WorldWideScience

Sample records for coal gas final

  1. Permeability changes in coal resulting from gas desorption. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Johnson, P.W.

    1992-11-30

    This report documents studies on the effects of gas sorption on coal, with the intent of eventually evaluating how sorption and strain affect permeability. These studies were, carried out at the University of Alabama during the period from 1989 through 1992. Two major experimental methods were developed and used. In the strain experiments, electronic strain gauges were attached to polished blocks of coal in order to measure linear and volumetric swelling due to gas sorption. The effects of bedding plane orientation, of gas type, and of coal type were investigated. In the gravimetric experiment the weight of small samples of coal was measured during exposure to high pressure gases. Sample measurements were corrected for buoyancy effects and for sample swelling, and the results were plotted in the form of Langmuir isotherms. Experiments were conducted to determine the effect of grain size, coal type, moisture, and of sorbant gas. The advantage of this method is that it can be applied to very small samples, and it enabled comparison liptinite versus vitrinite concentrates, and kerogen rich versus kerogen depleted oil shales. Also included is a detailed discussion of the makeup of coal and its effect on gas sorption behavior.

  2. Biological upgrading of coal-derived synthesis gas: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S.; Johnson, E.R.; Ko, C.W.; Clausen, E.C.; Gaddy, J.L.

    1986-10-01

    The technical feasibility of the biological conversion of coal synthesis gas to methane has been demonstrated in the University of Arkansas laboratories. Cultures of microorganisms have been developed which achieve total conversion in the water gas shift and methanation reactions in either mixed or pure cultures. These cultures carry out these conversions at ordinary temperatures and pressures, without sulfur toxicity. Several microorganisms have been identified as having commercial potential for producing methane. These include a mixed culture of unidentified bacteria; P. productus which produces acetate, a methane precursor; and Methanothrix sp., which produces methane from acetate. These cultures have been used in mixed reactors and immobilized cell reactors to achieve total CO and H/sub 2/ conversion in a retention time of less than two hours, quite good for a biological reactor. Preliminary economic projections indicate that a biological methanation plant with a size of 5 x 10/sup 10/ Btu/day can be economically attractive. 42 refs., 26 figs., 86 tabs.

  3. Simulated coal gas MCFC power plant system verification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-30

    The objective of the main project is to identify the current developmental status of MCFC systems and address those technical issues that need to be resolved to move the technology from its current status to the demonstration stage in the shortest possible time. The specific objectives are separated into five major tasks as follows: Stack research; Power plant development; Test facilities development; Manufacturing facilities development; and Commercialization. This Final Report discusses the M-C power Corporation effort which is part of a general program for the development of commercial MCFC systems. This final report covers the entire subject of the Unocal 250-cell stack. Certain project activities have been funded by organizations other than DOE and are included in this report to provide a comprehensive overview of the work accomplished.

  4. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  5. Technical data. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project, Converse County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    This volume includes a description of the railway to transport the coal; possible unbalance in the electrical power supply is considered in detail, as well as communications, signalling, etc. The railway will also be used to transport ashes and sludges for waste disposal. Coal fines in the coal supply will be burned to generate power. A very brief description of the coal gasification plant and its components is accompanied by a printout of the dates final engineering is to be completed. Permit applications are listed and socio-economic factors are discussed. The financing plan is discussed in some detail: basically, a loan guarantee from the Synthetic Fuels Corporation; equity provided by investment tax credit, deferred taxes, AFUDC and the sponsors; price support; and gas purchase agreement (this whole section includes several legal details.). (LTN)

  6. Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01

    The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

  7. Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

  8. Development of biological coal gasification (MicGAS process). Final report, May 1, 1990--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    ARCTECH has developed a novel process (MicGAS) for direct, anaerobic biomethanation of coals. Biomethanation potential of coals of different ranks (Anthracite, bitumious, sub-bitumious, and lignites of different types), by various microbial consortia, was investigated. Studies on biogasification of Texas Lignite (TxL) were conducted with a proprietary microbial consortium, Mic-1, isolated from hind guts of soil eating termites (Zootermopsis and Nasutitermes sp.) and further improved at ARCTECH. Various microbial populations of the Mic-1 consortium carry out the multi-step MicGAS Process. First, the primary coal degraders, or hydrolytic microbes, degrade the coal to high molecular weight (MW) compounds. Then acedogens ferment the high MW compounds to low MW volatile fatty acids. The volatile fatty acids are converted to acetate by acetogens, and the methanogens complete the biomethanation by converting acetate and CO{sub 2} to methane.

  9. Clean Coal Technology III: 10 MW Demonstration of Gas Suspension Absorption final project performance and economics report

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.E.

    1995-08-01

    The 10 MW Demonstration of the Gas Suspension Absorption (GSA) program is a government and industry co-funded technology development. The objective of the project is to demonstrate the performance of the GSA system in treating a 10 MW slipstream of flue gas resulting from the combustion of a high sulfur coal. This project involves design, fabrication, construction and testing of the GSA system. The Project Performance and Economics Report provides the nonproprietary information for the ``10 MW Demonstration of the Gas Suspension Absorption (GSA) Project`` installed at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emissions Research (CER) at Paducah, Kentucky. The program demonstrated that the GSA flue-gas-desulfurization (FGD) technology is capable of achieving high SO{sub 2} removal efficiencies (greater than 90%), while maintaining particulate emissions below the New Source Performance Standards (NSPS), without any negative environmental impact (section 6). A 28-day test demonstrated the reliability and operability of the GSA system during continuous operation. The test results and detailed discussions of the test data can be obtained from TVA`s Final Report (Appendix A). The Air Toxics Report (Appendix B), prepared by Energy and Environmental Research Corporation (EERC) characterizes air toxic emissions of selected hazardous air pollutants (HAP) from the GSA process. The results of this testing show that the GSA system can substantially reduce the emission of these HAP. With its lower capital costs and maintenance costs (section 7), as compared to conventional semi-dry scrubbers, the GSA technology commands a high potential for further commercialization in the United States. For detailed information refer to The Economic Evaluation Report (Appendix C) prepared by Raytheon Engineers and Constructors.

  10. Coal and gas competition in global markets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    Global consumption of commercial energy totalled 18 Gt of coal equivalent in 2010. With a 28% share, coal ranked second after oil as one of the major sources of primary energy and natural gas (at 21%) ranked third. Gross power generation with coal was approximately 41% and gas 22%. Natural gas as a global commodity is growing rapidly with the advent of unconventional sources such as shale gas. Recently, gas has become the fuel of choice for new power generating plants in some countries. Overall production of coal has increased in the same time-frame. The share of coal in electricity production was constant in Europe from early 2000 but recently increased. This was due to the high cost of gas in Europe and a low emissions penalty levied by the regulator, making coal currently more competitive in Europe compared to gas. Coal utilisation continues to increase in Asia but is facing serious competition with gas in the USA, where the share of electricity generated with coal dropped in 2012. However, natural gas used to generate electricity in early 2013 was below the high level seen during the comparable 2012 period, when low natural gas prices led to significant displacement of coal by natural gas for power generation. The current consensus in the USA is that while coal may recover ground in the short term, it loses in the long term as coal plants are retired. The discovery, production and availability of significant amounts of gas have implications for not only the price of natural gas but also the price of coal as well as supply and demand, and utilisation of both fuels internationally. The interaction between coal and gas in the global markets today is investigated in this review and the near-term outlook and impact on both fuels is presented. In this report, reserves, production and trade, supply and demand, pricing, utilisation and consumption, public attitudes and finally near/short to medium-term prospects are discussed for both coal and gas.

  11. Use of pyrolysis gas from coal as reburn fuel. Final report; Einsatz von kohlestaemmigem Pyrolysegas als Reduktionsbrennstoff. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Greul, U.; Magel, C.; Moersch, O.; Ruediger, H.; Storm, C.; Schnell, U.; Spliethoff, H.; Hein, K.R.G.

    1996-12-31

    The research project`s aim was to reduce nitrogen emissions from pulverized-coal furnaces by fuel staging with pyrolysis gas from coal. The test fuels were 6 German and Australian coals. The aim achieved has been the statement that the described method is an adequate means to attain to and remain below emission values of 200 mg/m{sup 3}. The method of fuel staging using coal-original gases was investigated with tests focussing the most important process parameters such as coal type, devolatilization ratio, temperature, residence time, and stoichiometry. The relevant features determined with an entrained flow reactor and with a fluidized-bed reactor were the impact of devolatilization temperatures on carbonized residue and pyrolysis products, the distribution of fuel nitrogen, and the quality of gas and tar, including the respective effects on NO{sub x} formation and reduction in staged combustion. The validation of the mathematical model was done with the experimentally obtained data. The criteria considered fundamental for achieving the NO{sub x} reduction level are temperature, air ratio, and residence time in the reduction zone of the furnace. The pyrolysis tests manifested the strong influence of the coal type and the devolatilization conditions on the composition of the gases and the attainable NO{sub x} reduction. The tars in the pyrolysis gases, with their nitrogen compounds, improve the reducing effect of available nitrogen oxides. By using pyrolysis gases from coal as reburning fuel, NO{sub x} emissions of less than 200 mg/m{sup 3} can be obtained at air ratios around 0.95. (orig./SR) [Deutsch] Das Forschungsprojekt verfolgte das Ziel mit 6 deutschen und australischen Kohlen die Stickoxidemissionen aus Kohlestaubfeuerungen durch Brennstoffstufung mit Pyrolysegas als Reduktionsbrennstoff zu verringern. Das erreichte Ziel war der Nachweis, dass mit dem beschriebenen Verfahren NO{sub x}-Emissionswerte von 200 mg/m{sup 3} erreicht und unterschritten werden

  12. Coal beneficiation by gas agglomeration

    Science.gov (United States)

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  13. Post-test analysis of 20kW molten carbonate fuel cell stack operated on coal gas. Final report, August 1993--February 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    A 20kW carbonate fuel cell stack was operated with coal gas for the first time in the world. The stack was tested for a total of 4,000 hours, of which 3,900 hours of testing was conducted at the Louisiana Gasification Technology Incorporated, Plaquemine, Louisiana outdoor site. The operation was on either natural gas or coal gas and switched several times without any effects, demonstrating duel fuel capabilities. This test was conducted with 9142 kJ/m{sup 3} (245 Btu/cft) coal gas provided by a slipstream from Destec`s entrained flow, slagging, slurry-fed gasifier equipped with a cold gas cleanup subsystem. The stack generated up to 21 kW with this coal gas. Following completion of this test, the stack was brought to Energy Research Corporation (ERC) and a detailed post-test analysis was conducted to identify any effects of coal gas on cell components. This investigation has shown that the direct fuel cell (DFC) can be operated with properly cleaned and humidified coal-as, providing stable performance. The basic C direct fuel cell component materials are stable and display normal stability in presence of the coal gas. No effects of the coal-borne contaminants are apparent. Further cell testing at ERC 1 17, confirmed these findings.

  14. Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

  15. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1982-01-01

    This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

  16. Gas core reactors for coal gasification

    International Nuclear Information System (INIS)

    Weinstein, H.

