WorldWideScience

Sample records for coal gas oil

  1. Oil, Gas, Coal and Electricity - Quarterly statistics. Second Quarter 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    This publication provides up-to-date and detailed quarterly statistics on oil, coal, natural gas and electricity for the OECD countries. Oil statistics cover production, trade, refinery intake and output, stock changes and consumption for crude oil, NGL and nine selected oil product groups. Statistics for electricity, natural gas, hard coal and brown coal show supply and trade. Import and export data are reported by origin and destination. Moreover, oil and hard coal production are reported on a worldwide basis.

  2. Cracking oils, etc. , glycerine, oil and coal gas

    Energy Technology Data Exchange (ETDEWEB)

    Mann, W

    1919-02-06

    In the cracking of hydrocarbon oils, the thermal decomposition of fats to obtain glycerine, the production of oil and coal gas, and the destructive distillation of coal, peat, shale, etc., the lower molecular weight products are separated, while the higher molecular weight products are separated, while the higher molecular weight products and undecomposed substances are retained for further exposure to the decomposition conditions, by interposing one or more porous septa between the decomposition chamber and the condenser or receiver. The decomposition conditions may be maintained up to the porous septum; but it is preferable to place the porous septum in a separate chamber inside or outside the decomposition vessel; and a plurality of decomposition chambers may be used in series or parallel.

  3. Lack of oil and gas resources leads to concentration on coal and nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-20

    The Bulgarian energy sector is characterised by a marked shortage of domestic resources. The country has no oil to speak of, no gas, relatively little hydro potential compared with its neighbours, and the one resource it does have in fair abundance - coal - is of the poorest quality. This poverty of resources has led to an extraordinary dependence on the Soviet Union for supplies of every resource and for technology to utilise them. Most oil, all gas, some electricity and even significant quantities of coal are all imported from the USSR. There is little Bulgaria can do about its oil needs for the transport sector, but otherwise current policy is to concentrate development in the nuclear and coal sectors. One of the main thrusts of the energy policy is to continue expansion of coal, largely opencast lignite deposits, in order to feed thermal power stations and, when clean coal technology is developed, to use coal in CHP plants. The country uses a small amount of natural gas but no development is foreseen; instead district heating is considered a more efficient use of resources. 5 figs., 1 tab.

  4. Comparative assessment of severe accident risks in the coal, oil and natural gas chains

    International Nuclear Information System (INIS)

    Burgherr, Peter; Eckle, Petrissa; Hirschberg, Stefan

    2012-01-01

    This study compared severe accident risks of fossil energy chains (coal, oil and natural gas), based on the historical experience contained in the comprehensive database ENSAD. Considered risk indicators focused on human health impacts, i.e., fatality rates and maximum consequences were calculated for a broad range of country groups. Generally, expected fatality rates were lowest for natural gas, intermediate for oil and highest for coal. Concerning maximum consequences of a single accident, natural gas also performed best, followed by coal, whereas accidents in the oil chain can claim significantly more fatalities. In general, OECD and EU 27 ranked top, while non-OECD countries and China in the case of coal were worst. The consideration of numerous additional country groups enabled a more detailed differentiation within the main bounding groups. Furthermore, differences among country groups are distinctly decreasing from coal to oil and natural gas, both for fatality rates and maximum consequences. The use of import adjusted-fatality rates indicates that fatality risks in supply countries are an essential aspect to understand how specific risk reduction strategies may affect other components of energy security, and thus tradeoffs and compromises are necessary. Finally, the proposed fatality risk score for fossil chains (FRS F ) allows a comparison of the combined accident risk for the considered fossil energy chains across individual countries, which can be visualized using risk mapping.

  5. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  6. Process for heating coal-oil slurries

    Science.gov (United States)

    Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

  7. The Efficiency Improvement by Combining HHO Gas, Coal and Oil in Boiler for Electricity Generation

    Directory of Open Access Journals (Sweden)

    Chia-Nan Wang

    2017-02-01

    Full Text Available Electricity is an essential energy that can benefit our daily lives. There are many sources available for electricity generation, such as coal, natural gas and nuclear. Among these sources, coal has been widely used in thermal power plants that account for about 41% of the worldwide electricity supply. However, these thermal power plants are also found to be a big pollution source to our environment. There is a need to explore alternative electricity sources and improve the efficiency of electricity generation. This research focuses on improving the efficiency of electricity generation through the use of hydrogen and oxygen mixture (HHO gas. In this research, experiments have been conducted to investigate the combined effects of HHO gas with other fuels, including coal and oil. The results show that the combinations of HHO with coal and oil can improve the efficiency of electricity generation while reducing the pollution to our environment.

  8. Clean coal and heavy oil technologies for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Todd, D.M. [GE Industrial & Power Systems, Schenectady, NY (United States)

    1994-12-31

    Global power generation markets have shown a steady penetration of GT/CC technology into oil and gas fired applications as the technology has matured. The lower cost, improved reliability and efficiency advantages of combined cycles can now be used to improve the cost of electricity and environmental acceptance of poor quality fuels such as coal, heavy oil, petroleum coke and waste products. Four different technologies have been proposed, including slagging combustors, Pressurized Fluidized Bed Combustion (PFBC), Externally Fired Combined Cycle (EFCC) and Integrated Gasification Combined Cycle (IGCC). Details of the technology for the three experimental technologies can be found in the appendix. IGCC is now a commercial technology. In the global marketplace, this shift is being demonstrated using various gasification technologies to produce a clean fuel for the combined cycle. Early plants in the 1980s demonstrated the technical/environmental features and suitability for power generation plants. Economics, however, were disappointing until the model F GT technologies were first used commercially in 1990. The economic break-through of matching F technology gas turbines with gasification was not apparent until 1993 when a number of projects were ordered for commercial operation in the mid-1990s. GE has started 10 new projects for operation before the year 2000. These applications utilize seven different gasification technologies to meet specific application needs. Early plants are utilizing low-cost fuels, such as heavy oil or petroleum coke, to provide economics in first-of-a-kind plants. Some special funding incentives have broadened the applications to include power-only coal plants. Next generation gas turbines projected for commercial applications after the year 2000 will contribute to another step change in technology. It is expected that the initial commercialization process will provide the basis for clear technology choices on future plants.

  9. Methane recovery from coal mine gas using hydrate formation in water-in-oil emulsions

    International Nuclear Information System (INIS)

    Zhong, Dong-Liang; Ding, Kun; Lu, Yi-Yu; Yan, Jin; Zhao, Wei-Long

    2016-01-01

    Highlights: • A water-in-oil emulsion was developed for CH_4 separation from coal mine methane gas. • Stable W/O emulsions were obtained with water cut in the range of (10–70%). • Gas hydrates nucleated faster with the reduction of water–oil volume ratio. • Gas uptake increased with the decrease of water–oil volume ratio. • CH_4 recovery was greatly enhanced by hydrate formation in W/O emulsions. - Abstract: In this work, a water-in-oil (W/O) emulsion was developed using liquid water, mineral oil, Sorbitan monooleate (Span 80), and cyclopentane. It was employed to enhance gas hydrate formation for CH_4 separation from a simulated coal mine methane (CMM) gas (30 mol% CH_4, 60 mol% N_2, and 10 mol% O_2). The stability test at atmospheric pressure and at a high pressure of 3.5 MPa showed that stable W/O emulsions were obtained when the water–oil volume ratio (WOR) was below 80%. The emulsified droplets size was measured with WOR ranging from 10% to 70%. Then kinetic experiments of CH_4 separation by hydrate formation in W/O emulsions were carried out at 273.6 K and (3.5–5.0) MPa in batch operation. The results indicated that water–oil volume ratio is a key factor that affects the kinetics of gas hydrate formation from the CMM gas mixture. Hydrate nucleation was observed to occur faster while WOR was decreased, and gas uptake increased significantly with the decrease of WOR. CH_4 concentration in the recovered gas mixture was increased to 52 mol% as compared to 30 mol% in the original gas mixture through one-stage hydrate formation in the W/O emulsions. It was found that the experimental conditions of 273.6 K, 3.5 MPa and WOR = 30% were favorable for CH_4 recovery from the CMM gas. The CH_4 recovery obtained under these conditions was 43%. It was higher than those obtained at WOR = 10% and 70%, and was greatly increased as compared with those obtained in the same reactor with the presence of TBAB (26%) and CP (33%).

  10. Bioremediation potential of coal-tar-oil-contaminated soil

    International Nuclear Information System (INIS)

    Lajoie, C.A.

    1991-01-01

    The bioremediation of coal tar oil contaminated soil was investigated in 90 day laboratory simulation experiments. The effect of soil moisture, humic acid amendment, and coal tar oil concentration on the rate of disappearance of individual coal tar oil constituents (PAHs and related compounds) was determined by methylene chloride extraction and gas chromatography. Mass balance experiments determined the fate of both the individual 14 C-labeled PAHs phenanthrene, pyrene, and benzo(a)pyrene, and the total coal tar oil carbon. Mineralization, volatilization, incorporation into microbial biomass, disappearance of individual coal tar oil constitutents, and the distribution of residual 14 C-activity in different soil fractions were measured. The rate of disappearance of coal tar oil constituents increased with increasing soil moisture over the experimental range. Humic acid amendment initially enhanced the rate of disappearance, but decreased the extent of disappearance. The amount of contamination removed decreased at higher coal tar oil concentrations. The practical limit for biodegradation in the system tested appeared to be between 1.0 and 2.5% coal tar oil. Mineralization accounted for 40 to 50% of the applied coal tar oil. Volatilization was a minor pathway of disappearance

  11. Coal fired steam generation for heavy oil recovery

    International Nuclear Information System (INIS)

    Firmin, K.

    1992-01-01

    In Alberta, some 21,000 m 3 /d of heavy oil and bitumen are produced by in-situ recovery methods involving steam injection. The steam generation requirement is met by standardized natural-gas-fired steam generators. While gas is in plentiful supply in Alberta and therefore competitively priced, significant gas price increases could occur in the future. A 1985 study investigating the alternatives to natural gas as a fuel for steam generation concluded that coal was the most economic alternative, as reserves of subbituminous coal are not only abundant in Alberta but also located relatively close to heavy oil and bitumen production areas. The environmental performance of coal is critical to its acceptance as an alternate fuel to natural gas, and proposed steam generator designs which could burn Alberta coal and control emissions satisfactorily are assessed. Considerations for ash removal, sulfur dioxide sorption, nitrogen oxides control, and particulate emission capture are also presented. A multi-stage slagging type of coal-fired combustor has been developed which is suitable for application with oilfield steam generators and is being commissioned for a demonstration project at the Cold Lake deposit. An economic study showed that the use of coal for steam generation in heavy oil in-situ projects in the Peace River and Cold Lake areas would be economic, compared to natural gas, at fuel price projections and design/cost premises for a project timing in the mid-1990s. 7 figs., 3 tabs

  12. Microbial production of natural gas from coal and organic-rich shale

    Science.gov (United States)

    Orem, William

    2013-01-01

    Natural gas is an important component of the energy mix in the United States, producing greater energy yield per unit weight and less pollution compared to coal and oil. Most of the world’s natural gas resource is thermogenic, produced in the geologic environment over time by high temperature and pressure within deposits of oil, coal, and shale. About 20 percent of the natural gas resource, however, is produced by microorganisms (microbes). Microbes potentially could be used to generate economic quantities of natural gas from otherwise unexploitable coal and shale deposits, from coal and shale from which natural gas has already been recovered, and from waste material such as coal slurry. Little is known, however, about the microbial production of natural gas from coal and shale.

  13. Geological evaluation on productibility of coal seam gas; Coal seam gas no chishitsugakuteki shigen hyoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K [University of Shizuoka, Shizuoka (Japan). Faculty of Education

    1996-09-01

    Coal seam gas is also called coal bed methane gas, indicating the gas existing in coal beds. The gas is distinguished from the oil field based gas, and also called non-conventional type gas. Its confirmed reserve is estimated to be 24 trillion m {sup 3}, with the trend of its development seen worldwide as utilization of unused resource. For the necessity of cultivating relevant technologies in Japan, this paper considers processes of production, movement, stockpiling, and accumulation of the gas. Its productibility is controlled by thickness of a coal bed, degree of coalification, gas content, permeability, groundwater flow, and deposition structure. Gas generation potential is evaluated by existing conditions of coal and degree of coalification, and methane production by biological origin and thermal origin. Economically viable methane gas is mainly of the latter origin. Evaluating gas reserve potential requires identification of the whole mechanism of adsorption, accumulation and movement of methane gas. The gas is expected of effect on environmental aspects in addition to availability as utilization of unused energy. 5 figs.

  14. Old King Coal to the rescue as gas supplies dwindle

    International Nuclear Information System (INIS)

    Westbury, R. J.; Balash, A.

    2000-01-01

    Rumours persist about an impending shortage of natural gas, despite solid evidence to suggest that there are vast reserves yet to be discovered. The foundation for the rumours are the fact of increasing per capita demand for natural gas; insufficient financial incentive to vigorously pursue exploration since the easily discoverable reserves of oil and gas have been found long ago, and the cost of discovering oil and natural gas in more difficult formations have risen faster than the rate of inflation. Other reasons cited from time to time include the lack of present day technology that can extract the vast amounts of gas and oil in remaining reserves, and references to the exploding population of the developing world such as India, Pakistan and China, who are major users of oil and gas. It is not expected that nuclear power, wind, solar and geothermal energy sources will become fashionable in the near future, leaving hydrocarbons, and mainly coal, as the only readily available energy source. Although because of the high sulphur content coal gets a bad press, it is a fact that coal-fired power plants, equipped with modern scrubbing equipment, could meet the same pollution limits as natural gas-fired plants. For the moment, the power generating industry is reluctant to invest in the costly equipment for clean coal-fired plants, however, this short-sighted view may well lead to increases in the price of natural gas that will mimic the results of the OPEC increases in crude oil in the 1970s. These authors contend that if gas is wasted in power generation, society will suffer the reappearance of coal-fired home heating furnaces with all the attendant increases in air pollution due to the relatively inefficient combustion of coal in domestic space heating appliances

  15. Are oil and gas stocks from the Australian market riskier than coal and uranium stocks? Dependence risk analysis and portfolio optimization

    International Nuclear Information System (INIS)

    Arreola Hernandez, Jose

    2014-01-01

    This article models the dependence risk and resource allocation characteristics of two 20-stock coal–uranium and oil–gas sector portfolios from the Australian market in the context of the global financial crisis of 2008–2009. The modeling framework implemented consists of pair vine copulas and, linear and nonlinear portfolio optimization methods with respect to five risk measures. The paper's objectives are to find out if the oil and gas stocks are riskier than the coal and uranium stocks, to identify the optimization method and risk measure that produce the best risk-return trade-off, to recognize the stocks in which the optimal weight allocations converge on average, and to acknowledge the vine copula model that best accounts for the overall dependence of the energy portfolios. The research findings indicate that the oil stocks have higher dependence risk than the coal, uranium and gas stocks in financial crisis periods. The higher risk of the oil stocks is confirmed by the larger concentration of symmetric and asymmetric dependence they have in the negative tail. The canonical vine (c-vine) copula model is observed to better capture the overall dependence of the energy portfolios. The combination of a pair c-vine copula and nonlinear portfolio optimization produces the highest return relative to risk. The optimal weight allocations converge on average in some stocks. - Highlights: • Vine copula dependence modeling of coal, uranium, oil and gas stocks • Oil stocks are riskier than coal, uranium and gas stocks in financial crisis periods. • The c-vine model better captures the overall dependence of the energy portfolios. • Vine copulas and nonlinear optimization combined produce the best results. • The optimal weight allocations converge on average in some stocks

  16. Light-oil recovery in the low-temperature carbonization of brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Jahn, A

    1944-01-01

    The various methods used for low-temperature carbonization of brown coal are reviewed as well as the effect of the method of carbonization on the properties and yields of light oil and tar. The composition of the light oil varied considerably with the coal and the method used. Light oil from the low-temperature distillation of brown coal contains relatively high contents of unsaturated hydrocarbons and variable content of phenols and S compounds, depending on the coal. Light oil is best recovered from low-temperature-carbonization gas by oil scrubbing; the use of active C would require preliminary removal of S compounds, which would be quite expensive.

  17. Coal and gas competition in global markets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    Global consumption of commercial energy totalled 18 Gt of coal equivalent in 2010. With a 28% share, coal ranked second after oil as one of the major sources of primary energy and natural gas (at 21%) ranked third. Gross power generation with coal was approximately 41% and gas 22%. Natural gas as a global commodity is growing rapidly with the advent of unconventional sources such as shale gas. Recently, gas has become the fuel of choice for new power generating plants in some countries. Overall production of coal has increased in the same time-frame. The share of coal in electricity production was constant in Europe from early 2000 but recently increased. This was due to the high cost of gas in Europe and a low emissions penalty levied by the regulator, making coal currently more competitive in Europe compared to gas. Coal utilisation continues to increase in Asia but is facing serious competition with gas in the USA, where the share of electricity generated with coal dropped in 2012. However, natural gas used to generate electricity in early 2013 was below the high level seen during the comparable 2012 period, when low natural gas prices led to significant displacement of coal by natural gas for power generation. The current consensus in the USA is that while coal may recover ground in the short term, it loses in the long term as coal plants are retired. The discovery, production and availability of significant amounts of gas have implications for not only the price of natural gas but also the price of coal as well as supply and demand, and utilisation of both fuels internationally. The interaction between coal and gas in the global markets today is investigated in this review and the near-term outlook and impact on both fuels is presented. In this report, reserves, production and trade, supply and demand, pricing, utilisation and consumption, public attitudes and finally near/short to medium-term prospects are discussed for both coal and gas.

  18. The marriage of gas turbines and coal

    International Nuclear Information System (INIS)

    Bajura, R.A.; Webb, H.A.

    1991-01-01

    This paper reports on developing gas turbine systems that can use coal or a coal-based fuel ensures that the United States will have cost-effective environmentally sound options for supplying future power generation needs. Power generation systems that marry coal or a coal-based fuel to a gas turbine? Some matchmakers would consider this an unlikely marriage. Historically, most gas turbines have been operated only on premium fuels, primarily natural gas or distillate oil. The perceived problems from using coal or coal-based fuels in turbines are: Erosion and deposition: Coal ash particles in the hot combustion gases passing through the expander turbine could erode or deposit on the turbine blades. Corrosion: Coal combustion will release alkali compounds form the coal ash. Alkali in the hot gases passing through the expander turbine can cause corrosion of high-temperature metallic surfaces. Emissions: coal contains higher levels of ash, fuel-bound sulfur and nitrogen compounds, and trace contaminants than premium fuels. Meeting stringent environmental regulations for particulates, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and trace contaminants will be difficult. Economics: Coal-based systems are expensive to build. The difference in price between coal and premium fuels must be large enough to justify the higher capital cost

  19. Exploitation Contradictions Concerning Multi-Energy Resources among Coal, Gas, Oil, and Uranium: A Case Study in the Ordos Basin (Western North China Craton and Southern Side of Yinshan Mountains

    Directory of Open Access Journals (Sweden)

    Xiaowei Feng

    2016-02-01

    Full Text Available The particular “rich coal, meager oil, and deficient gas” energy structure of China determines its high degree of dependence on coal resources. After over 100 years of high-intensity mining activities in Northeast China, East Region, and the Southern Region, coal mining in these areas is facing a series of serious problems, which force China’s energy exploitation map to be rewritten. New energy bases will move to the western and northern regions in the next few years. However, overlapping phenomena of multiple resources are frequently encountered. Previous exploitation mainly focused on coal mining, which destroys many mutualistic and accompanying resources, such as uranium, gas, and oil. Aiming at solving this unscientific development mode, this research presents a case study in the Ordos Basin, where uranium, coal, and gas/oil show a three-dimensional overlapping phenomenon along the vertical downward direction. The upper uranium and lower coal situation in this basin is remarkable; specifically, coal mining disturbs the overlaying aquifer, thus requiring the uranium to be leached first. The technical approach must be sufficiently reliable to avoid the leakage of radioactive elements in subsequent coal mining procedures. Hence, the unbalanced injection and extraction of uranium mining is used to completely eradicate the discharged emissions to the environment. The gas and oil are typically not extracted because of their deep occurrence strata and their overlapping phenomenon with coal seams. Use of the integrated coal and gas production method is recommended, and relevant fracturing methods to increase the gas migrating degree in the strata are also introduced. The results and recommendations in this study are applicable in some other areas with similarities.

  20. Permeability changes in coal resulting from gas desorption

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Johnson, P.W.

    1992-11-30

    This report documents studies on the effects of gas sorption on coal, with the intent of eventually evaluating how sorption and strain affect permeability. These studies were, carried out at the University of Alabama during the period from 1989 through 1992. Two major experimental methods were developed and used. In the strain experiments, electronic strain gauges were attached to polished blocks of coal in order to measure linear and volumetric swelling due to gas sorption. The effects of bedding plane orientation, of gas type, and of coal type were investigated. In the gravimetric experiment the weight of small samples of coal was measured during exposure to high pressure gases. Sample measurements were corrected for buoyancy effects and for sample swelling, and the results were plotted in the form of Langmuir isotherms. Experiments were conducted to determine the effect of grain size, coal type, moisture, and of sorbant gas. The advantage of this method is that it can be applied to very small samples, and it enabled comparison liptinite versus vitrinite concentrates, and kerogen rich versus kerogen depleted oil shales. Also included is a detailed discussion of the makeup of coal and its effect on gas sorption behavior.

  1. Too Much Coal, Too Little Oil

    OpenAIRE

    Frederick van der Ploeg; Cees Withagen

    2011-01-01

    Optimal climate policy is studied. Coal, the abundant resource, contributes more CO2 per unit of energy than the exhaustible resource, oil. We characterize the optimal sequencing oil and coal and departures from the Herfindahl rule. "Preference reversal" can take place. If coal is very dirty compared to oil, there is no simultaneous use. Else, the optimal outcome starts with oil, before using oil and coal together, and finally coal on its own, The "laissez-faire" outcome uses coal forever or ...

  2. China's energy security: Oil and gas

    International Nuclear Information System (INIS)

    Wu, Kang

    2014-01-01

    China is currently the largest energy consuming country in the world. Until the early 1990s, China had long been a net energy exporter. The country became a net oil importer in 1993, the first time since the 1960s. For China, energy security first means oil supply security. China turned into a net natural gas importer in 2007 and then a net coal importer in 2009. In other words, China is now a net importer of all three types of fossil energy—oil, natural gas, and coal. In the context of rising oil imports and implementation of China's 12th Five-Year Program from 2011 to 2015, this paper examines China's energy security strategies with a focus on three leading elements, namely overseas oil investment, strategic petroleum reserves (SPR)and unconventional gas development. Our findings suggest that the Chinese government has promoted overseas investment strongly; its SPR program has been established though the progress for Phase II has been slower than expected and the government intends to boost the unconventional gas sector development. However, the challenges are enormous as well. As for future research, other elements for each dimension of energy security should be reviewed to reach a comprehensive conclusion about how well China has done and what steps are needed to move forward. - Highlights: • Identified China's key energy security strategies during the 12th Five-Year Program (FYP) and previous FYPs. • Provided a unique insight into China's rising oil imports. • Reviewed China's overseas oil and gas investment as a key energy security measure. • Assessed China's strategic petroleum reserves program and the future growth. • Provided a comprehensive coverage of China's unconventional gas development, including both coal-bed methane and shale gas

  3. Displacement of oil by gas in power production

    International Nuclear Information System (INIS)

    Sundram, S.; Seng, L.K.; Kow, P.T.A.

    1992-01-01

    After the oil crises, Malaysia unveiled its four fuel diversification policy in the late 1970s towards utilization of gas, oil, coal and hydro. This was to ensure adequate and continuous energy supply for driving economic development and to cushion itself against impact of possible future fluctuations in oil prices. The primary energy supply in 1978 was predominantly oil based, consisting of 75.5% oil. As a result of this diversification policy, the oil component was reduced to about 51.8% in 1988. Due to its inherent ability to adapt and adjust to different fuels, the power sector played a crucial role in this massive shift away from oil. For the corresponding period, the oil component in the electricity generation input mix has decreased from 86.7% oil to 47.4%. Malaysia is endowed with substantial natural gas reserves amounting to 52.5 trillion cubic feet. Gas, therefore constitutes a natural and attractive option for the power sector in diversifying into non-oil indigenous energy resources, as the country's hydro potential has its limitations and the available proven coal reserves are relatively small. The paper addresses the past and current status and issues involved in displacing oil by gas for the power sector. These include the economic, technological and pricing aspects of natural gas development and issues pertaining to power system development. Future gas utilization strategies include the conversion of existing oil-fired plants to gas-fired, and the plant-up of gas turbines and the efficient combined cycle plants to meet the load requirements. These strategies are assessed from the viability and security perspective of increased gas utilization. Oil will continue to be displaced, but the extent to which gas will increase its share in power production is dependent on numerous factors ranging from its economics to supply security

  4. Fuel oil from low-temperature carbonization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Thau, A

    1941-01-01

    A review has been given of German developments during the last 20 years. Four methods for the low-temperature carbonization of coal have been developed to the industrial stage; two involving the use of externally heated, intermittent, metallic chamber ovens; and two employing the principle of internal heating by means of a current of gas. Tar from externally heated retorts can be used directly as fuel oil, but that from internally heated retorts requires further treatment. In order to extend the range of coals available for low-temperature carbonization, and to economize metals, an externally heated type of retort constructed of ceramic material has been developed to the industrial stage by T. An excellent coke and a tar that can be used directly as fuel oil are obtained. The properties of the tar obtained from Upper Silesian coal are briefly summarized.

  5. Permeability changes in coal resulting from gas desorption. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Johnson, P.W.

    1992-11-30

    This report documents studies on the effects of gas sorption on coal, with the intent of eventually evaluating how sorption and strain affect permeability. These studies were, carried out at the University of Alabama during the period from 1989 through 1992. Two major experimental methods were developed and used. In the strain experiments, electronic strain gauges were attached to polished blocks of coal in order to measure linear and volumetric swelling due to gas sorption. The effects of bedding plane orientation, of gas type, and of coal type were investigated. In the gravimetric experiment the weight of small samples of coal was measured during exposure to high pressure gases. Sample measurements were corrected for buoyancy effects and for sample swelling, and the results were plotted in the form of Langmuir isotherms. Experiments were conducted to determine the effect of grain size, coal type, moisture, and of sorbant gas. The advantage of this method is that it can be applied to very small samples, and it enabled comparison liptinite versus vitrinite concentrates, and kerogen rich versus kerogen depleted oil shales. Also included is a detailed discussion of the makeup of coal and its effect on gas sorption behavior.

  6. Clean coal technologies for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Todd, D.M. [GE Industrial & Power Systems, Schenectady, NY (United States)

    1994-12-31

    The oil- and gas-fired turbine combined-cycle penetration of industrial and utility applications has escalated rapidly due to the lower cost, higher efficiency and demonstrated reliability of gas turbine equipment in combination with fuel economics. Gas turbine technology growth has renewed the interest in the use of coal and other solid fuels in combined cycles for electrical and thermal energy production to provide environmentally acceptable plants without extra cost. Four different types of systems utilizing the gas turbine advantages with solid fuel have been studied: direct coal combustion, combustor processing, fuel processing and indirect cycles. One of these, fuel processing (exemplified by coal gasification), is emerging as the superior process for broad scale commercialization at this time. Advances in gas turbine design, proven in operation above 200 MW, are establishing new levels of combined-cycle net plant efficiencies up to 55% and providing the potential for a significant shift to gas turbine solid fuel power plant technology. These new efficiencies can mitigate the losses involved in gasifying coal and other solid fuels, and economically provide the superior environmental performance required today. Based on demonstration of high baseload reliability for large combined cycles (98%) and the success of several demonstrations of Integrated Gasification Combined Cycle (IGCC) plants in the utility size range, it is apparent that many commercial IGCC plants will be sites in the late 1990s. This paper discusses different gas turbine systems for solid fuels while profiling available IGCC systems. The paper traces the IGCC option as it moved from the demonstration phase to the commercial phase and should now with planned future improvements, penetrate the solid fuel power generation market at a rapid pace.

  7. Fuel production from coal by the Mobil Oil process using nuclear high-temperature process heat

    International Nuclear Information System (INIS)

    Hoffmann, G.

    1982-01-01

    Two processes for the production of liquid hydrocarbons are presented: Direct conversion of coal into fuel (coal hydrogenation) and indirect conversion of coal into fuel (syngas production, methanol synthesis, Mobil Oil process). Both processes have several variants in which nuclear process heat may be used; in most cases, the nuclear heat is introduced in the gas production stage. The following gas production processes are compared: LURGI coal gasification process; steam reformer methanation, with and without coal hydrogasification and steam gasification of coal. (orig./EF) [de

  8. Global resources and energy trade. An overview for coal, natural gas, oil and uranium

    Energy Technology Data Exchange (ETDEWEB)

    Remme, U.; Blesl, M.; Fahl, U.

    2007-07-15

    Despite efforts to improve energy effi-ciency and increase the usage of renewable energy carriers, fossil fuels and nuclear energy will continue to be important sources of global energy supply for the coming decades. Present global oil and gas supply is characterized by a concentration of production in a few world areas, mainly the Middle East and the Former Soviet Union, and a transport from these regions to the industrialized countries. Depletion of conventional reserves, especially oil, in combination with a surge for energy in emerging economies, as China and India, how-ever, is expected to change this picture in the future: unconventional resources in other world regions may be exploited to cover the surge energy demand, infrastructure for energy transport along new routes may have to be established. To provide a data base for such ques-tions, this report gives an overview of the current global resource situation for coal, natural gas, oil and uranium. In the first part, an assessment of the con-ventional and unconventional reserves and resources as well as their supply costs is given for the different regions of the world. The second part describes the current energy trade infrastructure between world regions and estimates the costs for existing and new trade links between these regions. (orig.)

  9. Production of brown coal fuel dust as a high value and effective energy carrier for substituting heating oil, natural gas and black coal in the cement and metallurgical industry

    Energy Technology Data Exchange (ETDEWEB)

    Kubasch, A.

    1985-01-01

    Poduction and industrial use of brown coal dust in the German Democratic Republic are reviewed. Dust production in 14 brown coal briquetting plants increased from 818.4 kt in 1980 to 2064 kt in 1984 and will exceed 4000 kt in 1990. Quality parameters of dusts according to the TGL 15380 industrial standard are listed. The railroad car loading and shipping technology is explained with the example of modern facilities of the Schwarze Pumpe briquetting plant: dust bunkers of 200 t storage capacity, pneumatic feeding and telescope discharge systems with nitrogen gas inertization, fire prevention, and railroad car cleaning equipment, rail track heating for improved winter loading conditions, etc. Since 1979 the Deuna, Karsdorf and Bernburg cement plants have been converted to brown coal dust combustion after installation of new fuel dust shipping, storage and combustion equipment. Substitution of heating oil and gas in metallurgical blast furnaces by brown coal dust is further described. Techogical advantages of the pneumatic KOSTE fuel feeding method are enumerated.

  10. Gas and coal competition in the EU Power Sector

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2014-06-01

    Despite its many assets, a confluence of factors - including flat electricity demand, rising use of renewable energy sources, falling wholesale electricity market prices, high gas prices relative to coal and low CO 2 prices - has eroded the competitiveness of natural gas in the EU power sector. The share of natural gas in the EU electricity mix has decreased from 23% in 2010 to 20.5% in 2012. By contrast, coal-fired power stations have been operating at high loads, increasing coal demand by the sector. This thorough analysis by CEDIGAZ of gas, coal and CO 2 dynamics in the context of rising renewables is indispensable to understand what is at stake in the EU power sector and how it will affect future European gas demand. Main findings of the report: - Coal is likely to retain its cost advantage into the coming decade: The relationship between coal, gas and CO 2 prices is a key determinant of the competition between gas and coal in the power sector and will remain the main driver of fuel switching. A supply glut on the international coal market (partly because of an inflow of US coal displaced by shale gas) has led to a sharp decline in coal prices while gas prices, still linked to oil prices to a significant degree, have increased by 42% since 2010. At the same time, CO 2 prices have collapsed, reinforcing coal competitiveness. Our analysis of future trends in coal, gas and CO 2 prices suggests that coal competitive advantage may well persist into the coming decade. - But coal renaissance may still be short-lived: Regulations on emissions of local pollutants, i.e. the Large Plant Combustion Directive (LCPD) and the Industrial Emissions Directive (IED) that will succeed it in 2016, will lead to the retirement of old, inefficient coal-fired power plants. Moreover, the rapid development of renewables, which so far had only impacted gas-fired power plants is starting to take its toll on hard coal plants' profitability. This trend is reinforced by regulation at EU or

  11. Too little oil, too much coal: Optimal carbon tax and when to phase in oil, coal and renewables

    OpenAIRE

    van der Ploeg, Frederick; Withagen, Cees A.

    2011-01-01

    Our main message is that it is optimal to use less coal and more oil once one takes account of coal being a backstop which emits much more CO2 than oil. The way of achieving this is to have a steeply rising carbon tax during the initial oil-only phase, a less-steeply rising carbon tax during the intermediate phase where oil and coal are used alongside each other and the following coal-only phase, and a flat carbon tax during the final renewables-only phase. The "laissez-faire" outcome uses co...

  12. Emission of CO2 Gas and Radioactive Pollutant from Coal Fired Power Plant

    International Nuclear Information System (INIS)

    Ida, N.Finahari; Djati-HS; Heni-Susiati

    2006-01-01

    Energy utilization for power plant in Indonesia is still depending on burning fossil fuel such as coal, oil and gaseous fuel. The direct burning of coal produces CO 2 gas that can cause air pollution, and radioactive pollutant that can increase natural radioactive dosage. Natural radionuclide contained in coal is in the form of kalium, uranium, thorium and their decay products. The amount of CO 2 gas emission produced by coal fired power plant can be reduced by equipping the plant with waste-gas treatment facility. At this facility, CO 2 gas is reacted with calcium hydroxide producing calcium carbonate. Calcium carbonate then can be used as basic material in food, pharmaceutical and construction industries. The alternative method to reduce impact of air pollution is by replacing coal fuel with nuclear fuel or new and renewable fuel. (author)

  13. Coal Liquefaction characteristics and chemical structure of product oil; Sekitan ekika hanno tokusei to seiseibutsu no kagaku kozo

    Energy Technology Data Exchange (ETDEWEB)

    Endo, H.; Sato, M.; Chiba, T.; Hattori, H. [Hokkaido University, Sapporo (Japan). Center for Advanced Research of Energy Technology; Sasaki, M. [Hokkaido National Industrial Research Institute, Sapporo (Japan)

    1996-10-28

    Through the hydrogenolysis of Wandoan coal and Tanito Harum coal which are used for the NEDOL process, differences of liquefaction characteristics between them were found. The purpose of this study is to grasp these differences as differences of chemical structures of oil fractions. The compound type analysis was conducted for oil fractions obtained at varied reaction temperature for varied reaction time. Coal liquefaction characteristics of these coals were discussed by relating oil yields and chemical structures. For Tanito Harum coal, yields of gas and oil were considered to be lower than those for Wandoan coal, which reflected that the contents of partially hydrogenated hydroaromatics in oil fraction from the former were lower than those from the latter, and that the remarkable change of composition did not occur with the progress of the reaction. For both the coals, the remarkable changes in the average molecular weight of oil fraction were not observed with the progress of the reaction. While, the content of methane gradually increased with the progress of the reaction, which suggested that oil was gradually dealkylated. 5 figs.

  14. Australian Coal Company Risk Factors: Coal and Oil Prices

    OpenAIRE

    M. Zahid Hasan; Ronald A. Ratti

    2014-01-01

    Examination of panel data on listed coal companies on the Australian exchange over January 1999 to February 2010 suggests that market return, interest rate premium, foreign exchange rate risk, and coal price returns are statistically significant in determining the excess return on coal companies’ stock. Coal price return and oil price return increases have statistically significant positive effects on coal company stock returns. A one per cent rise in coal price raises coal company returns ...

  15. Too Much Coal, too little Oil

    NARCIS (Netherlands)

    van der Ploeg, F.; Withagen, C.A.A.M.

    2012-01-01

    Our main message is that it is optimal to use less coal and more oil once one takes account of coal being a backstop which emits much more CO2 than oil. The way of achieving this is to have a steeply rising carbon tax during the initial oil-only phase, a less-steeply rising carbon tax during the

  16. Coal-oil assisted flotation for the gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sen, S.; Seyrankaya, A.; Cilingir, Y. [Dokuz Eylul University, Izmir (Turkey). Mining Engineering Department

    2005-09-01

    Using coal-oil agglomeration method for free or native gold recovery has been a research subject for many researchers over the years. In this study, a new approach 'coal-oil assisted gold flotation' was used to recover gold particles. The coal-oil-gold agglomeration process considers the preferential wetting of coal and gold particles. The method takes advantage of the greater hydrophobicity and oleophilicity of coal and gold compared to that the most gangue materials. Unlike the previous studies about coal-oil-gold agglomeration, this method uses a very small amount of coal and agglomerating agents. Some experiments were conducted on synthetic gold ore samples to reveal the reaction of the coal-oil assisted gold flotation process against the size and the number of gold particles in the feed. It was observed that there is no significant difference in process gold recoveries for feeds assaying different Au. Although there was a slight decrease for coarse gold particles, the process seems to be effective for the recovery of gold grains as coarse as 300 {mu} m. The decrease in the finest size ({lt} 53 {mu} m) is considered to be the decrease in the collision efficiency between the agglomerates and the finest gold particles. The effect of changing coal quantity for constant ore and oil amounts was also investigated. The experiments showed that the process gives very similar results for both artificial and natural ore samples; the best results have been obtained by using 30/1 coal-oil ratio.

  17. Hazardous air pollutants emission from coal and oil-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Deepak Pudasainee; Jeong-Hun Kim; Sang-Hyeob Lee; Ju-Myon Park; Ha-Na Jang; Geum-Ju Song; Yong-Chil Seo [Yonsei University, Wonju (Republic of Korea). Department of Environmental Engineering

    2010-03-15

    Hazardous air pollutants (HAPs) emission characteristics from coal (anthracite, bituminous) and oil-fired power plants were studied in order to control pollutants by formulating US maximum achievable control technology (MACT)-like regulation in Korea. Sampling and analysis were carried out according to either Korean standard test method or US EPA method. Relatively lower levels of NOx and SOx were emitted from plants burning bituminous than the anthracite coal. Less dust was emitted from oil-fired power plants. Mercury, lead, and chromium were dominant in coal-fired power plants, following which, nickel and chromium were emitted from oil-fired power plants. The major volatile organic compounds (VOCs) emitted from coal-fired plants were 1,2-dichloroethane, benzene, carbon tetrachloride, chloroform, trichloro-ethylene. The emission of mercury and other heavy metals in flue gas was attributed to fuel types, operating conditions, residence time in the control devices and the type of air pollution control devices. After emission tests in the field and on analysis of the continuous emission monitoring data collected from facilities under operation and consideration of other various factors, management guidelines will be suggested with special reference to US MACT-like regulation.

  18. Experimental Research on the Impactive Dynamic Effect of Gas-Pulverized Coal of Coal and Gas Outburst

    Directory of Open Access Journals (Sweden)

    Haitao Sun

    2018-03-01

    Full Text Available Coal and gas outburst is one of the major serious natural disasters during underground coal, and the shock air flow produced by outburst has a huge threat on the mine safety. In order to study the two-phase flow of a mixture of pulverized coal and gas of a mixture of pulverized coal and gas migration properties and its shock effect during the process of coal and gas outburst, the coal samples of the outburst coal seam in Yuyang Coal Mine, Chongqing, China were selected as the experimental subjects. By using the self-developed coal and gas outburst simulation test device, we simulated the law of two-phase flow of a mixture of pulverized coal and gas in the roadway network where outburst happened. The results showed that the air in the roadway around the outburst port is disturbed by the shock wave, where the pressure and temperature are abruptly changed. For the initial gas pressure of 0.35 MPa, the air pressure in different locations of the roadway fluctuated and eventually remain stable, and the overpressure of the outburst shock wave was about 20~35 kPa. The overpressure in the main roadway and the distance from the outburst port showed a decreasing trend. The highest value of temperature in the roadway increased by 0.25 °C and the highest value of gas concentration reached 38.12% during the experiment. With the action of shock air flow, the pulverized coal transportation in the roadway could be roughly divided into three stages, which are the accelerated movement stage, decelerated movement stage and the particle settling stage respectively. Total of 180.7 kg pulverized coal of outburst in this experiment were erupted, and most of them were accumulated in the main roadway. Through the analysis of the law of outburst shock wave propagation, a shock wave propagation model considering gas desorption efficiency was established. The relationships of shock wave overpressure and outburst intensity, gas desorption rate, initial gas pressure, cross

  19. Comparison of inhalation risks : oil- versus gas-fired urban power plants

    International Nuclear Information System (INIS)

    Levin, L.

    2000-01-01

    The risks due to inhalation of emitted trace substances from natural gas-fired power plants tend to be significantly lower than those from oil- or coal-fired plants. A 1994 study suggested that the median inhalation life-time cancer risk from gas-fired plants was about 4 in one billion. This is an acceptable risk range according to the United States Environmental Protection Agency (US EPA) classification of risks. In the same study, median oil plant risks were 8 in one billion. coal plant median risks ranged from 2 to 3 in one billion depending on the grade of coal being burned. The US EPA classifies risks from 1 to one million to one to 10,000 as being in an acceptable risk range. In some cases, gas plants were shown to exhibit higher inhalation risks than oil plants due to terrain, air circulation patterns, enhanced stack or building downwash or mechanical turbulence. Higher concentrations of very potent trace substances could also result in high inhalation risks. An examination of several power plants in an urban area showed that initial judgements about risk can often be incorrect

  20. Solar power. [comparison of costs to wind, nuclear, coal, oil and gas

    Science.gov (United States)

    Walton, A. L.; Hall, Darwin C.

    1990-01-01

    This paper describes categories of solar technologies and identifies those that are economic. It compares the private costs of power from solar, wind, nuclear, coal, oil, and gas generators. In the southern United States, the private costs of building and generating electricity from new solar and wind power plants are less than the private cost of electricity from a new nuclear power plant. Solar power is more valuable than nuclear power since all solar power is available during peak and midpeak periods. Half of the power from nuclear generators is off-peak power and therefore is less valuable. Reliability is important in determining the value of wind and nuclear power. Damage from air pollution, when factored into the cost of power from fossil fuels, alters the cost comparison in favor of solar and wind power. Some policies are more effective at encouraging alternative energy technologies that pollute less and improve national security.

  1. Peat and the greenhouse effect - Comparison of peat with coal, oil, natural gas and wood

    International Nuclear Information System (INIS)

    Hillebrand, K.

    1993-01-01

    The earth's climate is effected both by natural factors and human activities. So called greenhouse gas emissions increase the increment of the temperature of the air nearby the earth's surface, due to which the social changes can be large. The increment of greenhouse gas concentration in the atmosphere is due to increasing energy consumption. About 50 % of the climatic changes are caused by increase of the CO 2 concentration in the atmosphere. Other gases, formed in the energy production, intensifying the greenhouse effect are methane and nitrous oxide. The effect of greenhouse gases is based on their ability to absorb infrared radiation coming from the earth. This presentation discusses some of the greenhouse effect caused by some peat production and utilization chains in comparison with corresponding effects of coal, oil, natural gas and wood. The instantaneous greenhouse effects and the cumulative effects of the emissions of the gases (CO 2 , CH 4 and N 2 O) during a time period has been reviewed. The greenhouse effect has been calculated as CO 2 - equivalents. (5 figs.)

  2. Use of coal-oil agglomerates for particulate gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Calvez, J.P.S.; Kim, M.J.; Wong, P.L.M.; Tran, T. [University of New South Wales, Sydney, NSW (Australia). School of Chemical Engineering and Industrial Chemistry

    1998-09-01

    The underlying principles by which gold is recovered by coal-oil agglomerates was investigated. The effects of various parameters such as oil:coal ratios, agglomerate:ore ratios, pH and coal particle size on gold recovery were evaluated using synthetic gold bearing samples, bituminous coal, and diesel oil and kerosene. The effects of sulfides on gold recovery and the depth of gold particle penetration within the agglomerates were also investigated. Results showed that gold recovery was increased by increasing agglomerate:ore ratio, decreasing oil:coal ratio and decreasing coal particle size. There was no significant difference in gold recoveries at pH range of 4-12 and at up to 5% sulfides in the feed.

  3. Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Carrington; William C. Hecker; Reed Clayson

    2008-06-01

    Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

  4. Thermal-maturity limit for primary thermogenic-gas generation from humic coals as determined by hydrous pyrolysis

    Science.gov (United States)

    Lewan, Michael; Kotarba, M.J.

    2014-01-01

    Hydrous-pyrolysis experiments at 360°C (680°F) for 72 h were conducted on 53 humic coals representing ranks from lignite through anthracite to determine the upper maturity limit for hydrocarbon-gas generation from their kerogen and associated bitumen (i.e., primary gas generation). These experimental conditions are below those needed for oil cracking to ensure that generated gas was not derived from the decomposition of expelled oil generated from some of the coals (i.e., secondary gas generation). Experimental results showed that generation of hydrocarbon gas ends before a vitrinite reflectance of 2.0%. This reflectance is equivalent to Rock-Eval maximum-yield temperature and hydrogen indices (HIs) of 555°C (1031°F) and 35 mg/g total organic carbon (TOC), respectively. At these maturity levels, essentially no soluble bitumen is present in the coals before or after hydrous pyrolysis. The equivalent kerogen atomic H/C ratio is 0.50 at the primary gas-generation limit and indicates that no alkyl moieties are remaining to source hydrocarbon gases. The convergence of atomic H/C ratios of type-II and -I kerogen to this same value at a reflectance of indicates that the primary gas-generation limits for humic coal and type-III kerogen also apply to oil-prone kerogen. Although gas generation from source rocks does not exceed vitrinite reflectance values greater than , trapped hydrocarbon gases can remain stable at higher reflectance values. Distinguishing trapped gas from generated gas in hydrous-pyrolysis experiments is readily determined by of the hydrocarbon gases when a -depleted water is used in the experiments. Water serves as a source of hydrogen in hydrous pyrolysis and, as a result, the use of -depleted water is reflected in the generated gases but not pre-existing trapped gases.

  5. Optimal carbon tax with a dirty backstop: Oil, coal, or renewables?

    OpenAIRE

    van der Ploeg, Frederick; Withagen, Cees A.

    2011-01-01

    Optimal climate policy is studied. Coal, the abundant resource, contributes more CO2 per unit of energy than the exhaustible resource, oil. We characterize the optimal sequencing oil and coal and departures from the Herfindahl rule. "Preference reversal" can take place. If coal is very dirty compared to oil, there is no simultaneous use. Else, the optimal outcome starts with oil, before using oil and coal together, and finally coal on its own. The "laissez-faire" outcome uses coal forever or ...

  6. Origin of natural gas; Tennen gas no kigen

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Y. [The Institute of Applied Energy, Tokyo (Japan)

    1996-03-20

    Natural gas, which is a general term of flammable hydrocarbon gases such as methane, is classified by origin into the following categories : (1) oil field gas (oil gas), (2) aquifers (bacteria-fermented methane), (3) coal gas (coal field gas), and (4) abiogenetic gas. The natural gas which has (1-4) origins and is now used as resource in a large quantity is (1) oil field gas. This gas is a hydrocarbon gas recovered in the production process of petroleum and contains components such as ethane, propane and butane. To the contrary, (2) aquifers and (3) coal gas have methane as main component. As (4) abiogenetic methane, there are gas formed in inorganic reaction in activities of submarine volcanos and deep gas (earth origin gas). Oil field gas has kerogen origin. Aquifers were formed by fermentation of organic matters. Coal gas was formed by coalification of vitrinite. As abiogenetic methane, there are inorganic reaction formation gas and deep gas, the latter of which exists little as resource. 7 refs., 11 figs., 1 tab.

  7. Coal beneficiation by gas agglomeration

    Science.gov (United States)

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  8. Fatty Acid and Carbon Isotopic Evidence for type I Methanotrophs in Microbial Mats from a Shallow Marine Gas Seep, Coal Oil Point, CA.

    Science.gov (United States)

    Ding, H.; Valentine, D.

    2005-12-01

    To study the microbial community in a Southern California seep field, sediment and bacterial mat samples were collected from natural gas-bearing and gas-free surfaces at two distinct seeps in the Coal Oil Point seep field, offshore Santa Barbara. Fatty acids in these samples were extracted, analyzed and identified. Using gas chromatography (GC), more than 30 different fatty acids were separated. Generally, fatty acid concentrations in natural gas-bearing samples were about 5-fold higher compared to gas-free samples. Using gas chromatography mass sepctrometry (GC-MS), all separated fatty acids were identified in each sample. The major constituents included saturated 14:0, 16:0, 18:0, branched i-15, a-15 and unsaturated 16:1 and 18:1 series fatty acids. GC-IRMS (isotope ratio mass spectrometry) analysis provided the 13C of all major fatty acids and some 16:1 series fatty acids were found to be more depleted than -40% in samples associated with gas seepage. After treatment with dimethyl disufide (DMDS), the 16:1 series fatty acids were resolved into five distinct components, including common composition 16:1(7), bacterial specific i-16:1(7) and typical biomarkers of type I methnotrophs 16:1(8), 16(6) and 16:1(5), suggesting an important role for methnotrophs in seep sediments and microbial mats. These results provide evidence for the activity of type I methanotrophic bacteria in microbial mats and surficial sediments at the Coal Oil Point seep field, and have implications for methane cycling in this and other seep

  9. Coal-water fuels - a clean coal solution for Eastern Europe

    International Nuclear Information System (INIS)

    Ljubicic, B.; Willson, W.; Bukurov, Z.; Cvijanovic, P.; Stajner, K.; Popovic, R.

    1993-01-01

    Eastern Europe currently faces great economic and environmental problems. Among these problems is energy provision. Coal reserves are large but cause pollution while oil and gas need to be used for export. Formal 'clean coal technologies' are simply too expensive to be implemented on a large scale in the current economic crisis. The promised western investment and technological help has simply not taken place, western Europe must help eastern Europe with coal technology. The cheapest such technology is coal-water fuel slurry. It can substitute for oil, but research has not been carried out because of low oil prices. Coal-water fuel is one of the best methods of exploiting low rank coal. Many eastern European low rank coals have a low sulfur content, and thus make a good basis for a clean fuel. Italy and Russia are involved in such a venture, the slurry being transported in a pipeline. This technology would enable Russia to exploit Arctic coal reserves, thus freeing oil and gas for export. In Serbia the exploitation of sub-Danube lignite deposits with dredging mining produced a slurry. This led to the use and development of hot water drying, which enabled the removal of many of the salts which cause problems in pulverized fuel combustion. The system is economic, the fuel safer to transport then oil, either by rail or in pipelines. Many eastern European oil facilities could switch. 24 refs

  10. Industrial coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The effects of the National Energy Act on the use of coal in US industrial and utility power plants are considered. Innovative methods of using coal in an environmentally acceptable way are discussed: furnace types, fluidized-bed combustion, coal-oil-mixtures, coal firing in kilns and combustion of synthetic gas and liquid fuels. Fuel use in various industries is discussed with trends brought about by uncertain availability and price of natural gas and fuel oils: steel, chemical, cement, pulp and paper, glass and bricks. The symposium on Industrial Coal Utilization was sponsored by the US DOE, Pittsburgh Energy Technology Center, April 3 to 4, 1979. Twenty-one papers have been entered individually into the EDB. (LTN)

  11. Nuclear power aspects in an oil and coal producing country

    International Nuclear Information System (INIS)

    Iljas, J.; Subki, I.

    1977-01-01

    In the near future the Government of Indonesia will face a crucial problem, when it has to decide which kinds of energy resources would be reasonably feasible to replace the oil which is currently being used in the country as the main source of energy supply. A description is given of the presently known energy reserves and its potential in the Indonesian Archipelago and specifically on the island of Java. These resources comprise, next to oil, a significant amount of bituminous coal, natural gas, and some hydro and geothermal power. Previous indications of the existence of radioactive minerals have been confirmed lately. The possible use of solar and wind energy on the eastern Indonesian islands is being discussed. A number of studies and opinions expressed at national scientific meetings on the topic of energy have suggested the use of coal and nuclear power as the most economical resources to replace oil as of the beginning of the eighties. A number of constraints, for both coal and nuclear power, are being discussed. They mostly touch the technical, economical, financial and political aspects. A comparison study is made of coal versus nuclear power under the present local conditions. The prospects of nuclear power are reviewed, including the initial steps leading thereto, which have already been taken. In this connection the role of a domestic nuclear industry is being discussed, and also the accelerating effect it may have in the distant future on the growth of electricity from nuclear energy

  12. Oil from coal: just not worth it, say NCB

    Energy Technology Data Exchange (ETDEWEB)

    Grainger, L

    1970-01-01

    The creation of new markets by making oil fuels from coal in Britain is unresolved at this time. The dominant factor in the economics is the price ratio between coal and oil, which in Britain is 3 times less favorable than in the U.S. Current conversion results in a price more than double that of natural oil; however, the National Coal Board (NCB) continues to assess oil-from-coal processes. A sound research background in the new field of coal derivatives from solvent processing is being developed to produce materials of higher specific value than fuels. A continuous pilot plant is being built to prepare coke from filtered coal solution on the scale of a half-a-ton per week. Future prospects of the industry lie in areas where markets for coal will diminish, such as metallurgical coke. The fate of the coal industry will depend more and more on its largest market-electricity generation. In order to compete with nuclear power, the NCB is developing a new system of fluidized combustion.

  13. Greenhouse effects of the peat production and use as compared to coal, oil, natural gas and wood

    International Nuclear Information System (INIS)

    Hillebrand, K.; Wihersaari, M.

    1993-01-01

    This report examines the greenhouse effects of greenhouse gas emissions (carbon dioxide, methane and nitrous oxide) arising from certain production and utilization chains of peat and compares them with the corresponding effects associated with the production and utilization chains of coal, oil, natural gas and wood. In order to estimate the greenhouse effects of the peat production and utilization chains, the initial state of the peat bog together with the instantaneous and cumulative greenhouse effects associated with the production and burning of peat as well as subsequent use of the production area were taken into account. The initial state of the peat bog was taken to be either a bog in its natural sale, a forest-drained bog or a cultivated peatland. As regards alternatives for subsequent use of the peat production area, afforestation, paludification and lake formation were all examined

  14. Characterization of effluents from coal and oil heating. 3. Oil heated installations

    Energy Technology Data Exchange (ETDEWEB)

    Vassbotn, T.; Hagen, R.I.; Tellugen, S.; Wiig, P.O.

    1983-03-01

    Measurements and analyses of effluents were carried out to determine the amount of gas, and SO/sub 2/ concentration. Content of polycyclic aromatic hydrocarbons (PAH) in dust and in the exhaust gases. Particle size distribution and heavy metal concentration (i.e., nickel and vanadium), were determined in three dust fractions in the oil and correlated with operational data. Two burners were studied, one heated by heavy oil and the other by light oil. The amounts of dust and SO/sub 2/ in the exhaust gases were small. The dust was divided in a ''light'' and a ''dark'' type. The darker type consisted of larger particles. The medium size particles had the highest heavy metal concentration. Nickel and vanadium seem to be located in a certain type of dust. These tendencies were clearer for the heavy oil boiler. The amount of PAH in the dust is smaller than for coal heated boilers. 1 drawing, 13 tables.

  15. Coal pyrolysis under synthesis gas, hydrogen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ariunaa, A.; Li Bao-Qing; Li Wen; Purevsuren, B. (and others) [Chinese Academy of Sciences, Taiyuan (China)

    2007-02-15

    Chinese Xundian, Mongolian Shiveeovoo lignites and Khoot oil shale are pyrolyzed under synthesis gas (SG) at temperature range from 400 to 800{sup o}C for lignite and from 300 to 600{sup o}C for oil shale with heating rate of 10{sup o}C/min in a fixed bed reactor. The results were compared with those obtained by pyrolysis under hydrogen and nitrogen. The results showed that unlike pyrolysis at high pressure, there are only slight different in the yields of char and tar among pyrolyses under various gases at room pressure for lignite, while higher liquid yield with lower yields of char and gas was obtained in pyrolysis of oil shale under SG and H{sub 2} than under N{sub 2}. It is found that the pyrite S can be easily removed to partially convert to organic S under various gaseous atmosphere and the total sulfur removal for oil shale is much less than lignite, which might be related to its high ash content. The higher total sulfur removal and less organic S content in the presence of SG in comparison with those under N{sub 2} and even under H{sub 2} in pyrolysis of Xundian lignite might result from the action of CO in SG. However, CO does not show its function in pyrolysis of Khoot oil shale, which might also be related to the high ash content. The results reported show the possibility of using synthesis gas instead of pure hydrogen as the reactive gas for coal hydropyrolysis. 11 refs., 4 figs., 6 tabs.

  16. Mineral content prediction for unconventional oil and gas reservoirs based on logging data

    Science.gov (United States)

    Maojin, Tan; Youlong, Zou; Guoyue

    2012-09-01

    Coal bed methane and shale oil &gas are both important unconventional oil and gas resources, whose reservoirs are typical non-linear with complex and various mineral components, and the logging data interpretation model are difficult to establish for calculate the mineral contents, and the empirical formula cannot be constructed due to various mineral. The radial basis function (RBF) network analysis is a new method developed in recent years; the technique can generate smooth continuous function of several variables to approximate the unknown forward model. Firstly, the basic principles of the RBF is discussed including net construct and base function, and the network training is given in detail the adjacent clustering algorithm specific process. Multi-mineral content for coal bed methane and shale oil &gas, using the RBF interpolation method to achieve a number of well logging data to predict the mineral component contents; then, for coal-bed methane reservoir parameters prediction, the RBF method is used to realized some mineral contents calculation such as ash, volatile matter, carbon content, which achieves a mapping from various logging data to multimineral. To shale gas reservoirs, the RBF method can be used to predict the clay content, quartz content, feldspar content, carbonate content and pyrite content. Various tests in coalbed and gas shale show the method is effective and applicable for mineral component contents prediction

  17. Ten questions on the future of coal

    International Nuclear Information System (INIS)

    Ruelle, G.

