based refractories used at the New Bern facility suffered significant degradation even though they reportedly performed adequately in smaller scale systems. Oak Ridge National Laboratory's involvement in the failure analysis, and the initial exploration of suitable replacement materials, led to the realization that a simple and reliable, complementary method for refractory screening was needed. The development of a laboratory test system and its suitability for simulating the environment of black liquor gasifiers was undertaken. Identification and characterization of corrosion products were used to evaluate the test system as a rapid screening tool for refractory performance and as a predictor of refractory lifetime. Results from the test systems and pl ants were qualitatively similar

  16. Co-combustion of gasified contaminated waste wood in a coal fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This project demonstrates the technical and economical feasibility of the producing and cofiring of product gas from demolition waste wood. For this purpose LCV product gas is generated in an atmospheric circulating fluidized bed (CFB) gasification plant, cooled and cleaned and transported to the boiler of a 600 MWe pulverized coal fired power plant. Gas cooling and cleaning takes place in a waste heat boiler and a multi stage wet gas cleaning train. Steam raised in the waste heat boiler is exported to the power plant. On an annual basis 70,000 tons of steam coal are substituted by 150,000 tons of contaminated demolition waste wood (50,000 tons oil equivalent), resulting in a net CO2 emission reduction of 170,000 tons per year, while concurrently generating 205 GWh of electrical power. The wood gasification plant was built by NV EPZ (now incorporated in Essent Energi BV) for Amergas BV, now a 100% subsidiary of Essent Energie BV. The gasification plant is located at the Amer Power Station of NV EPZ Production (now Essent Generation) at Geertruidenberg, The Netherlands. Demonstrating several important design features in wood gasification, the plant started hot service in the Spring of 2000, with first gasification accomplished in the Summer of 2000 and is currently being optimized. (au)

  17. Coal in India: current status and outlook - Panorama 2008

    International Nuclear Information System (INIS)

    2008-01-01

    The world cannot do without coal. This energy source covers more than one-quarter (28.4% in 2006) of all primary energy consumption and is used to generate nearly 40% of all electricity consumed worldwide. All scenarios and forecasts agree that coal consumption will be growing substantially, driven mostly by China and India. According to the IEA reference scenario (World Energy Outlook 2007), these two countries are expected to account for 82% of the increase in global coal demand by 2030. The outlook for India gives cause for concern: despite a strong domestic coal industry, it could eventually become a major importer. If so, what will the economic, industrial and environmental consequences be?

  18. Prospects for the development of coal-steam plants in Russia

    Science.gov (United States)

    Tumanovskii, A. G.

    2017-06-01

    Evaluation of the technical state of the modern coal-fired power plants and quality of coal consumed by Russian thermal power plants (TPP) is provided. Measures aimed at improving the economic and environmental performance of operating 150-800 MW coal power units are considered. Ways of efficient use of technical methods of NO x control and electrostatic precipitators' upgrade for improving the efficiency of ash trapping are summarized. Examples of turbine and boiler equipment efficiency upgrading through its deep modernization are presented. The necessity of the development and introduction of new technologies in the coal-fired power industry is shown. Basic technical requirements for a 660-800 MW power unit with the steam conditions of 28 MPa, 600/600°C are listed. Design solutions taking into account features of Russian coal combustion are considered. A field of application of circulating fluidized bed (CFB) boilers and their effectiveness are indicated. The results of development of a new generation coal-fired TPP, including a steam turbine with an increased efficiency of the compartments and disengaging clutch, an elevated steam conditions boiler, and a highly efficient NO x /SO2 and ash particles emission control system are provided. In this case, the resulting ash and slag are not to be sent to the ash dumps and are to be used to a maximum advantage. Technical solutions to improve the efficiency of coal gasification combined cycle plants (CCP) are considered. A trial plant based on a 16 MW gas turbine plant (GTP) and an air-blown gasifier is designed as a prototype of a high-power CCP. The necessity of a state-supported technical reequipment and development program of operating coal-fired power units, as well as putting into production of new generation coal-fired power plants, is noted.

  19. Study of the equilibrium of air-blown gasification of biomass to coal evolution fuels

    International Nuclear Information System (INIS)

    Biagini, Enrico

    2016-01-01

    Highlights: • Equilibrium model validated for coals, torrefied/green biomasses, in different gasifiers. • Maps of syngas composition, LHV and CGE for ER = 0–0.6, T = 500–2000 K, EBP = 0.004–0.158. • Effect of unconverted carbon, fuel moisture and overoxidation quantified. • Parameters for the maximum efficiency determined as functions of EBP. • EBP proven to be a good parameter for the quantitative comparison of different fuels. - Abstract: A non-stoichiometric equilibrium model based on the minimization of the Gibbs free energy was used to study the isothermal and adiabatic air-blown gasification of solid fuels on a carbonization curve from fossil (hard/brown coals, peat) to renewable (green biomasses and cellulose) fuels, including torrefied biofuels. The maps of syngas composition, heating value and process efficiency were provided as functions of equivalent ratio (oxygen-to-fuel ratio) in the range 0–0.6, temperature in 500–2000 K, and a fuel parameter, which allowed different cases to be quantitatively compared. The effect of fuel moisture, unconverted carbon and conditions to limit the tar formation was also studied. Cold gas efficiency >0.75 can be achieved for coals at high temperature, using entrained beds (which give low unconverted carbon), and improved by moisture/added steam. The bigger efficiency of green biomasses is only potential, as the practical limits (high temperature required to limit tar formation, moisture content and unconverted carbon in small gasifiers) strongly reduce the gasification performance. Torrefied biomasses (and plastics having an intermediate fuel parameter between coals and green biomasses) can attain high efficiency also in real conditions. The results shown in this work can be useful to evaluate the most promising feedstock (depending on its composition and possible pre-treatment/upgrading), define the operating conditions for maximizing the syngas heating value or the global efficiency, assess the

  20. Biochemical removal of HAP precursors from coal. Quarterly technical progress report, April--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Analytical methods were finalized and all analyses completed on shake flask tests with Indiana No. 5 and Pittsburgh No. 8 coal. A column leaching-rotating biological contractor (RBC) unit was used to bioleach pyrite and hazardous air pollutant precursors from Pittsburgh No. 8 coal. Shake flask tests with Rosebud subbituminous coal were begun. In connection with upcoming slurry column reactor tests, coal was prepared and shipped to INEL, and a detailed work plan was developed for operation and sampling for the tests. A manuscript and poster was prepared for presentation at the PETC contractors conference.

  1. Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants

    International Nuclear Information System (INIS)

    1992-06-01

    This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant

  2. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  3. Development of coal gas production technology acceptable for fuel cells; Nenryo denchiyo sekitan gas seizo gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T [Center for Coal Utilization, Japan, Tokyo (Japan); Kimura, N; Omata, K [Electric Power Development Co. Ltd., Tokyo (Japan)

    1996-09-01

    In utilizing coal for high-efficiency direct power generation using fuel cells, it is necessary that coal be fed into the fuel cells after having been made into ash-free gaseous fuel. Research and development works are being carried out with an objective to develop a coal gasification furnace most suitable for fuel cells and establish a system to refine coal up to the one that can be fed into fuel cells. Fiscal 1995 has conducted investigations on coal gasification technologies, air separation technologies, and gas refining technologies as the important element technologies, and a trial design on integrated coal gasification fuel cell (IGFC) systems. This paper reports from among the above items the result of the trial design on an IGFC system using molten carbonate fuel cells. The paper describes system comparison on paths of produced gases and anode waste gas, comparison on refining processes using a wet system and a dry system, and parameter studies on oxygen concentration in gasifying agents. It was made clear that the suitable furnace is an oxygen blown coal gasification furnace, and the power generation efficiency at the system terminal can be higher than 53%. 11 figs., 6 tabs.

  4. Test of different biomass into the IISc open-top co-current gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, P. [Xylowatt SA, Chatel-St-Denis (Switzerland); Hasler, P. [Verenum SA, Zuerich (Switzerland); Dasappa, S. [Indian Institute of Science, Combustion Gasification and Propulsion Laboratory, Bangalore (India)

    2001-07-01

    This report made for the Swiss Federal Office of Energy (SFOE) describes the efforts made to demonstrate the technical feasibility of combined heat and power generation using wood gasification. The report describes a project involving a small open-top gasifier based on a design realised by the Indian Institute of Science (IISc). The tests made with various wood fuels such as clean wood chips, waste-wood chips, pecan nut shells, crushed oak briquettes, wood pellets, coffee hull pellets and chicken litter pellets are described and the results of measurements made concerning particulate matter, tar and certain organic compounds are presented. The discussion of the results shows that certain types of biomass can easily be used as a fuel for the small gasifier whereas others, such as coffee hull pellets, are less suitable. The report suggests that other possible fuels, such as olive and apricot stones, sludge from waste water treatment plant or plastic residue from refuse treatment should be tested in the gasifier. These tests could also provide the opportunity of testing appropriate gas treatment equipment at the same time.

  5. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  6. Use of a Nuclear High Temperature Gas Reactor in a Coal-To-Liquids Process

    International Nuclear Information System (INIS)

    Robert S. Cherry; Richard A. Wood

    2006-01-01

    AREVA's High Temperature Gas Reactor (HTGR) can potentially provide nuclear-generated, high-level heat to chemical process applications. The use of nuclear heat to help convert coal to liquid fuels is particularly attractive because of concerns about the future availability of petroleum for vehicle fuels. This report was commissioned to review the technical and economic aspects of how well this integration might actually work. The objective was to review coal liquefaction processes and propose one or more ways that nuclear process heat could be used to improve the overall process economics and performance. Shell's SCGP process was selected as the gasifier for the base case system. It operates in the range of 1250 to 1600 C to minimize the formation of tars, oil, and methane, while also maximizing the conversion of the coal's carbon to gas. Synthesis gas from this system is cooled, cleaned, reacted to produce the proper ratio of hydrogen to carbon monoxide and fed to a Fischer-Tropsch (FT) reaction and product upgrading system. The design coal-feed rate of 18,800 ton/day produces 26.000 barrels/day of FT products. Thermal energy at approximately 850 C from a HTGR does not directly integrate into this gasification process efficiently. However, it can be used to electrolyze water to make hydrogen and oxygen, both of which can be beneficially used in the gasification/FT process. These additions then allow carbon-containing streams of carbon dioxide and FT tail-gas to be recycled in the gasifier, greatly improving the overall carbon recovery and thereby producing more FT fuel for the same coal input. The final process configuration, scaled to make the same amount of product as the base case, requires only 5,800 ton/day of coal feed. Because it has a carbon utilization of 96.9%, the process produces almost no carbon dioxide byproduct Because the nuclear-assisted process requires six AREVA reactors to supply the heat, the capital cost is high. The conventional plant is

  7. Pilot plant for hydrogasification of coal with nuclear heat

    International Nuclear Information System (INIS)

    Falkenhain, G.; Velling, G.

    1976-01-01

    In the framework of a research and development programme sponsored by the Ministry of Research and Technology of the Federal Republic of Germany, two process variants for hydrogasification of coal by means of nuclear heat have been developed by the Rheinische Braunkohlenwerke AG, Cologne. For testing these process variants a semi-technical pilot plant for gasification of coal under pressure in a fluidized bed was constructed. The pilot plant, in which the gasification of lignite and hard coal is planned, is designed for a throughput of 100kg carbon per hour corresponding to 400kg raw lignite per hour or 150kg hard coal per hour. The plant should provide data on the influence of the most essential process parameters (pressure, temperature, residence time of gas and coal, type and pre-treatment of feed coal) on the performance of gasification and raw gas composition. Different plant components will also be tested. Since the pilot plant will permit testing of both process variants of hydrogasification, it was designed in such a way that it is possible to vary a great number of process parameters. Thus, for instance, the pressure can be chosen in a range up to 100 bar and pure hydrogen or mixtures of hydrogen, carbon monoxide and steam can be applied as gasification agents. The gasifier is an internally insulated fluidized bed reactor with an inner diameter of 200mm and a height of about 8m, to which an internally insulated cyclone for separation of the entrained fines is attached. The raw gas is then cooled down by direct water scrubbing. (author)

  8. Optimal Tuning of Decentralized PI Controller of Nonlinear Multivariable Process Using Archival Based Multiobjective Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    R. Kotteeswaran

    2014-01-01

    Full Text Available A Multiobjective Particle Swarm Optimization (MOPSO algorithm is proposed to fine-tune the baseline PI controller parameters of Alstom gasifier. The existing baseline PI controller is not able to meet the performance requirements of Alstom gasifier for sinusoidal pressure disturbance at 0% load. This is considered the major drawback of controller design. A best optimal solution for Alstom gasifier is obtained from a set of nondominated solutions using MOPSO algorithm. Performance of gasifier is investigated at all load conditions. The controller with optimized controller parameters meets all the performance requirements at 0%, 50%, and 100% load conditions. The investigations are also extended for variations in coal quality, which shows an improved stability of the gasifier over a wide range of coal quality variations.

  9. Clean coal technologies for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Todd, D.M. [GE Industrial & Power Systems, Schenectady, NY (United States)

    1994-12-31

    The oil- and gas-fired turbine combined-cycle penetration of industrial and utility applications has escalated rapidly due to the lower cost, higher efficiency and demonstrated reliability of gas turbine equipment in combination with fuel economics. Gas turbine technology growth has renewed the interest in the use of coal and other solid fuels in combined cycles for electrical and thermal energy production to provide environmentally acceptable plants without extra cost. Four different types of systems utilizing the gas turbine advantages with solid fuel have been studied: direct coal combustion, combustor processing, fuel processing and indirect cycles. One of these, fuel processing (exemplified by coal gasification), is emerging as the superior process for broad scale commercialization at this time. Advances in gas turbine design, proven in operation above 200 MW, are establishing new levels of combined-cycle net plant efficiencies up to 55% and providing the potential for a significant shift to gas turbine solid fuel power plant technology. These new efficiencies can mitigate the losses involved in gasifying coal and other solid fuels, and economically provide the superior environmental performance required today. Based on demonstration of high baseload reliability for large combined cycles (98%) and the success of several demonstrations of Integrated Gasification Combined Cycle (IGCC) plants in the utility size range, it is apparent that many commercial IGCC plants will be sites in the late 1990s. This paper discusses different gas turbine systems for solid fuels while profiling available IGCC systems. The paper traces the IGCC option as it moved from the demonstration phase to the commercial phase and should now with planned future improvements, penetrate the solid fuel power generation market at a rapid pace.

  10. Water-quality monitoring at the Hoe Creek test site: review and preliminary conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F T; Mead, S W; Stuermer, D H

    1982-05-20

    It has been shown that underground coal gasification (UCG) may introduce a broad range of residual gasification products into the groundwater of a coal aquifer. Sorption of many contaminants by the coal itself is an important factor in restricting the migration of these contaminants in the ground water. However, field studies, conducted at Lawrence Livermore National Laboratory's Hoe Creek site, have shown that sorption of organic compounds by coal is not as effective as expected, perhaps because the coal surface area is limited. Furthermore, if severe roof collapse has taken place during gasification, non-coal aquifers located above the gasified coal seam may be interconnected with the coal aquifer, and contaminants may enter these non-coal aquifers, in which sorption is even less effective. The Hoe Creek II and III experiments have provided opportunities to study the contamination of a sand aquifer located above a gasified coal seam in a hydrological recharge area. Preliminary results indicate that the water in the overlying sand aquifer is much less contaminated with organic compounds than the water in the gasified coal aquifer. In conducting these field investigations, valuable lessons ere learned concerning groundwater monitoring. A suggested monitoring strategy is discussed.

  11. Performance Evaluation of Throatless Gasifier Using Pine Needles as a Feedstock for Power Generation

    Directory of Open Access Journals (Sweden)

    Dhaundiyal Alok

    2016-03-01

    Full Text Available This paper deals with the performance evaluation of a throatless gasifier TG-SI-10E. Evaluation of the throatless gasifier was done in three streams, which were the thermal, design and economic aspects. It was tested with pine needles, derived from the Himalayan chir pine (Pinus roxburghii. A non-isokinetic sampling technique was used for measuring the tar and dust contents. The carbon dioxide and carbon monoxide emission at the exhaust of engine was in the range of 12.8% and 0.1-0.5% respectively. The maximum temperature of producer gas measured at the outlet of the gasifier was 505 °C. The specific biomass consumption rate of pine needles was calculated to be 1.595 kg/kWh (electrical. Specific gasification rate for the given design was found to be 107 kg/m2h. Economic evaluation was based on direct tax incidence.

  12. The South African coal industry - a millennium review

    Energy Technology Data Exchange (ETDEWEB)

    Lind, G.H.; Phillips, H.R. [University of Witwatersrand, Johannesburg (South Africa)

    2001-06-01

    South Africa is a significant contributor to southern Africa and Europe's coal needs and is expected to remain in this important position for the foreseeable future. This review paper of the South African coal mining industry highlights that, although abundant, the easily mineable reserves will become depleted within the next quarter century. Socio-economic issues of unique, local importance such as the HIV/AIDS pandemic as well as policies propagated by South Africa's post-apartheid government are detailed, as are programmes in research and development that will ensure that South Africa's long term coal industry is, at the every least, maintained. 11 refs., 9 figs., 7 tabs.

  13. Effect of Colombian coal rank and its feeding technology on substitute natural gas production by entrained gasification

    Directory of Open Access Journals (Sweden)

    Juan Fernando Pérez-Bayer

    2016-01-01

    Full Text Available The effect of coal rank (from sub-bituminous to semi-anthracite and type of fuel feeding technology (slurry and dry on the production of substitute natural gas (SNG in entrained flow gasifiers is studied. Ten coals from important Colombian mines were selected. The process is modeled under thermochemical equilibrium using Aspen Plus, and its performance is evaluated in function of output parameters that include SNG heating value, Wobbe index, coal conversion efficiency, cold gas efficiency, process efficiency, global efficiency, and SNG production rate, among others. In descending order, the coal-to-SNG process improves energetically with the use of coals with: higher volatile-matter to fixed-carbon ratio, lower ash content, higher C+H/O ratio, and higher coal heating value. The overall energy efficiency of the slurry-feed technology (S-FT to produce SNG by gasification is 17% higher than the dry-feed technology (D-FT, possibly as a consequence of the higher CH4 concentration in the syngas (around 7 vol. % when the coal is fed as aqueous slurry. As the simulated SNG meets the natural gas (NG quality standards in Colombia, the substitute gaseous fuel could be directly transported through pipelines. Therefore, the coal-to-SNG process is a technically feasible and unconventional alternative for NG production.

  14. Thermodynamic analyses of solar thermal gasification of coal for hybrid solar-fossil power and fuel production

    International Nuclear Information System (INIS)

    Ng, Yi Cheng; Lipiński, Wojciech

    2012-01-01

    Thermodynamic analyses are performed for solar thermal steam and dry gasification of coal. The selected types of coal are anthracite, bituminous, lignite and peat. Two model conversion paths are considered for each combination of the gasifying agent and the coal type: production of the synthesis gas with its subsequent use in a combined cycle power plant to generate power, and production of the synthesis gas with its subsequent use to produce gasoline via the Fischer–Tropsch synthesis. Replacement of a coal-fired 35% efficient Rankine cycle power plant and a combustion-based integrated gasification combined cycle power plant by a solar-based integrated gasification combined cycle power plant leads to the reduction in specific carbon dioxide emissions by at least 47% and 27%, respectively. Replacement of a conventional gasoline production process via coal gasification and a subsequent Fischer–Tropsch synthesis with gasoline production via solar thermal coal gasification with a subsequent Fischer–Tropsch synthesis leads to the reduction in specific carbon dioxide emissions by at least 39%. -- Highlights: ► Thermodynamic analyses for steam and dry gasification of coal are presented. ► Hybrid solar-fossil paths to power and fuels are compared to those using only combustion. ► Hybrid power production can reduce specific CO 2 emissions by more than 27%. ► Hybrid fuel production can reduce specific CO 2 emissions by more than 39%.

  15. Fast fluid bed coal gasification for conversion of existing oil-fired boilers - an investigation of conditions precedent for commercial realization

    Energy Technology Data Exchange (ETDEWEB)

    1969-06-01

    The syndicate Nordisk Fluidbaeddfoergasning which is made up of the following Scandinavian companies. A. Ahlstroem o/y Burmeister and Wain AB, Svenska Maskinverken AB and Svenska Cellulosa AB has been working with the development of a gas generator which makes it possible for the oil-fired boilers to use coal. The report describes a pre-project and presents the calculation of costs and the estimation of the market potential. The following appraisements have been made: (i) a commercially functioning plant can be erected (ii) the energy cost can be lower than the corresponding cost of conversion to coal powder fuel or competing gasifiers, and (iii) the size of the market is sufficiently large.