    1976-01-01

    The concept of using a gas core reactor to produce hydrogen directly from coal and water is presented. It is shown that the chemical equilibrium of the process is strongly in favor of the production of H 2 and CO in the reactor cavity, indicating a 98 percent conversion of water and coal at only 1500 0 K. At lower temperatures in the moderator-reflector cooling channels the equilibrium strongly favors the conversion of CO and additional H 2 O to CO 2 and H 2 . Furthermore, it is shown the H 2 obtained per pound of carbon has 23 percent greater heating value than the carbon so that some nuclear energy is also fixed. Finally, a gas core reactor plant floating in the ocean is conceptualized which produces H 2 , fresh water and sea salts from coal

  17. Test and evaluate the tri-gas low-Btu coal-gasification process. Final report, October 21, 1977-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Zabetakis, M.G.

    1980-12-01

    This report describes the continuation of work done to develop the BCR TRI-GAS multiple fluidized-bed gasification process. The objective is the gasification of all ranks of coals with the only product being a clean, low-Btu fuel gas. Design and construction of a 100 lb/h process and equipment development unit (PEDU) was completed on the previous contract. The process consists of three fluid-bed reactors in series, each having a specific function: Stage 1 - pretreatment; Stage 2- - gasification; Stage 3 - maximization of carbon utilization. Under the present contract, 59 PEDU tests have been conducted. A number of these were single-stage tests, mostly in Stage 1; however, integrated PEDU tests were conducted with a western coal (Rosebud) and two eastern coals (Illinois No. 6 and Pittsburgh seam). Both Rosebud and Pittsburgh seam coals were gasified with the PEDU operating in the design mode. Operation with Illinois No. 6 seam coal was also very promising; however, time limitations precluded further testing with this coal. One of the crucial tasks was to operate the Stage 1 reactor to pretreat and devolatilize caking coals. By adding a small amount of air to the fluidizing gas, the caking properties of the coal can be eliminated. However, it was also desirable to release a high percentage of the volatile matter from the coal in this vessel. To accomplish this, the reactor had to be operated above the agglomerating temperature of caking coals. By maintaining a low ratio of fresh to treated coal, this objective was achieved. Both Illinois No. 6 and Pittsburgh seam coals were treated at temperatures of 800 to 900 F without agglomerating in the vessel.

  18. The marriage of gas turbines and coal

    International Nuclear Information System (INIS)

    Bajura, R.A.; Webb, H.A.

    1991-01-01

    This paper reports on developing gas turbine systems that can use coal or a coal-based fuel ensures that the United States will have cost-effective environmentally sound options for supplying future power generation needs. Power generation systems that marry coal or a coal-based fuel to a gas turbine? Some matchmakers would consider this an unlikely marriage. Historically, most gas turbines have been operated only on premium fuels, primarily natural gas or distillate oil. The perceived problems from using coal or coal-based fuels in turbines are: Erosion and deposition: Coal ash particles in the hot combustion gases passing through the expander turbine could erode or deposit on the turbine blades. Corrosion: Coal combustion will release alkali compounds form the coal ash. Alkali in the hot gases passing through the expander turbine can cause corrosion of high-temperature metallic surfaces. Emissions: coal contains higher levels of ash, fuel-bound sulfur and nitrogen compounds, and trace contaminants than premium fuels. Meeting stringent environmental regulations for particulates, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and trace contaminants will be difficult. Economics: Coal-based systems are expensive to build. The difference in price between coal and premium fuels must be large enough to justify the higher capital cost

  19. Estimating release of polycyclic aromatic hydrocarbons from coal-tar contaminated soil at manufactured gas plant sites. Final report

    International Nuclear Information System (INIS)

    Lee, L.S.

    1998-04-01

    One of EPRI's goals regarding the environmental behavior of organic substances consists of developing information and predictive tools to estimate the release potential of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils at manufactured gas (MGP) plant sites. A proper assessment of the distribution of contaminants under equilibrium conditions and the potential for mass-transfer constraints is essential in evaluating the environmental risks of contaminants in the subsurface at MGP sites and for selecting remediation options. The results of this research provide insights into estimating maximum release concentrations of PAHs from MGP soils that have been contaminated by direct contact with the tar or through years of contact with contaminated groundwater. Attention is also given to evaluating the use of water-miscible cosolvents for estimating aqueous phase concentrations, and assessing the role of mass-transfer constraints in the release of PAHs from MGP site soils

  20. Gas distributor for fluidized bed coal gasifier

    Science.gov (United States)

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  1. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

  2. Green-House-Gas-Reduced Coal-and-Biomass-to-Liquid-Based Jet Fuel (GHGR-CBTL) Process - Final Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth [Altex Technologies Corporation, Sunnyvale, CA (United States); Imam, Thamina [Altex Technologies Corporation, Sunnyvale, CA (United States); Chevanan, Nehru [Altex Technologies Corporation, Sunnyvale, CA (United States); Namazian, Mehdi [Altex Technologies Corporation, Sunnyvale, CA (United States); Wang, Xiaoxing [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    2017-11-03

    This Final Technical Report describes the work and accomplishments of the project entitled, “Green-House-Gas-Reduced Coal-and-Biomass-to-Liquid-Based Jet Fuel (GHGR-CBTL) Process”. The main objective of the project was to raise the Technology Readiness Level (TRL) of the GHGR-CBTL fuel-production technology from TRL 4 to TRL 5 by producing a drop-in synthetic Jet Propellant 8 (JP-8) with a greenhouse-gas footprint less than or equal to petroleum-based JP-8 by utilizing mixtures of coal and biomass as the feedstock. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. While the system was not fabricated and tested, major efforts were expended to design the 1-TPD and a full-scale plant. The system was designed, a Block-Flow Diagram (BFD), a Process-Flow Diagram (PFD), and Piping-and-Instrumentation Diagrams (P&IDs) were produced, a Bill of Materials (BOM) and associated spec sheets were produced, commercially available components were selected and procured, custom components were designed and fabricated, catalysts were developed and screened for performance, and permitting activities were conducted. Optimization tests for JP-8 production using C2 olefin as the feed were performed over a range of temperatures, pressures and WHSVs. Liquid yields of between 63 to 65% with 65% JP-8 fraction (41-42% JP-8 yield) at 50 psig were achieved. Life-Cycle Analysis (LCA) was performed by Argonne National Laboratory (ANL), and a GHGR-CBTL module was added to the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. Based upon the experimental results, the plant design was reconfigured for zero natural-gas imports and minimal electricity imports. The LCA analysis of the reconfigured process utilizing the GREET model showed that if the char from the process was utilized to produce combined heat and power (CHP) then a feed containing 23 wt% biomass and

  3. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  4. Coal surface structure and thermodynamics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.; Wernett, P.C.; Glass, A.S.; Quay, D.; Roberts, J.

    1994-05-01

    Coals surfaces were studied using static surface adsorption measurements, low angle x-ray scattering (LAXS), inverse gas chromatography (IGC) and a new {sup 13}C NMR relaxation technique. A comparison of surface areas determined by hydrocarbon gas adsorption and LAXS led to the twin conclusions that the hydrocarbons had to diffuse through the solid to reach isolated pores and that the coal pores do not form interconnected networks, but are largely isolated. This conclusion was confirmed when IGC data for small hydrocarbons showed no discontinuities in their size dependence as usually observed with porous solids. IGC is capable of providing adsorption thermodynamics of gases on coal surfaces. The interactions of non-polar molecules and coal surfaces are directly proportioned to the gas molecular polarizability. For bases, the adsorption enthalpy is equal to the polarizability interaction plus the heat of hydrogen bond formation with phenol. Amphoteric molecules have more complex interactions. Mineral matter can have highly specific effects on surface interactions, but with most of the molecules studied is not an important factor.

  5. Exploitation and use of coal field gas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K; Li, Z; Sun, Q

    1982-04-25

    There are slightly more than 440 mine shafts in the world from which gas is pumped at the same time coal is being mined, the volume pumped being 3.125 billion cubic meters. All the countries of the world today widely use gas as a fuel and as a raw material for the chemical industry. In China 40 percent of the total number of mine shafts are high gas mine shafts. In China, gas is used largely as fuel by the people, to fire boilers, to make formaldehyde, and to make carbon ink. Prospects are good for the exploitation of mine shaft gas that is produced in association with coal. Mine shaft gas is a top quality energy source with an extraction life that is longer than coals. (DP)

  6. Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States

    International Nuclear Information System (INIS)

    Jenner, Steffen; Lamadrid, Alberto J.

    2013-01-01

    The aim of this paper is to examine the major environmental impacts of shale gas, conventional gas and coal on air, water, and land in the United States. These factors decisively affect the quality of life (public health and safety) as well as local and global environmental protection. Comparing various lifecycle assessments, this paper will suggest that a shift from coal to shale gas would benefit public health, the safety of workers, local environmental protection, water consumption, and the land surface. Most likely, shale gas also comes with a smaller GHG footprint than coal. However, shale gas extraction can affect water safety. This paper also discusses related aspects that exemplify how shale gas can be more beneficial in the short and long term. First, there are technical solutions readily available to fix the most crucial problems of shale gas extraction, such as methane leakages and other geo-hazards. Second, shale gas is best equipped to smoothen the transition to an age of renewable energy. Finally, this paper will recommend hybrid policy regulations. - Highlights: ► We examine the impacts of (un)conventional gas and coal on air, water, and land. ► A shift from coal to shale gas would benefit public health. ► Shale gas extraction can affect water safety. ► We discuss technical solutions to fix the most crucial problems of shale gas extraction. ► We recommend hybrid regulations.

  7. Energy supply: No gas from coal

    Energy Technology Data Exchange (ETDEWEB)

    Kempkens, W

    1983-03-01

    In the last twelve years the share of natural gas in the total consumption of primary energy has increased twelve-fold and now amounts to 16 per cent. One-third of this is produced in West Germany. Although world deposits will last well into the next century, attempts are already being made to perfect techniques for obtaining gas from coal. However, the cubic metre price of synthetic gas is still anything but competitive.

  8. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 5, Appendix D: Cost support information: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

    1991-01-01

    The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro`s estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

  9. Biological conversion of coal gas to methane

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S; Vega, J L; Clausen, E C; Gaddy, J L

    1988-08-01

    Biological conversion of low-Btu coal synthesis gas to higher Btu methane was demonstrated using both pure co-cultures and/or adapted-mixed anaerobic bacteria. Peptostreptococcus productus metabolized coal gas to mainly acetate and CO/sub 2/. The co-cultures containing methanogens converted these products to methane. In mixed culture studies, CH/sub 4/ and small amounts of acetate were produced. Reactor studies using stirred-tank and immobilized cell reactors exhibited excellent potential to convert CO, CO/sub 2/ and H/sub 2/ to methane at higher gas flow rates. Gas retention times ranging from 0.7 to 2 hours and high agitation were required for 90 percent CO conversion in these systems. This paper also illustrates the potential of biological methanation and demonstrates the need for good mass transfer in converting gas phase substrates. 21 refs., 1 fig., 7 tabs.

  10. Final Report of the Advanced Coal Technology Work Group

    Science.gov (United States)

    The Advanced Coal Technology workgroup reported to the Clean Air Act Advisory Committee. This page includes the final report of the Advanced Coal Technology Work Group to the Clean Air Act Advisory Committee.