    2005-01-01

    The author comments data and information on the main uses of coal, the evolution of the coal share in the world energy consumption, the amounts and locations of coal reserves in comparison with oil and gas, the coal reserves left in the European Union, the world coal market characteristics with respect to those of oil and gas, the reason of the bad environmental reputation of coal, the internal cost of a KWh produced by a coal power station, the external cost resulting from its environmental pollution, the possibility of reducing those defects by 2020, 2040, 2060, the way of transforming coal into oil and to which cost, in order to expand its use to modern transports, the role of coal during the 21. century and the possibilities of CO 2 sequestration

  18. Assessment of an atmospheric fluidized-bed coal-combustion gas-turbine cogeneration system for industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R. L.; Holcomb, R. S.; Tallackson, J. R.

    1979-10-01

    This study was initiated to provide information on the future potential industrial market for a cogeneration system consisting of a fluidized-bed coal combustor coupled to a gas-turbine (Brayton cycle) power system that uses air as the working fluid. In assessing the potential applications for the system, the process heat energy consumption by industry is identified, with special detail included on the six most energy-intensive industries. The potential impact on the nation's oil and natural gas consumption that would result from wide-spread utilization of coal for process heat is also estimated. The fraction of industrial process heat that the system could feasibly satisfy from a thermodynamic viewpoint is estimated, and the performance (potential fuel efficiency and heat/power ratio) of the atmospheric fluidized-bed gas-turbine system is calculated. Also treated are several specific case studies of industries in which the system could be incorporated. Major parameters are specified, and flow sheets are derived for systems that would satisfy the heat and power requirements of the process or industry. The overall fuel utilization efficiency, thermal power rating, and potential number of installations are specified for these case studies. The findings of the study indicate that there is a sizable potential market for the system, with over 1000 possible installations disclosed after reviewing only 8 specific industries from 6 major Standard Industrial Classification (SIC) groups. The potential displacement of oil and gas by coal in process heating is shown to be about 1.60 m/sup 3//sec (870,000 bbl/d) of oil and 4590 m/sup 3//sec (14.0 billion ft/sup 3//d) of natural gas for all industries combined. Continued development of the fluidized-bed coal combustor and power system is recommended so that this potential may be at least partially realized.

  19. Free gold recovery by coal-oil agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Kotze, W.; Petersen, F.W. [Cape Technikon Cape Town (South Africa). Dept. of Chemical Engineering

    2000-02-01

    The gold mining industry has mainly relied upon the use of highly polluting chemicals, such as mercury and cyanide to recover gold from its ores. The Coal Gold Agglomeration (CGA) process was developed some years ago and has the advantage in that gold is recovered by a procedure which has little or no negative impact on the environment. A gold ore containing liberated gold particles is contacted with coal-oil agglomerates, whereby the gold is recovered into the coal/oil phase. Laboratory scale batch tests were performed on an artificial mixture gold slurry and gold recoveries of up to 85% were found under optimized conditions. By recycling the coal/oil phase, it was found that the gold loading onto the agglomerates was increased. Tests performed on an industrial ore yielded slightly lower gold recoveries, and X-ray Diffraction (XRD) analysis on the coal/oil phase showed that minerals other than gold were recovered into this phase. A comparative study was conducted whereby the CGA process was compared to mercury amalgamation. Gold recoveries obtained through amalgamation were 15% lower than by the agglomeration process, which indicates that this process can be considered favourably as an alternative to amalgamation. 16 refs., 2 figs., 6 tabs.

  20. Oil and Gas Emergency Policy: China 2012 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    Although coal is the dominant energy source in China, accounting for some 70% of the country's Total Energy Consumption (TEC) in 2009, oil and gas are also essential energy sources. Despite strong growth in consumption of oil, its share of TEC fell from 22% in 2000 to 18% in 2009, as coal use rose even faster to meet burgeoning demand for electricity. A strong policy push boosted natural gas supplies, particularly to residential customers, so that the share of natural gas doubled from 2% in 2000 to 4% in 2009. China is one of the important oil and natural gas producing counties in the world. In 2010, China's crude oil production exceeded 4 million barrels per day (mb/d). However, with strong and sustained economic growth, its demand for oil has also increased, from 4.6 mb/d in 2000 to over 8 mb/d in 2009. In the New Policy Scenario (NPS) of the IEA World Energy Outlook (WEO) 2011, China's primary oil demand rises to 12.2 mb/d in 2020. Although China is now the world's fifth largest oil producer, the country has been a net oil importer since 1993. In 2011, China imported over 5 mb/d of crude oil, accounting for about 54% of its total demand. More than 50% of the total crude oil imports came from counties of the Middle East. To prevent a potential shock to the economy caused by an oil supply disruption, the Chinese government has been steadily pushing building an oil stock reserve system. China has completed four stockpiling facilities with a capacity of around 103 mb in the first phase of its Strategic Petroleum Reserve (SPR) plan, and has begun construction of its second phase, which comprises eight storage sites that will reportedly have a combined capacity of around 207 mb. Among them, two sites were completed in the second half of 2011 and the Tianjin site is reportedly set to be completed in 2012. According to unofficial reports, the remaining four SPR-II sites are expected to become operational by 2013. The third phase is expected to boost

  1. The importance of coal in energy

    International Nuclear Information System (INIS)

    Onal, Guven

    2006-01-01

    An 87% of the total energy requirement of the world is supplied by fossil fuels such as coal, fuel oil, and natural gas, while the rest comes from the other sources, like hydroelectric and nuclear power plants. Coal, as a fuel oil equivalent, has the greatest reserves (70%) among the fossil fuels and is very commonly found in the world. While the share of coal in the production of electricity was 39% in 2004 it is expected to rise to 48% in 2020. In the direction of sustainable development, the utilization of coal in energy production is constantly increasing and related researches are continuing. Today, the development and economics of hybrid electricity production; gas, fluid fuel, and hydrogen production from coal are being investigated and their industrial applications are slowly emerging. The surprisingly sharp increase in fuel oil and natural gas prices proves the defectiveness of the energy strategies of Turkey in effect since the 1990. Turkey should turn to coal without wasting more time, accept the utilization of clean coal in energy production, and determine her road-map. Increasing the efficiency of thermal power plants which utilize coal; hybrid technology; and gas, fluid fuel, and hydrogen production technologies from coal are investigated in this paper and suggestions are made.

  2. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  3. Low-shear rheology and sedimentation stability of coal-oil dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Rutter, P. R.; Davies, J. M.; Jones, T. E.R.

    1984-10-15

    Stable coal-oil mixtures can be prepared by grinding coal particles in fuel oil. These products have been prepared by the British Petroleum Company plc and are referred to as Coal-Oil Dispersions (COD). One of the major problems associated with the production of DOD is the rapid assessment of the length of time the coal particles are likely to remain in suspension under a particular set of storage conditions. This paper describes a number of measurements of the low-shear rheology and sedimentation stability of a series of CODs prepared by grinding two types of coal in two different fuel oils. The results suggest that two types of COD are possible. One type exhibits complex rheological properties at low shear rates and does not produce a coal sediment, even after prolonged storage at 80/sup 0/C under dynamic conditions. The other exhibits near Newtonian behaviour and appears to form a sedimented layer of coal during storage.

  4. Organic geochemistry of oil and gas in the Kuqa depression, Tarim Basin, NW China

    Energy Technology Data Exchange (ETDEWEB)

    Digang Liang; Shuichang Zhang; Jianping Chen [China National Petroleum Corporation, Beijing (China). Key Laboratory for Petroleum Geochemistry; Research Institute of Petroleum Exploration and Development, PetroChina, Beijing (China); Feiyu Wang [China National Petroleum Corporation, Beijing (China). Key Laboratory for Petroleum Geochemistry; Peirong Wang [China National Petroleum Corporation, Beijing (China). Key Laboratory for Petroleum Geochemistry; Jianghan Petroleum Institute (China)

    2003-07-01

    The Kuqa depression in the Tarim Basin, NW China contains significant natural gas and condensate resources, with only small amounts of black oil. This study demonstrates that the primary reason for the accumulation of large natural gas reserves in the Kuqa depression is the high maturity level of the Jurassic coal-bearing sequence that is currently at the peak stage of dry gas generation. From the combined stable carbon isotopes and molecular and biomarker data it is possible to identify two separate source rocks for the discovered hydrocarbon fluids: the gases were primarily from the Middle-Lower Jurassic coals and associated clastic rocks, and the oils were from the Upper Triassic lacustrine mudstones. Peak oil generation from the Triassic source rocks occurred during the early Miocene (23-12 Ma b.p.). These oils migrated laterally over relatively long distances ({approx}20-50 km) reaching the outer periphery of the depression. Peak gas generation took place more recently, perhaps during the past 5 Ma. The gases migrated mainly along faults over relatively short lateral distances, resulting in accumulations adjacent to the over-matured source kitchens. Different timings for the trap formation along the north and south margins and a late injection of gas into early oil accumulations provided favorable conditions for the formation of evaporative condensates and the preservation of gas pools in the more down-dip reservoirs and oil pools in the more up-dip locations. (author)

  5. Copyrolysis and hydropyrolysis of coal suspended in waste oil under pressure; Copirolisis e hidropirolisis a presion de mezclas de carbon y aceites pesados

    Energy Technology Data Exchange (ETDEWEB)

    Moliner, R. [CSIC, Zaragoza (Spain). Inst. de Carboquimica

    1998-12-31

    The present work studies the copyrolysis of a coal suspended in a waste oil under pressure, with short contact times. The main objective is to show the technical feasibility of the copyrolysis of coal and waste material slurries, in a fluidized bed and to evaluate the efficiency of the copyrolysis to improve quality and quantity of the products in relation to those obtained from the pyrolysis of coal. The work was started with three coals: Samca (subbituminous), HT51 (high-volatile bituminous) and Figaredo (low-volatile bituminous) and four aliphatic wastes from different origins: industrial hydraulic oils (AHU), lube oils (AMU), petroleum vacuum residuum (RP) and solutions of this residuum in vacuum gas-oil, RPG.

  6. BP and NCB to collaborate in coal liquefaction study. [Supercritical gas extraction; dissolution in anthracene oil

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-17

    British Petroleum and NCB are collaborating in a two year study of coal liquefaction which could result in a demonstration plant being built. The two liquefaction techniques which the NCB is developing at present are supercritical extraction, and dissolution in anthracene oil. A disadvantage of the latter process is that high grade coking coals must be used.

  7. Assessment of Appalachian basin oil and gas resources: Carboniferous Coal-bed Gas Total Petroleum System: Chapter G.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Milici, Robert C.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Carboniferous Coal-bed Gas Total Petroleum System, which lies within the central and southern Appalachian basin, consists of the following five assessment units (AUs): (1) the Pocahontas Basin AU in southern West Virginia, eastern Kentucky, and southwestern Virginia; (2) the Central Appalachian Shelf AU in Tennessee, eastern Kentucky, and southern West Virginia; (3) the East Dunkard (Folded) AU in western Pennsylvania and northern West Virginia; (4) the West Dunkard (Unfolded) AU in Ohio and adjacent parts of Pennsylvania and West Virginia; and (5) the Appalachian Anthracite and Semi-Anthracite AU in Pennsylvania and Virginia. Only two of these assessment units were assessed quantitatively by the U.S. Geological Survey (USGS) in the National Oil and Gas Assessment in 2002. The USGS estimated the Pocahontas Basin AU and the East Dunkard (Folded) AU to contain a mean of about 3.6 and 4.8 trillion cubic feet (TCF) of undiscovered, technically recoverable gas, respectively.

  8. Spatial and Temporal Characteristics of Historical Oil and Gas Wells in Pennsylvania: Implications for New Shale Gas Resources.

    Science.gov (United States)

    Dilmore, Robert M; Sams, James I; Glosser, Deborah; Carter, Kristin M; Bain, Daniel J

    2015-10-20

    Recent large-scale development of oil and gas from low-permeability unconventional formations (e.g., shales, tight sands, and coal seams) has raised concern about potential environmental impacts. If left improperly sealed, legacy oil and gas wells colocated with that new development represent a potential pathway for unwanted migration of fluids (brine, drilling and stimulation fluids, oil, and gas). Uncertainty in the number, location, and abandonment state of legacy wells hinders environmental assessment of exploration and production activity. The objective of this study is to apply publicly available information on Pennsylvania oil and gas wells to better understand their potential to serve as pathways for unwanted fluid migration. This study presents a synthesis of historical reports and digital well records to provide insights into spatial and temporal trends in oil and gas development. Areas with a higher density of wells abandoned prior to the mid-20th century, when more modern well-sealing requirements took effect in Pennsylvania, and areas where conventional oil and gas production penetrated to or through intervals that may be affected by new Marcellus shale development are identified. This information may help to address questions of environmental risk related to new extraction activities.

  9. Gas associated to coal in Colombia. An energetic alternative of non-conventional gas fields

    International Nuclear Information System (INIS)

    Garcia Gonzalez, Mario

    2005-01-01

    Colombia possesses the biggest coal reserves of Latin America, in such a way that the potential reserves of Gas Associated to the Coal (GAC) they are of great magnitude; the paper includes topics like the generation of the gas associated to the coal, geologic factors that control the gas occurrence, development of the gas associated to the coal in the world, and potential reserves of gas associated to the coal in Colombia

  10. Primary migration of Jurassic coal-derived oil in Santanghu basin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Zhong, N.; Ren, D. [China University of Mining and Technology, Beijing (China). Dept of Resource Exploitation Engineering

    2000-11-01

    It is known that the differential evolution of the multiple macerals results in 'oil generation by stage', and that 'early generation, early expulsion' is one of the preconditions for the efficient accumulation of the coal-derived oil. Based upon the study on the evolution of the physical properties, related to the hydrocarbon expulsion, of the Jurassic organic rock in Santanghu basin during the course of maturation, the mechanism of the primary migration of its coal-derived oil was discussed. The rapid loss of the inherent moisture in the organic rock was not accordant with the main generation stage of the coal-derived oil, so it was unrealistic that the oil migrated by dissolution in the expelled water. It is thought that the special forming mechanism of the continuous 'bitumen network' under the condition of over-pressure and an earlier history of primary migration may be essential to the Jurassic coal-derived oil in Santanghu basin. 17 refs., 4 figs.

  11. Effects of Loading Rate on Gas Seepage and Temperature in Coal and Its Potential for Coal-Gas Disaster Early-Warning

    Directory of Open Access Journals (Sweden)

    Chong Zhang

    2017-08-01

    Full Text Available The seepage velocity and temperature externally manifest the changing structure, gas desorption and energy release that occurs in coal containing gas failure under loading. By using the system of coal containing gas failure under loading, this paper studies the law of seepage velocity and temperature under different loading rates and at 1.0 MPa confining pressure and 0.5 MPa gas pressure, and combined the on-site results of gas pressure and temperature. The results show that the stress directly affects the seepage velocity and temperature of coal containing gas, and the pressure and content of gas have the most sensitivity to mining stress. Although the temperature is not sensitive to mining stress, it has great correlation with mining stress. Seepage velocity has the characteristic of critically slowing down under loading. This is demonstrated by the variance increasing before the main failure of the samples. Therefore, the variance of seepage velocity with time and temperature can provide an early warning for coal containing gas failing and gas disasters in a coal mine.

  12. Distilling coal

    Energy Technology Data Exchange (ETDEWEB)

    Blythe, F C

    1914-09-14

    In the destructive distillation of bituminous coal, heavy hydrocarbon oil, such as petroleum, kerosine, shale oil, and heavy tar oil, obtained in some cases during the process, is added to the coal, which is then distilled under pressure and at a comparatively low temperature regulated so as to produce a large proportion of hydrocarbon oils and a small proportion of permanent gas. In one method, about 5 to 10 parts of hydrocarbon oil are mixed with 100 parts of crushed or ground coal, and the mixture is heated in a closed vessel, provided in some cases with an agitator, under a pressure of about 60 lb/in/sup 2/, and the temperature may be gradually raised to 350/sup 0/C and then to about 500/sup 0/C. The heating may be by means of superheated steam with or without external heat.

  13. Report on 1977 result of Sunshine Project. Test research for detailed design of coal gasification plant (pressure fluidized gasification method for mixed material of coal/heavy oil); 1977 nendo sekitan gas ka plant no shosai sekkei no tame no shiken kenkyu seika hokokusho. Sekitan jushitsuyu kongo genryo no kaatsu ryudo gas ka hoshiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    Since fiscal 1974, development has been implemented for the coal/heavy oil hybrid gasification process which converts coal and heavy oil simultaneously to clean fuel gas. With the purpose of obtaining basic data to be reflected on the detailed design of 7,000 Nm{sup 3}/d pilot plant of the subject process started in fiscal 1977, implemented this year were (1) test on high pressure valves and (2) research on operation studies. In (1), a life test device for high pressure operation valves will be designed and manufactured so that basic materials may be obtained for the development of durable operation valves to be used in a high temperature and high pressure coal/heavy oil slurry feeding device. Operation studies of a low pressure slurry feeding device will be continued, accumulating data required for the design of the coal/heavy oil slurry feeding device. In (2), studies will be started on the operation of a 300{phi}(diameter) internal heat type low pressure gasification device, collecting know-how for the model and design of the gasification furnace of the pilot plant. Gasification experiments will be continued using the high pressure gasification device, so that gasification characteristics under a high pressure will be grasped to examine the optimization of gasification conditions. In addition, a fluidized bed quencher test equipment will be designed and manufactured. (NEDO)

  14. De-linking oil and gas; The cost of Gulf gas; Middle East gas must look to Europe

    International Nuclear Information System (INIS)

    Aissaoui, Ali; Jensen, Jim; Stern, Jonathan

    1994-01-01

    This item consists of letters in response to an article by Robert Mabro on the prospects for gas in North Africa and the Middle East. The first letter is concerned with the issue of de-linking oil and gas. It is argued that the introduction of an ecotax, far from its creators' intentions, may deter investment in the natural gas industry to the benefit of coal and oil producers, rather than promoting gas as the fuel which best protects the environment. The second writer points out the Middle East's geographical disadvantage in aiming to supply natural gas to Europe. While reserves are ample, they are also readily available closer to European consumers, and without extra transportation costs. Markets nearby are either already functioning or, in areas such as India or Pakistan, prohibitively expensive in terms of pipeline construction or other technology. The last author also argues for investment in large-scale pipeline projects in order to use the Middle Eastern gas reserves, but stresses the need for political and security problems to be addressed at the same time. (UK)

  15. Oil and gas financing by the World Bank

    International Nuclear Information System (INIS)

    Razavi, Hossein

    1995-01-01

    The World Bank has developed a flexible oil and gas programme that is structured to meet the changing needs of the sector as they arise. The Bank became prominent in the oil and gas sector after the oil crises of the 1970s, when it began assisting client countries in developing their indigenous energy resources. At the beginning, Bank lending concentrated on exploration and development of hydrocarbon resources where the level of lending expanded to US$1 billion in 1983. This rapid expansion caused some concern that Bank activities might preempt those of the private sector. In response, the Bank imposed in 1984 strict limitations on petroleum exploration and oil production lending. In combination with the perception that future oil demand would be weak, this caused the lending programme to fall off sharply (to US$300 million by 1986). By 1990, the Bank was again moving actively into hydrocarbon sector lending, but then the emphasis was on promoting private sector development and supporting the development of natural gas as a substitute for coal and oil. Bank lending to the sector has been on the increase since 1990; a lending level of about US$1 billion yearly is expected for the second half of the 1990s. In addition to its direct lending, the World Bank facilitates contributions by other financiers through its cofinancing and risk mitigation arrangements. (author)

  16. Future Oil and Gas Resources of the World: A Coming Supply Crisis?

    Science.gov (United States)

    Ahlbrandt, T. S.

    2002-05-01

    estimates. While petroleum resources in the world appear to be significant, certain countries such as the U.S. may run into import deficits particularly oil imports from Mexico and natural gas from Canada. The new assessment has been used as the reference supply case in energy supply models by the International Energy Agency and the Energy Information Agency of the Department of Energy. Climate energy modeling groups such as Stanford, Massachusetts Institute of Technology and others have also used the estimates in global climate models. Many of these models using the USGS estimates, converge on potential oil shortfalls in 2036-2040. A transition to increased use of natural gas is expected, but gas in turn may experience similar supply concerns in the 2050-2060 time frame. A coal bridge-to-the-future model as well a realistic view of non-renewable resources in the future will be discussed. Non-conventional oil and gas are quite common in the petroleum provinces of the world and represent a significant resource yet to be fully studied and developed. Seventeen non-conventional AU, including coal-bed methane, basin-center gas, continuous oil, and gas hydrate occurrences, have been preliminarily identified for future assessment. Initial efforts to assess heavy oil deposits and other non-conventional oil and gas deposits are also underway. Digital products from the World Energy Project may be downloaded at (http://energy.cr.usgs.gov/energy/WorldEnergy/WEnergy.html).

  17. Process for complete conversion of coal oils, shale oils, etc

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, P

    1911-07-08

    A process is described for complete conversion of mineral coal oil, shale oil, and other similar oils in pitch, characterized by these oils being mixed with a nonvolatile substance with a boiling point on the average higher than the boiling point of the oil to be treated, and then being heated under pressure with the introduction of air, whereby the heating is interrupted if necessary on account of the known exothermic reaction and the conversion of the oil in the pitch or its distillation can be carried out without further heating.

  18. Coal option. [Shell Co

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  19. Coal-oil coprocessing at HTI - development and improvement of the technology

    Energy Technology Data Exchange (ETDEWEB)

    Stalzer, R.H.; Lee, L.K.; Hu, J.; Comolli, A. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)

    1995-12-31

    Co-Processing refers to the combined processing of coal and petroleum-derived heavy oil feedstocks. The coal feedstocks used are those typically utilized in direct coal liquefaction: bituminous, subbituminous, and lignites. Petroleum-derived oil, is typically a petroleum residuum, containing at least 70 W% material boiling above 525{degrees}C. The combined coal and oil feedstocks are processed simultaneously with the dual objective of liquefying the coal and upgrading the petroleum-derived residuum to lower boiling (<525{degrees}C) premium products. HTI`s investigation of the Co-Processing technology has included work performed in laboratory, bench and PDU scale operations. The concept of co-processing technology is quite simple and a natural outgrowth of the work done with direct coal liquefaction. A 36 month program to evaluate new process concepts in coal-oil coprocessing at the bench-scale was begun in September 1994 and runs until September 1997. Included in this continuous bench-scale program are provisions to examine new improvements in areas such as: interstage product separation, feedstock concentrations (coal/oil), improved supported/dispersed catalysts, optimization of reactor temperature sequencing, and in-line hydrotreating. This does not preclude other ideas from DOE contracts and other sources that can lead to improved product quality and economics. This research work has led to important findings which significantly increased liquid yields, improved product quality, and improved process economics.

  20. Gas Permeability Evolution Mechanism and Comprehensive Gas Drainage Technology for Thin Coal Seam Mining

    Directory of Open Access Journals (Sweden)

    Fangtian Wang

    2017-09-01

    Full Text Available A thin coal seam mined as a protective coal seam above a gas outburst coal seam plays a central role in decreasing the degree of stress placed on a protected seam, thus increasing gas permeability levels and desorption capacities to dramatically eliminate gas outburst risk for the protected seam. However, when multiple layers of coal seams are present, stress-relieved gas from adjacent coal seams can cause a gas explosion. Thus, the post-drainage of gas from fractured and de-stressed strata should be applied. Comprehensive studies of gas permeability evolution mechanisms and gas seepage rules of protected seams close to protective seams that occur during protective seam mining must be carried out. Based on the case of the LongWall (LW 23209 working face in the Hancheng coal mine, Shaanxi Province, this paper presents a seepage model developed through the FLAC3D software program (version 5.0, Itasca Consulting Group, Inc., Minneapolis, MI, USA from which gas flow characteristics can be reflected by changes in rock mass permeability. A method involving theoretical analysis and numerical simulation was used to analyze stress relief and gas permeability evolution mechanisms present during broken rock mass compaction in a goaf. This process occurs over a reasonable amount of extraction time and in appropriate locations for comprehensive gas extraction technologies. In using this comprehensive gas drainage technological tool, the safe and efficient co-extraction of thin coal seams and gas resources can be realized, thus creating a favorable environment for the safe mining of coal and gas outburst seams.

  1. North American natural gas outlook : does gas remain a fuel option for oil sands?

    International Nuclear Information System (INIS)

    George, R.R.

    2003-01-01

    This paper presents a North America natural gas outlook from Purvin and Gertz, an international energy consulting firm that has 30 years experience in providing strategic, commercial and technical advice to the petroleum industry. In particular, this presentation focuses on natural gas market fundamentals and how they may impact on oil sands development. It includes charts and graphs depicting NYMEX natural gas outlooks to July, 2009 and examines how supply will react to major changes in Canada's supply portfolio. It was noted that oil sands development is a driver for natural gas demand in Alberta. The existing regional gas pipeline infrastructure was presented and the market impact on upgrader options was discussed. The author suggests that if gas prices are too high, there are other fuel options for steam and power generation. These include bitumen, asphalt, coke, coal and nuclear. However, these options have additional costs, uncertainties and environmental issues. A key factor for success would be to have a clear understanding of the benefits and risks between these fuel options. 1 tab., 9 figs

  2. Portugal: Lisbon seeks to juggle power sell-off, oil deregulation and advent of gas

    International Nuclear Information System (INIS)

    Maxwell, K.

    1994-01-01

    A profile of Portugal's energy sector is presented and the energy balance (1993) in terms of oil, gas, coal, electricity and other sources is located. Topics discussed include the import of natural gas supplies from Algeria by 1996; the construction of a 400km natural gas pipeline; the breakup of the Electricidada de Portugal into separate units, and the impact of liberation and privatisation on the power sector. The first large-scale private power generation, and deregulation and competition in Portugal's oil industry are also examined in this article. (UK)

  3. Integrated petrographic and geochemical study of coal and gas shales from the Sabinas and Chihuahua basins, North of Mexico: estimation of methane gas resources

    International Nuclear Information System (INIS)

    De La O Burrola, Francisco

    2013-01-01

    This comprehensive characterization study was performed using organic petrology and geochemistry conducted in the Sabinas basin and Chihuahua in northern Mexico. This information allowed a numerical modeling of gas formation, considering the thermal subsidence of coal and carbonaceous shales. The objectives of this thesis are: - Establish a characterization methodology for the studied rocks - Estimate potential gas generator and its regional distribution - Estimate the methane gas resources For the development of this project, we conducted an intensive campaign representative sampling of coal, carbonaceous shales and coal gas 'in situ'. For the Sabinas basin were studied 97 samples and 114 samples in the basin of Chihuahua. The analyses carried out that were used on the samples analyzed allowed to characterize the kerogen and gas. The methodology used to cross petrographic and geochemical information to analyze the petroleum system by numerical modeling. Analyses were: Petrographic, reflectance %Ro, elemental analysis and immediate, Rock Eval6 R (Bulk rock), isotopic analysis, δ 13 C, δD, (coal gas), scanning electron microscopy, image analysis and analysis of macerals fluid inclusions. The analyzes that were used on the samples allowed to characterize the sample, the kerogen and gas. The methodology used to cross petrographic and geochemical information for analyze the oil system by numerical modeling. Analyses were: Petrographic, reflectance %Ro, elemental analysis and immediate, Rock Eval6 R (Bulk rock), isotopic analysis, δ 13 C, δD, (coal gas), scanning electron microscopy, image analysis and analysis of macerals fluid inclusions A computer program was constructed to cross the information with the analysis of samples of artificial maturation experiments in the laboratory. This approach allowed estimation of methane gas resources generated by coal and carbonaceous shales. The main results obtained for Sabinas Basin were: - The kerogen of the

  4. Coal tar phototherapy for psoriasis reevaluated: erythemogenic versus suberythemogenic ultraviolet with a tar extract in oil and crude coal tar

    International Nuclear Information System (INIS)

    Lowe, N.J.; Wortzman, M.S.; Breeding, J.; Koudsi, H.; Taylor, L.

    1983-01-01

    Recent studies have questioned the therapeutic value of coal tar versus ultraviolet (UV) radiation and their relative necessity in phototherapy for psoriasis. In this investigation, different aspects of tar phototherapy have been studied in single-blind bilateral paired comparison studies. The effects of 1% crude coal tar were compared with those of petrolatum in conjunction with erythemogenic and suberythemogenic doses of ultraviolet light (UVB) using a FS72 sunlamp tubed cabinet. Crude coal tar was clinically superior to petrolatum with suberythemogenic ultraviolet. With the erythemogenic UVB, petrolatum was equal in efficacy to crude coal tar. Suberythemogenic UVB was also used adjunctively to compare the effects of a 5% concentration of a tar extract in an oil base to 5% crude coal tar in petrolatum or the oil base without tar. The tar extract in oil plus suberythemogenic UVB produced significantly more rapid improvement than the oil base plus UVB. The direct bilateral comparison of equal concentrations of tar extract in oil base versus crude coal tar in petrolatum in a suberythemogenic UV photo regimen revealed no statistical differences between treatments. In a study comparing tar extract in oil and the oil base without ultraviolet radiation, the tar extract in oil side responded more rapidly

  5. Microwave-assisted co-pyrolysis of brown coal and corn stover for oil production.

    Science.gov (United States)

    Zhang, Yaning; Fan, Liangliang; Liu, Shiyu; Zhou, Nan; Ding, Kuan; Peng, Peng; Anderson, Erik; Addy, Min; Cheng, Yanling; Liu, Yuhuan; Li, Bingxi; Snyder, John; Chen, Paul; Ruan, Roger

    2018-07-01

    The controversial synergistic effect between brown coal and biomass during co-pyrolysis deserves further investigation. This study detailed the oil production from microwave-assisted co-pyrolysis of brown coal (BC) and corn stover (CS) at different CS/BC ratios (0, 0.33, 0.50, 0.67, and 1) and pyrolysis temperatures (500, 550, and 600 °C). The results showed that a higher CS/BC ratio resulted in higher oil yield, and a higher pyrolysis temperature increased oil yield for brown coal and coal/corn mixtures. Corn stover and brown coal showed different pyrolysis characteristics, and positive synergistic effect on oil yield was observed only at CS/BC ratio of 0.33 and pyrolysis temperature of 600 °C. Oils from brown coal mainly included hydrocarbons and phenols whereas oils from corn stover and coal/corn mixtures were dominated by ketones, phenols, and aldehydes. Positive synergistic effects were observed for ketones, aldehydes, acids, and esters whereas negative synergistic effects for hydrocarbons, phenols and alcohols. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Exploitation and use of coal field gas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K; Li, Z; Sun, Q

    1982-04-25

    There are slightly more than 440 mine shafts in the world from which gas is pumped at the same time coal is being mined, the volume pumped being 3.125 billion cubic meters. All the countries of the world today widely use gas as a fuel and as a raw material for the chemical industry. In China 40 percent of the total number of mine shafts are high gas mine shafts. In China, gas is used largely as fuel by the people, to fire boilers, to make formaldehyde, and to make carbon ink. Prospects are good for the exploitation of mine shaft gas that is produced in association with coal. Mine shaft gas is a top quality energy source with an extraction life that is longer than coals. (DP)

  7. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    Science.gov (United States)

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  8. Study for recovery and utilization of coal mine gas in Russia (Kuznetsk coal basin)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing greenhouse effect gas emissions in line with the Joint Implementation, a study was conducted on recovery/utilization of methane gas emitted from the Chertinskaya coal mine in the Kuznetsk coal basin area. According to the survey, the methane gas emitted from the Chertinskaya coal mine into the atmospheric air is 26 million to 36 million tons on the levels of the annual coal production between 0.7 million and 1 million tons. However, the monthly gas recovery amount and concentration largely fluctuate, and therefore, the use method to cope with this was studied. The study was now under way, and the electric power production using gas engine was regarded as the best. In this project, only the Chertinskaya mine can generate power of 34,721 MWh. In the whole Kuznetsk coal basin, approximately 200 million m{sup 3} of gas is needed to be removed for safety of the mine. The use of this will probably bring energy substitution of about 128,000 tons/year and CO2 reduction of 2.8 million tons/year. (NEDO)

  9. Pyrolitics Oils in Coal Flotation

    Czech Academy of Sciences Publication Activity Database

    Čáblík, V.; Išek, J.; Herková, M.; Halas, J.; Čáblíková, L.; Vaculíková, Lenka

    2014-01-01

    Roč. 34, č. 2 (2014), s. 9-14 ISSN 1640-4920 Institutional support: RVO:68145535 Keywords : pyrolytic oils * flotation, black coal * new flotation reagents Subject RIV: CB - Analytical Chemistry, Separation http://homen.vsb.cz/hgf/546/IM_2014_02.pdf

  10. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    Science.gov (United States)

    Post, David

    2017-04-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States, in Australia extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. In Australia, an Independent Expert Scientific Committee (IESC) has been established to provide scientific advice to federal and state government regulators on the impact that coal seam gas and large coal mining developments may have on water resources. This advice is provided to enable decisions to be informed by the best available science about the potential water-related impacts associated with these developments. To support this advice, the Australian Government Department of the Environment has implemented a programme of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment is defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are currently being carried out across large portions of eastern Australia underlain by coal reserves. Further details of the programme and results to date can be found at http://www.bioregionalassessments.gov.au. The bioregional assessment programme has modelled the impacts of coal seam gas development on surface and groundwater resources in three regions of eastern Australia, namely the Clarence-Moreton, Gloucester, and Namoi regions. This presentation will discuss the

  11. Action of coal gas on plants. II. Action on green plants

    Energy Technology Data Exchange (ETDEWEB)

    Wehmer, C

    1917-01-01

    Experiments were performed to determine the effects of coal gas on cress. Although the seeds are not killed by coal gas, they are prevented from germinating. Cress will grow in as much as 30% coal gas, but it will not survive higher concentrations. Coal gas contains both toxic and non-toxic constituents. CO, C/sub 2/H/sub 4/, C/sub 2/H/sub 2/, CS/sub 2/, H/sub 2/S are not toxic at concentrations found in coal gas. The toxic effects of coal gas are not caused by the lack of O/sub 2/, but by minor impurities in the gas.

  12. Oil and gas trends and implications in Malaysia

    International Nuclear Information System (INIS)

    Rahim, Khalid Abdul; Liwan, Audrey

    2012-01-01

    The trends of reserves, production and consumption of oil in Malaysia to meet the ever-increasing demands do not seem to show that oil and gas will be depleted soon, contrary to many reports. Malaysia’s net exporter status of oil continues to expand over time for as long as the value of exports is greater than the value of imports. Only in physical quantities of oil that Malaysia’s imports exceed exports, but this does not mean that Malaysia will be a net importer by then. Given higher prices of exports, the value of exports outweighs the value of imports. If the current reserves are extracted based on the domestic consumption trend of 1980–2010, Malaysia’s reserves will last until 2027 but based on the 1998–2010 trend, the reserves will be depleted by 2035. Malaysia has adopted a four fuel diversification strategy comprising oil, gas, coal and hydro, instead of heavily dependent on oil. Gas has a huge potential for domestic utilization as well as for exports to increase revenues. Malaysia is one of the few countries having many types of renewable energy sources. Malaysia has great potential in biomass utilization as renewable resources mostly from the existing natural forest and planned plantations. - Highlights: ► The quantities of petroleum production and consumption are expected to converge. ► Malaysia’s status as a net exporter in value terms is expected to expand. ► With slower consumption trend, petroleum reserves will be depleted by 2035. ► There is a large potential in natural gas utilization in Malaysia. ► Renewable energy is abundant for the fuel diversification policy for Malaysia.

  13. Boiler briquette coal versus raw coal: Part I--Stack gas emissions.

    Science.gov (United States)

    Ge, S; Bai, Z; Liu, W; Zhu, T; Wang, T; Qing, S; Zhang, J

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.

  14. Boiler Briquette Coal versus Raw Coal: Part I-Stack Gas Emissions.

    Science.gov (United States)

    Ge, Su; Bai, Zhipeng; Liu, Weili; Zhu, Tan; Wang, Tongjian; Qing, Sheng; Zhang, Junfeng

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM 10 and PM 2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM 10 , 0.38 for PM 25 , 20.7 for SO 2 , and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM 10 , 0.30 for PM 2 5 , 7.5 for SO 2 , and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM 10 , 0.87 for PM 25 , 46.7 for SO 2 , and 15 for CO, while those of the BB-coal were 2.51 for PM 10 , 0.79 for PM 2.5 , 19.9 for SO 2 , and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/ steam conversion factors, were 0.23 for PM 10 , 0.12 for PM 2.5 , 6.4 for SO 2 , and 2.0 for CO, while those of the BB-coal were 0.30 for PM 10 , 0.094 for PM 2.5 , 2.4 for SO 2 , and 1.7 for CO. PM 10 and PM 2.5 elemental compositions are also presented for both types of coal tested in the study.

  15. Technical review of coal gasifiers for production of synthetic natural gas

    International Nuclear Information System (INIS)

    Lee, Geun Woo; Shin, Yong Seung

    2012-01-01

    Because of the increasing cost of oil and natural gas, energy production technologies using coal, including synthetic natural gas (SNG) and integrated gasification combined cycle (IGCC), have attracted attention because of the relatively low cost of coal. During the early stage of a project, the developer or project owner has many options with regard to the selection of a gasifier. In particular, from the viewpoint of feasibility, the gasifier is a key factor in the economic evaluation. This study compares the technical aspects of gasifiers for a real SNG production project in an early stage. A fixed bed slagging gasifier, wet type entrained gasifier, and dry type entrained gasifier, all of which have specific advantages, can be used for the SNG production project. Base on a comparison of the process descriptions and performances of each gasifier, this study presents a selection guideline for a gasifier for an SNG production project that will be beneficial to project developers and EPC (Engineering, Procurement, Construction) contractors

  16. Gasification of coal as efficient means of environment protection and hydrogenation of heavy oils residues

    Energy Technology Data Exchange (ETDEWEB)

    Krichko, A.A.; Maloletnev, A.S. [Fossil Fuel Institute, Moscow (Russian Federation)

    1995-12-31

    The Russia`s more then 50% of coals produced in its European part contain over 2,5% of sulphur, and the coals containing less than 1.5% of sulphurs comprise ca.20%. Thus, utilisation of the sulphide coals is inevitable, and there a problem arises concerning the technology of their sensible use and considering the requirements on the environment protection. Russia`s specialists have developed a design and construction for a steam-gas installation with a closed cycle gasification of the solid fuel. The gasification process will proceed in the fluidized bed under forced pressure of the steam-air blast. Characteristic features of this process are the following: a higher efficiency (the capacity of one gas generator is 3-3,5 times larger than that attained in the present gas generators of the Lurgy`s type): 2-2,5 times decreased fuel losses as compared to the Winkler`s generators; retention of the sensible heat, resulting in an increased total energy efficiency. The main task for petroleum refining industry at the present stage is the increase of depth of oil processing with the aim to intensify motor fuel production. One of the ways to solve the problem is to involve heavy oil residues into the processing. But the high metal and asphaltenes contents in the latter make the application of traditional methods and processes more difficult. Up to now there is no simple and effective technology which could give the opportunity to use oil residues for distillate fractions production. In Fossil fuel institute a process for hydrogenation of high boiling oil products, including with high sulphur, vanadium and nickel contents ones, into distillates and metals concentrates. The main point of the new process is as follows: the water solution of catalytic additive, for which purpose water soluble metal salts of VI-VIII groups are used, is mixed with tar, dispersed and then subjected to additional supercavitation in a special apparatus.

  17. Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States

    International Nuclear Information System (INIS)

    Jenner, Steffen; Lamadrid, Alberto J.

    2013-01-01

    The aim of this paper is to examine the major environmental impacts of shale gas, conventional gas and coal on air, water, and land in the United States. These factors decisively affect the quality of life (public health and safety) as well as local and global environmental protection. Comparing various lifecycle assessments, this paper will suggest that a shift from coal to shale gas would benefit public health, the safety of workers, local environmental protection, water consumption, and the land surface. Most likely, shale gas also comes with a smaller GHG footprint than coal. However, shale gas extraction can affect water safety. This paper also discusses related aspects that exemplify how shale gas can be more beneficial in the short and long term. First, there are technical solutions readily available to fix the most crucial problems of shale gas extraction, such as methane leakages and other geo-hazards. Second, shale gas is best equipped to smoothen the transition to an age of renewable energy. Finally, this paper will recommend hybrid policy regulations. - Highlights: ► We examine the impacts of (un)conventional gas and coal on air, water, and land. ► A shift from coal to shale gas would benefit public health. ► Shale gas extraction can affect water safety. ► We discuss technical solutions to fix the most crucial problems of shale gas extraction. ► We recommend hybrid regulations.

  18. Gas to Coal Competition in the U.S. Power Sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    With the newfound availability of natural gas due to the shale gas revolution in the United States, cheap gas now threatens coal’s longstanding position as the least costly fuel for generating electricity. But other factors besides cost come into play when deciding to switch from coal to gas. Electricity and gas transmission grid constraints, regulatory and contractual issues, as well as other factors determine the relative share of coal and gas in power generation. This paper analyzes competition between coal and gas for generating power in the United States and the factors explaining this dynamic. It also projects coal-to-gas switching in power generation for 18 states representing 75% of the surplus gas potential in the United States up to 2017, taking into consideration the impact of environmental legislation on retirement of coal-fired power plants.

  19. The 2003 Update of the ASPO Oil and Gas Depletion Model

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Colin; Sivertsson, Anders [Uppsala Univ. (Sweden). Hydrocarbon Depletion Study Group

    2003-07-01

    What we can term the ASPO Oil and Gas Depletion Model has developed over many years, based on an evolving knowledge of the resource base, culled from many sources, and evolving ideas about how to model depletion. It is sure that the estimates and forecasts are incorrect. The question is: By how much? The model recognises so-called Regular Oil, which excludes the following categories: Oil from coal and shale; Bitumen and synthetics derived therefrom; Extra Heavy Oil (<10 deg API); Heavy Oil (10-17 deg API); Deepwater Oil (>500 m); Polar Oil; Liquids from gas fields and gas plants. It has provided most oil to-date and will dominate all supply far into the future. Its depletion therefore determines the date of peak. The evidence suggests that about 896 Gb (billion barrels) had been produced to end 2002; about 871 Gb remain to produce from known fields and about 113 Gb is expected to be produced from new fields. It is convenient to set a cut-off of, say 2075, for such production, to avoid having to worry about the tail end that can drag on for a long time. A simple depletion model assumes that production declines at the current Depletion Rate (annual production as a percentage of future production) or at the Midpoint Rate in countries that have not yet reached Midpoint (namely half the total). The five main Middle East producers, which hold about half of what remains, are assumed to exercise a swing role, making up the difference between world demand and what the other countries can supply. The base case scenario assumes that consumption will be on average flat until 2010 because of recession; and that the Middle East swing role will end then, as in practice those countries will no longer have the capacity to discharge it. Whether the Iraq war results in extending or shortening the swing role remains to be seen. Adding the contributions of the other categories of oil and gas liquids gives an overall peak in 2010. Gas depletes differently, being more influenced by

  20. The 2003 Update of the ASPO Oil and Gas Depletion Model

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Colin; Sivertsson, Anders [Uppsala Univ. (Sweden). Hydrocarbon Depletion Study Group

    2003-07-01

    What we can term the ASPO Oil and Gas Depletion Model has developed over many years, based on an evolving knowledge of the resource base, culled from many sources, and evolving ideas about how to model depletion. It is sure that the estimates and forecasts are incorrect. The question is: By how much? The model recognises so-called Regular Oil, which excludes the following categories: Oil from coal and shale; Bitumen and synthetics derived therefrom; Extra Heavy Oil (<10 deg API); Heavy Oil (10-17 deg API); Deepwater Oil (>500 m); Polar Oil; Liquids from gas fields and gas plants. It has provided most oil to-date and will dominate all supply far into the future. Its depletion therefore determines the date of peak. The evidence suggests that about 896 Gb (billion barrels) had been produced to end 2002; about 871 Gb remain to produce from known fields and about 113 Gb is expected to be produced from new fields. It is convenient to set a cut-off of, say 2075, for such production, to avoid having to worry about the tail end that can drag on for a long time. A simple depletion model assumes that production declines at the current Depletion Rate (annual production as a percentage of future production) or at the Midpoint Rate in countries that have not yet reached Midpoint (namely half the total). The five main Middle East producers, which hold about half of what remains, are assumed to exercise a swing role, making up the difference between world demand and what the other countries can supply. The base case scenario assumes that consumption will be on average flat until 2010 because of recession; and that the Middle East swing role will end then, as in practice those countries will no longer have the capacity to discharge it. Whether the Iraq war results in extending or shortening the swing role remains to be seen. Adding the contributions of the other categories of oil and gas liquids gives an overall peak in 2010. Gas depletes differently, being more influenced by

  1. Shale Gas and Tight Oil: A Panacea for the Energy Woes of America?

    Science.gov (United States)

    Hughes, J. D.

    2012-12-01

    Shale gas has been heralded as a "game changer" in the struggle to meet America's demand for energy. The "Pickens Plan" of Texas oil and gas pioneer T.Boone Pickens suggests that gas can replace coal for much of U.S. electricity generation, and oil for, at least, truck transportation1. Industry lobby groups such as ANGA declare "that the dream of clean, abundant, home grown energy is now reality"2. In Canada, politicians in British Columbia are racing to export the virtual bounty of shale gas via LNG to Asia (despite the fact that Canadian gas production is down 16 percent from its 2001 peak). And the EIA has forecast that the U.S. will become a net exporter of gas by 20213. Similarly, recent reports from Citigroup and Harvard suggest that an oil glut is on the horizon thanks in part to the application of fracking technology to formerly inaccessible low permeability tight oil plays. The fundamentals of well costs and declines belie this optimism. Shale gas is expensive gas. In the early days it was declared that "continuous plays" like shale gas were "manufacturing operations", and that geology didn't matter. One could drill a well anywhere, it was suggested, and expect consistent production. Unfortunately, Mother Nature always has the last word, and inevitably the vast expanses of purported potential shale gas resources contracted to "core" areas, where geological conditions were optimal. The cost to produce shale gas ranges from 4.00 per thousand cubic feet (mcf) to 10.00, depending on the play. Natural gas production is a story about declines which now amount to 32% per year in the U.S. So 22 billion cubic feet per day of production now has to be replaced each year to keep overall production flat. At current prices of 2.50/mcf, industry is short about 50 billion per year in cash flow to make this happen4. As a result I expect falling production and rising prices in the near to medium term. Similarly, tight oil plays in North Dakota and Texas have been heralded

  2. CFD Analysis of Coal and Heavy Oil Gasification for Syngas Production

    DEFF Research Database (Denmark)

    Sreedharan, Vikram

    2012-01-01

    This work deals with the gasification of coal and heavy oil for syngas production using Computational Fluid Dynamics (CFD). Gasification which includes complex physical and chemical processes such as turbulence, multiphase flow, heat and mass transfer and chemical reactions has been modeled using...... phases. Gasification consists of the processes of passive heating, devolatilization, volatiles oxidation, char gasification and gas phase reactions. Attention is given here to the chemical kinetics of the gasification processes. The coal gasification model has been validated for entrained-flow gasifiers...... a discrete phase model. In this model, the continuous phase is described by Eulerian conservation equations and the discrete phase is described by tracking individual particles in a Lagrangian framework. A two-way coupling accounts for momentum, heat and mass transfer between the continuous and discrete...

  3. Report of National Research Institute for Pollution and Resources for fiscal 1979. Research on conversion of coal to petroleum, research on coal liquefaction, high pressure liquid phase hydrogenation of coal by continuous test equipment, and manufacture of coal chemicals; 1979 nendo sekitan no yuka no kenkyu / sekitan no ekika no kenkyu / renzoku shiken sochi ni yoru sekitan no koatsu ekiso suisoka bunkai / coal chemicals no seizo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    Research was conducted on conversion of coal to petroleum for the purpose of securing substitute liquid fuel. Recovery of hydrogen from the waste gas from the conversion process was explained, as were the conversion results from various coals produced in Japan. In coal liquefaction researches with the aim of manufacturing artificial petroleum, a report was made on each of the researches, i.e., the experiment results of coal liquefaction using various catalysts, manufacture of hydrogen by water gas reaction, catalytic action against coal paste, action of mixed oil and pressure against coal paste, result of hydrogen adding test for coal paste using an intermediate scale device, test result of secondary hydrogen addition for coal liquefied oil, and the test result of continuous secondary hydrogen addition for the liquefied oil. In the manufacture of fuel oil by hydro-cracking of coal or tar, a report was made on high pressure liquid phase hydrogenation of coal using a continuous testing device. Aromatic chemicals useful as chemical materials are supposed to be obtained by cutting inter-polymerized-unit bonding to make low molecules from the chemical structure of coal, removing surrounding radicals and simplifying it. A report was also made on the experiment of manufacturing coal chemicals by combination of high pressure liquid phase hydrogenation and hydro-dealkylation. (NEDO)

  4. Mongolian coal liquefaction test; Mongorutan no ekika tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Kubo, H. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Tsedevsuren, T. [National Research Center of Chemistry and Technology of Coal in Mongoria (Mongolia)

    1996-10-28

    This paper describes the results of liquefaction tests of Mongolian coals using an autoclave and a flow micro reactor. Uvdughudag coal, Hootiinhonhor coal, and Shivee-Ovoo coal were used for liquefaction tests with an autoclave. Oil yields of Uvdughudag and Hootiinhonhor coals were 55.56 wt% and 55.29 wt%, respectively, which were similar to that of Wyoming coal. Similar results were obtained, as to produced gas and water yields. These coals were found to be suitable for coal liquefaction. Lower oil yield, 42.55 wt% was obtained for Shivee-Ovoo coal, which was not suitable for liquefaction. Liquefaction tests were conducted for Uvdughudag coal with a flow micro reactor. The oil yield was 55.7 wt%, which was also similar to that of Wyoming coal, 56.1 wt%. Hydrogen consumption of Uvdughudag coal was also similar to that of Wyoming coal. From these, Uvdughudag coal can be a prospective coal for liquefaction. From the distillation distribution of oil, distillate fraction yield below 350{degree}C of Uvdughudag coal was 50.7 wt%, which was much higher than that of Wyoming coal, 35.6 wt%. Uvdughudag coal is a coal with high light oil fraction yield. 2 figs., 5 tabs.

  5. Gas situation in the world; Sekai no gas jijo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-10

    The Chinese Government intends to totally prohibit the combustion of coal as is in 2000 onward to deal with environmental problems. To attain the coal, however, it will have to develop technologies for high-efficiency coal utilization, coal pulverization for power generation, and power generation not dependent on coal. Qatar and India signed a letter confirming their intention to enhance cooperation in the oil and gas sectors. It is predicted that natural gas consumption in the United States will renew its maximum record in 1998. In the last half of this year, Venezuela will open its natural gas distribution and transportation sectors to foreign investors. Itohchu Oil Exploration Co., Ltd., operated by Itohchu Corporation for natural resources exploration, won the first success in a foreign capital-led trial drilling in the Caspian Sea off Azerbaijan. Six U.S. corporations plan to participitate in a project of constructing an LNG receiving base and distribution network in Lebanon. Norway is making efforts to increase its sale of gas to the British market despite there are great quantities of inexpensive gas in Britain. Britain will put off the complete liberalization of electric retailing scheduled to be effectuated in April this year until September. The investment in the oil and gas upstream sectors across the world in 1997 is found to be two times larger than that of 1990

  6. Top-down Constraints on Emissions: Example for Oil and Gas Operations

    Science.gov (United States)

    Petron, G.; Sweeney, C.; Karion, A.; Brewer, A.; Hardesty, R.; Banta, R. M.; Frost, G. J.; Trainer, M.; Miller, B. R.; Conley, S. A.; Kofler, J.; Newberger, T.; Higgs, J. A.; Wolter, S.; Guenther, D.; Andrews, A. E.; Dlugokencky, E. J.; Lang, P. M.; Montzka, S. A.; Edwards, P. M.; Dube, W. P.; Brown, S. S.; Helmig, D.; Hueber, J.; Rella, C.; Jacobson, G. A.; Wolfe, D. E.; Bruhwiler, L.; Tans, P. P.; Schnell, R. C.

    2012-12-01

    In many countries, human-caused emissions of the two major long lived greenhouse gases, carbon dioxide and methane, are primarily linked to the use of fossil fuels (coal, oil and natural gas). Fugitive emissions of natural gas (mainly CH4) from the oil and gas exploration and production sector may also be an important contributor to natural gas life cycle/greenhouse gas footprint. Fuel use statistics have traditionally been used in combination with fuel and process specific emission factors to estimate CO2 emissions from fossil-fuel-based energy systems (power plants, motor vehicles…). Fugitive emissions of CH4, in contrast, are much harder to quantify. Fugitive emission levels may vary substantially from one oil and gas producing basin to another and may not scale with common activity data, such as production numbers. In the USA, recent efforts by the industry, States and the US Environmental Protection Agency have focused on developing new bottom-up inventory methodologies to assess methane and volatile organic compounds emissions from oil and gas producing basins. The underlying assumptions behind these inventories are multiple and result de facto in large uncertainties. Independent atmospheric-based estimates of emissions provide another valuable piece of information that can be used to evaluate inventories. Over the past year, the NOAA Earth System Research Laboratory has used its expertise in high quality GHG and wind measurements to evaluate regional emissions of methane from two oil and gas basins in the Rocky Mountain region. Results from these two campaigns will be discussed and compared with available inventories.

  7. The Rheology of a Three Component System: COAL/WATER/#4 Oil Emulsions.

    Science.gov (United States)

    Gilmartin, Barbara Jean

    The purpose of this investigation was to study the rheology of a three component system, coal/water/#4 oil emulsions (COW), in which the third component, water, was present in a significant concentration, and to determine the applicability of existing theories from suspension rheology to the three component system studied. In a coal/water/oil emulsion, free coal particles adhere to the surface of the water droplets, preventing their coagulation, while the larger coal particles reside in the matrix of stabilized water droplets. The use of liquid fuels containing coal is a means of utilizing our nation's coal reserves while conserving oil. These fuels can be burned in conventional oil-fired furnaces. In this investigation, a high sulfur, high ash, bituminous coal was used, along with a heavy #4 oil to prepare the emulsions. The coal was ground to a log-normal distribution with an average particle size of 62 microns. A Haake RV3 concentric cylinder viscometer, with a ribbed measuring system, was used to determine the viscosity of the emulsions. A physical pendulum settling device measured the shift in center of mass of the COW as a function of time. The flow behavior of the fuel in pipes was also tested. In interpreting the data from the viscometer and the pipe flow experiments, a power law analysis was used in the region from 30 s('-1) to 200 s('-1). Extrapolation methods were used to obtain the low and high shear behavior of the emulsions. In the shear rate region found in boiler feed systems, COW are shear thinning with a flow behavior index of 0.7. The temperature dependent characteristic of the emulsions studied were similar and followed an Arrhenius type relationship. The viscosity of the COW decreases with increasing coal average particle size and is also a function of the width of the size distribution used. The type of coal used strongly influences the rheology of the fuel. The volatile content and the atomic oxygen to nitrogen ratio of the coal are the most

  8. Production of reduction gases: partial oxidation of hydrocarbons and coal

    Energy Technology Data Exchange (ETDEWEB)

    Tippmer, K

    1976-04-01

    After some general remarks on reduction gas and quality demands, the Texaco process of partial oxidation with scrubbing is dealt with. A comparison of current iron-sponge techniques shows that a heat demand below 3 M kcal/t Fe should be envisaged, which means that heavy fuel oil or coal should be used. The special features of oxygen generation, coal processing, demands made on fuel oil, gasoline, and natural gas, gas generation, soot recovery, hydrogen sulphide-carbon dioxide scrubbing, system Benfield HP process, recycle-carbon dioxide scrubbing, auxiliary steam system, gas preheating, recycle gas cooling and compression, process data and heat balances for natural gas (one-heat system) and heating fuel oil or naphtha (two-heat system) are given.

  9. Oxidizing oils, etc. [British patent

    Energy Technology Data Exchange (ETDEWEB)

    Penniman, W B.D.

    1926-03-02

    The oxidation of crude petroleum and its distillates, shale oils and tars, waxes, sludges, petroleum residues, asphaltic oils, asphalt, malthas, cracked oils and residues from cracking stills, wood tar oils and wood tar, peat and lignite distillates, coal tar oils and coal tar, and oils containing powdered coal, coke or peat, sulphur in suspension, is effected by passing air or other oxygen-containig gas through a layer of the material of a depth sufficient substantially to deoxygenate the air, the pressure being at or below atmospheric pressure.

  10. Greenhouse gas emission from Australian coal mining

    International Nuclear Information System (INIS)

    Williams, D.