  16. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    International Nuclear Information System (INIS)

    Larry G. Felix; P. Vann Bush

    2002-01-01

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Two additional biomass co-firing test burns were conducted during this quarter. In the first test (Test 10), up to 20% by weight dry hardwood sawdust and switchgrass was compiled with Galatia coal and injected through the dual-register burner. Galatia coal is a medium-sulfur Illinois Basin coal ((approx)1.0% S). The dual-register burner is a generic low-NO(sub x) burner that incorporates two independent wind boxes. In the second test (Test 11), regular ((approx)70% passing 200 mesh) and finely ground ((approx)90% passing 200 mesh) Pratt Seam coal was injected through the single-register burner to determine if coal grind affects NO(sub x) and unburned carbon emissions. The results of these tests are presented in this quarterly report. Significant progress has been made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO(sub x) emissions and unburned carbon levels in the furnace exhaust. No additional results of CFD modeling have been received as delivery of the Configurable Fireside Simulator is expected during the next quarter. Preparations are under way for continued pilot-scale combustion experiments with the single-register burner and a low-volatility bituminous coal. Some delays have been experienced in the acquisition and processing of biomass. Finally, a project review was held at the offices of Southern Research in Birmingham, on February 27, 2002

  17. Catalytic combustion of gasified waste - Experimental part. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jaeraas, Sven; Kusar, Henrik [Royal Institute of Technology, Stockholm (Sweden). Chemical Engineering and Technology

    2003-08-01

    This final report covers the work that has been performed within the project P 10547-2, 'Catalytic combustion of gasified waste - system analysis ORWARE'. This project is part of the research programme 'Energy from Waste' financed by the Swedish National Energy Administration. The project has been carried out at the division of Industrial Ecology and at the division of Chemical Technology at Royal Inst. of Technology. The aim of the project has been to study the potentials for catalytic combustion of gasified waste. The supposed end user of the technique is a smaller community in Sweden with 15,000-20,000 inhabitants. The project contains of two sub projects: an experimental part carried out at Chemical Technology and a system analysis carried out at Industrial Ecology. This report covers the experimental part of the project carried out at Chemical Technology. The aim for the experimental part has been to develop and test catalysts with long life-time and a high performance, to reduce the thermal-NO{sub x} below 5 ppm and to significantly reduce NO{sub x} formed from fuel-bound nitrogen. Different experimental studies have been carried out within the project: a set-up of catalytic materials have been tested over a synthetic mixture of the gasified waste, the influence of sulfur present in the gas stream, NO{sub x} formation from fuel bound nitrogen, kinetic studies of CO and H{sub 2} with and without the presence of water and the effects of adding a co-metal to palladium catalysts Furthermore a novel annular reactor design has been used to carry out experiments for kinetic measurements. Real gasification tests of waste pellets directly coupled to catalytic combustion have successfully been performed. The results obtained from the experiments, both the catalytic combustion and from the gasification, have been possible to use in the system analysis. The aim of the system analysis of catalytic combustion of gasified waste takes into consideration

  18. Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources

    Directory of Open Access Journals (Sweden)

    Duan Tianhong

    2014-01-01

    Full Text Available To lower stability requirement of gas production in UCG (underground coal gasification, create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  19. The Design, Construction and Operation of a 75 kW Two-Stage Gasifier

    DEFF Research Database (Denmark)

    Henriksen, Ulrik Birk; Ahrenfeldt, Jesper; Jensen, Torben Kvist

    2003-01-01

    The Two-Stage Gasifier was operated for several weeks (465 hours) and of these 190 hours continuously. The gasifier is operated automatically unattended day and night, and only small adjustments of the feeding rate were necessary once or twice a day. The operation was successful, and the output...... as expected. The engine operated well on the produced gas, and no deposits were observed in the engine afterwards. The bag house filter was an excellent and well operating gas cleaning system. Small amounts of deposits consisting of salts and carbonates were observed in the hot gas heat exchangers. The top...

  20. Biomass downdraft gasifier with internal cyclonic combustion chamber: design, construction, and experimental results.

    Science.gov (United States)

    Patil, Krushna; Bhoi, Prakash; Huhnke, Raymond; Bellmer, Danielle

    2011-05-01

    An exploratory downdraft gasifier design with unique biomass pyrolysis and tar cracking mechanism is evolved at Oklahoma State University. This design has an internal separate combustion section where turbulent, swirling high-temperature combustion flows are generated. A series of research trials were conducted using wood shavings as the gasifier feedstock. Maximum tar cracking temperatures were above 1100°C. Average volumetric concentration levels of major combustible components in the product gas were 22% CO and 11% H(2). Hot and cold gas efficiencies were 72% and 66%, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Layout of an internally heated gas generator for the steam gasification of coal

    International Nuclear Information System (INIS)

    Feistel, P.P.; Duerrfeld, R.; Heck, K.H. van; Juentgen, H.

    1975-01-01

    Industrial-scale steam gasification of coal using heat from high temperature reactors requires research and development on allothermal gas generators. Bergbau-Forschung GmbH, Essen, does theoretical and experimental work in this field. The experiments deal with reaction kinetics, heat transfer and material tests. Their significance for the layout of a full-scale gas generator is shown. Including material specifications, the feasibility of a gasifier, characterized by a fluid bed volume of 318 m 3 and a heat transferring area of 4000 m 2 , results. The data, now available, are used to determine the gasification throughput from the heat balance, i.e. the equality of heat consumed and heat transferred. Throughputs of about 50 t/hr of coal are possible for a single gas generator, the helium outlet temperature of the HTR being 950 0 C/ Bergbau-Forschung has commissioned a medium-scale pilot plant (200 kg/hr). (Auth.)

  2. Power Systems Development Facility. Quarterly report, July 1--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This quarterly technical progress report summarizes the work completed during the third quarter of a project entitled Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion. The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phase expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  3. Coal conversion process by the United Power Plants of Westphalia

    Energy Technology Data Exchange (ETDEWEB)

    1974-08-01

    The coal conversion process used by the United Power Plants of Westphalia and its possible applications are described. In this process, the crushed and predried coal is degassed and partly gasified in a gas generator, during which time the sulfur present in the coal is converted into hydrogen sulfide, which together with the carbon dioxide is subsequently washed out and possibly utilized or marketed. The residual coke together with the ashes and tar is then sent to the melting chamber of the steam generator where the ashes are removed. After desulfurization, the purified gas is fed into an external circuit and/or to a gas turbine for electricity generation. The raw gas from the gas generator can be directly used as fuel in a conventional power plant. The calorific value of the purified gas varies from 3200 to 3500 kcal/cu m. The purified gas can be used as reducing agent, heating gas, as raw material for various chemical processes, or be conveyed via pipelines to remote areas for electricity generation. The conversion process has the advantages of increased economy of electricity generation with desulfurization, of additional gas generation, and, in long-term prospects, of the use of the waste heat from high-temperature nuclear reactors for this process.

  4. Molecular biological enhancement of coal biodesulfurization. [Rhodococcus rhodochrous

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J.; Bielaga, B.A.

    1990-07-01

    The overall objective of this project is to sue molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. The work planned for the current quarter (May 1990 to July 1990) includes the following activities: (1) Construct a cloning vector that can be used in Rhodococcus rhodochrous IGTS8 from the small cryptic plasmid found in Rhodococcus rhodochrous ATCC 190607; (2) Develop techniques for the genetic analysis of IGTS8; (3) Continue biochemical experiments, particularly those that may allow the identification of desulfurization-related enzymes; (4) Continue experiments with coal to determine the kinetics of organic sulfur removal.

  5. Validation of Continuous CHP Operation of a Two-Stage Biomass Gasifier

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Jensen, Torben Kvist

    2006-01-01

    The Viking gasification plant at the Technical University of Denmark was built to demonstrate a continuous combined heat and power operation of a two-stage gasifier fueled with wood chips. The nominal input of the gasifier is 75 kW thermal. To validate the continuous operation of the plant, a 9-day...... measurement campaign was performed. The campaign verified a stable operation of the plant, and the energy balance resulted in an overall fuel to gas efficiency of 93% and a wood to electricity efficiency of 25%. Very low tar content in the producer gas was observed: only 0.1 mg/Nm3 naphthalene could...... be measured in raw gas. A stable engine operation on the producer gas was observed, and very low emissions of aldehydes, N2O, and polycyclic aromatic hydrocarbons were measured....

  6. Coal anion structure and chemistry of coal alkylation. Fourth quarterly progress report, December 1, 1977--February 28, 1978. [Carbon atoms in butyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.

    1978-01-01

    Three research problems are in progress. First, work is progressing well concerning the methods appropriate for the reductive alkylation of Illinois No. 6 coal samples. We have investigated the influence of the leaving group on the conversion of the Illinois coal to a soluble material. We find that the n-butyl iodide is more effective than other n-butyl halides. Second, preliminary results have been obtained concerning the distribution of hydrogen and deuterium atoms in the reaction of Illinois No. 6 coal samples with perdeuteriotetralin at 400/sup 0/C. Third, the nuclear magnetic resonance spectra of appropriate model compounds with n-butyl groups have been tabulated for comparison with the spectroscopic results obtained from coal alkylation products. Fourth, the chromatographic procedures necessary for the separation of the coal samples are being developed.

  7. A CHARACTERIZATION AND EVALUATION OF COAL LIQUEFACTION PROCESS STREAMS

    International Nuclear Information System (INIS)

    G.A. Robbins; R.A. Winschel; S.D. Brandes

    1999-01-01

    This is the first Annual Technical Report of activities under DOE Contract No. DE-AC22-94PC93054. Activities from the first three quarters of the fiscal 1998 year were reported previously as Quarterly Technical Progress Reports (DOE/PC93054-57, DOE/PC93054-61, and DOE/PC93054-66). Activities for the period July 1 through September 30, 1998, are reported here. This report describes CONSOL's characterization of process-derived samples obtained from HTI Run PB-08. These samples were derived from operations with Black Thunder Mine Wyoming subbituminous coal, simulated mixed waste plastics, and pyrolysis oils derived from waste plastics and waste tires. Comparison of characteristics among the PB-08 samples was made to ascertain the effects of feed composition changes. A comparison also was made to samples from a previous test (Run PB-06) made in the same processing unit, with Black Thunder Mine coal, and in one run condition with co-fed mixed plastics

  8. Characterization and supply of coal-based fuels. Quarterly report, February 1, 1989--April 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements. Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is discussed, particulary in slurry fuel preparation and particle size distribution.

  9. U.S. origin coking coal in the global market : a seismic shift in the global coal market

    International Nuclear Information System (INIS)

    Thrasher, E.

    2010-01-01

    This presentation discussed conditions in the global coal market and its impact on producers in the United States (U.S). The significant factors include the strong recovery in Asia, the switch from annual benchmark pricing to quarterly pricing, and the return of U.S. origin coking coal as a long-term supply source for Asia. The global recovery in manufacturing is strong in Asia and weak in more mature economies. A shift in trade patterns has occurred in that 4 of the top 10 destinations for U.S. coking coal exports are now in Asia, up from 1 in 2009, and the tonnage increases to these destinations are at unprecedented levels. Demand for U.S. origin coal will continue to increase as the economies in Western Europe improve and the emerging economies in Eastern Europe and South America grow. Looking at the U.S. coking coal supply, high volume type A coal will be used in the domestic market while high volume type B coal will be used for international demand. Government regulatory agencies create an uncertain environment for investments. Geology and the effects of regulatory actions have decreased productivity. An improvement to the supply chain is that lower cost ocean freight lowers the cost of delivered coal. The prices of coking coal have stabilized at levels that support reasonable returns on investment. The seaborne coking coal market has changed with China's shift to being a significant importer. Mine, rail, and port capacity will constrain the ability of producers in the U.S. to export coking coal to some degree. 2 tabs., 13 figs.

  10. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Felix; P. Vann Bush

    2002-01-31

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. One additional biomass co-firing test burn was conducted during this quarter. In this test (Test 9), up to 20% by weight dry hardwood sawdust and switchgrass was injected through the center of the single-register burner with Jacobs Ranch coal. Jacobs Ranch coal is a low-sulfur Powder River Basin coal ({approx} 0.5% S). The results from Test 9 as well as for Test 8 (conducted late last quarter) are presented in this quarterly report. Significant progress has been made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. Additional results of CFD modeling efforts have been received and preparations are under way for continued pilot-scale combustion experiments with the dual-register burner. Finally, a project review was held at NETL in Pittsburgh, on November 13, 2001.

  11. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Connie Senior Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-09-30

    This is the seventeenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. The SCR slipstream reactor was assembled and installed at Plant Gadsden this quarter. Safety equipment for ammonia had not been installed at the end of the quarter, but will be installed at the beginning of next quarter. The reactor will be started up next quarter. Four ECN corrosion probes were reinstalled at Gavin and collected corrosion data for approximately one month. Two additional probes were installed and removed after about 30 hours for future profilometry analysis. Preliminary analysis of the ECN probes, the KEMA coupons and the CFD modeling results all agree with the ultrasonic tube test measurements gathered by AEP personnel.

  12. Post-test analysis of 20kW molten carbonate fuel cell stack operated on coal gas. Final report, August 1993--February 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    A 20kW carbonate fuel cell stack was operated with coal gas for the first time in the world. The stack was tested for a total of 4,000 hours, of which 3,900 hours of testing was conducted at the Louisiana Gasification Technology Incorporated, Plaquemine, Louisiana outdoor site. The operation was on either natural gas or coal gas and switched several times without any effects, demonstrating duel fuel capabilities. This test was conducted with 9142 kJ/m{sup 3} (245 Btu/cft) coal gas provided by a slipstream from Destec`s entrained flow, slagging, slurry-fed gasifier equipped with a cold gas cleanup subsystem. The stack generated up to 21 kW with this coal gas. Following completion of this test, the stack was brought to Energy Research Corporation (ERC) and a detailed post-test analysis was conducted to identify any effects of coal gas on cell components. This investigation has shown that the direct fuel cell (DFC) can be operated with properly cleaned and humidified coal-as, providing stable performance. The basic C direct fuel cell component materials are stable and display normal stability in presence of the coal gas. No effects of the coal-borne contaminants are apparent. Further cell testing at ERC 1 17, confirmed these findings.

  13. Complete biocycle for solar energy conversion, storage, fuel and power generation, and coal conservation for future use

    International Nuclear Information System (INIS)

    Srivastava, S.C.

    1993-01-01

    A complete carbon biocycle has been described, starting from coal in in situ condition in coal seams underground. Various steps involved are: (i) Biogasification of coal to methane, using a consortia of bacteria, has been reported. A group of bacteria degrades complex structure of coal to simpler structure. This simpler structure of coal, is then converted to methane by methanogens; (ii) Biophotolysis of methane and associated biodegradation, results in products, such as hydrogen and oxygen for use in fuel cells for power generation; (iii) Bioconversion of products so obtained is carried out to produce methanol or methane that could be used as fuel or recycled; (iv) In complete biocycle some methane is converted to biomass. In order to replace this methane, coal is converted to methane using group of bacteria, only to the extent methane has been converted to biomass; (v) The biomass so produced could be dumped underground from where coal has been gasified. Alternatively it could be burnt as fuel or else used as substitute of protein in animal food. Detailed concept of proposed technology for: (a) an alternative to conventional coal mining, (b) generation of power using products of bioconversion in fuel cell, and (c) conversation of solar energy for generation of alternative source of fuel and power, has been discussed. Possibility of developing a biofuel cell for conversion of solar energy through bioelectrochemical route has been suggested. (author). 48 refs., 3 figs

  14. Update of China economy and coal market

    International Nuclear Information System (INIS)

    Suen, H.

    2010-01-01

    This presentation discussed the surge in China's coal imports. The depressed demand for coal worldwide made huge tonnages available for the Chinese to buy at the same time that there was a willingness to sell coal more cheaply to compete with the Chinese domestic supply price and a coal shortage in China resulting from mine closures and consolidations. The Chinese Government is seeking to slow economic growth to control inflation and prevent an overheated economy. The government emphasis is on energy saving and emission reduction, production cuts at high energy consuming plants, the closure of outdated steel mills, and a restriction on power production. Steel production is expected to fall in the second half of the year as a result of surpluses. China's coal imports will increase in 2010; however, the consolidation process is now completed, and the new capacity will begin to be released in the second half of the year, ending the domestic coal shortage. The increase in the domestic market is constraining price increases. Premium hard coking coal (HCC) remains tight, but normal grade coals are in surplus and facing pressure to reduce prices. China's domestic coal prices form the bottom for the world coal market. Chinese import demand will continue, but demand is expected to gradually decline and be lower in 2011 as the domestic supply becomes sufficient. Nevertheless, China will always have a tremendous demand for coal and needs to import premium HCC. China adopted a quarterly price for the first time this year. 5 tabs., 4 figs.

  15. Chemistry and structure of coal derived asphaltenes and preasphaltenes. Quarterly progress report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T. F.

    1980-01-01

    It is the objective of this project to isolate the asphaltene and preasphaltene fractions from coal liquids from a number of liquefaction processes. These processes consist of in general: catalytic hydrogenation, staged pyrolysis and solvent refining. These asphaltene fractions may be further separated by both gradient elution through column chromatography, and molecular size distribution through gel permeation chromatography. Those coal-derived asphaltene and preasphaltene fractions will be investigated by various chemical and physical methods for characterization of their structures. After the parameters are obtained, these parameters will be correlated with the refining and conversion variables which control a given type of liquefaction process. The effects of asphaltene in catalysis, ash or metal removal, desulfurization and denitrification will also be correlated. It is anticipated that understanding the role of asphaltenes in liquefaction processes will enable engineers to both improve existing processes, and to make recommendations for operational changes in planned liquefaction units in the United States. The objective of Phase 1 was to complete the isolation and separation of coal liquid fractions and to initiate their characterization. The objective of Phase 2 is to continue the characterization of coal asphaltenes and other coal liquid fractions by use of physical and instrumental methods. The structural parameters obtained will be used to postulate hypothetical average structures for coal liquid fractions. The objective of Phase 3 is to concentrate on the characterization of the preasphaltene (benzene insoluble fraction) of coal liquid fraction by the available physical and chemical methods to obtain a number of structural parameters.

  16. Studies of coupled chemical and catalytic coal conversion methods. Tenth quarterly report, January--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.

    1990-12-31

    This report concerns our research on base-catalyzed coal solubilization and a new approach for hydrogen addition. The work on base-catalyzed, chemical solubilization is continuing. this report is focused on the hydrogenation research. Specifically it deals with the use of arene chromium carbonyl complexes as reagents for the addition of dideuterium to coal molecules. In one phase of the work, he has established that the aromatic hydrocarbons in a representative coal liquid can be converted in very good yield to arene chromium carbonyl compounds. In a second phase of the work directly related to our objective of improved methods for catalytic hydrogenation, he has established that the aromatic constituents of the same coal liquid add dideuterium in the presence of added napththalene chromium carbonyl.

  17. Particle Distribution in a Fixed Bed Down Draft Wood Gasifier

    DEFF Research Database (Denmark)

    Hindsgaul, Claus

    2005-01-01

    Char particle samples were collected from six distances above the grate in a fixed bed of a down draft biomass gasifier. Each sample was separated into twelve size fractions by screening through standard sieves in order to determine the local particle size distribution. The ash contents of each...

  18. Novel fragmentation model for pulverized coal particles gasification in low temperature air thermal plasma

    Directory of Open Access Journals (Sweden)

    Jovanović Rastko D.

    2016-01-01

    Full Text Available New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important stages during particle combustion, such as particle devolatilisation and char combustion, are described with satisfying accuracy in existing commercial CFD codes that are extensively used as powerful tool for pulverized coal combustion and gasification modeling. However, during plasma coal gasification, high plasma temperature induces strong thermal stresses inside interacting coal particles. These stresses lead to “thermal shock” and extensive particle fragmentation during which coal particles with initial size of 50-100 m disintegrate into fragments of at most 5-10 m. This intensifies volatile release by a factor 3-4 and substantially accelerates the oxidation of combustible matter. Particle fragmentation, due to its small size and thus limited influence on combustion process is commonly neglected in modelling. The main focus of this work is to suggest novel approach to pulverized coal gasification under high temperature conditions and to implement it into commercial comprehensive code ANSYS FLUENT 14.0. Proposed model was validated against experimental data obtained in newly built pilot scale D.C plasma burner test facility. Newly developed model showed very good agreement with experimental results with relative error less than 10%, while the standard built-in gasification model had error up to 25%.

  19. Hydrothermal pretreatment of coal. Quarterly report No. 1, September 21--December 15, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.S.

    1989-12-21

    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of ``OH`` seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  20. Business venture-analysis case study relating to the manufacture of gas turbines for the generation of utility electric power. Volume II. Private sector and public sector venture studies. Final report. [Use of coal gasifier with combined gas and steam system

    Energy Technology Data Exchange (ETDEWEB)

    Davison, W.R.

    1978-05-05

    Increasing national attention is being directed toward the search for clean, efficient, and reliable energy-conversion systems, capable of using abundant indigenous fuels such as coal, for generation of utility electric power. A prime candidate in this area is the combined gas and steam (COGAS) system employing a high-temperature gas turbine with a steam-turbine bottoming cycle, fed by a coal gasifier. This program demonstrates the use of a logical and consistent venture-analysis methodology which could also be applied to investigate other high-technology, energy-conversion systems that have yet to reach a state of commercialization but which are of significant interest to the U.S. Government. The venture analysis was performed by using a computer to model the development, production, sales, and in-service development phases of programs necessary to introduce new gas turbines in COGAS systems. The simulations were produced in terms of estimated cash flows, rates of returns, and risks which a manufacturer would experience. Similar simulations were used to estimate public-sector benefits resulting from the lower cost of power and improved environment gained from the use of COGAS systems rather than conventional systems. The study shows that substantial social benefits could be realized and private investment would be made by the gas-turbine manufacturers if an infusion of external funds were made during key portions of the gas-turbine development program. It is shown that there is substantial precedent for such public assistance to make possible economic and environmental benefits that otherwise would not be possible. 42 references.

  1. Power Systems Development Facility Gasification Test Campaign TC25

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2008-12-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  2. Evaluation of Structural Changes in the Coal Specimen Heating Process and UCG Model Experiments for Developing Efficient UCG Systems

    Directory of Open Access Journals (Sweden)

    Gota Deguchi

    2013-05-01

    Full Text Available In the underground coal gasification (UCG process, cavity growth with crack extension inside the coal seam is an important phenomenon that directly influences gasification efficiency. An efficient and environmentally friendly UCG system also relies upon the precise control and evaluation of the gasification zone. This paper presents details of laboratory studies undertaken to evaluate structural changes that occur inside the coal under thermal stress and to evaluate underground coal-oxygen gasification simulated in an ex-situ reactor. The effects of feed temperature, the direction of the stratified plane, and the inherent microcracks on the coal fracture and crack extension were investigated using some heating experiments performed using plate-shaped and cylindrical coal specimens. To monitor the failure process and to measure the microcrack distribution inside the coal specimen before and after heating, acoustic emission (AE analysis and X-ray CT were applied. We also introduce a laboratory-scale UCG model experiment conducted with set design and operating parameters. The temperature profiles, AE activities, product gas concentration as well as the gasifier weight lossess were measured successively during gasification. The product gas mainly comprised combustible components such as CO, CH4, and H2 (27.5, 5.5, and 17.2 vol% respectively, which produced a high average calorific value (9.1 MJ/m3.