  11. Process for the gas extraction of coal

    Energy Technology Data Exchange (ETDEWEB)

    Urquhart, D B

    1976-05-20

    The object of the invention is a process for the hydroextraction of coal is treated with water and carbon monoxide at a temperature in the region of 300 - 380/sup 0/C. After treatment is completed, the gases are separated from the treated gas; the treated coal is then extracted with an extraction medium during the gas phase at a temperature of at least 400/sup 0/C, the remainder is separated from the gas phase and the coal extract is obtained from the extraction medium. Hydrogenation is preferably carried out at a temperature in the region of 320 - 370/sup 0/C and at a pressure of 200 - 400 at. The time required for treatment with carbon monoxide and water is 1/4 - 2 hours, and in special cases 3/4 - 1 1/2 hours. The coal material itself is nutty slack, of which more than 95% of the coal particles pass through a 1.5 mm mesh sieve. After the hydrogenation the extraction is carried out at a temperature in the region of 400 - 450/sup 0/C. The patent claims relate to the types of extraction media used.

  12. Formation and retention of methane in coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  13. Greenhouse gas emission from Australian coal mining

    International Nuclear Information System (INIS)

    Williams, D.

    1998-01-01

    Since 1997, when the Australian Coal Association (ACA) signed a letter of Intent in respect of the governments Greenhouse Challenge Program, it has encouraged its member companies to participate. Earlier this year, the ACA commissioned an independent scoping study on greenhouse gas emissions in the black coal mining industry This was to provide background information, including identification of information gaps and R and D needs, to guide the formulation of a strategy for the mitigation of greenhouse gas emissions associated with the mining, processing and handling of black coals in Australia. A first step in the process of reducing emission levels is an appreciation of the source, quantity and type of emissions om nine sites. It is shown that greenhouse gas emissions on mine sites come from five sources: energy consumption during mining activities, the coal seam gas liberated due to the extraction process i.e. fugitive emissions, oxidation of carbonaceous wastes, land use, and embodied energy. Also listed are indications of the degree of uncertainty associated with each of the estimates

  14. To extract gas of the coal

    International Nuclear Information System (INIS)

    Carta Petrolera

    2001-01-01

    The paper analyzes the characteristics and advantages of extracting gas of the coal, idea that from previous years Colombia wanted to develop, and owing to the association contract Rio Rancheria; Colombia decided to carry out it using modern technologies used today in day in the international environment

  15. Clean coal technologies for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Todd, D.M. [GE Industrial & Power Systems, Schenectady, NY (United States)

    1994-12-31

    The oil- and gas-fired turbine combined-cycle penetration of industrial and utility applications has escalated rapidly due to the lower cost, higher efficiency and demonstrated reliability of gas turbine equipment in combination with fuel economics. Gas turbine technology growth has renewed the interest in the use of coal and other solid fuels in combined cycles for electrical and thermal energy production to provide environmentally acceptable plants without extra cost. Four different types of systems utilizing the gas turbine advantages with solid fuel have been studied: direct coal combustion, combustor processing, fuel processing and indirect cycles. One of these, fuel processing (exemplified by coal gasification), is emerging as the superior process for broad scale commercialization at this time. Advances in gas turbine design, proven in operation above 200 MW, are establishing new levels of combined-cycle net plant efficiencies up to 55% and providing the potential for a significant shift to gas turbine solid fuel power plant technology. These new efficiencies can mitigate the losses involved in gasifying coal and other solid fuels, and economically provide the superior environmental performance required today. Based on demonstration of high baseload reliability for large combined cycles (98%) and the success of several demonstrations of Integrated Gasification Combined Cycle (IGCC) plants in the utility size range, it is apparent that many commercial IGCC plants will be sites in the late 1990s. This paper discusses different gas turbine systems for solid fuels while profiling available IGCC systems. The paper traces the IGCC option as it moved from the demonstration phase to the commercial phase and should now with planned future improvements, penetrate the solid fuel power generation market at a rapid pace.

  16. Gas associated to coal in Colombia. An energetic alternative of non-conventional gas fields

    International Nuclear Information System (INIS)

    Garcia Gonzalez, Mario

    2005-01-01

    Colombia possesses the biggest coal reserves of Latin America, in such a way that the potential reserves of Gas Associated to the Coal (GAC) they are of great magnitude; the paper includes topics like the generation of the gas associated to the coal, geologic factors that control the gas occurrence, development of the gas associated to the coal in the world, and potential reserves of gas associated to the coal in Colombia

  17. Coal fired flue gas mercury emission controls

    CERN Document Server

    Wu, Jiang; Pan, Weiguo; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of

  18. Coal fired flue gas mercury emission controls

    International Nuclear Information System (INIS)

    Wu, Jiang; Pan, Weiguo; Cao, Yan; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  19. Coal fired flue gas mercury emission controls

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiang; Pan, Weiguo [Shanghai Univ. of Electric Power (China); Cao, Yan; Pan, Weiping [Western Kentucky Univ., Bowling Green, KY (United States)

    2015-05-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  20. Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

  1. Conversion of Coal Mine Gas to LNG

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-05

    This project evolved from a 1995, DOE-NETL competitive solicitation for practical CMM capture and utilization concepts. Appalachian Pacific was one of three companies selected to proceed with the construction and operation of a cost-shared demonstration plant. In the course of trying to proceed with this demonstration plant, AP examined several liquefaction technologies, discussed obtaining rights to coal mine methane with a number of coal companies, explored marketing potential with a wide variety of customers in many sections of the United States, studied in great detail the impact of a carbon credit exchange, and developed a suite of analytical tools with which to evaluate possible project options. In the end, the newness of the product, reluctance on the part of the coal companies to venture away from time tested practices, difficulty with obtaining financing, the failure of a carbon credit market to develop and the emergence of shale derived gas production prevented a demonstration plant from being built.

  2. Pelletization of fine coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  3. Gas, electricity, coal: 1998 statistical data

    International Nuclear Information System (INIS)

    1999-01-01

    This document brings together the main statistical data from the French direction of gas, electricity and coal and presents a selection of the most significant numbered data: origin of production, share of the consumption, price levels, resources-employment status. These data are presented in a synthetic and accessible way in order to make useful references for the actors of the energy sector. (J.S.)

  4. Investigations of gas explosions in a nuclear coal gasification plant

    International Nuclear Information System (INIS)

    Schulte, K.

    1981-01-01

    The safety research program on gas cloud explosions is performed in the context of the German project of the Prototype Plant Nuclear Process Heat. By the work within this project, it is tried to extend the use of nuclear energy to non-electric application. The programme comprises efforts in several scientific disciplines. The final goal is to provide a representative pressure-time-function or a set of such functions. These functions should be the basis for safe design and construction of the nuclear reactor system of a coal gasification plant. No result yet achieved contradicts the assumption that released process gas is only able to deflagrate. It should be possible to demonstrate that, if unfavourable configurations are avoided, a design pressure of 300 mbar is sufficient to withstand an explosion of process gas; this pressure should never be exceeded by process gas explosions irrespective of gas mass released and distance to release point, except possibly in relatively small areas

  5. Oil, Gas, Coal and Electricity - Quarterly statistics. Second Quarter 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    This publication provides up-to-date and detailed quarterly statistics on oil, coal, natural gas and electricity for the OECD countries. Oil statistics cover production, trade, refinery intake and output, stock changes and consumption for crude oil, NGL and nine selected oil product groups. Statistics for electricity, natural gas, hard coal and brown coal show supply and trade. Import and export data are reported by origin and destination. Moreover, oil and hard coal production are reported on a worldwide basis.

  6. Coal rebounds for the final quarter

    Energy Technology Data Exchange (ETDEWEB)

    Soras, C.; Stodden, J.

    1987-11-01

    Coal production in the USA is up 0.3% by the end of September 1987 from the pace of one year ago. Most impressive has been the growth in demand at power plants where coal consumption is up by 13.5 million tons through the month of July. The coal markets turnabout is based upon the entire economic spectrum not upon a single large market. US steel mills represent intense power consuming activities as do the US chemicals, plastics, paper and pulp industries.

  7. Coal combustion aerothermochemistry research. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Witte, A.B.; Gat, N.; Denison, M.R.; Cohen, L.M.

    1980-12-15

    On the basis of extensive aerothermochemistry analyses, laboratory investigations, and combustor tests, significant headway has been made toward improving the understanding of combustion phenomena and scaling of high swirl pulverized coal combustors. A special attempt has been made to address the gap between scientific data available on combustion and hardware design and scaling needs. Both experimental and theoretical investigations were conducted to improve the predictive capability of combustor scaling laws. The scaling laws derived apply to volume and wall burning of pulverized coal in a slagging high-swirl combustor. They incorporate the findings of this investigation as follows: laser pyrolysis of coal at 10/sup 6/ K/sec and 2500K; effect of coal particle shape on aerodynamic drag and combustion; effect of swirl on heat transfer; coal burnout and slag capture for 20 MW/sub T/ combustor tests for fine and coarse coals; burning particle trajectories and slag capture; particle size and aerodynamic size; volatilization extent and burnout fraction; and preheat level. As a result of this work, the following has been gained: an increased understanding of basic burning mechanisms in high-swirl combustors and an improved model for predicting combustor performance which is intended to impact hardware design and scaling in the near term.

  8. DRUCKFLAMM - Investigation on combustion and hot gas cleanup in pulverized coal combustion systems. Final report; DRUCKFLAMM - Untersuchungen zur Verbrennung und Heissgasreinigung bei der Druckkohlenstaubfeuerung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K.R.G.; Benoehr, A.; Schuermann, H.; Stroehle, J.; Klaiber, C.; Kuhn, R.; Maier, J.; Schnell, U.; Unterberger, S.

    2001-07-01

    The ambitions of making energy supply more efficient and less polluting brought forth the development of coal based combined cycle power plants allowing considerable increases in net efficiencies. One of the regarded firing concepts for a coal based combined cycle power plant is represented by the pressurised pulverised coal combustion process which has the highest efficiency potential compared with the other coal based concepts. The fundamental purpose of the project was to gain firm knowledge concerning firing behaviour of coal in a pressurised pulverised coal combustion system. Detailed investigations were carried out in a pressurised entrained flow reactor taking into account fuel conversion and particle behaviour, pollutant formation and material behaviour under conditions of a pressurised pulverised coal firing. During the project's investigations several different measurement techniques were tested and partially also acquired (e.g. a two-colour-pyrometry system to measure simultaneous particle surface temperature and particle diameter of burning fuel particles). Calculation models under pressurised conditions for pressure vessel simulation and better scale-up were developed synchronously with the experimental investigations. The results gained using the pressurised entrained flow reactor show that many combustion mechanisms are influenced by increased pressure, for instance the fuel conversion is intensified and at the same time pollutant emissions decreased. The material investigations show that the ceramic materials used due to the very high combustion temperatures are very sensitive versus slagging and fast temperature changes, therefore further development requirements are needed to fully realise the high durability of ceramics in the pressurised furnace. Concerning the improvement of existing models for furnace simulation under pressurised conditions, a good resemblance can be observed when considering the actual measurement results from the test

  9. Recovery of Rare Earth Elements from Coal and Coal Byproducts via a Closed Loop Leaching Process: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Richard [Battelle Memorial Inst., Columbus, OH (United States); Heinrichs, Michael [Battelle Memorial Inst., Columbus, OH (United States); Argumedo, Darwin [Battelle Memorial Inst., Columbus, OH (United States); Taha, Rachid [Battelle Memorial Inst., Columbus, OH (United States); Winecki, Slawomir [Battelle Memorial Inst., Columbus, OH (United States); Johnson, Kathryn [Battelle Memorial Inst., Columbus, OH (United States); Lane, Ann [Battelle Memorial Inst., Columbus, OH (United States); Riordan, Daniel [Battelle Memorial Inst., Columbus, OH (United States)

    2017-08-31

    REEs using the ADP technology. In AOI 1, Ohio coal sources with the potential to provide a consistent source of rare earth element concentrations above 300 parts per million will be identified. Coal sample inventories from West Virginia and Pennsylvania will also be assessed for purposes of comparison. Three methods of preparing the coal ash will be evaluated for their potential to enhance the technical feasibility and economics of REE recovery. Three sources of coal ash are targeted for evaluation of the economics of REE recovery in this project: (1) coal ash from power generation stations, to include fly ash and/or bottom ash, (2) ash generated in a lower temperature ashing process, and (3) ash residual from Battelle’s coal liquefaction process. Making use of residual ash from coal liquefaction processes directly leverages work currently being conducted by Battelle for DOE NETL in response to DE-FOA-0000981 entitled “Greenhouse Gas Emissions Reductions Research and Development Leading to Cost-Competitive Coal-to-Liquids Based Jet Fuel Production.” Using the sample characterization results and regional information regarding REE concentration, availability and cost, a TEA will be developed. The previously generated laboratory testing results for leaching and REE recovery via the ADP will be used to perform the TEA, along with common engineering assumptions for scale up of equipment and labor costs. Finally, upon validation of the economic feasibility of the process by the TEA, limited laboratory testing will be performed to support the design of a bench scale system. In a future project phase, it is envisioned that the bench scale system will be constructed and operated to prove the process on a continuous basis.