    1998-01-01

    Since 1997, when the Australian Coal Association (ACA) signed a letter of Intent in respect of the governments Greenhouse Challenge Program, it has encouraged its member companies to participate. Earlier this year, the ACA commissioned an independent scoping study on greenhouse gas emissions in the black coal mining industry This was to provide background information, including identification of information gaps and R and D needs, to guide the formulation of a strategy for the mitigation of greenhouse gas emissions associated with the mining, processing and handling of black coals in Australia. A first step in the process of reducing emission levels is an appreciation of the source, quantity and type of emissions om nine sites. It is shown that greenhouse gas emissions on mine sites come from five sources: energy consumption during mining activities, the coal seam gas liberated due to the extraction process i.e. fugitive emissions, oxidation of carbonaceous wastes, land use, and embodied energy. Also listed are indications of the degree of uncertainty associated with each of the estimates

  11. The Efficiency Improvement by Combining HHO Gas, Coal and Oil in Boiler for Electricity Generation

    OpenAIRE

    Chia-Nan Wang; Min-Tsong Chou; Hsien-Pin Hsu; Jing-Wein Wang; Sridhar Selvaraj

    2017-01-01

    Electricity is an essential energy that can benefit our daily lives. There are many sources available for electricity generation, such as coal, natural gas and nuclear. Among these sources, coal has been widely used in thermal power plants that account for about 41% of the worldwide electricity supply. However, these thermal power plants are also found to be a big pollution source to our environment. There is a need to explore alternative electricity sources and improve the efficiency of elec...

  12. Methods for producing and upgrading liquid hydrocarbons from Alberta coal. [Canada - Alberta

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Production of synthetic crude oils by co-processing coal and heavy oil or bitumen has been the subject of research efforts in Alberta since 1979. This booklet describes the treatment that is necessary for these crude oils to become suitable as feedstocks for refineries as evolved in research projects. Sections are headed: hydroprocessing of coal-based liquids; functional group analysis; isotopic studies of co-processing schemes; chemistry of coal liquefaction; co-processing process development; molecular interactions between heavy oil and coal species during co-processing; combined processing of coal, heavy oil and natural gas; and coprocessing of coal and bitumen with molten halide catalysts. 33 refs., 8 figs.

  13. Characterisation and catalytic upgrading of tars from coal-tyre hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mastral, A.M.; Murillo, R.; Callen, M.S.; Garcia, T. [Instituto de Carboquimica, Zaragoza (Spain)

    1999-07-01

    Tars from coal-tyre hydropyrolysis obtained in a swept fixed bed reactor were upgraded with catalysts. Upgraded oils were characterized, and naphtha, kerosene, gas oil, heavy gas oil and vacuum residue percentages were quantified. 7 refs., 3 tabs.

  14. Gas distributor for fluidized bed coal gasifier

    Science.gov (United States)

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  15. Retort for distilling coal oil

    Energy Technology Data Exchange (ETDEWEB)

    Gibbon, J

    1865-12-20

    The construction of a retort for extracting or distilling coal oil or other products from cannel coal, shale, or schist, and more particularly of small coal or dust technically called slack, consists in applying self-acting feed and discharge apparatus to a revolving cylindrical wrought or cast iron retort, and constructing the inner surface of the cylindrical retort with a projecting ridge which encircles the interior of the retort in a spiral manner, the same as the interior of a female screw, and the ridge may be either cast upon or riveted on the internal surface, and is so arranged to cause the material to be operated upon to advance from one end of the retort to the other, as the retort revolves by following the course of the spiral screw or worm formed by the projecting ridge.

  16. Characteristics of naturally occurring radioactive materials (NORM) in the oil and gas industries: an overview

    International Nuclear Information System (INIS)

    Mohamad Puad Abu; Mohd Noor Mohd Yunus; Sopian, K.; Amran Abd Majid

    1999-01-01

    Activities and work practices in which radiation exposure of workers and members of the public is increased due to the presence of NORM are receiving increased attention from regulatory agencies and, to lesser extent, from the general public. In Malaysia the main sources of NORM are from the technological activities of tin mining, ore and heavy mineral processing, combustion of coal to generate power, and oil and gas extraction. The crude oil sludge that contains NORM arising from the oil and gas extraction activities lately has received special attention by the Malaysian regulatory authorities. These crude oil sludge are considered as Scheduled Waste (contains heavy metals) by Department of Environmental (DOE) and very low level radioactive waste which contains NORM by the Atomic Energy Licensing Board (AELB), and its cannot be disposed without permission and proper control. This paper reviewed the radiological behaviour and characteristic o NORM in the crude oil sludge from the oil and gas production activities in Malaysia. (Author)

  17. China's coal price disturbances: Observations, explanations, and implications for global energy economies

    International Nuclear Information System (INIS)

    Yang, Chi-Jen; Xuan, Xiaowei; Jackson, Robert B.

    2012-01-01

    Since China decontrolled coal prices, its coal price has risen steadily and been unusually volatile. In 2011 in particular, high coal prices and capped electricity prices in China discouraged coal-fired power generation, triggering widespread power shortages. We suggest that these coal-price disturbances could be symptomatic of a major change in pricing dynamics of global fossil-fuel markets, with increasing correspondence between coal and oil prices globally. Historically, global coal prices have been more stable and lower than oil and natural gas prices on a per-heat basis. In recent years, however, coal prices have been increasingly volatile worldwide and have tracked other fossil fuel prices more closely. Meanwhile, the recent development of unconventional gas has substantially decoupled US natural gas and oil prices. Technically, low US natural gas prices, with potential fuel switching, could drive US domestic coal prices lower. However, this effect is unlikely to counteract the overall trend in increasing coal consumption globally. China's market size and unique, partially-controlled energy system make its reform agenda a key force in the global economy. Policymakers in the US, E.U. and elsewhere should monitor China's economic reform agenda to anticipate and respond to changes accompanying China's increasing importance in the global energy economy. - Highlights: ► Since China decontrolled its coal prices, the price of coal has risen steadily in China, accompanied by unusual volatility. ► Relatively high and volatile coal prices have triggered widespread power shortages in China. ► Coal and oil prices have already become, and continue to become, more closely linked globally. ► China's demand will likely drive up global coal prices and make them as volatile as that of other fossil fuels. ► Policymakers should monitor China's economic reform agenda to anticipate and respond to changes in the global energy economy.

  18. Hubbert's Peak, The Coal Question, and Climate Change

    Science.gov (United States)

    Rutledge, D.

    2008-12-01

    The United Nations Intergovernmental Panel on Climate Change (IPCC) makes projections in terms of scenarios that include estimates of oil, gas, and coal production. These scenarios are defined in the Special Report on Emissions Scenarios or SRES (Nakicenovic et al., 2000). It is striking how different these scenarios are. For example, total oil production from 2005 to 2100 in the scenarios varies by 5:1 (Appendix SRES Version 1.1). Because production in some of the scenarios has not peaked by 2100, this ratio would be comparable to 10:1 if the years after 2100 were considered. The IPCC says "... the resultant 40 SRES scenarios together encompass the current range of uncertainties of future GHG [greenhouse gas] emissions arising from different characteristics of these models ..." (Nakicenovic et al., 2000, Summary for Policy Makers). This uncertainty is important for climate modeling, because it is larger than the likely range for the temperature sensitivity, which the IPCC gives as 2.3:1 (Gerard Meehl et al., 2007, the Fourth Assessment Report, Chapter 10, Global Climate Projections, p. 799). The uncertainty indicates that we could improve climate modeling if we could make a better estimate of future oil, gas, and coal production. We start by considering the two major fossil-fuel regions with substantial exhaustion, US oil and British coal. It turns out that simple normal and logistic curve fits to the cumulative production for these regions give quite stable projections for the ultimate production. By ultimate production, we mean total production, past and future. For US oil, the range for the fits for the ultimate is 1.15:1 (225- 258 billion barrels) for the period starting in 1956, when King Hubbert made his prediction of the peak year of US oil production. For UK coal, the range is 1.26:1 for the period starting in 1905, at the time of a Royal Commission on coal supplies. We extend this approach to find fits for world oil and gas production, and by a regional

  19. Composition and morphology of stack emissions from coal and oil fuelled boilers

    International Nuclear Information System (INIS)

    Obrusnik, I.; Starkova, B.; Blazek, J.

    1989-01-01

    Instrumental neutron activation analysis (INAA) together with scanning electron microscopy (SEM) were used in the study of fly ash from large electric power and heating plants. Two basic kinds of fly ash originating from brown coal or heavy oil combustion can be characterized both by morphology and trace element composition. The avarage composition and determination limits obtained by INAA for coal fly ash were compared with those obtained for heavy oil. Coal fly ash showed much higher concentrations of many elements in comparison with oil fly ash. (author) 21 refs.; 3 figs.; 4 tabs

  20. Cultivating yeast in fractions of light oil from black coal resin. [Candida tropicalis

    Energy Technology Data Exchange (ETDEWEB)

    Kucher, R.V.; Pavlyuk, M.I.; Dzumedzei, N.V.; Turovskii, A.A.

    1982-11-01

    Feasibility of using a light fraction of black coal oil from the Avdeevskii coking plant as a substrate for growing microorganisms was studied. Candida tropicalis was adapted to the light oil in multiple stages and in continually changing conditions. Maximum growth of the yeast occurred in fractions of the oil with boiling points of 363, 373-293 K. It was demonstrated that low temperature fractions of the hard coal oil are a source of hydrocarbons and energy in microbiological processes. Surface-active materials, such as sodium lauryl sulfate and syntanol-15, stimulate the growth of the yeast in light oil fractions from hard coal resin. (5 refs.) (In Russian)

  1. Cheap oil benefits coal on the short term, not the long

    Energy Technology Data Exchange (ETDEWEB)

    Soras, C.G.; Stodden, J.R.

    1986-03-01

    This is a brief article describing the effects of the declining price of oil on the coal industry. The oil price explosion from 1973-1979 is described along with the present day situation. Oil consumption in the US and the general drop in production worldwide is represented. It is concluded that the coal industry will benefit in the short term from the present crisis but stands to make some losses in the long run.

  2. Problems of coal-based power generation

    International Nuclear Information System (INIS)

    Noskievic, P.

    1996-01-01

    Current problems of and future trends in coal-based power generation are discussed. The present situation is as follows: coal, oil and gas contribute to world fossil fuel resources 75%, 14%, and 11%, respectively, and if the current trend will continue, will be depleted in 240, 50, and 60 years, respectively; the maximum resource estimates (including resources that have not yet been discovered) are 50% higher for oil and 100% higher for gas, for coal such estimates have not been made. While the world prices of coal are expected to remain virtually constant, the prices of gas will probably increase to be twice as high in 2010. Thus, the role of coal may be higher in the next century than it is now, provided that due attention is paid to improving the efficiency of coal-fired power plants and reducing their adverse environmental effects. A comparison of economic data for coal-fired and gas-fired power plants is as follows: Investment cost (USD/kW): 1400, 800; fixed running cost (USD/kW.y): 33.67, 9.0; variable running cost (USD/kWh): 0.30, 0.15; power use (kJ/kWh): 10.29, 7.91; annual availability (%): 70, 50; fuel price (USD/GJ): 1.00, 4.30; power price (USD/kWh): 4.28, 5.52. The investment cost for coal-fired plants covers new construction including flue gas purification. The integrated gasification combined cycle (IGCC) seems to be the future of coal-based power generation. The future problems to be addressed include ways to reduce air pollution, improving the efficiency of the gas-steam cycle, and improving the combustion process particularly with a view to reducing substantially its environmental impact. (P.A.). 4 figs., 4 tabs., 9 refs

  3. Relations between flash pyrolysis reactivity and oil/gas products from coals of different rank; Sekitankado no kotonaru shushu no sekitan no flash pyrolysis hannosei to gas oyobi eki seiseibutsu no kankei

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, T.; Kishino, M.; Sakanishi, K.; Korai, Y.; Mochida, I. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1996-10-28

    Curie point flash pyrolysis (FP) reactivity was studied experimentally using three kinds of coals with different coal ranks such as Yallourn brown coal, Tanitoharum sub-bituminous coal and Wandoan sub-bituminous coal. Experiment was performed using a curie point pyrolyzer in carrier gas of 20ml/min in gas flow rate at 450, 590 and 740{degree}C for 5sec. The experimental results were as follows. Each gas component obviously increased at 450-590{degree}C, however, C4-C6 gases drastically decreased at 590-740{degree}C accompanying reduction of the whole gas quantity. All of each polar component remarkably increased at 450-590{degree}C. Yallourn brown coal with high Owt%, in particular, contained a large amount of alkyl-hydroxybenzene group. The amount of cresol of all of three coal specimens also increased at 740{degree}C. It was thus suggested that this is coal constituent molecules derived from cutting of methylene-ether bridged bond by higher-temperature FP. 8 refs., 5 figs., 3 tabs.

  4. Study on Resources Assessment of Coal Seams covered by Long-Distance Oil & Gas Pipelines

    Science.gov (United States)

    Han, Bing; Fu, Qiang; Pan, Wei; Hou, Hanfang

    2018-01-01

    The assessment of mineral resources covered by construction projects plays an important role in reducing the overlaying of important mineral resources and ensuring the smooth implementation of construction projects. To take a planned long-distance gas pipeline as an example, the assessment method and principles for coal resources covered by linear projects are introduced. The areas covered by multiple coal seams are determined according to the linear projection method, and the resources covered by pipelines directly and indirectly are estimated by using area segmentation method on the basis of original blocks. The research results can provide references for route optimization of projects and compensation for mining right..

  5. Process for the gas extraction of coal

    Energy Technology Data Exchange (ETDEWEB)

    Urquhart, D B

    1976-05-20

    The object of the invention is a process for the hydroextraction of coal is treated with water and carbon monoxide at a temperature in the region of 300 - 380/sup 0/C. After treatment is completed, the gases are separated from the treated gas; the treated coal is then extracted with an extraction medium during the gas phase at a temperature of at least 400/sup 0/C, the remainder is separated from the gas phase and the coal extract is obtained from the extraction medium. Hydrogenation is preferably carried out at a temperature in the region of 320 - 370/sup 0/C and at a pressure of 200 - 400 at. The time required for treatment with carbon monoxide and water is 1/4 - 2 hours, and in special cases 3/4 - 1 1/2 hours. The coal material itself is nutty slack, of which more than 95% of the coal particles pass through a 1.5 mm mesh sieve. After the hydrogenation the extraction is carried out at a temperature in the region of 400 - 450/sup 0/C. The patent claims relate to the types of extraction media used.

  6. Fiscal 1996 survey report on the environmentally friendly type coal utilization system feasibility study. Feasibility study of the environmentally friendly type coal utilization system in Malaysia and Vietnam; Kankyo chowagata sekitan riyo system kanosei chosa. Malaysia Vietnam ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This survey arranged the status of coal utilization technology and the status of coal production, supply, etc. in Malaysia and Vietnam, examined/studied coal utilization systems in both countries, and finally assessed feasibility of introducing the environmentally friendly type coal utilization system. As a country of primary energy source which is abundant in crude oil, natural gas, hydroelectric power, coal, etc., Malaysia now depends on crude oil and natural gas for 80% of its energy, and places emphasis on exploration of natural gas and oil refining. In electric power and cement industries where coal is consumed, effectiveness and environmental issues in association with coal utilization are future subjects. In Vietnam, the north is abundant in hydroelectric power and anthracite, and the south in oil and gas resource, but the north and central districts are in a state of undevelopment. Coal is used for coal thermal power generation, cement industry, and residential/commercial fuel. In the future, effective coal utilization and environmental issues will be subjects. 16 refs., 38 figs., 75 tabs.

  7. Solid-Gas Coupling Model for Coal-Rock Mass Deformation and Pressure Relief Gas Flow in Protection Layer Mining

    OpenAIRE

    Zhu, Zhuohui; Feng, Tao; Yuan, Zhigang; Xie, Donghai; Chen, Wei

    2018-01-01

    The solid-gas coupling model for mining coal-rock mass deformation and pressure relief gas flow in protection layer mining is the key to determine deformation of coal-rock mass and migration law of pressure relief gas of protection layer mining in outburst coal seams. Based on the physical coupling process between coal-rock mass deformation and pressure-relief gas migration, the coupling variable of mining coal-rock mass, a part of governing equations of gas seepage field and deformation fiel...

  8. Coal-water slurries containing petrochemicals to solve problems of air pollution by coal thermal power stations and boiler plants: An introductory review.

    Science.gov (United States)

    Dmitrienko, Margarita A; Strizhak, Pavel A

    2018-02-01

    This introductory study presents the analysis of the environmental, economic and energy performance indicators of burning high-potential coal water slurries containing petrochemicals (CWSP) instead of coal, fuel oil, and natural gas at typical thermal power stations (TPS) and a boiler plant. We focus on the most hazardous anthropogenic emissions of coal power industry: sulfur and nitrogen oxides. The research findings show that these emissions may be several times lower if coal and oil processing wastes are mixed with water as compared to the combustion of traditional pulverized coal, even of high grades. The study focuses on wastes, such as filter cakes, oil sludge, waste industrial oils, heavy coal-tar products, resins, etc., that are produced and stored in abundance. Their deep conversion is very rare due to low economic benefit. Effective ways are necessary to recover such industrial wastes. We present the cost assessment of the changes to the heat and power generation technologies that are required from typical power plants for switching from coal, fuel oil and natural gas to CWSPs based on coal and oil processing wastes. The corresponding technological changes pay off after a short time, ranging from several months to several years. The most promising components for CWSP production have been identified, which provide payback within a year. Among these are filter cakes (coal processing wastes), which are produced as a ready-made coal-water slurry fuel (a mixture of flocculants, water, and fine coal dust). These fuels have the least impact on the environment in terms of the emissions of sulfur and nitrogen oxides as well as fly ash. An important conclusion of the study is that using CWSPs based on filter cakes is worthwhile both as the main fuel for thermal power stations and boiler plants and as starting fuel. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Geochemical characteristics of Carboniferous-Permian coal-formed gas in Bohai Bay Basin

    Energy Technology Data Exchange (ETDEWEB)

    Shipeng Huang; Fengrong Liao; Xiaoqi Wu [PetroChina, Beijing (China). Research Institute of Petroleum Exploration & Development

    2010-03-15

    Coal-formed gas reservoirs have been found in several depressions in Bohai Bay Basin. The gas was mainly generated by the Carboniferous-Permian coal measures, which are good source rocks. The exploration of coal-formed gas has a broad prospect. The main reservoirs of the coal-formed gas are Ordovician, Carboniferous-Permian, and Paleogene stratum. Coal-formed gas in the Bohai Bay Basin is chiefly composed of hydrocarbon gases. The percentage content of carbon dioxide is more than that of the nitrogen gas. The stable carbon isotope values of the hydrocarbon gases of different depressions and different reservoirs usually reversed. The reversed values of gas samples account for 52.1% of all the samples. Reversion values of the carbon isotope are mainly because of the mixing of gases from same source rocks but with different maturity. Among the three main reservoirs, coal-formed gas preserved in Paleogene stratum has the heaviest carbon isotope, the second is the gas in Carboniferous-Permian stratum, and the Ordovician gas possesses the lightest carbon isotope. Based on the analysis of the characteristics of carbon isotope of hydrocarbon gases in well Qishen-1 and the distribution of the Carboniferous-Permian coal measures, the gas of the well is derived from the high-matured Carboniferous-Permian coal measures.

  10. Oxidizing oils, etc. [British patent

    Energy Technology Data Exchange (ETDEWEB)

    Penniman, W B.D.

    1926-03-02

    The oxidation of crude petroleum and its distillates, shale oils and tars, waxes, sludges, petroleum residues, asphaltic oils, asphalt, malthas, cracked oils and residues from cracking stills, wood tar oils and wood tar, peat and lignite distillates, coal tar oils and coal tars, and oils containing powdered coal, coke, oreat, sulphur in suspension, by passing air or other oxygen-containing gas through a layer of the material of a depth sufficient substantially to deoxygenate the air and c., is carried out in stages in a series of treatment zones, the pressure in at least one of the zones being above atmospheric pressre. The products of oxidation include acetaldehyde, propionaldehyde, formic, acetic, propionic, butyric, acrylic and phthalic acids, alcohols, acetone, solvents, gums, and substances adapted for use as motor fuels or burnign oils. The oxidizing gas may be enriched with oxygen or be diluted with steam, and its point of entry into the oil and c. layer may be varied to promote or retard settlement of suspended solids.

  11. Oil/gas collector/separator for underwater oil leaks

    Energy Technology Data Exchange (ETDEWEB)

    Henning, C.D.

    1992-12-31

    This invention is comprised of an oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  12. Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar Sequestration.

    Science.gov (United States)

    Dang, Qi; Mba Wright, Mark; Brown, Robert C

    2015-12-15

    This study investigates a novel strategy of reducing carbon emissions from coal-fired power plants through co-firing bio-oil and sequestering biochar in agricultural lands. The heavy end fraction of bio-oil recovered from corn stover fast pyrolysis is blended and co-fired with bituminous coal to form a bio-oil co-firing fuel (BCF). Life-cycle greenhouse gas (GHG) emissions per kWh electricity produced vary from 1.02 to 0.26 kg CO2-eq among different cases, with BCF heavy end fractions ranging from 10% to 60%, which corresponds to a GHG emissions reduction of 2.9% to 74.9% compared with that from traditional bituminous coal power plants. We found a heavy end fraction between 34.8% and 37.3% is required to meet the Clean Power Plan's emission regulation for new coal-fired power plants. The minimum electricity selling prices are predicted to increase from 8.8 to 14.9 cents/kWh, with heavy end fractions ranging from 30% to 60%. A minimum carbon price of $67.4 ± 13 per metric ton of CO2-eq was estimated to make BCF power commercially viable for the base case. These results suggest that BCF co-firing is an attractive pathway for clean power generation in existing power plants with a potential for significant reductions in carbon emissions.

  13. The oilsands of gas: Massive gas from coal resource being commercialized

    Energy Technology Data Exchange (ETDEWEB)

    Jaremko, D.

    2004-04-05

    Gas companies are flocking to Alberta to try their hand in coalbed methane extraction, following EnCana Corporation's success two years ago in launching Canada's first commercial-scale natural gas from coal (NGC) operation. There is an estimated 550 trillion cubic feet of methane gas trapped in Alberta's coal fields, and while current production is still insignificant, the rise in demand for natural gas and the decline in conventional resources makes coalbed methane an increasingly appealing option. In the United States NGC accounts for some 10 per cent of gas production and there is no doubt that the interest expressed by American companies to bring their experience and technology to Alberta is a big factor in pushing the wave of appeal of NGC in the province. The Manville coal deposits, lying between 800 and 1,300 metres below the surface, and the Horseshoe Canyon deposit, about 200 to 500 metres down, are the coal zones of greatest interest in Alberta, while the Elk Valley zone is said to have the greatest potential in British Columbia. The article explains the challenges faced by prospective producers in terms of water disposal, noise abatement, environmental footprint, costs versus benefits, and the various technological alternatives available. Suggestions for involving stakeholders in all aspects of the planning of NGC facilities, and for gaining their support, are also included.

  14. Cyclone reburn using coal-water fuel: Pilot-scale development and testing

    Energy Technology Data Exchange (ETDEWEB)

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  15. Removal of mineral oil and wastewater pollutants using hard coal

    Directory of Open Access Journals (Sweden)

    BRANISLAV R. SIMONOVIĆ

    2009-05-01

    Full Text Available This study investigates the use of hard coal as an adsorbent for removal of mineral oil from wastewater. In order to determine the efficiency of hard coal as an adsorbent of mineral oil, process parameters such as sorption capacity (in static and dynamic conditions, temperature, pH, contact time, flow rate, and chemical pretreatment were evaluated in a series of batch and continuous flow experiments. There were significant differences in the mineral oil removal for various pH values examined. The adsorption of mineral oil increased as pH values diverged from 7 (neutral. At lower temperatures, the adsorption was notably higher. The wastewater flow rate was adjusted to achieve optimal water purification. Equilibrium was reached after 10 h in static conditions. At that time, more than 99% of mineral oil had been removed. At the beginning of the filtering process, the adsorption rate increased rapidly, only to show a minor decrease afterwards. Equilibrium data were fitted to Freundlich models to determine the water-hard coal partitioning coefficient. Physical adsorption caused by properties of the compounds was the predominant mechanism in the removal process.

  16. Coal fired flue gas mercury emission controls

    International Nuclear Information System (INIS)

    Wu, Jiang; Pan, Weiguo; Cao, Yan; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  17. Coal fired flue gas mercury emission controls

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiang; Pan, Weiguo [Shanghai Univ. of Electric Power (China); Cao, Yan; Pan, Weiping [Western Kentucky Univ., Bowling Green, KY (United States)

    2015-05-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  18. Prevention and forecasting of coal, rock and gas bursts in mines of Donets Coal Basin in USSR

    Energy Technology Data Exchange (ETDEWEB)

    Swidzinski, A

    1977-11-01

    Coal and methane bursts as well as sandstone and methane bursts are typical for the Donets Coal Basin. The most effective way of forecasting coal and methane bursts is drilling holes (3.5 m long, 45 mm diameter) and measuring the initial speed of gas outflow (5 litres/min gas outflow is a critical value). Additional parameters in this method are: coal firmness and porosity as well as thickness of coal bed. Forecasting sandstone and gas bursts is based on taking rock samples while drilling. When a sample 1 meter long consists of 30 to 40 so called discs, the danger of outburst is substantial, with the decreasing number of discs the probability of bursts also decreases. The following methods of prevention are used in the Donets Coal Basin: preparatory extraction of a layer protecting another layer below or above, where there is a danger of gas burst. This method is effective in 50% of all cases. Other methods include: filling coal beds with water under high pressure (average norm 25 1 water per 1 m

  19. Tracking an oil slick from multiple natural sources, Coal Oil Point, California

    International Nuclear Information System (INIS)

    Leifer, Ira; Luyendyk, Bruce; Broderick, Kris

    2006-01-01

    Oil slicks on the ocean surface emitted from natural marine hydrocarbon seeps offshore from Coal Oil Point in the Santa Barbara Channel, California were tracked and sampled over a 2-h period. The objectives were to characterize the seep oil and to track its composition over time using a new sampling device, a catamaran drum sampler (CATDRUMS). The sampler was designed and developed at UCSB. Chromatograms showed that oil originating from an informally named, very active seep area, Shane Seep, primarily evolved during the first hour due to mixing with oil originating from a convergence zone slick surrounding Shane Seep. (author)

  20. Tracking an oil slick from multiple natural sources, Coal Oil Point, California

    Energy Technology Data Exchange (ETDEWEB)

    Leifer, Ira [Marine Sciences Institute, University of California, Santa Barbara, CA 93106 (United States); Luyendyk, Bruce [Department of Geological Sciences, University of California, Santa Barbara, CA 93106 (United States); Broderick, Kris [Exxon/Mobil Exploration Company, 13401 N. Freeway, Houston, TX 77060 (United States)

    2006-06-15

    Oil slicks on the ocean surface emitted from natural marine hydrocarbon seeps offshore from Coal Oil Point in the Santa Barbara Channel, California were tracked and sampled over a 2-h period. The objectives were to characterize the seep oil and to track its composition over time using a new sampling device, a catamaran drum sampler (CATDRUMS). The sampler was designed and developed at UCSB. Chromatograms showed that oil originating from an informally named, very active seep area, Shane Seep, primarily evolved during the first hour due to mixing with oil originating from a convergence zone slick surrounding Shane Seep. (author)

  1. Coal Mine Methane in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This paper discusses coal mine methane emissions (CMM) in the Russian Federation and the potential for their productive utilisation. It highlights specific opportunities for cost-effective reductions of CMM from oil and natural gas facilities, coal mines and landfills, with the aim of improving knowledge about effective policy approaches.

  2. Feasibility study on recovery and utilization of coal mine gas (CMG) at Donetsk Coal Field

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of getting petroleum substitution energy and reducing greenhouse effect gas emission, an investigational study was carried out of the project for methane gas recovery/utilization at the Donbassa coal mine in Ukraine. At the Donbassa coal mine, degassing by test boring is being conducted to reduce the gas emission at coal face for safety, but most of the gas is discharged into the air. In this project, the following were studied: degassing boring/gas induction from bore hole/measurement in gas induction pipe, gas recovery system combined with gas induction in flyash, and installation/operation of gas engine power generation facilities (1,710kW x 7 units) with exhaust heat recovery boiler using the recovered methane gas as fuel. The results obtained were the petroleum substitution amount of 31,000 toe/y and the amount of greenhouse effect gas reduction of 480,000 t/y. In the economical estimation, the initial investment amount was 3 billion yen, the profitability of the total investment used was 2.9%, and the internal earning rate was 6.5%. (NEDO)

  3. Gas manufacture, materials for; distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, G

    1866-03-15

    A A mixture of bituminous coal and shale oil, petroleum, or other mineral oil is distilled in a retort in order to obtain illuminating gas and oil according to the temperature, and a residue of good coke is also obtained. Preferably the coal is pulverized, and the mixture is made in a heated state. The oil may be treated for the removal of volatile oils and water before mixture with the coal. With the oil may be used the residues or bottoms from shale-oil stills.

  4. Organic petrology and geochemistry of the Carboniferous coal seams from the Central Asturian Coal Basin (NW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Piedad-Sanchez, Noe; Martinez, Luis; Izart, Alain; Elie, Marcel [UMR G2R/7566, Geologie et Gestion des Ressources Minerales et Energetiques, Faculte des Sciences, Universite Henri Poincare, Nancy 1, BP-239, Boulevard des Aiguillettes, Vandoeuvre-les-Nancy Cedex 54506 (France); Suarez-Ruiz, Isabel [Instituto Nacional del Carbon (CSIC), C/ Francisco Pintado Fe, 26, Ap. Co., 73, Oviedo 33011 (Spain); Keravis, Didier [Institut des Sciences de la Terre (ISTO), CNRS-Universite d' Orleans, Batiment Geosciences, BP 6759, Orleans 45067 (France)

    2004-03-23

    This paper presents for the first time a petrological and geochemical study of coals from the Central Asturian Coal Basin (North Spain) of Carboniferous (Pennsylvanian), mainly of Moscovian, age. A paleoenvironmental approach was used, taking into account both petrographic and organic geochemical studies. Vitrinite reflectance (R{sub r}) ranges from 0.5% to 2.5%, which indicates a high volatile bituminous to semianthracite and anthracite coal rank. The coal samples selected for paleoenvironmental reconstruction are located inside the oil-gas-prone phase, corresponding to the interval between the onset of oil generation and first gas generation and efficient expulsion of oil. This phase is represented by coals that have retained their hydrocarbon potential and also preserved biomarker information. Paleodepositional reconstruction based on maceral and petrographic indices points to a swamp environment with vitrinite-rich coal facies and variable mineral matter content. The gelification index (GI) and groundwater influence index (GWI) indicate strong gelification and wet conditions. The biomarkers exhibit a high pristane/phytane ratio, suggesting an increase in this ratio from diagenetic processes, and a high diterpanes ratio. This, in turn, would seem to indicate a high swamp water table and a humid climate. The maximum point of coal accumulation occurred during the regressive part of the Late Moscovian sequence and in the most humid climate described for this period of time in the well-known coal basins of Europe and North America.

  5. Solar coal gasification reactor with pyrolysis gas recycle

    Science.gov (United States)

    Aiman, William R.; Gregg, David W.

    1983-01-01

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  6. Variations in pore characteristics in high volatile bituminous coals: Implications for coal bed gas content

    Science.gov (United States)

    Mastalerz, Maria; Drobniak, A.; Strapoc, D.; Solano-Acosta, W.; Rupp, J.

    2008-01-01

    The Seelyville Coal Member of the Linton Formation (Pennsylvanian) in Indiana was studied to: 1) understand variations in pore characteristics within a coal seam at a single location and compare these variations with changes occurring between the same coal at different locations, 2) elaborate on the influence of mineral-matter and maceral composition on mesopore and micropore characteristics, and 3) discuss implications of these variations for coal bed gas content. The coal is high volatile bituminous rank with R0 ranging from 0.57% to 0.60%. BET specific surface areas (determined by nitrogen adsorption) of the coals samples studied range from 1.8 to 22.9??m2/g, BJH adsorption mesopore volumes from 0.0041 to 0.0339??cm3/g, and micropore volumes (determined by carbon dioxide adsorption) from 0.0315 to 0.0540??cm3/g. The coals that had the largest specific surface areas and largest mesopore volumes occur at the shallowest depths, whereas the smallest values for these two parameters occur in the deepest coals. Micropore volumes, in contrast, are not depth-dependent. In the coal samples examined for this study, mineral-matter content influenced both specific surface area as well as mesopore and micropore volumes. It is especially clear in the case of micropores, where an increase in mineral-matter content parallels the decrease of micropore volume of the coal. No obvious relationships were observed between the total vitrinite content and pore characteristics but, after splitting vitrinite into individual macerals, we see that collotelinite influences both meso- and micropore volume positively, whereas collodetrinite contributes to the reduction of mesopore and micropore volumes. There are large variations in gas content within a single coal at a single location. Because of this variability, the entire thickness of the coal must be desorbed in order to determine gas content reliably and to accurately calculate the level of gas saturation. ?? 2008 Elsevier B.V. All

  7. Aromatization of oils from coal-tyre cothermolysis. Part 2. PAH content study as a function of the process variables

    Energy Technology Data Exchange (ETDEWEB)

    Mastral, A.M.; Callen, S.; Garcia, T.; Navarro, M.V. [Department of Energy and Environmental, Instituto de Carboquimica CSIC, P.O. Box 589, C/Maria de Luna, 12, 50015, Zaragoza (Spain)

    2000-10-01

    In this work, the PAH content in the oils obtained from hydro-cothermolysis have been analysed. The influence of the process variables (H{sub 2} pressure, 1 and 10 MPa, different feed materials: coal, tyre and a blend of coal-tyre (1:1 in organic matter) in two reactors, tubing bomb and autoclave reactors (TBR, AR)), on PAH formation has been studied.Gas chromatography/mass spectrometry (GC/MS) is used as the main analytical technique after fractionation into four chemical fractions using neutral alumina column chromatography (CC). As the complementary technique, thin layer chromatography with flame ionisation detector (TLC/FID) was used to compare the analytical tool on the total aromatic compounds, leading to the conclusion that the nature of synthetic oils is also dependent on the analytical technique.In relation to the variables studied, the lower the pressure the higher the concentration of PAH detected. The hydrogen abundance reduces the PAH content. The hydropyrolysis of tyre, coal, and a blend of coal-tyre at the same conditions show that coal produces higher concentrations of PAH at hydrogenating conditions. PAHs that contain three and four cycles are the main PAHs detected regardless of the feed.

  8. The Late Paleozoic relative gas fields of coal measure in China and their significances on the natural gas industry

    Directory of Open Access Journals (Sweden)

    Chenchen Fang

    2016-12-01

    Full Text Available The coal measure gas sources of coal-derived gas fields in the Late Paleozoic China are the Lower Carboniferous Dishuiquan Formation, the Upper Carboniferous Batamayineishan Formation and Benxi Formation, the Lower Permian Taiyuan Formation and Shanxi Formation, and the Upper Permian Longtan Formation. The coal-derived gas accumulates in Ordovician, Carboniferous, Permian, and Paleocene reservoirs and are distributed in Ordos Basin, Bohai Bay Basin, Junggar Basin, and Sichuan Basin. There are 16 gas fields and 12 of them are large gas fields such as the Sulige large gas field which is China's largest reserve with the highest annual output. According to component and alkane carbon isotope data of 99 gas samples, they are distinguished to be coal-derived gas from coal-derived gas with δ13C2 > −28.5‰ and δ13C1 -δ13C2 -δ13C3 identification chart. The Late Paleozoic relative gas fields of coal measure are significant for the Chinese natural gas industry: proven natural gas geological reserves and annual output of them account for 1/3 in China, and the gas source of three significant large gas fields is coal-derived, which of five significant large gas fields supporting China to be a great gas producing country. The average reserves of the gas fields and the large gas fields formed from the late Paleozoic coal measure are 5.3 and 1.7 times that of the gas fields and the large gas fields in China.

  9. Peak Oil, Peak Coal and Climate Change

    Science.gov (United States)

    Murray, J. W.

    2009-05-01

    Research on future climate change is driven by the family of scenarios developed for the IPCC assessment reports. These scenarios create projections of future energy demand using different story lines consisting of government policies, population projections, and economic models. None of these scenarios consider resources to be limiting. In many of these scenarios oil production is still increasing to 2100. Resource limitation (in a geological sense) is a real possibility that needs more serious consideration. The concept of 'Peak Oil' has been discussed since M. King Hubbert proposed in 1956 that US oil production would peak in 1970. His prediction was accurate. This concept is about production rate not reserves. For many oil producing countries (and all OPEC countries) reserves are closely guarded state secrets and appear to be overstated. Claims that the reserves are 'proven' cannot be independently verified. Hubbert's Linearization Model can be used to predict when half the ultimate oil will be produced and what the ultimate total cumulative production (Qt) will be. US oil production can be used as an example. This conceptual model shows that 90% of the ultimate US oil production (Qt = 225 billion barrels) will have occurred by 2011. This approach can then be used to suggest that total global production will be about 2200 billion barrels and that the half way point will be reached by about 2010. This amount is about 5 to 7 times less than assumed by the IPCC scenarios. The decline of Non-OPEC oil production appears to have started in 2004. Of the OPEC countries, only Saudi Arabia may have spare capacity, but even that is uncertain, because of lack of data transparency. The concept of 'Peak Coal' is more controversial, but even the US National Academy Report in 2007 concluded only a small fraction of previously estimated reserves in the US are actually minable reserves and that US reserves should be reassessed using modern methods. British coal production can be

  10. Science of coal-to-oil conversion

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, W D

    1944-01-01

    A general review is given of the principles of the most important commercial processes for obtaining oil from coal, and of the yields obtained by, and special features of each process. The composition of typical tars obtained by the low-temperature carbonization of coal, yields of products other than tar, estimated costs of running a plant of 700 tons daily capacity and annual British statistics on the industry from 1930 through 1938 are tabulated. The text is chiefly concerned with the various types of retorts, which have been developed for use in this process. Economics and cost of production are discussed.

  11. The coal-fired gas turbine locomotive - A new look

    Science.gov (United States)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.

    1983-01-01

    Advances in turbomachine technology and novel methods of coal combustion may have made possible the development of a competitive coal fired gas turbine locomotive engine. Of the combustor, thermodynamic cycle, and turbine combinations presently assessed, an external combustion closed cycle regenerative gas turbine with a fluidized bed coal combustor is judged to be the best suited for locomotive requirements. Some merit is also discerned in external combustion open cycle regenerative systems and internal combustion open cycle regenerative gas turbine systems employing a coal gasifier. The choice of an open or closed cycle depends on the selection of a working fluid and the relative advantages of loop pressurization, with air being the most attractive closed cycle working fluid on the basis of cost.

  12. Gas core reactors for coal gasification

    International Nuclear Information System (INIS)

    Weinstein, H.

    1976-01-01

    The concept of using a gas core reactor to produce hydrogen directly from coal and water is presented. It is shown that the chemical equilibrium of the process is strongly in favor of the production of H 2 and CO in the reactor cavity, indicating a 98 percent conversion of water and coal at only 1500 0 K. At lower temperatures in the moderator-reflector cooling channels the equilibrium strongly favors the conversion of CO and additional H 2 O to CO 2 and H 2 . Furthermore, it is shown the H 2 obtained per pound of carbon has 23 percent greater heating value than the carbon so that some nuclear energy is also fixed. Finally, a gas core reactor plant floating in the ocean is conceptualized which produces H 2 , fresh water and sea salts from coal

  13. Study on the Low-Temperature Oxidation Law in the Co-Mining Face of Coal and Oil Shale in a Goaf—A Case Study in the Liangjia Coal Mine, China

    Directory of Open Access Journals (Sweden)

    Gang Wang

    2018-01-01

    Full Text Available The low-temperature oxidation law of coal and rock mass is the basis to study spontaneous combustion in goafs. In this paper, the low-temperature oxidation laws of coal, oil shale, and mixtures of coal and oil shale were studied by using laboratory programmed heating experiments combined with a field beam tube monitoring system. The results from the programmed heating experiments showed that the heat released from oil shale was less than that from coal. Coal had a lower carbon monoxide (CO-producing temperature than oil shale, and the mixture showed obvious inhibiting effects on CO production with an average CO concentration of about 38% of that for coal. Index gases were selected in different stages to determine the critical turning point temperature for each stage. The field beam tube monitoring system showed that the temperature field of the 1105 co-mining face of coal and oil shale in the goaf of the Liangjia Coal Mine presented a ladder-like distribution, and CO concentration was the highest for coal and lower for the mixture of coal and oil shale, indicating that the mixture of coal with oil shale had an inhibiting effect on CO production, consistent with the results from the programmed heating experiments.

  14. Treatment of Oil & Gas Produced Water.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  15. Aqueous Rare Earth Element Patterns and Concentration in Thermal Brines Associated With Oil and Gas Production

    Energy Technology Data Exchange (ETDEWEB)

    Nye, Charles [University of Wyoming; Quillinan, Scott Austin [University of Wyoming; Neupane, Ghanashyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); McLing, Travis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-13

    This study is part of a joint effort by the University of Wyoming (UW) School of Energy Resources (SER), the UW Engineering Department, Idaho National Laboratories (INL), and the United States Geological Survey (USGS) to describe rare earth element concentrations in oil and gas produced waters and in coal-fired power station ash ponds. In this work we present rare earth element (REE) and trace metal behavior in produced water from four Wyoming oil and gas fields and surface ash pond water from two coal-fired power stations. The concentration of REEs in oil and gas produced waters is largely unknown. For example, of the 150,000 entries in the USGS National Produced Waters Geochemical Database less than 5 include data for REEs. Part of the reason for this scarcity is the analytical challenge of measuring REEs in high salinity, hydrocarbon-bearing waters. The industry standard for water analysis struggles to detect REEs in natural waters under ideal conditions. The detection of REEs in oil and gas field samples becomes all but impossible with the background noise and interferences caused by high concentrations of non-REE ions and residual hydrocarbons. The INL team members have overcome many of these challenges (e.g. McLing, 2014), and continue to develop their methods. Using the methods of the INL team members we measured REEs in high salinity oil and gas produced waters. Our results show that REEs exist as a dissolved species in all waters measured for this project, typically within the parts per trillion range. The samples may be grouped into two broad categories analytically, and these categories match their genesis: Wyoming oil and gas brines contain elevated levels of Europium, and Wyoming industrial pond waters show elevation in heavy REEs (HREEs). While broadly true, important variations exist within both groups. In the same field Europium can vary by more than an order of magnitude, and likewise HREEs in industrial ponds at the same site can vary by more than

  16. Low-temperature carbonization of bituminous coal for the production of solid, liquid, and gaseous fuels

    Energy Technology Data Exchange (ETDEWEB)

    1942-01-01

    Properties and uses of low-temperature coke for producing ferrosilicon, CaC/sub 2/ generator gas and water gas, as a fuel for boilers and household use and as a diluent for coking coal, and the properties and uses of low-temperature tar, gasoline, gas, and liquefied gas are described. By using a circulating gas, it is possible to obtain in low-temperature carbonization of bituminous coal a fuel oil for the navy. Aging-test data of such an oil are given. Several plants in Upper Silesia, using the Lurgi circulation process are producing a fuel oil that meets specification.

  17. The use of mechanically activated micronized coal in thermal power engineering

    Directory of Open Access Journals (Sweden)

    Burdukov Anatoliy P.

    2016-01-01

    Full Text Available Coal is one of the main energy resources and development of new promising technologies on its basis is certainly topical. This article discusses the use of new technology of gas and fuel oil replacement by mechanically activated micronized coal in power engineering: ignition and stabilization of pulverized coal flame combustion, as well as gasification of micronized coal in the flow. The new technology coal combustion with two stages of grinding is suggested. Optimization of the scheme of two-stage combustion is calculated. The first experimental data on the combustion process are obtained. The first demonstration tests on gas and heavy oil replacement by micronized coal during boiler ignition were carried out in the real power boiler with the capacity of 320 tons of steam per hour.

  18. Indication to distinguish the burst region of coal gas from seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Jian-yuan Cheng; Hong-wei Tang; Lin Xu; Yan-fang Li [China Coal Research Institute, Xi' an (China). Xi' an Research Institute

    2009-09-15

    The velocity of an over-burst coal seam is about 1/3 compared to a normal coal seam based on laboratory test results. This can be considered as a basis to confirm the area of coal and gas burst by seismic exploration technique. Similarly, the simulation result of the theoretical seismic model shows that there is obvious distinction between over-burst coal and normal coal based on the coal reflection's travel-time, energy and frequency. The results from the actual seismic data acquired in the coal and gas over-burst cases is consistent with that of the laboratory and seismic modeling; that is, in the coal and gas burst region, seismic reflection travel time is delayed, seismic amplitude is weakened and seismic frequency is reduced. Therefore, it can be concluded that seismic exploration technique is promising for use in distinguishing coal and gas over-burst regions based on the variation of seismic reflection travel time, amplitude and frequency. 7 refs., 6 figs.

  19. Experimental evaluation of sorbents for sulfur control in a coal-fueled gas turbine slagging combustor

    International Nuclear Information System (INIS)

    Cowell, L.H.; Wen, C.S.; LeCren, R.T.

    1992-01-01

    This paper reports on a slagging combustor that has been used to evaluate three calcium-based sorbents for sulfur capture efficiency in order to assess their applicability for use in a oil-fueled gas turbine. Testing is competed in a bench-scale combustor with one-tenth the heat input needed for the full-scale gas turbine. The bench-scale rig is a two-stage combustor featuring a fuel-rich primary zone an a fuel-lean secondary zone. The combustor is operated at 6.5 bars with inlet air preheated to 600 K. Gas temperatures of 1840 K are generated in the primary zone and 1280 K in the secondary zone. Sorbents are either fed into the secondary zone or mixed with the coal-water mixture and fed into the primary zone. Dry powered sorbents are fed into the secondary zone by an auger into one of six secondary air inlet ports. The three sorbents tested in the secondary zone include dolomite, pressure-hydrated dolomitic lime, and hydrated lime. Sorbents have been tested while burning coal-water mixtures with coal sulfur loadings of 0.56 to 3.13 weight percent sulfur. Sorbents are injected into the secondary zone at varying flow rates such that the calcium/sulfur ratio varies from 0.5 to 10.0

  20. Numerical Assessment of the Influences of Gas Pressure on Coal Burst Liability

    Directory of Open Access Journals (Sweden)

    Haochen Zhao

    2018-01-01

    Full Text Available When coal mines exploit deep seams with high-gas content, risks are encountered due to the additional high likelihood of rock bursting potential problems. The bursts of coal pillars usually lead to severe fatalities, injuries, and destruction of property, including impeding access to active mine workings underground. The danger exists given that conditions in the already highly brittle coal material can be exacerbated by high stress and high gas pressure conditions. It is thus critical to develop methods that improve current understanding about bursting liability, and techniques to forecast or prevent coal bursting in underground coal mines. This study uses field data from a deep coal mine, and numerical modeling to investigate the effects of gas pressure and mechanical compressive stresses on coal bursting liability in high gas content coal seams. The bursting energy index is adopted to determine the coal bursting liability under high gas pressure conditions. The adopted methodology uses a two-staged approach comprising investigating the influence of gas pressure on the bursting liability of coal pillar, and the influence of the gas pressure on the resulting pillar failure mode. Based on numerical simulations of coal pillars, correlations are observed between the magnitudes of gas pressures and the bursting energy index. Irrespective of pillar size, failure time is shortest when the gas pressure achieves a threshold value between 50 kPa to 70 kPa. At 50 kPa, the value of the BEI increases by 50% going from the 4 m pillar to the 6 m pillar. The value of the BEI increases by 43% going from the 6 m high pillar to the 8 m high pillar at 50 kPa. When pillars fail there is a degree of stress relief leading to a reduction in bursting liability. The results suggest that before 50 kPa, pillar failure is largely due to mechanical loading. After 50 kPa, pillar failure is largely due to excessive gas pressures.

  1. Cyclone reburn using coal-water fuel: Pilot-scale development and testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  2. Organization, activities, and issues with particular emphasis on coal

    International Nuclear Information System (INIS)

    Cole, D.R.

    1992-01-01

    The paper discusses Colorado's coal industry; the Colorado Mining Association; lobbying and legislative actions; industry networking, information, and communications; coal issues and activities; and Colorado issues and activities. Some of the latter include: land reclamation of mined lands; oil and gas drilling and coal mine conflicts; wild and scenic river designations; general permitting of coal mining discharges; and coal mine land reclamation awards

  3. Biological conversion of coal gas to methane

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S; Vega, J L; Clausen, E C; Gaddy, J L

    1988-08-01

    Biological conversion of low-Btu coal synthesis gas to higher Btu methane was demonstrated using both pure co-cultures and/or adapted-mixed anaerobic bacteria. Peptostreptococcus productus metabolized coal gas to mainly acetate and CO/sub 2/. The co-cultures containing methanogens converted these products to methane. In mixed culture studies, CH/sub 4/ and small amounts of acetate were produced. Reactor studies using stirred-tank and immobilized cell reactors exhibited excellent potential to convert CO, CO/sub 2/ and H/sub 2/ to methane at higher gas flow rates. Gas retention times ranging from 0.7 to 2 hours and high agitation were required for 90 percent CO conversion in these systems. This paper also illustrates the potential of biological methanation and demonstrates the need for good mass transfer in converting gas phase substrates. 21 refs., 1 fig., 7 tabs.

  4. Oil and Gas Emergency Policy: Sweden 2012 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Oil and natural gas represented respectively 27% and 3% of Sweden’s total primary energy supply (TPES) in 2010. With coal representing 5% of TPES, Sweden has the lowest share of fossil fuels in the energy supply mix among IEA member countries. This is a significant difference from the mid-1970s, when fossil fuels made up three-quarters of Sweden’s energy supply, and is the result of a concerted effort to move away from the use of oil through the development of nuclear and renewable energy sources. Sweden’s energy policy seeks to further increase the share of renewable energy sources, including having them provide half of all energy, and 10% of all transport needs, by 2020. The share of fossil fuel is also to be further reduced, through plans to fully eliminate their use for heating purposes by 2020 and having a vehicle stock in Sweden that is ''independent'' of fossil fuels by 2030. Under this policy, demand for both oil and natural gas is anticipated to decline from current levels. Oil demand in Sweden was nearly 330 thousand barrels per day (kb/d) in 2011. While fully dependent on imports to meet domestic oil demand, Sweden is a net exporter of refined oil products. Overall oil demand will likely decline in the coming decade, however demand for oil in the transport sector is expected to grow. At the same time, oil demand will be ever more concentrated on transport diesel, with demand for the fuel reaching over 110 kb/d by 2020 compared to just under 80 kb/d in 2011. Concerning natural gas, consumption in Sweden totalled 1.3 billion cubic metres (bcm) in 2011, all of which was supplied via a single interconnector with Denmark. While natural gas plays only a minor role in Sweden’s TPES, its role in the energy supply of southern and western Sweden is much more substantial, accounting for around 20% of the area’s total energy use. Around 30 large consumers, including CHP plants, account for roughly 80% of total gas demand in the country

  5. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  6. Two-stage coal liquefaction without gas-phase hydrogen

    Science.gov (United States)

    Stephens, H.P.

    1986-06-05

    A process is provided for the production of a hydrogen-donor solvent useful in the liquefaction of coal, wherein the water-gas shift reaction is used to produce hydrogen while simultaneously hydrogenating a donor solvent. A process for the liquefaction of coal using said solvent is also provided. The process enables avoiding the use of a separate water-gas shift reactor as well as high pressure equipment for liquefaction. 3 tabs.

  7. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Science.gov (United States)

    2010-04-01

    ... produced from coal seams. 270.302 Section 270.302 Conservation of Power and Water Resources FEDERAL ENERGY... produced from coal seams. A person seeking a determination that natural gas is occluded natural gas produced from coal seams must file an application with the jurisdictional agency which contains the...

  8. Studies for the stabilization of coal-oil mixtures. Final report, August 1978-May 1981

    Energy Technology Data Exchange (ETDEWEB)

    Botsaris, G.D.; Glazman, Y.M.; Adams-Viola, M.

    1981-01-01

    A fundamental understanding of the stabilization of coal-oil mixtures (COM) was developed. Aggregation of the coal particles was determined to control both the sedimentation and rheological properties of the COM. Sedimentation stability of COM prepared with coal, 80% < 200 mesh, is achieved by particle aggregation, which leads to the formation of a network of particles throughout the oil. The wettability of coal powders was evaluated by the Pickering emulsion test and a spherical agglomeration test to assess its effect on the stability of various COM formulations. Sedimentation stability of hydrophilic coal-oil-water mixtures (COWM) involves the formation of water bridges between the coal particles, while less stabilization of oleophilic COWM is achieved by the formation of an emulsion. Anionic SAA were least sensitive to the coal type and enhanced the aggregation stability of the suspension. The effect of cationic SAA, nonionic SAA and polymer additives depended upon the specific chemical structure of the SAA, the water content of the COM and the type of coal. The sedimentation stability of ultrafine COM was not directly due to the fineness of the powder but due to the formation of a network of flocculated particles.

  9. DEVELOPMENT OF A VORTEX CONTAINMENT COMBUSTOR FOR COAL COMBUSTION SYTEMS

    Science.gov (United States)

    The report describes the development of a vortex containment combustor (VCC) for coal combustion systems, designed to solve major problems facing the conversion of oil- and gas-fired boilers to coal (e.g., derating, inorganic impurities in coal, and excessive formation of NOx and...

  10. Coal information 1995

    International Nuclear Information System (INIS)

    1996-01-01

    This volume is a comprehensive reference book on current world coal market trends and long-term prospects to 2010. It contains an in-depth analysis of the 1995 international coal market covering prices, demand, trade, supply and production capacity as well as over 450 pages of country specific statistics on OECD and key non-OECD coal producing and consuming countries. The book also includes a summary of environmental policies on climate change and on coal-related air quality issues as well as essential facts on coal-fired power stations in coal-importing regions, on coal ports world-wide and on emission standards for coal-fired boilers in OECD countries. Coal Information is one of a series of annual IEA statistical publications on major energy sources; other reports are Oil and Gas Information and Electricity Information. Coal Information 1995 is published in July 1996. (author)

  11. Assessment of industrial energy options based on coal and nuclear systems

    International Nuclear Information System (INIS)

    Anderson, T.D.; Bowers, H.I.; Bryan, R.H.; Delene, J.G.; Hise, E.C.; Jones, J.E. Jr.; Klepper, O.H.; Reed, S.A.; Spiewak, I.

    1975-07-01

    Industry consumes about 40 percent of the total primary energy used in the United States. Natural gas and oil, the major industrial fuels, are becoming scarce and expensive; therefore, there is a critical national need to develop alternative sources of industrial energy based on the more plentiful domestic fuels--coal and nuclear. This report gives the results of a comparative assessment of nuclear- and coal-based industrial energy systems which includes technical, environmental, economic, and resource aspects of industrial energy supply. The nuclear options examined were large commercial nuclear power plants (light-water reactors or high-temperature gas-cooled reactors) and a small [approximately 300-MW(t)] special-purpose pressurized-water reactor for industrial applications. Coal-based systems selected for study were those that appear capable of meeting environmental standards, especially with respect to sulfur dioxide; these are (1) conventional firing using either low- or high-sulfur coal with stack-gas scrubbing equipment, (2) fluidized-bed combustion using high-sulfur coal, (3) low- and intermediate-Btu gas, (4) high-Btu pipeline-quality gas, (5) solvent-refined coal, (6) liquid boiler fuels, and (7) methanol from coal. Results of the study indicated that both nuclear and coal fuel can alleviate the industrial energy deficit resulting from the decline in availability of natural gas and oil. However, because of its broader range of application and relative ease of implementation, coal is expected to be the more important substitute industrial fuel over the next 15 years. In the longer term, nuclear fuels could assume a major role for supplying industrial steam. (U.S.)

  12. Acoustic Emission Characteristics of Gas-Containing Coal during Loading Dilation Process

    Directory of Open Access Journals (Sweden)

    Z. Q. Yin

    2015-12-01

    Full Text Available Raw coal was used as the study object in this paper to identify the evolution characteristics of acoustic emission (AE during the dilation process of gas-containing coal. The coal specimens were stored in gas seal devices filled with gas at different pressures (0, 0.5, 1.0, and 1.5 MPa for 24 h prior to testing. Then, the specimens were tested in a rock-testing machine, and the deformation and crack fracture patterns were recorded by using strain gauges and an AE system. The axial and volumetric strains–stress curves were analyzed in relation to the AE and the failure mode. Results show that as gas pressure increases, the uniaxial compression strength and elasticity modulus of gas-containing coal decreases, whereas the Poisson’s ratio increases. In all the coal specimens, the dilation initiation stress decreases, and the dilation degree increases. During the dilation process, before the loaded coal specimens reach peak stress, and as the load increases, the changes in the specimens and in the AE energy parameter of specimens can be divided into four phases: crack closure deformation, elastic deformation, stable crack propagation, and unstable crack propagation (dilation process. Across the four phases, the AE energy increases evidently during crack closure and elastic deformation but decreases during stable crack propagation. As the gas pressure increases, the AE signal frequency increases from 4.5 KHz to 8.1 KHz during the dilation process. Thus, the gas presence in coal specimens exerts a significant influence on the closure of sample cracks and dilation damage.