  3. Development of brown coal mining in the Federal Republic of Germany

    Energy Technology Data Exchange (ETDEWEB)

    Tilmann, W

    1985-01-01

    The significance of brown coal mining in the Federal Republic of Germany for the development of opencast technology and the power industry is discussed with emphasis on mining in the Rhineland Area. In 1984, 126.7 mt of brown coal were produced in the Federal Republic of Germany. In the development of high-performance equipment it is essential that the efficiency of the bucket-wheel excavator is increased. Trains and conveyors are mainly used for mine transport in the Federal Republic of Germany. A high moral commitment is linked to land claims, recultivation and environmental issues on the part of brown coal mining. In 1984 the percentage share of brown coal supplied to the public power stations was 83.6%, corresponding to 105.9 mt. The installed capacity of all brown coal power stations amounted to 12,764 MW at the end of 1984, providing around one quarter of overall public power output. Charge coal for coal refining has become more important and the production of brown coal dust and brown coal coke has also increased. The share of brown coal in domestic primary energy production is currently around 24% of 151 mt hard-coal units or around 10% of 376.5 mt hard-coal units in terms of energy consumption. 12 references.

  4. [Characterization and supply of coal based fuels]. Quarterly technical report, February 1, 1988--April 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-31

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements; Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is described.

  5. Production of 800 kW of electrical power using medium calorific gas from a biomass gasifier integrated in a combined cycle

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Cabrita, I. [Instituto Nacional de Engenharia e Tecnologia Industrial, Lisboa (Portugal)

    1993-12-31

    An allothermal fluidized bed biomass gasifier is under construction to operate at a pressure slightly above atmospheric to produce a gaseous fuel of medium heating value. The output of the gasifier is 2.5 {times} 10{sup 6} kcal/h and will be attached to a gas turbine that is specifically modified to burn the gas produced. The amount of electricity to be generated will be 800 kW. The gasifying medium used is superheated steam at 2.5 bars and 400{degrees}C and the amount needed will be 280 kg/h. The gasifier will have a cross sectional area of 2.1 m{sup 2} with dimensions of 1 500 mm {times} 1 400 mm. There is a heat exchanger to provide the heat needed for the gasification reactions. The gasifier will operate at about 850{degrees}C and the biomass throughput will be about 950 kg/h. The amount of gas that is to be produced will be about 1 300 kg/h or 1 900 Nm{sup 3}/h. Part of the gas obtained will be burned in an external combustor to provide the heat for the gasifier. The gas turbine to be employed is a single shaft turbine designed to drive 750 kVA electrical generator. The turbine combustion chamber is somewhat modified to allow for the lower heating value of the gas. However, there is no loss of efficiency in the turbine output due to lower calorific value of the fuel. The turbine inlet temperature is 900/{degrees}C and that of the exhaust will be 500{degrees}C. The amount of gas to be used is about 745 Nm{sup 3}/h. The paper reports the experimental results obtained from a pilot-scale gasifier operating under similar conditions. The results of test runs carried out with a gas turbine are also presented.

  6. Advanced Coal Wind Hybrid: Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

    2008-11-28

    transmission line. In the G+CC+CCS plant, coal is gasified into syngas and CO{sub 2} (which is captured). The syngas is burned in the combined cycle plant to produce electricity. The ACWH facility is operated in such a way that the transmission line is always utilized at its full capacity by backing down the combined cycle (CC) power generation units to accommodate wind generation. Operating the ACWH facility in this manner results in a constant power delivery of 3,000 MW to the load centers, in effect firming-up the wind generation at the project site.

  7. Power Systems Development Facility Gasification Test Run TC07

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2002-04-05

    This report discusses Test Campaign TC07 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC07. Prior to TC07, the Transport Reactor was modified to allow operations as an oxygen-blown gasifier. Test Run TC07 was started on December 11, 2001, and the sand circulation tests (TC07A) were completed on December 14, 2001. The coal-feed tests (TC07B-D) were started on January 17, 2002 and completed on April 5, 2002. Due to operational difficulties with the reactor, the unit was taken offline several times. The reactor temperature was varied between 1,700 and 1,780 F at pressures from 200 to 240 psig. In TC07, 679 hours of solid circulation and 442 hours of coal feed, 398 hours with PRB coal and 44 hours with coal from the Calumet mine, and 33 hours of coke breeze feed were attained. Reactor operations were problematic due to instrumentation problems in the LMZ resulting in much higher than desired operating temperatures in the reactor. Both reactor and PCD operations were stable and the modifications to the lower part of the gasifier performed well while testing the gasifier with PRB coal feed.

  8. FY 1993 report on the results of the subsidy project for the Sunshine Project. Development of coal use hydrogen production technology (Support study of pilot plant - Study using the small equipment); 1993 nendo Sunshine keikaku hojo jigyo seika hokokusho. Sekitan riyo suiso seizo gijutsu kaihatsu - Pilot plant no shien kenkyu (Kogata souchi ni yoru kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    As to the development of coal use hydrogen production technology, the paper studied the reactivity of char and ignition characteristics of various coals in the use of electric furnace and the participation in pilot plant test and the improvement, and the FY 1993 results were reported. In the study of reactivity of char, it was found that the reactivity was the same, regardless of the equipment and kind of raw coal, if considered of the ratio of the total oxygen amount (the char-containing oxygen amount added to the oxygen supply amount) to the carbon supply amount in char. In the test on ignition characteristics of overseas coals, the same characteristics as those of the Taiheiyo coal conventionally tested were obtained and it was found that it was good to use the same method for start-up of gasifier as conventionally used. In the pilot plant test in the previous year, slag and ash stuck to the outlet of the gasification part and heat recovery part and developed, which hindered the continued operation. To improve it, the following were carried out: model study, study of ash sintering, study using the synthetic test equipment, analysis of the deposit in gasifier, etc. Based on these results, the plant was improved, and the continued operation of 1,149 hours was stably achieved in RUN8. (NEDO)

  9. REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Donald P. Malone; William R. Renner

    2003-07-31

    This report describes activities for the third quarter of work performed under this agreement. Atmospheric testing was conducted as scheduled on June 5 through June 13, 2003. The test results were encouraging, however, the rate of carbon dissolution was below expectations. Additional atmospheric testing is scheduled for the first week of September 2003. Phase I of the work to be done under this agreement consists of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product stream. In addition smaller quantities of petroleum coke and a low value refinery stream will be gasified. DOE and EnviRes will evaluate the results of this work to determine the feasibility and desirability of proceeding to Phase II of the work to be done under this agreement, which is gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

  10. Combining Renewable Energy With Coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-01

    There are various possibilities for incorporating biomass into coal-fuelled processes and a number of these are already being deployed commercially. Others are the focus of ongoing research and development. Biomass materials can vary widely, although the present report concentrates mainly on the use of woody biomass in the form of forest residues. Potentially, large amounts are available in some parts of the world. However, not all forested regions are very productive, and the degree of commercial exploitation varies considerably between individual countries. The level of wastage associated with timber production and associated downstream processing is frequently high and considerable quantities of potentially useful materials are often discarded. Overall, forest residues are a largely underexploited resource. Combining the use of biomass with coal can be beneficial, particularly from an environmental standpoint, although any such process may have its limitations or drawbacks. Each coal type and biomass feedstock has different characteristics although by combining the two, it may be possible to capitalise on the advantages of each, and minimise their individual disadvantages. An effective way is via cogasification, and useful operating experience has been achieved in a number of large-scale coal-fuelled gasification and IGCC plants. Cogasification can be the starting point for producing a range of products that include synthetic natural gas, chemicals, fertilisers and liquid transport fuels. It also has the potential to form the basis of systems that combine coal and biomass use with other renewable energy technologies to create clean, efficient energy-production systems. Thus, various hybrid energy concepts, some based on coal/biomass cogasification, have been proposed or are in the process of being developed or trialled. Some propose to add yet another element of renewable energy to the system, generally by incorporating electricity generated by intermittent

  11. Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); King, David L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xiaohong S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xing, Rong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spies, Kurt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhu, Yunhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rainbolt, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Liyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Braunberger, B. [Western Research Inst., Laramie, WY (United States)

    2014-10-01

    Gasifier-derived syngas from coal has many applications in the area of catalytic transformation to fuels and chemicals. Raw syngas must be treated to remove a number of impurities that would otherwise poison the synthesis catalysts. Inorganic impurities include alkali salts, chloride, sulfur compounds, heavy metals, ammonia, and various P, As, Sb, and Se- containing compounds. Systems comprising multiple sorbent and catalytic beds have been developed for the removal of impurities from gasified coal using a warm cleanup approach. This approach has the potential to be more economic than the currently available acid gas removal (AGR) approaches and improves upon currently available processes that do not provide the level of impurity removal that is required for catalytic synthesis application. Gasification also lends itself much more readily to the capture of CO2, important in the regulation and control of greenhouse gas emissions. CO2 capture material was developed and in this study was demonstrated to assist in methane production from the purified syngas. Simultaneous CO2 sorption enhances the CO methanation reaction through relaxation of thermodynamic constraint, thus providing economic benefit rather than simply consisting of an add-on cost for carbon capture and release. Molten and pre-molten LiNaKCO3 can promote MgO and MgO-based double salts to capture CO2 with high cycling capacity. A stable cycling CO2 capacity up to 13 mmol/g was demonstrated. This capture material was specifically developed in this study to operate in the same temperature range and therefore integrate effectively with warm gas cleanup and methane synthesis. By combining syngas methanation, water-gas-shift, and CO2 sorption in a single reactor, single pass yield to methane of 99% was demonstrated at 10 bar and 330°C when using a 20 wt% Ni/MgAl2O4 catalyst and a molten-phase promoted Mg

  12. Experimental Gasification of Biomass in an Updraft Gasifier with External Recirculation of Pyrolysis Gases

    Directory of Open Access Journals (Sweden)

    Adi Surjosatyo

    2014-01-01

    Full Text Available The updraft gasifier is a simple type of reactor for the gasification of biomass that is easy to operate and has high conversion efficiency, although it produces high levels of tar. This study attempts to observe the performance of a modified updraft gasifier. A modified updraft gasifier that recirculates the pyrolysis gases from drying zone back to the combustion zone and gas outlet at reduction zone was used. In this study, the level of pyrolysis gases that returned to the combustion zone was varied, and as well as measurements of gas composition, lower heating value and tar content. The results showed that an increase in the amount of pyrolysis gases that returned to the combustion zone resulted in a decrease in the amount of tar produced. An increase in the amount of recirculated gases tended to increase the concentrations of H2 and CH4 and reduce the concentration of CO with the primary (gasification air flow held constant. Increasing the primary air flow tended to increase the amount of CO and decrease the amount of H2. The maximum of lower heating value was 4.9 MJ/m3.

  13. Coal demonstration plants. Quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    The objective of the US DOE demonstration program is to demonstrate and verify second-generation technologies and validate the economic, environmental and productive capacity of a near commercial-size plant by integrating and operating a modular unit using commercial size equipment. These facilities are the final stage in the RD and D process aimed at accelerating and reducing the risks of industrial process implementation. Under the DOE program, contracts for the design, construction, and operation of the demonstration plants are awarded through competitive procedures and are cost shared with the industrial partner. The conceptual design phase is funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded between industry and the government. The government share of the cost involved for a demonstration plant depends on the plant size, location, and the desirability and risk of the process to be demonstrated. The various plants and programs are discussed: Description and status, funding, history, flowsheet and progress during the current quarter. (LTN)

  14. Combustion of producer gas from gasification of south Sumatera lignite coal using CFD simulation

    Directory of Open Access Journals (Sweden)

    Vidian Fajri

    2017-01-01

    Full Text Available The production of gasses from lignite coal gasification is one of alternative fuel for the boiler or gas turbine. The prediction of temperature distribution inside the burner is important for the application and optimization of the producer gas. This research aims to provide the information about the influence of excess air on the temperature distribution and combustion product in the non-premixed burner. The process was carried out using producer gas from lignite coal gasification of BA 59 was produced by the updraft gasifier which is located on Energy Conversion Laboratory Mechanical Engineering Department Universitas Sriwijaya. The excess air used in the combustion process were respectively 10%, 30% and 50%. CFD Simulations was performed in this work using two-dimensional model of the burner. The result of the simulation showed an increase of excess air, a reduction in the gas burner temperature and the composition of gas (carbon dioxide, nitric oxide and water vapor.

  15. FY 1990 report on the results of the development of the entrained bed coal gasification power plant. Part 2. Fabrication/installation of pilot plant; 1990 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Pilot plant seisaku suetsuke hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, fabrication/installation work, etc. were made for a pilot plant of 200t/d entrained bed coal gasification power generation, and the FY 1990 results were summarized. Construction work of a pilot plant of coal gasification power generation was at its peak in April 1990, and installation/piping work for each facility/equipment was carried out. In May, transportation/installation of gas turbine and generator were started. In June, installation of equipment of the 66kV special high voltage switching station was conducted, and the initial power receiving of 6.9kV was conducted. In August, inspection before use was made of the main piping of the gasifier equipment, gas refining equipment and gas turbine equipment. In December, trial unit operation of each equipment and interlock test were carried out. 'The integrated plant protection interlock test' was made from January 21 to February 21, 1991, and the favorable results were obtained. On February 28, a ceremony to celebrate the completion of all facilities of pilot plant was made. In March, drying of gasifier and initial firing by light oil were conducted, and all the work was completed on March 25. (NEDO)

  16. FY 1990 report on the results of the development of the entrained bed coal gasification power plant. Part 2. Fabrication/installation of pilot plant; 1990 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Pilot plant seisaku suetsuke hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, fabrication/installation work, etc. were made for a pilot plant of 200t/d entrained bed coal gasification power generation, and the FY 1990 results were summarized. Construction work of a pilot plant of coal gasification power generation was at its peak in April 1990, and installation/piping work for each facility/equipment was carried out. In May, transportation/installation of gas turbine and generator were started. In June, installation of equipment of the 66kV special high voltage switching station was conducted, and the initial power receiving of 6.9kV was conducted. In August, inspection before use was made of the main piping of the gasifier equipment, gas refining equipment and gas turbine equipment. In December, trial unit operation of each equipment and interlock test were carried out. 'The integrated plant protection interlock test' was made from January 21 to February 21, 1991, and the favorable results were obtained. On February 28, a ceremony to celebrate the completion of all facilities of pilot plant was made. In March, drying of gasifier and initial firing by light oil were conducted, and all the work was completed on March 25. (NEDO)

  17. Temperature and pressure distributions in a 400 kW{sub t} fluidized bed straw gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Erguedenler, A.; Ghaly, A.E.; Hamdullahpur, F. [Technical Univ. of Nova Scotia, Halifax (Canada)

    1993-12-31

    The temperature and pressure distribution characteristics of a 400 kW (thermal) dual-distributor type fluidized bed straw gasifier were investigated. The effects of the bed height, equivalence ratio (actual air-fuel ratio:stoichiometric air-fuel ratio) and fluidization velocity on the temperature and pressure variations in the gasifier were studied. Generally, the bed temperature reached the steady state condition within 15--20 minutes. The average temperature of the dense bed ranged from 649{degrees}C to 875{degrees}C depending on the levels of operating parameters used. The bed temperature increased linearly with increases in the equivalence ratio, higher bed temperatures were observed with lower bed height and no clear trend for the bed temperature with respect to variations in fluidization velocity was observed. The bed height, equivalence ratio and fluidization velocity affected the pressure drop in the fluidized bed gasifier. Increasing the fluidization velocity and/or decreasing the equivalence ratio resulted in higher pressure drops in the dense bed and the freeboard regions whereas increasing the bed height increased the pressure drop only in the dense bed.

  18. Test and evaluate the tri-gas low-Btu coal-gasification process. Final report, October 21, 1977-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Zabetakis, M.G.

    1980-12-01

    This report describes the continuation of work done to develop the BCR TRI-GAS multiple fluidized-bed gasification process. The objective is the gasification of all ranks of coals with the only product being a clean, low-Btu fuel gas. Design and construction of a 100 lb/h process and equipment development unit (PEDU) was completed on the previous contract. The process consists of three fluid-bed reactors in series, each having a specific function: Stage 1 - pretreatment; Stage 2- - gasification; Stage 3 - maximization of carbon utilization. Under the present contract, 59 PEDU tests have been conducted. A number of these were single-stage tests, mostly in Stage 1; however, integrated PEDU tests were conducted with a western coal (Rosebud) and two eastern coals (Illinois No. 6 and Pittsburgh seam). Both Rosebud and Pittsburgh seam coals were gasified with the PEDU operating in the design mode. Operation with Illinois No. 6 seam coal was also very promising; however, time limitations precluded further testing with this coal. One of the crucial tasks was to operate the Stage 1 reactor to pretreat and devolatilize caking coals. By adding a small amount of air to the fluidizing gas, the caking properties of the coal can be eliminated. However, it was also desirable to release a high percentage of the volatile matter from the coal in this vessel. To accomplish this, the reactor had to be operated above the agglomerating temperature of caking coals. By maintaining a low ratio of fresh to treated coal, this objective was achieved. Both Illinois No. 6 and Pittsburgh seam coals were treated at temperatures of 800 to 900 F without agglomerating in the vessel.

  19. Computer simulation of a downdraft wood gasifier for tea drying

    Energy Technology Data Exchange (ETDEWEB)

    Jayah, T.H.; Lu Aye; Fuller, R.J.; Stewart, D.F. [University of Melbourne, Victoria (Australia). International Technologies Centre, Department of Civil and Environmental Engineering

    2003-10-01

    A gasifier has been fabricated on Sri Lanka for the tea industry, but there is a lack of knowledge of the effect of certain key operating parameters and design features on its performance. Experimental testing of the design under various conditions has produced data that has been used to calibrate a computer program, developed to investigate the impact of those parameters and features on conversion efficiency. The program consists of two sub-models of the pyrolysis and gasification zones, respectively. The pyrolysis sub-model has been used to determine the maximum temperature and the composition of the gas entering the gasification zone. The gasification zone sub-model has been calibrated using data gathered from the experiments. It was found that a wood chip size of 3-5 cm with a moisture content below 15% (d.b.) should be used in this gasifier. Feed material with a fixed carbon content of higher than 30% and heat losses of more than 15% should be avoided. For the above parameters, the gasification zone should be 33 cm long to achieve an acceptable conversion efficiency. (author)

  20. Wabash River Coal Gasification Repowering Project: A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2002-01-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of$438 million. Construction for the demonstration project was started in July 1993. Pre-operational tests were initiated in August 1995, and construction was completed in November 1995. Commercial operation began in November 1995, and the demonstration period was completed in December

  1. Is there a future for coal in Ontario?

    International Nuclear Information System (INIS)

    Davies, G.

    2004-01-01

    This PowerPoint presentation examined the efficacy of a governmental decision in 2003 to close all Ontario coal stations by 2007. Coal currently represents one quarter of Ontario's energy and capacity. Projected supply and demand gaps for Ontario were presented for up to 2020. Ontario's supply options were outlined. It was noted that between $30 and $40 billion in investment in the electricity sector will be needed over the next 10 to 15 years. It was observed that closing coal plants may reduce pollution by 6 per cent at a cost of $2 billion. More than half the smog affecting Ontario comes from the United States, while much of the remaining half is caused by transportation emissions. Details of energy strategies related to coal in the United States were discussed. New coal power plant technologies include supercritical combustion; advanced air pollution control; circulating fluidized bed combustion and integrated coal gasification combined cycles. Coal power plant performance criteria were presented. Various research programs in the United States were reviewed, and roadmap performance targets were presented. It was concluded that high prices and uncertainty for natural gas fired options may reinforce views on the need to rethink coal closures. A strategy was recommended in which Ontario pursued economic options for reducing emissions across all sectors. New investments in latest and best technology for emissions reduction in Ontario's coal-fired stations were recommended, as well as a North American agreement on clean air, and increased Canadian participation in U.S. technology development efforts for clean coal and zero emissions plants by 2025. tabs., figs

  2. Gasification Characteristics of Coal/Biomass Mixed Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Reginald [Stanford Univ., CA (United States). Mechanical Engineering Dept.

    2014-09-01

    pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures.

  3. Comparison of mass and energy balances for air blown and thermally ballasted fluidized bed gasifiers

    International Nuclear Information System (INIS)

    Lysenko, Steve; Sadaka, Samy; Brown, Robert C.

    2012-01-01

    The objective of this study was to compare the mass and energy balances for a conventional air blown fluidized bed gasifier and a ballasted fluidized bed gasifier developed at Iowa State University. The ballasted gasifier is an indirectly heated gasifier that uses a single reactor for both combustion and pyrolysis. Heat accumulated in high-temperature phase change material during the combustion phase is released during the pyrolysis phase to generate producer gas. Gas composition, tar and char contents, cold gas efficiency, carbon conversion, and hydrogen yield per unit biomass input were determined as part of these evaluation. During the pyrolysis phase of ballasted gasification, higher volumetric concentrations of hydrogen and methane were obtained than during air blown gasification. Hydrogen yield for ballasted gasification was 14 g kg −1 of biomass, which was about 20% higher than that obtained during air blown gasification. The higher heating value of the producer gas also reached higher levels during the ballasted pyrolysis phase than that of air blown gasification. Heating value for air blown gasification was 5.2 MJ m −3 whereas the heating value for the ballasted pyrolysis phase averaged 5.5 MJ m −3 , reaching a maximum of 8.0 MJ m −3 . The ballasted gasifier was expected to yield producer gas with average heating value as high as 15 MJ m −3 but excessive use of nitrogen to purge and cool the fuel feeder system greatly diluted the producer gas. Relatively simple redesign of the feeder system would greatly reduce the use of purge gas and may increase the heating values to about 17.5 MJ m −3 . Higher char production per kilogram of biomass was associated with the ballasted system, producing 140 g kg −1 of biomass compared to only 53 g kg −1 of biomass during air blown gasification. On the other hand, tar concentrations in the producer gas were 6.0 g m −3 for ballasted gasification compared to 11.7 g m −3 for air blown gasification. On

  4. Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life

    Energy Technology Data Exchange (ETDEWEB)

    Gopala Krishnan; P. Jayaweera; J. Bao; J. Perez; K. H. Lau; M. Hornbostel; A. Sanjurjo; J. R. Albritton; R. P. Gupta

    2008-09-30

    The U.S. Department of Energy's SECA program envisions the development of high-efficiency, low-emission, CO{sub 2} sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NO{sub x} production), and modularity. Naturally occurring coal has many impurities and some of these impurities end in the fuel gas stream either as a vapor or in the form of fine particulate matter. Establishing the tolerance limits of SOFCs for contaminants in the coal-derived gas will allow proper design of the fuel feed system that will not catastrophically damage the SOFC or allow long-term cumulative degradation. The anodes of Ni-cermet-based SOFCs are vulnerable to degradation in the presence of contaminants that are expected to be present in a coal-derived fuel gas stream. Whereas the effects of some contaminants such as H{sub 2}S, NH{sub 3} and HCl have been studied, the effects of other contaminants such as As, P, and Hg have not been ascertained. The primary objective of this study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700 to 900 C. The results were used to assess catastrophic damage risk and long-term cumulative effects of the trace contaminants on the lifetime expectancy of SOFC systems fed with coal-derived gas streams.