  10. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES; FINAL

    International Nuclear Information System (INIS)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-01-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO(sub x)). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process

  11. Gas and coal competition in the EU Power Sector

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2014-06-01

    Despite its many assets, a confluence of factors - including flat electricity demand, rising use of renewable energy sources, falling wholesale electricity market prices, high gas prices relative to coal and low CO 2 prices - has eroded the competitiveness of natural gas in the EU power sector. The share of natural gas in the EU electricity mix has decreased from 23% in 2010 to 20.5% in 2012. By contrast, coal-fired power stations have been operating at high loads, increasing coal demand by the sector. This thorough analysis by CEDIGAZ of gas, coal and CO 2 dynamics in the context of rising renewables is indispensable to understand what is at stake in the EU power sector and how it will affect future European gas demand. Main findings of the report: - Coal is likely to retain its cost advantage into the coming decade: The relationship between coal, gas and CO 2 prices is a key determinant of the competition between gas and coal in the power sector and will remain the main driver of fuel switching. A supply glut on the international coal market (partly because of an inflow of US coal displaced by shale gas) has led to a sharp decline in coal prices while gas prices, still linked to oil prices to a significant degree, have increased by 42% since 2010. At the same time, CO 2 prices have collapsed, reinforcing coal competitiveness. Our analysis of future trends in coal, gas and CO 2 prices suggests that coal competitive advantage may well persist into the coming decade. - But coal renaissance may still be short-lived: Regulations on emissions of local pollutants, i.e. the Large Plant Combustion Directive (LCPD) and the Industrial Emissions Directive (IED) that will succeed it in 2016, will lead to the retirement of old, inefficient coal-fired power plants. Moreover, the rapid development of renewables, which so far had only impacted gas-fired power plants is starting to take its toll on hard coal plants' profitability. This trend is reinforced by regulation at EU or

  12. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    Science.gov (United States)

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  13. Reclamation of acid, toxic coal spoils using wet flue gas desulfurization by-product, fly ash and sewage sludge. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.A.; Vimmerstedt, J.P.; Stehouwer, R.C.

    1997-03-01

    Establishment of vegetation on acid abandoned minelands requires modification of soil physical and chemical conditions. Covering the acid minesoil with topsoil or borrow soil is a common practice but this method may be restricted by availability of borrow soil and cause damage to the borrow site. An alternative approach is to use waste materials as soil amendments. There is a long history of using sewage sludge and fly ash as amendments for acid minesoils. Flue gas desulfurization (FGD) by-products are newer materials that are also promising amendments. Most flue gas sludges are mixtures of Calcium sulfate (CaSO{sub 4}), calcium sulfite (CaSO{sub 3}), calcium carbonate (CaCO{sub 3}), calcium hydroxide [Ca(OH){sub 2}], and fly ash. Some scrubbing processes produce almost pure gypsum (CaSO{sub 4}2H{sub 2}O). The primary purpose of the project is to evaluate two wet FGD by-products for effects on vegetation establishment and surface and ground water quality on an acid minesoil. One by-product from the Conesville, OH power plant (American Electric Power Service Corporation) contains primarily calcium sulfite and fly ash. The other by-product (Mg-gypsum FGD) from an experimental scrubber at the Zimmer power plant (Cincinnati Gas and Electric Company) is primarily gypsum with 4% magnesium hydroxide. These materials were compared with borrow soil and sewage sludge as minesoil amendments. Combinations of each FGD sludge with sewage sludge were also tested. This report summarizes two years of measurements of chemical composition of runoff water, ground water at two depths in the subsoil, soil chemical properties, elemental composition and yield of herbaceous ground cover, and elemental composition, survival and height of trees planted on plots treated with the various amendments. The borrow soil is the control for comparison with the other treatments.

  14. Reclamation of acid, toxic coal spoils using wet flue gas desulfurization by-product, fly ash and sewage sludge. Final report

    International Nuclear Information System (INIS)

    Kost, D.A.; Vimmerstedt, J.P.; Stehouwer, R.C.

    1997-03-01

    Establishment of vegetation on acid abandoned minelands requires modification of soil physical and chemical conditions. Covering the acid minesoil with topsoil or borrow soil is a common practice but this method may be restricted by availability of borrow soil and cause damage to the borrow site. An alternative approach is to use waste materials as soil amendments. There is a long history of using sewage sludge and fly ash as amendments for acid minesoils. Flue gas desulfurization (FGD) by-products are newer materials that are also promising amendments. Most flue gas sludges are mixtures of Calcium sulfate (CaSO 4 ), calcium sulfite (CaSO 3 ), calcium carbonate (CaCO 3 ), calcium hydroxide [Ca(OH) 2 ], and fly ash. Some scrubbing processes produce almost pure gypsum (CaSO 4 2H 2 O). The primary purpose of the project is to evaluate two wet FGD by-products for effects on vegetation establishment and surface and ground water quality on an acid minesoil. One by-product from the Conesville, OH power plant (American Electric Power Service Corporation) contains primarily calcium sulfite and fly ash. The other by-product (Mg-gypsum FGD) from an experimental scrubber at the Zimmer power plant (Cincinnati Gas and Electric Company) is primarily gypsum with 4% magnesium hydroxide. These materials were compared with borrow soil and sewage sludge as minesoil amendments. Combinations of each FGD sludge with sewage sludge were also tested. This report summarizes two years of measurements of chemical composition of runoff water, ground water at two depths in the subsoil, soil chemical properties, elemental composition and yield of herbaceous ground cover, and elemental composition, survival and height of trees planted on plots treated with the various amendments. The borrow soil is the control for comparison with the other treatments

  15. Geological evaluation on productibility of coal seam gas; Coal seam gas no chishitsugakuteki shigen hyoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K [University of Shizuoka, Shizuoka (Japan). Faculty of Education

    1996-09-01

    Coal seam gas is also called coal bed methane gas, indicating the gas existing in coal beds. The gas is distinguished from the oil field based gas, and also called non-conventional type gas. Its confirmed reserve is estimated to be 24 trillion m {sup 3}, with the trend of its development seen worldwide as utilization of unused resource. For the necessity of cultivating relevant technologies in Japan, this paper considers processes of production, movement, stockpiling, and accumulation of the gas. Its productibility is controlled by thickness of a coal bed, degree of coalification, gas content, permeability, groundwater flow, and deposition structure. Gas generation potential is evaluated by existing conditions of coal and degree of coalification, and methane production by biological origin and thermal origin. Economically viable methane gas is mainly of the latter origin. Evaluating gas reserve potential requires identification of the whole mechanism of adsorption, accumulation and movement of methane gas. The gas is expected of effect on environmental aspects in addition to availability as utilization of unused energy. 5 figs.

  16. Variations in pore characteristics in high volatile bituminous coals: Implications for coal bed gas content

    Science.gov (United States)

    Mastalerz, Maria; Drobniak, A.; Strapoc, D.; Solano-Acosta, W.; Rupp, J.

    2008-01-01

    The Seelyville Coal Member of the Linton Formation (Pennsylvanian) in Indiana was studied to: 1) understand variations in pore characteristics within a coal seam at a single location and compare these variations with changes occurring between the same coal at different locations, 2) elaborate on the influence of mineral-matter and maceral composition on mesopore and micropore characteristics, and 3) discuss implications of these variations for coal bed gas content. The coal is high volatile bituminous rank with R0 ranging from 0.57% to 0.60%. BET specific surface areas (determined by nitrogen adsorption) of the coals samples studied range from 1.8 to 22.9??m2/g, BJH adsorption mesopore volumes from 0.0041 to 0.0339??cm3/g, and micropore volumes (determined by carbon dioxide adsorption) from 0.0315 to 0.0540??cm3/g. The coals that had the largest specific surface areas and largest mesopore volumes occur at the shallowest depths, whereas the smallest values for these two parameters occur in the deepest coals. Micropore volumes, in contrast, are not depth-dependent. In the coal samples examined for this study, mineral-matter content influenced both specific surface area as well as mesopore and micropore volumes. It is especially clear in the case of micropores, where an increase in mineral-matter content parallels the decrease of micropore volume of the coal. No obvious relationships were observed between the total vitrinite content and pore characteristics but, after splitting vitrinite into individual macerals, we see that collotelinite influences both meso- and micropore volume positively, whereas collodetrinite contributes to the reduction of mesopore and micropore volumes. There are large variations in gas content within a single coal at a single location. Because of this variability, the entire thickness of the coal must be desorbed in order to determine gas content reliably and to accurately calculate the level of gas saturation. ?? 2008 Elsevier B.V. All

  17. Experimental Research on the Impactive Dynamic Effect of Gas-Pulverized Coal of Coal and Gas Outburst

    Directory of Open Access Journals (Sweden)

    Haitao Sun

    2018-03-01

    Full Text Available Coal and gas outburst is one of the major serious natural disasters during underground coal, and the shock air flow produced by outburst has a huge threat on the mine safety. In order to study the two-phase flow of a mixture of pulverized coal and gas of a mixture of pulverized coal and gas migration properties and its shock effect during the process of coal and gas outburst, the coal samples of the outburst coal seam in Yuyang Coal Mine, Chongqing, China were selected as the experimental subjects. By using the self-developed coal and gas outburst simulation test device, we simulated the law of two-phase flow of a mixture of pulverized coal and gas in the roadway network where outburst happened. The results showed that the air in the roadway around the outburst port is disturbed by the shock wave, where the pressure and temperature are abruptly changed. For the initial gas pressure of 0.35 MPa, the air pressure in different locations of the roadway fluctuated and eventually remain stable, and the overpressure of the outburst shock wave was about 20~35 kPa. The overpressure in the main roadway and the distance from the outburst port showed a decreasing trend. The highest value of temperature in the roadway increased by 0.25 °C and the highest value of gas concentration reached 38.12% during the experiment. With the action of shock air flow, the pulverized coal transportation in the roadway could be roughly divided into three stages, which are the accelerated movement stage, decelerated movement stage and the particle settling stage respectively. Total of 180.7 kg pulverized coal of outburst in this experiment were erupted, and most of them were accumulated in the main roadway. Through the analysis of the law of outburst shock wave propagation, a shock wave propagation model considering gas desorption efficiency was established. The relationships of shock wave overpressure and outburst intensity, gas desorption rate, initial gas pressure, cross