  13. Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Huang, Runze; Ries, Robert J.; Masanet, Eric

    2015-01-01

    China has the world's largest shale gas reserves, which might enable it to pursue a new pathway for electricity generation. This study employed hybrid LCI (life cycle inventory) models to quantify the ETW (extraction-to-wire) GHG (greenhouse gas) emissions and water consumption per kWh of coal- and shale gas-fired electricity in China. Results suggest that a coal-to-shale gas shift and upgrading coal-fired power generation technologies could provide pathways to less GHG and water intensive power in China. Compared to different coal-fired generation technologies, the ETW GHG emissions intensity of gas-fired CC (combined cycle) technology is 530 g CO 2 e/kWh, which is 38–45% less than China's present coal-fired electricity. Gas-fired CT (combustion turbine) technology has the lowest ETW water consumption intensity at 960 g/kWh, which is 34–60% lower than China's present coal-fired electricity. The GHG-water tradeoff of the two gas-fired power generation technologies suggests that gas-fired power generation technologies should be selected based on regional-specific water resource availabilities and electricity demand fluctuations in China. However, the low price of coal-fired electricity, high cost of shale gas production, insufficient pipeline infrastructures, and multiple consumers of shale gas resources may serve as barriers to a coal-to-shale gas shift in China's power sector in the near term. - Highlights: • The GHG and water footprints of coal- and shale gas-fired electricity are estimated. • A coal-to-shale gas shift can enable less GHG and water intensive power in China. • The GHG emissions of shale gas-fired combined cycle technology is 530 g CO 2 e/kWh. • The water consumption of shale gas-fired combustion turbine technology is 960 g/kWh. • Shale gas-fired power generation technologies selection should be regional-specific

  14. COST EFFECTIVE REGULATORY APPROACHES TO ENHANCE DOMESTIC OIL & GAS PRODUCTION AND ENSURE THE PROTECTION OF THE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Ben Grunewald; Paul Jehn; Tom Gillespie; Ben Binder

    2004-12-21

    The Environmental Information Management Suite/Risk Based Data Management System (EIMS/RBDMS) and Cost Effective Regulatory Approach (CERA) programs continue to be successful. All oil and gas state regulatory programs participate in these efforts. Significant accomplishments include: streamline regulatory approaches, enhancing environmental protection, and making oil and gas data available via the Internet. Oil and gas companies worldwide now have access to data on state web sites. This reduces the cost of exploration and enables companies to develop properties in areas that would have been cost prohibited for exploration. Early in project, GWPC and State Oil and Gas agencies developed the EIMS and CERA strategic plan to prioritize long term development and implementation. The planning process identifies electronic commerce and coal bed methane as high priorities. The group has involved strategic partners in industry and government to develop a common data exchange process. Technical assistance to Alaska continues to improve their program management capabilities. New initiatives in Alaska include the development of an electronic permit tracking system. This system allows managers to expedite the permitting process. Nationwide, the RBDMS system is largely completed with 22 states and one Indian Nation now using this nationally accepted data management system. Additional remaining tasks include routine maintenance and the installation of the program upon request for the remaining oil and gas states. The GWPC in working with the BLM and MMS to develop an XML schema to facilitate electronic permitting and reporting (Appendix A, B, and C). This is a significant effort and, in years to come, will increase access to federal lands by reducing regulatory barriers. The new initiatives are coal bed methane and e-commerce. The e-commerce program will provide industry and BLM/MMS access to the millions of data points housed in the RBDMS system. E-commerce will streamline

  15. Sustainable global energy development: The case of coal

    International Nuclear Information System (INIS)

    Brendow, Klaus

    2004-01-01

    Market-driven scenarios anticipate world coal demand to increase during the entire 21st century. The increase during 2000-2030 would range from 53 % to 100 %. Developing countries would take the lead in world coal demand growth. In western Europe, demand, and more so production, would decline, in central and eastern Europe increase. Carbon abatement policies would not impact on coal demand before 2020 - 2030. By 2050 however, under such constraints, coal demand would have declined by one third (only), - less in developing, more in developed countries. Under market conditions, the share of coal in world primary energy supplies, at 26 % in 2000, would decline to 24 % in 2020 and 22 % 2050. Carbon constraints would reduce the share of coal to 11 % in 2050, which (nevertheless) corresponds to 2.1 bill. tce (2000: 3.4 bill. tce). The major short-term competitor of coal would be gas, particularly under CO 2 emission constraints, although marginal gas is hardly better in terms of life cycle GHG emissions than marginal oil or coal. During 2001-2025, the increase of CO 2 emissions from coal (+1.1 bill. t of carbon) would be lower than for gas (+1.3 bill. t) and oil (+1.5 bill. t). In the longer term, new nuclear could emerge as a serious competitor. Electricity generators would remain the predominant customer for coal. By 2030, coal would cover 45 % of world electricity generation compared with 37 % in 2000. By 2020, coal-based methanol and hydrogen would cover 3 % of the world's transportation fuel demand (100 Mtoe), by 2050 14 % (660 Mtoe). Cumulative investments in coal mining, shipping and combustion during 2001-2030 would amount to USD 1900 billion, - 12 % of world investments in energy supply. International prices of coal relative to oil and gas would continue evolving in favour of coal enhancing its competitiveness. Almost nil in 2000, advanced coal combustion technologies would cover 33 % of world power generation in 2030, and 72 % of coal-based power generation

  16. Application of coal petrographic methods in petroleum and natural gas exploration. Anwendung kohlenpetrographischer Methoden bei der Erdoel- und Erdgasprospektion

    Energy Technology Data Exchange (ETDEWEB)

    Teichmueller, M.

    1971-02-15

    The relationship that exists between coalification and the formation of liquid petroleum and natural gas depends entirely upon the temperature in the earth's crust and the duration of heating. The degree of coalification can be determined by reflectivity measurements on very small vitrinitic (huminitic) inclusions in sedimentary rocks, because a satisfactory correlation has been established between mean reflectivity (R/sub m Oil/) and different parameters of chemical rank using 900 vitrites of different rank. This paper reports the considerable experience obtained with this method using cores and cuttings from boreholes of the German oil industry. Subsequently, examples from other countries are described which confirm the applicability of the method. Results obtained so far suggest that oil deposits may occur when the reflectivity (R/sub m Oil/) of the vitrinite lies between 0.3 and 1.0% (brown coal to high-volatile bituminous stage), whereas economic gas deposits may be found when R/sub m Oil/ extends from 0.7 to 2.0% (high-low volatile bituminous stage).

  17. Oil and gas USSR

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book is a directory of enterprises under the Ministry of Oil and Gas Industry of the former USSR and is published for winter 1991 through spring 1992. It contains names and addresses for associations, institutes, design and engineering offices, oil and gas drilling administrations, and gas processing plants

  18. Effect of Recycle Solvent Hydrotreatment on Oil Yield of Direct Coal Liquefaction

    Directory of Open Access Journals (Sweden)

    Shansong Gao

    2015-07-01

    Full Text Available Effects of the recycle solvent hydrotreatment on oil yield of direct coal liquefaction were carried out in the 0.18 t/day direct coal liquefaction bench support unit of National Engineering Laboratory for Direct Coal Liquefaction (China. Results showed that the hydrogen-donating ability of the hydrogenated recycle solvent improved and the hydrogen consumption of solvent hydrotreatment was increased by decreasing liquid hourly space velocity (LHSV from 1.5 to 1.0 h−1 and increasing reaction pressure from 13.7 to 19.0 MPa. The hydrogen-donating ability of the hydrogenated recycle solvent was enhanced, thus promoting the oil yield and coal conversion of the liquefaction reaction. The coal conversion and distillates yield of coal liquefaction were increased from 88.74% to 88.82% and from 47.41% to 49.10%, respectively, with the increase in the solvent hydrotreatment pressure from 13.7 to 19.0 MPa. The coal conversion and distillates of coal liquefaction were increased from 88.82% to 89.27% and from 49.10% to 54.49%, respectively, when the LHSV decreased from 1.5 to 1.0 h−1 under the solvent hydrotreatment pressure of 19.0 MPa.

  19. Process of transforming into light oils heavy oils from carbonization of lignites, coals, etc

    Energy Technology Data Exchange (ETDEWEB)

    Mony, H

    1926-12-20

    A process is described for transforming into light oils the heavy oils coming from the carbonization of lignites, peats, coals, and shales, and heavy oils from original minerals and vegetables, consisting of heating the heavy oils or tars in the presence of one or more solid or liquid substances conveniently chosen, with a veiw to effect distillation of the oils under atmospheric pressure at an appropriate temperature, the solids or liquid substances favoring the formation of light products under the influence of heat, being preferably added to the oil before admitting it to the retort and heating, so that the light oils are obtained from the heavy oils in a single operation.

  20. USGS assessment of undiscovered oil and gas resources in Paleogene strata of the U.S. Gulf of Mexico coastal plain and state waters

    Science.gov (United States)

    Warwick, Peter D.; Coleman, James; Hackley, Paul C.; Hayba, Daniel O.; Karlsen, Alexander W.; Rowan, Elisabeth L.; Swanson, Sharon M.; Kennan, Lorcan; Pindell, James; Rosen, Norman C.

    2007-01-01

    This report presents a review of the U.S. Geological Survey (USGS) 2007 assessment of the undiscovered oil and gas resources in Paleogene strata underlying the U.S. Gulf of Mexico Coastal Plain and state waters. Geochemical, geologic, geophysical, thermal maturation, burial history, and paleontologic studies have been combined with regional cross sections and data from previous USGS petroleum assessments have helped to define the major petroleum systems and assessment units. Accumulations of both conventional oil and gas and continuous coal-bed gas within these petroleum systems have been digitally mapped and evaluated, and undiscovered resources have been assessed following USGS methodology.The primary source intervals for oil and gas in Paleogene (and Cenozoic) reservoirs are coal and shale rich in organic matter within the Wilcox Group (Paleocene-Eocene) and Sparta Formation of the Claiborne Group (Eocene); in addition, Cretaceous and Jurassic source rocks probably have contributed substantial petroleum to Paleogene (and Cenozoic) reservoirs.For the purposes of the assessment, Paleogene strata have divided into the following four stratigraphic study intervals: (1) Wilcox Group (including the Midway Group and the basal Carrizo Sand of the Claiborne Group; Paleocene-Eocene); (2) Claiborne Group (Eocene); (3) Jackson and Vicksburg Groups (Eocene-Oligocene); and (4) the Frio-Anahuac Formations (Oligocene). Recent discoveries of coal-bed gas in Paleocene strata confirm a new petroleum system that was not recognized in previous USGS assessments. In total, 26 conventional Paleogene assessment units are defined. In addition, four Cretaceous-Paleogene continuous (coal-bed gas) assessment units are included in this report. Initial results of the assessment will be released as USGS Fact Sheets (not available at the time of this writing).Comprehensive reports for each assessment unit are planned to be released via the internet and distributed on CD-ROMs within the next year.

  1. Coal Mine Methane in Russia [Russian Version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This paper discusses coal mine methane emissions (CMM) in the Russian Federation and the potential for their productive utilisation. It highlights specific opportunities for cost-effective reductions of CMM from oil and natural gas facilities, coal mines and landfills, with the aim of improving knowledge about effective policy approaches.

  2. Study on Fluid-solid Coupling Mathematical Models and Numerical Simulation of Coal Containing Gas

    Science.gov (United States)

    Xu, Gang; Hao, Meng; Jin, Hongwei

    2018-02-01

    Based on coal seam gas migration theory under multi-physics field coupling effect, fluid-solid coupling model of coal seam gas was build using elastic mechanics, fluid mechanics in porous medium and effective stress principle. Gas seepage behavior under different original gas pressure was simulated. Results indicated that residual gas pressure, gas pressure gradient and gas low were bigger when original gas pressure was higher. Coal permeability distribution decreased exponentially when original gas pressure was lower than critical pressure. Coal permeability decreased rapidly first and then increased slowly when original pressure was higher than critical pressure.

  3. Report on the achievements in research and development of a coal liquefaction technology in the Sunshine Project in fiscal 1981. Development of a high-calorie gas manufacturing technology (research on a pressurized and fluidized gasification system for coal and heavy oil mixed materials); Sekitan gas ka gijutsu no kenkyu kaihatsu seika hokokusho. Kokarori gas seizo gijutsu no kaihatsu (sekitan oyobi jushitsuyu kongo genryo no kaatsu ryudo gas ka hoshiki no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    This paper describes the achievements in developing a high-calorie gas manufacturing technology for coal gasification in the Sunshine Project in fiscal 1981. Pulverized coal and heavy oil are heated and stirred to make it a slurry, which is forced into a fluidized bed gasification furnace together with spraying steam, and pyrolyzed by using a unique slurry feeding system (a hydrohoist). Carbon-like material as a by-product (char) is partially oxidized (burned) by steam and oxygen at the lower part of the gasification furnace. The material is gasified in the furnace, where the generated heat is sent to the pyrolysis zone in the upper part by the gas and fluidized bed media particles (char), and utilized as a heat source for the slurry pyrolysis. The produced gas is cooled by an indirect heat exchanger of the fluidized bed system and a scrubber to separate tar, dust and unreacted steam. Part of the sensible heat is recovered as steam. Thus, high-calorie gas of 6,000 kcal/Nm{sup 3} can be obtained, which is rich in methane, CO and hydrogen. Fiscal 1981 has performed a continuous test by using an internal heat type low-pressure gasification equipment to evaluate its compatibility to the diversification of materials. (NEDO)

  4. The oil and gas industry in 2008

    International Nuclear Information System (INIS)

    2008-01-01

    Illustrated by many graphs and tables, this report presents and comments many data and figures on many aspects of the oil and gas industry in the world and in France: worldwide oil and gas markets, worldwide oil exploration and production, worldwide gas exploration and production and stakes for European supply, exploration and production in France, oil and oil-based industry, hydrocarbon supplies, refining in France, fuel quality, substitution fuels, domestic transport of oil products, gas infrastructures, oil product storage, oil and gas product consumption, hydrocarbon taxing, oil product prices, and oil product distribution

  5. Propagation characteristics of pulverized coal and gas two-phase flow during an outburst.

    Science.gov (United States)

    Zhou, Aitao; Wang, Kai; Fan, Lingpeng; Tao, Bo

    2017-01-01

    Coal and gas outbursts are dynamic failures that can involve the ejection of thousands tons of pulverized coal, as well as considerable volumes of gas, into a limited working space within a short period. The two-phase flow of gas and pulverized coal that occurs during an outburst can lead to fatalities and destroy underground equipment. This article examines the interaction mechanism between pulverized coal and gas flow. Based on the role of gas expansion energy in the development stage of outbursts, a numerical simulation method is proposed for investigating the propagation characteristics of the two-phase flow. This simulation method was verified by a shock tube experiment involving pulverized coal and gas flow. The experimental and simulated results both demonstrate that the instantaneous ejection of pulverized coal and gas flow can form outburst shock waves. These are attenuated along the propagation direction, and the volume fraction of pulverized coal in the two-phase flow has significant influence on attenuation of the outburst shock wave. As a whole, pulverized coal flow has a negative impact on gas flow, which makes a great loss of large amounts of initial energy, blocking the propagation of gas flow. According to comparison of numerical results for different roadway types, the attenuation effect of T-type roadways is best. In the propagation of shock wave, reflection and diffraction of shock wave interact through the complex roadway types.

  6. Asia's energy future: The case of coal - opportunities and constraints

    International Nuclear Information System (INIS)

    Johnson, C.J.

    1997-01-01

    In this paper the author presents his views about the changing energy mix in Asia to the year 2020, and why the importance of coal will continue. The topics of the paper include Asia's energy mix compared with the rest of the world including nuclear power, hydropower, solar and wind energy, oil, coal, and natural gas; the economics of coal and natural gas; coal production and consumption; new energy sources; Asia's energy mix in the year 2020; resource depletion and conclusions. 4 figs., 1 tab

  7. Coal yearbook 1993

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This book is the first coal yearbook published by ATIC (France). In a first chapter, economical context of coal worldwide market is analyzed: comparative evaluations on coal exports and imports, coal industry, prices, production in USA, Australia, South Africa, China, former USSR, Poland, Colombia, Venezuela and Indonesia are given. The second chapter describes the french energy context: national coal production, imports, sectorial analysis, maritime transport. The third chapter describes briefly the technologies of clean coal and energy saving developed by Charbonnages de France: fossil-fuel power plants with combined cycles and cogeneration, fluidized beds for the recovery of coal residues, recycling of agricultural wastes (sugar cane wastes) in thermal power plant, coal desulfurization for air pollution abatement. In the last chapter, statistical data on coal, natural gas and crude oil are offered: world production, world imports, world exports, french imports, deliveries to France, coal balance, french consumption of primary energy, power generation by fuel type

  8. Shale oil. II. Gases from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R H; Manning, P D.V.

    1927-01-01

    Oil shale (from Colorado) was pyrolyzed, and the gaseous products obtained were studied. The organic material present in oil shale contains carboxyl groups that lose carbon dioxide during pyrolysis before the formation of soluble bitumen. Nitrogen was evolved as ammonia in two stages and was not continuous. The first evolution was from loosely combined nitrogen structures, whereas the second was from more stable forms. No hydrocarbons were present as such in the kerogen. The gaseous products from oil-shale pyrolysis were similar to those obtained by distillation of colophony, amber, coal, and wood. This places the kerogen of the oil shale in the same series of carbonaceous substances as those from which coals are formed. Kerogen appeared to be decomposed in three steps; namely, to insoluble bitumen, to soluble bitumen, and to oil (gas evolution accompanied each step). Its low solubility and the character of its pyrolytic gas indicated that kerogen is largely a resinous residue from vegetation of the past era and may have been formed by the tranportation of coal-forming organic debris to inland salty lakes or carried to the sea by clay-laden waters. The salt water and the natural settling action precipitated the clay and organic matter in an almost homogeneous deposit. Oil shales have existed to the present time because they have not been subjected to high pressures or elevated temperatures that would have changed them to petroleum.

  9. Fast and safe gas detection from underground coal fire by drone fly over

    International Nuclear Information System (INIS)

    Dunnington, Lucila; Nakagawa, Masami

    2017-01-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. - Graphical abstract: Concluding Figure for Gas Ratios: Plotted points and ranges of adjusted literature data. Stars represent bituminous and subbituminous coal types; Ovals represent lignite. - Highlights: • Recognize underground coal fire as a potential source of energy. • Developed a creative, safe, reliable and fast gas detection method. • Developed a concept of gas ratio measurement method that can provide more accurate description of underground burning coal resource.

  10. Energy supply: No gas from coal

    Energy Technology Data Exchange (ETDEWEB)

    Kempkens, W

    1983-03-01

    In the last twelve years the share of natural gas in the total consumption of primary energy has increased twelve-fold and now amounts to 16 per cent. One-third of this is produced in West Germany. Although world deposits will last well into the next century, attempts are already being made to perfect techniques for obtaining gas from coal. However, the cubic metre price of synthetic gas is still anything but competitive.

  11. Pyrolysis and liquefaction of acetone and mixed acetone/ tetralin swelled Mukah Balingian Malaysian sub-bituminous coal-The effect on coal conversion and oil yield

    International Nuclear Information System (INIS)

    Mohd Pauzi Abdullah; Mohd Azlan Mohd Ishak; Khudzir Ismail

    2008-01-01

    The effect of swelling on Mukah Balingian (MB) Malaysian sub-bituminous coal macrostructure was observed by pyrolysing the swelled coal via thermogravimetry under nitrogen at ambient pressure. The DTG curves of the pyrolyzed swelled coal samples show the presence of evolution peaks at temperature ranging from 235 - 295 degree Celsius that are due to releasing of light molecular weight hydrocarbons. These peaks, however, were not present in the untreated coal, indicating some changes in the coal macrostructure has occurred in the swelled coal samples. The global pyrolysis kinetics for coal that follows the first-order decomposition reaction was used to evaluate the activation energy of the pyrolyzed untreated and swelled coal samples. The results thus far have shown that the activation energy for the acetone and mixed acetone/ tetralin-swelled coal samples exhibit lower values than untreated coal, indicating less energy is required during the pyrolysis process due to the weakening of the coal-coal macromolecular interaction network. Moreover, liquefaction on the swelled coal samples that was carried out at temperatures ranging from 360 to 450 degree Celsius at 4 MPa of nitrogen pressure showed the enhancement of the coal conversion and oil yield at temperature of 420 degree Celsius, with retrogressive reaction started to dominate at higher temperature as indicated by decreased and increased in oil yield and high molecular weight pre-asphaltene, respectively. These observations suggest that the solvent swelling pre-treatment using acetone and mixed acetone/ tetralin can improve the coal conversion and oil yields at less severe liquefaction condition. (author)

  12. Treating effluents; recovering coal, etc

    Energy Technology Data Exchange (ETDEWEB)

    Jones, F B; Bury, E

    1920-02-18

    Liquor obtained by scrubbing coal gas with sea-water or fresh water, and containing or having added to it finely-divided carbonaceous material in suspension, is subjected to a froth-flotation process to recover the carbonaceous matter and organic materials in the froth, and render the remaining liquor innocuous. Liquor obtained by scrubbing distillation gases, such as coal gas, may be used as a frothing-agent in a froth flotation process for the recovery of carbonaceous substances such as coal from materials containing them, thereby producing a froth containing the coal, etc., and also the organic materials from the liquor. In some cases the effluent may be diluted with sea-water, and, in recovering carbonaceous shales, there may be added to the liquor a small proportion of paraffin oil.

  13. Power-generating process of obtaining gas-energy carrier and reducer from coal

    International Nuclear Information System (INIS)

    Tleugabulov, S.; Duncheva, E.; Zubkevich, M.

    1999-01-01

    The manufacture of power-generating gas has the important economic value for Kazakhstan having large territory, raw and fuel resources especially power coal and clean coal wastes. The technology of reception of gas-energy carrier and reducer from power coal is developed. The basic product of technological process is heated reducing gas. Reducing potential of the gas is characterized by a volumetric share of components (CO+H 2 )-RC in relation to volume of whole mix of gases received with gasification of coal. The value of parameter RC is regulated by a degree of enrichment of air by oxygen r 0 , and the temperature - by the charge of a parity of endothermic reaction in the chamber of gas regeneration. The dependence of the gas structure and temperature on the degree of enrichment of air by oxygen is shown and the circuit of the gas generator is given. (author)

  14. Effect of blending ratio to the liquid product on co-pyrolysis of low rank coal and oil palm empty fruit bunch

    Directory of Open Access Journals (Sweden)

    Zullaikah Siti

    2018-01-01

    Full Text Available The utilization of Indonesia low rank coal should be maximized, since the source of Indonesia law rank coals were abundant. Pyrolysis of this coal can produce liquid product which can be utilized as fuel and chemical feedstocks. The yield of liquid product is still low due to lower of comparison H/C. Since coal is non-renewable source, an effort of coal saving and to mitigate the production of greenhouse gases, biomass such as oil palm empty fruit bunch (EFB would added as co-feeding. EFB could act as hydrogen donor in co-pyrolysis to increase liquid product. Co-pyrolysis of Indonesia low rank coal and EFB were studied in a drop tube reactor under the certain temperature (t= 500 °C and time (t= 1 h used N2 as purge gas. The effect of blending ratios of coal/EFB (100/0, 75/25, 50/50, 25/75 and 0/100%, w/w % on the yield and composition of liquid product were studied systematically. The results showed that the higher blending ratio, the yield of liquid product and gas obtained increased, while the char decreased. The highest yield of liquid product (28,62 % was obtained used blending ratio of coal/EFB = 25/75, w/w%. Tar composition obtained in this ratio is phenol, polycyclic aromatic hydrocarbons, alkanes, acids, esters.

  15. Planning new coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Benesch, W.A. [STEAG encotec GmbH, Essen (Germany)

    2001-07-01

    When considering fossil energy sources, it can be seen that natural gas and oil will become much scarcer than coal. Therefore, one practical option is to investigate and further develop coal-based energy supplies for the future. However, the existing coal stocks must be used very sparingly. Consequently, the conversion efficiency of the chemically-bonded energy in power and heat needs to be improved. By these means, and also by modern environmental engineering, power can be generated from coal without harming the environment. (orig.)

  16. Framing scenarios of electricity generation and gas use: EPRI report series on gas demands for power generation. Final report

    International Nuclear Information System (INIS)

    Thumb, S.; Glover, W.; Hughes, W.R.

    1996-07-01

    Results of three EPRI projects have been combined to analyze power industry consumption of gas and other generating fuels. The report's capstone is a scenario analysis of power industry generation and fuel consumption. The Utility Fuel Consumption Model (UFCM), developed for the project, predicts generating capacity and generation by region and fuel through 2015, based on load duration curves, generation dispatch, and expected capacity additions. Scenarios embody uncertain factors, such as electricity demand growth, fuel switching, coal-gas competition, the merit order of gas-coal dispatch, and retirement of nuclear units, that substantially affect gas consumption. Some factors, especially electricity demand have very large effects. The report includes a consistent database on NUG (non-utility generation) capacity and generation and assesses historical and prospective trends in NUG generation. The report shows that NUG capacity growth will soon decline substantially. The study assesses industry capability for price-induced fuel switching from gas to oil and coal, documenting conversions of coal units to dual coal-gas capability and determining that gas-to-oil switching remains a strong influence on fuel availability and gas prices, though regulation and taxation have increased trigger prices for switching. 61 tabs

  17. Energy strategy 2050. From coal, oil and gas to green energy; Danish Government's energy policy; Energistrategi 2050 - fra kul, olie og gas til groen energi

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-15

    The Danish Government's ''Energy strategy 2050'' describes how the country can achieve its independence from coal, oil and gas by the year 2050 and significantly reduce its greenhouse gas emissions. The strategy contains a raft of initiatives that will reduce the energy industry's use of fossil fuels by 33 % in 2020, compared with 2009. The reduction will put Denmark well on its way to complete independence of fossil fuels by 2050. The strategy calls for a significant increase in renewable energy obtained from wind, biomass and biogas which over the next decade will increase the share of renewable to 33 % of energy consumption, if the initiatives in the strategy are implemented. The strategy offers an economically responsible path to the conversion of the Danish energy supply, and includes specific initiatives, that are all fully financed and which will not damage the nation's competitiveness. Homeowners will experience moderate increases in the costs of heat and electricity, but will also be given opportunities to lower their energy expenses through greater efficiency. Companies can expect added expenses amounting to 0.1 % of the rise in their gross revenue growth by 2020. (ln)

  18. Liquid fuels from Canadian coals

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G. W.

    1979-06-15

    In Canadian energy planning, the central issue of security of supply must be addressed by developing flexible energy systems that make the best possible use of available resources. For liquid fuel production, oil sands and heavy oil currently appear more attractive than coal or biomass as alternatives to conventional crude oil, but the magnitude of their economic advantage is uncertain. The existence of large resources of oil sands, heavy oils, natural gas and low-sulfur coals in Western Canada creates a unique opportunity for Canadians to optimize the yield from these resources and develop new technology. Many variations on the three basic liquefaction routes - hydroliquefaction, pyrolysis and synthesis - are under investigation around the world, and the technology is advancing rapidly. Each process has merit under certain circumstances. Surface-mineable subbituminous and lignite coals of Alberta and Saskatchewan appear to offer the best combination of favorable properties, deposit size and mining cost, but other deposits in Alberta, Nova Scotia and British Columbia should not be ruled out. The research effort in Canada is small by world standards, but it is unlikely that technology could be imported that is ideally suited to Canadian conditions. Importing technology is undesirable: innovation or process modification to suit Canadian coals and markets is preferred; coprocessing of coal liquids with bitumen or heavy oils would be a uniquely Canadian, exportable technology. The cost of synthetic crude from coal in Canada is uncertain, estimates ranging from $113 to $220/m/sup 3/ ($18 to $35/bbl). Existing economic evaluations vary widely depending on assumptions, and can be misleading. Product quality is an important consideration.

  19. Thermal maturity and organic composition of Pennsylvanian coals and carbonaceous shales, north-central Texas: Implications for coalbed gas potential

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, Paul C. [U.S. Geological Survey, 956 National Center, Reston, VA 20192 (United States); Guevara, Edgar H.; Hentz, Tucker F. [Bureau of Economic Geology, The University of Texas at Austin, Austin, TX 78713 (United States); Hook, Robert W. [1301 Constant Springs Drive, Austin, TX 78746 (United States)

    2009-01-31

    Thermal maturity was determined for about 120 core, cuttings, and outcrop samples to investigate the potential for coalbed gas resources in Pennsylvanian strata of north-central Texas. Shallow (< 600 m; 2000 ft) coal and carbonaceous shale cuttings samples from the Middle-Upper Pennsylvanian Strawn, Canyon, and Cisco Groups in Archer and Young Counties on the Eastern Shelf of the Midland basin (northwest and downdip from the outcrop) yielded mean random vitrinite reflectance (R{sub o}) values between about 0.4 and 0.8%. This range of R{sub o} values indicates rank from subbituminous C to high volatile A bituminous in the shallow subsurface, which may be sufficient for early thermogenic gas generation. Near-surface (< 100 m; 300 ft) core and outcrop samples of coal from areas of historical underground coal mining in the region yielded similar R{sub o} values of 0.5 to 0.8%. Carbonaceous shale core samples of Lower Pennsylvanian strata (lower Atoka Group) from two deeper wells (samples from {proportional_to} 1650 m; 5400 ft) in Jack and western Wise Counties in the western part of the Fort Worth basin yielded higher R{sub o} values of about 1.0%. Pyrolysis and petrographic data for the lower Atoka samples indicate mixed Type II/Type III organic matter, suggesting generated hydrocarbons may be both gas- and oil-prone. In all other samples, organic material is dominated by Type III organic matter (vitrinite), indicating that generated hydrocarbons should be gas-prone. Individual coal beds are thin at outcrop (< 1 m; 3.3 ft), laterally discontinuous, and moderately high in ash yield and sulfur content. A possible analog for coalbed gas potential in the Pennsylvanian section of north-central Texas occurs on the northeast Oklahoma shelf and in the Cherokee basin of southeastern Kansas, where contemporaneous gas-producing coal beds are similar in thickness, quality, and rank. (author)

  20. Distilling oils and bituminous materials

    Energy Technology Data Exchange (ETDEWEB)

    Hutz, H

    1925-08-25

    In the distillation of bituminous materials such as coal, brown coal, peat, or mineral and tar oils or tar, in the presence of hot neutral gases such as hydrogen, illuminating gas, or water-gas, sulfur dioxide is also fed into the above-mentioned materials or into the vapors evolved therefrom. By this treatment better products are obtained.

  1. Appearance of rapid carbon on hydrogasification of coal; Suiten gas ka ni okeru kokassei tanso no hatsugen

    Energy Technology Data Exchange (ETDEWEB)

    Soneda, Y.; Makino, M. [National Institute for Resources and Environment, Tsukuba (Japan)9] Xu, W. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1998-09-20

    The technology of hydrogasification of coal now under development under a State project aims to produce light oil as well as methane-rich high calorie gas through the direct reaction between coal and hydrogen, and is expected to deal with the difficult natural gas demand/supply relationship anticipated for the future. Although it is mandatory to fully understand the reaction between coal and hydrogen for the completion of this technology, yet there are many tasks to be fulfilled. One of the tasks is the elucidation of the behavior of what is named rapid carbon that appears upon the rapid heating of coal in a high-pressure hydrogen environment. In this paper, some interesting findings about the appearance of rapid carbon are reported. When coal is placed in such an environment, volatile components are lost first of all and then the active carbon reaction occurs. When the behavior of active carbon in the reaction is observed, it is found that active carbon is not so small in quantity, and the result of observation of its appearance and deactivation during the reaction justifies an inference that the reaction is regarded as one of the primary reactions in the process of hydrogasification. Accordingly, systematic studies of its physical and chemical features from various viewpoints are necessary. 5 refs., 3 figs., 1 tab.

  2. Survey on the trend of coal liquefaction/gasification technologies, broken down by application; Sekitan no ekika gas ka no yotobetsu gijutsu no doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    To drive forward the development of the above-named technologies efficiently and effectively, it is necessary to clearly define what coal derived products will meet the need of the clientele and to develop coal derived products accordingly. This survey aims to disclose the whole pictures of the oil/gas using areas and enable the study and evaluation of the possibilities of using coal derived products as substitutes in every one of the expected applications. It also aims to clarify product characteristics, use conditions, technical tasks, and problems to accompany actual substitution in the applications where possibilities are high of their serving as substitutes. Chapter 1, explaining the trend of coal liquefaction/gasification technologies, describes projects for the development of coal liquefaction/gasification technologies, trend of the development of coal liquefaction/gasification technologies, and properties of coal liquefaction/gasification products. Chapter 2, explaining the trend of demand for energy for use in the respective applications, analyzes the trend of demands for oil products, gases, and methanol. Chapter 3 summarizes the applications of chemical materials and fuels for studying the use of coal liquefaction/gasification products as substitutes in the respective applications. Chapter 4 collects problems to solve for the enhancement of coal liquefaction/gasification projects. (NEDO)

  3. Sustainable application of reciprocating gas engines operating on coal mine methane

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.; Teo, T. [Caterpillar China Investment Co., Beijing (China); Tnay, C.H. [Westrac Inc., Beijing (China)

    2008-07-01

    According to the World Coal Institute, coal provides 25 per cent of worldwide primary energy needs and generates 40 per cent of the world's electricity. China produces the largest amount of hard coal. The anthropogenic release of methane (CH{sub 4}) into the environment is a byproduct of the coal mining process. The global warming potential of this methane continues to draw attention around the world. In particular, China's government has recognized the need for environmental responsibility in the pursuit of greater power production. The Kyoto Protocol requires developed countries to reduce their greenhouse gas emissions and targets must be met within a five-year time frame between 2008 and 2012. Sequestering coal mine methane (CMM) as an alternative fuel for reciprocating gas engine generator sets is a mature and proven technology for greenhouse gas mitigation. Prior to commissioning CMM-fueled power systems, the methane gas composition must be evaluated. An integrated systems approach can then be used to develop a CMM-fueled power project. This paper discussed the sustainable application of reciprocating gas engines operating on coal mine methane. It discussed the Kyoto Protocol, clean development mechanism, and CMM as compared to other fuel sources. It was concluded that there is considerable opportunity for growth in the Asia-Pacific region for electric power applications using CMM. 4 refs., 12 figs.

  4. US crude oil, natural gas, and natural gas liquids reserves

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1991, as well as production volumes for the United States, and selected States and State subdivisions for the year 1991. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1991 is also presented

  5. The effect of a tectonic stress field on coal and gas outbursts.

    Science.gov (United States)

    An, Fenghua; Cheng, Yuanping

    2014-01-01

    Coal and gas outbursts have always been a serious threat to the safe and efficient mining of coal resources. Ground stress (especially the tectonic stress) has a notable effect on the occurrence and distribution of outbursts in the field practice. A numerical model considering the effect of coal gas was established to analyze the outburst danger from the perspective of stress conditions. To evaluate the outburst tendency, the potential energy of yielded coal mass accumulated during an outburst initiation was studied. The results showed that the gas pressure and the strength reduction from the adsorbed gas aggravated the coal mass failure and the ground stress altered by tectonics would affect the plastic zone distribution. To demonstrate the outburst tendency, the ratio of potential energy for the outburst initiation and the energy consumption was used. Increase of coal gas and tectonic stress could enhance the potential energy accumulation ratio, meaning larger outburst tendency. The component of potential energy for outburst initiation indicated that the proportion of elastic energy was increased due to tectonic stress. The elastic energy increase is deduced as the cause for a greater outburst danger in a tectonic area from the perspective of stress conditions.

  6. Upstream oil and gas. Subsector no. 7: Oil and gas exploration and development 1995 to 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    Prepared by the Alberta Human Resources and Employment, this report provides a summary of the lost-time injuries and disease descriptions of workers injured while employed in the upstream oil and gas industries in Alberta during the period 1995 to 1999. The report includes the characteristics of the injured worker and the risk of injury to workers in the industries in Alberta, as well as the cost of injuries and revenue by means of total premiums paid by the employers. The occupational fatalities that were accepted by the Workers Compensation Board and investigated by the Occupational Health and Safety were summarized in the report along with a brief description of the injuries. The aim was to provide information concerning health and safety issues to government, employers, workers, and health and safety officers in the industries in Alberta about health and safety issues. The focus was placed on the oil and gas exploration and development sub-sector. Defined as all upstream oil field activities of employers which generate revenue from the production and sale of crude oil and/or natural gas, the sub-sector comprises major integrated oil and gas companies and small independent producers. In those cases where the owner/producer operates its own upstream production/processing facilities, they form an integral part of this sub-section. In addition, oil and gas marketing firms are included. Oil/gas well, well head equipment; flow lines/gathering systems tied into field processing facilities; battery sites/compressors stations; crude oil separators and natural gas dehydrators/treaters; natural gas/sulfur processing plants; heavy oil projects including steam generation; and other enhanced recovery methods are all included in the sub-sector. The other sub-sectors in the upstream oil and gas industries are: exploration, oilfield maintenance and construction, well servicing with service rigs and power swivels, drilling of oil and gas wells, oilfield downhole and other

  7. Fuel prices, emission standards, and generation costs for coal vs natural gas power plants.

    Science.gov (United States)

    Pratson, Lincoln F; Haerer, Drew; Patiño-Echeverri, Dalia

    2013-05-07

    Low natural gas prices and stricter, federal emission regulations are promoting a shift away from coal power plants and toward natural gas plants as the lowest-cost means of generating electricity in the United States. By estimating the cost of electricity generation (COE) for 304 coal and 358 natural gas plants, we show that the economic viability of 9% of current coal capacity is challenged by low natural gas prices, while another 56% would be challenged by the stricter emission regulations. Under the current regulations, coal plants would again become the dominant least-cost generation option should the ratio of average natural gas to coal prices (NG2CP) rise to 1.8 (it was 1.42 in February 2012). If the more stringent emission standards are enforced, however, natural gas plants would remain cost competitive with a majority of coal plants for NG2CPs up to 4.3.

  8. Trends and outlook of coal energy in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Zainal Abidin Husin (Tenaga Nasional Berhad, Kuala Lumpur (Malaysia). Fuel and Materials Management Dept.)

    1993-03-01

    Current energy policy in Malaysia is directed towards development of natural gas resources although there is a strategy to diversify energy sources to gas, hydro, coal and oil. By the year 2000, however, coal could emerge as a major energy source. The author advocates the need for a policy direction for the coal industry - for exploration, mine planning, mixing methods, transport and regulations to ensure occupational health and safety. Malaysia has abundant coal resources but most are in Sarawak and Sabah whereas the bulk of energy demand is in the Peninsula Malaysia. A table defines known coal resources in Malaysia and a map shows their location. To ensure successful development of the coal industry, technologies must be developed to meet environmental requirements and global market competition. Several emerging technologies are mentioned: production of process-derived fuel and coal-derived liquid from sub-bituminous coal, coal liquefaction, manufacture of coal water mixture, coal beneficiation, and fluidised bed combustion. 1 fig., 1 tab.

  9. Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa

    Directory of Open Access Journals (Sweden)

    Brett Cohen

    2014-03-01

    Full Text Available There is increased interest, both in South Africa and globally, in the use of shale gas for electricity and energy supply. The exploitation of shale gas is, however, not without controversy, because of the reported environmental impacts associated with its extraction. The focus of this article is on the greenhouse gas footprint of shale gas, which some literature suggests may be higher than what would have been expected as a consequence of the contribution of fugitive emissions during extraction, processing and transport. Based on some studies, it has been suggested that life-cycle emissions may be higher than those from coal-fired power. Here we review a number of studies and analyse the data to provide a view of the likely greenhouse gas emissions from producing electricity from shale gas, and compare these emissions to those of coal-fired power in South Africa. Consideration was given to critical assumptions that determine the relative performance of the two sources of feedstock for generating electricity � that is the global warming potential of methane and the extent of fugitive emissions. The present analysis suggests that a 100-year time horizon is appropriate in analysis related to climate change, over which period the relative contribution is lower than for shorter periods. The purpose is to limit temperature increase in the long term and the choice of metric should be appropriate. The analysis indicates that, regardless of the assumptions about fugitive emissions and the period over which global warming potential is assessed, shale gas has lower greenhouse gas emissions per MWh of electricity generated than coal. Depending on various factors, electricity from shale gas would have a specific emissions intensity between 0.3 tCO2/MWh and 0.6 tCO2/MWh, compared with about 1 tCO2/MWh for coal-fired electricity in South Africa.

  10. Reservoir characteristics of coal-shale sedimentary sequence in coal-bearing strata and their implications for the accumulation of unconventional gas

    Science.gov (United States)

    Wang, Yang; Zhu, Yanming; Liu, Yu; Chen, Shangbin

    2018-04-01

    Shale gas and coalbed methane (CBM) are both considered unconventional natural gas and are becoming increasingly important energy resources. In coal-bearing strata, coal and shale are vertically adjacent as coal and shale are continuously deposited. Research on the reservoir characteristics of coal-shale sedimentary sequences is important for CBM and coal-bearing shale gas exploration. In this study, a total of 71 samples were collected, including coal samples (total organic carbon (TOC) content >40%), carbonaceous shale samples (TOC content: 6%-10%), and shale samples (TOC content TOC content. Clay and quartz also have a great effect on the porosity of shale samples. According to the FE-SEM image technique, nanoscale pores in the organic matter of coal samples are much more developed compared with shale samples. For shales with low TOC, inorganic minerals provide more pores than organic matter. In addition, TOC content has a positive relationship with methane adsorption capacity, and the adsorption capacity of coal samples is more sensitive than the shale samples to temperature.

  11. Oil and gas field database

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Han, Jung Kuy [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    As agreed by the Second Meeting of the Expert Group of Minerals and Energy Exploration and Development in Seoul, Korea, 'The Construction of Database on the Oil and Gas Fields in the APEC Region' is now under way as a GEMEED database project for 1998. This project is supported by Korean government funds and the cooperation of GEMEED colleagues and experts. During this year, we have constructed the home page menu (topics) and added the data items on the oil and gas field. These items include name of field, discovery year, depth, the number of wells, average production (b/d), cumulative production, and API gravity. The web site shows the total number of oil and gas fields in the APEC region is 47,201. The number of oil and gas fields by member economics are shown in the table. World oil and gas statistics including reserve, production consumption, and trade information were added to the database for the users convenience. (author). 13 refs., tabs., figs.

  12. Oil and gas field database

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Han, Jung Kuy [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    As agreed by the Second Meeting of the Expert Group of Minerals and Energy Exploration and Development in Seoul, Korea, 'The Construction of Database on the Oil and Gas Fields in the APEC Region' is now under way as a GEMEED database project for 1998. This project is supported by Korean government funds and the cooperation of GEMEED colleagues and experts. During this year, we have constructed the home page menu (topics) and added the data items on the oil and gas field. These items include name of field, discovery year, depth, the number of wells, average production (b/d), cumulative production, and API gravity. The web site shows the total number of oil and gas fields in the APEC region is 47,201. The number of oil and gas fields by member economics are shown in the table. World oil and gas statistics including reserve, production consumption, and trade information were added to the database for the users convenience. (author). 13 refs., tabs., figs.

  13. Use of a Nuclear High Temperature Gas Reactor in a Coal-To-Liquids Process

    International Nuclear Information System (INIS)

    Robert S. Cherry; Richard A. Wood

    2006-01-01

    AREVA's High Temperature Gas Reactor (HTGR) can potentially provide nuclear-generated, high-level heat to chemical process applications. The use of nuclear heat to help convert coal to liquid fuels is particularly attractive because of concerns about the future availability of petroleum for vehicle fuels. This report was commissioned to review the technical and economic aspects of how well this integration might actually work. The objective was to review coal liquefaction processes and propose one or more ways that nuclear process heat could be used to improve the overall process economics and performance. Shell's SCGP process was selected as the gasifier for the base case system. It operates in the range of 1250 to 1600 C to minimize the formation of tars, oil, and methane, while also maximizing the conversion of the coal's carbon to gas. Synthesis gas from this system is cooled, cleaned, reacted to produce the proper ratio of hydrogen to carbon monoxide and fed to a Fischer-Tropsch (FT) reaction and product upgrading system. The design coal-feed rate of 18,800 ton/day produces 26.000 barrels/day of FT products. Thermal energy at approximately 850 C from a HTGR does not directly integrate into this gasification process efficiently. However, it can be used to electrolyze water to make hydrogen and oxygen, both of which can be beneficially used in the gasification/FT process. These additions then allow carbon-containing streams of carbon dioxide and FT tail-gas to be recycled in the gasifier, greatly improving the overall carbon recovery and thereby producing more FT fuel for the same coal input. The final process configuration, scaled to make the same amount of product as the base case, requires only 5,800 ton/day of coal feed. Because it has a carbon utilization of 96.9%, the process produces almost no carbon dioxide byproduct Because the nuclear-assisted process requires six AREVA reactors to supply the heat, the capital cost is high. The conventional plant is

  14. Arab oil and gas directory

    International Nuclear Information System (INIS)

    2005-01-01

    This reference book is the only oil and gas encyclopedia in the world providing detailed country surveys on the oil and gas industry in the Arab countries and Iran. It provides thorough country reports and detailed statistics on oil and gas exploration, production, transport, refining and petrochemicals, as well as on development projects in all countries in the Middle East and North Africa: Algeria, Bahrain, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Qatar, Saudi Arabia, Sudan, Syria, Tunisia, United Arab Emirates and Yemen. Separate chapters cover OPEC and OAPEC, as well as world oil and gas statistics. It includes 53 maps and 268 tables and graphs, and 2420 addresses and contact names

  15. Pyrolysis at low-temperature of Mequinenza coal

    Energy Technology Data Exchange (ETDEWEB)

    Chorower, C

    1940-01-01

    In the low-temperature distillation of Mequinenza coal 13 to 14.5% of tar was obtained in the carbonizing unit and 10.7 to 12.0% in the rotary drum with or without steam. The yield of semicoke was 65 to 70.5%; the gas production was 91 to 109 liter per kilogram. The tar was distilled with and without steam, the fractions were freed from phenol and paraffin and purified by treatment with H/sub 2/SO/sub 4/. The coal tested was in many respects more like mineral coal than soft coal (thus, the liquid tar was of higher specific gravity, was free from resins and lower in paraffin and higher in phenol than in the case of soft coal). The pitch content of the tar was very slight, the yield of viscous oils was high. By distillation with steam 32% of benzine was obtained. Of the high S content established in the coking 8.5% was present in the benzine, 6.3% in the motor oil and 5.6% in the lubricating oil from the tar.

  16. Have oil and gas prices got separated?

    International Nuclear Information System (INIS)

    Erdős, Péter

    2012-01-01

    This paper applies vector error correction models that show that oil and natural gas prices decoupled around 2009. Before 2009, US and UK gas prices had a long-term equilibrium with crude prices to which gas prices always reverted after exogenous shocks. Both US and UK gas prices adjusted to the crude oil price individually, and departure from the equilibrium gas price on one continent resulted in a similar departure on the other. After an exogenous shock, the adjustment between US and UK gas prices took approximately 20 weeks on average, and the convergence was mediated mainly by crude oil with a necessary condition that arbitrage across the Atlantic was possible. After 2009, however, the UK gas price has remained integrated with oil price, but the US gas price decoupled from crude oil price and the European gas price, as the Atlantic arbitrage has halted. The oversupply from shale gas production has not been mitigated by North American export, as there has been no liquefying and export capacity. - Highlights: ► VEC models are applied to investigate the relationship between oil and natural gas prices. ► While natural gas prices in Europe and Asia react to oil price, US gas price decoupled from oil in 2009. ► Since 2009, the US gas price has decoupled from the European and Asian gas prices.

  17. Combustion of coal gas fuels in a staged combustor

    Science.gov (United States)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  18. Deregulated gas in 1985 seen costly

    Energy Technology Data Exchange (ETDEWEB)

    Schaffer, P.

    1980-05-05

    Deregulation of natural gas wellhead prices will mean higher prices for nonboiler industrial users, according to an Energy and Environmental Analysis Inc. (EEA) study. The price increases of high-sulfur residual fuel oil will exceed inflation rates, but low-sulfur residual oil and distillate oil will have smaller increases because of upgraded refineries. Te economc imact analysis is broken down by region and includes estimates of gas, high-sulfur coal, and low-sulfur coal prices thrugh 1995. Free copies of the report are available from the Federal Energy Regulatory Commission's Office of Public Information. (DCK)

  19. Analysis of gas migration patterns in fractured coal rocks under actual mining conditions

    Directory of Open Access Journals (Sweden)

    Gao Mingzhong

    2017-01-01

    Full Text Available Fracture fields in coal rocks are the main channels for gas seepage, migration, and extraction. The development, evolution, and spatial distribution of fractures in coal rocks directly affect the permeability of the coal rock as well as gas migration and flow. In this work, the Ji-15-14120 mining face at the No. 8 Coal Mine of Pingdingshan Tian’an Coal Mining Co. Ltd., Pingdingshan, China, was selected as the test site to develop a full-parameter fracture observation instrument and a dynamic fracture observation technique. The acquired video information of fractures in the walls of the boreholes was vectorized and converted to planarly expanded images on a computer-aided design platform. Based on the relative spatial distances between the openings of the boreholes, simultaneous planar images of isolated fractures in the walls of the boreholes along the mining direction were obtained from the boreholes located at various distances from the mining face. Using this information, a 3-D fracture network under mining conditions was established. The gas migration pattern was calculated using a COMSOL computation platform. The results showed that between 10 hours and 1 day the fracture network controlled the gas-flow, rather than the coal seam itself. After one day, the migration of gas was completely controlled by the fractures. The presence of fractures in the overlying rock enables the gas in coal seam to migrate more easily to the surrounding rocks or extraction tunnels situated relatively far away from the coal rock. These conclusions provide an important theoretical basis for gas extraction.

  20. Oils; gas

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T

    1922-09-18

    Oils and gas are obtained from shale or oil-bearing sand by immersing the shale in and passing it through a bath of liquid oil, cracking the oil-soaked shale, and condensing the vapor and using the condensate to replenish the bath, preferably by passing the gases and vapors direct into the oil-bath container. Shale is fed continuously from a hopper to a bath of oil in an inclined chamber, is carried to the outlet by a conveyer, and through cracking tubes to an outlet pipe by conveyers. The gases and vapors escape by the pipe, a part condensing in the chamber and a run-back pipe and replenishing the bath, and the remainder passing through a condensing tower and condenser connected to reservoirs; the gas is further passed through a scrubber and a pipe to the burner of the retort. The oil condensed in the chamber overflows to the reservoir through a pipe provided with an open pipe to prevent siphoning. The conveyers and a valve on the pipe are operated by gearing. The operation may be conducted at reduced, normal, or increased pressure, e.g., 70 lbs. The temperature of the retort should be about 900 to 1400/sup 0/F, that of the inside of the tubes about 550 to 700/sup 0/F, and that of the chamber about 300/sup 0/F. The chamber and pipe may be insulated or artificially cooled.

  1. Oil/gas collector/separator for underwater oil leaks

    International Nuclear Information System (INIS)

    Henning, C.D.

    1993-01-01

    An oil/gas collector/separator for underwater oil leaks is described comprising: a cylindrical tank; a hollow float member for supporting said tank in a substantially upright position; a skirt assembly secured to said hollow float member and extending in a direction away from said float member opposite said tank; means for removing oil from said tank; and means for removing gas from said tank

  2. Gas and coal competition in the EU power sector

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2014-01-01

    According to a new report by CEDIGAZ, the International Centre for Natural Gas Information, gas has lost its attractiveness against coal in the EU power sector. Its demand by the sector decreased by one third during the past three years and its prospects are very weak in this decade. The Association warns that un-profitability of combined cycle gas turbines (CCGTs) and the retirement of old coal plants due to stringent air regulation may lead to the closure of one third of the current fleet and poses a serious security of supply issue that has to be addressed urgently

  3. Oil and gas conservation in Saskatchewan

    International Nuclear Information System (INIS)

    Sereda, M.A.

    1997-01-01

    The Saskatchewan's Oil and Gas Conservation Act provides legislative authority for the Oil and Gas Conservation Regulations, 1985. The main purposes of the Act are to maximize oil and gas recovery, to allow each owner the opportunity of obtaining his share of oil or gas and to protect the environment and prevent waste. The document under review described how this legislative intent is fulfilled through the spacing of wells, the setting of allowables, and approval of waterflood and enhanced recovery projects, while considering equitable drainage of oil and gas. Specific topics dealt with include: vertical well spacing, infill drilling, off-target drilling, horizontal well spacing, and allowables. The concepts of voluntary and statutory pooling as well as voluntary and statutory unitization were explained. Examples of waterflood and enhanced oil recovery projects were provided. The regulation relating to oil and gas conservation were first implemented in 1952 and evolved to their present form through a series of changes and amendments. The most significant changes to the regulations were made in 1991 when horizontal drilling needed to be accommodated. 1 tab

  4. Development of coal partial hydropyrolysis process

    Energy Technology Data Exchange (ETDEWEB)

    Hideaki Yabe; Takafumi Kawamura; Kohichiroh Gotoh; Akemitsu Akimoto [Nippon Steel Corporation, Chiba (Japan)

    2005-07-01

    Coal partial hydropyrolysis process aims at co-production of high yield of light oil such as BTX and naphthalene and synthesis gas from a low rank coal under a mild hydropyrolysis condition. The characteristic of this process is in the two-staged entrained hydropyrolysis reactor composed of the reformer and gasifier. This reactor arrangement gives us high heat efficiency of this process. So far, in order to evaluate the process concept a small-scale basic experiment and a 1t/day process development unit study were carried out. The experimental results showed that coal volatiles were partially hydrogenated to increase the light oil and hydrocarbon gases at the condition of partial hydropyrolysis such as pressure of 2-3MPa, temperature of 700-900{sup o}C and hydrogen concentration of 30-50%. This process has a possibility of producing efficiently and economically liquid and gas products as chemicals and fuel for power generation. As a further development in the period of 2003 to 2008, a 20t/day pilot plant study named ECOPRO (efficient co-production with coal flash hydropyrolysis technology) has been started to establish the process technologies for commercialization. 12 refs., 6 figs., 3 tabs.

  5. Fuel options for oil sands

    International Nuclear Information System (INIS)

    Wise, T.

    2005-01-01

    This presentation examined fuel options in relation to oil sands production. Options include steam and hydrogen (H 2 ) for upgrading; natural gas by pipeline; bitumen; petroleum coke; and coal. Various cost drivers were also considered for each of the fuel options. It was noted that natural gas has high energy value but the capital cost is low, and that coke's energy value is very low but the capital cost is high. A chart forecasting energy prices was presented. The disposition of Western Canada's northern gas situation was presented. Issues concerning rail transportation for coal were considered. Environmental concerns were also examined. A chart of typical gas requirements for 75,000 B/D oil sands projects was presented. Issues concerning steam generation with gas and mining cogeneration with gas fuel and steam turbines were discussed, as well as cogeneration and H 2 with gas fuels and steam turbines. Various technology and fuel utility options were examined, along with details of equipment and processes. Boiler technologies were reviewed by type as well as fuel and steam quality and pressure. Charts of cogeneration with gas turbine and circulation fluid bed boilers were presented. Gasification processes were reviewed and a supply cost basis was examined. Cost drivers were ranked according to energy, operating considerations and capital investment. Results indicated that fuel costs were significant for gas and coal. Capital costs and capital recovery charge was most significant with coal and gasification technology. Without capital recovery, cash costs favour the use of bitumen and coke. Gasification would need lower capital and lower capital recovery to compete with direct burning. It was concluded that direct burning of bitumen can compete with natural gas. With price volatility anticipated, dual fuel capability for bitumen and gas has merit. Petroleum coke can be produced or retrieved from stockpiles. Utility supply costs of direct burning of coke is

  6. Microwave radiation improves biodiesel yields from waste cooking oil in the presence of modified coal fly ash

    Directory of Open Access Journals (Sweden)

    Yulin Xiang

    2017-11-01

    Full Text Available This paper studied the effects of using modified coal fly ash as a catalyst to convert waste cooking oil (WCO into biodiesel under microwave-strengthened action. Coal fly ash was modified with sodium sulphate and sodium hydroxide, and the obtained catalyst was characterized using FT-IR and X-ray diffraction (XRD. The experimental results showed that the modified coal fly ash catalyst improved biodiesel yields under the microwave-assisted system, and the maximum biodiesel yield from waste cooking oil reached 94.91% at a molar ratio of methanol to WCO of 9.67:1 with 3.99% wt% of modified coal fly ash catalyst (based on oil weight at a 66.20 °C reaction temperature. The reusability of the modified coal fly ash catalyst was excellent, and the conversion yield remained greater than 90% after the catalyst was reused 8 times. The produced biodiesel met the main parameters of the ASTM D-6751 and EN14214 standards. Keywords: Biodiesel, Modified coal fly ash, Microwave assisted system, Waste cooking oil

  7. China Oil and Gas Market Assessment

    International Nuclear Information System (INIS)

    Qiu, Yu

    2004-08-01

    China, with one-fifth of the world's population and one of the fastest rates of economic growth, is experiencing a boom in its energy requirements. China has been identified as a high priority market for the oil and gas sector. This priority has resulted in the high level of investment and many large-scale projects related to the oil and gas industry. Oil production from existing fields is expected to increase, new oil and gas fields will be developed, and the country's oil and gas transmission infrastructure will be extended to meet domestic demands. In addition, total domestic investment needs for the next three decades till 2030 are estimated at around $119 billion, and upstream exploration and development will account for about $69 billion. China's oil and gas exploitation business has been the biggest beneficiary of the bearish crude oil prices, national oil stockpile and the need of infrastructure. In the first six-month period of 2005, this industry has gained a profit of USD16.5 billion, up 73.4 per cent year-on-year. The country is becoming increasingly open to international oil companies, contractors and equipment suppliers, who can bring advanced technology, equipment, and management experience. In this context, considerable opportunities in the supply and service sectors are open to Dutch companies. This report analyses the present situation and market prospect of China upstream oil and gas industry, including: Current status of Chinese oil and gas industry analysis and future development forecast; Potential customers analysis, such as three stated-owned oil companies and their foreign partners;Domestic and foreign competitors analysis; Potential opportunities and challenges analysis; Providing contacts and information on main ongoing oil exploration and development projects, and business practices

  8. Oil and gas in the environment

    International Nuclear Information System (INIS)

    1998-01-01

    Our society and economy have become dependent on oil and gas. The UK uses oil and gas for more than two-thirds of its energy needs - to run its transport network, heat its homes, in industrial processes, and to produce over a quarter of its electricity. There has been a steady increase in consumption of petrol, diesel and aviation fuel since 1970, mostly for transportation, although consumption of fuel oil has fallen dramatically. This has largely been replaced in the industrial and domestic sectors by gas, the consumption of which has risen sharply since 1990. This report assesses how this dependence on oil and gas is affecting the environment, and looks at the impact of the increasing consumption of oil and gas on the environment. The need to regulate and manage these impacts has been recognised for many years. The report forms the Environment Agency's view on the general state of pollution of the environment in relation to oil and gas. It looks at how well existing regulations and controls are working in practice and what more needs to be done, both by the Agency itself and by others, to reduce pollution. After giving a background to the formation of oil and gas and the history of their exploitation, the report summarises who does what in regulation. It then takes a life-cycle approach to look at the pressures on the environment from the exploration, production, transportation, refining, storage, and the use of oil and gas, and finally the disposal of used oil and oily waste. (UK)

  9. Biological conversion of coal synthesis gas to methane

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S; Corder, R E; Clausen, E C; Gaddy, J L

    1987-09-01

    High temperatures and pressures are required, and therefore, high costs incurred during catalytic upgrading of coal synthesis gas to methane. Thus, the feasibility of biological reactions in converting synthesis gas to methane has been demonstrated in mixed and pure cultures. Complete conversion has been achieved in 2 hours with a mixed culture, and 45 minutes to 1.5 hours in pure cultures of P. productus and Methanothrix sp.. Typical sulfur levels involved during the process are found not to inhibit the bacteria and so sulfur does not have to be removed prior to biomethanation. Preliminary economic analyses indicate that coal gas may be biologically methanated for 50-60 cents/million Btu. Further studies with pure culture bacteria and increased pressure are expected to enhance biomethanation economics.