  5. Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Conocophillips

    2007-09-30

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine

  6. Thermodynamic Model of a Very High Efficiency Power Plant based on a Biomass Gasifier, SOFCs, and a Gas Turbine

    Directory of Open Access Journals (Sweden)

    P V Aravind

    2012-07-01

    Full Text Available Thermodynamic calculations with a power plant based on a biomass gasifier, SOFCs and a gas turbine are presented. The SOFC anode off-gas which mainly consists of steam and carbon dioxides used as a gasifying agent leading to an allothermal gasification process for which heat is required. Implementation of heat pipes between the SOFC and the gasifier using two SOFC stacks and intercooling the fuel and the cathode streams in between them has shown to be a solution on one hand to drive the allothermal gasification process and on the other hand to cool down the SOFC. It is seen that this helps to reduce the exergy losses in the system significantly. With such a system, electrical efficiency around 73% is shown as achievable.

  7. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, October 1--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  8. Synthetic-fuel production using Texas lignite and a very-high-temperature gas-cooled reactor for process heat and electrical power generation

    International Nuclear Information System (INIS)

    Ross, M.A.; Klein, D.E.

    1981-05-01

    This report presents two alternatives to increased reliance on foreign energy sources; each method utilizes the abundant domestic resources of coal, uranium, and thorium. Two approaches are studied in this report. First, the gasification and liquefaction of coal are accomplished with Lurgi gasifiers and Fischer-Tropsch synthesis. A 50,000 barrel per day facility, consuming 15 million tons of lignite coal per year, is used. Second, a nuclear-assisted coal conversion approach is studied using a very high temperature gas-cooled reactor with a modified Lurgi gasifier and Fischer-Tropsch synthesis. This is a preliminary report presenting background data and a means of comparison for the two approaches considered

  9. Problems of underground gasification of coal. Les Problemes que pose une gazeification souterraine des charbons

    Energy Technology Data Exchange (ETDEWEB)

    Doumenc, R A.M.

    1948-11-01

    Underground gasification is examined in collaboration with Socogaz of Brussels. The USSR has been successful and claims to have produced gas of 1,000 cal per cu m at the rate of 30,000 cu m per hr at Gorlovka (Donets). Results of the American, Belgian, and Italian experiments show that the gas produced contains much CO/sub 2/ and only 5 percent CO. The coal has been burned but not gasified. If the main problem to be solved should be production of a rich gas for burning or a sufficiently hot gas for direct heating, many difficulties would need to be overcome, such as remote control of the fire, choice of suitable coal seams, etc. The underground process is attractive because of the great saving in labor. As it is impossible to reproduce conditions on a laboratory scale, the time and expenditure required for these lengthy experiments seem to be amply justified.

  10. Quarterly environmental data summary for third quarter 1999

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, Stephen H. [Weldon Spring Site, St. Charles, MO (United States)

    1999-11-05

    A copy of the quarterly Environmental Data Summary (QEDS) for the third quarter of 1999 is enclosed. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the WSSRAP verification group and merged into the data base during the third quarter of 1999. Selected KPA results for on-site total uranium analyses performed during the quarter are also included. Air monitoring data presented are the most recent complete sets of quarterly data.

  11. Report for fiscal 1995 by Coal Gasification Committee; 1995 nendo sekitan gas ka iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This is a summary primarily of the distributed material. As of December 14, 1995, the 200t/d pilot plant for power generation by entrained bed coal gasification records a total coal gasification operation time of 4,485 hours with an accumulated amount of power generation of 9,227MWh. A large combustor is tested, and it is found that combustion is stable under a 1/4 load with low NOx emissions. The combustor is sufficiently cooled with a small supply of air. Coal ash and coal, supplied in a constant state for an improved heat recovery efficiency in the development of hydrogen-from-coal technology, are heated to a temperature near their melting points. They are then allowed to impinge at a heat transfer plane simulating a gasifier heat recovery section, and a study is made of the mechanism of ash adhesion, molten or semi-molten, to the heat recovery section. The reduction of the heat transfer coefficient due to added grains is 30-50%, and the reduction is small when the heat transfer pipe surface velocity is high or when the carbon concentration in the grains is high. In another effort, utilization of coal-derived gas as town gas is studied. As for yields as indicated by the Curie gas pyrolyzer, the gas yield increases and liquid yield decreases when the reaction temperature is high. Using a small test unit, it is found that a rise in the hydrogen partial pressure increases the production of both gas and liquid. (NEDO)

  12. quarters

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2016-10-01

    Full Text Available Are there many words combining both space and time? A quarter is one of such rare words: it means both a part of the city space and a period of the year. A regular city has parts bordered by four streets. For example, Chita is a city with an absolutely orthogonal historical center. This Utopian city was designed by Decembrists in the depth of Siberian ore-mines (120. The 130 Quarter in Irkutsk is irregular from its inception because of its triangular form. Located between two roads, the forked quarter was initially bordered by flows along the west-east axis – the main direction of the country. That is why it appreciated the gift for the 350 anniversary of its transit existence – a promenade for an unhurried flow of pedestrians. The quarter manages this flow quite well, while overcoming the difficulties of new existence and gathering myths (102. Arousing many expectations, the “Irkutsk’s Quarters” project continues the theme that was begun by the 130 Quarter and involved regeneration, revival and search for Genius Loci and the key to each single quarter (74. Beaded on the trading axis, these shabby and unfriendly quarters full of rubbish should be transformed for the good of inhabitants, guests and the small business. The triptych by Lidin, Rappaport and Nevlyutov is about happiness of urbanship and cities for people, too (58. The City Community Forum was also devoted to the urban theme (114. Going through the last quarter of the year, we hope that Irkutsk will keep to the right policy, so that in the near future the wooden downtown quarters will become its pride, and the design, construction and investment complexes will join in desire to increase the number of comfortable and lively quarters in our city. The Baikal Beam will get one more landmark: the Smart School (22 for Irkutsk’s children, including orphans, will be built in several years on the bank of Chertugeevsky Bay.

  13. Performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier

    Science.gov (United States)

    Sweeney, Daniel Joseph

    With the discovery of vast fossil resources, and the subsequent development of the fossil fuel and petrochemical industry, the role of biomass-based products has declined. However, concerns about the finite and decreasing amount of fossil and mineral resources, in addition to health and climate impacts of fossil resource use, have elevated interest in innovative methods for converting renewable biomass resources into products that fit our modern lifestyle. Thermal conversion through gasification is an appealing method for utilizing biomass due to its operability using a wide variety of feedstocks at a wide range of scales, the product has a variety of uses (e.g., transportation fuel production, electricity production, chemicals synthesis), and in many cases, results in significantly lower greenhouse gas emissions. In spite of the advantages of gasification, several technical hurdles have hindered its commercial development. A number of studies have focused on laboratory-scale and atmospheric biomass gasification. However, few studies have reported on pilot-scale, woody biomass gasification under pressurized conditions. The purpose of this research is an assessment of the performance of a pilot-scale, steam-blown, pressurized fluidized bed biomass gasifier. The 200 kWth fluidized bed gasifier is capable of operation using solid feedstocks at feedrates up to 65 lb/hr, bed temperatures up to 1600°F, and pressures up to 8 atm. Gasifier performance was assessed under various temperatures, pressure, and feedstock (untreated woody biomass, dark and medium torrefied biomass) conditions by measuring product gas yield and composition, residue (e.g., tar and char) production, and mass and energy conversion efficiencies. Elevated temperature and pressure, and feedstock pretreatment were shown to have a significant influence on gasifier operability, tar production, carbon conversion, and process efficiency. High-pressure and temperature gasification of dark torrefied biomass

  14. Production of synthesis gas and methane via coal gasification utilizing nuclear heat

    International Nuclear Information System (INIS)

    van Heek, K.H.; Juentgen, H.

    1982-01-01

    The steam gasificaton of coal requires a large amount of energy for endothermic gasification, as well as for production and heating of the steam and for electricity generation. In hydrogasification processes, heat is required primarily for the production of hydrogen and for preheating the reactants. Current developments in nuclear energy enable a gas cooled high temperature nuclear reactor (HTR) to be the energy source, the heat produced being withdrawn from the system by means of a helium loop. There is a prospect of converting coal, in optimal yield, into a commercial gas by employing the process heat from a gas-cooled HTR. The advantages of this process are: (1) conservation of coal reserves via more efficient gas production; (2) because of this coal conservation, there are lower emissions, especially of CO 2 , but also of dust, SO 2 , NO/sub x/, and other harmful substances; (3) process engineering advantages, such as omission of an oxygen plant and reduction in the number of gas scrubbers; (4) lower gas manufacturing costs compared to conventional processes. The main problems involved in using nuclear energy for the industrial gasification of coal are: (1) development of HTRs with helium outlet temperatures of at least 950 0 C; (2) heat transfer from the core of the reactor to the gas generator, methane reforming oven, or heater for the hydrogenation gas; (3) development of a suitable allothermal gas generator for the steam gasification; and (4) development of a helium-heated methane reforming oven and adaption of the hydrogasification process for operation in combination with the reactor. In summary, processes for gasifying coal that employ heat from an HTR have good economic and technical prospects of being realized in the future. However, time will be required for research and development before industrial application can take place. 23 figures, 4 tables. (DP)

  15. Sustainable model for financial viability of decentralized biomass gasifier based power projects

    NARCIS (Netherlands)

    Palit, D.; Malhotra, R.; Kumar, Atul

    2011-01-01

    This paper made a modest attempt for designing a sustainable model for financial viability of biomass gasifier power projects for enhancing electricity access in India and other developing countries. For long term sustainability of distributed generation projects in remote rural areas, viability

  16. Results from tests of a Stirling engine and wood chips gasifier plant

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell; Werling, J.

    2002-01-01

    The combination of thermal gasification and a Stirling engine is an interesting concept for use in small Combined Heat and Power (CHP) plants based on biomass, because the need for gas cleaning is eliminated and problems with fouling of the Stirling engine heater are considerably reduced....... Furthermore, the overall electric efficiency of the system can be improved. At the Technical University of Denmark a small CHP plant based on a Stirling engine and an updraft gasifier has been developed and tested successfully. The advantages of updraft gasifiers are the simplicity and that the amount...... of the Stirling engine reduces the problems with tar to a minor problem in the design of the burner. The Stirling engine, which has an electric power output of 35 kW, is specifically designed for utilisation of fuels with a content of particles. The gas burner for the engine is designed for low specific energy...

  17. Compressed air storage with humidification (CASH) coal gasification power plant investigation

    International Nuclear Information System (INIS)

    Nakhamkin, M.; Patel, M.

    1991-08-01

    A study was performed to investigate and develop a hybrid coal gasification concept which utilizes an air saturator (AS) with an integrated coal gasification/compressed air energy storage (CGS/CAES) plant. This potentially attractive concept is designated as AS/CGS/CAES. In this concept, the coal gasification system provides fuel for the combustors of the CAES reheat turbomachinery train. Motive air from underground storage is humidified by saturators and thereby provides increased power production without additional air consumption. The heat for generating the hot water utilized in the saturators is extracted from waste heat within the overall plant. Multiple alternatives were considered and parametrically analyzed in the study in order to select the most thermodynamically and economically attractive concepts. The major alternatives were differentiated by the type of gasifier, type of CAES turbomachinery, mode of operation, and utilization of waste heat. The results of the study indicate that the use of the air saturation in AS/CGS/CAES plants might reduce capital costs of coal gasification based power used in intermediate load generation by $300 to $400 per kilowatt. Furthermore, heat rates might also be reduced by almost 1.5 cents per kilowatt hour, a major reduction. The major cause of the reduction in electricity costs is a 50% reduction in the required gasification capacity per net kW. In addition to being a load management tool, AS/CGS/CAES concepts provide a method to operate the CGS and turbomachinery in a continuous mode, improving the operation and potentially the life expectancy of both components. 3 refs., 18 figs., 4 tabs

  18. High-volume, high-value usage of Flue Gas Desulfurization (FGD) by-products in underground mines Phase 1: Laboratory investigations. Quarterly report, July 1994--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    During the quarter a second series of samples were collected and partially characterized chemically and mineralogically. The samples were collected at the disposal site operated by Freeman United Coal Co. The second collection was necessary because of deterioration due to hydration of the original samples. A study of the hydration characteristics was completed during the quarter. Important reactions included the immediate formation of ettringite and portlandite. The hydration and transformation was found to be a slow process. A second phase of gypsum formation from ettringite deterioration was identified. The slow hydration of anhydrite with its resultant swell is a potential problem which will be addressed further. Geotechnical characterization, during the quarter included completion of the preliminary characterization, analysis of the findings, experimentation with sample preparation for the final characterization/mix design, and design of the final experimental program. The analysis of the coals collected during the core drilling and hydrologic planning were completed. Also during the quarter a meeting was held with representatives of the shotcrete industry to discuss transport systems for emplacement. The pros and cons of pneumatic and hydraulic systems were discussed and plans formulated for further investigations.

  19. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Dady B. Dadyburjor; Mark E. Heavner; Manoj Katakdaunde; Liviu Magean; J. Joshua Maybury; Alfred H. Stiller; Joseph M. Stoffa; John W. Zondlo

    2006-08-01

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, and porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, hydrotreatment of solvent was completed in preparation for pitch fabrication for graphite electrodes. Coal digestion has lagged but is expected to be complete by next quarter. Studies are reported on coal dissolution, pitch production, foam synthesis using physical blowing agents, and alternate coking techniques.

  20. A financial evaluation of biomass-gasifier-based power generation in India

    International Nuclear Information System (INIS)

    Tripathi, A.K.; Iyer, P.V.R.; Kandpal, T.C.

    1997-01-01

    A preliminary financial evaluation of biomass-gasifier-based power generation in India was undertaken. Simple cost functions were developed and used for this purpose. The unit cost of electricity has been estimated for a variety of scenarios taking into account some of the uncertainties associated with this emerging technology in India. (author)

  1. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-06-30

    This is the sixteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. During an unplanned outage, damage occurred to the electrochemical noise corrosion probes installed at the AEP Gavin plant; testing is expected to resume in August. The KEMCOP corrosion coupons were not affected by the unplanned outage; the coupons were removed and sent for analysis. BYU conducted a series of tests before the ISSR lab was relocated. Ammonia adsorption experiments provided clear evidence of the types of acidic sites present on catalyst surfaces. Data collected this quarter indicate that surface sulfation decreases Lewis acid site concentrations for all catalysts thus far studied, confirming that catalytic activity under commercial coal-based SCR conditions occurs primarily on Br{o}nsted acid sites and would be susceptible to basic impurities such as alkali and alkaline earth oxides, chlorides, and sulfates. SCR activity tests based on MS analysis showed that increasing sulfation generally increases NO reduction activity for both 0% and 1% vanadia catalysts. During this quarter, the slipstream reactor at Rockport operated for 720 hours on flue gas. Catalyst exposure time reached 4500 hours since installation. The reactor is out of service at the Rockport plant and plans are being made to move it to the Gadsden Plant. At Gadsden, modifications have begun in preparation for installation of the slipstream reactor next quarter.

  2. Design, scale-up, Six Sigma in processing different feedstocks in a fixed bed downdraft biomass gasifier

    Science.gov (United States)

    Boravelli, Sai Chandra Teja

    This thesis mainly focuses on design and process development of a downdraft biomass gasification processes. The objective is to develop a gasifier and process of gasification for a continuous steady state process. A lab scale downdraft gasifier was designed to develop the process and obtain optimum operating procedure. Sustainable and dependable sources such as biomass are potential sources of renewable energy and have a reasonable motivation to be used in developing a small scale energy production plant for countries such as Canada where wood stocks are more reliable sources than fossil fuels. This thesis addresses the process of thermal conversion of biomass gasification process in a downdraft reactor. Downdraft biomass gasifiers are relatively cheap and easy to operate because of their design. We constructed a simple biomass gasifier to study the steady state process for different sizes of the reactor. The experimental part of this investigation look at how operating conditions such as feed rate, air flow, the length of the bed, the vibration of the reactor, height and density of syngas flame in combustion flare changes for different sizes of the reactor. These experimental results also compare the trends of tar, char and syngas production for wood pellets in a steady state process. This study also includes biomass gasification process for different wood feedstocks. It compares how shape, size and moisture content of different feedstocks makes a difference in operating conditions for the gasification process. For this, Six Sigma DMAIC techniques were used to analyze and understand how each feedstock makes a significant impact on the process.

  3. Southern cone energy network coal gasification for SNG production and pipeline system. Feasibility study. Volume 1. Executive summary. Export trade information

    International Nuclear Information System (INIS)

    1992-01-01

    The Executive Summary document summarizes the study report on the economic and technical feasibility of gasifying coal to produce a substitute natural gas (SNG) for distribution to the industrial areas of Southern Brazil. The report includes data surveys, technology assessments, process evaluations, and conceptual designs and analyses. The study contributes to the Brazilian Government efforts to investigate feasible crude oil substitution programs that will meet the nation's energy needs by utilizing domestic resources, thereby reducing the severe negative impact of foreign crude oil importation on Brazil's balance of payments

  4. Advanced Hydrogen Transport Membrane for Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph [Praxair, Inc., Tonawanda, NY (United States); Porter, Jason [Colorado School of Mines, Golden, CO (United States); Patki, Neil [Colorado School of Mines, Golden, CO (United States); Kelley, Madison [Colorado School of Mines, Golden, CO (United States); Stanislowski, Josh [Univ. of North Dakota, Grand Forks, ND (United States); Tolbert, Scott [Univ. of North Dakota, Grand Forks, ND (United States); Way, J. Douglas [Colorado School of Mines, Golden, CO (United States); Makuch, David [Praxair, Inc., Tonawanda, NY (United States)

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  5. Predictive Model to determine the composition of the gas generated in a downdraft gasifier

    International Nuclear Information System (INIS)

    D'Espaux Shelton, Elbis; Copa Rey, José Ramón; Brito Sauvanel, Angel Luis

    2017-01-01

    There is currently a trend of using gasification modeling to describe the process without the need to develop experiments, which can be costly. This work presented the necessary tools to analyze the development of a mathematical model with the objective of predicting the chemical composition of the gas generated in a fixed bed downdraft gasifier, with parallel flows and air as a gasification agent as a function of kind of biomass used and the operating parameters of the equipment. This model allows the calculation of thermochemical processes that occur inside a downdraft gasifier and also the determination of temperature profiles. The model developed was based on the energy balance and species equations approach and the control volumes method was used. (author)

  6. Technical challenges and opportunities in cogasification of coal and biomass

    Science.gov (United States)

    Jagpinder Singh Brar; Kaushlendra Singh; John Zondlo

    2013-01-01

    Biomass gasification manufacturers are beginning to market 5 to 100 kW capacity gasifiers (e.g., Community Power Corporation (CPC), Littleton, CO and gasifier experimenters kit (GEK), AllPower Labs, Berkeley, CA) for producing electricity and synthetic gas (syngas). These gasifiers operate at 900 to 1000 °C, consuming 1.3 kg of biomass per hour for every kW...

  7. Cost and operational acceptability improvements to gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Connor, A.

    2003-07-01

    This work reports on the operation of two gasifiers by Biomass Engineering Ltd. in Northern Ireland, and the simplification of their gas conditioning system. Details are given of the high tar destruction levels achieved, the locally available wood waste and pallet wood, and the use of a back-pulsable dry ceramic filtration system for removing trace organics and particulates from the resulting gas prior to gas cooling, final filtration and use in a gas engine. The results of a techno-economic assessment of the original scrubbing system and the new ceramic filtration system indicating cost savings are presented. Further work to optimise the parameters of the filters is planned.

  8. The Low temperature CFB gasifier

    DEFF Research Database (Denmark)

    Stoholm, P.; Nielsen, Rasmus Glar; Fock, Martin W.

    2003-01-01

    %) particle separation by the hot secondary cyclone. The next LT-CFB experiment, currently under preparation, is expected to be on either municipal/industrial waste or animal manure. Eventually a 500 kW LT-CFB test plant scheduled for commission during summer 2003, and the anticipated primary LT......The Low Temperature Circulating Fluidised Bed (LT-CFB) gasification process aims at avoiding problems due to ash deposition and agglomeration when using difficult fuels such as agricultural biomass and many waste materials. This, as well as very simple gas cleaning, is achieved by pyrolysing...... the fuel at around 650?C in a CFB reaction chamber and subsequently gasifying the char at around 730oC in a slowly fluidised bubbling bed chamber located in the CFB particle recirculation path. In this paper the novel LT-CFB concept is further described together with the latest test results from the 50 k...

  9. Ground tests of 120 kW(heat) biomass fired gasifier diesel installation

    Energy Technology Data Exchange (ETDEWEB)

    Zyssin, L.V.; Maronet, I.J.; Morshin, V.N. [Energotechnology Ltd., St. Petersburg (Russian Federation)

    1996-12-31

    For the 1 MW and less power range diesel gasifier power plants could be considered as one of the main energy sources. The brief information about works carried out in Russia according to this direction is presented. Data of preliminary tests for gas diesel installations are presented. (orig.)

  10. Ground tests of 120 kW(heat) biomass fired gasifier diesel installation

    Energy Technology Data Exchange (ETDEWEB)

    Zyssin, L V; Maronet, I J; Morshin, V N [Energotechnology Ltd., St. Petersburg (Russian Federation)

    1997-12-31

    For the 1 MW and less power range diesel gasifier power plants could be considered as one of the main energy sources. The brief information about works carried out in Russia according to this direction is presented. Data of preliminary tests for gas diesel installations are presented. (orig.)