  18. COFIRING BIOMASS WITH LIGNITE COAL; FINAL

    International Nuclear Information System (INIS)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy and Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO(sub x) emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a$1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community

  19. Coal-fired high performance power generating system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  20. Air extraction in gas turbines burning coal-derived gas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

    1993-11-01

    In the first phase of this contracted research, a comprehensive investigation was performed. Principally, the effort was directed to identify the technical barriers which might exist in integrating the air-blown coal gasification process with a hot gas cleanup scheme and the state-of-the-art, US made, heavy-frame gas turbine. The guiding rule of the integration is to keep the compressor and the expander unchanged if possible. Because of the low-heat content of coal gas and of the need to accommodate air extraction, the combustor and perhaps, the flow region between the compressor exit and the expander inlet might need to be modified. In selecting a compressed air extraction scheme, one must consider how the scheme affects the air supply to the hot section of the turbine and the total pressure loss in the flow region. Air extraction must preserve effective cooling of the hot components, such as the transition pieces. It must also ensure proper air/fuel mixing in the combustor, hence the combustor exit pattern factor. The overall thermal efficiency of the power plant can be increased by minimizing the total pressure loss in the diffusers associated with the air extraction. Therefore, a study of airflow in the pre- and dump-diffusers with and without air extraction would provide information crucial to attaining high-thermal efficiency and to preventing hot spots. The research group at Clemson University suggested using a Griffith diffuser for the prediffuser and extracting air from the diffuser inlet. The present research establishes that the analytically identified problems in the impingement cooling flow are factual. This phase of the contracted research substantiates experimentally the advantage of using the Griffith diffuser with air extraction at the diffuser inlet.

  1. Coal liquefaction and gas conversion: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Volume I contains papers presented at the following sessions: AR-Coal Liquefaction; Gas to Liquids; and Direct Liquefaction. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  2. Two-stage coal liquefaction without gas-phase hydrogen

    Science.gov (United States)

    Stephens, H.P.

    1986-06-05

    A process is provided for the production of a hydrogen-donor solvent useful in the liquefaction of coal, wherein the water-gas shift reaction is used to produce hydrogen while simultaneously hydrogenating a donor solvent. A process for the liquefaction of coal using said solvent is also provided. The process enables avoiding the use of a separate water-gas shift reactor as well as high pressure equipment for liquefaction. 3 tabs.

  3. The coal-fired gas turbine locomotive - A new look

    Science.gov (United States)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.

    1983-01-01

    Advances in turbomachine technology and novel methods of coal combustion may have made possible the development of a competitive coal fired gas turbine locomotive engine. Of the combustor, thermodynamic cycle, and turbine combinations presently assessed, an external combustion closed cycle regenerative gas turbine with a fluidized bed coal combustor is judged to be the best suited for locomotive requirements. Some merit is also discerned in external combustion open cycle regenerative systems and internal combustion open cycle regenerative gas turbine systems employing a coal gasifier. The choice of an open or closed cycle depends on the selection of a working fluid and the relative advantages of loop pressurization, with air being the most attractive closed cycle working fluid on the basis of cost.

  4. An evaluation of Substitute natural gas production from different coal gasification processes based on modeling

    International Nuclear Information System (INIS)

    Karellas, S.; Panopoulos, K.D.; Panousis, G.; Rigas, A.; Karl, J.; Kakaras, E.

    2012-01-01

    Coal and lignite will play a significant role in the future energy production. However, the technical options for the reduction of CO 2 emissions will define the extent of their share in the future energy mix. The production of synthetic or substitute natural gas (SNG) from solid fossil fuels seems to be a very attractive process: coal and lignite can be upgraded into a methane rich gas which can be transported and further used in high efficient power systems coupled with CO 2 sequestration technologies. The aim of this paper is to present a modeling analysis comparison between substitute natural gas production from coal by means of allothermal steam gasification and autothermal oxygen gasification. In order to produce SNG from syngas several unit operations are required such as syngas cooling, cleaning, potential compression and, of course, methanation reactors. Finally the gas which is produced has to be conditioned i.e. removal of unwanted species, such as CO 2 etc. The heat recovered from the overall process is utilized by a steam cycle, producing power. These processes were modeled with the computer software IPSEpro™. An energetic and exergetic analysis of the coal to SNG processes have been realized and compared. -- Highlights: ► The production of SNG from coal is examined. ► The components of the process were simulated for integrated autothermal or allothermal coal gasification to SNG. ► The energetic and exergetic evaluation of the two processes is presented.

  5. Permeability changes in coal resulting from gas desorption

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Johnson, P.W.

    1992-11-30

    This report documents studies on the effects of gas sorption on coal, with the intent of eventually evaluating how sorption and strain affect permeability. These studies were, carried out at the University of Alabama during the period from 1989 through 1992. Two major experimental methods were developed and used. In the strain experiments, electronic strain gauges were attached to polished blocks of coal in order to measure linear and volumetric swelling due to gas sorption. The effects of bedding plane orientation, of gas type, and of coal type were investigated. In the gravimetric experiment the weight of small samples of coal was measured during exposure to high pressure gases. Sample measurements were corrected for buoyancy effects and for sample swelling, and the results were plotted in the form of Langmuir isotherms. Experiments were conducted to determine the effect of grain size, coal type, moisture, and of sorbant gas. The advantage of this method is that it can be applied to very small samples, and it enabled comparison liptinite versus vitrinite concentrates, and kerogen rich versus kerogen depleted oil shales. Also included is a detailed discussion of the makeup of coal and its effect on gas sorption behavior.

  6. Study for recovery and utilization of coal mine gas in Russia (Kuznetsk coal basin)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing greenhouse effect gas emissions in line with the Joint Implementation, a study was conducted on recovery/utilization of methane gas emitted from the Chertinskaya coal mine in the Kuznetsk coal basin area. According to the survey, the methane gas emitted from the Chertinskaya coal mine into the atmospheric air is 26 million to 36 million tons on the levels of the annual coal production between 0.7 million and 1 million tons. However, the monthly gas recovery amount and concentration largely fluctuate, and therefore, the use method to cope with this was studied. The study was now under way, and the electric power production using gas engine was regarded as the best. In this project, only the Chertinskaya mine can generate power of 34,721 MWh. In the whole Kuznetsk coal basin, approximately 200 million m{sup 3} of gas is needed to be removed for safety of the mine. The use of this will probably bring energy substitution of about 128,000 tons/year and CO2 reduction of 2.8 million tons/year. (NEDO)

  7. Old King Coal to the rescue as gas supplies dwindle

    International Nuclear Information System (INIS)

    Westbury, R. J.; Balash, A.

    2000-01-01

    Rumours persist about an impending shortage of natural gas, despite solid evidence to suggest that there are vast reserves yet to be discovered. The foundation for the rumours are the fact of increasing per capita demand for natural gas; insufficient financial incentive to vigorously pursue exploration since the easily discoverable reserves of oil and gas have been found long ago, and the cost of discovering oil and natural gas in more difficult formations have risen faster than the rate of inflation. Other reasons cited from time to time include the lack of present day technology that can extract the vast amounts of gas and oil in remaining reserves, and references to the exploding population of the developing world such as India, Pakistan and China, who are major users of oil and gas. It is not expected that nuclear power, wind, solar and geothermal energy sources will become fashionable in the near future, leaving hydrocarbons, and mainly coal, as the only readily available energy source. Although because of the high sulphur content coal gets a bad press, it is a fact that coal-fired power plants, equipped with modern scrubbing equipment, could meet the same pollution limits as natural gas-fired plants. For the moment, the power generating industry is reluctant to invest in the costly equipment for clean coal-fired plants, however, this short-sighted view may well lead to increases in the price of natural gas that will mimic the results of the OPEC increases in crude oil in the 1970s. These authors contend that if gas is wasted in power generation, society will suffer the reappearance of coal-fired home heating furnaces with all the attendant increases in air pollution due to the relatively inefficient combustion of coal in domestic space heating appliances

  8. Action of coal gas on plants. II. Action on green plants

    Energy Technology Data Exchange (ETDEWEB)

    Wehmer, C

    1917-01-01

    Experiments were performed to determine the effects of coal gas on cress. Although the seeds are not killed by coal gas, they are prevented from germinating. Cress will grow in as much as 30% coal gas, but it will not survive higher concentrations. Coal gas contains both toxic and non-toxic constituents. CO, C/sub 2/H/sub 4/, C/sub 2/H/sub 2/, CS/sub 2/, H/sub 2/S are not toxic at concentrations found in coal gas. The toxic effects of coal gas are not caused by the lack of O/sub 2/, but by minor impurities in the gas.

  9. Economic aspects of advanced coal-fired gas turbine locomotives

    Science.gov (United States)

    Liddle, S. G.; Bonzo, B. B.; Houser, B. C.

    1983-01-01

    Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.

  10. Gas and coal competition in the EU power sector

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2014-01-01

    According to a new report by CEDIGAZ, the International Centre for Natural Gas Information, gas has lost its attractiveness against coal in the EU power sector. Its demand by the sector decreased by one third during the past three years and its prospects are very weak in this decade. The Association warns that un-profitability of combined cycle gas turbines (CCGTs) and the retirement of old coal plants due to stringent air regulation may lead to the closure of one third of the current fleet and poses a serious security of supply issue that has to be addressed urgently

  11. Underground Coal Gasification: Rates of Post Processing Gas Transport

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Hejtmánek, Vladimír; Stanczyk, K.; Šolcová, Olga

    2014-01-01

    Roč. 68, č. 12 (2014), s. 1707-1715 ISSN 0366-6352 R&D Projects: GA MŠk 7C12017 Grant - others:RFCS(XE) RFCR-CT-2011-00002 Institutional support: RVO:67985858 Keywords : underground coal gas ification * gas transport * textural properties Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  12. Feasibility study on recovery and utilization of coal mine gas (CMG) at Donetsk Coal Field

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of getting petroleum substitution energy and reducing greenhouse effect gas emission, an investigational study was carried out of the project for methane gas recovery/utilization at the Donbassa coal mine in Ukraine. At the Donbassa coal mine, degassing by test boring is being conducted to reduce the gas emission at coal face for safety, but most of the gas is discharged into the air. In this project, the following were studied: degassing boring/gas induction from bore hole/measurement in gas induction pipe, gas recovery system combined with gas induction in flyash, and installation/operation of gas engine power generation facilities (1,710kW x 7 units) with exhaust heat recovery boiler using the recovered methane gas as fuel. The results obtained were the petroleum substitution amount of 31,000 toe/y and the amount of greenhouse effect gas reduction of 480,000 t/y. In the economical estimation, the initial investment amount was 3 billion yen, the profitability of the total investment used was 2.9%, and the internal earning rate was 6.5%. (NEDO)

  13. Combustion of coal gas fuels in a staged combustor

    Science.gov (United States)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  14. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    Science.gov (United States)

    Post, David

    2017-04-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States, in Australia extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. In Australia, an Independent Expert Scientific Committee (IESC) has been established to provide scientific advice to federal and state government regulators on the impact that coal seam gas and large coal mining developments may have on water resources. This advice is provided to enable decisions to be informed by the best available science about the potential water-related impacts associated with these developments. To support this advice, the Australian Government Department of the Environment has implemented a programme of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment is defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are currently being carried out across large portions of eastern Australia underlain by coal reserves. Further details of the programme and results to date can be found at http://www.bioregionalassessments.gov.au. The bioregional assessment programme has modelled the impacts of coal seam gas development on surface and groundwater resources in three regions of eastern Australia, namely the Clarence-Moreton, Gloucester, and Namoi regions. This presentation will discuss the