  10. Co-pyrolysis of waste tire/coal mixtures for smokeless fuel, maltenes and hydrogen-rich gas production

    International Nuclear Information System (INIS)

    Bičáková, Olga; Straka, Pavel

    2016-01-01

    Highlights: • Co-pyrolysis of waste tires/coal mixtures yields mainly smokeless fuel (55–74 wt%). • Alternatively, the smokeless fuel can serve as carbonaceous sorbent. • The obtained tar contained maltenes (80–85 wt%) and asphaltenes (6–8 wt%). • Tar from co-pyrolysis can serve as heating oil or a source of maltenes for repairing of asphalt surfaces. • The hydrogen-rich gas was obtained (61–65 vol% H_2, 24–25 vol% CH_4, 1.4–2 vol% CO_2). - Abstract: The processing of waste tires with two different types of bituminous coal was studied through the slow co-pyrolysis of 1 kg of waste tire/coal mixtures with 15, 30 and 60 wt% waste tires on a laboratory scale. The waste tire/coal mixtures were pyrolysed using a quartz reactor in a stationary bed. The mixtures were heated at a rate 5 °C/min up to the final temperature of 900 °C with a soaking time of 30 min at the required temperature. The mass balance of the process and the properties of the coke and tar obtained were evaluated, further, the influence of the admixture in the charge on the amount and composition of the obtained coke and tar was determined. It was found that the smokeless fuel/carbonaceous sorbent and a high yield of tar for further use can be obtained through the slow co-pyrolysis. The obtained tars contained mostly maltenes (80–85 wt%). FTIR analysis showed that the maltenes from the co-pyrolysis of coal/waste tires exhibited significantly lower aromaticity as compared with that from coal alone. The gas obtained from pyrolysis or co-pyrolysis of waste tire/coal mixtures contained a high amount of hydrogen (above 60 vol%) and methane (above 20 vol%).

  11. Gas Concentration Prediction Based on the Measured Data of a Coal Mine Rescue Robot

    Directory of Open Access Journals (Sweden)

    Xiliang Ma

    2016-01-01

    Full Text Available The coal mine environment is complex and dangerous after gas accident; then a timely and effective rescue and relief work is necessary. Hence prediction of gas concentration in front of coal mine rescue robot is an important significance to ensure that the coal mine rescue robot carries out the exploration and search and rescue mission. In this paper, a gray neural network is proposed to predict the gas concentration 10 meters in front of the coal mine rescue robot based on the gas concentration, temperature, and wind speed of the current position and 1 meter in front. Subsequently the quantum genetic algorithm optimization gray neural network parameters of the gas concentration prediction method are proposed to get more accurate prediction of the gas concentration in the roadway. Experimental results show that a gray neural network optimized by the quantum genetic algorithm is more accurate for predicting the gas concentration. The overall prediction error is 9.12%, and the largest forecasting error is 11.36%; compared with gray neural network, the gas concentration prediction error increases by 55.23%. This means that the proposed method can better allow the coal mine rescue robot to accurately predict the gas concentration in the coal mine roadway.

  12. Analysis of the saturated hydrocarbon in coal, carbonaceous mudstone and oils from the lower Jurassic coal measures in the Turpan Basin by GC/MS

    International Nuclear Information System (INIS)

    Fang Xuan; Meng Qianxiang; Sun Minzhuo; Du Li; Ding Wanren

    2005-01-01

    Saturated hydrocarbon of coal, carbonaceous mudstone and oils from the Lower Jurassic coal measures in the Turpan basin were studied, and biomarker characteristics and coal thermal maturity analyzed to draw the following conclusions. T here are many similar biomarker characteristics between oil from middle-lower Jurassic of Turpan Basin and coal and carbonaceous mudstone in the same strata. They all contain specific r-lupane, I-norbietane, C 24 -tetracyclic and high content of C 29 -steranes. These characteristics suggest that they have similar matter source of the organic matter derived from matter with abundant high plants. Meanwhile, biomarkers often used to indicate depositional environments characterized by high Pr/Ph ratio, little or no gammacerane and high abundance dibenzofurans, such biomarker distributions are indicative of suboxic and freshwater environment. Although coal and carbonaceous mudstone remain in lower thermal maturity (Ro=0.47-0.53), but C 29 -ββ/(αα+ββ) sterane ratio (0.294-0.489) and bezohopane are detected. Because these ferture are related to bacterial activity, bacterial degradation of organic matter maybe take an important role in coal-derived oil. (authors)

  13. Greenhouse gas emission factor development for coal-fired power plants in Korea

    International Nuclear Information System (INIS)

    Jeon, Eui-Chan; Myeong, Soojeong; Sa, Jae-Whan; Kim, Jinsu; Jeong, Jae-Hak

    2010-01-01

    Accurate estimation of greenhouse gas emissions is essential for developing an appropriate strategy to mitigate global warming. This study examined the characteristics of greenhouse gas emission from power plants, a major greenhouse gas source in Korea. The power plants examined use bituminous coal, anthracite, and sub-bituminous coal as fuel. The CO 2 concentration from power plants was measured using GC-FID with methanizer. The amount of carbon, hydrogen, and calorific values in the input fuel was measured using an elemental analyzer and calorimeter. For fuel analysis, CO 2 emission factors for anthracite, bituminous coal, and sub-bituminous coal were 108.9, 88.4, and 97.9 Mg/kJ, respectively. The emission factors developed in this study were compared with those for IPCC. The results showed that CO 2 emission was 10.8% higher for anthracite, 5.5% lower for bituminous coal, and 1.9% higher for sub-bituminous coal than the IPCC figures.

  14. Hydroprocesssing of light gas oil - rape oil mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Walendziewski, Jerzy; Stolarski, Marek; Luzny, Rafal; Klimek, Bartlomiej [Faculty of Chemistry, Wroclaw University of Technology, ul. Gdanska 7/9, 50-310 Wroclaw (Poland)

    2009-05-15

    Two series of experiments of hydroprocessing of light gas oil - rape oil mixtures were carried out. The reactor feed was composed of raw material: first series - 10 wt.% rape oil and 90 wt.% of diesel oil; second series - 20 wt.% rape oil and 80 wt.% of diesel oil. Hydroprocessing of both mixtures was performed with the same parameter sets, temperature (320, 350 and 380 C), hydrogen pressure 3 and 5 MPa, LHSV = 2 h{sup -} {sup 1} and hydrogen feed ratio of 500 Nm{sup 3}/m{sup 3}. It was stated that within limited range it is possible to control vegetable oil hydrogenolysis in the presence of light gas oil fraction (diesel oil boiling range) through the proper selection of the process parameters. Hydrogenolysis of ester bonds and hydrogenation of olefinic bonds in vegetable oils are the main reactions in the process. Basic physicochemical properties of the obtained hydroprocessed products are presented. (author)

  15. Production of synthesis gas and methane via coal gasification utilizing nuclear heat

    International Nuclear Information System (INIS)

    van Heek, K.H.; Juentgen, H.

    1982-01-01

    The steam gasificaton of coal requires a large amount of energy for endothermic gasification, as well as for production and heating of the steam and for electricity generation. In hydrogasification processes, heat is required primarily for the production of hydrogen and for preheating the reactants. Current developments in nuclear energy enable a gas cooled high temperature nuclear reactor (HTR) to be the energy source, the heat produced being withdrawn from the system by means of a helium loop. There is a prospect of converting coal, in optimal yield, into a commercial gas by employing the process heat from a gas-cooled HTR. The advantages of this process are: (1) conservation of coal reserves via more efficient gas production; (2) because of this coal conservation, there are lower emissions, especially of CO 2 , but also of dust, SO 2 , NO/sub x/, and other harmful substances; (3) process engineering advantages, such as omission of an oxygen plant and reduction in the number of gas scrubbers; (4) lower gas manufacturing costs compared to conventional processes. The main problems involved in using nuclear energy for the industrial gasification of coal are: (1) development of HTRs with helium outlet temperatures of at least 950 0 C; (2) heat transfer from the core of the reactor to the gas generator, methane reforming oven, or heater for the hydrogenation gas; (3) development of a suitable allothermal gas generator for the steam gasification; and (4) development of a helium-heated methane reforming oven and adaption of the hydrogasification process for operation in combination with the reactor. In summary, processes for gasifying coal that employ heat from an HTR have good economic and technical prospects of being realized in the future. However, time will be required for research and development before industrial application can take place. 23 figures, 4 tables. (DP)

  16. Update on the REIPPPP, clean coal, nuclear, natural gas

    CSIR Research Space (South Africa)

    Milazi, Dominic

    2015-12-01

    Full Text Available , clean coal, nuclear, natural gas The Sustainable Energy Resource Handbook Volume 6 Dominic Milazi, Dr Tobias Bischof-Niemz, Abstract Since its release in 2011, the Integrated Resource Plan (IRP 2010-2030), or IRP 2010, has been the authoritative... text setting out South Africa’s electricity plan over the next 20 years. The document indicates timelines on the roll out of key supply side options such as renewable energy, the nuclear, natural gas and coal build programmes, as well as peaking...

  17. Sorption characteristic of coal as regards of gas mixtures emitted in the process of the self-heating of coal

    Directory of Open Access Journals (Sweden)

    Wojtacha-Rychter Karolina

    2017-01-01

    Full Text Available One of the most challenging tasks in the coal mining sector is the detection of endogenous fire risks. Under field conditions, the distance between the points where samples for the analyses are collected and the actual place where coal self-heating takes place may be quite remote. Coal is a natural sorbent with a diverse character of pore structures which are surrounded by fractures and cleavage planes constituting ideal spaces for the flow and adsorption of gases. The gases (methane, ethane, ethylene, propane, propylene, acetylene, carbon dioxide, carbon monoxide, hydrogen released from the source of fire migrate through the seam and may be subject to adsorption, or they may cause the desorption of gases accumulated in coal. Therefore, the values of reference sample concentrations may be overstated or understated, respectively. The objective of this experimental study was to investigate the adsorption phenomena accompanying the flow of a multi-component gas mixture through a coal bed which may occur in situ. The research was conducted by means of a method based on a series of calorimetric/chromatographic measurements taken to determine the amount of gases released during coal heating at various temperatures under laboratory conditions. Based on the results obtained in the course of the experiments, it was concluded that the amount of gas adsorbed in the seam depends on the type of coal and the gas. Within the multi-component gas mixture, hydrocarbons demonstrated the largest sorption capacity, especially as concerns propylene.

  18. Stress and Damage Induced Gas Flow Pattern and Permeability Variation of Coal from Songzao Coalfield in Southwest China

    Directory of Open Access Journals (Sweden)

    Minghui Li

    2016-05-01

    Full Text Available The permeability of coal is a critical parameter in estimating the performance of coal reservoirs. Darcy’s law describes the flow pattern that the permeability has a linear relationship with the flow velocity. However, the stress induced deformation and damage can significantly influence the gas flow pattern and permeability of coal. Coals from Songzao coalfield in Chongqing, southwest China were collected for the study. The gas flow velocities under different injection gas pressures and effective stresses in the intact coal and damaged coal were tested using helium, incorporating the role of gas flow pattern on the permeability of coal. The relationships between the flow velocity and square of gas pressure gradient were discussed, which can help us to investigate the transformation conditions of gas linear flow and gas nonlinear flow in the coal. The results showed that the gas flow in the intact coal existed pseudo-initial flow rate under low effective stress. The low-velocity non-Darcy gas flow gradually occurred and the start-up pressure gradient increased in the coal as the effective stress increased. The gas flow rate in the damaged coal increased nonlinearly as the square of pressure gradient increased under low effective stress. The instability of gas flow caused by high ratio of injection gas pressure over effective stress in the damaged coal contributed to the increase of the gas flow rate. As the effective stress increased, the increase of gas flow rate in coal turned to be linear. The mechanisms of the phenomena were explored according to the experimental results. The permeability of coal was corrected based on the relationships between the flow velocity and square of gas pressure gradient, which showed advantages in accurately estimating the performance of coal reservoirs.

  19. Gas Hydrates of Coal Layers as a Methane Source in the Atmosphere and Mine Working

    Science.gov (United States)

    Dyrdin, Valery; Shepeleva, Sofya; Kim, Tatiana

    2017-11-01

    Living conditions of gas hydrates of a methane in a coal matrix as one of possible forms of finding of molecules of a methane in coal layers are considered. However, gas hydrates are formed not in all mineral coals even under the thermobaric conditions corresponding to their equilibrium state as the minimum humidity and the corresponding pore width are necessary for each brand of coal for formation of gas hydrate. It is shown that it depends on electric electrical dipole moment of a macromolecule of coal. Coals of brands K, D, Zh were considered. The electric field created by the surface of coal does not allow molecules of water to carry out threedimensional driving, and they keep on an internal surface of a time. By means of theoretical model operation a dipole - dipole interaction of molecules of water with the steam surface of coal values of energy of fiber interaction for various functional groups located in coal "fringe" which size for the first and second layers does not allow molecules of water to participate in formation of gas hydrates are received. For coals of brands K, Zh, D, considering distribution of a time on radiuses, the percent of moisture, which cannot share in education solid coal of gas solutions, is calculated.

  20. A New Tree-Type Fracturing Method for Stimulating Coal Seam Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Qian Li

    2017-09-01

    Full Text Available Hydraulic fracturing is used widely to stimulate coalbed methane production in coal mines. However, some factors associated with conventional hydraulic fracturing, such as the simple morphology of the fractures it generates and inhomogeneous stress relief, limit its scope of application in coal mines. These problems mean that gas extraction efficiency is low. Conventional fracturing may leave hidden pockets of gas, which will be safety hazards for subsequent coal mining operations. Based on a new drilling technique applicable to drilling boreholes in coal seams, this paper proposes a tree-type fracturing technique for stimulating reservoir volumes. Tree-type fracturing simulation experiments using a large-scale triaxial testing apparatus were conducted in the laboratory. In contrast to the single hole drilled for conventional hydraulic fracturing, the tree-type sub-boreholes induce radial and tangential fractures that form complex fracture networks. These fracture networks can eliminate the “blank area” that may host dangerous gas pockets. Gas seepage in tree-type fractures was analyzed, and gas seepage tests after tree-type fracturing showed that permeability was greatly enhanced. The equipment developed for tree-type fracturing was tested in the Fengchun underground coal mine in China. After implementing tree-type fracturing, the gas extraction rate was around 2.3 times greater than that for traditional fracturing, and the extraction rate remained high for a long time during a 30-day test. This shortened the gas drainage time and improved gas extraction efficiency.

  1. Oil and gas information 1995

    International Nuclear Information System (INIS)

    1996-07-01

    This reference book on current developments in oil and gas supply and demand contains country-specific statistics for OECD countries on production, trade, demand and prices. This book is divided in four parts. Part 1 gives the statistics sources for oil, gas and by products (lubricants, bitumen, paraffin waxes etc..) supply, demand, consumption, origin, feedstocks, import and export prices, spot and end-user prices and taxes, and gives also the definitions of products, supply and consumption items reported in this book. Part 2 provides summary tables of world oil and gas market developments with time series back to the early 1970's. Parts 3 and 4 provide, in tables form, a more detailed and comprehensive picture of oil and gas supply and demand for the OECD by region and individual countries. (J.S.)

  2. Grace announces coal-to-methanol project

    Energy Technology Data Exchange (ETDEWEB)

    Myers, R

    1980-02-15

    WR Grace and Co. are planning a feasibility study for a plant to produce 5000 tons/day of methanol and 6000 tons/day of carbon dioxide from captive coal reserves in Colorado. The study will be performed by Energy Transition Co. (ETCo). The producers would be used for pipeline transmission of pulverised coal, probably to California. At the destination the coal would go to a power station, the methanol to a gas turbine and the carbon dioxide to an oil producer for tertiary recovery.

  3. Secured electrical supply at least cost: Coal, gas, nuclear, hydro

    Energy Technology Data Exchange (ETDEWEB)

    Gavor, J. [ENA Ltd., Prague (Czechoslovakia); Stary, O.; Vasicek, J. [Czech Technical Univ., Prague (Czechoslovakia)

    1995-12-01

    Electric power sector in East Central European countries finds in a difficult period. In the situation of demand stagnation, enormous investments must be realized in a very short time. Today`s decisions in the development strategy will influence the long term future of the industry. The optimal structure of the sources is one of the most important problem to be solved. Paper describes the current structure of the sources in electric power sector in the Czech Republic. The importance of coal, oil and gas, nuclear and hydro in electric power generation is compared. Taking into account the different position in the load coverage, economy of individual sources is evaluated and basic results of discounted cash flow calculations are presented. Information on specific investment programs and projects are included and further trends are estimated.

  4. Oil and Gas Field Locations, Geographic NAD83, LDNR (2007) [oil_gas_fields_LDNR_2007

    Data.gov (United States)

    Louisiana Geographic Information Center — This GIS layer consists of oil and gas field approximate center point locations (approximately 1,800). Oil and gas fields not assigned a center point by the DNR...

  5. Gas Emission Prediction Model of Coal Mine Based on CSBP Algorithm

    Directory of Open Access Journals (Sweden)

    Xiong Yan

    2016-01-01

    Full Text Available In view of the nonlinear characteristics of gas emission in a coal working face, a prediction method is proposed based on cuckoo search algorithm optimized BP neural network (CSBP. In the CSBP algorithm, the cuckoo search is adopted to optimize weight and threshold parameters of BP network, and obtains the global optimal solutions. Furthermore, the twelve main affecting factors of the gas emission in the coal working face are taken as input vectors of CSBP algorithm, the gas emission is acted as output vector, and then the prediction model of BP neural network with optimal parameters is established. The results show that the CSBP algorithm has batter generalization ability and higher prediction accuracy, and can be utilized effectively in the prediction of coal mine gas emission.

  6. Biotransformation of natural gas and oil compounds associated with marine oil discharges.

    Science.gov (United States)

    Brakstad, Odd Gunnar; Almås, Inger K; Krause, Daniel Franklin

    2017-09-01

    Field data from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GoM) suggested that oxidation of gas compounds stimulated biodegradation of oil compounds in the deep sea plume. We performed experiments with local seawater from a Norwegian fjord to examine if the presence of dissolved gas compounds (methane, ethane and propane) affected biodegradation of volatile oil compounds, and if oil compounds likewise affected gas compound oxidation. The results from the experiment showed comparable oil compound biotransformation rates in seawater at 5 °C between seawater with and without soluble gases. Gas oxidation was not affected by the presence of volatile oil compounds. Contrary to DWH deep sea plume data, propane oxidation was not faster than methane oxidation. These data may reflect variations between biodegradation of oil and gas in seawater environments with different history of oil and gas exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Micrinite maceral evidence of hydrocarbon generation in cretaceous coal measures of the middle Benue trough, Nigeria

    International Nuclear Information System (INIS)

    Obaje, N. G.; Ukpabio, E. J.; Funtua, I. I.

    1999-01-01

    Maceral analysis on samples from the coal and coal-bearing strata of the Awgu Formation in the Middle Benue Trough of Nigeria allows the subdivision of the coal beds and inter seam sediments into three different petrographic/coal facies, namely: a vitrinite-fusinite coal facies which is rich in vitrinite, poor in liptinite, with variable amounts of inertinite and low mineral matter content; a trimaceritic coal facies which is rich in vitrinite, liptinite and inertinite with low mineral matter content; and a shaley coal facies which, expectedly, is dominated by mineral matter and has variable amounts of vitrinite, liptinite and inertinite. Micrinite macerals constitute 8.2% and 4.5 on mineral matter-counted basis in samples from the trimaceritic and shaley coal facies respectively. These amounts, in both cases, are considered to be very high. They occur as finely particulate, rounded grains approximately I um in diameter. Most of the micrinite are closely associated with highly reflecting, almost unrecognizable liptinite. The nature and origin of micrinite and its significance to oil and gas generation have been studied extensively. As secondary macerals, they are generally believed to be relics of oil generation from oil-prone macerals, mainly liptinitic and vitrinitic macerals with which they are closely associated. Reflectance measurements on the associated vitrinite macerals indicate a thermal maturity range of 0.74 - 1.25 % Rm. This range corresponds to the zone of oil generation in most minerogenic oil source rocks. In the study area, however, only the trimaceritic coal facies and some parts of the shaley coal facies that are rich in liptinite alongside the associated micrinite macerals are considered to have generated oil. The vitrinite-fusinite coal facies with its high content of humic organic matter (vitrinite + Inertinite) can only generate gas (wet + dry) within the given thermal maturity range

  8. Oil and natural gas

    International Nuclear Information System (INIS)

    Hamm, Keith

    1992-01-01

    The two major political events of 1991 produced a much less dramatic reaction in the global oil industry than might have been expected. The economic dislocation in the former USSR caused oil production to fall sharply but this was largely offset by a concurrent fall in demand. Within twelve months of the invasion of Kuwait, crude oil prices had returned to their pre-invasion level; there was no shortage of supply due to the ability of some producers to boost their output rapidly. Details are given of world oil production and developments in oil demand. Demand stagnated in 1991 due to mainly to the economic chaos in the former USSR and a slowdown in sales in the USA; this has produced problems for the future of the refining industry. By contrast, the outlook for the natural gas industry is much more buoyant. Most clean air or carbon emissions legislation is designed to promote the use of gas rather than other hydrocarbons. World gas production rose by 1.5% in 1991; details by production on a country by country basis are given. (UK)

  9. Treatment of peat, brown coal, etc

    Energy Technology Data Exchange (ETDEWEB)

    Francke, F C

    1917-11-02

    Treatment of peat, brown coal, lignite, sapropel, oil shale, wood and the like, characterized by the fact, that the material is dried in a drum having side gas-entrance and gas-exit pipes, and is provided in the known way with ledges under slow turning and then is distilled at a temperature below 550/sup 0/ C.

  10. Degradation and stabilization of coal derived liquid. (IV). ; Effect of alcohol on coloration of coal derived light oil. Sekitan ekikayu no anteika. (IV). ; Sekitan ekikayu no chakushoku yokusei ni oyobosu alcohol no tenka koka

    Energy Technology Data Exchange (ETDEWEB)

    Ukegawa, K.; Matsumura, A.; Kondo, T. (National Research Institute for Pollution and Resources, Tsukuba (Japan)); TAhara, N. (Nitto Denko Corp., Osaka (Japan)); Nakamura, E. (New Energy and Industrial Technology Development Organization, Tokyo (Japan)); Niki, E. (The University of Tokyo, Tokyo (Japan). Research Center for ADvanced Science and Technology)

    1990-01-20

    In order to improve the color stability of a coal derived light oil, the effect of hydrotreating and various additives has been studied. The color stability has been evaluated through measuring changes in absorbance by flow-cell spectrophotometer. Following results have been obtained: The color stabilities of hydrotreated coal derived light oils were improved remarkably with increasing hydrotreating temperature and pressure. Mild hydrotreating made the color stability of the coal derived light oil much better than the fuel oil, even though the nitrogen removal was very small. Phenolic compounds additives could not improve the color stability of the coal derived light oil. Alcohol, especially methanol, made the coloration rate of the coal derived light oil small to a great extent, on account of hydrogen bonding between methanol and nitrogen compounds in the fuel oil. 4 refs., 4 figs., 3 tabs.

  11. Effect of temperature on the permeability of gas adsorbed coal under triaxial stress conditions

    Science.gov (United States)

    Li, Xiangchen; Yan, Xiaopeng; Kang, Yili

    2018-04-01

    The combined effects of gas sorption, stress and temperature play a significant role in the changing behavior of gas permeability in coal seams. The effect of temperature on nitrogen and methane permeability of naturally fractured coal is investigated. Coal permeability, P-wave velocity and axial strain were simultaneously measured under two effective stresses and six different temperatures. The results showed that the behavior of nitrogen and methane permeability presented nonmonotonic changes with increasing temperature. The variation in the P-wave velocity and axial strain showed a good correspondence with coal permeability. A higher effective stress limited the bigger deformation and caused the small change in permeability. Methane adsorption and desorption significantly influence the mechanical properties of coal and play an important role in the variations in coal permeability. The result of coal permeability during a complete stress-strain process showed that the variation in permeability is determined by the evolution of the internal structure. The increase in the temperature of the gas saturated coal causes the complex interaction between matrix swelling, matrix shrinkage and micro-fracture generation, which leads to the complex changes in coal structure and permeability. These results are helpful to understand the gas transport mechanism for exploiting coal methane by heat injection.

  12. Oil from coal: alchemy for the 1990's

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J

    1980-06-06

    Gulf Oil Chemical is taking a great interest in developments in the energy and synthetic feedstocks area, and is one of the leaders of technological advance in obtaining feedstocks from coal. The company's work in this direction, and the problems facing the petrochemical industry in the USA are reviewed in this article.

  13. Biogenic origin of coalbed gas in the northern Gulf of Mexico Coastal Plain, U.S.A.

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, Peter D.; Hackley, Paul C. [U.S. Geological Survey, 956 National Center, Reston, VA 20192 (United States); Breland, F. Clayton Jr. [Louisiana Department of Natural Resources, 617 North 3rd Street, Baton Rouge, LA 70802 (United States)

    2008-10-02

    New coal-gas exploration and production in northern Louisiana and south-central Mississippi, Gulf of Mexico Basin, is focused on the Wilcox Group (Paleocene-Eocene), where the depth to targeted subbituminous C to high volatile C bituminous coal beds ranges from 300 to 1680 m, and individual coal beds have a maximum thickness of about 6 m. Total gas content (generally excluding residual gas) of the coal beds ranges from less than 0.37 cm{sup 3}/g (as-analyzed or raw basis; 1.2 cm{sup 3}/g, dry, ash free basis, daf) at depths less than 400 m, to greater than 7.3 cm{sup 3}/g (as-analyzed basis; 8.76 cm{sup 3}/g, daf) in deeper (> 1,500 m) parts of the basin. About 20 Wilcox coal-gas wells in northern Louisiana produce from 200 to 6485 m{sup 3} of gas/day and cumulative gas production from these wells is approximately 25 million m{sup 3} (as of December, 2006). U.S. Geological Survey assessment of undiscovered, technically recoverable gas resources in the Gulf of Mexico Coastal Plain, including northern and south-central Mississippi, indicates that coal beds of the Wilcox Group contain an estimated mean total 109.3 million m{sup 3} (3.86 trillion ft{sup 3}) of producible natural gas. To determine the origin of the Wilcox Group coal gases in northern Louisiana, samples of gas, water, and oil were collected from Wilcox coal and sandstone reservoirs and from under- and overlying Late Cretaceous and Eocene carbonate and sandstone reservoirs. Isotopic data from Wilcox coal-gas samples have an average {delta}{sup 13}C{sub CH4} value of - 62.6 permille VPDB (relative to Vienna Peedee Belemnite) and an average {delta}D{sub CH4} value of - 199.9 permille VSMOW (relative to Vienna Standard Mean Ocean Water). Values of {delta}{sup 13}C{sub CO2} range from - 25.4 to 3.42 permille VPDB. Produced Wilcox saline water collected from oil, conventional gas, and coalbed gas wells have {delta}D{sub H2O} values that range from - 27.3 to - 18.0 permille VSMOW. These data suggest that the

  14. CFD analysis of NOx reduction by domestic natural gas added to coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Ziv, E.; Yasur, Y.; Chudnovsky, B. [Ben-Gurion University of the Negev, Beer-Sheva (Israel). Dept. of Mechanical Engineering and Inst. for Applied Research

    2004-07-01

    To date, Israel's electrical energy has been based only on imported fuels. However, with the recently discovered natural gas in the Ashqulon shores, Israel can examine the benefits to its energy resources, environment, and economy of blending its domestic natural gas with imported coal. As for using natural gas, the proposal is to burn it in existing IEC coal-fired boilers in order to significantly reduce NOx emission by reburning. An important aspect is to provide retrofitting in existing IEC boilers by replacing a fraction of the coal by natural gas. This would allow the purchase of coal with a wide range of parameters, which is less expensive. Hence, mixed gas-coal burning would benefit Israel. The authors have made numerical simulations in order to study the optimal conditions of operation and evaluate the economic as well as environmental benefits. Indeed, extensive simulations have shown that there is a significant reduction of NOx emission, as expected, with the addition of relatively small amounts of natural gas. Experiments will now be carried out in a test facility that will provide accurate physicochemical properties of the mixed fuel for more reliable simulations. 19 refs., 6 figs., 1 tab.

  15. The oil and gas equipment and services market in India

    International Nuclear Information System (INIS)

    2002-01-01

    In terms of purchasing power, India represents the fourth largest economy in the world. In the year April 1, 2001-Mar 31, 2002, it was estimated that India had a 5.4 per cent growth in gross domestic product (GDP). Canada experienced a 19.9 per cent increase in exports to India in 2001, reaching 656 million dollars. With the world's six-largest energy consumption, oil demand in India is expected to grow to 179 million tonnes in 2006-2007, while the demand for natural gas is expected to reach 231 million cubic metres per day in the same period. To meet this growing demand, India will require investments in the order of 150 billion dollars over the next 10 to 12 years. The oil and gas industry is being opened to the private sector and foreign direct investment, due to new government policies on exploration, production, distribution, and sales. Foreign involvement in exploration, previously restricted to Indian state-owned firms, is now allowed through the New Exploration Licensing Policy. In exploration and production (E and P) activities, as well as the refinery sector, foreign ownership of up to 100 per cent is now allowed. Two Indian companies which dominate the Indian E and P sector, namely Oil and Natural Gas Corporation (ONGC) and Oil India Limited (OIL), will be upgrading their ageing infrastructure, purchasing new equipment and redeveloping existing oil and gas fields, thereby creating opportunities for the supply of equipment and services. Canadian companies possessing the latest technologies and services in exploration, drilling machinery and equipment, directional drilling services, production machinery and equipment, enhanced recovery services, deep-water drilling equipment and services, and equipment for coal methane E and P should benefit from these opportunities. Over 12,000 kilometres of pipelines are being planned across India, as well as private opportunities in the refinery sector which was opened to the private sector in April 2002. Occasional

  16. NORM emissions from heavy oil and natural gas fired power plants in Syria

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Haddad, Kh.

    2012-01-01

    Naturally occurring radioactive materials (NORM) have been determined in fly and bottom ash collected from four major Syrian power plants fired by heavy oil and natural gas. 210 Pb and 210 Po were the main NORM radionuclides detected in the fly and bottom ash. 210 Pb activity concentrations have reached 3393 ± 10 Bq kg −1 and 4023 ± 7 Bq kg −1 in fly ash and bottom ash, respectively; lower values of 210 Po were observed due to its high volatility. In addition, 210 Po and 210 Pb annual emissions in bottom ash from mixed (heavy oil and natural gas) fired power plants varied between 2.7 × 10 9 –7.95 × 10 9 Bq and 3.5 × 10 9 –10 10 Bq, respectively; higher emissions of 210 Po and 210 Pb from gas power plants being observed. However, the present study showed that 210 Po and 210 Pb emissions from thermal power plants fired by natural gas are much higher than the coal power plants operated in the World. - Highlights: ► NORM have been determined in fly and bottom ash collected from Syrian power plants fired by heavy oil and natural gas. ► 210 Pb and 210 Po were the main NORM radionuclides detected in the fly and bottom ash. ► 210 Po and 210 Pb annual emissions from these power plants were estimated.

  17. Report for fiscal 1993 by coal gasification committee; 1993 nendo sekitan gas ka iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-01

    This report is a compilation mainly of distributed material. In the development of entrained bed coal gasification power generation, gasification is tested in a 2t/d-capable facility and gasification efficiency and operation characteristics are grasped, these constituting the studies of elements to assist pilot plant operation etc. The fluid temperature point of slag is found to decrease by 200 degrees C at the maximum upon addition of flux (CaO), and this improves on slag fluidity. For the development of a demonstration gas turbine, an experimentally built combustor is tested using a real gas. A combined cycle power system is studied by simulation. In the study of pilot plant operation, measures relative to slagging are implemented, inspection and maintenance are conducted for each facility, and the combustor for a demonstration plant is subjected to oil and coal combustion tests. In the study of a pilot plant for developing technologies for hydrogen production using coal, the plant stably runs more than 1,000 hours under 100% load at in a RUN-8-3 operation. Some deposit collects in the neighborhood of the contracted area of the blow nozzle and on some part in the slip stream, but it does not affect operation. No abnormalities are detected in the cyclone or heat recovery boiler. The pilot plant is let to continue its operation, and excellent results are achieved, which are beyond the targets of carbon conversion efficiency of 98% or higher and gas cooling efficiency of 78% or higher. (NEDO)

  18. Analysis of the relationship between the coal properties and their liquefaction characteristics by using the coal data base; Tanshu data base ni yoru tanshitsu to ekika tokusei no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kanbayashi, Y.; Okada, K. [Coal Mining Research Center, Tokyo (Japan)

    1996-10-28

    The relationship between coal properties and liquefaction or gasification characteristics was analyzed by using the analysis and test results and liquefaction characteristics in the coal data base. On liquefaction reaction, the close relation between an oil yield and coal constituent composition or a coal rank is well-known. Various multivariable regression analyses were conducted by using 6 factors as variables such as calorific value, volatile component, O/C and H/C atomic ratios, exinite+vitrinite content and vitrinite reflectance, and liquefaction characteristics as variate. On liquefaction characteristics, the oil yield of dehydrated and deashed coals, asphaltene yield, hydrogen consumption, produced water and gas quantities, and oil+asphaltene yield were predicted. The theoretical gasification efficiency of each specimen was calculated to evaluate the liquefaction reaction obtained. As a result, the oil yield increased with H/C atomic ratio, while the theoretical gasification efficiency increased with O/C atomic ratio. 5 figs., 1 tab.

  19. Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?

    Science.gov (United States)

    Qin, Yue; Edwards, Ryan; Tong, Fan; Mauzerall, Denise L

    2017-03-07

    To increase energy security and reduce emissions of air pollutants and CO 2 from coal use, China is attempting to duplicate the rapid development of shale gas that has taken place in the United States. This work builds a framework to estimate the lifecycle greenhouse gas (GHG) emissions from China's shale gas system and compares them with GHG emissions from coal used in the power, residential, and industrial sectors. We find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal in all sectors under both 20 year and 100 year global warming potentials (GWP 20 and GWP 100 ). However, primarily due to large uncertainties in methane leakage, the upper bound estimate of the lifecycle carbon footprint of shale gas in China could be approximately 15-60% higher than that of coal across sectors under GWP 20 . To ensure net GHG emission reductions when switching from coal to shale gas, we estimate the breakeven methane leakage rates to be approximately 6.0%, 7.7%, and 4.2% in the power, residential, and industrial sectors, respectively, under GWP 20 . We find shale gas in China has a good chance of delivering air quality and climate cobenefits, particularly when used in the residential sector, with proper methane leakage control.

  20. Report on the oil and gas industry 2010

    International Nuclear Information System (INIS)

    2011-01-01

    Illustrated by graphs and tables of data, this report discusses the recent evolutions and trends of world oil and gas markets in 2010, of oil and gas exploration and production in the world, of the issue of European gas supplies, of exploration and production in France, of the oil industry and oil services, of hydrocarbon imports, of refining activities in France, of the quality of fuels, of substitution fuels, of the domestic transportation of oil products, of the issue of strategic storage, of oil product storage, of oil and gas products consumption, of hydrocarbon taxing, of the retailing of oil products, of oil product prices, and of gas price for the end consumer

  1. Middle East oil and gas

    International Nuclear Information System (INIS)

    1995-01-01

    This study is intended to shed light on structural changes occurring in six Middle East countries (Iran, Iraq, Kuwait, Qatar, Saudi Arabia and the United Arab Emirates) that can be expected to have a significant impact on their oil and gas industry. These six countries provide 42% of the world's traded crude oil, on which Member countries of the International Energy Agency (IEA) are increasingly dependent. They also contain about 65% and 30% of the world's proven oil and natural gas reserves, respectively, and command a strategic location between Europe and Asia. The Middle East has been one of the most volatile parts of the world where war, revolution and embargoes have caused major upheavals that have led to oil supply disruptions. The oil resources of all six countries were initially developed by international oil companies and all are members of the Organization of the Petroleum Exporting Countries (OPEC). In 1994, their crude oil production capacity was about 23 million barrels per day (mbd) and is planned to expand to about 28 mbd by the year 2000. Revenue from the sale of oil accounts for more than 80% of each nation's total exports and about 75% of each government's income. The objectives of this study are: to detail their announced oil and gas development plans, to describe the major trends occurring in these countries, to outline the government responses to the trends, and to analyse the impact of government policies on oil and gas development. (J.S.). 121 refs., 136 figs., 212 tabs

  2. International oil and gas finance review 1997

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    This first edition covers financing projects in the developing world, mergers and acquisitions; mitigating cross-border risk; basic risk in energy markets; real-time oil and gas pricing issues; oil and gas equity; risk management; project finance. The yearbook also features more regional specific topics such as: gas transportation in the Mercosur; 25 years of growth in the UAE; natural gas in Mexico; LNG in the Far East; legal issues surrounding the Russian oil and gas industry; LNG projects in the Middle East; the North Sea; and financing the oil and gas industry of Southern and South Africa. (UK)

  3. To extract gas of the coal

    International Nuclear Information System (INIS)

    Carta Petrolera

    2001-01-01

    The paper analyzes the characteristics and advantages of extracting gas of the coal, idea that from previous years Colombia wanted to develop, and owing to the association contract Rio Rancheria; Colombia decided to carry out it using modern technologies used today in day in the international environment

  4. Economic aspects of advanced coal-fired gas turbine locomotives

    Science.gov (United States)

    Liddle, S. G.; Bonzo, B. B.; Houser, B. C.

    1983-01-01

    Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.

  5. Current developments on the coal and gas markets and their retroactive effects on the Merit Order

    International Nuclear Information System (INIS)

    Hecking, Harald; Cam, Eren; Schoenfisch, Max; Schulte, Simon

    2017-01-01

    Coal and gas continue to play a significant role in the European power generation system, especially in Germany. According to the AG energy balances, the share of hard coal in German gross electricity generation in 2016 was 17.2% and natural gas 12.4%. In addition to the CO 2 price, the prices for steam coal and natural gas are a key factor in determining which gas or coal power station is in Merit Order and whether it comes to a fuel switch. Declining gas prices have been rising sharply since the middle of 2016, and the volatile prices for steam coal have been rising. This article discusses the developments and factors responsible for these developments, which could be expected in the near future, and the implications for the gas-coal spread in the electricity market. [de

  6. Largest US oil and gas fields, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-06

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

  7. Largest US oil and gas fields, August 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA's annual survey of oil and gas proved reserves. The series' objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series' approach is to integrate EIA's crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel

  8. Role of non-ferrous coal minerals and by-product metallic wastes in coal liquefaction. Technical progress report, June 1, 1980-August 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Garg, D; Givens, E N; Schweighardt, F K; Clinton, J H; Tarrer, A R; Guin, J A; Curtis, C W; Huang, W J; Shridharani, K

    1980-09-01

    Additional data on the pyrite catalysis of liquefaction of Elkhorn number 3 coal are presented. The liquefaction of Elkhorn number 3 coal was significantly catalyzed by the presence of pyrite. Coal conversion, oil yield and preasphaltene conversion all increased when pyrite was added. An increase in hydrocarbon gas make accompanied by a higher hydrogen consumption were also observed. The higher activity in the presence of pyrite could be utilized by running the liquefaction step at milder conditions which would mean a lower gas make. Although we had heard reports that sulfur elimination from the SRC was improved by use of pyrite, our data showed only very small changes. Nitrogen removal from the solvent, however, was definitely observed. At 850/sup 0/F nitrogen in the oil product went from 1.61 to 1.12 on adding pyrite. This increased nitrogen removal was also seen in the added ammonia yields. Kentucky number 9 coal also responded very well to the presence of pyrite. Conversions and oil yields increased while the hydrocarbon yields decreased at both temperatures that were tested, i.e., 825 and 850/sup 0/F. Hydrogen consumptions also increased. In the screening program the results from testing a number of materials are reported. None of the zeolites gave any significant improvement over coal itself. The iron, molybdenum, nickel, and cobalt rich materials had significant activity, all 85 to 90% conversion with high oil yields.Among materials specifically reported this period the clays failed to show any significant catalytic effect.

  9. Non-mine technology of hydrocarbon resources production at complex development of gas and coal deposits

    International Nuclear Information System (INIS)

    Saginov, A.S.; Adilov, K.N.; Akhmetbekov, Sh.U.

    1997-01-01

    Non-mine technology of coal gas seams exploitation is new geological technological method of complex exploitation of coal gas deposits. The method allows sequentially to extract hydrocarbon resources in technological aggregative-mobile condensed states. According to natural methane content in seams the technology includes: methane extraction from sorption volume where it is bounded up with coal; gas output intensification of coal is due to structural changes of substance at the cost of physico-chemical treatment of seam; increase of seam permeability by the methods of active physical and physico-chemical actions on coal seam (hydro-uncovering, pneumatic hydro action etc.). Pilot testing shows efficiency of well mastering with help of depth pumps. In this case works of action of pumping out of operating liquid and gas extraction from coal seam are integrated

  10. Oil shale, shale oil, shale gas and non-conventional hydrocarbons

    Directory of Open Access Journals (Sweden)

    Clerici A.

    2015-01-01

    Full Text Available In recent years there has been a world “revolution” in the field of unconventional hydrocarbon reserves, which goes by the name of “shale gas”, gas contained inside clay sediments micropores. Shale gas finds particular development in the United States, which are now independent of imports and see a price reduction to less than one third of that in Europe. With the high oil prices, in addition to the non-conventional gas also “oil shales” (fine-grained sedimentary rocks that contain a large amount of organic material to be used both to be directly burned or to extract liquid fuels which go under the name of shale oil, extra heavy oils and bitumen are becoming an industrial reality. Both unconventional gas and oil reserves far exceed in the world the conventional oil and gas reserves, subverting the theory of fossil fuels scarcity. Values and location of these new fossil reserves in different countries and their production by comparison with conventional resources are presented. In view of the clear advantages of unconventional fossil resources, the potential environmental risks associated with their extraction and processing are also highlighted.

  11. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    Energy Technology Data Exchange (ETDEWEB)

    Patel, R.; Borio, R.W.; Liljedahl, G. [Combustion Engineering, Inc., Windsor, CT (United States)] [and others

    1995-11-01

    Under US Department of Energy, Pittsburgh Energy Technology Center (PETC) support, the development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 at the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment.

  12. Fast and safe gas detection from underground coal fire by drone fly over.

    Science.gov (United States)

    Dunnington, Lucila; Nakagawa, Masami

    2017-10-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Biogenic origin of coalbed gas in the northern Gulf of Mexico Coastal Plain, U.S.A

    Science.gov (United States)

    Warwick, Peter D.; Breland, F. Clayton; Hackley, Paul C.

    2008-01-01

    New coal-gas exploration and production in northern Louisiana and south-central Mississippi, Gulf of Mexico Basin, is focused on the Wilcox Group (Paleocene–Eocene), where the depth to targeted subbituminous C to high volatile C bituminous coal beds ranges from 300 to 1680 m, and individual coal beds have a maximum thickness of about 6 m. Total gas content (generally excluding residual gas) of the coal beds ranges from less than 0.37 cm3/g (as-analyzed or raw basis; 1.2 cm3/g, dry, ash free basis, daf) at depths less than 400 m, to greater than 7.3 cm3/g (as-analyzed basis; 8.76 cm3/g, daf) in deeper (> 1,500 m) parts of the basin. About 20 Wilcox coal-gas wells in northern Louisiana produce from 200 to 6485 m3 of gas/day and cumulative gas production from these wells is approximately 25 million m3 (as of December, 2006). U.S. Geological Survey assessment of undiscovered, technically recoverable gas resources in the Gulf of Mexico Coastal Plain, including northern and south-central Mississippi, indicates that coal beds of the Wilcox Group contain an estimated mean total 109.3 million m3 (3.86 trillion ft3) of producible natural gas.To determine the origin of the Wilcox Group coal gases in northern Louisiana, samples of gas, water, and oil were collected from Wilcox coal and sandstone reservoirs and from under- and overlying Late Cretaceous and Eocene carbonate and sandstone reservoirs. Isotopic data from Wilcox coal-gas samples have an average δ13CCH4 value of − 62.6‰ VPDB (relative to Vienna Peedee Belemnite) and an average δDCH4 value of − 199.9‰ VSMOW (relative to Vienna Standard Mean Ocean Water). Values of δ13CCO2 range from − 25.4 to 3.42‰ VPDB. Produced Wilcox saline water collected from oil, conventional gas, and coalbed gas wells have δDH2O values that range from − 27.3 to − 18.0‰ VSMOW. These data suggest that the coal gases primarily are generated in saline formation water by bacterial reduction of CO2

  14. Malaysia: oil, gas, petrochemicals

    International Nuclear Information System (INIS)

    1990-01-01

    Petronas or Petroliam Nasional Berhad was established on 17 August 1974 as the national petroleum corporation of Malaysia. The Petroleum Development Act, passed by the Malaysian Parliament in October of that same year, vested in Petronas the entire ownership of all oil and natural gas resources in the country. These resources are considerable and Malaysia is poised to become one of the major petrochemical producers in the region. This report outlines the extent of oil, gas and petrochemicals production in Malaysia, lists companies holding licences and contracts from Petronas and provides a directory of the Malaysian oil industry. (Author)

  15. Microbial conversion of higher hydrocarbons to methane in oil and coal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Martin; Beckmaann, Sabrina; Siegert, Michael; Grundger, Friederike; Richnow, Hans [Geomicrobiology Group, Federal Institute for Geosciences and Natural Resources (Germany)

    2011-07-01

    In recent years, oil production has increased enormously but almost half of the oil now remaining is heavy/biodegraded and cannot be put into production. There is therefore a need for new technology and for diversification of energy sources. This paper discusses the microbial conversion of higher hydrocarbons to methane in oil and coal reservoirs. The objective of the study is to identify microbial and geochemical controls on methanogenesis in reservoirs. A graph shows the utilization of methane for various purposes in Germany from 1998 to 2007. A degradation process to convert coal to methane is shown using a flow chart. The process for converting oil to methane is also given. Controlling factors include elements such as Fe, nitrogen and sulfur. Atmospheric temperature and reservoir pressure and temperature also play an important role. From the study it can be concluded that isotopes of methane provide exploration tools for reservoir selection and alkanes and aromatic compounds provide enrichment cultures.

  16. (Canada) Oil and gas survey, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This summarizes the financial reporting of a major segment of the oil and gas industry in Canada as shown in annual reports to shareholders for 1986. Annual reports have been surveyed with particular attention to developments in accounting practices in the oil and gas industry during 1986. The survey was not restricted to financial statements and all information presented in the annual reports was considered. Matters of general financial disclosure not unique to the oil and gas industry are not included. Examples quoted from reports covered by this survey are not presented as recommended methods but are illustrations of present practice only. Some illustrations were drawn from oil and gas companies not included in the survey.

  17. Maximize Liquid Oil Production from Shale Oil and Gas Condensate Reservoirs by Cyclic Gas Injection

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, James [Texas Tech Univ., Lubbock, TX (United States); Li, Lei [Texas Tech Univ., Lubbock, TX (United States); Yu, Yang [Texas Tech Univ., Lubbock, TX (United States); Meng, Xingbang [Texas Tech Univ., Lubbock, TX (United States); Sharma, Sharanya [Texas Tech Univ., Lubbock, TX (United States); Huang, Siyuan [Texas Tech Univ., Lubbock, TX (United States); Shen, Ziqi [Texas Tech Univ., Lubbock, TX (United States); Zhang, Yao [Texas Tech Univ., Lubbock, TX (United States); Wang, Xiukun [Texas Tech Univ., Lubbock, TX (United States); Carey, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nguyen, Phong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Porter, Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jimenez-Martinez, Joaquin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mody, Fersheed [Apache Corp., Houston, TX (United States); Barnes, Warren [Apache Corp., Houston, TX (United States); Cook, Tim [Apache Corp., Houston, TX (United States); Griffith, Paul [Apache Corp., Houston, TX (United States)

    2017-11-17

    The current technology to produce shale oil reservoirs is the primary depletion using fractured wells (generally horizontal wells). The oil recovery is less than 10%. The prize to enhance oil recovery (EOR) is big. Based on our earlier simulation study, huff-n-puff gas injection has the highest EOR potential. This project was to explore the potential extensively and from broader aspects. The huff-n-puff gas injection was compared with gas flooding, water huff-n-puff and waterflooding. The potential to mitigate liquid blockage was also studied and the gas huff-n-puff method was compared with other solvent methods. Field pilot tests were initiated but terminated owing to the low oil price and the operator’s budget cut. To meet the original project objectives, efforts were made to review existing and relevant field projects in shale and tight reservoirs. The fundamental flow in nanopores was also studied.

  18. Oil and coal from sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, H

    1981-01-01

    Under the leadership of professor Ernst Bayer a research group of Tuebingen succeeded in producing oil and coal from sewage sludge. The conversion of biomass into fossil fuels which in nature can only be calculated in historical periods of time is here brought about by the use of a catalyst on the basis of silicate and aluminium oxide, dopened with copper. First breakeven evaluations have given a real chance to be able to operate economically in a large scale plant the process being developed in laboratory tests.

  19. Integrated process for synthetic natural gas production from coal and coke-oven gas with high energy efficiency and low emission

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Siyu; Qian, Yu

    2016-01-01

    Highlights: • A novel coal and coke-oven gas to SNG (CGtSNG) process is proposed. • Energy efficiency of CGtSNG increases 8% compared to coal-to-SNG process. • CGtSNG reduces 60% CO_2 emission and 72% effluent discharge. • CGtSNG proposes an idea of using redundant coke-oven gas for producing SNG production. - Abstract: There was a rapid development of coal to synthetic natural gas (SNG) projects in the last few years in China. The research from our previous work and some other researchers have found coal based SNG production process has the problems of environmental pollution and emission transfer, including CO_2 emission, effluent discharge, and high energy consumption. This paper proposes a novel co-feed process of coal and coke-oven gas to SNG process by using a dry methane reforming unit to reduce CO_2 emissions, more hydrogen elements are introduced to improve resource efficiency. It is shown that the energy efficiency of the co-feed process increases by 4%, CO_2 emission and effluent discharge is reduced by 60% and 72%, whereas the production cost decreases by 16.7%, in comparison to the conventional coal to SNG process. As coke-oven gas is a waste gas in most of the coking plant, this process also allows to optimize the allocation of resources.

  20. Oil and gas in Bolivia

    International Nuclear Information System (INIS)

    Pacheco, C.M.

    1993-01-01

    The oil and gas industry in Bolivia is discussed. Typically, the hydrocarbon production of the Bolivian fields is made up of very light oil and natural gas, both of very good quality with no deleterious contaminants. About 80% of the production comes from gas condensate fields. At present, the proven gas reserves are more than 6 trillion cubic feet that have been available for the last 10 years, notwithstanding the fact that 200 million cubic feet per day are exported

  1. Modular High Temperature Gas-Cooled Reactor heat source for coal conversion

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Lewis, A.C.

    1992-09-01

    In the industrial nations, transportable fuels in the form of natural gas and petroleum derivatives constitute a primary energy source nearly equivalent to that consumed for generating electric power. Nations with large coal deposits have the option of coal conversion to meet their transportable fuel demands. But these processes themselves consume huge amounts of energy and produce undesirable combustion by-products. Therefore, this represents a major opportunity to apply nuclear energy for both the environmental and energy conservation reasons. Because the most desirable coal conversion processes take place at 800 degree C or higher, only the High Temperature Gas-Cooled Reactors (HTGRs) have the potential to be adapted to coal conversion processes. This report provides a discussion of this utilization of HTGR reactors

  2. Report on the oil and gas industry in 2009

    International Nuclear Information System (INIS)

    2010-01-01

    Illustrated by graphs and tables of data, this report discuss the recent evolutions of world oil and gas markets in 2009, of the oil and gas exploration and production in the world, of the issue of European gas supplies, of the exploration and production in France, of the oil industry and oil services, of hydrocarbon imports, of refining activities in France, of the quality of fuels, of substitution fuels, of the domestic transportation of oil products, of gas infrastructures, of oil product storage, of oil and gas products consumption, of hydrocarbon taxing, of gas price for the end consumer, of oil product prices, and of the retailing of oil products

  3. Coal and Oil: The Dark Monarchs of Global Energy: Understanding Supply and Extraction Patterns and their Importance for Future Production

    International Nuclear Information System (INIS)

    Hoeoek, Mikael

    2010-01-01

    The formation of modern society has been dominated by coal and oil, and together these two fossil fuels account for nearly two thirds of all primary energy used by mankind. This makes future production a key question for future social development and this thesis attempts to answer whether it is possible to rely on an assumption of ever increasing production of coal and oil. Both coal and oil are finite resources, created over long time scales by geological processes. It is thus impossible to extract more fossil fuels than geologically available. In other words, there are limits to growth imposed by nature. The concept of depletion and exhaustion of recoverable resources is a fundamental question for the future extraction of coal and oil. Historical experience shows that peaking is a well established phenomenon in production of various natural resources. Coal and oil are no exceptions, and historical data shows that easily exploitable resources are exhausted while more challenging deposits are left for the future. For oil, depletion can also be tied directly to the physical laws governing fluid flows in reservoirs. Understanding and predicting behaviour of individual fields, in particularly giant fields, are essential for understanding future production. Based on comprehensive databases with reserve and production data for hundreds of oilfields, typical patterns were found. Alternatively, depletion can manifest itself indirectly through various mechanisms. This has been studied for coal. Over 60% of the global crude oil production is derived from only around 330 giant oilfields, where many of them are becoming increasingly mature. The annual decline in existing oil production has been determined to be around 6% and it is unrealistic that this will be offset by new field developments, additional discoveries or unconventional oil. This implies that the peak of the oil age is here. For coal a similar picture emerges, where 90% of the global coal production originates

  4. Gas migration from oil and gas fields and associated hazards

    International Nuclear Information System (INIS)

    Gurevich, A.E.; Endres, B.L.; Robertson Jr, J.O.; Chilingar, G.V.

    1993-01-01

    The migration of gas from oil and gas formations to the surface is a problem that greatly affects those surface areas where human activity exists. Underground gas storage facilities and oil fields have demonstrated a long history of gas migration problems. Experience has shown that the migration of gas to the surface creates a serious potential risk of explosion, fires, noxious odors and potential emissions of carcinogenic chemicals. These risks must be seriously examined for all oil and gas operations located in urban areas. This paper presents the mechanics of gas migration, paths of migration and a review of a few of the risks that should be considered when operating a gas facility in an urban area. The gas can migrate in a continuous or discontinuous stream through porous, water-filled media to the surface. The primary force in this migration of gas is the difference between specific weights of gas and water

  5. Scrubbing King Coal's dirty face : a new gasification project southeast of Edmonton hopes to make coal cleaner now and for future generations

    Energy Technology Data Exchange (ETDEWEB)

    Collison, M.

    2008-01-15

    This article described the proposed Dodds-Roundhill Coal Gasification Project. This first commercial coal gasification plant in Canada will be developed by Edmonton-based Sherritt International Corporation, in a 50/50 partnership with the Ontario Teachers' Pension Plan. The project will include a surface coal mine and a coal gasification facility located approximately 80 km southeast of Edmonton, Alberta. Coal gasification is emerging as a clean alternative for converting coal into energy products. It involves the gasification process which breaks down coal to produce hydrogen, carbon monoxide and carbon dioxide, collectively known as synthesis gas (syngas). The syngas can then be used for fuel, as a petrochemical feedstock, or it can be further processed into hydrogen for use by bitumen upgraders and crude oil refineries in Alberta. Carbon dioxide, which is highly concentrated are relatively easy to capture will be either sequestered or used in enhanced oil recovery. Construction will begin in mid-2009 following project application and an environmental impact assessment. 3 figs.