  11. Modeling of flow conditions in down draft gasifiers using tin film models

    DEFF Research Database (Denmark)

    Jensen, Torben Kvist; Gøbel, Benny; Henriksen, Ulrik Birk

    2003-01-01

    In order to examine how an inhomogeneous char bed affects the gas flow through the bed, a dynamic model have been developed to describe the flow distribution in a down draft gasifier. The gas flow distribution through the bed was determined using a thin film model approach. The temperatures...

  12. Non-slag co-gasification of biomass and coal in entrained-bed furnace

    Science.gov (United States)

    Itaya, Yoshinori; Suami, Akira; Kobayashi, Nobusuke

    2018-02-01

    Gasification is a promising candidate of processes to upgrade biomass and to yield clean gaseous fuel for utilization of renewable energy resources. However, a sufficient amount of biomass is not always available to operate a large scale of the plant. Co-gasification of biomass with coal is proposed as a solution of the problem. Tar emission is another subject during operation in shaft or kiln type of gasifiers employed conventionally for biomass. The present authors proposed co-gasification of biomass and coal in entrained-bed furnace, which is a representative process without tar emission under high temperature, but operated so to collect dust as flyash without molten slag formation. This paper presents the works performed on co-gasification performance of biomass and pulverized coal to apply to entrained-bed type of furnaces. At first, co-gasification of woody powder and pulverized coal examined using the lab-scale test furnace of the down-flow entrained bed showed that the maximum temperatures in the furnace was over 1500 K and the carbon conversion to gas achieved at higher efficiency than 80-90 percent although the residence time in the furnace was as short as a few seconds. Non-slag co-gasification was carried out successfully without slag formation in the furnace if coal containing ash with high fusion temperature was employed. The trend suggesting the effect of reaction rate enhancement of co-gasification was also observed. Secondary, an innovative sewage sludge upgrading system consisting of self-energy recovery processes was proposed to yield bio-dried sludge and to sequentially produce char without adding auxiliary fuel. Carbonization behavior of bio-dried sludge was evaluated through pyrolysis examination in a lab-scale quartz tube reactor. The thermal treatment of pyrolysis of sludge contributed to decomposition and removal of contaminant components such as nitrogen and sulfur. The gasification kinetics of sludge and coal was also determined by a

  13. Integrated methanol synthesis

    International Nuclear Information System (INIS)

    Jaeger, W.

    1982-01-01

    This invention concerns a plant for methanol manufacture from gasified coal, particularly using nuclear power. In order to reduce the cost of the hydrogen circuits, the methanol synthesis is integrated in the coal gasification plant. The coal used is gasified with hydration by means of hydrogen and the crude gas emerging, after cooling and separating the carbon dioxide and hydrogen sulphide, is mixed with the synthetic gas leaving the methane cracking furnace. This mixture is taken to the methanol synthesis and more than 90% is converted into methanol in one pass. The gas mixture remaning after condensation and separation of methanol is decomposed into three fractions in low temperature gas decomposition with a high proportion of unconverted carbon monoxide. The flow of methane is taken to the cracking furnace with steam, the flow of hydrogen is taken to the hydrating coal gasifier, and the flow of carbon monoxide is taken to the methanol synthesis. The heat required for cracking the methane can either be provided by a nuclear reactor or by the coke left after hydrating gasification. (orig./RB) [de

  14. Power Systems Development Facility Gasification Test Campaing TC18

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2005-08-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifier train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.

  15. Method for online measurement of the CHON composition of raw gas from biomass gasifier

    International Nuclear Information System (INIS)

    Neves, Daniel; Thunman, Henrik; Tarelho, Luís; Larsson, Anton; Seemann, Martin; Matos, Arlindo

    2014-01-01

    Highlights: • Measuring the CHON composition of a raw gas by current methods is challenging. • An alternative method is to burn the raw gas before measuring the CHON composition. • The CHON contents of the raw gas can be accurately measured by the alternative method. • Measuring the CHON contents of the raw gas is now performed in a “one-step” analysis. • The new method is used to evaluate the operation of a dual fluidised bed gasifier. - Abstract: For unattended biomass gasification processes, rapid methods for monitoring the elemental composition (CHON) of the raw gas leaving the gasifier are needed. Conventional methods rely on time-consuming and costly laboratory procedures for analysing the condensable part of the raw gas. An alternative method, presented in this work, assesses the CHON composition of raw gas in a “one step” analysis without the need to previously characterise its chemical species composition. Our method is based on the quantitative conversion of a raw gas of complex chemical composition into CO 2 , H 2 O, and N 2 in a small combustor. The levels of these simple species can be measured with high accuracy and good time resolution, and the CHON composition of the raw gas can be determined from the mass balance across the combustor. To evaluate this method, an online combustion facility was built and used to analyse the raw gas from the Chalmers 2-MW th dual fluidised bed steam gasifier. Test runs of the developed facility demonstrated complete combustion of the raw gas and the measurements were both fast and reliable. The new method used in combination with zero-dimensional reactor modelling provides valuable data for the operational monitoring of gasification processes, such as the degree of fuel conversion, composition of the char exiting the gasifier, oxygen transport by catalytic bed material, and amount of condensables in raw gas

  16. Achievement report for fiscal 1984 on Sunshine Program. Basic research on coal type and gasification characteristics; 1984 nendo tanshu to gas ka tokusei no kiso kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-03-01

    The study of pressurized fluidized gasification of coal chars started in fiscal 1975, and a 0.2t/d unit was in operation until fiscal 1979. Since fiscal 1980, a 1t/d unit has been in operation. In fiscal 1984, an entrained bed gasification furnace was constructed, capable of high-temperature gasification of various coals, and it is now undergoing a test operation. This report consists of pressurized gasification tests for coal char, the result of a study on the effect of coal type on the char gasification reaction rate, and the result of experiments on the treatment of coal liquefaction residue, all accomplished in the 1t/d gasification unit. For the investigation of the effect of coal type, chars of 13 types of coals are subjected to reaction tests in the carbon dioxide gas, and weight reduction rates and changes in residue surface areas are determined while reaction is under way. The results are analyzed and parameters are made clear that enable a quantitative assessment of the effect of coal type on gasification reaction rates. Pulverized grains and coal liquefaction residue are blended and gasified in the fluidized bed in the presence of oxygen and steam. As the result, a gas capable of 2,000kcal/Nm{sup 3} containing 30% hydrogen and 25% carbon monoxide is acquired, when catalyst grains in the residue are segregated. (NEDO)

  17. Modeling the emissions of a dual fuel engine coupled with a biomass gasifier-supplementing the Wiebe function.

    Science.gov (United States)

    Vakalis, Stergios; Caligiuri, Carlo; Moustakas, Konstantinos; Malamis, Dimitris; Renzi, Massimiliano; Baratieri, Marco

    2018-03-12

    There is a growing market demand for small-scale biomass gasifiers that is driven by the economic incentives and the legislative framework. Small-scale gasifiers produce a gaseous fuel, commonly referred to as producer gas, with relatively low heating value. Thus, the most common energy conversion systems that are coupled with small-scale gasifiers are internal combustion engines. In order to increase the electrical efficiency, the operators choose dual fuel engines and mix the producer gas with diesel. The Wiebe function has been a valuable tool for assessing the efficiency of dual fuel internal combustion engines. This study introduces a thermodynamic model that works in parallel with the Wiebe function and calculates the emissions of the engines. This "vis-à-vis" approach takes into consideration the actual conditions inside the cylinders-as they are returned by the Wiebe function-and calculates the final thermodynamic equilibrium of the flue gases mixture. This approach aims to enhance the operation of the dual fuel internal combustion engines by identifying the optimal operating conditions and-at the same time-advance pollution control and minimize the environmental impact.

  18. Fuels. Deliveries and consumption of fuels during 4th quarter 2002 and year 2002

    International Nuclear Information System (INIS)

    2003-01-01

    The total volume of oil product deliveries (excluded lubricants, bitumen etc.) from the oil companies was 1 per cent lower during 2002 compared with 2001. The deliveries of motor gasoline and diesel oil increased by 2 and 5 per cent. Domestic heating oil and heavy fuel oils decreased by 3 and 5 per cent compared with 2001. Under the 4th quarter 2002 the deliveries of oil products (excluded lubricants, bitumen etc.) was 10 per cent higher compared with the same quarter 2001. The deliveries of domestic heating oil and heavy fuel oils increased by 22 per cent in each case. Motor gasoline was unchanged while the deliveries of diesel oil increased by 7 per cent. The consumption of fuels in mining and manufacturing increased by 3 % during the year 2002. The consumption of hard coal and coke increased by 5 % and the rest of the fossil fuels by 7 %. Renewable fuels decreased by 1 %. During the 4th quarter 2002 increased the fuel consumption in industry by 2 % compared with same quarter 2001. Renewable fuels decreased by 7 % while fossil fuels increased by 18 %. The consumption of fuels in electricity, gas and district heating services increased by 12 % during 2002. The consumption of oils increased by 16 %. During year 2002 the renewable fuels accounts for 68 % of the final consumption. During the 4th quarter the consumption of fuels was almost twice as high as the consumption during the 4th quarter 2001

  19. Development of the ultra-clean dry cleanup process for coal-based syngases: pilot-scale evaluation

    Energy Technology Data Exchange (ETDEWEB)

    R.B. Slimane; P.V. Bush; J.L. Aderhold, Jr.; B.G. Bryan; R.A. Newby; D. A. Horazak; S.C. Jain [Gas Technology Institute, Des Plaines, IL (United States)

    2005-07-01

    This paper reports on a recent successful pilot-scale evaluation of the Ultra-Clean Process performance at a 10-ton/day coal gasifier facility. In these tests, carbonaceous feedstocks were gasified, using GTI's fluidized bed U-GAS{reg_sign} gasification technology, to generate syngas. The raw syngas was then conditioned and fed to the UCP test section for deep cleaning to meet very stringent cleaning requirements for chemical feedstocks or liquid-fuel synthesis applications, or for fuel-cell power generation. Fine particle sorbents for sulfur, halide, and mercury removal were injected into the syngas upstream of two stages of particulate controlled devices, 'barrier filter-reactors', coupling efficient particle capture with an effective entrained and filter cake reaction environment for very effective multiple contaminant removal. The goal of the test program was to confirm sorbent selection, filter-reactor operating parameters and sorbent-to-contaminant ratios, which were previously determined in the laboratory to have potential to reduce contaminant concentrations to very low levels. The pilot-scale data developed are being used to update conceptual evaluations, which have shown the technical feasibility, cost effectiveness and commercial merit for the Ultra-Clean Process compared to conventional, Rectisol-based syngas cleaning. 10 refs., 5 figs.

  20. Coal log pipeline research at the University of Missouri. 1st Quarterly report for 1995, January 1, 1995--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.

    1995-08-01

    Work continued on the study of coal log pipeline research. Individual projects described include fast compaction of coal logs; effect of cooling on coal log quality; coal log capping; effectiveness of adding fiber to enhance coal log quality; fabrication using hydrophobic binders; cost estimation of different lubricants; automatic control of coal log pipeline system; CLP design; coal log train transport; economics of coal log pipeline; legal aspects; heating, cooling, and drying of logs; vacuum systems to enhance production; design; and effect of piston modification on capping.

  1. Ash behavior and de-fluidization in low temperature circulating fluidized bed biomass gasifier

    DEFF Research Database (Denmark)

    Narayan, Vikas

    ensures that high-alkali biomass fuels can be used without risks of bed de-fluidization. This thesis aims to understand the behavior of alkali metals and ash in the LTCFB system. The thesis work involved measurements made on bed material and product gas dust samples on a 100kW LTCFB gasifier placed......Biomass is increasingly used as a fuel for power generation. Herbaceous fuels however, contain high amounts of alkali metals which get volatilized at high temperatures and forms salts with low melting points and thus condense on pipelines, reactor surfaces and may cause de-fluidization. A Low......-Temperature Circulating Fluidized Bed System (LTCFB) gasifier allows pyrolysis and gasification of biomass to occur at low temperatures thereby improving the retention of alkali and other ash species within the system and minimizing the amount of ash species in the product gas. In addition, the low reactor temperature...

  2. Coal -98

    International Nuclear Information System (INIS)

    Sparre, C.

    1998-01-01

    Energi, Haesselbyverket, has now invested in equipment for burning pellets instead of coal. In Linkoeping wastes of rubber are mixed with coal. Also Soederenergi AB has rebuilt their three coal boilers and replaced 100 % of the coal by peat and wood fuels. Coal is a reserve fuel. Several co-generation plants like Linkoeping, Norrkoeping, Uppsala and Oerebro use both coal and forest fuels. The use of coal is then concentrated to the electricity production. The average price of steam coal imported in Sweden in 1997 was 370 SEK/ton or 10 per cent higher than in 1996. For the world, the average import price fell to 46 USD/ton. The price fall was concentrated to the 4th quarter. The prices have continued to fall during 1998 as a result of the crisis in Asia. All Swedish plants meet their emission limits of dust, SO 2 and NO x given by county administrations or concession boards. The co-generation plants have all some sort of SO 2 -removal system. Mostly used is the wet-dry method. The biggest co-generation plant, Vaesteraas, has newly invested in a ca talytic NO x -cleaning system type SCR, which is reducing the emission level 80-90 %. Most other plants are using low NO x -burners or injection systems type SNCR, based on ammonium or urea, which are reducing the emissions 50-70 %. A positive effect of the recently introduced NO x -duties is a 60 % reduction compared to some years ago, when the duties were introduced. World hard coal production was about 3 800 tons in 1997, a minor increase compared to 1996. The coal demand in the OECD-countries has increased about 1.7 % yearly during the last ten years. The coal share of the energy supply is about 20% in the OECD-countries and 27% in the whole world. Several sources estimate a continuing growth during the next 20 years in spite of an increasing use of natural gas and nuclear power. The reason is a strong demand for electrical power in the Asian countries and the developing countries. However, greater efforts to minimize the

  3. Integrated Sensing and Controls for Coal Gasification - Development of Model-Based Controls for GE's Gasifier and Syngas Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Aditya Kumar

    2010-12-30

    This report summarizes the achievements and final results of this program. The objective of this program is to develop a comprehensive systems approach to integrated design of sensing and control systems for an Integrated Gasification Combined Cycle (IGCC) plant, using advanced model-based techniques. In particular, this program is focused on the model-based sensing and control system design for the core gasification section of an IGCC plant. The overall approach consists of (i) developing a first-principles physics-based dynamic model of the gasification section, (ii) performing model-reduction where needed to derive low-order models suitable for controls analysis and design, (iii) developing a sensing system solution combining online sensors with model-based estimation for important process variables not measured directly, and (iv) optimizing the steady-state and transient operation of the plant for normal operation as well as for startup using model predictive controls (MPC). Initially, available process unit models were implemented in a common platform using Matlab/Simulink{reg_sign}, and appropriate model reduction and model updates were performed to obtain the overall gasification section dynamic model. Also, a set of sensor packages were developed through extensive lab testing and implemented in the Tampa Electric Company IGCC plant at Polk power station in 2009, to measure temperature and strain in the radiant syngas cooler (RSC). Plant operation data was also used to validate the overall gasification section model. The overall dynamic model was then used to develop a sensing solution including a set of online sensors coupled with model-based estimation using nonlinear extended Kalman filter (EKF). Its performance in terms of estimating key unmeasured variables like gasifier temperature, carbon conversion, etc., was studied through extensive simulations in the presence sensing errors (noise and bias) and modeling errors (e.g. unknown gasifier kinetics, RSC

  4. Power systems development facility. Quarterly technical progress report, July 1--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, July 1 through September 30, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. Hot Gas Cleanup Units to mate to all gas streams; Combustion Gas Turbine; and Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility.

  5. Low NO sub x heavy fuel combustor concept program. Phase 1A: Combustion technology generation coal gas fuels

    Science.gov (United States)

    Sherlock, T. P.

    1982-01-01

    Combustion tests of two scaled burners using actual coal gas from a 25 ton/day fluidized bed coal gasifier are described. The two combustor configurations studied were a ceramic lined, staged rich/lean burner and an integral, all metal multiannual swirl burner (MASB). The tests were conducted over a range of temperature and pressures representative of current industrial combustion turbine inlet conditions. Tests on the rich lean burner were conducted at three levels of product gas heating values: 104, 197 and 254 btu/scf. Corresponding levels of NOx emissions were 5, 20 and 70 ppmv. Nitrogen was added to the fuel in the form of ammonia, and conversion efficiencies of fuel nitrogen to NOx were on the order of 4 percent to 12 percent, which is somewhat lower than the 14 percent to 18 percent conversion efficiency when src-2 liquid fuel was used. The MASB was tested only on medium btu gas (220 to 270 btu/scf), and produced approximately 80 ppmv NOx at rated engine conditions. Both burners operated similarly on actual coal gas and erbs fuel, and all heating values tested can be successfully burned in current machines.

  6. FY 1992 report on the results of the development of an entrained bed coal gasification power plant. Part 4. Operation of pilot plant; 1992 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 4. Pilot plant unten sosa hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    A record was summarized of the operation test study in FY 1992 of the 200 t/d entrained bed coal gasification pilot plant that was constructed with the aim of establishing technology of the integrated coal gasification combined cycle power generation. The operating hour of gasifier facilities in FY 1992 was 635 hours 19 minutes, and the number of times of gasification operation was 9. The operating hour of letting gas through to gas refining facilities was 549 hours 14 minutes. The operating hour of gas turbine facilities was 310 hours 18 minutes, and the generated output was 1,366.2 MWh. The operating hour of treatment furnace of safety environment facilities was 1,401 hours 4 minutes, and that of the denitrification system was 621 hours 24 minutes. As to the actual results of the start-up/stop, the paper detailedly recorded those of RUNs 10, 11, 12, 13 and D1. Further, operation manuals were made for the schedule of plant start-up/stop, gasifier facilities, gas refining facilities (dry desulfurization facilities), gas refining facilities (dry dedusting facilities), actual pressure/actual size combustor testing facilities and safety environment facilities. (NEDO)

  7. Status of steam gasification of coal by using heat from high-temperature reactors (HTRs)

    International Nuclear Information System (INIS)

    Schroeter, H.J.; Kirchhoff, R.; Heek, K.H. van; Juentgen, H.; Peters, W.

    1984-01-01

    Bergbau-Forschung GmbH, Essen, is developing a process for steam gasification of coal by using process heat from high-temperature nuclear reactors (HTRs). The envisaged allothermal gas generator is heated by an internally mounted bundle of heat exchanging tubes through which the gaseous reactor coolant helium flows. Research and development work for this process has been under way for about 11 years. After intensive small-scale investigations the principle of the process was tested in a semi-technical plant with 0.2 t/h coal throughput. In its gasifier a fluidized bed of approximately 1 m 2 cross-section and up to 4 m high is operated at 40 bar. Heat is supplied to the bed from an immersed heat exchanger with helium flowing through it. The gas generator is a cut-out version of the full-scale generator, in which the height of the bed, and the arrangement of the heat-exchanger tubes correspond to the full-scale design. The semi-technical plant has now achieved a total gasification time of about 13,000 hours. Roughly 2000 t of coal have been put through. During recent years the gasification of Federal German coking coal by using a jet-feeding system was demonstrated successfully. The results, confirmed and expanded by material tests for the heat exchanger, engineering and computer models and design studies, have shown the feasibility of nuclear steam gasification of coal. The process described offers the following advantages compared with existing processes: higher efficiency as more gas can be produced from less coal; less emission of pollutants as, instead of a coal-fired boiler, the HTR is used for producing steam and electricity; lower production costs for gas. The next step in the project is a pilot plant of about 2-4 t/h coal throughput, still with non-nuclear heating, to demonstrate the construction and operation of the allothermal gas generator on a representative scale for commercial applications. (author)

  8. Electricity and fluid fuels from biomass and coal using advanced technologies: a cost comparison for developing country applications

    Energy Technology Data Exchange (ETDEWEB)

    Kartha, S; Larson, E D; Williams, R H [Center for Energy and Environment Studies School of Engineering and Applied Science, Princeton University, Princeton, NJ (United States); Katofsky, R E [Arthur D. Little Co., Cambridge, MA (United States); Chen, J [Thermo Fibertek, Inc., Auburn, MA (United States); Marrison, C I [Oliver, Wyman and Co., New York, NY (United States)

    1995-12-01

    Recent analyses of alternative global energy supply strategies, such as the forthcoming report of the Intergovernmental Panel on Climate Change (IPCC), to be published in 1996, have drawn attention to the possibility that biomass modernized with advanced technologies could play an important role in meeting global energy needs in the next century. This paper discusses two promising classes of advanced technologies that offer the potential for providing modem energy carriers (electricity and fluid fuels) from biomass at competitive costs within one or two decades. These technologies offer significantly more efficient use of land than currently commercial technologies for producing electricity and fluid fuels from biomass, as well as substantially improved energy balances. Electricity is Rely to be the first large market for modernized biomass, but the potential market for fluid fuel production is likely to be much larger. As coal is likely to present a more serious competitive challenge to biomass in the long run, we present an economic comparison with coal-based electricity and fluid fuels. A meaningful economic comparison between coal and biomass is possible because these feedstocks are sufficiently alike in their physical characteristics that similar conversion technologies may well be used for producing electricity and fluid fuels from them. When similar conversion technologies are used for both feedstocks, the relative costs of electricity or fluid fuels will be determined by the distinguishing technical characteristics of the feedstocks (sulphur content, moisture content and reactivity) and by the relative feedstock prices. Electric power generation from biomass and coal are compared here using an advanced integrated gasifier/gas turbine cycle that offers the potential for achieving high efficiency, low unit capital cost and low local pollutant emissions: the steam-injected gas turbine coupled to an air-blown gasifier. For both feedstocks, generation costs are

  9. Electricity and fluid fuels from biomass and coal using advanced technologies: a cost comparison for developing country applications

    International Nuclear Information System (INIS)

    Kartha, S.; Larson, E.D.; Williams, R.H.; Katofsky, R.E.; Chen, J.; Marrison, C.I.