  15. Gas Permeability Evolution Mechanism and Comprehensive Gas Drainage Technology for Thin Coal Seam Mining

    Directory of Open Access Journals (Sweden)

    Fangtian Wang

    2017-09-01

    Full Text Available A thin coal seam mined as a protective coal seam above a gas outburst coal seam plays a central role in decreasing the degree of stress placed on a protected seam, thus increasing gas permeability levels and desorption capacities to dramatically eliminate gas outburst risk for the protected seam. However, when multiple layers of coal seams are present, stress-relieved gas from adjacent coal seams can cause a gas explosion. Thus, the post-drainage of gas from fractured and de-stressed strata should be applied. Comprehensive studies of gas permeability evolution mechanisms and gas seepage rules of protected seams close to protective seams that occur during protective seam mining must be carried out. Based on the case of the LongWall (LW 23209 working face in the Hancheng coal mine, Shaanxi Province, this paper presents a seepage model developed through the FLAC3D software program (version 5.0, Itasca Consulting Group, Inc., Minneapolis, MI, USA from which gas flow characteristics can be reflected by changes in rock mass permeability. A method involving theoretical analysis and numerical simulation was used to analyze stress relief and gas permeability evolution mechanisms present during broken rock mass compaction in a goaf. This process occurs over a reasonable amount of extraction time and in appropriate locations for comprehensive gas extraction technologies. In using this comprehensive gas drainage technological tool, the safe and efficient co-extraction of thin coal seams and gas resources can be realized, thus creating a favorable environment for the safe mining of coal and gas outburst seams.

  16. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 3, Appendix B: NO{sub x} and alkali vapor control strategies: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

  17. Boiler briquette coal versus raw coal: Part I--Stack gas emissions.

    Science.gov (United States)

    Ge, S; Bai, Z; Liu, W; Zhu, T; Wang, T; Qing, S; Zhang, J

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.

  18. Boiler Briquette Coal versus Raw Coal: Part I-Stack Gas Emissions.

    Science.gov (United States)

    Ge, Su; Bai, Zhipeng; Liu, Weili; Zhu, Tan; Wang, Tongjian; Qing, Sheng; Zhang, Junfeng

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM 10 and PM 2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM 10 , 0.38 for PM 25 , 20.7 for SO 2 , and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM 10 , 0.30 for PM 2 5 , 7.5 for SO 2 , and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM 10 , 0.87 for PM 25 , 46.7 for SO 2 , and 15 for CO, while those of the BB-coal were 2.51 for PM 10 , 0.79 for PM 2.5 , 19.9 for SO 2 , and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/ steam conversion factors, were 0.23 for PM 10 , 0.12 for PM 2.5 , 6.4 for SO 2 , and 2.0 for CO, while those of the BB-coal were 0.30 for PM 10 , 0.094 for PM 2.5 , 2.4 for SO 2 , and 1.7 for CO. PM 10 and PM 2.5 elemental compositions are also presented for both types of coal tested in the study.

  19. EXPERIMENTS AND COMPUTATIONAL MODELING OF PULVERIZED-COAL IGNITION; FINAL

    International Nuclear Information System (INIS)

    Samuel Owusu-Ofori; John C. Chen

    1999-01-01

    Under typical conditions of pulverized-coal combustion, which is characterized by fine particles heated at very high rates, there is currently a lack of certainty regarding the ignition mechanism of bituminous and lower rank coals as well as the ignition rate of reaction. furthermore, there have been no previous studies aimed at examining these factors under various experimental conditions, such as particle size, oxygen concentration, and heating rate. Finally, there is a need to improve current mathematical models of ignition to realistically and accurately depict the particle-to-particle variations that exist within a coal sample. Such a model is needed to extract useful reaction parameters from ignition studies, and to interpret ignition data in a more meaningful way. The authors propose to examine fundamental aspects of coal ignition through (1) experiments to determine the ignition temperature of various coals by direct measurement, and (2) modeling of the ignition process to derive rate constants and to provide a more insightful interpretation of data from ignition experiments. The authors propose to use a novel laser-based ignition experiment to achieve their first objective. Laser-ignition experiments offer the distinct advantage of easy optical access to the particles because of the absence of a furnace or radiating walls, and thus permit direct observation and particle temperature measurement. The ignition temperature of different coals under various experimental conditions can therefore be easily determined by direct measurement using two-color pyrometry. The ignition rate-constants, when the ignition occurs heterogeneously, and the particle heating rates will both be determined from analyses based on these measurements

  20. Comparative assessment of severe accident risks in the coal, oil and natural gas chains

    International Nuclear Information System (INIS)

    Burgherr, Peter; Eckle, Petrissa; Hirschberg, Stefan

    2012-01-01

    This study compared severe accident risks of fossil energy chains (coal, oil and natural gas), based on the historical experience contained in the comprehensive database ENSAD. Considered risk indicators focused on human health impacts, i.e., fatality rates and maximum consequences were calculated for a broad range of country groups. Generally, expected fatality rates were lowest for natural gas, intermediate for oil and highest for coal. Concerning maximum consequences of a single accident, natural gas also performed best, followed by coal, whereas accidents in the oil chain can claim significantly more fatalities. In general, OECD and EU 27 ranked top, while non-OECD countries and China in the case of coal were worst. The consideration of numerous additional country groups enabled a more detailed differentiation within the main bounding groups. Furthermore, differences among country groups are distinctly decreasing from coal to oil and natural gas, both for fatality rates and maximum consequences. The use of import adjusted-fatality rates indicates that fatality risks in supply countries are an essential aspect to understand how specific risk reduction strategies may affect other components of energy security, and thus tradeoffs and compromises are necessary. Finally, the proposed fatality risk score for fossil chains (FRS F ) allows a comparison of the combined accident risk for the considered fossil energy chains across individual countries, which can be visualized using risk mapping.

  1. Solar coal gasification reactor with pyrolysis gas recycle

    Science.gov (United States)

    Aiman, William R.; Gregg, David W.

    1983-01-01

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  2. Update on the REIPPPP, clean coal, nuclear, natural gas

    CSIR Research Space (South Africa)

    Milazi, Dominic

    2015-12-01

    Full Text Available , clean coal, nuclear, natural gas The Sustainable Energy Resource Handbook Volume 6 Dominic Milazi, Dr Tobias Bischof-Niemz, Abstract Since its release in 2011, the Integrated Resource Plan (IRP 2010-2030), or IRP 2010, has been the authoritative... text setting out South Africa’s electricity plan over the next 20 years. The document indicates timelines on the roll out of key supply side options such as renewable energy, the nuclear, natural gas and coal build programmes, as well as peaking...

  3. Process for the production of fuel gas from coal

    Science.gov (United States)

    Patel, Jitendra G.; Sandstrom, William A.; Tarman, Paul B.

    1982-01-01

    An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

  4. Wabash River Coal Gasification Repowering Project: A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2002-01-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of$438 million. Construction for the demonstration project was started in July 1993. Pre-operational tests were initiated in August 1995, and construction was completed in November 1995. Commercial operation began in November 1995, and the demonstration period was completed in December

  5. Study on Fluid-solid Coupling Mathematical Models and Numerical Simulation of Coal Containing Gas

    Science.gov (United States)

    Xu, Gang; Hao, Meng; Jin, Hongwei

    2018-02-01

    Based on coal seam gas migration theory under multi-physics field coupling effect, fluid-solid coupling model of coal seam gas was build using elastic mechanics, fluid mechanics in porous medium and effective stress principle. Gas seepage behavior under different original gas pressure was simulated. Results indicated that residual gas pressure, gas pressure gradient and gas low were bigger when original gas pressure was higher. Coal permeability distribution decreased exponentially when original gas pressure was lower than critical pressure. Coal permeability decreased rapidly first and then increased slowly when original pressure was higher than critical pressure.

  6. Coal liquefaction and gas conversion contractors review conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This volume contains 55 papers presented at the conference. They are divided into the following topical sections: Direct liquefaction; Indirect liquefaction; Gas conversion (methane conversion); and Advanced research liquefaction. Papers in this last section deal mostly with coprocessing of coal with petroleum, plastics, and waste tires, and catalyst studies. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  7. Solid-Gas Coupling Model for Coal-Rock Mass Deformation and Pressure Relief Gas Flow in Protection Layer Mining

    OpenAIRE

    Zhu, Zhuohui; Feng, Tao; Yuan, Zhigang; Xie, Donghai; Chen, Wei

    2018-01-01

    The solid-gas coupling model for mining coal-rock mass deformation and pressure relief gas flow in protection layer mining is the key to determine deformation of coal-rock mass and migration law of pressure relief gas of protection layer mining in outburst coal seams. Based on the physical coupling process between coal-rock mass deformation and pressure-relief gas migration, the coupling variable of mining coal-rock mass, a part of governing equations of gas seepage field and deformation fiel...

  8. Geological Factors and Reservoir Properties Affecting the Gas Content of Coal Seams in the Gujiao Area, Northwest Qinshui Basin, China

    Directory of Open Access Journals (Sweden)

    Zhuo Zou

    2018-04-01

    Full Text Available Coalbed methane (CBM well drilling and logging data together with geological data were adopted to provide insights into controlling mechanism of gas content in major coal seams and establish gas accumulation models in the Gujiao area, Northwest Qinshui Basin, China. Gas content of targeted coals is various in the Gujiao area with their burial depth ranging from 295 to 859 m. Highly variable gas content of coals should be derived from the differences among tectonism, magmatism, hydrodynamism, and sedimentation. Gas content preserved in the Gujiao area is divided into two parts by the geological structure. Gas tends to accumulate in the groundwater stagnant zone with a total dissolved solids (TDS value of 1300–1700 ppm due to water pressure in the Gujiao area. Reservoir properties including moisture content, minerals, and pore structure also significantly result in gas content variability. Subsequently, the gray correlation statistic method was adopted to determine the most important factors controlling gas content. Coal metamorphism and geological structure had marked control on gas content for the targeted coals. Finally, the favorable CBM exploitation areas were comprehensively evaluated in the Gujiao area. The results showed that the most favorable CBM exploitation areas were in the mid-south part of the Gujiao area (Block I.