  6. Forecast and Prevention of Coal and Gas Outbursts in the Case of Application of a New Mining Method - Drilling of a Coal Pillar

    Directory of Open Access Journals (Sweden)

    Vlastimil Hudeček

    2010-10-01

    Full Text Available Coal and gas outbursts are one of risk factors accompanying the mining of coal in low seams in the Ostrava-Karviná Coalfield.At the use of the method of longwall mining, all coal reserves have not been mined out owing to tectonic faults. For mining outthe residual reserves, the application of a new mining method - drilling of a coal pillar was proposed.The method of mining of a coal seam utilizing long large diameter boreholes is verified in the Paskov Mine (company OKD, JSC –Czech Republic under conditions of rock mass with hazard of rock and gas outbursts in localities of residual pillars left in seams afterfinishing the mining operations performed with using the classical method of longwall working along the strike. [5]Forecast and preventive measures applied to the verification of the new method were based on previous experience withthe mining of seams with hazard of coal and gas outbursts. They accepted fully valid legislation, i.e. Ordinance of Ostrava RegionalMining Authority No. 3895/2002 and supplementary materials (Instructions and Guidelines. The proposed measures respectedthe character of the method being verified. [4]For all areas being mined, projects containing also chapters specifying the problems of ensuring the safety of mining worksand operation under conditions of hazard of coal and gas outbursts were prepared.In the contributions, basic proposals for the principles of coal and gas outburst forecast and prevention when applying the newmining method – drilling of a coal pillar are presented

  7. Electricity in lieu of nautral gas and oil for industrial thermal energy: a preliminary survey

    Energy Technology Data Exchange (ETDEWEB)

    Tallackson, J. R.

    1979-02-01

    In 1974, industrial processors accounted for nearly 50% of the nation's natural gas consumption and nearly 20% of its consumption of petroleum. This report is a preliminary assessment of the potential capability of the process industries to substitute utility-generated electricity for these scarce fuels. It is tacitly assumed that virtually all public utilities will soon be relying on coal or nuclear fission for primary energy. It was concluded that the existing technology will permit substitution of electricity for approximately 75% of the natural gas and petroleum now being consumed by industrial processors, which is equivalent to an annual usage of 800 million barrels of oil and 9 trillion cubic feet of gas at 1974 levels. Process steam generation, used throughout industry and representing 40% of its energy usage, offers the best near-term potential for conversion to electricity. Electric boilers and energy costs for steam are briefly discussed. Electrically driven heat pumps are considered as a possible method to save additional low-grade energy. Electrical reheating at high temperatures in the primary metals sector will be an effective way to conserve gas and oil. A wholesale shift by industry to electricity to replace gas and oil will produce impacts on the public utilities and, perhaps, those of a more general socio-economic nature. The principal bar to large-scale electrical substitution is economics, not technology. 174 references.

  8. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2007-12-01

    Full Text Available Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned regarding production of synthetic diesel fuel, known as GTL (Gas To Liquid. Most of the future GTL plants are planned in oil exporting countries, such are Qatar and Nigeria, where natural gas as by-product of oil production is being flared, losing in that way precious energy and profit. In that way, otherwise flared natural gas, will be transformed into synthetic diesel fuel which can be directly used in all modern diesel engines. Furthermore, fossil fuel transportation and distribution technology grid can be used without any significant changes. According to lower emissions of harmful gasses during combustion than fossil diesel, this fuel could in the future play a significant part of EU efforts to reach 23% of alternative fuel share till 2020., which are now mostly relied on biodiesel, LPG (liquefied petroleum gas and CNG (compressed natural gas.

  9. Controlled PVTS oil and gas production stimulation system

    Energy Technology Data Exchange (ETDEWEB)

    Ospina-Racines, E

    1970-02-01

    By completing oil- or gas-producing wells according to the PVTS method and energizing the flow of the oil-gas fluids in the reservoir with a small horse-power gas compressor at the wellhead, the following oil and gas production features are attained: (1) Original reservoir story energy conditions are restored, improved, used, and conserved while producing oil and/or gas. (2) The flow of oil or gas in the pay formation to the well bore is stimulated by gas compressor energy, outside of the reservoir system. The pressure drawdown is developed by gas-compressor energy in the well casing and not in the pay formation. (3) The stored energy of the reservoir is conserved while producing oil or gas. The potential energy (pressure) of the reservoir can be used to advantage up to bubble point of the virgin crude. (4) Producible reserves are increased from 4-to 5-fold by the conservation of reservoir energy. Present-day primary oil production practice yields a maximum of 20% of the oil in place by depleting the original reservoir energy. The PVTS system will yield over 80% + of oil in place. (5) Producible gas reserves can be increased greatly by establishing a low abandonment pressure at will. The principal features of the PVTS well mechanism and energy injection method are illustrated by a schematic diagram.

  10. Coal liquids -- Who needs them?

    International Nuclear Information System (INIS)

    Gray, D.; Tomlinson, G.

    1995-01-01

    The paper discusses the global energy demand situation as presented at the last World Energy Congress. The total energy demand was calculated for each country and projected to 2100. The paper then discusses the energy situation in the United States, especially the forecasted demand for crude oil and natural gas liquids. Imports will be needed to make up the shortfall in domestic production. The shortfall in conventional petroleum could be supplied by converting coal into liquid fuels. Currently the cost of high quality coal liquids is too high to compete with petroleum, but trends suggest that the price will be competitive in the year 2030 using current technology. Continuing research on coal liquefaction will reduce the price of coal liquids so that coal liquids could play a significant role sooner

  11. Report on the oil and gas industry in 2009

    International Nuclear Information System (INIS)

    2010-01-01

    This report proposes an overview of facts, events and data concerning the world oil and gas markets, the oil and gas exploration and production in the world, the challenges of gas European supplies, the exploration and production in France, the oil and oil-related industry, hydrocarbons imports, the refining activity in France, fuel quality, alternative fuels, the domestic transportation of oil products, gas infrastructures, the storage of oil products, the consumption of oil and gas products, taxes on hydrocarbons, prices for the final consumer, and the prices of oil products

  12. Fast fluid bed coal gasification for conversion of existing oil-fired boilers - an investigation of conditions precedent for commercial realization

    Energy Technology Data Exchange (ETDEWEB)

    1969-06-01

    The syndicate Nordisk Fluidbaeddfoergasning which is made up of the following Scandinavian companies. A. Ahlstroem o/y Burmeister and Wain AB, Svenska Maskinverken AB and Svenska Cellulosa AB has been working with the development of a gas generator which makes it possible for the oil-fired boilers to use coal. The report describes a pre-project and presents the calculation of costs and the estimation of the market potential. The following appraisements have been made: (i) a commercially functioning plant can be erected (ii) the energy cost can be lower than the corresponding cost of conversion to coal powder fuel or competing gasifiers, and (iii) the size of the market is sufficiently large.

  13. Gas retorts: gas manufacture, process for distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J

    1874-05-23

    In apparatus for distilling shale, coal, etc. for making oil and gas, tubular retorts are supported horizontally in a chamber by plates from a brick setting and are heated partly by jets of gas from a pipe supplied through a cock from a gas holder, and partly by the waste gases from a furnace, which heats gas retorts placed in a chamber, air being supplied beneath the grate by a fan.

  14. Yukon's common oil and gas regime

    International Nuclear Information System (INIS)

    Love, B.

    1998-01-01

    The Yukon's common oil and gas regime was developed in partnership with First Nations and it sets out the rules that will apply throughout the Yukon and on Yukon and First Nation lands. While separate and distinct, it conforms with and is compatible with other government systems and regimes. The major elements of the common regime include the Oil and Gas Act, regulations, policies, processes and agreements. The specific opportunities that are available in each phase of oil and gas development in the Yukon are described, with a map showing all basins, reserves and sites of current oil and gas activity. The Yukon has eight potential oil and gas basins: North Coast, Old Crow, Kandik, Eagle Plain, Peel Plateau, Bonnet Plume, Whitehorse Trough, and Liard Plateau. Only three of the eight, the Liard Plateau, Whitehorse Trough and Eagle Plain, have been explored. No wells have been drilled in several of Yukon's basins. Factors influencing economic opportunities in the Territory are also described, including: (1) international events and energy markets, (2) North American gas markets, (3) environmental factors, (4) competitiveness of the Yukon regime, and (5) the commitment of industry resources. 4 figs

  15. Coal fired flue gas mercury emission controls

    CERN Document Server

    Wu, Jiang; Pan, Weiguo; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of

  16. New oil and gas incentives in Saskatchewan

    International Nuclear Information System (INIS)

    Patel, B.

    2003-01-01

    Saskatchewan is Canada's second largest producer of crude oil and the third largest producer of natural gas with nearly 400 oil and gas companies operating in the province. The oil ranges from heavy sour to light sweet crude oil. Nearly half of the production is heavy oil, 30 per cent is medium oil and 20 per cent is light oil. In 2002, the Province announced changes to the oil and gas Royalty and Tax Regime in an effort to encourage new oil and gas exploration and development activities in Saskatchewan and to help the industry compete with other jurisdictions around the world. This paper examined the pre-October 2002 Saskatchewan Crown Royalty and freehold production tax structure and compared them to the new structure. The paper also briefly outlined the corporation capital tax, resource surcharge, and flow-through share tax credit initiatives announced in 2001 and 2002. With reductions in the Crown Royalty, freehold production tax and corporation capital taxes, the Province expects that more than 9000 oil and gas wells will be drilled in the next decade, representing new investment of about $4.3 billion and 40,000 new jobs. The flow-through share credit may not attract significant investment because it only benefits those who pay taxes in Saskatchewan. 40 refs

  17. Effect of CuO receptor on the liquid yield and composition of oils derived from liquefaction of coals by microwave energy

    International Nuclear Information System (INIS)

    Yagmur, Emine; Simsek, Emir H.; Aktas, Zeki; Togrul, Taner

    2008-01-01

    The effects of microwave receptor to coal (receptor/coal) ratio and the period of heating by microwave energy on the solubilization of Turkish coals in tetralin have been investigated. CuO was used as microwave receptor. The amount of receptor and the type of coal significantly affected the yield of liquid product. The addition of the CuO receptor caused to increase in the lignite conversions to oil fractions. The yield of THF soluble fraction increased in the presence of CuO receptor, however, due to catalytic effect of CuO, the yields of preasphaltene (PAS) and asphaltene (AS) decreased. The oil fractions were obtained from the experiments treated by microwave energy in the presence of 3/5 CuO/coal ratio and in the absence of receptor for 20 min liquefaction periods. The compositions of the oil fractions were determined by GC/MS. The composition of the oil fractions of the coals strongly depends on the type of coal. It was observed that the oil fractions contain oxygenated aromatic compounds in addition to condensed aromatic structures. Considerable amounts of 3,4-dihydro-1(2H)-naphthalenone (alpha-tetralone) were found in the oil fractions of lignites treated by microwave energy

  18. Mollier-h,x diagram for moist flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H; Hultsch, T; Suder, M

    1984-07-01

    Diagrams and formulae are presented for calculation of enthalpy and moisture content of flue gas from brown coal, heating oil, black coal and brown coal briquet combustion. The enthalpy (in kJ/kg) and moisture (g/kg) diagrams were established by computer graphics for pressure 0.1 MPa. A further diagram is provided for enthalpy and flue gas moisture, varying the combustion air supply according to coal dust and to grate firing. These thermodynamic calculations are regarded as significant for assessing methods of flue gas cooling below the moisture dew point and for waste heat recovery. 3 references.

  19. North Africa oil and gas

    International Nuclear Information System (INIS)

    Priddle, R.

    1996-01-01

    During the last decade, Algeria, Egypt and Libya have improved their fiscal terms for oil and gas development to attract more investment in this area. As a group, the three countries are implementing plans to increase crude oil production capacity 16 % from 3.15 million barrels per day (Mb/d) in 1995 to 3.65 Mb/d in the year 2000. Natural gas liquid are also being developed and their production capacity is planned to increase 30 % to 0.82 Mb/d in 2000. Concurrently, natural gas production capacity is being expanded about 50 % by 200 and natural gas exporting capacity should see a 92 % increase in 2000 over 1995 levels in short, the North Africa hydrocarbon producers are rapidly expanding their production and export capacity of gaseous and liquid hydrocarbons. This is the first IEA study to focus on North Africa. It shows how changing hydrocarbon legislation or production sharing agreements can result in changes in crude oil and natural gas production capacity. Much of the expansion outlined in this study is being guided by international oil companies attracted by the improved fiscal terms

  20. Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Romeo M.; Rice, Cynthia A.; Stricker, Gary D.; Warden, Augusta; Ellis, Margaret S. [U.S. Geological Survey, Box 25046, MS 939, Denver, Colorado 80225 (United States)

    2008-10-02

    Coal-bed gas of the Tertiary Fort Union and Wasatch Formations in the Powder River Basin in Wyoming and Montana, U.S. was interpreted as microbial in origin by previous studies based on limited data on the gas and water composition and isotopes associated with the coal beds. To fully evaluate the microbial origin of the gas and mechanisms of methane generation, additional data for 165 gas and water samples from 7 different coal-bed methane-bearing coal-bed reservoirs were collected basinwide and correlated to the coal geology and stratigraphy. The C{sub 1}/(C{sub 2} + C{sub 3}) ratio and vitrinite reflectance of coal and organic shale permitted differentiation between microbial gas and transitional thermogenic gas in the central part of the basin. Analyses of methane {delta}{sup 13}C and {delta}D, carbon dioxide {delta}{sup 13}C, and water {delta}D values indicate gas was generated primarily from microbial CO{sub 2} reduction, but with significant gas generated by microbial methyl-type fermentation (aceticlastic) in some areas of the basin. Microbial CO{sub 2} reduction occurs basinwide, but is generally dominant in Paleocene Fort Union Formation coals in the central part of the basin, whereas microbial methyl-type fermentation is common along the northwest and east margins. Isotopically light methane {delta}{sup 13}C is distributed along the basin margins where {delta}D is also depleted, indicating that both CO{sub 2}-reduction and methyl-type fermentation pathways played major roles in gas generation, but gas from the latter pathway overprinted gas from the former pathway. More specifically, along the northwest basin margin gas generation by methyl-type fermentation may have been stimulated by late-stage infiltration of groundwater recharge from clinker areas, which flowed through highly fractured and faulted coal aquifers. Also, groundwater recharge controlled a change in gas composition in the shallow Eocene Wasatch Formation with the increase of nitrogen and

  1. Upper Paleozoic coal measures and unconventional natural gas systems of the Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Xuan Tang

    2012-11-01

    Full Text Available Upper Paleozoic coal measures in the Ordos Basin consist of dark mudstone and coal beds and are important source rocks for gas generation. Gas accumulations include coal-bed methane (CBM, tight gas and conventional gas in different structural areas. CBM accumulations are mainly distributed in the marginal area of the Ordos Basin, and are estimated at 3.5 × 1012 m3. Tight gas accumulations exist in the middle part of the Yishan Slope area, previously regarded as the basin-centered gas system and now considered as stratigraphic lithologic gas reservoirs. This paper reviews the characteristics of tight gas accumulations: poor physical properties (porosity < 8%, permeability < 0.85 × 10−3 μm2, abnormal pressure and the absence of well-defined gas water contacts. CBM is a self-generation and self-reservoir, while gas derived from coal measures migrates only for a short distance to accumulate in a tight reservoir and is termed near-generation and near-reservoir. Both CBM and tight gas systems require source rocks with a strong gas generation ability that extends together over wide area. However, the producing area of the two systems may be significantly different.

  2. New oil and gas discoveries

    International Nuclear Information System (INIS)

    Alazard-Toux, N.

    2004-01-01

    During the period 1999-2003, new oil and gas fields generated additional reserves of nearly 11 000 bcm of natural gas and 62 Gbbl of oil and condensates, volumes very much superior to those discovered in the five previous years. Two-thirds of these discoveries were located offshore, half in deep water. (author)

  3. Long-term prospects for the gas-cooled reactor

    International Nuclear Information System (INIS)

    Tan, W.P.S.

    1982-01-01

    Towards the second half of a fifty-year time span the market for gas-cooled reactors as sources of high temperature process heat and as highly fuel efficient electricity producers should be reasonably bright, given a fair degree of technological maturity and consequent realisation of inherent economic advantages. Declining fossil resources and increasing prices, initially in oil and gas later in open-cast coal, provide the economic impetus towards substitution of nuclear for coal heat, not only in the generally accepted processes of coal conversion and steel-making but also for oil shale pyrolysis and electrothermal aluminium smelting. Around 2010, if not sooner, the need for uranium conservation should allow the market penetration of breeders and thorium-cycle reactors for which gas cooling has a potential techno-economic edge. (author)

  4. Long-term prospects for the gas-cooled reactor

    International Nuclear Information System (INIS)

    Tan, W.P.S.

    1983-01-01

    Towards the second half of a 50-year time span the market for gas-cooled reactors as sources of high-temperature process heat and as highly fuel-efficient electricity producers should be reasonably bright, given a fair degree of technological maturity and consequent realization of inherent economic advantages. Declining fossil resources and increasing prices, initially in oil and gas, later in open-cast coal, provide the economic impetus towards substitution of nuclear for coal heat, not only in the generally accepted processes of coal conversion and steel making but also for oil shale pyrolysis and electrothermal aluminium smelting. Around 2010, if not sooner, the need for uranium conservation should allow the market penetration of breeders and thorium-cycle reactors for which gas cooling has a potential techno-economic edge. (author)

  5. A sequential approach to control gas for the extraction of multi-gassy coal seams from traditional gas well drainage to mining-induced stress relief

    International Nuclear Information System (INIS)

    Kong, Shengli; Cheng, Yuanping; Ren, Ting; Liu, Hongyong

    2014-01-01

    Highlights: • The gas reservoirs characteristics are measured and analyzed. • A sequential approach to control gas of multi-gassy coal seams is proposed. • The design of gas drainage wells has been improved. • The utilization ways of different concentrations of gas production are shown. - Abstract: As coal resources become exhausted in shallow mines, mining operations will inevitably progress from shallow depth to deep and gassy seams due to increased demands for more coal products. However, during the extraction process of deeper and gassier coal seams, new challenges to current gas control methods have emerged, these include the conflict between the coal mine safety and the economic benefits, the difficulties in reservoirs improvement, as well as the imbalance between pre-gas drainage, roadway development and coal mining. To solve these problems, a sequential approach is introduced in this paper. Three fundamental principles are proposed: the mining-induced stress relief effect of the first-mined coalbed should be sufficient to improve the permeability of the others; the coal resource of the first-mined seams must be abundant to guarantee the economic benefits; the arrangement of the vertical wells must fit the underground mining panel. Tunlan coal mine is taken as a typical example to demonstrate the effectiveness of this approach. The approach of integrating surface coalbed methane (CBM) exploitation with underground gas control technologies brings three major benefits: the improvement of underground coal mining safety, the implementation of CBM extraction, and the reduction of greenhouse gas emissions. This practice could be used as a valuable example for other coal mines having similar geological conditions

  6. Geological characteristics and resource potentials of oil shale in Ordos Basin, Center China

    Energy Technology Data Exchange (ETDEWEB)

    Yunlai, Bai; Yingcheng, Zhao; Long, Ma; Wu-jun, Wu; Yu-hu, Ma

    2010-09-15

    It has been shown that not only there are abundant oil, gas, coal, coal-bed gas, groundwater and giant uranium deposits but also there are abundant oil shale resources in Ordos basin. It has been shown also that the thickness of oil shale is, usually, 4-36m, oil-bearing 1.5%-13.7%, caloric value 1.66-20.98MJ/kg. The resource amount of oil shale with burial depth less than 2000 m is over 2000x108t (334). Within it, confirmed reserve is about 1x108t (121). Not only huge economic benefit but also precious experience in developing oil shale may be obtained in Ordos basin.

  7. Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process

    International Nuclear Information System (INIS)

    Xiang, Dong; Qian, Yu; Man, Yi; Yang, Siyu

    2014-01-01

    Highlights: • Present the opportunities and challenges of coal-to-olefins (CTO) development. • Conduct a techno-economic analysis on CTO compared with oil-to-olefins (OTO). • Suggest approaches for improving energy efficiency and economic performance of CTO. • Analyze effects of plant scale, feedstock price, CO 2 tax on CTO and OTO. - Abstract: Olefins are one of the most important oil derivatives widely used in industry. To reduce the dependence of olefins industry on oil, China is increasing the production of olefins from alternative energy resources, especially from coal. This study is concerned with the opportunities and obstacles of coal-to-olefins development, and focuses on making an overall techno-economic analysis of a coal-to-olefins plant with the capacity of 0.7 Mt/a olefins. Comparison is made with a 1.5 Mt/a oil-to-olefins plant based on three criteria including energy efficiency, capital investment, and product cost. It was found that the coal-based olefins process show prominent advantage in product cost because of the low price of its feedstock. However, it suffers from the limitations of higher capital investment, lower energy efficiency, and higher emissions. The effects of production scale, raw material price, and carbon tax were varied for the two production routes, and thus the operational regions were found for the coal-to-olefins process to be competitive

  8. Secondary biogenic coal seam gas reservoirs in New Zealand: A preliminary assessment of gas contents

    Energy Technology Data Exchange (ETDEWEB)

    Butland, Carol I. [Department of Geological Sciences, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Moore, Tim A. [Department of Geological Sciences, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Solid Energy NZ Ltd., P.O. Box 1303, Christchurch (New Zealand)

    2008-10-02

    Four coal cores, one from the Huntly (Eocene), two from the Ohai (Cretaceous) and one from the Greymouth (Cretaceous) coalfields, were sampled and analysed in terms of gas content and coal properties. The coals vary in rank from subbituminous B-A (Huntly) to subbituminous C-A (Ohai), and high volatile A bituminous (Greymouth). Average gas contents were 1.60 m{sup 3}/t (s 0.2) in the Huntly core, 4.80 m{sup 3}/t (s = 0.8) in the Ohai cores, and 2.39 m{sup 3}/t (s = 0.8) in the Greymouth core. The Ohai core not only contained more gas but also had the highest saturation (75%) compared with the Huntly (33%) and Greymouth (45%) cores. Carbon isotopes indicate that the Ohai gas is more mature, containing higher {delta}{sup 13}C isotopes values than either the Huntly or Greymouth gas samples. This may indicate that the gas was derived from a mixed biogenic and thermogenic source. The Huntly and Greymouth gases appear to be derived solely from a secondary biogenic (by CO{sub 2} reduction) source. Although the data set is limited, preliminary analysis indicates that ash yield is the dominant control on gas volume in all samples where the ash yield was above 10%. Below 10%, the amount of gas variation is unrelated to ash yield. Although organic content has some influence on gas volume, associations are basin and/or rank dependent. In the Huntly core total gas content and structured vitrinite increase together. Although this relationship does not appear for the other core data for the Ohai SC3 core, lost gas and fusinite are associated whereas gelovitrinite (unstructured vitrinite) correlates positively with residual gas for the Greymouth data. (author)

  9. Gas manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Fell, J W

    1915-05-03

    Retorts for the distillation of shale or coal for the production of oil or illuminating-gas are heated by gas from a generator or a gas-holder, and a portion of the gas from the flue leading to the heating-flues is forced by a steam jet through a by-pass and is injected into the bottom of the retorts. If the gas to be admitted to the retort is cold, it is first heated.

  10. Oil and gas exploration and production

    International Nuclear Information System (INIS)

    Babusiaux, D.; Favennec, J.P.; Bauquis, P.R.; Bret-Rouzaut, N.; Guirauden, D.

    2004-01-01

    The steps that lead to the production of oil and gas are diverse, complex and costly. They are diverse, because the detection of oil and gas involves input from many specialties, ranging from geology to reservoir engineering. They are complex, as shown by the development of the job of the petroleum architect, who coordinates all the operations. They are costly, as the investments for exploration and production represent more than half of all investments in the oil and gas sector. Moreover, exploration is a risky activity, both from the technical and financial viewpoint: only one well in five produces marketable oil. Meanwhile, the areas for exploration and production are spread throughout the world. This book provides a complete overview of the stakes and challenges involved in oil and gas exploration and production. Following a historical review and a survey of the markets, the technical phases are covered, as are the evaluation of reserves, the estimation of investments and costs, the decision-making and control processes, and the accounting, legal and contractual environment for these activities. The book concludes with a discussion of the role of safety, and of environmental and ethical issues. This work, which is designed for readers concerned with the various aspects of the oil and gas upstream sector, is accessible to all. Contents: 1. Petroleum: a strategic product. 2. Oil and gas exploration and production. 3. Hydrocarbon reserves. 4. Investments and costs. 5. Legal, fiscal and contractual framework. 6. Decision-making on exploration and production. 7. Information, accounting and competition analysis. 8. Health, safety, the environment, ethics. Bibliography. Glossary. Index

  11. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR; F

    International Nuclear Information System (INIS)

    K.C. Kwon

    2002-01-01

    Removal of hydrogen sulfide (H(sub 2)S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that employ coal and natural gas and produce electric power and clean transportation fuels. These Vision 21 plants will require highly clean coal gas with H(sub 2)S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at Research Triangle Institute (RTI) in which the H(sub 2)S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H(sub 2)S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objective of this research is to support the near- and long-term DOE efforts to commercialize this direct oxidation technology. Specifically, we aim to: Measure the kinetics of direct oxidation of H(sub 2)S to elemental sulfur over selective catalysts in the presence of major

  12. Quantitative determination of Quarternary alicyclic carbon atoms in coal and oil using nuclear magnetic resonance /sup 13/C method

    Energy Technology Data Exchange (ETDEWEB)

    Afonina, T.V.; Kushnarev, D.F.; Randin, O.I.; Shishkov, V.F.; Kalabin, G.A.

    1986-09-01

    Possibility is indicated for utilizing nuclear magnetic resonance spectroscopy for quantitative determination of Quarternary aliphatic carbon atoms in heavy hydrocarbon fractions of oil and coal extracts. C/sub n/, CH, CH/sub 2/ and CH/sub 3/ content in coal and oil samples are determined and corresponding resonance lines are referred to individual structural fragments (on the basis of nuclear magnetic resonance /sup 13/C spectra) of known saturated hydrocarbons. Tests were carried out on chloroform extracts of Irsha-Borodinsk coal, Mungunsk coal and paraffin and cycloparaffin of Sivinsk oil (b.p. over 550 C) fractions. Nuclear magnetic resonance spectra were obtained using Burker WP 200 spectrometer (50.13 MHz frequency). Results of the tests are given. 11 references.

  13. Oil and gas USSR

    International Nuclear Information System (INIS)

    Pickering, R.H.

    1991-01-01

    Business co-operation with various foreign partners has begun to develop intensively as a result of the restructuring that is now progressing in the Soviet Union. This is particularly the case with the enterprises and organisations dealing with oil and gas production, all of them component parts of the Ministry of Oil and Gas Industry of the USSR. Owing to the enormous territorial expanse of this country, and also to the rather considerable volume of oil produced, the scheme of organisation of this Ministry is complicated and versatile. This Directory lists all the enterprises and organisations that are component parts of the Ministry, their postal addresses, their telephone numbers and the names of their departmental heads. (author)

  14. Biogeochemical interactions between of coal mine water and gas well cement

    Science.gov (United States)

    Gulliver, D. M.; Gardiner, J. B.; Kutchko, B. G.; Hakala, A.; Spaulding, R.; Tkach, M. K.; Ross, D.

    2017-12-01

    Unconventional natural gas wells drilled in Northern Appalachia often pass through abandoned coal mines before reaching the Marcellus or Utica formations. Biogeochemical interactions between coal mine waters and gas well cements have the potential to alter the cement and compromise its sealing integrity. This study investigates the mineralogical, geochemical, and microbial changes of cement cores exposed to natural coal mine waters. Static reactors with Class H Portland cement cores and water samples from an abandoned bituminous Pittsburgh coal mine simulated the cement-fluid interactions at relevant temperature for time periods of 1, 2, 4, and 6 weeks. Fluids were analyzed for cation and anion concentrations and extracted DNA was analyzed by 16S rRNA gene sequencing and shotgun sequencing. Cement core material was evaluated via scanning electron microscope. Results suggest that the sampled coal mine water altered the permeability and matrix mineralogy of the cement cores. Scanning electron microscope images display an increase in mineral precipitates inside the cement matrix over the course of the experiment. Chemistry results from the reaction vessels' effluent waters display decreases in dissolved calcium, iron, silica, chloride, and sulfate. The microbial community decreased in diversity over the 6-week experiment, with Hydrogenophaga emerging as dominant. These results provide insight in the complex microbial-fluid-mineral interactions of these environments. This study begins to characterize the rarely documented biogeochemical impacts that coal waters may have on unconventional gas well integrity.

  15. Co-processing of standard gas oil and biocrude oil to hydrocarbon fuels

    International Nuclear Information System (INIS)

    Agblevor, Foster A.; Mante, O.; McClung, R.; Oyama, S.T.

    2012-01-01

    The major obstacle in thermochemical biomass conversion to hydrocarbon fuels using pyrolysis has been the high oxygen content and the poor stability of the product oils, which cause them to solidify during secondary processing. We have developed a fractional catalytic pyrolysis process to convert biomass feedstocks into a product termed “biocrude oils” (stable biomass pyrolysis oils) which are distinct from unstable conventional pyrolysis oils. The biocrude oils are stable, low viscosity liquids that are storable at ambient conditions without any significant increases in viscosity; distillable at both atmospheric pressure and under vacuum without char or solid formation. About 15 wt% biocrude oils containing 20–25% oxygen were blended with 85 wt% standard gas oil and co-cracked in an Advanced Catalyst Evaluation (ACE™) unit using fluid catalytic cracking (FCC) catalysts to produce hydrocarbon fuels that contain negligible amount of oxygen. For the same conversion of 70% for both the standard gas oil and the biocrude oil/gas oil blends, the product gasoline yield was 44 wt%, light cycle oil (LCO) 17 wt%, heavy cycle oil (HCO) 13 wt%, and liquefied petroleum gas (LPG) 16 wt%. However, the coke yield for the standard gas oil was 7.06 wt% compared to 6.64–6.81 wt% for the blends. There appeared to be hydrogen transfer from the cracking of the standard gas oil to the biocrude oil which subsequently eliminated the oxygen in the fuel without external hydrogen addition. We have demonstrated for the first time that biomass pyrolysis oils can be successfully converted into hydrocarbons without hydrogenation pretreatment. -- Highlights: ► The co-processed product had less than 1% oxygen content and contained biocarbons determined by 14 C analysis. ► The co-processing did not affect the yields of gasoline, LCO, and HCO. ► First demonstration of direct conversion of pyrolysis oils into drop-in hydrocarbon fuels.

  16. Canadian oil and gas survey 1998

    International Nuclear Information System (INIS)

    Roberge, R.B.

    1998-01-01

    The year 1997 brought record levels of financing for the Canadian oil and gas industry which led to record levels of capital spending and unprecedented merger and acquisition activity. Production records were achieved, but soft commodity prices in the fourth quarter resulted in a significant downturn in the equity markets. El Nino reduced demand for natural gas and heating oil, resulting in increased storage levels for both commodities. Record drilling and capital spending fueled the Canadian oilfield service industry as total market capitalization rose to $10 billion. As for the 1998 outlook, the industry has turned to natural gas as the favoured commodity, as indicated by the conclusion of the Alliance pipeline hearings and the Nova/TCPL merger. This survey presents a review of crude oil and natural gas production, prices, and capital spending for development and exploratory wells, and the financial and operating results for fiscal year 1997 of selected oil and gas companies and income trusts. All listed companies are Canadian public companies, or publicly traded income trusts, traded on one of the country's four major stock exchanges. They are ranked according to gross oil and gas production revenue only (before royalties). Syncrude and oil sands production is also included. The remaining data in the financial statistics tables includes all business segments of each company included. The survey excluded companies that were wholly-owned subsidiaries, divisions or U.S. subsidiaries and private companies. tabs., figs

  17. Oil and gas fiscal regime review

    International Nuclear Information System (INIS)

    1993-04-01

    Poor levels of oil and gas industry profitability, declining activity, and increasing provincial budgetary pressures led to formation of a joint government/industry committee to review fiscal systems in the oil and gas industry and identify areas for potential change. An overview is presented of the development of oil and gas resources in Saskatchewan, showing that reserves and production peaked in 1966. Although reserves and production declined steadily until the early 1980s, some growth has occurred in the past decade, largely due to the influence of horizontal drilling. The province's oil and gas royalty structure is then summarized, giving the classes of oil and gas production and the royalty applicable to each class, as well as incentives available to encourage exploration and development activity. Opportunities for increased exploration and development are identified in two categories (existing wells and new wells) and impacts of possible changes in the existing royalty and incentive regime are discussed. Recommendations are provided to promote new capital investment in the industry and to extend the economic life of existing wells which are at or near the point of abandonment or suspension. 40 figs., 16 tabs

  18. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  19. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    International Nuclear Information System (INIS)

    1993-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided

  20. Coal liquefaction and gas conversion: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Volume I contains papers presented at the following sessions: AR-Coal Liquefaction; Gas to Liquids; and Direct Liquefaction. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  1. Oil, gas and other energies, a primer

    International Nuclear Information System (INIS)

    Legault, A.

    2007-09-01

    At a time when the topic of energy is front and centre, this book examines the basic concepts that are essential to grasping the energy issues of the 21 st century. Ail the main questions that people have about energy, especially oil and gas, are addressed, providing students, academics, journalists, representatives of government and other institutions and interested readers in general with the information they need to understand the complex, multifaceted energy sector. Abundantly illustrated, this book represents five years of exhaustive research on a fascinating and highly controversial topic. If discusses all the processes related to fossil forms of energy, from the formation of hydrocarbons (crude oil and natural gas) to the delivery of oil and gas to consumers. It also examines renewable energy options and climate change issues in addressing the major geopolitical challenges facing the energy sector. Content: 1 - The Extraordinary History of the Earth; 2 - The Formation of Oil and Gas; 3 - Energy, Past and Present; 4 - Renewable Energies; 5 - The Essence of Oil and Gas; 6 - Geography of Oil and Gas; 7 - The Outlook for Petroleum Prices and Demand Until 2030; 8 - Global Warming; 9 - Liquefied Natural Gas;10 - The Big Three: Russia, China and the United States

  2. Determination of coalbed methane potential and gas adsorption capacity in Western Kentucky coals

    Science.gov (United States)

    Mardon, S.M.; Takacs, K.G.; Hower, J.C.; Eble, C.F.; Mastalerz, Maria

    2006-01-01

    The Illinois Basin has not been developed for Coalbed Methane (CBM) production. It is imperative to determine both gas content and other parameters for the Kentucky portion of the Illinois Basin if exploration is to progress and production is to occur in this area. This research is part of a larger project being conducted by the Kentucky Geological Survey to evaluate the CBM production of Pennsylvanian-age western Kentucky coals in Ohio, Webster, and Union counties using methane adsorption isotherms, direct gas desorption measurements, and chemical analyses of coal and gas. This research will investigate relationships between CBM potential and petrographic, surface area, pore size, and gas adsorption isotherm analyses of the coals. Maceral and reflectance analyses are being conducted at the Center for Applied Energy Research. At the Indiana Geological Survey, the surface area and pore size of the coals will be analyzed using a Micrometrics ASAP 2020, and the CO2 isotherm analyses will be conducted using a volumetric adsorption apparatus in a water temperature bath. The aforementioned analyses will be used to determine site specific correlations for the Kentucky part of the Illinois Basin. The data collected will be compared with previous work in the Illinois Basin and will be correlated with data and structural features in the basin. Gas composition and carbon and hydrogen isotopic data suggest mostly thermogenic origin of coalbed gas in coals from Webster and Union Counties, Kentucky, in contrast to the dominantly biogenic character of coalbed gas in Ohio County, Kentucky.

  3. Large scale carbon dioxide production from coal-fired power stations for enhanced oil recovery: a new economic feasibility study

    International Nuclear Information System (INIS)

    Tontiwachwuthikul, P.; Chan, C. W.; Kritpiphat, W.; Demontigny, D.; Skoropad, D.; Gelowitz, D.; Aroonwilas, A.; Mourits, F.; Wilson, M.; Ward, L.

    1998-01-01

    The concept of capturing carbon dioxide from fossil-fuelled electric power generating plants and utilizing it as a flooding agent in enhanced oil recovery (EOR) processes, was explored. In this context, this paper describes how cogeneration concepts, together with process optimization strategies, help to reduce the carbon dioxide production cost by utilizing low-pressure steam and waste heat from various sections of the power generation process. Based on these optimization strategies, the recovery cost of carbon dioxide from coal-fired power stations is estimated to be in the range of $ 0.50 to $ 2.00/mscf. Assuming an average cost of $ 1.25/mscf, the production cost of incremental oil would be about $ 18.00. This means that even with today's modest oil prices, there is room for profit to be made operating a carbon dioxide flood with flue gas extracted carbon dioxide

  4. Gas, oil, and environmental biotechnology IV

    Energy Technology Data Exchange (ETDEWEB)

    Akin, C; Markuszewski, R; Smith, J [eds.; Institute of Gas Technology, Chicago, IL (United States)

    1992-01-01

    Contains 32 papers presented at the 4th international IGT symposium on gas, oil and environmental biotechnology. Topics covered were: hydrocarbon bioremediation; groundwater, soil and explosives bioremediation; gas and oil reservoir souring; and biodesulfurization. 2 papers have been abstracted separately.

  5. Coal distillation plant

    Energy Technology Data Exchange (ETDEWEB)

    Overton, P C

    1937-05-20

    To fractionally condense the vapours derived from the distillation of coal or shale, an apparatus comprises a low temperature carbonisation retort having a plurality of differently heating zones therein which connect with a manifold in which said gas oil vapours can expand. A dephlegmator, cold water jacketted and centrally air heated, causes the heavier matters of the vapours to settle out and the lighter oil gas vapours are conveyed to the bottom of an electrically operated fractionating apparatus comprising a column furnished with a plurality of compartments each heated by electrical elements connected to source of current by lead wires. Annular launders in the compartments collect the derived liquids at the various levels and deliver same by pipes to separate sump while pipe at head of column draws off incondensible gases for return to retort.

  6. Market Brief : Turkey oil and gas pipelines

    International Nuclear Information System (INIS)

    2001-08-01

    This report presented some quick facts about oil and gas pipelines in Turkey and presented opportunities for trade. The key players and customers in the oil and gas sector were described along with an export check list. Turkey is looking into becoming an energy bridge between oil and gas producing countries in the Middle East, Central Asia and Europe. The oil and gas sectors are dominated by the Turkish Petroleum Corporation, a public enterprise dealing with exploration and production, and the State Pipeline Corporation which deals with energy transmission. They are also the key buyers of oil and gas equipment in Turkey. There are several pipelines connecting countries bordering the Caspian Sea. Opportunities exist in the areas of engineering consulting as well as contracting services for oil and gas pipeline transmission and distribution. Other opportunities lie in the area of pipeline construction, rehabilitation, materials, equipment, installation, and supervisory control and data acquisition (SCADA) systems. Currently, the major players are suppliers from Italy, Germany, France, United States and Japan. Turkey has no trade barriers and imported equipment and materials are not subjected to any restriction. The oil and gas market in Turkey expected in increase by an average annual growth rate of 15 per cent from 2001 to 2003. A brief description of pipeline projects in Turkey was presented in this report along with a list of key contacts and support services. 25 refs., 1 append

  7. Oil production from bituminous materials

    Energy Technology Data Exchange (ETDEWEB)

    Gotting, H E.B.; Gotting, L K

    1940-07-30

    The material such as shale, coal, lignite and the like, is heated in an externally heated retort and the generated gas is passed to a series of cells comprising a bubble tower, the cells of which are separated by plates, through which pipes, with perforated caps pass, also overflow pipes. The gas passing through the cell produces further oil vapour, and is decomposed by heated oil into lighter fractions, till it passes out of the tower through a pipe and through condensing coil to receiving vessels for the oil. Fixed gas passes to cylindrical wash vessels, the back pressure inducing the required pressure in the retort.

  8. Natural gas hydrate formation and inhibition in gas/crude oil/aqueous systems

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Pachitsas, Stylianos; von Solms, Nicolas

    2015-01-01

    Gas hydrate formation in multi phase mixtures containing an aqueous phase (with dissolved salts), reservoir fluid (crude oil) and natural gas phase was investigated by using a standard rocking cell (RC-5) apparatus. The hydrate formation temperature was reduced in the presence of crude oils...... can contribute to the safe operation of sub sea pipelines in the oil and gas industry....

  9. Characterization of coal-derived hydrocarbons and source-rock potential of coal beds, San Juan Basin, New Mexico and Colorado, U.S.A.

    Science.gov (United States)

    Rice, D.D.; Clayton, J.L.; Pawlewicz, M.J.

    1989-01-01

    .5 ppt), are chemically wetter (C1/C1-5 values range from 0.85 to 0.95), and contain less CO2 (< 2%). These gases are interpreted to have been derived from type III kerogen dispersed in marine shales of the underlying Lewis Shale and nonmarine shales of the Fruitland Formation. In the underlying Upper Cretaceous Dakota Sandstone and Tocito Sandstone Lentil of the Mancos Shale, another gas type is produced. This gas is associated with oil at intermediate stages of thermal maturity and is isotopically lighter and chemically wetter at the intermediate stage of thermal maturity as compared with gases derived from dispersed type III kerogen and coal; this gas type is interpreted to have been generated from type II kerogen. Organic matter contained in coal beds and carbonaceous shales of the Fruitland Formation has hydrogen indexes from Rock-Eval pyrolysis between 100 and 350, and atomic H:C ratios between 0.8 and 1.2. Oxygen indexes and atomic O:C values are less than 24 and 0.3, respectively. Extractable hydrocarbon yields are as high as 7,000 ppm. These values indicate that the coal beds and carbonaceous shales have good potential for the generation of liquid hydrocarbons. Voids in the coal filled with a fluorescent material that is probably bitumen is evidence that liquid hydrocarbon generation has taken place. Preliminary oil-source rock correlations based on gas chromatography and stable carbon isotope ratios of C15+ hydrocarbons indicate that the coals and (or) carbonaceous shales in the Fruitland Formation may be the source of minor amounts of condensate produced from the coal beds at relatively low levelsof thermal maturity (Rm=0.7). ?? 1989.

  10. High temperature solvent extraction of oil shale and bituminous coal using binary solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, G.K.E. [Lehrstuhl fuer Geologie, Geochemie und Lagerstaetten des Erdoels und der Kohle, RWTH Aachen (Germany)

    1997-12-31

    A high volatile bituminous coal from the Saar Basin and an oil shale from the Messel deposit, both Germany, were extracted with binary solvent mixtures using the Advanced Solvent Extraction method (ASE). Extraction temperature and pressure were kept at 100 C, respectively 150 C, and 20,7 MPa. After the heating phase (5 min) static extractions were performed with mixtures (v:v, 1:3) of methanol with toluene, respectively trichloromethane, for further 5 min. Extract yields were the same or on a higher level compared to those from classical soxhlet extractions (3 days) using the same solvents at 60 C. Comparing the results from ASE with those from supercritical fluid extraction (SFE) the extract yields were similar. Increasing the temperature in ASE releases more soluble organic matter from geological samples, because compounds with higher molecular weight and especially more polar substances were solubilized. But also an enhanced extraction efficiency resulted for aliphatic and aromatic hydrocarbons which are used as biomarkers in Organic Geochemistry. Application of thermochemolysis with tetraethylammonium hydroxide (TEAH) using pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) on the extraction residues shows clearly that at higher extraction temperatures minor amounts of free fatty acids or their methyl esters (original or produced by ASE) were trapped inside the pore systems of the oil shale or the bituminous coal. ASE offers a rapid and very efficient extraction method for geological samples reducing analysis time and costs for solvents. (orig.)

  11. Impact of sustained low oil prices on China's oil & gas industry system and coping strategies

    Directory of Open Access Journals (Sweden)

    Jianjun Chen

    2016-05-01

    Full Text Available The global sustained low oil prices have a significant impact on China's oil and gas industry system and the national energy security. This paper aims to find solutions in order to guarantee the smooth development of China's oil and gas industry system and its survival in such a severe environment. First, the origins of sustained low oil prices were analyzed. Then, based on those published data from IEA, government and some other authorities, this study focused on the development status, energy policies and the future developing trend of those main oil & gas producing countries. Investigations show that the low-price running is primarily contributed to the so-called oil and gas policies in the USA. It is predicted that national petroleum consumption will reach up to 6.0 × 108 t (oil & 3300 × 108 m3 (gas in 2020 and 6.8 × 108 t (oil & 5200 × 108 m3 (gas in 2030. For reducing the dependence on foreign oil and gas, the investment in the upstream of oil and gas industry should be maintained and scientific research should be intensified to ensure the smooth operation of the oil and gas production system. Considering China's national energy security strategy, the following suggestions were proposed herein. First, ensure that in China the yearly oil output reaches 2 × 108 t, while natural gas yield will be expected to be up to 2700 × 108 m3 in 2030, both of which should become the “bottom line” in the long term. Second, focus on the planning of upstream business with insistence on risk exploration investment, scientific and technological innovation and pilot area construction especially for low-permeability tight oil & gas, shale oil & gas reservoir development techniques. Third, encourage the in-depth reform and further growth especially in the three major state-owned oil & gas companies under adverse situations, and create more companies competent to offer overseas technical services by taking the opportunity of the

  12. Production of activated char from Illinois coal for flue gas cleanup

    Science.gov (United States)

    Lizzio, A.A.; DeBarr, J.A.; Kruse, C.W.

    1997-01-01

    Activated chars were produced from Illinois coal and tested in several flue gas cleanup applications. High-activity chars that showed excellent potential for both SO2 and NOx removal were prepared from an Illinois No. 2 bituminous coal. The SO2 (120 ??C) and NOx (25 ??C) removal performance of one char compared favorably with that of a commercial activated carbon (Calgon Centaur). The NOx removal performance of the same char at 120 ??C exceeded that of the Centaur carbon by more than 1 order of magnitude. Novel char preparation methods were developed including oxidation/thermal desorption and hydrogen treatments, which increased and preserved, respectively, the active sites for SO2 and NOx adsorption. The results of combined SO2/NOx removal tests, however, suggest that SO2 and NOx compete for similar adsorption sites and SO2 seems to be more strongly adsorbed than NO. A low-activity, low-cost char was also developed for cleanup of incinerator flue gas. A three-step method involving coal preoxidation, pyrolysis, and CO2 activation was used to produce the char from Illinois coal. Five hundred pounds of the char was tested on a slipstream of flue gas from a commercial incinerator in Germany. The char was effective in removing >97% of the dioxins and furans present in the flue gas; mercury levels were below detectable limits.

  13. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  14. Status of Oil and Natural Gas in the World and Turkey, and Studies conducted at ITU

    International Nuclear Information System (INIS)

    Onur, Mustafa

    2006-01-01

    Energy and its appropriate deployment are the most critical of all wealth generating activities, and they are the most important modern indicators of the wealth and poverty of nations. Humankind and energy will merge in an unbreakable bond for the entire future of humankind. Without dispute, the petroleum and natural gas industry is the world's largest energy sector and the second largest of the world's industries. Today, oil and gas account for 61 percent (39% oil and 24% natural gas) of the world's energy consumption. Including coal's 30 percent share, the hydrocarbon mix comprises more than 90 percent of the world's needs. Since the 19th century, the petroleum industry, including exploration, production, transportation (marine+pipeline), refinery, and marketing, have caused world changes, determined destiny of humankind, and generated immense wealth for both producers and users. It is also an accepted fact that the oil and natural gas will continue to be dominating energy sources, particularly as transportation fuels, for the world's energy needs, and will continue to cause world changes during the 21st century, at least for the next 25 years. Regarding Turkey's role in petroleum and natural gas, the figures are as follows: At the end of 2005, the proved oil and natural gas reserves of Turkey are reported as 1.2 million barrels (∼165.4 million tonnes) and 14.3 billion m 3 , respectively. When these figures are compared with the corresponding world's proved oil and natural gas reserves, which are 1.2 trillion barrels and 179.5 trillion m 3 , respectively, it is clear that Turkey's oil and natural gas reserves comprises only a very small portion of the world's corresponding reserves. Approximately only 8% and 3% of Turkey's oil and natural gas consumption are produced from domestic sources. At the end of 2005, Turkey's oil and natural gas productions from its domestic sources are 17 million barrels When considering the current high oil and natural gas prices (

  15. Method for controlling boiling point distribution of coal liquefaction oil product

    Science.gov (United States)

    Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.

    1982-12-21

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships.

  16. Portable rapid gas content measurement - an opportunity for a step change in the coal industry?

    International Nuclear Information System (INIS)

    Beamish, Basil; Kizil, Mehmet; Gu, Ming

    2013-01-01

    The last major advance in gas content measurement for coal seams was the introduction of the quick crush technique in the early 1990s. This is a laboratory test method that has proven very reliable over the years. Recent laboratory testing using a portable quick crushing device, known as the portable gas content analyser, has produced consistent gas content results for a set of core samples obtained from a single borehole that intersected four coal seams. The retained gas content values obtained for the seams show the same increasing gas content pattern and gas composition change with depth as the standard quick crush technique. Use of the portable gas content analyser provides the opportunity to produce rapid, reliable gas content measurement of coal that could be developed for assessing gas compliance cores and outburst-prone conditions at a mine site.

  17. Thermochemical Equilibrium Model of Synthetic Natural Gas Production from Coal Gasification Using Aspen Plus

    Directory of Open Access Journals (Sweden)

    Rolando Barrera

    2014-01-01

    Full Text Available The production of synthetic or substitute natural gas (SNG from coal is a process of interest in Colombia where the reserves-to-production ratio (R/P for natural gas is expected to be between 7 and 10 years, while the R/P for coal is forecasted to be around 90 years. In this work, the process to produce SNG by means of coal-entrained flow gasifiers is modeled under thermochemical equilibrium with the Gibbs free energy approach. The model was developed using a complete and comprehensive Aspen Plus model. Two typical technologies used in entrained flow gasifiers such as coal dry and coal slurry are modeled and simulated. Emphasis is put on interactions between the fuel feeding technology and selected energy output parameters of coal-SNG process, that is, energy efficiencies, power, and SNG quality. It was found that coal rank does not significantly affect energy indicators such as cold gas, process, and global efficiencies. However, feeding technology clearly has an effect on the process due to the gasifying agent. Simulations results are compared against available technical data with good accuracy. Thus, the proposed model is considered as a versatile and useful computational tool to study and optimize the coal to SNG process.

  18. Peak oil and gas

    International Nuclear Information System (INIS)

    Ziegler, W. H.; Campbell, C. J.; Zagar, J.J.

    2009-01-01

    Oil and gas were formed under exceptional conditions in the geological past, meaning that they are subject to natural depletion, such that the past growth in production must give way to decline. Although depletion is a simple concept to grasp, public data on the resource base are extremely unreliable due to ambiguous definitions and lax reporting. The oil industry is reluctant to admit to an onset of decline carrying obvious adverse financial consequences. There are several different categories of oil and gas, from tar sands to deep water fields, each with specific characteristics that need to be evaluated. It is important to build a global model on a country by country basis in order that anomalous statistics may be identified and evaluated. Such a study suggests that the world faces the onset of decline, with far-reaching consequences given the central role of oil-based energy. It is accordingly an important subject deserving detailed consideration by policy makers. (author)

  19. Coupling Effect of Intruding Water and Inherent Gas on Coal Strength Based on the Improved (Mohr-Coulomb Failure Criterion

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2016-11-01

    Full Text Available When employing hydraulic processes to increase gas drainage efficiency in underground coal mines, coal seams become a three-phase medium, containing water intruding into the coal pores with the inherent occurrence of gas. This can change the stress state of the coal and cause instability. This work studied the mechanical properties of coal containing water and gas and derived an appropriate failure criterion. Based on mixture theory of unsaturated porous media, the effective stress of coal, considering the interaction of water and gas, was analyzed, and the failure criterion established by combining this with the Mohr–Coulomb criterion. By introducing the stress factor of matrix suction and using fitted curves of experimentally determined matrix suction and moisture content, the relationships between coal strength, gas pressure, and moisture content were determined. To verify the established strength theory, a series of triaxial compression strength tests of coal containing water and gas were carried out on samples taken from the Songzao, Pingdingshan, and Tashan mines in China. The experimental results correlated well with the theoretical predictions. The results showed a linear decrease in the peak strength of coal with increasing gas pressure and an exponential reduction in peak strength with increasing moisture content. The strength theory of coal containing water and gas can become an important part of multiphase medium damage theory.

  20. Geochemistry of coal-measure source rocks and natural gases in deep formations in Songliao Basin, NE China

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Jingkui; Zhang, Shuichang; Hu, Guoyi; He, Kun [State Key Laboratory for Enhanced Oil Recovery, Beijing (China); Petroleum Geology Research and Laboratory Center, Research Institute of Petroleum Exploration and Development, PetroChina (China); Key Laboratory for Petroleum Geochemistry, China National Petroleum Corp. (China)

    2010-12-01

    The natural gases developed in deep volcanic rock reservoirs of the Songliao Basin, NE China are characterized by enriched {delta}{sup 13}C value for methane and frequently reversal carbon isotopic distribution pattern. Although many researchers consider such gas type as an abiogenic origin, we believe the natural gases have a biogenic origin mainly except little inorganic gases and the reversal carbon isotopic distribution pattern of gases is caused by mixing of different origin gases. Methane carbon isotopic values for majority samples fall in the range from - 24 permille to - 32 permille, which is heavier than typical coal-type gases in other Chinese basins. There are several reasons caused heavy carbon isotope of methane: (1) Carbon isotopic values of source kerogen are 3-5 permille heavier than these from other basins; (2) Source rocks are at extremely high maturity stage with vitrinite reflectance mostly above 3.0%; (3) Portion of gas is derived from basement mudrock or slate with higher maturity. The observation on the organic from deep formation reveals that there is a relatively high content for liptinite, which reaches approximately 8 to 10%. The macerals component of source rock shows that the source rocks have some ability to generate oil. Small portion of oil was generated from high hydrogen content macerals in coals and shales as proof by oil found in microcrack and in micropore of coal and oil-bearing fluid inclusions grown in volcanic reservoir. The occurrence of pyrobitumen in volcanic reservoir indicates preexisted oil had been cracked into wet gas, and this kind of gas had also been found in gas pools. Heavy isotopic methane is derived from coal at extremely high maturity stage. There may be little inorganic alkane gases in deep layers for their geochemistry and special geological setting of Songliao Basin. Artificial mixing experiments of different origins gases confirm that inorganic gas such as gas from well FS1 mixed with other end members

  1. A new method for calculating gas content of coal reservoirs with consideration of a micro-pore overpressure environment

    Directory of Open Access Journals (Sweden)

    Jinxing Song

    2017-05-01

    Full Text Available When the gas content of a coal reservoir is calculated, the reservoir pressure measured by well logging and well testing is generally used for inversion calculation instead of gas pressure. However, the calculation result is not accurate because the reservoir pressure is not equal to the gas pressure in overpressure environments. In this paper, coal samples of different ranks in Shanxi and Henan are collected for testing the capillary pressure of coal pores. Based on the formation process of CBM reservoirs and the hydrocarbon generation and expulsion history of coal beds, the forming mechanisms of micro-pore overpressure environments in coal reservoirs were analyzed. Accordingly, a new method for calculating the gas content of coal reservoirs with consideration of a micro-pore overpressure environment was developed. And it was used to calculate the gas content of No. 1 coal bed of the 2nd member of Lower Permian Shanxi Fm in the Zhongmacun Coal Mine in Jiaozuo, Henan. It is indicated that during the formation and evolution of coals, some solid organic matters were converted into gas and water, and gas–water contact is surely formed in pores. In the end, capillary pressure is generated, so the gas pressure in micro-pores is much higher than the hydrostatic column pressure, which results in a micro-pore overpressure environment. Under such an environment, gas pressure is higher than reservoir pressure, so the gas content of coal reservoirs calculated previously based on the conventional reservoir pressure evaluation are usually underestimated. It is also found that the micro-pore overpressure environment exerts a dominating effect on the CBM content calculation of 3–100 nm pores, especially that of 3–10 nm pores, but a little effect on that of pores >100 nm. In conclusion, this new method clarifies the pressure environment of CBM gas reservoirs, thereby ensuring the calculation accuracy of gas content of coal reservoirs.

  2. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  3. Desulfurization and denitrogenation in copyrolysis of coal with hydrogen-rich gases

    Energy Technology Data Exchange (ETDEWEB)

    Liao, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    1999-06-01

    Desulfurization and denitrogenation were systematically investigated by analyzing the chars and tars from copyrolysis of Yanzhou high sulfur bituminous coal with coke-oven gas (COG), synthesis gas (SG) and hydrogen. The results indicated that under the conditions of 3MPa, up to 650{degree}C with a heating rate of 10{degree}C/min, the desulfurization of coal pyrolysis with COG, SG and hydrogen were almost equal (about 80%, w%, ad), the order of denitrogenation were: hydrogen (41%) {gt} SG(35%) {gt} COG(30%). The distributions of sulfur in char, oil and gas was very similar under the three reactive gases, i.e., about 205 in char, 105 in tar and 70% (diff.) in gas, respectively. Compared with hydropyrolysis at the same hydrogen partial pressure, the desulfurization of coal pyrolysis with coke oven gas was increased by about 4.5%, while the denitrogenation was decreased by about 3.5%. There is an important desulfurization advantage for hydropyrolysis using COG and SG instead of pure hydrogen. Compared with the copyrolysis of coal with COG, Yanzhou coal pyrolysis under SG can achieve the same level of desufurization but higher denitrogenation. 11 refs., 3 figs., 4 tabs.