    1995-01-01

    Recent analyses of alternative global energy supply strategies, such as the forthcoming report of the Intergovernmental Panel on Climate Change (IPCC), to be published in 1996, have drawn attention to the possibility that biomass modernized with advanced technologies could play an important role in meeting global energy needs in the next century. This paper discusses two promising classes of advanced technologies that offer the potential for providing modem energy carriers (electricity and fluid fuels) from biomass at competitive costs within one or two decades. These technologies offer significantly more efficient use of land than currently commercial technologies for producing electricity and fluid fuels from biomass, as well as substantially improved energy balances. Electricity is Rely to be the first large market for modernized biomass, but the potential market for fluid fuel production is likely to be much larger. As coal is likely to present a more serious competitive challenge to biomass in the long run, we present an economic comparison with coal-based electricity and fluid fuels. A meaningful economic comparison between coal and biomass is possible because these feedstocks are sufficiently alike in their physical characteristics that similar conversion technologies may well be used for producing electricity and fluid fuels from them. When similar conversion technologies are used for both feedstocks, the relative costs of electricity or fluid fuels will be determined by the distinguishing technical characteristics of the feedstocks (sulphur content, moisture content and reactivity) and by the relative feedstock prices. Electric power generation from biomass and coal are compared here using an advanced integrated gasifier/gas turbine cycle that offers the potential for achieving high efficiency, low unit capital cost and low local pollutant emissions: the steam-injected gas turbine coupled to an air-blown gasifier. For both feedstocks, generation costs are

  10. Commercial low-Btu coal-gasification plant. Feasibility study: General Refractories Company, Florence, Kentucky. Volume I. Project summary. [Wellman-Galusha

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal from General Refractories was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The proposed feasibility study is defined. The intent is to provide General Refractories with the basis upon which to determine the feasibility of incorporating such a facility in Florence. To perform the work, a Grant for which was awarded by the DOE, General Refractories selected Dravo Engineers and Contractors based upon their qualifications in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. The LBG prices for the five-gasifier case are encouraging. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts, and if the present natural gas decontrol plan is not fully implemented some financial risks occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

  11. Investigation of sewage sludge gasification with use of flue gas as a gasifying agent

    Directory of Open Access Journals (Sweden)

    Maj Izabella

    2017-01-01

    Full Text Available The paper presents results of investigation of low-temperature sewage sludge gasification with use of flue gas as a gasifying agent. Tests were conducted in a laboratory stand, equipped with a gasification reactor designed and constructed specifically for this purpose. During presented tests, gas mixture with a composition of typical flue gases was used as a gasifying agent. The measuring system ensures online measurements of syngas composition: CO, CO2, H2, CH4. As a result of gasification process a syngas with combustible components has been obtained. The aim of the research was to determine the usability of sewage sludge for indirect cofiring in power boilers with the use of flue gas from the boiler as a gasifying agent and recirculating the syngas to the boiler’s combustion chamber. Results of presented investigation will be used as a knowledge base for industrial-scale sewage sludge gasification process. Furthermore, toxicity of solid products of the process has been determined by the use of Microtox bioassay. Before tests, solid post-gasification residues have been ground to two particle size fractions and extracted into Milli-Q water. The response of test organisms (bioluminescent Aliivibrio fischeri bacteria in reference to a control sample (bacteria exposed to 2% NaCl solution was measured after 5 and 15 minutes of exposure. The obtained toxicity results proved that thermal treatment of sewage sludge by their gasification reduces their toxicity relative to water organisms.

  12. URBAN WOOD/COAL CO-FIRING IN THE NIOSH BOILER PLANT

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb Jr.

    2005-02-10

    Phase I of this project began by obtaining R&D variances for permits at the NIOSH boilerplant (NBP), Emery Tree Service (ETS) and the J. A. Rutter Company (JARC) for their portions of the project. Wood for the test burn was obtained from the JARC inventory (pallets), Thompson Properties and Seven D Corporation (construction wood), and the Arlington Heights Housing Project (demolition wood). The wood was ground at ETS and JARC, delivered to the Three Rivers Terminal and blended with coal. Three one-day tests using wood/coal blends of 33% wood by volume (both construction wood and demolition wood) were conducted at the NBP. Blends using hammermilled wood were operationally successful. Emissions of SO{sub 2} and NOx decreased and that of CO increased when compared with combusting coal alone. Mercury emissions were measured and evaluated. During the first year of Phase II the principal work focused upon searching for a replacement boilerplant and developing a commercial supply of demolition wood. The NBP withdrew from the project and a search began for another stoker boilerplant in Pennsylvania to replace it on the project. Three potential commercial demolition wood providers were contacted. Two were not be able to supply wood. At the end of the first year of Phase II, discussions were continuing with the third one, a commercial demolition wood provider from northern New Jersey. During the two-and-a-third years of the contract extension it was determined that the demolition wood from northern New Jersey was impractical for use in Pittsburgh, in another power plant in central New Jersey, and in a new wood gasifier being planned in Philadelphia. However, the project team did identify sufficient wood from other sources for the gasifier project. The Principal Investigator of this project assisted a feasibility study of wood gasification in Clarion County, Pennsylvania. As a result of the study, an independent power producer in the county has initiated a small wood

  13. Comparison of ORC Turbine and Stirling Engine to Produce Electricity from Gasified Poultry Waste

    Directory of Open Access Journals (Sweden)

    Franco Cotana

    2014-08-01

    Full Text Available The Biomass Research Centre, section of CIRIAF, has recently developed a biomass boiler (300 kW thermal powered, fed by the poultry manure collected in a nearby livestock. All the thermal requirements of the livestock will be covered by the heat produced by gas combustion in the gasifier boiler. Within the activities carried out by the research project ENERPOLL (Energy Valorization of Poultry Manure in a Thermal Power Plant, funded by the Italian Ministry of Agriculture and Forestry, this paper aims at studying an upgrade version of the existing thermal plant, investigating and analyzing the possible applications for electricity production recovering the exceeding thermal energy. A comparison of Organic Rankine Cycle turbines and Stirling engines, to produce electricity from gasified poultry waste, is proposed, evaluating technical and economic parameters, considering actual incentives on renewable produced electricity.

  14. Report on the research achievements in the Sunshine Project in fiscal 1992. Studies on improving the efficiency of coal gasification; 1992 nendo sekitan gas ka no kokoritsuka ni kansuru kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    This paper describes the achievements in the Sunshine Project in fiscal 1992 in studies on improving the efficiency of coal gasification. Three kinds of coals were gasified under the atmosphere of hydrogen, He or CO2 by using the TPR method. The sulfur removing rate varies depending on coals even under the same reaction atmosphere, and so does the degree of influence of the atmospheric gases depending on coals. Very little effect of the atmospheric gases was found on the sulfur removing rate in Taiheiyo and Wandoan coals. While Tatung coal presents the same removing rate under the atmosphere of He and CO2, it shows 1.8 times greater removing rate under the hydrogen atmosphere. Generation patterns for H{sub 2}S and COS also vary depending on coal types and atmospheric gases. Inorganic sulfur shows the same behavior in the reaction process regardless of coal type and atmosphere, but organic sulfur behaves differently. The sulfur removing rate is determined by how easily the organic sulfur can be removed, which attributes to the difference in kinds and structures of organic sulfur compounds in the coal, together with the gas generation patterns. In order to discuss gasification of char, investigations were performed on effects of coal types and heat treatment temperatures, with regard to the gasification characteristics that can be estimated from the industrial and element analyses. (NEDO)

  15. Experimental and computational studies on a gasifier based stove

    International Nuclear Information System (INIS)

    Varunkumar, S.; Rajan, N.K.S.; Mukunda, H.S.

    2012-01-01

    Highlights: ► A simple method to calculate the fraction of HHC was devised. ► η g for stove is same as that of a downdraft gasifier. ► Gas from stove contains 5.5% of CH 4 equivalent of HHC. ► Effect of vessel size on utilization efficiency brought out clearly. ► Contribution of radiative heat transfer from char bed to efficiency is 6%. - Abstract: The work reported here is concerned with a detailed thermochemical evaluation of the flaming mode behaviour of a gasifier based stove. Determination of the gas composition over the fuel bed, surface and gas temperatures in the gasification process constitute principal experimental features. A simple atomic balance for the gasification reaction combined with the gas composition from the experiments is used to determine the CH 4 equivalent of higher hydrocarbons and the gasification efficiency (η g ). The components of utilization efficiency, namely, gasification–combustion and heat transfer are explored. Reactive flow computational studies using the measured gas composition over the fuel bed are used to simulate the thermochemical flow field and heat transfer to the vessel; hither-to-ignored vessel size effects in the extraction of heat from the stove are established clearly. The overall flaming mode efficiency of the stove is 50–54%; the convective and radiative components of heat transfer are established to be 45–47 and 5–7% respectively. The efficiency estimates from reacting computational fluid dynamics (RCFD) compare well with experiments.

  16. Fossil-energy program. Quarterly progress report for June 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    McNeese, L.E.

    1983-08-01

    This quarterly report covers the progress made during the period March 31 through June 30 for the Oak Ridge National Laboratory research and development projects that are carried out in support of the increased utilization of coal and other fossil fuels as sources of clean energy. These projects are supported by various parts of DOE including Fossil Energy, Basic Energy Sciences, Office of Health and Environmental Research, Office of Environmental Compliance and Overview, the Electric Power Research Institute, and by the Tennessee Valley Authority and the EPA Office of Research and Development through inter-agency agreement with DOE.

  17. Feasibility of a continuous surface mining machine using impact breakers. First quarterly report, October 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, A. T.

    1980-01-01

    This is the first quarterly report on the efforts to evaluate the feasibility of excavating coal and overburden from surface mines using impact breakers. The initial stages of the project are devoted to a literature search, equipment selection, test site selection, and conceptual test system design. Hence, this report details the progress made in these areas; the next quarter will see the finalization of Phase I. Included as appendices to this report are FMA internal reports on the individual mines visited. These reports are the basis of the test site selection, and have been censored here to remove data the mine operators deemed as confidential.

  18. Effects of coal-derived trace species on performance of molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  19. Not every ecotax is good for the environment

    International Nuclear Information System (INIS)

    Brinkman, L.; Huppes, G.

    1999-01-01

    Although coal gasification is the cleanest form of coal-fired electric power generation it's advantage is not reflected in the environmental taxes in the Netherlands ('ecotax'). Recommendations are given to improve the ecotax in order to better reflect the advantages of a coal gasifier over e.g. a pulverized coal plant. 9 refs

  20. Testing of downstream catalysts for tar destruction with a guard bed in a fluidised bed biomass gasifier at pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.P.; Frances, E.; Campos, I.J.; Martin, J.A.; Gil, J. [Saragossa Univ. (Spain). Dept. of Chemistry and Environment Engineering; Corella, J. [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1996-12-31

    A new pilot plant for advanced gasification of biomass in a fast fluidised bed is now fully operative at University of Saragossa, Spain. It is a `3rd generation` pilot plant. It has been built up after having used two previous pilot plants for biomass gasification. The main characteristic of this pilot plant is that it has two catalytic reactors connected in series, downstream the biomass gasifier. Such reactors, of 4 cm i.d., are placed in a slip stream in a by-pass from the main gasifier exit gas. The gasification is made at atmospheric pressure, with flow rates of 3-50 kg/in, using steam + O{sub 2} mixtures as the gasifying agent. Several commercial Ni steam-reforming catalyst are being tested under a realistic raw gas composition. Tar eliminations or destructions higher than 99 % are easily achieved. (orig.) 2 refs.

  1. Testing of downstream catalysts for tar destruction with a guard bed in a fluidised bed biomass gasifier at pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M P; Frances, E; Campos, I J; Martin, J A; Gil, J [Saragossa Univ. (Spain). Dept. of Chemistry and Environment Engineering; Corella, J [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1997-12-31

    A new pilot plant for advanced gasification of biomass in a fast fluidised bed is now fully operative at University of Saragossa, Spain. It is a `3rd generation` pilot plant. It has been built up after having used two previous pilot plants for biomass gasification. The main characteristic of this pilot plant is that it has two catalytic reactors connected in series, downstream the biomass gasifier. Such reactors, of 4 cm i.d., are placed in a slip stream in a by-pass from the main gasifier exit gas. The gasification is made at atmospheric pressure, with flow rates of 3-50 kg/in, using steam + O{sub 2} mixtures as the gasifying agent. Several commercial Ni steam-reforming catalyst are being tested under a realistic raw gas composition. Tar eliminations or destructions higher than 99 % are easily achieved. (orig.) 2 refs.

  2. A characterization and evaluation of coal liquefaction process streams. Quarterly report, January 1--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Heunisch, G.W.; Winschel, R.A.

    1998-08-01

    Described in this report are the following activities: CONSOL characterized process stream samples from HTI Run ALC-2, in which Black Thunder Mine coal was liquefied using four combinations of dispersed catalyst precursors. Oil assays were completed on the HTI Run PB-05 product blend. Fractional distillation of the net product oil of HTI Run POC-1 was completed. CONSOL completed an evaluation of the potential for producing alkylphenyl ethers from coal liquefaction phenols. At the request of DOE, various coal liquid samples and relevant characterization data were supplied to the University of West Virginia and the Federal Energy Technology Center. The University of Delaware is conducting resid reactivity tests and is completing the resid reaction computer model. The University of Delaware was instructed on the form in which the computer model is to be delivered to CONSOL.

  3. Siemens fuel gasification technology for the Canadian oil sands industry

    Energy Technology Data Exchange (ETDEWEB)

    Morehead, H. [Siemens Energy Inc., Orlando, FL (United States). IGCC and Gasification Sales and Marketing

    2010-07-01

    The Siemens fuel gasification (SFG) technology can be used to gasify a range of feedstocks, including petcoke, hard coal, lignite, and low-ranking fuels such as biomass and refinery residuals. The technology has recently been applied to a number of projects over the last 3 years. This paper discussed some of the issues related to the technology and it's use at a start-up facility in China. Five entrained-flow gasifiers with a thermal capacity of 500 MW are being installed at a coal gasification plant in northwestern China. The technology's use in hydrogen, steam and power production applications for the oil sands industry was also discussed. Issues related to feedstock quality, process characteristics, and equipment requirements for commercial gasifier systems were reviewed. The paper concluded by observing that improvements in gasification technology will make coal and petcoke gasification feasible options for power generation. IGCC is the most advanced and cost-effective technology for reducing emissions from coal-fired power plants. Gasification-based plants are also able to capture carbon dioxide (CO{sub 2}) for storage and sequestration. Details of the Siemens gasification test center in Germany were also included. 1 tab., 4 figs.

  4. FY 1993 report on the results of the subsidy project for the Sunshine Project. Development of coal use hydrogen production technology (Support study of pilot plant - Trial development of materials of plant use equipment); 1993 nendo Sunshine keikaku hojo jigyo seika hokokusho. Sekitan riyo suiso seizo gijutsu kaihatsu - Pilot plant no shien kenkyu (Plant yo kiki zairyo no shisaku kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    As to the development of coal use hydrogen production technology, the paper made the test study on the improvement of gasifier use materials and evaluation of the characteristics, the evaluation test in the environment using the actual machine, etc., and the FY 1993 results were reported. The results of the study were as follows. Concerning the shaped refractory for gasifier hearth, it was found that high chromia base and picrochromite base refractory development materials had much more excellent coal slag resistance than other existing component-system materials. It was shown that the development materials began to deteriorate under the coal gasification environment at temperatures of about 1,500 degrees C or higher. As to the mullite ceramics, a possibility was shown of improving the slag permeation resistance by making the crystal grain coarse by long-time sintering. By the survey of the state of damage of the proposed materials (refractory and iridium) used in the operational environment of the pilot plant, the outlook for use limit was made clear. In the environment test using the actual machine on the proposed metal base alloy of the typical equipment of the pilot plant, the correspondence between the operational environment and material corrosion was made clear. (NEDO)

  5. Gasification of solid waste — potential and application of co-current moving bed gasifiers

    NARCIS (Netherlands)

    Groeneveld, M.J.; van Swaaij, Willibrordus Petrus Maria

    1979-01-01

    A review is given of gasification processes for solid fuels with special emphasis on waste gasification. Although the co-current moving bed gasifier has not been under consideration for a long time, it offers interesting possibilities for waste gasification. Some operational data are given. Two

  6. (Shippingport Atomic Power Station). Quarterly operating report, fourth quarter 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    At the beginning of the fourth quarter of 1980, the Shippingport Atomic Power Station remained shutdown for the normally planned semiannual maintenance and testing program, initiated September 12, 1980. Operational testing began on November 7. Maximum power was achieved November 28 and was maintained throughout the remainder of the quarter except as noted. The LWBR Core has generated 19,046.07 EFPH from start-up through the end of the quarter. During this quarter, approximately 0.000025 curies of Xe 133 activity were released from the station. During the fourth quarter of 1980, 1081 cubic feet of radioactive solid waste was shipped out of state for burial. These shipments contained 0.037 curies of radioactivity.

  7. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 3: Combustors, furnaces and low-BTU gasifiers. [used in coal gasification and coal liquefaction (equipment specifications)

    Science.gov (United States)

    Hamm, J. R.

    1976-01-01

    Information is presented on the design, performance, operating characteristics, cost, and development status of coal preparation equipment, combustion equipment, furnaces, low-Btu gasification processes, low-temperature carbonization processes, desulfurization processes, and pollution particulate removal equipment. The information was compiled for use by the various cycle concept leaders in determining the performance, capital costs, energy costs, and natural resource requirements of each of their system configurations.

  8. Corrosion behavior of Haynes registered 230 registered nickel-based super-alloys for integrated coal gasification combined cycle syngas plants. A plant exposure study

    International Nuclear Information System (INIS)

    Lee, Sungkyu; Lee, Jieun; Kang, Suk-Hwan; Lee, Seung-Jong; Yun, Yongseung; Kim, Min Jung

    2015-01-01

    The corrosion behavior of commercially available Haynes registered 230 registered nickel-based alloy samples was investigated by exposure to coal-gasifying integrated coal gasification combined cycle pilot plant facilities affiliated with the Institute for Advanced Engineering (2.005 MPa and 160-300 C). The morphological and microstructural analyses of the exposed samples were conducted using scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis on the external surface of the recovered corrosion test samples to obtain information of the corrosion scale. These analyses based on the pre- and post-exposure corrosion test samples combined with thermodynamic Ellingham-Pourbaix stability diagrams provided preliminary insight into the mechanism of the observed corrosion behavior prevailing in the piping materials that connected the particulate removal unit and water scrubber of the integrated coal gasification combined cycle pilot plant. Uniform material wastage was observed after 46 hours of operation, and a preliminary corrosion mechanism was suggested: the observed material waste and corrosion behavior of the Haynes registered 230 registered nickel-based alloy samples cut off from the coal syngas integrated coal gasification combined cycle plant were explained by the formation of discontinuous (complex) oxide phases and subsequent chlorine-induced active oxidation under the predominantly reducing environment encountered. This contribution continues the already published studies of the Fe-Ni-Cr-Co alloy Haynes registered 556 registered .

  9. Pulverized coal firing of aluminum melting furnaces. Quarterly technical progress report, October 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    West, C E

    1980-10-01

    Heaviest acitivity this quarter has been in the area of system design and specification and purchase of system components. Mechanical design is now complete. The design of electrical power, process control and data acquisition systems has begun. Combustor design meetings with General Electric Space Science Labs have resulted in an increasing awareness that analytical flow field modeling of the cyclonic combustor could not only enhance current understanding of the process but also broaden the future scope of implementation. A proposal to add specific additional modeling tasks was presented to the Department of Energy, and is included herein in Appendix B. Equipment procurement will continue and system construction will begin during the next quarter.

  10. Idaho National Laboratory Quarterly Occurrence Analysis 4th Quarter FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System, as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 84 reportable events (29 from the 4th quarter fiscal year 2016 and 55 from the prior three reporting quarters), as well as 39 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (two from this quarter and 37 from the prior three quarters).

  11. Development and reactivity tests of Ce-Zr-based Claus catalysts for coal gas cleanup

    Energy Technology Data Exchange (ETDEWEB)

    No-Kuk Park; Dong Cheul Han; Gi Bo Han; Si Ok Ryu; Tae Jin Lee; Ki Jun Yoon [Yeungnam University, Gyeongbuk (Republic of Korea). National Research Laboratory, School of Chemical Engineering and Technology

    2007-09-15

    Claus reaction (2H{sub 2}S + SO{sub 2} {leftrightarrow} 3/nS{sub n} + 2H{sub 2}O) was used to clean the gasified coal gas and the reactivity of several metal oxide-based catalysts on Claus reaction was investigated at various operating conditions. In order to convert H{sub 2}S contained in the gasified coal gas to elemental sulfur during Claus reaction, the catalysts having the high activity under the highly reducing condition with the moisture should be developed. CeO{sub 2}, ZrO{sub 2}, and Ce{sub 1-x}Zr{sub x}O{sub 2} catalysts were prepared for Claus reaction and their reactivity changes due to the existence of the reducing gases and H{sub 2}O in the fuel gas was investigated in this study. The Ce-based catalysts shows that their activity was deteriorated by the reduction of the catalyst due to the reducing gases at higher than 220{sup o}C. Meanwhile, the effect of the reducing gases on the catalytic activity was not considerable at low temperature. The activities of all three catalysts were degraded on the condition that the moisture existed in the test gas. Specifically, the Ce-based catalysts were remarkably deactivated by their sulfation. The Ce-Zr-based catalyst had a high catalytic activity when the reducing gases and the moisture co-existed in the simulated fuel gas. The deactivation of the Ce-Zr-based catalyst was not observed in this study. The lattice oxygen of the Ce-based catalyst was used for the oxidation of H{sub 2}S and the lattice oxygen vacancy on the catalyst was contributed to the reduction of SO{sub 2}. ZrO{sub 2} added to the Ce-Zr-based catalyst improved the redox properties of the catalyst in Claus reaction by increasing the mobility of the lattice oxygen of CeO{sub 2}. 21 refs., 14 figs.

  12. Novel intrinsic-based submodel for char particle gasification in entrained-flow gasifiers: Model development, validation and illustration

    International Nuclear Information System (INIS)

    Schulze, S.; Richter, A.; Vascellari, M.; Gupta, A.; Meyer, B.; Nikrityuk, P.A.