  9. Bifuel coal-gas combined cycles

    International Nuclear Information System (INIS)

    Chmielniak, Tadeusz; Kotowicz, Janusz; Lyczko, Jacek

    1997-01-01

    This paper describes basic ways of realization of bi fuel cool-gas combined cycles. The criterion of classification of the systems specification is a joint of the gas pail with the steam part: a) The gas turbine flue gases are introduced into the steam boiler combustion chamber (the serial, hot wind box). b) Bypass of the beat exchangers at the steam turbine unit and/or the steam boiler, by use the waste heat exchangers, or waste boiler at the gas turbine unit (the parallel-coupled). c) The mixed, it's a combination of the two upper. The analysis of the parallel system has been specially presented. In derived formulas for the total efficiency of the bi fuel parallel combined cycle balance equations have been used. This formulas can be used for planning new combined cycle power plants and for modernization existing steam power plants. It was made a discussion about influence of the ratio the gas and the steam turbine electric power on the cycle efficiency in care of the full and the part load of the bi fuel combined cycle power plant. The various systems of the joint of the gas part with the steam part have been examined. The selected results of the calculations have been attached. The models and the numerical simulations have been based on data from the existing steam power plants and real gas turbine units. (Author)

  10. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, Thomas

    1989-01-01

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  11. Biological conversion of coal synthesis gas to methane

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S; Corder, R E; Clausen, E C; Gaddy, J L

    1987-09-01

    High temperatures and pressures are required, and therefore, high costs incurred during catalytic upgrading of coal synthesis gas to methane. Thus, the feasibility of biological reactions in converting synthesis gas to methane has been demonstrated in mixed and pure cultures. Complete conversion has been achieved in 2 hours with a mixed culture, and 45 minutes to 1.5 hours in pure cultures of P. productus and Methanothrix sp.. Typical sulfur levels involved during the process are found not to inhibit the bacteria and so sulfur does not have to be removed prior to biomethanation. Preliminary economic analyses indicate that coal gas may be biologically methanated for 50-60 cents/million Btu. Further studies with pure culture bacteria and increased pressure are expected to enhance biomethanation economics.

  12. Evaluation of catalytic combustion of actual coal-derived gas

    Science.gov (United States)

    Blanton, J. C.; Shisler, R. A.

    1982-01-01

    The combustion characteristics of a Pt-Pl catalytic reactor burning coal-derived, low-Btu gas were investigated. A large matrix of test conditions was explored involving variations in fuel/air inlet temperature and velocity, reactor pressure, and combustor exit temperature. Other data recorded included fuel gas composition, reactor temperatures, and exhaust emissions. Operating experience with the reactor was satisfactory. Combustion efficiencies were quite high (over 95 percent) over most of the operating range. Emissions of NOx were quite high (up to 500 ppm V and greater), owing to the high ammonia content of the fuel gas.

  13. Coal Mining and Coal Seam Gas on Gomeroi country: Sacred lands, economic futures and shifting alliances

    International Nuclear Information System (INIS)

    Norman, Heidi

    2016-01-01

    North western NSW has seen a host of interest groups working in alliance opposing coal and coal seam gas mining. These groups - farmers, residents and environmentalists share concerns about the impact on the unique black soil and aquifer, of fossil fuel more broadly. While these shared alliances across class, gender and generations are emergent, Aboriginal citizens are uniquely placed in this contest over land, environment and resources. This paper sets out to show the historical and contemporary significance of the place of Aboriginal people in the debate over land use, arguing that, for the first time in history, Aboriginal worlds are central to community futures. In this space, new relationships are being forged and new discourse is required to comprehend the complex position Aboriginal citizens have as custodians of place and at the same time, the responsibility to provide for families and communities, otherwise excluded from the prevailing modern economy. With reference to the history of both relationship to land and land usage over Gomeroi country, and drawing on ethnographic along with archival research, this article seeks to contribute to a critical understanding of Aboriginal people's dealings in relation to their land, their cultural and economic interests with in an emerging regional coal economy, and in turn how they are redefining the context for energy resource extraction, and energy policy. - Highlights: • Aboriginal worlds are central to community futures in Australia. • Prospecting for coal and coal seam gas is forcing Aboriginal land holders into new relationships. • The nexus between the coal economy & Aboriginal self-determination is deeply contested. • New discourses are emerging to comprehend the custodianship of place in the context of mining.

  14. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  15. NEW SOLID FUELS FROM COAL AND BIOMASS WASTE; FINAL

    International Nuclear Information System (INIS)

    Hamid Farzan

    2001-01-01

    Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable

  16. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Science.gov (United States)

    2010-04-01

    ... produced from coal seams. 270.302 Section 270.302 Conservation of Power and Water Resources FEDERAL ENERGY... produced from coal seams. A person seeking a determination that natural gas is occluded natural gas produced from coal seams must file an application with the jurisdictional agency which contains the...

  17. Competition between coal and gas for large scale power generation

    International Nuclear Information System (INIS)

    Howieson, B.

    1997-01-01

    The relative competitiveness of coal- and gas-fired generation will be affected by distinctive country and market factors as well as site specific considerations, regarding such factors as environment, market structure and economics (such as fuel and plant costs). National and international politics have an impact on all three factors and any decision on the development of generation plant must take into account both current and future political climates. An analysis suggests that, at the present time, upgrading existing coal stations is attractive compared with new combined cycle gas turbines (CCGTs). However, this conclusion is highly dependent on the site specific nature of existing plant and the anticipated future environmental regime. Increased environmental pressure, particularly in the area of CO 2 emissions, would result in CCGTs being the first choice plant option. (R.P.)

  18. Slag processing system for direct coal-fired gas turbines

    Science.gov (United States)

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  19. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    Science.gov (United States)

    Jha, Mahesh C.; Blandon, Antonio E.; Hepworth, Malcolm T.

    1988-01-01

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  20. Improving air quality in large cities by substituting natural gas for coal in China: changing idea and incentive policy implications

    International Nuclear Information System (INIS)

    Mao Xianqiang; Guo Xiurui; Chang Yongguan; Peng Yingdeng

    2005-01-01

    Natural gas has long been used in China mainly as chemical raw material. With the increasing emphasis on urban air pollution prevention, the issue of natural gas substitution to coal has been raised in many large Chinese cities. This paper reviews the environmental-economic-technical rationality of dashing-for-gas in urban area, especially for civil use such as cooking and heating in China. Taking Beijing and Chongqing as study cases, a cost-benefit analysis of natural gas substitution is done and the ongoing economic and system barriers to natural gas penetration are analyzed. Indications of natural gas penetration incentive policy making are given finally

  1. Improving air quality in large cities by substituting natural gas for coal in China: changing idea and incentive policy implications

    International Nuclear Information System (INIS)

    Xianqiang Mao; Yingdeng Peng

    2005-01-01

    Natural gas has long been used in China mainly as chemical raw material. With the increasing emphasis on urban air pollution prevention, the issue of natural gas substitution to coal has been raised in many large Chinese cities. This paper reviews the environmental - economic - technical rationality of dashing-for-gas in urban area, especially for civil use such as cooking and heating in China. Taking Beijing and Chongqing as study cases, a cost-benefit analysis of natural gas substitution is done and the ongoing economic and system barriers to natural gas penetration are analyzed. Indications of natural gas penetration incentive policy making are given finally. (author)

  2. Synthetic natural gas in California: When and why. [from coal

    Science.gov (United States)

    Wood, W. B.

    1978-01-01

    A coal gasification plant planned for northwestern New Mexico to produce 250 MMCFD of pipeline quality gas (SNG) using the German Lurgi process is discussed. The SNG will be commingled with natural gas in existing pipelines for delivery to southern California and the Midwest. Cost of the plant is figured at more than $1.4 billion in January 1978 dollars with a current inflation rate of $255,000 for each day of delay. Plant start-up is now scheduled for 1984.

  3. Gas to Coal Competition in the U.S. Power Sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    With the newfound availability of natural gas due to the shale gas revolution in the United States, cheap gas now threatens coal’s longstanding position as the least costly fuel for generating electricity. But other factors besides cost come into play when deciding to switch from coal to gas. Electricity and gas transmission grid constraints, regulatory and contractual issues, as well as other factors determine the relative share of coal and gas in power generation. This paper analyzes competition between coal and gas for generating power in the United States and the factors explaining this dynamic. It also projects coal-to-gas switching in power generation for 18 states representing 75% of the surplus gas potential in the United States up to 2017, taking into consideration the impact of environmental legislation on retirement of coal-fired power plants.

  4. Final report on unconventional gas in Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The main purpose of the study on the title subject is to analyse how the relevant applicable European legal framework, including environmental law, is applied to the licensing/authorisation and operational permitting for prospection, exploration and production/exploitation of shale gas based on a sample of four Member States, i.e. Poland, France, Germany and Sweden. It is, however, not purpose of the study to assess whether Member State legislation based on EU legislation has been properly transposed. This study focuses on shale gas exploration, because shale gas is the type of unconventional gas most discussed and contentious currently. Also, compared to tight gas and coal bed methane, relatively less experience exists in Europe for shale formations as new source of natural gas. The focus on exploration is due to the stage of projects in Europe. No commercial scale shale gas exploitation has taken place yet and it is only expected in a few years time. Nevertheless, this study also takes into account a possible future production phase and especially analyses legal issues especially related to the transfer from exploration to production stage. As regards areas of law to be studied, the focus is the 'core' licensing and permitting process. Given the importance of environmental law in the area of shale gas exploration and production, it is included as an integral part of the study. However, within the scope of this study it is not possible to perform a thorough assessment of the appropriateness of the EU environmental legislation. Nevertheless, the present report describes and analyses EU environmental legislation which was assumed to be of most relevance for shale gas projects, especially as regards its interface with the 'core' licensing and permitting processes. Thereby it contributes to further efforts to assess the appropriateness of the EU legal framework especially with a view to a future production phase and the challenge to ensure a high

  5. The Late Paleozoic relative gas fields of coal measure in China and their significances on the natural gas industry

    Directory of Open Access Journals (Sweden)

    Chenchen Fang

    2016-12-01

    Full Text Available The coal measure gas sources of coal-derived gas fields in the Late Paleozoic China are the Lower Carboniferous Dishuiquan Formation, the Upper Carboniferous Batamayineishan Formation and Benxi Formation, the Lower Permian Taiyuan Formation and Shanxi Formation, and the Upper Permian Longtan Formation. The coal-derived gas accumulates in Ordovician, Carboniferous, Permian, and Paleocene reservoirs and are distributed in Ordos Basin, Bohai Bay Basin, Junggar Basin, and Sichuan Basin. There are 16 gas fields and 12 of them are large gas fields such as the Sulige large gas field which is China's largest reserve with the highest annual output. According to component and alkane carbon isotope data of 99 gas samples, they are distinguished to be coal-derived gas from coal-derived gas with δ13C2 > −28.5‰ and δ13C1 -δ13C2 -δ13C3 identification chart. The Late Paleozoic relative gas fields of coal measure are significant for the Chinese natural gas industry: proven natural gas geological reserves and annual output of them account for 1/3 in China, and the gas source of three significant large gas fields is coal-derived, which of five significant large gas fields supporting China to be a great gas producing country. The average reserves of the gas fields and the large gas fields formed from the late Paleozoic coal measure are 5.3 and 1.7 times that of the gas fields and the large gas fields in China.

  6. Cracking oils, etc. , glycerine, oil and coal gas

    Energy Technology Data Exchange (ETDEWEB)

    Mann, W

    1919-02-06

    In the cracking of hydrocarbon oils, the thermal decomposition of fats to obtain glycerine, the production of oil and coal gas, and the destructive distillation of coal, peat, shale, etc., the lower molecular weight products are separated, while the higher molecular weight products are separated, while the higher molecular weight products and undecomposed substances are retained for further exposure to the decomposition conditions, by interposing one or more porous septa between the decomposition chamber and the condenser or receiver. The decomposition conditions may be maintained up to the porous septum; but it is preferable to place the porous septum in a separate chamber inside or outside the decomposition vessel; and a plurality of decomposition chambers may be used in series or parallel.