  4. Measurements of Gasification Characteristics of Coal and Char in CO2-Rich Gas Flow by TG-DTA

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2013-01-01

    Full Text Available Pyrolysis, combustion, and gasification properties of pulverized coal and char in CO2-rich gas flow were investigated by using gravimetric-differential thermal analysis (TG-DTA with changing O2%, heating temperature gradient, and flow rate of CO2-rich gases provided. Together with TG-DTA, flue gas generated from the heated coal, such as CO, CO2, and hydrocarbons (HCs, was analyzed simultaneously on the heating process. The optimum O2% in CO2-rich gas for combustion and gasification of coal or char was discussed by analyzing flue gas with changing O2 from 0 to 5%. The experimental results indicate that O2% has an especially large effect on carbon oxidation at temperature less than 1100°C, and lower O2 concentration promotes gasification reaction by producing CO gas over 1100°C in temperature. The TG-DTA results with gas analyses have presented basic reference data that show the effects of O2 concentration and heating rate on coal physical and chemical behaviors for the expected technologies on coal gasification in CO2-rich gas and oxygen combustion and underground coal gasification.

  5. Gas, electricity, coal: 1998 statistical data

    International Nuclear Information System (INIS)

    1999-01-01

    This document brings together the main statistical data from the French direction of gas, electricity and coal and presents a selection of the most significant numbered data: origin of production, share of the consumption, price levels, resources-employment status. These data are presented in a synthetic and accessible way in order to make useful references for the actors of the energy sector. (J.S.)

  6. Rosneftegazstroy - Russia's premier oil and gas contractor

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This special Petroleum Economist Sponsored Supplement looks at the present condition and future prospects of the Russian oil and gas industry. Russia's chief oil and gas contractor, Rosneftegazstroy, a joint stock company formed in 1991, took over from the former Soviet Union's Ministry of Oil and Gas Construction and from Neftegazstroy, the State concern. Responsible for the exploration and exploitation of the country's huge oil and gas reserves, Rosneftegazstroy has a mammoth task ahead to modernize and create an adequate infrastructure for its new commercial basis. Its foreign investment projects are described and plans for rebuilding and new developments are discussed. Russia's fuel and energy industries now show clear signs of increasing activity, amid a backdrop of falling production overall. (UK)

  7. Underground Coal Gasification: Rates of Post Processing Gas Transport

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Hejtmánek, Vladimír; Stanczyk, K.; Šolcová, Olga

    2014-01-01

    Roč. 68, č. 12 (2014), s. 1707-1715 ISSN 0366-6352 R&D Projects: GA MŠk 7C12017 Grant - others:RFCS(XE) RFCR-CT-2011-00002 Institutional support: RVO:67985858 Keywords : underground coal gas ification * gas transport * textural properties Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  8. Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas

    Energy Technology Data Exchange (ETDEWEB)

    Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

    2010-09-30

    One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to < 35% for new coal-based power plants which include CO{sub 2} capture and sequestration addresses both the growing social concern for global climate change resulting from the emission of greenhouse gas and in particular CO{sub 2} and the need to control cost increases to power production necessary to meet this social objective. Similar improvements to technologies for trace contaminants are getting similar pressure to reduce environmental emissions and reduce production costs for the syngas to enable production of chemicals from coal that is cost competitive with oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this

  9. Dynamic simulation model of a coal thermoelectric plant with a flue gas desulphurisation system

    International Nuclear Information System (INIS)

    Caselles-Moncho, Antonio; Ferrandiz-Serrano, Liliana; Peris-Mora, Eduardo

    2006-01-01

    In this paper a Dynamic Simulation Model has been used to present the likely responses of the electricity industries' latest perturbations such as: changes in environmental regulations, international fuel market evolution, restriction on fuel supply and increase on fuel prices, liberalisation of the European Electricity Market, and the results of applying energy policies and official tools such as taxes and emission allowances. The case under study refers to the Teruel Power Plant, built after the 1970s oil crisis to ensure national electricity supply; burning domestically produced coal in order to ensure local mining activity. The Teruel Power Plant has made relevant investments in order to meet emission limits, such as a Flue Gas Desulphurisation Plant. The economic viability of the power stations has to be analysed after environmental costs have been internalised. A system is defined that studies the coal-firing Electric Power Plant selling energy to the free electricity market, whenever the generation cost is competitive. A Dynamic Simulation Model would appear to be an accurate tool to optimise power station management within different frameworks

  10. Liberalization of the European gas sector

    International Nuclear Information System (INIS)

    Schwark, B.; Finger, M.

    2006-01-01

    Natural gas is the fastest growing fossil fuel worldwide, and by 2030, natural gas will replace coal as the second largest fuel, after oil. In particular, the growing use of natural gas in electricity generation rises the demand and changes the image of gas as substitute for light oil for heating. Due to its complete supply dependency, Switzerland will be affected by the European gas market developments. A new market organization, which requires legal and entrepreneurial decisions in Switzerland, emerges from the liberalization process of the energy markets in the European Union. (author)

  11. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  12. Prospects For Coal And Clean Coal Technologies In Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    The coal sector in Kazakhstan is said to have enough reserves to last over 100 years, but the forecasted reserves are expected to last several hundreds of years. This makes investing in the fuel and energy sector of the country an attractive option for many international and private organisations. The proven on-shore reserves will ensure extraction for over 30 years for oil and 75 years for gas. The future development of the domestic oil sector depends mainly on developing the Kazakh sector of the Caspian Sea. The coal sector, while not a top priority for the Kazakh government, puts the country among the world's top ten coal-rich countries. Kazakhstan contains Central Asia's largest recoverable coal reserves. In future, the development of the raw materials base will be achieved through enriching and improving the quality of the coal and the deep processing of coal to obtain fluid fuel and synthetic substances. Developing shale is also topical. The high concentration of methane in coal layers makes it possible to extract it and utilise it on a large scale. However, today the country's energy sector, which was largely established in the Soviet times, has reached its potential. Kazakhstan has about 18 GW of installed electricity capacity, of which about 80% is coal fired, most of it built before 1990. Being alert to the impending problems, the government is planning to undertake large-scale modernisation of the existing facilities and construct new ones during 2015-30. The project to modernise the national electricity grid aims to upgrade the power substations to ensure energy efficiency and security of operation. The project will result in installation of modern high-voltage equipment, automation and relay protection facilities, a dispatch control system, monitoring and data processing and energy management systems, automated electricity metering system, as well as a digital corporate telecommunication network.

  13. Study on the propagation law of shock wave resulting from coal and gas outburst

    Institute of Scientific and Technical Information of China (English)

    WANG Kai; ZHOU Ai-tao; ZHANG Pin; LI Chuan; GUO Yan-wei

    2011-01-01

    According to the formation of shock wave resulting from coal and gas outburst, the gas flow of coal and gas outburst was transformed from an unsteady flow to a steady one based on selected appropriate reference coordinates, and the mathematical expressions were then established by applying mass conservation, momentum conservation equation, and energy conservation equation. On this basis, analyzed gas flow mitigation of variable cross-section area and the outburst intensity, and the relations between cross-section area, velocity, and density; the relations between overpressures and outburst intensity were deduced. Furthermore, shock waves resulting from coal and gas outburst and outburst intensity were measured by experimental setup, the overpressure and outburst intensity of different gas pressures were obtained, and the similar conditions of the experiment were numerically simulated. The averaged overpressure and gas flow velocity of variable cross-section under different gas pressures were numerically derived. The results show that the averaged overpressure and outburst intensity obtained from simulation are in good agreement with the experimental results. Moreover, the gas flow velocity of variable cross-sections approximates to the theoretical analysis.

  14. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA).

    Science.gov (United States)

    Idris, Siti Shawalliah; Rahman, Norazah Abd; Ismail, Khudzir

    2012-11-01

    The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Coal reburning technology for cyclone boilers

    International Nuclear Information System (INIS)

    Yagiela, A.S.; Maringo, G.J.; Newell, R.J.; Farzan, H.

    1990-01-01

    Babcock and Wilcox has obtained encouraging results from engineering feasibility and pilot-scale proof-of-concept studies of coal reburning for cyclone boiler NO x control. Accordingly, B and W completed negotiations for a clean coal cooperative agreement with the Department of Energy to demonstrate coal reburning technology for cyclone boilers. The host site for the demonstration is the Wisconsin Power and Light (WP and L) Company's 100MWe Nelson Dewey Station. Reburning involves the injection of a supplemental fuel (natural gas, oil, or coal) into the main furnace to produce locally reducing stoichiometric conditions which convert the NO x produced therein to molecular nitrogen, thereby reducing overall NO x emissions. There are currently no commercially-demonstrated combustion modification techniques for cyclone boilers which reduce NO x emissions. The emerging reburning technology offers cyclone boiler operators a promising alternative to expensive flue gas cleanup techniques for NO x emission reduction. This paper reviews baseline testing results at the Nelson Dewey Station and pilot-scale results simulating Nelson Dewey operation using pulverized coal (PC) as the reburning fuel. Outcomes of the model studies as well as the full-scale demonstration preliminary design are discussed

  16. The application of a coupled artificial neural network and fault tree analysis model to predict coal and gas outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Ruilin, Zhang [School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454003, PR (China); Lowndes, Ian S. [Process and Environmental Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2010-11-01

    This paper proposes the use of a coupled fault tree analysis (FTA) and artificial neural network (ANN) model to improve the prediction of the potential risk of coal and gas outburst events during the underground mining of thick and deep Chinese coal seams. The model developed has been used to investigate the gas emission characteristics and the geological conditions that exist within the Huaibei coal mining region, Anhui province, China. The coal seams in this region exhibit a high incidence of coal and gas outbursts. An analysis of the results obtained from an initial application of an FTA model, identified eight dominant model parameters related to the gas content or geological conditions of the coal seams, which characterize the potential risk of in situ coal and gas outbursts. The eight dominant model parameters identified by the FTA method were subsequently used as input variables to an ANN model. The results produced by the ANN model were used to develop a qualitative risk index to characterize the potential risk level of occurrence of coal and gas outburst events. Four different potential risk alarm levels were defined: SAFE, POTENTIAL, HIGH and STRONG. Solutions to the prediction model were obtained using a combination of quantitative and qualitative data including the gas content or gas pressure and the geological and geotechnical conditions of coal seams. The application of this combined solution method identified more explicit and accurate model relationships between the in situ geological conditions and the potential risk of coal and gas outbursts. An analysis of the model solutions concluded that the coupled FTA and ANN model may offer a reliable alternative method to forecast the potential risk of coal and gas outbursts. (author)

  17. Possibilities of increasing coal charge density by adding fuel oil

    Directory of Open Access Journals (Sweden)

    M. Fröhlichová

    2010-01-01

    Full Text Available The requirement of all coke-making facilities is to achieve the highest possible production of high quality coke from a chamber. It can be achieved by filling the effective capacity of the chamber with the highest possible amount of coal. One of the possibilities of meeting this requirement is to increase the charge density in the coke chamber. In case of a coke battery operating on bulk coal there are many methods to increase the charge density including the use of wetting agents in the charge. This article presents the results of the laboratory experiments aiming at the increase of the charge density using fuel oil as a wetting agent. The experiments were carried out by means of the Pitin’s device using 3 coal charges with various granularity composition and moisture content of 7, 8, 9 and 10 %.

  18. Utilizing Philippine Calatrava coal-diesel oil mixture (CDOM) as alternative fuel for industrial steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Archie B. Maglaya [De La Salle University, Manila (Philippines). Department of Mechanical Engineering

    2005-01-01

    The fast depletion of fuel oil and the continuous increase in the demand for power is a global issue. In the Philippines, the demand for diesel oil is expected to increase significantly in a 20-year period as projected by the Department of Energy. In line with the Philippine Government's thrust to lessen the dependence on imported energy, the agenda for the search for alternative fuel is highly prioritized. Thus, this paper presents the results of the study on performance analysis and efficiency test of a diesel oil fired industrial steam generator using Philippine Calatrava coal-diesel oil mixture (CDOM) as alternative fuel. A computer program was developed in HyperText Markup Language (HTML{copyright}) and JavaScript{copyright} to aid the computation of the adiabatic flame temperature from the governing system of equations based on the heat interaction between CDOM fuel, combustion air and products of combustion to determine the most desirable alternative fuel. Actual experimentation for the determination of CDOM fuel properties was also conducted to verify the alternative fuel selected through theoretical calculations. Results showed that the CDOM fuel with a particle size passing 75 {mu}m (-200 mesh) sieve having a proportion of 5% pulverized coal-95% diesel oil and 10% pulverized coal-90% diesel oil could be handled throughout the test with no degradation of the industrial steam generator. The steam generator efficiency using diesel oil is close to the steam generator efficiency using both CDOM fuels. 20 refs., 5 figs., 4 tabs.

  19. Caspian Oil and Gas: Production and Prospects

    National Research Council Canada - National Science Library

    Gelb, Bernard A

    2005-01-01

    .... The Caspian Sea region historically has been an oil and natural gas producer, but many believe that the region contains large reserves of oil and gas capable of much greater production than at present...

  20. Oil & Ethnocentrism: A study of Global Oil & Gas Organisations

    OpenAIRE

    Rees, Gareth

    2014-01-01

    This dissertation will examine the concept of ‘ethnocentrism’, or a belief in the superiority of one’s own cultural norms and values, against the backdrop of the Global Oil & Gas Service industry. Using Howard Perlmutter’s framework, ethnocentrism will be tested and analysed across distinct areas of international business; staffing and cultural prevalence, the management of international subsidiaries and corporate and national culture. Data will be collected from experienced Oil & Gas ma...

  1. Natural gas prices

    International Nuclear Information System (INIS)

    Johnson, W.A.

    1990-01-01

    Since the 1970s, many electric utilities and industrial boiler fuel users have invested in dual fuel use capability which has allowed them to choose between natural gas, residual fuel oil, and in some instances, coal as boiler fuels. The immediate reason for this investment was the need for security of supply. Wellhead regulation of natural gas prices had resulted in shortages during the 1970s. Because many industrial users were given lowest priority in pipeline curtailments, these shortages affected most severely boiler fuel consumption of natural gas. In addition, foreign supply disruptions during the 1970s called into question the ready availability of oil. Many boiler fuel users of oil responded by increasing their ability to diversify to other sources of energy. Even though widespread investment in dual fuel use capability by boiler fuel users was initially motivated by a need for security of supply, perhaps the most important consequence of this investment was greater substitutability between natural gas and resid and a more competitive boiler fuel market. By the early 1980s, most boiler fuel users were able to switch from one fuel to another and often did for savings measured in pennies per MMBtu. Boiler fuel consumption became the marginal use of both natural gas and resid, with coal a looming threat on the horizon to both fuels

  2. Conversion of Coal Mine Gas to LNG

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-05

    This project evolved from a 1995, DOE-NETL competitive solicitation for practical CMM capture and utilization concepts. Appalachian Pacific was one of three companies selected to proceed with the construction and operation of a cost-shared demonstration plant. In the course of trying to proceed with this demonstration plant, AP examined several liquefaction technologies, discussed obtaining rights to coal mine methane with a number of coal companies, explored marketing potential with a wide variety of customers in many sections of the United States, studied in great detail the impact of a carbon credit exchange, and developed a suite of analytical tools with which to evaluate possible project options. In the end, the newness of the product, reluctance on the part of the coal companies to venture away from time tested practices, difficulty with obtaining financing, the failure of a carbon credit market to develop and the emergence of shale derived gas production prevented a demonstration plant from being built.

  3. Coal Mining and Coal Seam Gas on Gomeroi country: Sacred lands, economic futures and shifting alliances

    International Nuclear Information System (INIS)

    Norman, Heidi

    2016-01-01

    North western NSW has seen a host of interest groups working in alliance opposing coal and coal seam gas mining. These groups - farmers, residents and environmentalists share concerns about the impact on the unique black soil and aquifer, of fossil fuel more broadly. While these shared alliances across class, gender and generations are emergent, Aboriginal citizens are uniquely placed in this contest over land, environment and resources. This paper sets out to show the historical and contemporary significance of the place of Aboriginal people in the debate over land use, arguing that, for the first time in history, Aboriginal worlds are central to community futures. In this space, new relationships are being forged and new discourse is required to comprehend the complex position Aboriginal citizens have as custodians of place and at the same time, the responsibility to provide for families and communities, otherwise excluded from the prevailing modern economy. With reference to the history of both relationship to land and land usage over Gomeroi country, and drawing on ethnographic along with archival research, this article seeks to contribute to a critical understanding of Aboriginal people's dealings in relation to their land, their cultural and economic interests with in an emerging regional coal economy, and in turn how they are redefining the context for energy resource extraction, and energy policy. - Highlights: • Aboriginal worlds are central to community futures in Australia. • Prospecting for coal and coal seam gas is forcing Aboriginal land holders into new relationships. • The nexus between the coal economy & Aboriginal self-determination is deeply contested. • New discourses are emerging to comprehend the custodianship of place in the context of mining.

  4. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    International Nuclear Information System (INIS)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  5. Future of oil and gas

    International Nuclear Information System (INIS)

    Gatermann, R.; Ten Hoedt, R.

    2009-01-01

    Two articles in the section 'Future of oil and gas': one ('Baltic strained by oil traffic') on the growing risks of accidents in maritime traffic in the Baltic region, and one ('Angola wants bigger piece of the pie') on the importance of the oil production in Angola to energy supplies in Europe and the USA. It appears that national oil company Sonango wants to have a greater part of the profits

  6. Formation of the oil and gas lease

    International Nuclear Information System (INIS)

    Gillespie, E.M.; Piercy, J.R.

    1998-01-01

    The legal nature of an oil and gas lease was described and the challenges associated with working with the freehold oil and gas lease were discussed. This paper also reviewed the formalities of execution under seal, issues relating to capacity of the executing party, ability of an executor of an estate to grant the lease, and homestead rights. Precautions that should be taken to ensure that oil and gas lease documents are properly executed so as not to void a lease are also discussed. 46 refs

  7. Microbially-Enhanced Coal Bed Methane: Strategies for Increased Biogenic Production

    Science.gov (United States)

    Davis, K.; Barhart, E. P.; Schweitzer, H. D.; Cunningham, A. B.; Gerlach, R.; Hiebert, R.; Fields, M. W.

    2014-12-01

    Coal is the largest fossil fuel resource in the United States. Most of this coal is deep in the subsurface making it costly and potentially dangerous to extract. However, in many of these deep coal seams, methane, the main component of natural gas, has been discovered and successfully harvested. Coal bed methane (CBM) currently accounts for approximately 7.5% of the natural gas produced in the U.S. Combustion of natural gas produces substantially less CO2 and toxic emissions (e.g. heavy metals) than combustion of coal or oil thereby making it a cleaner energy source. In the large coal seams of the Powder River Basin (PRB) in southeast Montana and northeast Wyoming, CBM is produced almost entirely by biogenic processes. The in situ conversion of coal to CBM by the native microbial community is of particular interest for present and future natural gas sources as it provides the potential to harvest energy from coal seams with lesser environmental impacts than mining and burning coal. Research at Montana State University has shown the potential for enhancing the subsurface microbial processes that produce CBM. Long-term batch enrichments have investigated the methane enhancement potential of yeast extract as well as algal and cyanobacterial biomass additions with increased methane production observed with all three additions when compared to no addition. Future work includes quantification of CBM enhancement and normalization of additions. This presentation addresses the options thus far investigated for increasing CBM production and the next steps for developing the enhanced in situ conversion of coal to CBM.

  8. Reconnaissance coal study in the Susitna basin, 2014

    Science.gov (United States)

    David L. LePain,; Stanley, Richard G.; Harun, Nina T.; Helmold, Kenneth T.; Tsigonis, Rebekah

    2015-01-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) conducted fieldwork during the summer of 2014 in the Susitna basin as part of an ongoing evaluation of the hydrocarbon potential of frontier basins, particularly those near the Railbelt region (for example, Decker and others, 2013; Gillis and others, 2013). Topical studies associated with this recent work include sedimentary facies analysis (LePain and others, 2015) and structural geology investigations (Gillis and others, 2015). The Susitna basin contains coal-bearing Paleogene and Neogene strata correlative with formations that host oil and gas in Cook Inlet basin to its south. Isotopic signatures of natural gas reservoired in the Miocene/Pliocene Sterling and Miocene Beluga Formations suggest a biogenic origin for Cook Inlet gas (Claypool and others, 1980). To assess the biogenic gas potential of the Susitna basin, it is important to obtain information from its coal-bearing units.Characteristics of coal, such as maturity/rank and cleat development are key parameters influencing viability of a biogenic gas system (Laubach and others, 1998). In an early study of the Susitna basin (Beluga–Yentna region), Barnes (1966) identified, analyzed, and recognized potentially valuable subbituminous coal resources at Fairview Mountain, Canyon Creek, and Johnson Creek. Merritt (1990), in a sedimentological study to evaluate surface coal mining potential of the Tertiary rocks of the Susitna basin (Susitna lowland), concluded that the basin contained several billion tons of mineable reserves. This preliminary report offers a brief summary of new information on coals in the Susitna Basin acquired during associated stratigraphic studies (see LePain and others, 2015). 

  9. Gas production strategy of underground coal gasification based on multiple gas sources.

    Science.gov (United States)

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  10. Development of coal gas production technology acceptable for fuel cells; Nenryo denchiyo sekitan gas seizo gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T [Center for Coal Utilization, Japan, Tokyo (Japan); Kimura, N; Omata, K [Electric Power Development Co. Ltd., Tokyo (Japan)

    1996-09-01

    In utilizing coal for high-efficiency direct power generation using fuel cells, it is necessary that coal be fed into the fuel cells after having been made into ash-free gaseous fuel. Research and development works are being carried out with an objective to develop a coal gasification furnace most suitable for fuel cells and establish a system to refine coal up to the one that can be fed into fuel cells. Fiscal 1995 has conducted investigations on coal gasification technologies, air separation technologies, and gas refining technologies as the important element technologies, and a trial design on integrated coal gasification fuel cell (IGFC) systems. This paper reports from among the above items the result of the trial design on an IGFC system using molten carbonate fuel cells. The paper describes system comparison on paths of produced gases and anode waste gas, comparison on refining processes using a wet system and a dry system, and parameter studies on oxygen concentration in gasifying agents. It was made clear that the suitable furnace is an oxygen blown coal gasification furnace, and the power generation efficiency at the system terminal can be higher than 53%. 11 figs., 6 tabs.

  11. Conceptual design of coke-oven gas assisted coal to olefins process for high energy efficiency and low CO2 emission

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Siyu; Zhang, Jun; Qian, Yu

    2014-01-01

    Highlights: • A novel coke-oven gas assisted coal to olefins (GaCTO) process is proposed. • GaCTO has higher energy efficiency and emits less CO 2 compared to coal-to-olefins process. • GaCTO proposes an idea of using redundant coke-oven gas for producing value added products. - Abstract: Olefins are one of the most important platform chemicals. Developing coal-to-olefins (CTO) processes is regarded as one of promising alternatives to oil-to-olefins process. However, CTO suffers from high CO 2 emission due to the high carbon contents of coal. In China, there is 7 × 10 10 m 3 coke-oven gas (COG) produced in coke plants annually. However, most of the hydrogen-rich COG is utilized as fuel or discharged directly into the air. Such situation is a waste of precious hydrogen resource and serious economic loss, which causes serious environmental pollution either. This paper proposes a novel co-feed process of COG assist CTO in which CH 4 of COG reacts with CO 2 in a Dry Methane Reforming unit to reduce emissions, while the Steam Methane Reforming unit produces H 2 -rich syngas. H 2 of COG can adjust the H/C ratio of syngas. The analysis shows that the energy efficiency of the co-feed process increases about 10%, while at the same time, life cycle carbon footprint is reduced by around 85% in comparison to the conventional CTO process. The economic sustainability of the co-feed process will be reached when the carbon tax would be higher than 150 CNY/t CO 2

  12. Knowledge Based Oil and Gas Industry

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, Amir; Blomgren, Atle

    2011-07-01

    This study presents the Norwegian upstream oil and gas industry (defined as all oil and gas related firms located in Norway, regardless of ownership) and evaluates the industry according to the underlying dimensions of a global knowledge hub - cluster attractiveness, education attractiveness, talent attractiveness, RandD and innovation attractiveness, ownership attractiveness, environmental attractiveness and cluster dynamics.(au)

  13. Evaluating the gas content of coals and isolated maceral concentrates from the Paleocene Guasare Coalfield, Venezuela

    International Nuclear Information System (INIS)

    Berbesi, L.A.; Marquez, G.; Martinez, M.; Requena, A.

    2009-01-01

    This work presents the results from evaluating the gases sorbed by coal samples extracted from the Paleocene Guasare Coalfield (Marcelina Formation, northwestern Venezuela), as well as by their distinct maceral concentrates. The aim of this work has been to obtain an initial experimental main value of the gas content per unit weight of high volatile bituminous A coal samples from the open-pit Paso Diablo mine. An additional goal was to study differences in the CH 4 storage ability of the distinct maceral groups forming part of the coal matrix. Both the coal samples and the maceral concentrates were studied by thermogravimetric analysis (TGA) in order to determine the temperature to be used in subsequent experiments. On-line analyses of hydrocarbons (C 1 , C 2 , C 3 ) and CO 2 yielded gas concentrations, plus δ 13 C values. Thermogenic gas is prevalent in the Guasare coals with vitrinite reflectance (%R o ) values from 0.65% to 0.88%. The amount of gas retained in the coals and maceral concentrates was measured with a special device that allows determination of the volume of gas sorbed by a solid sample subjected to controlled thermal treatment. The average coalbed gas concentration obtained was 0.51 cm 3 /g. The following list of maceral concentrates shows the relative capacity for the volume of sorbed gas per unit weight: inertinite > low-density vitrinite > liptinite ∼ high-density vitrinite. It is concluded that the gas volumes retained in the distinct maceral concentrates are not controlled by porosity but rather by their microscopic morphology.

  14. Refining fuels of the heavy gas--oil type

    Energy Technology Data Exchange (ETDEWEB)

    Bruzac, J F.A.

    1930-01-28

    This invention has for its object the production of a new type of gas-oil fuel, obtained from crude petroleum, shale oil, and peat oil, according to the method of treatment mentioned, by means of which is obtained from gas oil, shale oil, lignite oil, and peat oil (deprived of asphaltic, and bituminous, resinous, and sulfur compounds), a fuel suitable for running Diesel, Junkers, and Clerget motors and all others of the same kind, by diminishing considerably the fouling and attack on the metal.

  15. Usage of waste products from thermal recycling of plastics waste in enhanced oil recovery or in-situ coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fink, M; Fink, J K [Montanuniversitaet Leoben (Austria)

    1998-09-01

    In this contribution a thermal method for crude oil mobilization and in-situ liquefaction of coal is discussed, which will finally yield more organic material, as which has been put in from plastics waste originally into the process. The conversion product from thermal treatment is pumped down into exhausted crude oil reservoirs, where the hydrogen can degrade the residual high viscous oil to cause it to become more prone to flow so that it can be recovered. Such a process will envision two goals: 1. more organic raw material (as crude oil) will be recovered than is initially put in as waste product. 2. atmospheric pollutants from the conversion plant will be trapped in the reservoir, which simplifies the construction of the plant. An analogous process may be performed with coal seams. Coal seams with their high porosity and large specific surface are believed to be in particular useful to filter atmospheric pollutants. Depending on the type of coal the mobilization of organic material by this process may be in the background. (orig./SR)

  16. Kinetics of coal liquefaction during heating-up and isothermal stages

    Energy Technology Data Exchange (ETDEWEB)

    Xian Li; Haoquan Hu; Shengwei Zhu; Shuxun Hu; Bo Wu; Meng Meng [Dalian University of Technology, Dalian (China). Institute of Coal Chemical Engineering

    2008-04-15

    Direct liquefaction of Shenhua bituminous coal was carried out in a 500 ml autoclave with iron catalyst and coal liquefaction cycle-oil as solvent at initial hydrogen of 8.0 MPa, residence time of 0-90 min. To investigate the liquefaction kinetics, a model for heating-up and isothermal stages was developed to estimate the rate constants of both stages. In the model, the coal was divided into three parts, easy reactive part, hard reactive part and unreactive part, and four kinetic constants were used to describe the reaction mechanism. The results showed that the model is valid for both heating-up and isothermal stages of liquefaction perfectly. The rate-controlled process for coal liquefaction is the reaction of preasphaltene plus asphaltene (PAA) to oil plus gas (O + G). The upper-limiting conversion of isothermal stage was estimated by the kinetic calculation. 21 refs., 4 figs., 4 tabs.

  17. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  18. Coal: resources, reserves and production - Panorama 2008

    International Nuclear Information System (INIS)

    2008-01-01

    For the French, whose last coal mine closed in 2004, the 'comeback' of coal as a political issue may seem a bit surprising. Even if coal is still used in domestic industry and to produce electricity, it is many years since it was used as the primary energy source for electricity production. This situation, specific to France and certain European countries, is not at all typical of the world situation: in the face of surging energy demand, coal - whose reserves have been estimated by the World Energy Council to cover 145 years of consumption at the current rate - seems to be an energy of the future and an alternative to oil, natural gas and nuclear power for the production of electricity

  19. Numerical simulation of coupled binary gas-solid interaction during carbon dioxide sequestration in a coal bed

    International Nuclear Information System (INIS)

    Feng Qiyan; Zhou Lai; Chen Zhongwei; Liu Jishan

    2008-01-01

    Complicated coupled binary gas-solid interaction arises during carbon dioxide sequestration in a coal seam, which combines effects of CO 2 -CH 4 counter adsorption, CO 2 -CH 4 counter diffusion, binary gas flow and coal bed deformation. Through solving a set of coupled field governing equations, a novel full coupled Finite Element (FE) model was established by COMSOL Multiphysics. The new FE model was applied to the quantification of coal porous pressure, coal permeability, gas composition fraction and coal displacement when CO 2 was injected in a CH 4 saturated coal bed. Numerical results demonstrate that CH 4 is swept by the injected CO 2 accompanied by coal volumetric deformation. Compared to the single CH 4 in situ, CH 4 -CO 2 counter-diffusion induced coal swelling can make more compensation for coal shrinkage due to effective stress. Competing influences between the effective stress and the CH 4 -CO 2 counter-diffusion induced volume change governs the evolution of porous pressure and permeability, which is controlled by the porous pressure correspondingly. This achievement extends our ability to understand the coupled multi-physics of the CO 2 geological sequestration and CO 2 enhanced coal bed methane recovery under field conditions. (authors)

  20. Slag processing system for direct coal-fired gas turbines

    Science.gov (United States)

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  1. Staged fluidized-bed coal combustor for boiler retrofit

    International Nuclear Information System (INIS)

    Rehmat, A.; Dorfman, L.; Shibayama, G.; Waibel, R.

    1991-01-01

    The Advanced Staged Fluidized-Bed Coal Combustion System (ASC) is a novel clean coal technology for either coal-fired repowering of existing boilers or for incremental power generation using combined-cycle gas turbines. This new technology combines staged combustion for gaseous emission control, in-situ sulfur capture, and an ash agglomeration/vitrification process for the agglomeration/vitrification of ash and spent sorbent, thus rendering solid waste environmentally benign. The market for ASC is expected to be for clean coal-fired repowering of generating units up to 250 MW, especially for units where space is limited. The expected tightening of the environmental requirements on leachable solids residue by-products could considerably increase the marketability for ASC. ASC consists of modular low-pressure vessels in which coal is partially combusted and gasified using stacked fluidized-bed processes to produce low-to-medium-Btu, high-temperature gas. This relatively clean fuel gas is used to repower/refuel existing pulverized-coal, natural gas, or oil-fired boilers using bottom firing and reburning techniques. The benefits of ASC coal-fired repowering include the ability to repower boilers without obtaining additional space while meeting the more stringent environmental requirements of the future. Low NO x , SO x , and particulate levels are expected while a nonleachable solid residue with trace metal encapsulation is produced. ASC also minimizes boiler modification and life-extension expenditures. Repowered efficiencies can be restored to the initial operating plant efficiency, and the existing boiler capacity can be increased by 10%. Preliminary cost estimates indicate that ASC will have up to a $250/kW capital cost advantage over existing coal-fired repowering options. 4 figs., 4 tabs

  2. Financial Times oil and gas international year book 1994

    International Nuclear Information System (INIS)

    Williams, Julian

    1993-01-01

    The greater part of this book aims to provide narrative, production and financial details of major oil and gas companies, both upstream and downstream, across the world. Smaller sections give details on major oil and gas brokers and traders, and on the principal oil and gas associations. These sections are arranged alphabetically by company name. A geographical index towards the end of the book enables the user to identify upstream companies exploring for or producing oil and gas in particular areas. The company index includes every company mentioned in the book and includes all subsidiary and related companies to the major companies. Four introductory tables give data on world petroleum production, oil refining, tanker tonnage and oil consumption. (Author)

  3. Copyrolysis of coal with coke-oven gas. III. Analysis of tar

    Energy Technology Data Exchange (ETDEWEB)

    Liao, H.; Sun, C.; Li, B.; Liu, Z. [Chinese Academy of Sciences, Taiyuan (China). State Key Laboratory of Coal Conversion, Institute of Coal Chemistry

    1998-02-01

    Tars from copyrolysis of Xianfeng lignite with coke-oven gas (COG) at different pressures (0.1-5 MPa) and heating rates (5-25{degree}C/min) to a final temperature of 650{degree}C were analyzed and compared with hydropyrolysis under the same H{sub 2} partial pressure. The results indicated that high contents of BTX, PCX and naphthalene were found in the tar from copyrolysis of Xianfeng lignite with COG. Pressure and heating rate have important effects on tar yields and the contents of BTX, PCX and naphthalene in oil. Increasing pressure and decreasing heating rate enhance the tar yields and result in high yields of BTX and PCX. When compared with hydropyrolysis under the same H{sub 2} partial pressure, the tar yield increases by 1.2 times and the yields of BTX, PCX and naphthalene by about 1.6, 1.3 and 1.6 times, respectively. At the same total pressure (3MPa), the yields of BTX and naphthalene from copyrolysis are equal to those from hydropyrolysis. The results reveal that other components in COG, such as methane, carbon monoxide etc., are of importance for pyrolysis behaviour of coal under COG and improvement of oil qualities. 5 refs., 5 figs., 2 tabs.

  4. Gas and Oil Flow through Wellbore Flaws

    Science.gov (United States)

    Hatambeigi, M.; Anwar, I.; Reda Taha, M.; Bettin, G.; Chojnicki, K. N.; Stormont, J.

    2017-12-01

    We have measured gas and oil flow through laboratory samples that represent two important potential flow paths in wellbores associated with the Strategic Petroleum Reserve (SPR): cement-steel interfaces (microannuli) and cement fractures. Cement fractures were created by tensile splitting of cement cores. Samples to represent microannuli were created by placing thin steel sheets within split cement cores so flow is channeled along the cement-steel interface. The test sequence included alternating gas and oil flow measurements. The test fluids were nitrogen and silicone oil with properties similar to a typical crude oil stored in the SPR. After correcting for non-linear (inertial) flow when necessary, flows were interpreted as effective permeability and hydraulic aperture using the cubic law. For both samples with cement fractures and those with cement-steel interfaces, initial gas and oil permeabilities were comparable. Once saturated with oil, a displacement pressure had to be overcome to establish gas flow through a sample, and the subsequent gas permeability were reduced by more than 50% compared to its initial value. Keywords: wellbore integrity, leakage, fracture, microannulus, SPR. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of NTESS/Honeywell, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2017-8168 A

  5. Diversification of Oil and Gas Companies’ Activities in the Condition of Oil Prices Reduction and Economic Sanctions

    Directory of Open Access Journals (Sweden)

    Anastasia V. Sheveleva

    2016-01-01

    Full Text Available This article analyzes the influence of the economic sanctions imposed from the USA and the EU and oil prices reduction on the oil and gas companies and the directions of diversification of their activity as a method of management of price risks are considered. In the modern dynamic and quickly developing world, in the conditions of globalization and market economy, the oil and gas companies are affected by various risks which can exert negative impact on production and financial results. Risks can arise in absolutely various spheres, beginning from natural and technological hazards, and finishing with price risks. Sharp reduction of oil prices and decrease in demand for energy resources in the world markets, first of all in the European countries, input of financial or technological sanctions from the USA and Europe against Russia in 2014 has caused necessity of search a new more effective methods of price risks management of the oil and gas company. The methods of price risk management include the creation of commodity reserves, the establishment of a reserve fund, long-term contracts, subsidies from the state and the diversification of activities. The most effective it is possible to offer diversification of oil and gas companies' activity. It is expedient to carry out diversification of oil and gas companies' activity in such directions as geographical diversification of the oil, oil products and gas realization directions, geographical diversification of oil and gas companies' purchasing activity, diversification of oil, oil products and gas transportation ways, diversification of oil and gas companies' business. This approach allows to expand the activities of the oil and gas companies and create additional ways to generate revenue and enhance efficiency of oil and gas companies.

  6. Effect of a Dispersant Agent in Fine Coal Recovery from Washery Tailings by Oil Agglomeration (Preliminary Study)

    Science.gov (United States)

    Yasar, Özüm; Uslu, Tuncay

    2017-12-01

    Among the fine coal cleaning methods, the oil agglomeration process has important advantages such as high process recovery, more clean product, simple dewatering stage. Several coal agglomeration studies have been undertaken recently and effects of different variables on the process performance have been investigated. However, unlike flotation studies, most of the previous agglomeration studies have not used dispersing agents to minimize slime coating effects of clays. In this study, agglomeration process was applied for recovery of fine coals from coal washery tailings containing remarkable amount of fine coal. Negative effect of fine clays during recovery was tried to be eliminated by using dispersing agent instead of de-sliming. Although ash reductions over 90 % were achieved, performance remained below expectations in terms of combustible matter recovery. However, this study is a preliminary one. It is considered that more satisfied results will be obtained in the next studies by changing the variables such as solid ratio, oil dosage, dispersant type and dosage.

  7. Our energy future is not set in stone. How can the demand for oil and gas in 2035 be met?

    International Nuclear Information System (INIS)

    Charlez, Philippe A.

    2014-01-01

    If technology is an undeniable catalyst for progress, then energy is its inevitable basic food. It is no coincidence that since the industrial revolution, economic growth has been fuelled first by coal, then by oil and gas. Although energy intensity reserves are still sizeable in emerging economies and the technological catalyst can partially dematerialise growth, it is unrealistic to separate growth from its basic food. And, even if the 'fossil energies share' (oil/gas/coal) will lose a few percent to nuclear and renewable energies over the next decades, all the indicators point to a world mix in which the fossil energy share will still top 75% by 2035. Driven by growth in emerging countries, the demand for oil and gas will continue to grow steadily. Even if there are enough oil and gas reserves to see us through the next three decades, will the industry be able to exploit and produce new resources that are increasingly complex to develop at a sufficient rate and which are often located in politically unstable countries? Not to mention the added challenge of the growing numbers of stakeholders who are increasingly insistent on industrial safety, environment and societal issues? In particular, will non-conventional resources, whose production growth could defer the oil and gas peaks by several decades, be able to withstand political and environmental lobbies? The evolution of oil and gas landscape over the past few years reveals a disturbing increase in the time required to develop large new fields and an accelerated decline of the production base due to the ageing of most of the mature-field facilities. This book aims to analyze all the critical factors (technical, political, economic, social and human) that could potentially accelerate or delay the maintenance and redevelopment of mature producing fields as well as the discovery and development of new conventional and unconventional resources. Insofar as in 2035, oil and gas still account for more than half of

  8. Large scale carbon dioxide production from coal-fired power stations for enhanced oil recovery : a new economic feasibility study

    International Nuclear Information System (INIS)

    Tontiwachwuthikul, P.; Chan, C.W.; Kritpiphat, W.; DeMontigny, D.; Skoropad, D.; Gelowitz, D.; Aroonwilas, A.; Mourits, F.; Wilson, M.; Ward, L.

    1998-01-01

    A study was conducted to investigate the economics of capturing carbon dioxide from coal-fired power plants to be subsequently used as a flooding agent for enhanced oil recovery (EOR) technologies. It was shown that the production of CO 2 for EOR projects can be technically and economically feasible, particularly when the concepts of cogeneration and optimization are used to reduce steam and electricity expenditures. This is done by using low-pressure steam and waste heat from various sections of the power generation process. It was shown that recovery costs could range between $0.50 to $2.00 per mscf. This translates to a recovered oil price of in the range of $17.39 to $19.95 per bbl., suggesting that even at today's low oil prices there is room for CO 2 flooding with flue gas extracted CO 2 . Practical implications for Saskatchewan were examined. 15 refs., 4 tabs., 7 figs

  9. Oil and gas -94

    International Nuclear Information System (INIS)

    Bauer, A.

    1994-06-01

    This report deals with the use of oil-, natural gas and liquefied petroleum gas (LPG) during 1993. Information about markets and technical environmental questions are also given. Data have been collected from earlier reports, information given by different persons and statistics from SCB and SPI. The import of crude oil increased from 16,8 million tons in 1992 to 17,8 million tons in 1993. The import of oil products decreased by 0,9 million tons down to 6,7 million tons in the same period. During this period, the import of natural gas increased by 9%, a total of 817 million cubic meters. The import of LPG was 748000 tons in 1993, which is 61000 tons less compared to the import of 1992. The production in Sweden for 1993 was 290000 tons, the same level as the level reached in 1992. The export of LPG increased from 107000 tons to 138000 tons during this period. In January 1993, legislative changes were made concerning energy taxes and carbon dioxide penalty taxes. The rate of the latter was increased from 25 to 32 oere per kilogram of carbon dioxide released in the atmosphere. For industry and greenhouse production, the penalty rate is only 25% or 8 oere per kilogram of carbon dioxide. From 1995 to 1998, yearly increases in the rate of energy taxes and carbon dioxide penalty taxes will be based on the consumer price index. Taxes will be increased by 4% in 1994. Due to changes in energy taxes, the consumption of LPG decreased in 1993. Earlier, many industries had changed from oil to LPG but now have changed back to oil. 8 figs, 17 tabs

  10. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in COAL IGCC Powerplants

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Yackly

    2004-09-30

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, has been re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for Coal IGCC powerplants. The new program has been re-titled as ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants'' to better match the new scope. This technical progress report summarizes the work accomplished in the reporting period April 1, 2004 to August 31, 2004 on the revised Re-Directed and De-Scoped program activity. The program Tasks are: Task 1--IGCC Environmental Impact on high Temperature Materials: This first materials task has been refocused to address Coal IGCC environmental impacts on high temperature materials use in gas turbines and remains in the program. This task will screen material performance and quantify the effects of high temperature erosion and corrosion of hot gas path materials in Coal IGCC applications. The materials of interest will include those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: This second task develops and demonstrates new sensor technologies to determine the in-service health of advanced technology Coal IGCC powerplants, and remains in the program with a reduced scope. Its focus is now on only two critical sensor need areas for advanced Coal IGCC gas turbines: (1) Fuel Quality Sensor for detection of fuel impurities that could lead to rapid component degradation, and a Fuel Heating Value Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware.

  11. Executive summary: Chapter A.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ruppert, Leslie F.; Ryder, Robert T.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Fossil fuels from the Appalachian basin region have been major contributors to the Nation’s energy needs over much of the last three centuries. Early records indicate that Appalachian coal was first mined in the middle 1700s (Virginia and Pennsylvania) and was used sparingly to fuel colonial settlements and, later, a fledgling industrial-based economy along the eastern seaboard of the United States (de Witt and Milici, 1989). In 2011, central Appalachian basin coal production accounted for approximately 77 percent of all U.S. metallurgical (or coking) coal and 29 percent of total U.S. production (U.S. Energy Information Administration, 2013). Following initial discoveries and commercial use in western New York (1821) and Ohio and West Virginia (mid-1830s), the Appalachian petroleum (oil and gas) industry began in earnest in 1859 with the discovery of oil at the Drake well in northwestern Pennsylvania. Between 1860 and 1989, the Appalachian basin produced more than 2.5 billion barrels of oil (BBO) and more than 30 trillion cubic feet of gas (TCFG) from more than 500,000 wells (de Witt and Milici, 1989). Although both oil and gas continue to be produced in the Appalachian basin, most new wells in the region are drilled in shale reservoirs to produce natural gas.

  12. Medium-Term Oil and Gas Markets 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-16

    Oil and gas markets have been marked by an increased divergence in recent months. On the one hand, oil market developments have generated an unpleasant sense of deja vu: rapid demand growth in emerging markets eclipsed sluggish supply growth to push prices higher even before the conflict in Libya tightened supplies still further. Oil prices around $100/bbl are weighing down on an already-fragile macroeconomic and financial situation in the OECD, pressuring national budgets in the non-OECD and causing price inflation of other commodities, as well as political concerns about speculation. There is an uncanny resemblance to the first half of 2008. On the other hand, in the world of natural gas an amazing disconnect has developed as demand recovered to well above pre-financial-crisis levels in most major regions. Gas markets have tightened in Europe and Asia, where prices are about twice the level seen in the United States, as the unconventional gas revolution is in full swing. From the upstream implications of the Arab Spring to the macroeconomic consequences of the eurozone crisis, energy markets are experiencing one of the most uncertain periods in decades. This publication provides a comprehensive outlook for oil and gas fundamentals through 2016. The oil market analysis covers demand developments on a product-by-product and key-sector basis, as well as a detailed bottom-up assessment of upstream and refinery investments, trade flows, oil products supply and OPEC spare capacity. The gas market analysis offers a region-by-region assessment of demand and production, infrastructure investment, price developments and prospects for unconventional gas. It also examines the globalising LNG trade.

  13. In Situ Catalytic Pyrolysis of Low-Rank Coal for the Conversion of Heavy Oils into Light Oils

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem Amin

    2017-01-01

    Full Text Available Lighter tars are largely useful in chemical industries but their quantity is quite little. Catalytic cracking is applied to improve the yield of light tars during pyrolysis. Consequently, in situ upgrading technique through a MoS2 catalyst has been explored in this research work. MoS2 catalyst is useful for the conversion of high energy cost into low energy cost. The variations in coal pyrolysis tar without and with catalyst were determined. Meanwhile, the obtained tar was analyzed using simulated distillation gas chromatograph and Elemental Analyzer. Consequently, the catalyst reduced the pitch contents and increased the fraction of light tar from 50 to 60 wt.% in coal pyrolysis tar. MoS2 catalyst increased the liquid yield from 18 to 33 (wt.%, db and decreased gas yield from 27 to 12 (wt.%, db compared to coal without catalyst. Moreover, it increased H content and hydrogen-to-carbon ratio by 7.9 and 3.3%, respectively, and reduced the contents of nitrogen, sulphur, and oxygen elements by 8.1%, 15.2%, and 23.9%, respectively, in their produced tars compared to coal without catalyst.

  14. Production of gasoline from coal or natural gas by the methanol-to-gasoline process

    Energy Technology Data Exchange (ETDEWEB)

    Heinritz-Adrian, M.; Brandl, A.; Zhoa, Xinjin; Tabak, S. [Uhde GmbH, Dortmund (Germany)

    2007-07-01

    After discussing the basis of the methanol-to-gas (MTG) process, the fixed bed and fluid bed versions are described. The Motunui and MTG complex near Montunui, New Zealand that methanol uses natural gas is briefly described. Shanxi Jincheng, Anthracite Coal Mining Co. is currently building its first coal-based MTG plant. 7 refs., 2 tabs.

  15. Wettability determination by contact angle measurements: hvbB coal-water system with injection of synthetic flue gas and CO2.

    Science.gov (United States)

    Shojai Kaveh, Narjes; Rudolph, E Susanne J; Wolf, Karl-Heinz A A; Ashrafizadeh, Seyed Nezameddin

    2011-12-01

    Geological sequestration of pure carbon dioxide (CO(2)) in coal is one of the methods to sequester CO(2). In addition, injection of CO(2) or flue gas into coal enhances coal bed methane production (ECBM). The success of this combined process depends strongly on the wetting behavior of the coal, which is function of coal rank, ash content, heterogeneity of the coal surface, pressure, temperature and composition of the gas. The wetting behavior can be evaluated from the contact angle of a gas bubble, CO(2) or flue gas, on a coal surface. In this study, contact angles of a synthetic flue gas, i.e. a 80/20 (mol%) N(2)/CO(2) mixture, and pure CO(2) on a Warndt Luisenthal (WL) coal have been determined using a modified pendant drop cell in a pressure range from atmospheric to 16 MPa and a constant temperature of 318 K. It was found that the contact angles of flue gas on WL coal were generally smaller than those of CO(2). The contact angle of CO(2) changes from water-wet to gas-wet by increasing pressure above 8.5 MPa while the one for the flue gas changes from water-wet to intermediate-wet by increasing pressure above 10 MPa. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Oil and Gas Emergency Policy: Germany 2012 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Germany has very little domestic oil and natural gas production and relies heavily on imports. It has well diversified and flexible oil and natural gas supply infrastructure, which consists of crude, product and gas pipelines and crude and oil product import terminals. Natural gas is imported into Germany exclusively by cross-border pipeline. The country has no LNG infrastructure, although some German companies have booked capacities in overseas LNG terminals. Oil continues to be the main source of energy in Germany although it has declined markedly since the early 1970s. It now represents approximately 32% of Germany’s total primary energy supply (TPES). Natural gas consumption in Germany has declined 10% since 2006. Demand was 90 bcm in 2010, down from 100 bcm in 2005. According to government commissioned analysis, the total consumption of natural gas in Germany is expected to continue to decline over the long term. The share of natural gas in Germany’s TPES is currently around 22%. German oil stock levels are generally well above the required 90-days. Total oil stock levels in Germany were equivalent to 140 days net imports in April 2012. Since 1998, the German oil stockholding agency (EBV) has been solely responsible for meeting Germany's 90-day stockholding obligation. The Oil Stockholding Act stipulates that the EBV shall constantly maintain stocks of oil and petroleum products at a level equivalent to or above 90 days of net imports. There is no minimum stockholding obligation on industry, so industry held commercial stocks are held in addition to the EBV stocks. There are several legal tools available to German authorities for natural gas emergency response. These include Ordinances that can be used to restrict the sale, purchase or use of goods, both in terms of quantity and time, or permit them only for certain priority purposes, to ensure that vital energy needs are met. There are no compulsory natural gas storage requirements in Germany, and no

  17. Study on incineration technology of oil gas generated during the recovery process of oil spill

    International Nuclear Information System (INIS)

    Hou, Shuhn-Shyurng; Ko, Yung-Chang; Lin, Ta-Hui

    2011-01-01

    The objective of this study is to design, set up and operate an incinerator system capable of providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in Taiwan. In this study, we successfully develop a vertical-type incinerator, which consists of five oil gas burners with entrained primary air, a pilot burner, and an auxiliary burner. The incinerator system is equipped with necessary control units in order to achieve safe, easy, fast, and efficient operation. Flame appearance, flue gas temperature and CO emission of the incinerator system for burning oil gas are reported and discussed. Under the long-term operation, it is found that the new designed incinerator is satisfactory for burning oil gas with low supply pressure at various compositions and supply rates during the recovery process of oil spill. It is noteworthy that the results obtained herein are of great significance to provide a good guidance for those who need to design, set up and operate an incinerator system providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in a polluted site with a large area.

  18. Study on incineration technology of oil gas generated during the recovery process of oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shuhn-Shyurng [Department of Mechanical Engineering, Kun Shan University, Tainan 71003 (China); Ko, Yung-Chang [China Steel Corporation, Kaohsiung 81233 (China); Lin, Ta-Hui [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101 (China)

    2011-03-15

    The objective of this study is to design, set up and operate an incinerator system capable of providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in Taiwan. In this study, we successfully develop a vertical-type incinerator, which consists of five oil gas burners with entrained primary air, a pilot burner, and an auxiliary burner. The incinerator system is equipped with necessary control units in order to achieve safe, easy, fast, and efficient operation. Flame appearance, flue gas temperature and CO emission of the incinerator system for burning oil gas are reported and discussed. Under the long-term operation, it is found that the new designed incinerator is satisfactory for burning oil gas with low supply pressure at various compositions and supply rates during the recovery process of oil spill. It is noteworthy that the results obtained herein are of great significance to provide a good guidance for those who need to design, set up and operate an incinerator system providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in a polluted site with a large area. (author)

  19. Ranking Canadian oil and gas projects using TOPSIS

    Directory of Open Access Journals (Sweden)

    Seyed Jafar Sadjadi

    2017-08-01

    Full Text Available One of the primary concerns for investment in oil and gas projects is to have a comprehensive understanding on different issues associated with this industry. The industry is mainly influ-enced by the price of oil and gas and in some events, many production units have been forced to shut down solely because of low price of oil and gas. Environmental issues are other important factors, which may put pressure on Canada’s political affairs since the country has strong com-mitment to reduce green gas effect. In this paper, we introduce a multi-criteria decision making method, which helps us rank different projects in terms of investment. The proposed study con-siders different investment factors including net present value, rate of return, benefit-cost analy-sis and payback period along with the intensity of green gas effects for ranking the present oil and gas projects in Canada.

  20. India expanding oil/gas E and D, infrastructure

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This paper reports that India continues to press oil and gas exploration and development and expansion of its petroleum sector infrastructure. One of the key moves is the government's decision to stage a fourth exploration bidding round, its most ambitious to date and one expected to elicit enthusiasm from international oil companies. At the same time, state oil companies Oil and Natural Gas Commission and Oil India Ltd. plan to maintain strong domestic E and D programs. ONGC is seeking more revenue to sustain India's ambitious oil and gas upstream plans. The state company has asked the government for a 50% hike in the price of domestic crude. The government currently pays ONGC and OIL only about $8.84/bbl, a price fixed in 1981. A jump of 50% in the domestic crude price would net ONGC another $1 billion/year in revenues, ONGC Chairman S.L. Khosla the. The government and other state companies also continue efforts to expand gas utilization and markets and match refining plans with market needs

  1. Application of Coal Thermal Treatment Technology for Oil-Free Firing of Boilers

    Science.gov (United States)

    Aliyarov, B.; Mergalimova, A.; Zhalmagambetova, U.

    2018-04-01

    The theoretical and practical introduction of this kind of firing boiler units in coal thermal power plants is considered in the article. The results of an experimental study of three types of coals are presented in order to obtain the required gaseous fuel. The aim of the study is to develop a new, economically and ecologically more acceptable method for firing boilers at thermal power plants, which is able to exclude the use of expensive and inconvenient fuel oil. The tasks of the experiment are to develop a technological scheme of kindling of boilers at thermal power plants, using as a type of ignition fuel volatile combustible substances released during the heating of coal, and to investigate three types of coal for the suitability of obtaining gaseous fuels, in sufficient volume and with the required heat of combustion. The research methods include the analysis of technical and scientific-methodological literature on the problem of the present study, the study of the experience of scientists of other countries, the full-scale experiment on the production of volatile combustible substances. During the full-scale experiment, the coal of 3 fields of Kazakhstan has been studied: Shubarkul, Maikuben and Saryadyr. The analysis has been performed and the choice of the most convenient technology for boiler kindling and maintenance of steady burning of the torch has been made according to the proposed method, as well as the corresponding technological scheme has been developed. As a result of the experiment, it can be stated that from coal in the process of its heating (without access to oxygen), it is possible to obtain a sufficient amount of combustible volatile substances. The released gaseous fuel has the necessary parameters and is quite capable of replacing an expensive fuel oil. The resulting gaseous fuel is quite convenient to use and environmentally cleaner. The piloting scheme developed as a result of the experiment can be introduced in pulverized-coal

  2. Thermal Maturity Data Used by the U.S. Geological Survey for the U.S. Gulf Coast Region Oil and Gas Assessment

    Science.gov (United States)

    Dennen, Kristin O.; Warwick, Peter D.; McDade, Elizabeth Chinn

    2010-01-01

    The U.S. Geological Survey is currently assessing the oil and natural gas resources of the U.S. Gulf of Mexico region using a total petroleum system approach. An essential part of this geologically based method is evaluating the effectiveness of potential source rocks in the petroleum system. The purpose of this report is to make available to the public RockEval and vitrinite reflectance data from more than 1,900 samples of Mesozoic and Tertiary rock core and coal samples in the Gulf of Mexico area in a format that facilitates inclusion into a geographic information system. These data provide parameters by which the thermal maturity, type, and richness of potential sources of oil and gas in this region can be evaluated.

  3. Oil and gas field code master list 1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storage Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.