    2016-01-01

    Highlights: • Model resolving intra-particle species transport for char conversion was formulated. • TGA experiments of char particle conversion in gas flow were conducted. • The experimental results for char conversion validated the model. • CFD simulations of endothermic reactor with developed model were carried out. - Abstract: The final carbon conversion rate is of critical importance in the efficiency of gasifiers. Therefore, comprehensive modeling of char particle conversion is of primary interest for designing new gasifiers. This work presents a novel intrinsic-based submodel for the gasification of a char particle moving in a hot flue gas environment considering CO 2 and H 2 O as inlet species. The first part of the manuscript describes the model and its derivation. Validations against experiments carried out in this work for German lignite char are reported in the second part. The comparison between submodel predictions and experimental data shows good agreement. The importance of char porosity change during gasification is demonstrated. The third part presents the results of CFD simulations using the new submodel and a surface-based submodel for a generic endothermic gasifier. The focus of CFD simulations is to demonstrate the crucial role of intrinsic based heterogeneous reactions in the adequate prediction of carbon conversion rates.

  13. FY 1989 report on the results of the development of the entrained bed coal gasification power plant. Part 1. Element study; 1989 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Yoso kenkyu hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    For the purpose of establishing the technology of integrated coal gasification combined cycle power generation, element study was conducted of a 200t/d entrained bed coal gasification pilot plant, and the FY 1989 results were summarized. In the gasification test using 2t/d gasifier equipment, the following were carried out: test on gasification of the coal proposed for pilot plant, test on changes in coal feed ratio, analysis of trace gas elements in coal, study of the fixed bed gas refining system, etc. In the study of large gas turbine combustor for demonstration machine, development of combustor which makes stable combustion in the low load region possible, development of low NOx combustor which controls the conversion of nitrogen compounds such as ammonia in coal gasification gas to NOx, development of combustor which makes the optimum and effective cooling possible by combining film cooling, impingement cooling, etc. In the study of simulation of the combined power generation total system, verification tests on the control mode switching function of the general load pressure control system, movement to meet anomaly of the control system, integrated cooperation control system, etc. (NEDO)

  14. Efficiency tests on the pyrolysis gasifier stove Peko Pe

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts

    1996-01-01

    This paper presents results from water boiling tests on the pyrolysis gasifier stove Peko Pe, which has been developed by the Norwegian Paal Wendelbo. The stove efficiency determined vary between 21 and 29% when burning dry Danish woodchips (10% moisture) with an estimated caloric value of 16 MJ...... the water content in the grass. In Adjumani refugee camp it was furthermore found that the stove was able to provide sufficient energy from solid combustion, after the pyrolysis was stopped, to boil water for additional 25-30 minutes with lid. This effect was not seen in the tests on woodchips in Denmark...

  15. Evaluation of energy plantation crops in a high-throughput indirectly heated biomass gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Paisley, M.A.; Litt, R.D. [Battelle, Columbus, OH (United States)

    1993-12-31

    Experiments were run in Battelle`s 10 ton per day Process Research Unit (PRU) gasifier using two high-growth, energy plantation crops -- hybrid poplar -- and an herbaceous biomass crop -- switch grass. The results show that both feedstocks provide gas production rates, product gas compositions, and heating value similar to other biomass feedstocks tested in the Battelle gasification process. The ash compositions of the switch grass and hybrid poplar feedstocks were high in potassium relative to previously tested biomass feedstocks. High growth biomass species tend to concentrate minerals such as potassium in the ash. The higher potassium content in the ash can then cause agglomeration problems in the gasification system. A method for controlling this agglomeration through the addition of small amounts (approximately 2 percent of the wood feed rate) of an additive could adequately control the agglomeration tendency of the ash. During the testing program in the PRU, approximately 50 tons of hybrid poplar and 15 tons of switch grass were gasified to produce a medium Btu product gas.

  16. Adoption and use of a semi-gasifier cooking and water heating stove and fuel intervention in the Tibetan Plateau, China

    Science.gov (United States)

    Clark, S.; Carter, E.; Shan, M.; Ni, K.; Niu, H.; Tseng, J. T. W.; Pattanayak, S. K.; Jeuland, M.; Schauer, J. J.; Ezzati, M.; Wiedinmyer, C.; Yang, X.; Baumgartner, J.

    2017-07-01

    Improved cookstoves and fuels, such as advanced gasifier stoves, carry the promise of improving health outcomes, preserving local environments, and reducing climate-forcing air pollutants. However, low adoption and use of these stoves in many settings has limited their benefits. We aimed to improve the understanding of improved stove use by describing the patterns and predictors of adoption of a semi-gasifier stove and processed biomass fuel intervention in southwestern China. Of 113 intervention homes interviewed, 79% of homes tried the stove, and the majority of these (92%) continued using it 5-10 months later. One to five months after intervention, the average proportion of days that the semi-gasifier stove was in use was modest (40.4% [95% CI 34.3-46.6]), and further declined over 13 months. Homes that received the stove in the first batch used it more frequently (67.2% [95% CI 42.1-92.3] days in use) than homes that received it in the second batch (29.3% [95% CI 13.8-44.5] days in use), likely because of stove quality and user training. Household stove use was positively associated with reported cooking needs and negatively associated with age of the main cook, household socioeconomic status, and the availability of substitute cleaner-burning stoves. Our results show that even a carefully engineered, multi-purpose semi-gasifier stove and fuel intervention contributed modestly to overall household energy use in rural China.

  17. The Steam Coal Market in 2016: the Supply Shock

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2017-03-01

    Surprising coal markets: while the world coal demand is diminishing, the steam coal price doubled in 2016. After five years of uninterrupted price decline and a sluggish world demand, this strong price hike might appear as paradoxical. This paper explains the principal reasons for this situation. After five consecutive years of decline, international steam coal prices doubled in 2016. The main reason is not an increase in global coal consumption, which has been declining since 2014, including in 2016, but the tightening of supplies in the narrow international coal market. Policy changes in China have played a key role. To limit production over-capacity and halt the decline in domestic coal prices, the Chinese government has mandated a reduction in the number of working days in Chinese mines from 330 to 276. This decision has led to a fall in domestic production. Faced with rising coal demand in summer 2016, and surging domestic coal prices from end of June, China once again turned to the international market to cover its supply needs. It thus became again the world's largest coal importer, outpacing India. The increase in Chinese imports did not prevent Chinese demand from falling for the third consecutive year. On the supply side, after five years of declining prices, the export capacities of the main coal supplying countries have been reduced by mine closures, corporate bankruptcies and investment reductions in the sector. This led to the scissor effect observed in 2016, characterized by a sudden and unexpected increase in Chinese imports combined with a supply squeeze. Coal prices surged in the third quarter of 2016, before starting to decline. They have stabilized since December 2016, albeit at high levels. The decline could continue after winter 2016-17. The Chinese government intends to control the level of domestic coal prices to limit their impact on electricity prices and inflation. It has, therefore, relaxed its control on coal production, which has had

  18. Process for gasifying fuels with the recovery of rich gases

    Energy Technology Data Exchange (ETDEWEB)

    Jahns, F

    1921-04-10

    A process for gasifying fuels with recovery of water-free, rich-in-tar gases in a ring-gas-producer characterized by hot-gas-stream arising from the gasification bed of a fresh chamber in the known way is divided. One part is conducted through an old chamber, the other part is led first during the drying through the fresh fuel and with the received water-vapor also through the old chamber and then during the carbonization with the carbonization products is led to the carbonization-gas conduit.

  19. Development of processes for the utilization of Brazilian coal using nuclear process heat and/or nuclear process steam

    International Nuclear Information System (INIS)

    Bamert, H.; Niessen, H.F.; Walbeck, M.; Wasrzik, U.; Mueller, R.; Schiffers, U.; Strauss, W.

    1980-01-01

    Status of the project: End of the project definition phase and preparation of the planned conceptual phase. Objective of the project: Development of processes for the utilization of nuclear process heat and/or nuclear process steam for the gasification of coal with high ash content, in particular coal from Brazil. Results: With the data of Brazilian coal of high ash content (mine Leao/ 43% ash in the mine-mouth quality, 20% ash after preparation) there have been worked out proposals for the mine planning and for a number of processes. On the basis of these proposals and under consideration of the main data specified by the Brazilian working group there have been choosen two processes and worked out in a conceptual design: 1) pressurized water reactor + LURGI-pressure gasifier/hydrogasification for the production of SNG and 2) high temperature reactor steam gasification for the production of town gas. The economic evaluation showed that the two processes are not substantially different in their cost efficiency and they are economical on a long-term basis. For more specific design work there has been planned the implementation of an experimental programme using the semi-technical plants 'hydrogasification' in Wesseling and 'steam gasification' in Essen as the conceptual phase. (orig.) [de

  20. Quarterly environmental data summary for fourth quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1997 is prepared in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data presented constitute the QEDS. The data were received from the contract laboratories, verified by the Weldon Spring Site verification group and, except for air monitoring data and site KPA generated data (uranium analyses), merged into the data base during the fourth quarter of 1997. Air monitoring data presented are the most recent complete sets of quarterly data. Air data are not stored in the data base and KPA data are not merged into the regular data base. Significant data, defined as data values that have exceeded defined ``above normal`` level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal level 2 values are based, in ES and H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits and other guidelines. The procedures also establish actions to be taken in response to such data. Data received and verified during the fourth quarter were within a permissible range of variability except for those which are detailed.

  1. (Shippingport Atomic Power Station). Quarterly operating report, third quarter 1980

    Energy Technology Data Exchange (ETDEWEB)

    Zagorski, J. F.

    1980-01-01

    At the beginning of the third quarter of 1980, the Shippingport Atomic Power Station was operating with the 1A, 1B, 1C, and 1D reactor coolant loops and the 1AC and 1BD purification loops in service. During the quarter, the Station was operated for Duquesne Light Company System grid including base load and swing load operation. Twelve (12) planned swing load operations were performed on the LWBR Core this quarter to complete the LWBR operating plan of fifty (50) during this operating phase. The Station was shutdown on September 12 for the Fall 1980 Shutdown and remained in this mode through the end of the quarter. The LWBR Core has generated 18,297.98 EFPH from start-up through the end of the quarter. There were no radioactive liquid discharges from the Radioactive Waste Processing System to the river this quarter. The radioactive liquid waste effluent line to the river remained blanked off to prevent inadvertent radioactive liquid waste discharges. During the quarter, approximately 0.001 curies of Xe 133 activity were released from the station. The radioactivity released from Shippingport Station is far too small to have any measurable effect on the general background environmental radioactivity outside the plant.

  2. Coal in India: current status and outlook - Panorama 2008; Le charbon en Inde: etat des lieux et perspectives - Panorama 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The world cannot do without coal. This energy source covers more than one-quarter (28.4% in 2006) of all primary energy consumption and is used to generate nearly 40% of all electricity consumed worldwide. All scenarios and forecasts agree that coal consumption will be growing substantially, driven mostly by China and India. According to the IEA reference scenario (World Energy Outlook 2007), these two countries are expected to account for 82% of the increase in global coal demand by 2030. The outlook for India gives cause for concern: despite a strong domestic coal industry, it could eventually become a major importer. If so, what will the economic, industrial and environmental consequences be?.

  3. FY 1996 report on the results of the development of an entrained bed coal gasification power plant. Part 2. Investigational study of verification plant; 1995 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 2. Jissho plant ni kansuru chosa kenkyu hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    For the purpose of developing the technology of the integrated coal gasification combined cycle power generation, an investigational study of verification plant was made, and the FY 1996 results were summarized. In this fiscal year, the conceptual design was made of the Nakoso method based on the method of Nakoso pilot plant, the fixed bed method in which fixed bed gas refining facilities tested in Nakoso pilot plant were adopted, and the packed bed method. In the Nakoso method, 5 cases were studied using the air blown two-stage entrained bed for gasifier, dry two-stage fluidized bed for desulfurization and dry granular bed packed bed for dust removal. In the fixed bed method, 2 cases were studied using the air blown two-stage entrained bed for gasifier and dry fixed bed for gas refining. In the packed bed method, 2 cases were studied using the air blown two-stage entrained bed for gasifier and dry packed bed for gas refining. As to gas turbine facilities, 5 cases were studied in which GT output is 115MW - 215MW (output of combined cycle power generation: 220MW - 420MW). (NEDO)

  4. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2003-09-30

    This is the thirteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. The corrosion probe task is proceeding: Two plant visits were made to prepare for field testing and shakedown tests for the probes were conducted at the University of Utah''s L1500 furnace. Corrosion probes will be installed at the Gavin Plant site in the next quarter. Laboratory studies of SCR catalyst continued this quarter. FTIR studies of catalyst sulfation and of adsorption of NH3 and NO were continued at BYU. NO activities have been measured for a number of samples of BYU catalyst and insights have been gained from the results. Plans are being detailed to test monolith and plate catalysts exposed in the field. In this quarter, the catalysts in the slipstream reactor at AEP's Rockport plant were exposed to the dusty flue gas for 1695 hours. Thus the cumulative catalyst exposure to flue gas rose from 980 hours last quarter to 2677 hours in this quarter. Loss of catalyst activity was noted between April (when the catalysts were fresh) and August. Further analysis of activity data will be needed.

  5. EMSL Quarterly Highlights Report: FY 2008, 3rd Quarter

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-09-16

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  6. EMSL Quarterly Highlights Report: 1st Quarter, FY08

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-01-28

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  7. A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis

    International Nuclear Information System (INIS)

    Raman, P.; Ram, N.K.; Gupta, Ruchi

    2013-01-01

    The existing biomass gasifier systems have several technical challenges, which need to be addressed. They are reduction of impurities in the gas, increasing the reliability of the system, easy in operation and maintenance. It is also essential to have a simple design of gasifier system for power generation, which can work even in remote locations. A dual fired downdraft gasifier system was designed to produce clean gas from biomass fuel, used for electricity generation. This system is proposed to overcome a number of technical challenges. The system is equipped with dry gas cleaning and indirect gas cooling equipment. The dry gas cleaning system completely eliminates wet scrubbers that require large quantities of water. It also helps to do away with the disposal issues with the polluted water. With the improved gasifier system, the tar level in the raw gas is less than 100 mg Nm −3 .Cold gas efficiency has improved to 89% by complete gasification of biomass and recycling of waste heat into the reactor. Several parameters, which are considered in the design and development of the reactors, are presented in detail with their performance indicators. - Highlights: • Hot air injection in dual fired reactor reduces the tar content to less than 100 mg Nm −3 . • In clean gas the tar content is 35 mg Nm −3 and the dust content is nil. • The specific gasification rate is 2.8 Nm 3 kg −1 of fuel wood and cold gas efficiency is 89.7%. • CV of the gas: 5.3 MJ Nm −3 , SFC: 1.1 kg kWh −1 and wood to power efficiency: 21%. • Cold gas efficiency is improved by optimizing the reactor's design and recycling the waste heat from hot gas

  8. Development of a modified equilibrium model for biomass pilot-scale fluidized bed gasifier performance predictions

    International Nuclear Information System (INIS)

    Rodriguez-Alejandro, David A.; Nam, Hyungseok; Maglinao, Amado L.; Capareda, Sergio C.; Aguilera-Alvarado, Alberto F.

    2016-01-01

    The objective of this work is to develop a thermodynamic model considering non-stoichiometric restrictions. The model validation was done from experimental works using a bench-scale fluidized bed gasifier with wood chips, dairy manure, and sorghum. The model was used for a further parametric study to predict the performance of a pilot-scale fluidized biomass gasifier. The Gibbs free energy minimization was applied to the modified equilibrium model considering a heat loss to the surroundings, carbon efficiency, and two non-equilibrium factors based on empirical correlations of ER and gasification temperature. The model was in a good agreement with RMS <4 for the produced gas. The parametric study ranges were 0.01 < ER < 0.99 and 500 °C < T < 900 °C to predict syngas concentrations and its LHV (lower heating value) for the optimization. Higher aromatics in tar were contained in WC gasification compared to manure gasification. A wood gasification tar simulation was produced to predict the amount of tars at specific conditions. The operating conditions for the highest quality syngas were reconciled experimentally with three biomass wastes using a fluidized bed gasifier. The thermodynamic model was used to predict the gasification performance at conditions beyond the actual operation. - Highlights: • Syngas from experimental gasification was used to create a non-equilibrium model. • Different types of biomass (HTS, DM, and WC) were used for gasification modelling. • Different tar compositions were identified with a simulation of tar yields. • The optimum operating conditions were found through the developed model.

  9. Effects of coal-derived trace species on performance of molten carbonate fuel cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  10. Corrosion behavior of Haynes {sup registered} 230 {sup registered} nickel-based super-alloys for integrated coal gasification combined cycle syngas plants. A plant exposure study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungkyu; Lee, Jieun; Kang, Suk-Hwan; Lee, Seung-Jong; Yun, Yongseung [Institute for Advanced Engineering (IAE), Gyeonggi-do (Korea, Republic of). Plant Engineering Center; Kim, Min Jung [Sungkyunkwan Univ, Gyeonggi-do (Korea, Republic of). Advanced Materials Technology Research Center

    2015-07-01

    The corrosion behavior of commercially available Haynes {sup registered} 230 {sup registered} nickel-based alloy samples was investigated by exposure to coal-gasifying integrated coal gasification combined cycle pilot plant facilities affiliated with the Institute for Advanced Engineering (2.005 MPa and 160-300 C). The morphological and microstructural analyses of the exposed samples were conducted using scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis on the external surface of the recovered corrosion test samples to obtain information of the corrosion scale. These analyses based on the pre- and post-exposure corrosion test samples combined with thermodynamic Ellingham-Pourbaix stability diagrams provided preliminary insight into the mechanism of the observed corrosion behavior prevailing in the piping materials that connected the particulate removal unit and water scrubber of the integrated coal gasification combined cycle pilot plant. Uniform material wastage was observed after 46 hours of operation, and a preliminary corrosion mechanism was suggested: the observed material waste and corrosion behavior of the Haynes {sup registered} 230 {sup registered} nickel-based alloy samples cut off from the coal syngas integrated coal gasification combined cycle plant were explained by the formation of discontinuous (complex) oxide phases and subsequent chlorine-induced active oxidation under the predominantly reducing environment encountered. This contribution continues the already published studies of the Fe-Ni-Cr-Co alloy Haynes {sup registered} 556 {sup registered}.

  11. SUBTASK 3.12 – GASIFICATION, WARM-GAS CLEANUP, AND LIQUID FUELS PRODUCTION WITH ILLINOIS COAL

    Energy Technology Data Exchange (ETDEWEB)

    Stanislowski, Joshua; Curran, Tyler; Henderson, Ann

    2014-06-30

    The goal of this project was to evaluate the performance of Illinois No. 6 coal blended with biomass in a small-scale entrained-flow gasifier and demonstrate the production of liquid fuels under three scenarios. The first scenario used traditional techniques for cleaning the syngas prior to Fischer–Tropsch (FT) synthesis, including gas sweetening with a physical solvent. In the second scenario, the CO2 was not removed from the gas stream prior to FT synthesis. In the third scenario, only warm-gas cleanup techniques were used, such that the feed gas to the FT unit contained both moisture and CO2. The results of the testing showed that the liquid fuels production from the FT catalyst was significantly hindered by the presence of moisture and CO2 in the syngas. Further testing would be needed to determine if this thermally efficient process is feasible with other FT catalysts. This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Illinois Clean Coal Institute.

  12. Measurement and modeling of advanced coal conversion processes. Twenty-first quarterly report, October 1, 1991--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [Advanced Fuel Research, Inc., East Hartford, CT (United States); Smoot, L.D.; Brewster, B.S. [Brigham Young Univ., Provo, UT (United States)

    1991-12-31

    The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

  13. Measurement and modeling of advanced coal conversion processes. 19th quarterly report, April 1, 1991--June 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [Advanced Fuel Research, Inc., East Hartford, CT (United States); Smoot, L.D.; Brewster, B.S. [Brigham Young Univ., Provo, UT (United States)

    1991-09-25

    The objectives of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. (VC)

  14. A combined system comprising a biomass gasifier and a Stirling engine. Design and optimisation for continuous operation; Eine Anlagenkombination aus Biomassevergaser und Stirlingmotor. Anlagendesign und Auslegung fuer den Dauerbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Huelscher, Manfred [Qalovis Farmer Automatic Energy GmbH, Laer (Germany)

    2010-07-01

    Conventional wood gasifiers consist of a gasifier, gas filter, and internal combustion engine. The contribution presents a novel system comprising a gasifier, burner, and Stirling engine. To enhance the electric efficiency, the burner is operated with air preheated via reculperation. The Stirling characteristic is known, and the gasification/combustion system can be calculated and designed on the basis of the Stirling data. The dust problem of the Stirling heat exchanger is solved by an automatic filter system, so that low-maintenance long-term operation becomes possible.

  15. Zeolite Synthesized from Coal Fly Ash Produced by a Gasification Process for Ni2+ Removal from Water

    Directory of Open Access Journals (Sweden)

    Yixin Zhang

    2018-03-01

    Full Text Available There are increasing demands and great potential of coal gasification in China, but there is a lack of studies focused on the disposal and utilization of coal fly ash produced by the gasification process. In this study, a coal fly ash sample derived from a gasifier in Jincheng, China, was utilized as raw material for the synthesis of zeolite by alkali fusion followed by hydrothermal treatments. The effects of operation conditions on the cation exchange capacity (CEC of synthesized zeolite were investigated. The synthesized zeolite with the highest CEC (270.4 meq/100 g, with abundant zeolite X and small amount of zeolite A, was produced by 1.5 h alkali fusion under 550 °C with NaOH/coal fly ash ratio 1.2 g/g followed by 15 h hydrothermal treatment under 90 °C with liquid/solid ratio 5 mL/g and applied in Ni2+ removal from water. The removal rate and the adsorption capacity of Ni2+ from water by the synthesized zeolite were determined at the different pH, contact time, adsorbent dose and initial Ni2+ concentration. The experimental data of adsorption were interpreted in terms of Freundlich and Langmuir equations. The adsorption of Ni2+ by the synthesized zeolite was found to fit sufficient using the Langmuir isotherm. More than 90% of Ni2+ in water could be removed by synthesized zeolite under the proper conditions. We show that the coal fly ash produced by the gasification process has great potential to be used as an alternative and cheap source in the production of adsorbents.

  16. Effectiveness factors for a commercial steam reforming (Ni) catalyst and for a calcined dolomite used downstream biomass gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J; Narvaez, I; Orio, A [Madrid Univ. (Spain). Dept. of Chem. Eng.

    1997-12-31

    A commercial steam reforming catalyst from BASF, the G1-25 S one, and a calcined dolomite, Norte-1, from Cantabria-Spain, have been used, once crushed and sieved to different particle fractions between 1.0 and 4.0 mm. The materials have been tested downstream small pilot biomass gasifiers, bubbling fluidized bed type, gasifying with air and with steam. The Thiele modulus and the effectiveness factor have been calculated at temperatures of 750-850 deg C. It is experimentally shown that diffusion control plays an important part when particle size is larger than ca. 0.5 mm. This has to be taken into account when comparing the quality of the solids for tar elimination. (author) (5 refs.)

  17. Effectiveness factors for a commercial steam reforming (Ni) catalyst and for a calcined dolomite used downstream biomass gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J.; Narvaez, I.; Orio, A. [Madrid Univ. (Spain). Dept. of Chem. Eng.

    1996-12-31

    A commercial steam reforming catalyst from BASF, the G1-25 S one, and a calcined dolomite, Norte-1, from Cantabria-Spain, have been used, once crushed and sieved to different particle fractions between 1.0 and 4.0 mm. The materials have been tested downstream small pilot biomass gasifiers, bubbling fluidized bed type, gasifying with air and with steam. The Thiele modulus and the effectiveness factor have been calculated at temperatures of 750-850 deg C. It is experimentally shown that diffusion control plays an important part when particle size is larger than ca. 0.5 mm. This has to be taken into account when comparing the quality of the solids for tar elimination. (author) (5 refs.)

  18. Gasified rice hull biochar affects nutrition and growth of five horticulture crops in container culture

    Science.gov (United States)

    Phosphate fertilizers used in the production of greenhouse crops can be problematic if released into the environment. Furthermore, the price of phosphate is increasing as demand increases and world supplies decrease. The objective of this research was to determine if gasified rice hull biochar (GR...

  19. Benefits of Allothermal Biomass Gasification for Co-Firing

    Energy Technology Data Exchange (ETDEWEB)

    Van der Meijden, C.M.; Van der Drift, A.; Vreugdenhil, B.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-04-15

    Many countries have set obligations to reduce the CO2 emissions from coal fired boilers. Co-firing of biomass in existing coal fired power plants is an attractive solution to reduce CO2 emissions. Co-firing can be done by direct mixing of biomass with coal (direct co-firing) or by converting the biomass into a gas or liquid which is fired in a separate burner (indirect co-firing). Direct co-firing is a rather simple solution, but requires a high quality and expensive biomass fuel (e.g. wood pellets). Indirect co-firing requires an additional installation that converts the solid biomass into a gas or liquid, but has the advantage that it can handle a wide range of cheap biomass fuels (e.g. demolition wood) and most of the biomass ash components are separated from the gas before it enters the boiler. Separation of biomass ash can prevent fouling issues in the boiler. Indirect co-firing, using biomass gasification technology, is already common practice. In Geertruidenberg (the Netherlands) a 80 MWth Lurgi CFB gasifier produces gas from demolition wood which is co-fired in the Amer PC boiler. In Ruien (Belgium) a 50 MWth Foster Wheeler fluidized bed gasifier is in operation. The Energy research Centre of the Netherlands (ECN) developed a 'second generation' allothermal gasifier called the MILENA gasifier. This gasifier has some major advantages over conventional fluidized bed gasifiers. The heating value of the produced gas is approximately 2.5 times higher than of gas produced by conventional bubbling / circulating fluidized bed gasifiers. This results in smaller adaptations to the membrane wall of the boiler for the gas injection, thus lower costs. A major disadvantage of most fluidized bed gasifiers is the incomplete conversion of the fuel. Typical fuel conversions vary between 90 and 95%. The remaining combustible material, also containing most of the biomass ash components, is blown out of the gasifier and removed from the gas stream by a cyclone to

  20. Coal background paper. Coal demand

    International Nuclear Information System (INIS)

    1997-01-01

    Statistical data are presented on coal demands in IEA and OECD member countries and in other countries. Coal coaking and coaking coal consumption data are tabulated, and IEA secretariat's coal demand projections are summarized. Coal supply and production data by countries are given. Finally, coal trade data are presented, broken down for hard coal, steam coal, coking coal (imports and export). (R.P.)

  1. Idaho National Laboratory Quarterly Occurrence Analysis - 3rd Quarter FY-2016

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 73 reportable events (23 from the 3rd Qtr FY-16 and 50 from the prior three reporting quarters), as well as 45 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (16 from this quarter and 29 from the prior three quarters).

  2. Idaho National Laboratory Quarterly Occurrence Analysis - 1st Quarter FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 74 reportable events (16 from the 1st Qtr FY-16 and 58 from the prior three reporting quarters), as well as 35 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (15 from this quarter and 20 from the prior three quarters).

  3. Experimental study on steam gasification of coal using molten blast furnace slag as heat carrier for producing hydrogen-enriched syngas

    International Nuclear Information System (INIS)

    Duan, Wenjun; Yu, Qingbo; Wu, Tianwei; Yang, Fan; Qin, Qin

    2016-01-01

    Highlights: • New method for producing HRG by gasification using BFS as heat carrier was proposed. • The continuous experiment of steam gasification in molten BFS was conducted. • The hydrogen-enriched syngas was produced by this method. • The molten BFS waste heat was utilized effectively by steam gasification. • This method could be widely used in steam gasification of different types of coal. - Abstract: The new method for producing hydrogen-enriched syngas (HRG) by steam gasification of coal using molten blast furnace slag (BFS) as heat carrier was established. In order to achieve the HRG production, a gasification system using this method was proposed and constructed. The carbon gasification efficiency (CE), hydrogen yield (YH_2) and cold gasification efficiency (CGE) in the molten slag reactor were measured, and the effects of temperature, S/C (steam to coal) ratio and coal type on the reaction performance were accessed. The results indicated that the preferred temperature was 1350 °C, which ensured the miscibility of coal–steam–slag, the diffusion of reactant in molten BFS as well as recovering waste heat. The optimal S/C ratio was 1.5–2.0 for producing HRG. Under these conditions, the hydrogen fraction was higher than 63% and the gas yield reached to 1.89 Nm"3/kg. The CE and CGE were higher than 96% and 102%, respectively. The YH_2 also reached to 1.20 Nm"3/kg. Meanwhile, different types of coal were successfully gasified in molten BFS reactor for producing HRG. The proposed method enhanced the gasification efficiency of different types of coal, recovered the BFS waste heat effectively, and had important guidance for industrial manufacture.

  4. Achievement report for fiscal 1997 on investigative research on society compatibility of development of coal hydrogasification technology; 1997 nendo sekitan suiso tenka gas ka gijutsu kaihatsu shakai tekigosei ni kansuru chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In view of possibility of the future tightness in natural gas supply, establishment of coal gasification technology was set as the final objective, which can supply cheaply and stably the substitution natural gas of high quality by using coal existing affluently over the world as the raw material. An investigative research is carried out under a five-year plan on society compatibility required to assess the possibility of the practical application thereof. Fiscal 1997 has performed in continuation from the previous year the 'survey on process level elevation' and 'survey on the society compatibility'. This report summarizes the achievements thereon. In the investigative research on the process level elevation, the Shell's methane synthesis process based on an oxygen blown and dry feed coal gasifier was evaluated, and the calculation process was pursued on material balance in a hydrogasification reactor as having been performed in the 'survey on developing the coal hydrogasification technology' in which its reasonability was verified. In the survey on the society compatibility of the process, a survey was carried out on natural gas (including non-conventional methane hydrate and coal bed methane) and coals as raw materials for hydrogasification. (NEDO)

  5. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

    1991-01-01

    The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro's estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

  6. The magnetohydrodynamics Coal-Fired Flow Facility

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    In this quarterly technical progress report, UTSI summarizes the results of a multi-task research and development project directed toward the development of the technology for the commercialization of the steam bottoming plant for the MHD steam combined cycle power plant. The report covers the final test in a 2000-hour proof-of-concept (POC) test series on eastern coal, the plans and progress for the facility modifications and the conduct of the POC tests to be conducted with western coal. Results summarized in the report include chloride emissions from the particle removal (ESP/BH) processes, nitrogen and sulfur oxide emissions for various tests conditions, measurements of particulate control efficiency and management of the facility holding ponds during testing. Activities relating to corrosion and deposition probe measurements during testing and the fouling of heat transfer tubes and interaction with sootblowing cycles are summarized. The performance of both UTSI and Mississippi State University (MSU) advanced diagnostic systems is reported. Significant administrative and contractual actions are included. 2 refs., 28 figs., 7 tabs.

  7. Gasification of torrefied Miscanthus × giganteus in an air-blown bubbling fluidized bed gasifier.

    Science.gov (United States)

    Xue, G; Kwapinska, M; Horvat, A; Kwapinski, W; Rabou, L P L M; Dooley, S; Czajka, K M; Leahy, J J

    2014-05-01

    Torrefaction is suggested to be an effective method to improve the fuel properties of biomass and gasification of torrefied biomass should provide a higher quality product gas than that from unprocessed biomass. In this study, both raw and torrefied Miscanthus × giganteus (M×G) were gasified in an air-blown bubbling fluidized bed (BFB) gasifier using olivine as the bed material. The effects of equivalence ratio (ER) (0.18-0.32) and bed temperature (660-850°C) on the gasification performance were investigated. The results obtained suggest the optimum gasification conditions for the torrefied M × G are ER 0.21 and 800°C. The product gas from these process conditions had a higher heating value (HHV) of 6.70 MJ/m(3), gas yield 2m(3)/kg biomass (H2 8.6%, CO 16.4% and CH4 4.4%) and cold gas efficiency 62.7%. The comparison between raw and torrefied M × G indicates that the torrefied M × G is more suitable BFB gasification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Destructive distillation of coals

    Energy Technology Data Exchange (ETDEWEB)

    Rollason, A

    1918-08-23

    To obtain light oils and ammonia from coals having volatile and oxygen contents, the crushed material is mixed with 5 percent of ground amorphous calcium carbonate and distilled slowly in a cast iron retort to remove the water and light oils, the ammonia being synthesized at a later stage. The crushed residue is gasified in a producer by a blast of air and superheated steam at about 950/sup 0/C. The steam and air are passed very slowly at low pressure through the fuel to cause the dissociation of the atmospheric nitrogen molecules into atoms. The gases are then passed to a heater, having a temperature of 500/sup 0/C, and thence to a continuously working externally-heated retort charged with fuel, such as the hard retort residues, maintained below 850/sup 0/C. The water vapor in the gases is dissociated by the incandescent fuel, the oxygen combining with the carbon, and the lime present in the fuel causes the hydrogen to combine with the free nitrogen atoms, thus forming ammonia. The gases after leaving the retort are cooled down to 85 to 95/sup 0/C and the ammonia may be recovered by conversion into ammonium sulphate. The resultant cooled gases may again be charged with superheated steam and utilized again in the heater and retort.

  9. Combustion performance of cellulosic biomass in a gasifier-based cookstove

    Science.gov (United States)

    Sulaiman, Shaharin A.; Romli, Raffisyazana

    2012-06-01

    Depletion in fossil fuel and increase in the world population may change the trend in future kitchens in households. Cooking with LPG fuel may one day become impossible and households would have to consider alternatives such as electric stoves. One other solution to this problem is through the use of biomass cook stoves. However, traditional cook stoves, predominantly used in the households, are not efficient and its utilizations for domestic cooking have been a major contributor to the ill effects related in respiratory and other health problem. Improved cook stoves programs implemented in the developing world attempt to address these problems. Biomass gasification appears to have significant potential in Asia for domestic cooking applications. Gasifier-based cook stoves are fuel efficient in comparison to traditional cook stove. The objective of this paper is to study the performance of various type of cellulosic biomass in a gasifier-based cook stove. The biomass considered in this study are oil palm fronds, dried leaves, wood sticks, coconut shells, bagasse, charcoal, and saw dust. The samples are analyzed in order to study their chemical properties. The thermochemical properties of the biomass were characterized. The performance of the each of the samples is studied by observing the time taken to boil water. It is found that oil palm fronds are the best type of biomass for the gasifer cook stove. It is also concluded that the higher the carbon content and the calorific value in a biomass, the lesser the time taken to boil the water.

  10. Coal 99; Kol 99

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, C

    2000-07-01

    in equipment for burning pellets instead of coal. In Linkoeping waste of rubber is mixed with coal. Also Soederenergi AB has rebuilt their three coal boilers and replaced 100 % of the coal by peat and wood fuels. Coal is a reserve fuel. Several co-generation plants like Linkoeping, Norrkoeping, Uppsala and Oerebro use both coal and forest fuels. The use of coal is then concentrated to the electricity production. The average price of steam coal imported in Sweden in 1998 was 370 SEK/ton or the same as in 1997. For the world, the average import price fell about 6 USD/ton to 32 USD/ton. The price fall was concentrated to the 4th quarter. The prices have continued to fall during 1999 as a result of the crisis in Asia but are now stabilising as a result of increasing oil prices. All Swedish plants meet their emission limits of dust, SO{sub 2} and NO{sub x}, given by county administrations or concession boards. The co-generation plants have all some sort of SO{sub 2}-removal system. Mostly used is the wet-dry method. The biggest co-generation plant, in Vaesteraas, has recently invested in a catalytic NO{sub x}-cleaning system type SCR, which is reducing the emission level 80-90 %. Most other plants are using low NO{sub x}- burners or injection systems type SNCR, based on ammonium or urea, which are reducing the emissions 50-70 %. A positive effect of the recently introduced NO{sub x}-duties is a 60 % reduction compared to some years ago, when the duties were introduced. World hard coal production was about 3 700 tons in 1998, a minor decrease compared to 1997. The trade, however, has increased about 3 % to 520 mill tons. The coal demand in the OECD-countries has increased about 1,7 % yearly during the last ten years. The coal share of the energy supply is about 20% in the OECD-countries and 27% in the whole world. Several sources estimate a continuing growth during the next 20 years in spite of an increasing use of natural gas and nuclear power. The reason is a strong

  11. EMSL Quarterly Highlights Report: 1st Quarter, Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.

    2009-02-02

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2008 - December 2008) of Fiscal Year 2009.

  12. Bench-scale testing of on-line control of column flotation using a novel analyzer. Third quarterly technical progress report, April 1, 1993--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-24

    This document contains the third quarterly technical progress report for PTI`s Bench-Scale Testing Project of a circuit integrating PTI`s KEN-FLOTETM Column Flotation Technology and PTI`s On-Line Quality Monitor and Control System. The twelve-month project involves installation and testing of a 200--300 lb/hr. bench-scale flotation circuit at PETC`s Coal Preparation Process Research Facility (CPPRF) for two bituminous coals (Upper Freeport and Pittsburgh No. 8 Seam Raw Coals). Figure 1 contains the project plan, as well as the approach to completing the major tasks within the twelve-month project schedule. The project is broken down into three phases, which include: Phase I -- Preparation: The preparation phase was performed principally at PTI`s Calumet offices from October through December, 1992. It involved building of the equipment and circuitry, as well as some preliminary design and equipment testing; Phase II -- ET Circuit Installation and Testing: This installation and testing phase of the project was performed at PETC`s CPPRF from January through June, 1993, and was the major focus of the project. It involved testing of the continuous 200--300 lb/hr. circuit; and Phase III -- Project Finalization: The project finalization phase is occurring from July through September, 1993, at PTI`s Calumet offices and involves finalizing analytical work and data evaluation, as well as final project reporting. This Third Quarterly Technical Progress Report principally summarizes the results from the benchscale testing with the second coal (Pittsburgh No. 8 Seam Coal), which occurred in April through June, 1993. It also contains preliminary economic evaluations that will go into the Final Report, as well as the plan for the final reporting task.

  13. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  14. CHP from Updraft Gasifier and Stirling Engine

    DEFF Research Database (Denmark)

    Jensen, N.; Werling, J.; Carlsen, Henrik

    2002-01-01

    The combination of thermal gasification with a Stirling engine is an interesting concept for use in small combined heat and power plants based on biomass. By combining the two technologies a synergism can potentially be achieved. Technical problems, e.g. gas cleaning and fouling of the Stirling...... engine heat exchanger, can be eliminated and the overall electric efficiency of the system can be improved. At the Technical University of Denmark a Stirling engine fueled by gasification gas has been developed. In this engine the combustion system and the geometry of the hot heat exchanger...... of the Stirling engine has been adapted to the use of a gas with a low specific energy content and a high content of tar and particles. In the spring of 2001 a demonstration plant has been built in the western part of Denmark where this Stirling engine is combined with an updraft gasifier. A mathematical...

  15. Short-term energy outlook. Quarterly projections, first quarter 1995

    International Nuclear Information System (INIS)

    1995-02-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). The forecast period for this issue of the Outlook extends from the first quarter of 1995 through the fourth quarter of 1996. Values for the fourth quarter of 1994, however, are preliminary EIA estimates or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the first quarter 1995 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The cases are produced using the Short-Term Integrated Forecasting System (STIFS). The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. The EIA model is available on computer tape from the National Technical Information Service

  16. A characterization and evaluation of coal liquefaction process streams. Quarterly report, April 1--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Robbins, G.A.; Winschel, R.A.

    1997-12-31

    This is the Technical Progress Report for the twelfth quarter of activities. Described in this report are the following activities: (1) Thirty-nine samples from four run conditions of HTI Run PB-07 were received. Appropriate samples were characterized by proton NMR spectroscopy, Fourier transform infrared spectroscopy, vacuum distillation, and solvent quality tests. (2) The University of Delaware completed their subcontract this quarter. A meeting was held on April 30, 1997 at the University to close out the subcontract. (3) Twelve sets of samples were chosen from the CONSOL sample bank for the study of the insoluble and presumed unreactive material from process stream samples. Each set consists of the whole process stream and the 454 C{sup +} (850 F{sup +}) distillation resid derived from that process stream. Processing data for all samples were compiled. The samples represent four Wilsonville pilot plant runs and two HTI runs.

  17. URBAN WOOD/COAL CO-FIRING IN THE BELLEFIELD BOILERPLANT

    International Nuclear Information System (INIS)

    James T. Cobb, Jr.; Gene E. Geiger; William W. Elder III; William P. Barry; Jun Wang; Hongming Li

    2001-01-01

    During the third quarter, important preparatory work was continued so that the experimental activities can begin early in the fourth quarter. Authorization was awaited in response to the letter that was submitted to the Allegheny County Health Department (ACHD) seeking an R and D variance for the air permit at the Bellefield Boiler Plant (BBP). Verbal authorizations were received from the Pennsylvania Department of Environmental Protection (PADEP) for R and D variances for solid waste permits at the J. A. Rutter Company (JARC), and Emery Tree Service (ETS). Construction wood was acquired from Thompson Properties and Seven D Corporation. Forty tons of pallet and construction wood were ground to produce BioGrind Wood Chips at JARC and delivered to Mon Valley Transportation Company (MVTC). Five tons of construction wood were milled at ETS and half of the product delivered to MVTC. Discussions were held with BBP and Energy Systems Associates (ESA) about the test program. Material and energy balances on Boiler No.1 and a plan for data collection were prepared. Presentations describing the University of Pittsburgh Wood/Coal Co-Firing Program were provided to the Pittsburgh Chapter of the Pennsylvania Society of Professional Engineers, and the Upgraded Coal Interest Group and the Biomass Interest Group (BIG) of the Electric Power Research Institute (EPRI). An article describing the program appeared in the Pittsburgh Post-Gazette. An application was submitted for authorization for a Pennsylvania Switchgrass Energy and Conservation Program

  18. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    International Nuclear Information System (INIS)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Suuberg; Eric Eddings; Larry Baxter

    2002-01-01

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates

  19. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2003-06-30

    This is the twelfth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a new effort was begun on the development of a corrosion management system for minimizing the impacts of low NOx combustion systems on waterwalls; a kickoff meeting was held at the host site, AEP's Gavin Plant, and work commenced on fabrication of the probes. FTIR experiments for SCR catalyst sulfation were finished at BYU and indicated no vanadium/vanadyl sulfate formation at reactor conditions. Improvements on the mass-spectrometer system at BYU have been made and work on the steady state reactor system shakedown neared completion. The slipstream reactor continued to operate at AEP's Rockport plant; at the end of the quarter, the catalysts had been exposed to flue gas for about 1000 hours. Some operational problems were addressed that enable the reactor to run without excessive downtime by the end of the quarter.

  20. Thermodynamic modelling of an onsite methanation reactor for upgrading producer gas from commercial small scale biomass gasifiers.

    Science.gov (United States)

    Vakalis, S; Malamis, D; Moustakas, K

    2018-06-15

    Small scale biomass gasifiers have the advantage of having higher electrical efficiency in comparison to other conventional small scale energy systems. Nonetheless, a major drawback of small scale biomass gasifiers is the relatively poor quality of the producer gas. In addition, several EU Member States are seeking ways to store the excess energy that is produced from renewables like wind power and hydropower. A recent development is the storage of energy by electrolysis of water and the production of hydrogen in a process that is commonly known as "power-to-gas". The present manuscript proposes an onsite secondary reactor for upgrading producer gas by mixing it with hydrogen in order to initiate methanation reactions. A thermodynamic model has been developed for assessing the potential of the proposed methanation process. The model utilized input parameters from a representative small scale biomass gasifier and molar ratios of hydrogen from 1:0 to 1:4.1. The Villar-Cruise-Smith algorithm was used for minimizing the Gibbs free energy. The model returned the molar fractions of the permanent gases, the heating values and the Wobbe Index. For mixtures of hydrogen and producer gas on a 1:0.9 ratio the increase of the heating value is maximized with an increase of 78%. For ratios higher than 1:3, the Wobbe index increases significantly and surpasses the value of 30 MJ/Nm 3 . Copyright © 2017 Elsevier Ltd. All rights reserved.