  4. Report on the achievements in the Sunshine Project in fiscal 1988. Development of a coal liquefaction technology (Liquefaction performance test on Chinese coals); 1988 nendo sekitan ekika gijutsu kaihatsu, Chugokutan ekika seino shiken seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-03-01

    Development has been carried out on a Chinese coal liquefaction technology jointly by Japan and China. The Japanese side fabricated and built a small continuous testing equipment. Shenbei coal produced in Liaoning Province, Tienju coal produced in Gansu Province and Shenmu coal produced in Shaanxi Province were used as test sample coals. These coals were crushed, washed with water, sorted, dried, pulverized below 100 mesh, and used as the test samples. For catalysts, a reagent Fe{sub 2}O{sub 3} and S as an auxiliary catalyst made in China were used. Anthracene oil freed from crystal was used as a starting solvent when making one-through operation and recycling operation. Hydrogen used had purity of 99.5% or higher. The current fiscal year has performed smoothly to the end either of the one-through operation or the solvent circulating operation on RUN-2200, 2300 (Chenbei coal) and 2,400, 2500 (Tienju coal). Operation of 2600, 2700 (Shenmu coal) experienced noise in the stirrer of the reactor, and leakage of the circulating gas from the recycled gas compressor. In addition, the differential pressure during operating the last run has increased to 50 k, when the temperature and pressure were reduced, and substances clogging the reactor inlet line were removed. Three kinds of the liquefied oils were brought back to Japan for detailed analyses. (NEDO)

  5. Prediction and control of rock burst of coal seam contacting gas in deep mining

    Energy Technology Data Exchange (ETDEWEB)

    En-yuan Wang; Xiao-fei Liu; En-lai Zhao; Zhen-tang Liu [China University of Mining and Technology, Xuzhou (China). School of Safety Engineering

    2009-06-15

    By analyzing the characteristics and the production mechanism of rock burst that goes with abnormal gas emission in deep coal seams, the essential method of eliminating abnormal gas emission by eliminating the occurrence of rock burst or depressing the magnitude of rock burst was considered. The No.237 working face in Nanshan coal mine was selected as the typical working face contacting gas in deep mining; aimed at this working face, a system of rock burst prediction and control for coal seam contacting gas in deep mining was established using the three-dimensional distinct element code software 3DEC. This system includes three parts: (1) regional prediction of rock burst hazard before mining; (2) local prediction of rock burst hazard during mining; and (3) rock burts control by an electromagnetic radiation method and specific drilling method. 8 refs., 4 figs., 1 tab.

  6. Entrepreneurial Leadership in Upstream Oil and Gas Industry

    OpenAIRE

    Kalu, Mona Ukpai

    2015-01-01

    The study examined Entrepreneurial leadership in Upstream Oil and Gas industry and its ability to accelerate innovative energy technology development. The declining deliverability from existing reservoirs and ever increasing demand for energy to fuel growth in many parts of the world is driving oil and gas exploration into more difficult to access reservoirs like bituminous sands and shale gas. Accelerating new innovative technology development to access these new streams of profitable oil an...

  7. Oil and gas field code master list, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-16

    This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

  8. Chemical coal conversion yesterday, today, and tomorrow; Der Chemierohstoff Kohle: gestern, heute und morgen

    Energy Technology Data Exchange (ETDEWEB)

    Talbiersky, J. [UCP Chemicals AG, Wien (Austria)

    2007-01-15

    Shortage in mineral oil and gas as well as a high price level have caused a renaissance in coal conversion technologies, at the end of the 70's. Today we have a similar situation. Now coal coversion technologies will be in the focus again but hopefully as a longterm strategy. The most important coal conversion technologies as liquefaction, gasification, coking and calcium carbide synthesis are discussed regarding their use for the production of chemicals. The most important source for aromatic chemicals from coal is till now coal tar with an availability of 22 Mio. t/a. The manufacturing of coal tar is discussed as an example for making aromatic products from a complex feed stock that you get by the fixed bed gasification, coal liquefaction and coking. Also the special marketing strategy that is necessary to be competitive against products from the petroindustry. It can be expected, that coal gasification as a source for synthesis gas will become more and more important. Synthesis gas is the access to aliphatic hydrocarbons by Fischer Tropsch synthesis and to methanol, a chemical with a high synthetic potential. Also the new hydrothermal carbonization of biomass to synthetic coal is mentioned. (orig.)

  9. Gas pressure from a nuclear explosion in oil shale

    International Nuclear Information System (INIS)

    Taylor, R.W.

    1975-01-01

    The quantity of gas and the gas pressure resulting from a nuclear explosion in oil shale is estimated. These estimates are based on the thermal history of the rock during and after the explosion and the amount of gas that oil shale releases when heated. It is estimated that for oil shale containing less than a few percent of kerogen the gas pressure will be lower than the hydrostatic pressure. A field program to determine the effects of nuclear explosions in rocks that simulate the unique features of oil shale is recommended. (U.S.)

  10. Fiscal 1999 report on basic research for promotion of joint implementation programs. Research on collection and utilization of coal mine methane gas in Russia (Kuznetsk coal field); Russia (Kuznetsk tanden) ni okeru tanko methane gas kaishu riyo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The above-mentioned effort is to comply with the COP3 (Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change) joint implementation clause. At this coal field, mining facilities are growing superannuated and obsolescent in the prolonged business depression, causing frequent occurrence of disasters such as gas explosions. The coal mine gas collection rate at the Kuznetsk coal field is as low as 17%, with concern for safety discouraging sufficient collection. Even the small amount of the collected gas is, in the absence of gas utilizing facilities, totally discharged into the air. For the mitigation of global warming, for mining safety, and for the establishment of a foundation for business, it is desired that coal mine methane gas collection/utilization facilities and related technologies be introduced into the coal field. Gas purging from the pits is incomplete, which is attributed to the lack of equipment capable of excavating proper-diameter bores longer than 100m for longwall mining. Ventilation also needs improvement. The research is under way on the premise that highly reliable intermediate range (300m) boring equipment and gas management technologies will be available. Collection of gas of a 30-35% concentration level at a collection rate of 40% is the target. (NEDO)

  11. The challenge for gas: get price-competitive with coal-fired electricity

    International Nuclear Information System (INIS)

    Gill, Len

    1999-01-01

    The challenge for the gas industry is to become price competitive with coal-fired electricity if it wants a larger share of the energy market. Returning to the issue of greater use of gas for electricity generation, the author points out that although electricity prices were rising they were still below the point where gas-fired electricity generation was viable. Copyright (1999) The Australian Gas Journal

  12. Oil and gas market developments in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, K.

    2003-01-01

    Turkey's strategic location makes it a natural 'energy bridge' between major oil and gas producing areas in the Middle East and Caspian Sea regions on one hand and consumer markets in Europe on the other. Oil consumption has increased in recent years in Turkey, and this trend is expected to continue, with growth of 2-3% annually in coming years. The annual oil consumption of the country is around 31.3 million tons, while 83% of total consumption is supplied from imports and only 17% is supplied from indigenous production. Oil provides around 43% of Turkey's total energy requirements, but its share is declining (as the share of natural gas rises). On the other hand, due to diversification efforts of energy sources, use of natural gas was newly introduced into the Turkish economy in 1987 and has been growing rapidly. Turkey's natural gas reserves seem limited and current gas production in the country meets 2.8% of domestic consumption requirements. The annual natural gas consumption of Turkey is around 14.7 billion m 3 and is assumed to increase by 12% per annum. Turkish natural gas use is projected to increase dramatically in coming years, with the prime consumers expected to be industry and power plants. Turkey has chosen natural gas as the preferred fuel for the massive amount of new power plant capacity to be added in coming years. (Author)

  13. Documentation of the Oil and Gas Supply Module (OGSM)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian/Antrim shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted profitability to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

  14. America: AGA [American Gas Association] initiative aims to boost gas demand

    International Nuclear Information System (INIS)

    Fraser, K.M.

    1992-01-01

    This article focuses on the aim of the American Gas Association to increase natural gas demand in the key areas of gas electric generation, natural gas vehicles, gas cooling, and conversion of oil burning facilities, electric water heaters and household appliances such as space heating, stoves, washers and lighting. The need to improve the reliability of natural gas supplies is discussed. It is anticipated that natural gas will not replace coal as the main energy source for power generation, but that it will help utilities to meet environmental regulations. (UK)

  15. Natural gas and crude oil

    International Nuclear Information System (INIS)

    Valais, M.R.

    1991-01-01

    Two main development could gradually modify these traditional features of natural gas markets and prices. First, environmental pressures and the tightening of emission standards and of the quality specifications for fuels should work in favor of natural gas. Second the increasing distance of resources in relation to the major consuming zones should bring about a considerable development of international natural gas trade. International expansion should mark the development of the gas industry in the coming decades. This evolution will give natural gas an importance and a role appreciably closer to those of oil on the world energy scene. But it is obvious that such a development can come about only at the cost of considerable investments for which the economic viability is and will remain dependent on the level of the prices of natural gas as the inlet to its consuming markets. This paper attempts to answer the questions: Will these markets accept a new scale of value for gas in relation to other fossil fuels, including oil, which will take into account new environmental constraints and which will be able to fulfill the formidable financial needs of the gas industry in the coming decades?

  16. Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources

    Directory of Open Access Journals (Sweden)

    Duan Tianhong

    2014-01-01

    Full Text Available To lower stability requirement of gas production in UCG (underground coal gasification, create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  17. A study on the reduction in the production cost of the long-running collieries and mechanization of coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Shik; Hong, Jee Sang; Lee, Kyung Woon; Kim, Oak Hwan; Kim, Dae Kyung [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    The reducing coal market has been enforcing the coal industry to make exceptional rationalization and restructuring efforts since the end of the eighties. To the competition from crude oil and natural gas has been added the growing pressure from rising wages and production cost. To improve the competitive position of the coal mines against oil and gas through cost reduction, studies on mining technology have been carried out. Investigations and analyses on the technologies used in Hanbo Colliery which was designated one of the long term running mines were done and recommendations were made. And also a site test of plough were implemented at the KyungDong Colliery. The mechanization program of 1994 were analyzed and evaluated separately. (author). 38 refs.

  18. Risk factors in stock returns of Canadian oil and gas companies

    International Nuclear Information System (INIS)

    Sadorsky, P.

    2001-01-01

    This paper uses a multifactor market model to estimate the expected returns to Canadian oil and gas industry stock prices. Results are presented to show that exchange rates, crude oil prices and interest rates each have large and significant impacts on stock price returns in the Canadian oil and gas industry. In particular, an increase in the market or oil price factor increases the return to Canadian oil and gas stock prices while an increase in exchange rates or the term premium decreases the return to Canadian oil and gas stock prices. Furthermore, the oil and gas sector is less risky than the market and its moves are pro-cyclical. This suggests that Canadian oil and gas stocks may not be a good hedge against inflation

  19. Report on the achievements in the Sunshine Project in fiscal 1986. Surveys on coal type selection and surveys on coal types (Data file); 1986 nendo tanshu sentei chosa tanshu chosa seika hokokusho. Data file

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-03-01

    This data file is a data file concerning coal types for liquefaction in the report on the achievements in the surveys on coal type selection and on coal types (JN0040843). Such items of information were filed as existence and production of coals, various kinds of analyses, and test values relative to data for liquefaction tests that have been collected and sent to date. The file consists of two files of a test sample information file related to existence and production of coals and coal mines, and an analysis and test file accommodating the results of different analyses and tests. However, the test sample information files (1) through (6) have not been put into order on such items of information as test samples and sample collection, geography, geology, ground beds, coal beds, coal mines, development and transportation. The analysis and test file contains (7) industrial analyses, (8) element analysis, (9) ash composition, (10) solubility of ash, (11) structure analysis, (12) liquefaction characteristics (standard version), (13) analysis of liquefaction produced gas, (14) distillation characteristics of liquefaction produced oil, (15) liquefaction characteristics (simplified version), (16) analysis of liquefaction produced gas (simplified version), and (17) distillation characteristics of liquefaction produced oil (simplified version). However, the information related to liquefaction test using a tubing reactor in (15) through (17) has not been put into order. (NEDO)

  20. Development of the first coal seam gas exploration program in Indonesia: Reservoir properties of the Muaraenim Formation, south Sumatra

    Energy Technology Data Exchange (ETDEWEB)

    Sosrowidjojo, I.B. [R and D Centre for Oil and Gas Technology, LEMIGAS, Jakarta (Indonesia); Saghafi, A. [CSIRO Energy Technology, P O Box 330, Newcastle, NSW, 2300 (Australia)

    2009-09-01

    The Late Miocene Muaraenim Formation in southern Sumatra contains thick coal sequences, mostly of low rank ranging from lignite to sub-bituminous, and it is believed that these thick low rank coals are the most prospective for the production of coal seam gas (CSG), otherwise known as coalbed methane (CBM), in Indonesia. As part of a major CSG exploration project, gas exploration drilling operations are being undertaken in Rambutan Gasfields in the Muaraenim Formation to characterize the CSG potential of the coals. The first stage of the project, which is described here, was designed to examine the gas reservoir properties with a focus on coal gas storage capacity and compositional properties. Some five CSG exploration boreholes were drilled in the Rambutan Gasfield, south of Palembang. The exploration boreholes were drilled to depths of {proportional_to} 1000 m into the Muaraenim Formation. Five major coal seams were intersected by these holes between the depths of 450 and 1000 m. The petrography of coal samples collected from these seams showed that they are vitrinite rich, with vitrinite contents of more than 75% (on a mineral and moisture free basis). Gas contents of up to 5.8 m{sup 3}/t were measured for the coal samples. The gas desorbed from coal samples contain mainly methane (CH{sub 4}) ranging from 80 to 93% and carbon dioxide (CO{sub 2}) ranging from 6 to 19%. The composition of the gas released into the production borehole/well is, however, much richer in CH{sub 4} with about 94 to 98% CH{sub 4} and less than 5% CO{sub 2}. The initial results of drilling and reservoir characterization studies indicate suitable gas recovery parameters for three of the five coal seams with a total thickness of more than 30 m. (author)

  1. Destructive distillation: oils

    Energy Technology Data Exchange (ETDEWEB)

    West, J; Glover, S

    1918-01-31

    Canned and other coals are destructively distilled in continuously operated vertical retorts which at their upper portions are maintained at temperatures suitable for low temperature oil distillation such as about 700/sup 0/C, and at their lower portions the temperature is higher and such as to be suitable for the production of gas, e.g., about 1400/sup 0/C. Superheated steam is introduced into the lower portion of the retort, preferably by means of the arrangement described in Specification 120,458, and this is converted into blue water gas which assists the distillation in the center of the coal charge. The retorts are preferably such as are described in Specifications 2663/07 and 7757/14.

  2. The life cycle greenhouse gas emissions implications of power and hydrogen production for oil sands operations

    International Nuclear Information System (INIS)

    McKellar, J.M.; Bergerson, J.A.; MacLean, H.L.

    2009-01-01

    'Full text:' The Alberta Oil Sands represent a major economic opportunity for Canada, but the industry is also a significant source of greenhouse gas (GHG) emissions. One of the sources of these emissions is the use of natural gas for the production of electricity, steam and hydrogen. Due to concerns around resource availability and price volatility, there has been considerable discussion regarding the potential replacement of natural gas with an alternative fuel. While some of the options are non-fossil and could potentially reduce GHG emissions (e.g., nuclear, geothermal, biomass), others have the potential to increase emissions. A comparative life cycle assessment was completed to investigate the relative GHG emissions, energy consumption and financial implications of replacing natural gas with coal, coke, asphaltenes or bitumen for the supply of electricity, steam and hydrogen to oil sands operations. The potential use of carbon capture and storage (CCS) was also investigated as a means of reducing GHG emissions. Preliminary results indicate that, without CCS, the natural gas systems currently in use have lower life cycle GHG emissions than gasification systems using any of the alternative fuels analysed. However, when CCS is implemented in both the coke gasification and natural gas systems, the coke systems have lower GHG emissions and financial costs than the natural gas systems (assuming a 30-year project life and a natural gas price of 6.5 USD/gigajoule). The use of CCS does impose a financial penalty though, indicating that it is unlikely to be implemented without some financial incentive. While this study has limitations and uncertainties, the preliminary results indicate that although the GHG emissions of oil sands development pose a challenge to Canada, there are opportunities available for their abatement. (author)

  3. Learning through Oil and Gas Exploration

    DEFF Research Database (Denmark)

    Levitt, Clinton J.

    I investigate the importance of learning in oil and gas exploration. I developed a tractable dynamic structural model of oil and gas exploration in which firms gradually learn about the productive qualities of different regions through exploratory drilling. Exploratory drilling is modelled...... as an information-gathering process in which each new exploratory well provides information concerning the profitability of drilling additional wells in a given area. The model is geographically based and accounts for the heterogeneity in the characteristics of oil and gas deposits that can exist across large...... the observed geography of exploratory drilling. The broader implications of my model indicate that the structure of information has important effects on drilling behaviour, and that these effects vary, depending on the specific characteristics of the regions being explored....

  4. Oil and gas leasing/production program

    International Nuclear Information System (INIS)

    Heimberger, M.L.

    1992-01-01

    As the Congress declared in the Outer Continental Shelf Lands Act the natural gas and oil production from the Outer Continental Shelf constitutes an important part of the Nation's domestic energy supply. Federal offshore minerals are administered within the Department of the Interior by the Minerals Management Service (MMS), which provides access to potential new sources of natural gas and oil offshore by conducting lease sales. Each year, on or before March 31, the MMS presents to Congress a fiscal year annual report on the Federal offshore natural gas and oil leasing and production program. In FY 1991, this program was the third largest producer of non-tax revenue for the US Treasury, contributing more than $3 billion. This report presents Federal offshore leasing, sales, production, and exploration activities, and environmental monitoring activities

  5. Report on the oil and gas industry in 2011

    International Nuclear Information System (INIS)

    Venturini, Isabelle; Hesske, Philip; Welter-Nicol, Cecile; Korman, Bernard; Wermelinger, Elea; Gouge, Patrick; Balian, Armelle; Guichaoua, Sabine; Levaillant, Elise; Ripaux, Marion; Baumont, Thierry; Fondeville, Louis; Lamy, Jean-Michel; Delvincourt, Thibaud; Pertuiset, Thomas; Quintaine, Thierry; Miraval, Bruno; Cesari, Vartouhie

    2012-01-01

    Illustrated by several graphs and tables, this report first proposes an overview of international oil and gas markets and supplies: markets, exploration, challenges faced by European supplies, and French hydrocarbon imports. It comments oil exploration and production activities in France, refining activities and activities in the field of substitution fuels. The next part addresses the French oil and gas logistics: domestic transports of oil products, oil product storage infrastructures, strategic storage, and gas infrastructures. The last part addresses the final consumption: consumption, distribution, fuel quality, prices, and tax policy

  6. Gasification of various types of tertiary coals: A sustainability approach

    International Nuclear Information System (INIS)

    Öztürk, Murat; Özek, Nuri; Yüksel, Yunus Emre

    2012-01-01

    Highlights: ► Production energy by burning of coals including high rate of ash and sulfur is harmful to environment. ► Energy production via coal gasification instead of burning is proposed for sustainable approach. ► We calculate exergy and environmental destruction factor of gasification of some tertiary coals. ► Sustainability index, improvement potential of gasification are evaluated for exergy-based approach. - Abstract: The utilization of coal to produce a syngas via gasification processes is becoming a sustainability option because of the availability and the economic relevance of this fossil source in the present world energy scenario. Reserves of coal are abundant and more geographically spread over the world than crude oil and natural gas. This paper focuses on sustainability of the process of coal gasification; where the synthesis gas may subsequently be used for the production of electricity, fuels and chemicals. The coal gasifier unit is one of the least efficient step in the whole coal gasification process and sustainability analysis of the coal gasifier alone can substantially contribute to the efficiency improvement of this process. In order to evaluate sustainability of the coal gasification process energy efficiency, exergy based efficiency, exergy destruction factor, environmental destruction factor, sustainability index and improvement potential are proposed in this paper.

  7. Effects of coal storage in air on physical and chemical properties of coal and on gas adsorption

    Science.gov (United States)

    Mastalerz, Maria; Solano-Acosta, W.; Schimmelmann, A.; Drobniak, A.

    2009-01-01

    This paper investigates changes in the high-volatile bituminous Lower Block Coal Member from Indiana owing to moisture availability and oxidation in air at ambient pressure and temperature over storage time. Specifically, it investigates changes in chemistry, in surface area, and pore structure, as well as changes in methane and carbon dioxide adsorption capacities. Our results document that the methane adsorption capacity increased by 40%, whereas CO2 adsorption capacity increased by 18% during a 13-month time period. These changes in adsorption are accompanied by changes in chemistry and surface area of the coal. The observed changes in adsorption capacity indicate that special care must be taken when collecting samples and preserving coals until adsorption characteristics are measured in the laboratory. High-pressure isotherms from partially dried coal samples would likely cause overestimation of gas adsorption capacities, lead to a miscalculation of coal-bed methane prospects, and provide deceptively optimistic prognoses for recovery of coal-bed methane or capture of anthropogenic CO2. ?? 2009 Elsevier B.V. All rights reserved.

  8. Method for increasing the calorific value of gas produced by the in situ combustion of coal

    Science.gov (United States)

    Shuck, Lowell Z.

    1978-01-01

    The present invention relates to the production of relatively high Btu gas by the in situ combustion of subterranean coal. The coal bed is penetrated with a horizontally-extending borehole and combustion is initiated in the coal bed contiguous to the borehole. The absolute pressure within the resulting combustion zone is then regulated at a desired value near the pore pressure within the coal bed so that selected quantities of water naturally present in the coal will flow into the combustion zone to effect a hydrogen and carbon monoxide-producing steam-carbon reaction with the hot carbon in the combustion zone for increasing the calorific value of the product gas.

  9. Low temperature coal depolymerization-liquefaction: conversion of a North Dakota lignite to a light hydrocarbon oil

    Energy Technology Data Exchange (ETDEWEB)

    Shabtai, J.; Yuan Zhang (University of Utah, Salt Lake City, UT (USA). Dept. of Fuels Engineering)

    1989-10-01

    A new low temperature method of coal liquefaction is described which includes intercalation of the coal with FeCl{sub 3}, depolymerization under supercritical conditions, and hydroprocessing of the depolymerized product. Results indicate a high yield conversion of lignites to light hydrocarbon oils. 6 refs., 4 figs., 1 tab.

  10. Air extraction in gas turbines burning coal-derived gas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

    1993-11-01

    In the first phase of this contracted research, a comprehensive investigation was performed. Principally, the effort was directed to identify the technical barriers which might exist in integrating the air-blown coal gasification process with a hot gas cleanup scheme and the state-of-the-art, US made, heavy-frame gas turbine. The guiding rule of the integration is to keep the compressor and the expander unchanged if possible. Because of the low-heat content of coal gas and of the need to accommodate air extraction, the combustor and perhaps, the flow region between the compressor exit and the expander inlet might need to be modified. In selecting a compressed air extraction scheme, one must consider how the scheme affects the air supply to the hot section of the turbine and the total pressure loss in the flow region. Air extraction must preserve effective cooling of the hot components, such as the transition pieces. It must also ensure proper air/fuel mixing in the combustor, hence the combustor exit pattern factor. The overall thermal efficiency of the power plant can be increased by minimizing the total pressure loss in the diffusers associated with the air extraction. Therefore, a study of airflow in the pre- and dump-diffusers with and without air extraction would provide information crucial to attaining high-thermal efficiency and to preventing hot spots. The research group at Clemson University suggested using a Griffith diffuser for the prediffuser and extracting air from the diffuser inlet. The present research establishes that the analytically identified problems in the impingement cooling flow are factual. This phase of the contracted research substantiates experimentally the advantage of using the Griffith diffuser with air extraction at the diffuser inlet.

  11. Mathematical modelling of flue gas tempered flames produced from pulverised coal fired with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Breussin, A.; Weber, R.; Kamp, W.L. van de

    1997-10-01

    The combustion of pulverised coal in conventional utility boilers contributes significantly to global CO{sub 2} emissions. Because atmospheric air is used as the combustion medium, the exhaust gases of conventional pulverised coal fired utility boilers contain approximately 15 % CO{sub 2}. This relatively low concentration makes separating and recovering CO{sub 2} a very energy-intensive process. This process can be simplified if N{sub 2} is eliminated from the comburent before combustion by firing the pulverised coal with pure oxygen. However, this concept will result in very high flames temperatures. Flue gas recirculation can be used to moderate the flame temperature, whilst generating a flue gas with a CO{sub 2} concentration of 95 %. In this presentation, both experimental and modelling work will be described. The former deals with identifying the issues related to the combustion of pulverised coal in simulated turbine exhaust gas, particularly with respect to stability, burnout and pollutant emissions. The second part of this presentation describes mathematical modelling of type 2 as well as type 1 swirling pulverised coal flames. Future work will concentrate on high CO{sub 2} levels environments. (orig.)

  12. Report for fiscal 1995 by Coal Gasification Committee; 1995 nendo sekitan gas ka iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This is a summary primarily of the distributed material. As of December 14, 1995, the 200t/d pilot plant for power generation by entrained bed coal gasification records a total coal gasification operation time of 4,485 hours with an accumulated amount of power generation of 9,227MWh. A large combustor is tested, and it is found that combustion is stable under a 1/4 load with low NOx emissions. The combustor is sufficiently cooled with a small supply of air. Coal ash and coal, supplied in a constant state for an improved heat recovery efficiency in the development of hydrogen-from-coal technology, are heated to a temperature near their melting points. They are then allowed to impinge at a heat transfer plane simulating a gasifier heat recovery section, and a study is made of the mechanism of ash adhesion, molten or semi-molten, to the heat recovery section. The reduction of the heat transfer coefficient due to added grains is 30-50%, and the reduction is small when the heat transfer pipe surface velocity is high or when the carbon concentration in the grains is high. In another effort, utilization of coal-derived gas as town gas is studied. As for yields as indicated by the Curie gas pyrolyzer, the gas yield increases and liquid yield decreases when the reaction temperature is high. Using a small test unit, it is found that a rise in the hydrogen partial pressure increases the production of both gas and liquid. (NEDO)

  13. Liquid oil production from shale gas condensate reservoirs

    Science.gov (United States)

    Sheng, James J.

    2018-04-03

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  14. Canada's east coast offshore oil and gas industry: a backgrounder

    International Nuclear Information System (INIS)

    Bott, R.

    1999-06-01

    Another of the backgrounder series published by the Petroleum Communication Foundation, this booklet describes Canada's offshore oil and natural gas operations in the North Atlantic Ocean, specifically in the Hibernia (off Newfoundland, crude oil), Terra Nova (off Newfoundland, crude oil), Cohasset-Panuke (off Nova Scotia, crude oil) and Sable Island (off Nova Scotia, natural gas) fields. Together, these project represent an investment of more than 10 billion dollars and constitute a growing portion of Canada's 400,000 cubic metres of crude oil and natural gas liquids per day production. The booklet explains the importance of the offshore oil and natural gas industry to Canada, the benefits accruing to the maritime provinces locally, prospects for future offshore oil and natural gas development and provides a brief summary of each of the four current major projects. The booklet also provides an overview of the facilities required for offshore energy projects, environmental impacts and safeguards, exploration, drilling, production, processing and transportation aspects of offshore oil and gas projects. 9 refs, photos

  15. The Netherlands: development of oil and gas reserves

    International Nuclear Information System (INIS)

    1993-01-01

    Oil was first discovered in The Netherlands in the late 1930s near The Hague. Later the larger onshore field at Schoonebeek was found. In the 1960s significant resources of oil were discovered in the Dutch sector of the North Sea. However onshore oil still provides about 20% of the nation's requirements. In the 1960s the vast size of the onshore Groningen gas field became apparent and its subsequent development has provided the Dutch with a huge source of wealth. In recent years the Dutch Continental Shelf has also yielded substantial reserves of gas, although these are not yet as important as the onshore gas reserves. Dutch Government policy is designed to encourage the development of smaller offshore gas fields thereby conserving the Gronigen field. Dutch oil and gas production, licensing and drilling activities are discussed, and the prospects for British suppliers is considered. (author)

  16. Oil and Gas Emergency Policy: Turkey 2013 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Oil has been one of the main energy sources in Turkey, accounting for some 28% of the country’s total primary energy supply (TPES) in 2011. Turkey’s oil demand slightly increased from 637 kb/d in 2003 to 670 kb/d in 2012, although it dropped down from 678 kb/d in 2009 to 650 kb/d in 2010. The transport sector accounted for half of total oil consumption in 2010. Domestic oil production is in decline in Turkey, amounting to 45 kb/d or about 6.7% of total consumption in 2012. In 2012, Turkey imported 712 kb/d, consisting of about 392 kb/d of crude oil and some 320 kb/d refined products. Around 39% of total crude oil imports came from Iran. Crude oil and petroleum products are mainly undertaken by tankers and two major international pipelines running through the country with a total annual handling capacity of 2.8 mb/d. In the country, there are four operational refineries with a total crude distillation capacity of around 610 kb/d. Turkey meets its 90-day stockholding obligation to the IEA by placing a minimum stockholding obligation on industry. Under the relevant acts, refineries and fuel distribution companies are obliged to hold at least 20 days of product stocks based on the average daily sales of previous year, while eligible consumers that use more than 20,000 tonnes annually are required to hold 15 days’ consumption of each type of liquid fuel. Turkey held some 61 million barrels of oil stocks at the end of January 2013, equating to 99 days of 2011 net-imports. Around 55% of total oil stocks are held in the form of crude oil. The use of emergency oil stocks is central to Turkey’s emergency response policy, which can be complemented by demand restraint measures. The share of natural gas in the country’s TPES significantly increased at 32% in 2011. Turkey’s gas demand significantly increased from 0.7 billion cubic meters (2 mcm/d) in 1987 to 45.3 bcm (124 mcm/d) in 2012, while indigenous natural gas production totalled some 0.63 bcm in the same year

  17. Solids precipitation in crude oils, gas-to-liquids and their blends

    Science.gov (United States)

    Ramanathan, Karthik

    Gas-to-liquids (GTL) liquids are obtained from syngas by the Fischer-Tropsch synthesis. The blending of GTL liquids produced from natural gas/coal reserves and crude oils is a possibility in the near future for multiple reasons. Solids precipitation is a major problem in pipelines and refineries leading to significant additional operating costs. The effect of the addition of a paraffinic GTL liquid to crude oils on solids precipitation was investigated in this study. A Fourier transform infrared (FT-IR) spectroscopic technique was used to obtain solid-liquid equilibria (SLE) data for the various samples. The SLE of multiple systems of model oils composed of n-alkanes was investigated preliminarily. Blends of a model oil simulating a GTL liquid composition and a crude oil showed that the wax precipitation temperature (WPT) decreased upon blending. Three crude oils from different geographic regions (Alaskan North Slope, Colorado and Venezuela) and a laboratory-produced GTL liquid were used in the preparation of blends with five different concentrations of the GTL liquid. The wax precipitation temperatures of the blends were found to decrease with the increasing addition of the GTL liquid for all the oils. This effect was attributed to the solvent effect of the low molecular weight-paraffinic GTL liquid on the crude oils. The weight percent solid precipitated that was estimated as a function of temperature did not show a uniform trend for the set of crude oils. The asphaltene onset studies done on the blends with near-infrared spectroscopy indicated that the addition of GTL liquid could have a stabilizing effect on the asphaltenes in some oils. Analytical techniques such as distillation, solvent separation, HPLC, GC, and GPC were used to obtain detailed composition data on the samples. Two sets of compositional data with 49 and 86 pseudo-components were used to describe the three crude oils used in the blending work. The wax precipitation was calculated using a

  18. Measurements for the determination of acid dew point and SO[sub 3] concentration in the flue gas of utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Derichs, W.; Menden, W.; Ebel, P.K. (RWE Energie AG, Bergheim (Germany))

    1991-10-01

    Until now, the well-known measuring systems for determining acid dewpoint have been applied primarily to flue gases from oil-fired combustion. Using an acid dewpoint measuring system which has now been available on the market for some time, it is possible to measure the acid dewpoint reliably and continuously in flue gas from coal-fired combustion, with low SO[sub 3] concentrations. This measuring system has also been used for flue gas from which the dust and sulphur have been removed as well as for untreated flue gas of conventional combustion systems with gas, oil, hard coal and brown coal firing and also in fluidized bed combustion systems. 6 refs., 11 figs., 2 tabs.

  19. Method of gas emission control for safe working of flat gassy coal seams

    Science.gov (United States)

    Vinogradov, E. A.; Yaroshenko, V. V.; Kislicyn, M. S.

    2017-10-01

    The main problems at intensive flat gassy coal seam longwall mining are considered. For example, mine Kotinskaja JSC “SUEK-Kuzbass” shows that when conducting the work on the gassy coal seams, methane emission control by means of ventilation, degassing and insulated drain of methane-air mixture is not effective and stable enough. It is not always possible to remove the coal production restrictions by the gas factor, which leads to financial losses because of incomplete using of longwall equipment and the reduction of the technical and economic indicators of mining. To solve the problems, the authors used a complex method that includes the compilation and analysis of the theory and practice of intensive flat gassy coal seam longwall mining. Based on the results of field and numerical researches, the effect of parameters of technological schemes on efficiency of methane emission control on longwall panels, the non-linear dependence of the permissible according to gas factor longwall productivity on parameters of technological schemes, ventilation and degassing during intensive mining flat gassy coal seams was established. The number of recommendations on the choice of the location and the size of the intermediate section of coal heading to control gassing in the mining extracted area, and guidelines for choosing the parameters of ventilation of extracted area with the help of two air supply entries and removal of isolated methane-air mixture are presented in the paper. The technological scheme, using intermediate entry for fresh air intake, ensuring effective management gassing and allowing one to refuse from drilling wells from the surface to the mined-out space for mining gas-bearing coal seams, was developed.

  20. Optimization of lift gas allocation in a gas lifted oil field as non-linear optimization problem

    Directory of Open Access Journals (Sweden)

    Roshan Sharma

    2012-01-01

    Full Text Available Proper allocation and distribution of lift gas is necessary for maximizing total oil production from a field with gas lifted oil wells. When the supply of the lift gas is limited, the total available gas should be optimally distributed among the oil wells of the field such that the total production of oil from the field is maximized. This paper describes a non-linear optimization problem with constraints associated with the optimal distribution of the lift gas. A non-linear objective function is developed using a simple dynamic model of the oil field where the decision variables represent the lift gas flow rate set points of each oil well of the field. The lift gas optimization problem is solved using the emph'fmincon' solver found in MATLAB. As an alternative and for verification, hill climbing method is utilized for solving the optimization problem. Using both of these methods, it has been shown that after optimization, the total oil production is increased by about 4. For multiple oil wells sharing lift gas from a common source, a cascade control strategy along with a nonlinear steady state optimizer behaves as a self-optimizing control structure when the total supply of lift gas is assumed to be the only input disturbance present in the process. Simulation results show that repeated optimization performed after the first time optimization under the presence of the input disturbance has no effect in the total oil production.

  1. Advances in operations research in the oil and gas industry

    International Nuclear Information System (INIS)

    Breton, M.; Zaccour, G.

    1991-01-01

    Various theories and examples of modelling, forecasting and optimization designing in the different parts of the petroleum and gas industries are presented, stochastic programming for long term planning in the refining industry, stochastic model for gasoline blending, feedstock optimization, location and sizing for offshore platforms, hydrocarbon exploration simulation rapid method, valuation of oil field development leases, economic models for petroleum allocation, models for oil supply market, trade embargo game theory, stochastic programming of gas contract portfolio management, scheduling transportation of oil and gas, strategic planning in an oil pipeline company, simulation of offshore oil terminal systems, hierarchical selection of oil and gas distribution systems

  2. Prospects for oil and gas

    International Nuclear Information System (INIS)

    Laherrere, J.

    2011-01-01

    It was five years ago, in January 2006, that Futuribles devoted a major special issue (no. 315) to energy prospects and the greenhouse effect. That was already a time of great concern about this question and several articles offered analyses of the gloomy prospects for the development of energy resources and the issues around climate change. Among these, an article by Jean Laherrere outlined the prospects for oil resources, showing the extent to which information in this area was disparate, unreliable and even questionable, being often highly political. As one of the more pessimistic writers on the question, Laherrere reminded us of the imminence of 'peak oil' (the prelude to a decline in global oil production) and the need to re-think our styles of consumption to adapt to a new age in which, as energy becomes scarcer, it will be increasingly expensive. Five years later, Jean Laherrere returns to the columns of Futuribles on the occasion of a new special issue on energy and the climate, to update us on the global prospects for oil and gas production. He begins by recalling how politically slanted and unreliable information in this area can be, depending on its source, the units of measurement employed etc. He stresses, too, that in the view of many experts peak oil was reached in 2006 and the situation is currently plateau-ing, just ahead of a decline in oil production (gradual or sudden, depending on whether measures of economic constraint are implemented). For its part, gas production should peak around 2025-2030. Jean Laherrere specifies what reserves remain, how these are currently exploited and marketed, and the prospects that ensue in the longer term (he also shows how wrong gas-price forecasts have been in the past). As he stresses, in conclusion, with both oil and gas we must be aware that the world does not have infinite resources and, since the alternatives do not allow us, at the moment, to make up for future energy-resource shortages, it is for

  3. Conference Proceedings: Structuring oil and gas property transactions

    International Nuclear Information System (INIS)

    1999-01-01

    The 12 presentations at this conference dealt with issues concerning the legal aspects of oil and gas property transaction agreements. Several issues regarding sales and purchase negotiations of oil and gas property are reviewed and some of the basic principles of contract law are explained. Advantages, disadvantages and opportunities of structuring oil and gas property acquisitions, as well as their tax consequences are also identified. The issue of risk assessment regarding environmental consequences and how public concerns regarding the state of the environment has had an impact on oil and gas transactions, is addressed. Interest in this topic stems from the fact that improved enforcement of existing laws regarding the environment can potentially make purchasers liable for significant costs associated with remediation or clean-up of contaminated properties. refs., tabs., figs

  4. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, Thomas

    1989-01-01

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  5. Coal fired air turbine cogeneration

    Science.gov (United States)

    Foster-Pegg, R. W.

    Fuel options and generator configurations for installation of cogenerator equipment are reviewed, noting that the use of oil or gas may be precluded by cost or legislation within the lifetime of any cogeneration equipment yet to be installed. A coal fueled air turbine cogenerator plant is described, which uses external combustion in a limestone bed at atmospheric pressure and in which air tubes are sunk to gain heat for a gas turbine. The limestone in the 26 MW unit absorbs sulfur from the coal, and can be replaced by other sorbents depending on types of coal available and stringency of local environmental regulations. Low temperature combustion reduces NOx formation and release of alkali salts and corrosion. The air heat is exhausted through a heat recovery boiler to produce process steam, then can be refed into the combustion chamber to satisfy preheat requirements. All parts of the cogenerator are designed to withstand full combustion temperature (1500 F) in the event of air flow stoppage. Costs are compared with those of a coal fired boiler and purchased power, and it is shown that the increased capital requirements for cogenerator apparatus will yield a 2.8 year payback. Detailed flow charts, diagrams and costs schedules are included.

  6. Quantitative calculation of GOR of complex oil-gas-water systems with logging data: A case study of the Yingdong Oil/Gas Field in the Qaidam Basin

    Directory of Open Access Journals (Sweden)

    Sima Liqiang

    2014-12-01

    Full Text Available In the Yingdong Oil/Gas Field of the Qaidam Basin, multiple suites of oil-gas-water systems overlie each other vertically, making it difficult to accurately identify oil layers from gas layers and calculate gas-oil ratio (GOR. Therefore, formation testing and production data, together with conventional logging, NMR and mud logging data were integrated to quantitatively calculate GOR. To tell oil layers from gas layers, conventional logging makes use of the excavation effect of compensated neutron log, NMR makes use of the different relaxation mechanisms of light oil and natural gas in large pores, while mud logging makes use of star chart of gas components established based on available charts and mathematical statistics. In terms of the quantitative calculation of GOR, the area ratio of the star chart of gas components was first used in GOR calculation. The study shows that: (1 conventional logging data has a modest performance in distinguishing oil layers from gas layers due to the impacts of formation pressure, hydrogen index (HI, shale content, borehole conditions and invasion of drilling mud; (2 NMR is quite effective in telling oil layers from gas layers, but cannot be widely used due to its high cost; (3 by contrast, the star chart of gas components is the most effective in differentiating oil layers from gas layers; and (4 the GOR calculated by using the area ratio of star chart has been verified by various data such as formation testing data, production data and liquid production profile.

  7. SELECTING THE DIRECTION FOR TECHNICAL RE-EQUIPMENT OF THE TPP OIL-GAS BLOCKS OF 300 MW CAPACITY IN THE COUNTRIES OF THE EAST-EUROPEAN REGION

    Directory of Open Access Journals (Sweden)

    V. M. Neuimin

    2015-01-01

    Full Text Available The author presents analysis of renovation variants for 300 MW oil-gas power blocks: substitution of the steam-power energy blocks by those with gas-steam cycle units, technical re-equipment of the energy blocks by means of reconstruction or modernization of the steam turbine, substitution implementation of the steam turbine with an analogous new one, prolongation of the operation life of the equipment in service. Renovation variants for the power blocks of the specified type in the TPPs of Russia can be chosen based on various engineering solutions concluded on the following grounds: mediumand long-term perspectives of their fuel balance structure (natural gas, synthetic gas fuel-oil residual, pulverized coal fuel including clean-coal and coal-benefication production wastes; the demands laid by JSC the JI UES on the participation of power blocks in frequency regulation and node inter-flow; development in the country of the distributed generation and the perspectives associated with it of the reconstructed TPPs installed capacity utilization in corresponding power-grid nodes; the development of related industries of the country’s economy; the speed of mastering the eco-friendly homegrown steam-gas and coal technologies; creation of the competitive national element base of microelectronics.Introduction of foreign steam-gas generators in this country requires development of the repair-and-service maintenance, provokes elevated risks and tangible costs, conduces to level decrease in the energy and national safety of the state. Orientation of the country’s power engineers to foreign gas-turbines of large single-unit capacity does not contribute to domestic power-plant industry development. With the view of reduction in value of the TPP-equipment by 12–15 %, it is prudent for power engineers to form a perspective manufacturing order for the period after 2016. In light of emerging political and economic situation in the world, technical re

  8. Volatility Spillovers and Causality of Carbon Emissions, Oil and Coal Spot and Futures for the EU and USA

    Directory of Open Access Journals (Sweden)

    Chia-Lin Chang

    2017-10-01

    Full Text Available Recent research shows that the efforts to limit climate change should focus on reducing the emissions of carbon dioxide over other greenhouse gases or air pollutants. Many countries are paying substantial attention to carbon emissions to improve air quality and public health. The largest source of carbon emissions from human activities in some countries in Europe and elsewhere is from burning fossil fuels for electricity, heat, and transportation. The prices of fuel and carbon emissions can influence each other. Owing to the importance of carbon emissions and their connection to fossil fuels, and the possibility of [1] Granger (1980 causality in spot and futures prices, returns, and volatility of carbon emissions, crude oil and coal have recently become very important research topics. For the USA, daily spot and futures prices are available for crude oil and coal, but there are no daily futures prices for carbon emissions. For the European Union (EU, there are no daily spot prices for coal or carbon emissions, but there are daily futures prices for crude oil, coal and carbon emissions. For this reason, daily prices will be used to analyse Granger causality and volatility spillovers in spot and futures prices of carbon emissions, crude oil, and coal. As the estimators are based on quasi-maximum likelihood estimators (QMLE under the incorrect assumption of a normal distribution, we modify the likelihood ratio (LR test to a quasi-likelihood ratio test (QLR to test the multivariate conditional volatility Diagonal BEKK model, which estimates and tests volatility spillovers, and has valid regularity conditions and asymptotic properties, against the alternative Full BEKK model, which also estimates volatility spillovers, but has valid regularity conditions and asymptotic properties only under the null hypothesis of zero off-diagonal elements. Dynamic hedging strategies by using optimal hedge ratios are suggested to analyse market fluctuations in the

  9. The future of coal as an energy source

    International Nuclear Information System (INIS)

    Wells, W.L.

    1991-01-01

    This paper reports on the future of such coal as an energy source which the author believes, is inextricably related to its economic and environmental acceptability. Technologies have been - and are being - developed that will help assure that coal retains its traditional share of the United States energy market. In addition, there are some 900 million tons per year of coal equivalent oil and gas currently being consumed (22.5 quads of 12.500 BTU/lb coal) in the United States that may be considered for potential coal conversion. Lastly, one can see trends emerging that may justify reconsideration of coal as a source of hydrocarbon to substitute for petrochemical industry feedstocks in addition to its customary role as a BTU supplier. The balance of this report will provide a background on environmental and legislative initiatives and discuss some of these technologies and new directions for coal research in the 1990s and beyond

  10. Medium Btu gas from coal: a possible solution to the U. S. energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    Taffe, P

    1978-03-03

    The future of coal gasification in the US, and in particular the potential of the Winkler process, are discussed. The economics and the efficiency of the Winkler process are considered. It is believed that medium Btu gas from coal is a better solution to the US energy crisis than is SNG made from coal.

  11. Growth in European gas demand

    International Nuclear Information System (INIS)

    Clement, B.

    1993-01-01

    The last three decades witnessed mainly the development of gas pipeline systems as a result of major onshore and offshore gas strikes in the fifties and sixties as well as the increase in gas sales on market segments which has been previously cornered by oil and coal products. Power generation currently is an additional potential market for which the availability of adequate resources plays a major role

  12. Coal-to-liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.W.

    2006-03-15

    With crude oil prices rocketing, many of the oil poor, but coal rich countries are looking at coal-to-liquid as an alternative fuel stock. The article outlines the two main types of coal liquefaction technology: direct coal liquefaction and indirect coal liquefaction. The latter may form part of a co-production (or 'poly-generation') project, being developed in conjunction with IGCC generation projects, plus the production of other chemical feedstocks and hydrogen. The main part of the article, based on a 'survey by Energy Intelligence and Marketing Research' reviews coal-to-liquids projects in progress in the following countries: Australia, China, India, New Zealand, the Philippines, Qatar and the US. 2 photos.

  13. An evaluation of Substitute natural gas production from different coal gasification processes based on modeling

    International Nuclear Information System (INIS)

    Karellas, S.; Panopoulos, K.D.; Panousis, G.; Rigas, A.; Karl, J.; Kakaras, E.

    2012-01-01

    Coal and lignite will play a significant role in the future energy production. However, the technical options for the reduction of CO 2 emissions will define the extent of their share in the future energy mix. The production of synthetic or substitute natural gas (SNG) from solid fossil fuels seems to be a very attractive process: coal and lignite can be upgraded into a methane rich gas which can be transported and further used in high efficient power systems coupled with CO 2 sequestration technologies. The aim of this paper is to present a modeling analysis comparison between substitute natural gas production from coal by means of allothermal steam gasification and autothermal oxygen gasification. In order to produce SNG from syngas several unit operations are required such as syngas cooling, cleaning, potential compression and, of course, methanation reactors. Finally the gas which is produced has to be conditioned i.e. removal of unwanted species, such as CO 2 etc. The heat recovered from the overall process is utilized by a steam cycle, producing power. These processes were modeled with the computer software IPSEpro™. An energetic and exergetic analysis of the coal to SNG processes have been realized and compared. -- Highlights: ► The production of SNG from coal is examined. ► The components of the process were simulated for integrated autothermal or allothermal coal gasification to SNG. ► The energetic and exergetic evaluation of the two processes is presented.

  14. The features of oil & gas complex's strategic management and hydrocarbon products transportation at developing marine oil & gas fields in Arctic

    Directory of Open Access Journals (Sweden)

    Fadeev А. М.

    2017-12-01

    Full Text Available The paper considers some theoretical and practical issues of strategic management of oil and gas complex at the development of hydrocarbon resources in the Arctic offshore. The analysis of existing approaches in process and project management of oil and gas complex has been carried out taking into account characteristics of offshore projects in the Arctic zone. Considerable attention has been paid to the history and evolution of strategic management as an economic category, functional areas of strategic management at different levels of management have been proposed. The analysis of existing scientific works dedicated to the projects on the Arctic shelf, has shown insufficient development of the strategic management's theory and practice. In particular, the biggest part of the scientific studies is focused on studying issues of the management at the corporate level, at the same time questions at the level of the oil and gas complex are not considered. In existing studies, the project and process approaches to management are often opposed to each other, and according to the authors it is incorrect in relation to the management of the oil and gas complex on the Arctic shelf. The oil and gas complex is a complex and multilevel system that implements unprecedentedly difficult projects in terms of technology. The beginning of hydrocarbon production on the Arctic shelf is inextricably linked with the transportation of extracted raw materials to the processing and marketing sites; it complements the strategic management of the oil and gas complex by the features of organizing efficient transport and logistics solutions.

  15. NOx results from two combustors tested on medium BTU coal gas

    Science.gov (United States)

    Sherlock, T. P.; Carl, D. E.; Vermes, G.; Schwab, J.; Notardonato, J. J.

    1982-01-01

    The results of tests of two combustor configurations using coal gas from a 25 ton/day fluidized bed coal gasifier are reported. The trials were run with a ceramic-lined, staged rich/lean burner and an integral, all metal multiannular swirl burner (MASB) using a range of temperatures and pressures representative of industrial turbine inlet conditions. A lean mixture was examined at 104, 197, and 254 Btu/Scf, yielding NO(x) emissions of 5, 20, and 70 ppmv, respectively. The MASB was employed only with a gas rated at 220-270 Btu/Scf, producing 80 ppmv NO(x) at rated engine conditions. The results are concluded to be transferrable to current machines. Further tests on the effects of gas composition, the scaling of combustors to utility size, and the development of improved wall cooling techniques and variable geometry are indicated.

  16. Development of a pulsed coal combustor fired with CWM (coal-water mixture): Phase 3, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, M.N.; Durai-Swamy, K.

    1986-11-01

    This report presents the results of an R and D program aimed at developing a new burner technology for coal-water mixture (CWM) fuels to enable the substitution of these new fuels in utility and industrial boilers and process heaters currently firing oil and gas. The application of pulse combustion to CWM fuels is chosen to alleviate many of the physical plant and environmental constraints presently associated with the direct use of these fuels in equipment designed for oil and gas firing. Pulse combustion has been shown to be capable of high-intensity burning of coal for acceptably complete combustion within relatively small equipment volumes. It also has the inherent capability to agglomerate ash particles, thus rendering ash more easily separable from the combustion gas prior to its entrance into the convective section of the boiler or heater, thereby reducing ash buildup and pluggage. Pulse combustion is also well-suited to staged combustion for NO/sub x/ control and has excellent potential for enhanced in-furnace SO/sub 2/ removal due to the enhanced levels of mass transfer brought about by the vigorous flow oscillations. The primary objective of the Phase 2 work was to develop a detailed program for laboratory development and evaluation of the pulse CWM combustor and system design concepts. 112 refs., 40 figs., 94 tabs.

  17. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    Science.gov (United States)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  18. Feasibilities of a Coal-Biomass to Liquids Plant in Southern West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Debangsu [West Virginia Univ., Morgantown, WV (United States); DVallance, David [West Virginia Univ., Morgantown, WV (United States); Henthorn, Greg [West Virginia Univ., Morgantown, WV (United States); Grushecky, Shawn [West Virginia Univ., Morgantown, WV (United States)

    2016-09-30

    conceptual design, process modeling and process validation were developed and validated for different cases. Equipment design and capital costs were investigated on capital coast estimation and economical model validation. Material and energy balances and techno-economic analysis on base case were conducted for evaluation of projects. Also, sensitives studies of direct and indirect approaches were both used to evaluate the CBTL plant economic performance. In this study, techno-economic analysis were conducted in Aspen Process Economic Analyzer (APEA) environment for indirect, direct, and hybrid CBTL plants with CCS based on high fidelity process models developed in Aspen Plus and Excel. The process thermal efficiency ranges from 45% to 67%. The break-even oil price ranges from $86.1 to $100.6 per barrel for small scale (10000 bbl/day) CBTL plants and from $65.3 to $80.5 per barrel for large scale (50000 bbl/day) CBTL plants. Increasing biomass/coal ratio from 8/92 to 20/80 would increase the break-even oil price of indirect CBTL plant by $3/bbl and decrease the break-even oil price of direct CBTL plant by about $1/bbl. The order of carbon capture penalty is direct > indirect > hybrid. The order of capital investment is hybrid (with or without shale gas utilization) > direct (without shale gas utilization) > indirect > direct (with shale gas utilization). The order of thermal efficiency is direct > hybrid > indirect. The order of break-even oil price is hybrid (without shale gas utilization) > direct (without shale gas utilization) > hybrid (with shale gas utilization) > indirect > direct (with shale gas utilization).

  19. Distilling oils, etc

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, W G

    1913-08-13

    Oils and other products are distilled continuously from materials containing or charged with hydrocarbons, such as coal, shale, absorbent materials containing oil, or metal turnings covered with oil, in a vertical or inclined combustion chamber supplied continuously or intermittently with a small quantity of air, and continuously with a large quantity of gases from the condenser admitted below the combustion zone. If desired, steam may also be supplied to the combustion chamber. In the apparatus shown are the combustion chamber, the air inlet, the gas-inlet pipe, the gas-outlet pipe, the condenser, and a mechanical separator which preferably also acts as a fan. A pair of slides is provided at the bottom of the combustion chamber to discharge the residue without admitting air, or a water seal may be used.

  20. Hydrotreatment of heavy oil from coal liquefaction on Sulfide Ni - W Catalysts

    International Nuclear Information System (INIS)

    Zhi-ping Lei; Li-juan Gao; Heng-fu Shui; Shi-biao, Ren; Zhi-cai Wang; Kang-shi Gang

    2011-01-01

    Heavy oil (distillation temperature: 320-340 deg C) derived from the direct coal liquefaction process using Shengli coal were hydrotreated using sulfided Ni-Mo/Al 2 O 3 , Ni-W/Al 2 O 3 , and Ni-W/SiO 2 catalysts respectively. The sulfided catalysts were characterized by BET, XRD, H 2 -TPR and NH 3 -TPD respectively. The evaluations of the hydrodenitrogenation (HDN) and hydrodearomatization (HDA) properties of heavy oil on the three catalysts were carried out at 400 deg C and 5.0 MPa initial H2 pressure. The W-based catalysts displayed better performances than Mo-based catalysts for the HDN and HDA reactions. Al 2 O 3 supported catalysts were found to have higher catalytic activities than on SiO 2 supported ones. The activities of sulfided catalysts were associated mainly with the nature of active sites, acidity, metal sulfide crystallite size and the amount of the reducible sulfur species of metal sulfide. (author)

  1. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2007-09-01

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  2. Market, trading and coal price

    International Nuclear Information System (INIS)

    Muller, J.C.; Cornot-Gandolphe, S.; Labrunie, L.; Lemoine, St.; Vandijck, M.

    2006-01-01

    The coal world experienced a true upheaval in the past five years World coal consumption went up 28 % between 2000 and 2005, as a result of the strong growth in Chinese demand. The growth should continue in the coming years: electrical plant builders' orders are mainly for coal. The regained interest in coal is based on the constraints experienced by competing energies (increase in oil and natural gas prices, geopolitical uncertainties, supply difficulties) and by the abundant reserves of coal in the world and the competitiveness of its price. The strong growth in world coal demand comes with a change in rules governing steam coal trading. While long term bilateral agreements were most common until the late nineties, there has been a true revolution in coal marketing since 2000: spot contracts, stock exchange emergence and futures contracts, price indexes. In a few years, the steam coal market has become a true commodities market, overtaking many more goods. The price of coal has also gone through strong variations since 2003. Whereas the price had been stable for decades, in 2004 the strong increase in China' s demand for coal and iron ore resulting in transport shortage, caused a strong increase in CAF coal prices. Since then, prices have gone down, but remain higher than the Eighties and Nineties levels. In spite of the increase, coal remains available at more competitive prices than its competing energies. (authors)

  3. Noise characterization of oil and gas operations.

    Science.gov (United States)

    Radtke, Cameron; Autenrieth, Daniel A; Lipsey, Tiffany; Brazile, William J

    2017-08-01

    In cooperation with The Colorado Oil and Gas Conservation Commission, researchers at Colorado State University performed area noise monitoring at 23 oil and gas sites throughout Northern Colorado. The goals of this study were to: (1) measure and compare the noise levels for the different phases of oil and gas development sites; (2) evaluate the effectiveness of noise barriers; and (3) determine if noise levels exceeded the Colorado Oil and Gas Conservation Commission noise limits. The four phases of oil and gas development include drilling, hydraulic fracturing, completion and production. Noise measurements were collected using the A- and C-weighted sound scales. Octave band analysis was also performed to characterize the frequency spectra of the noise measurements.  Noise measurements were collected using noise dosimeters and a hand-held sound-level meter at specified distances from the development sites in each cardinal direction. At 350 ft (107 m), drilling, hydraulic fracturing, and completion sites without noise barriers exceeded the maximum permissible noise levels for residential and commercial zones (55 dBA and 60 dBA, respectively). In addition, drilling and hydraulic fracturing sites with noise barriers exceeded the maximum permissible noise level for residential zones (55 dBA). However, during drilling, hydraulic fracturing, and completion operations, oil producers are allowed an exception to the noise permissible limits in that they only must comply with the industrial noise limit (80 dBA). It is stated in Rule 604.c.(2)A. that: "Operations involving pipeline or gas facility installation or maintenance, the use of a drilling rig, completion rig, workover rig, or stimulation is subject to the maximum permissible noise levels for industrial zones (80dBA)." [8] Production sites were within the Colorado Oil and Gas Conservation Commission permissible noise level criteria for all zones. At 350 ft (107 m) from the noise source, all drilling

  4. Competition between coal and gas for large scale power generation

    International Nuclear Information System (INIS)

    Howieson, B.

    1997-01-01

    The relative competitiveness of coal- and gas-fired generation will be affected by distinctive country and market factors as well as site specific considerations, regarding such factors as environment, market structure and economics (such as fuel and plant costs). National and international politics have an impact on all three factors and any decision on the development of generation plant must take into account both current and future political climates. An analysis suggests that, at the present time, upgrading existing coal stations is attractive compared with new combined cycle gas turbines (CCGTs). However, this conclusion is highly dependent on the site specific nature of existing plant and the anticipated future environmental regime. Increased environmental pressure, particularly in the area of CO 2 emissions, would result in CCGTs being the first choice plant option. (R.P.