  7. Microbial production of natural gas from coal and organic-rich shale

    Science.gov (United States)

    Orem, William

    2013-01-01

    Natural gas is an important component of the energy mix in the United States, producing greater energy yield per unit weight and less pollution compared to coal and oil. Most of the world’s natural gas resource is thermogenic, produced in the geologic environment over time by high temperature and pressure within deposits of oil, coal, and shale. About 20 percent of the natural gas resource, however, is produced by microorganisms (microbes). Microbes potentially could be used to generate economic quantities of natural gas from otherwise unexploitable coal and shale deposits, from coal and shale from which natural gas has already been recovered, and from waste material such as coal slurry. Little is known, however, about the microbial production of natural gas from coal and shale.

  8. Current developments on the coal and gas markets and their retroactive effects on the Merit Order

    International Nuclear Information System (INIS)

    Hecking, Harald; Cam, Eren; Schoenfisch, Max; Schulte, Simon

    2017-01-01

    Coal and gas continue to play a significant role in the European power generation system, especially in Germany. According to the AG energy balances, the share of hard coal in German gross electricity generation in 2016 was 17.2% and natural gas 12.4%. In addition to the CO 2 price, the prices for steam coal and natural gas are a key factor in determining which gas or coal power station is in Merit Order and whether it comes to a fuel switch. Declining gas prices have been rising sharply since the middle of 2016, and the volatile prices for steam coal have been rising. This article discusses the developments and factors responsible for these developments, which could be expected in the near future, and the implications for the gas-coal spread in the electricity market. [de

  9. Fuel prices, emission standards, and generation costs for coal vs natural gas power plants.

    Science.gov (United States)

    Pratson, Lincoln F; Haerer, Drew; Patiño-Echeverri, Dalia

    2013-05-07

    Low natural gas prices and stricter, federal emission regulations are promoting a shift away from coal power plants and toward natural gas plants as the lowest-cost means of generating electricity in the United States. By estimating the cost of electricity generation (COE) for 304 coal and 358 natural gas plants, we show that the economic viability of 9% of current coal capacity is challenged by low natural gas prices, while another 56% would be challenged by the stricter emission regulations. Under the current regulations, coal plants would again become the dominant least-cost generation option should the ratio of average natural gas to coal prices (NG2CP) rise to 1.8 (it was 1.42 in February 2012). If the more stringent emission standards are enforced, however, natural gas plants would remain cost competitive with a majority of coal plants for NG2CPs up to 4.3.

  10. The oilsands of gas: Massive gas from coal resource being commercialized

    Energy Technology Data Exchange (ETDEWEB)

    Jaremko, D.

    2004-04-05

    Gas companies are flocking to Alberta to try their hand in coalbed methane extraction, following EnCana Corporation's success two years ago in launching Canada's first commercial-scale natural gas from coal (NGC) operation. There is an estimated 550 trillion cubic feet of methane gas trapped in Alberta's coal fields, and while current production is still insignificant, the rise in demand for natural gas and the decline in conventional resources makes coalbed methane an increasingly appealing option. In the United States NGC accounts for some 10 per cent of gas production and there is no doubt that the interest expressed by American companies to bring their experience and technology to Alberta is a big factor in pushing the wave of appeal of NGC in the province. The Manville coal deposits, lying between 800 and 1,300 metres below the surface, and the Horseshoe Canyon deposit, about 200 to 500 metres down, are the coal zones of greatest interest in Alberta, while the Elk Valley zone is said to have the greatest potential in British Columbia. The article explains the challenges faced by prospective producers in terms of water disposal, noise abatement, environmental footprint, costs versus benefits, and the various technological alternatives available. Suggestions for involving stakeholders in all aspects of the planning of NGC facilities, and for gaining their support, are also included.

  11. Elusive prize: enormous coal gas potential awaits production technology breakthrough

    Energy Technology Data Exchange (ETDEWEB)

    Collison, M.

    2002-01-07

    The expanded gas pipeline grid has excess capacity, and gas resources are declining. There is increasing interest in development of Canada's resources of coalbed methane (CBM). The chairman of the Canadian Coalbed Methane Forum estimates that Canada has more than 3,000 trillion ft{sup 3} of gas awaiting suitable technology. PanCanadian and MGV Energy conducted a CBM exploration and pilot study on the Palliser spread in southern Alberta. Results from 23 of 75 wells are encouraging. The study is being accelerated and expanded to include an additional 50 wells elsewhere in Alberta. Some scientists anticipate commercial CBM production within two years. Problems facing developers include the large land holdings necessary for economic CBM production and the disposal of coal formation water. It is anticipated that U.S. technology will be modified and used. The potential for CBM development at Pictou in Nova Scotia and in British Columbia in the foothills is considered. 3 figs.

  12. Coal background paper. Coal demand

    International Nuclear Information System (INIS)

    1997-01-01

    Statistical data are presented on coal demands in IEA and OECD member countries and in other countries. Coal coaking and coaking coal consumption data are tabulated, and IEA secretariat's coal demand projections are summarized. Coal supply and production data by countries are given. Finally, coal trade data are presented, broken down for hard coal, steam coal, coking coal (imports and export). (R.P.)

  13. Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa

    Directory of Open Access Journals (Sweden)

    Brett Cohen

    2014-03-01

    Full Text Available There is increased interest, both in South Africa and globally, in the use of shale gas for electricity and energy supply. The exploitation of shale gas is, however, not without controversy, because of the reported environmental impacts associated with its extraction. The focus of this article is on the greenhouse gas footprint of shale gas, which some literature suggests may be higher than what would have been expected as a consequence of the contribution of fugitive emissions during extraction, processing and transport. Based on some studies, it has been suggested that life-cycle emissions may be higher than those from coal-fired power. Here we review a number of studies and analyse the data to provide a view of the likely greenhouse gas emissions from producing electricity from shale gas, and compare these emissions to those of coal-fired power in South Africa. Consideration was given to critical assumptions that determine the relative performance of the two sources of feedstock for generating electricity � that is the global warming potential of methane and the extent of fugitive emissions. The present analysis suggests that a 100-year time horizon is appropriate in analysis related to climate change, over which period the relative contribution is lower than for shorter periods. The purpose is to limit temperature increase in the long term and the choice of metric should be appropriate. The analysis indicates that, regardless of the assumptions about fugitive emissions and the period over which global warming potential is assessed, shale gas has lower greenhouse gas emissions per MWh of electricity generated than coal. Depending on various factors, electricity from shale gas would have a specific emissions intensity between 0.3 tCO2/MWh and 0.6 tCO2/MWh, compared with about 1 tCO2/MWh for coal-fired electricity in South Africa.

  14. Advanced physical fine coal cleaning spherical agglomeration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  15. Molecular accessibility in solvent swelled coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1994-04-01

    The conversion of coal by an economically feasible catalytic method requires the catalyst to diffuse into the coal sample so that hydrogenation catalysis can occur from within as well as the normal surface catalysis. Thus an estimate of the size, shape, and reactivity, of the pores in the coal before and after the swelling with different solvents is needed so that an optimum sized catalyst will be used. This study characterizes the accessible area found in Argonne Premium Coal Samples (APCS) using a EPR spin probe technique. The properties deduced in this manner correlate well with the findings deduced from SANS, NMR, SEM, SAXS and light scattering measurements. The use of nitroxide spin probes with swelling solvents is a simple way in which to gain an understanding of the pore structure of coals, how it changes in the presence of swelling solvents and the chemistry that occurs at the pore wall. Hydrogen bonding sites occur primarily in low-rank coals and vary in reactive strength as rank is varied. Unswelled coals contain small, spherical pores which disappear when coal is swelled in the presence of polar solvents. Swelling studies of polystyrene-divinyl benzene copolymers implied that coal is polymeric, contains significant quantities of covalent cross-links and the covalent cross-link density increases with rank.

  16. E-commerce finally finds the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, M.

    2000-12-01

    In the last few months, new web sites have come online which are not only showcase for coal mining products and equipment but also act as sales platforms. A large set of sites deal with the purchase of coal and other raw materials. Most of them offer 24-hour news updates, a coal library and a reference section to help with financing, insurance and transportation of purchased coal. Another group focuses on the sale of equipment. Short writeups are given of 18 web sites. 1 photo.

  17. Secondary biogenic coal seam gas reservoirs in New Zealand: A preliminary assessment of gas contents

    Energy Technology Data Exchange (ETDEWEB)

    Butland, Carol I. [Department of Geological Sciences, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Moore, Tim A. [Department of Geological Sciences, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Solid Energy NZ Ltd., P.O. Box 1303, Christchurch (New Zealand)

    2008-10-02

    Four coal cores, one from the Huntly (Eocene), two from the Ohai (Cretaceous) and one from the Greymouth (Cretaceous) coalfields, were sampled and analysed in terms of gas content and coal properties. The coals vary in rank from subbituminous B-A (Huntly) to subbituminous C-A (Ohai), and high volatile A bituminous (Greymouth). Average gas contents were 1.60 m{sup 3}/t (s 0.2) in the Huntly core, 4.80 m{sup 3}/t (s = 0.8) in the Ohai cores, and 2.39 m{sup 3}/t (s = 0.8) in the Greymouth core. The Ohai core not only contained more gas but also had the highest saturation (75%) compared with the Huntly (33%) and Greymouth (45%) cores. Carbon isotopes indicate that the Ohai gas is more mature, containing higher {delta}{sup 13}C isotopes values than either the Huntly or Greymouth gas samples. This may indicate that the gas was derived from a mixed biogenic and thermogenic source. The Huntly and Greymouth gases appear to be derived solely from a secondary biogenic (by CO{sub 2} reduction) source. Although the data set is limited, preliminary analysis indicates that ash yield is the dominant control on gas volume in all samples where the ash yield was above 10%. Below 10%, the amount of gas variation is unrelated to ash yield. Although organic content has some influence on gas volume, associations are basin and/or rank dependent. In the Huntly core total gas content and structured vitrinite increase together. Although this relationship does not appear for the other core data for the Ohai SC3 core, lost gas and fusinite are associated whereas gelovitrinite (unstructured vitrinite) correlates positively with residual gas for the Greymouth data. (author)

  18. Geochemical characteristics of Carboniferous-Permian coal-formed gas in Bohai Bay Basin

    Energy Technology Data Exchange (ETDEWEB)

    Shipeng Huang; Fengrong Liao; Xiaoqi Wu [PetroChina, Beijing (China). Research Institute of Petroleum Exploration & Development

    2010-03-15

    Coal-formed gas reservoirs have been found in several depressions in Bohai Bay Basin. The gas was mainly generated by the Carboniferous-Permian coal measures, which are good source rocks. The exploration of coal-formed gas has a broad prospect. The main reservoirs of the coal-formed gas are Ordovician, Carboniferous-Permian, and Paleogene stratum. Coal-formed gas in the Bohai Bay Basin is chiefly composed of hydrocarbon gases. The percentage content of carbon dioxide is more than that of the nitrogen gas. The stable carbon isotope values of the hydrocarbon gases of different depressions and different reservoirs usually reversed. The reversed values of gas samples account for 52.1% of all the samples. Reversion values of the carbon isotope are mainly because of the mixing of gases from same source rocks but with different maturity. Among the three main reservoirs, coal-formed gas preserved in Paleogene stratum has the heaviest carbon isotope, the second is the gas in Carboniferous-Permian stratum, and the Ordovician gas possesses the lightest carbon isotope. Based on the analysis of the characteristics of carbon isotope of hydrocarbon gases in well Qishen-1 and the distribution of the Carboniferous-Permian coal measures, the gas of the well is derived from the high-matured Carboniferous-Permian coal measures.

  19. Sorption characteristic of coal as regards of gas mixtures emitted in the process of the self-heating of coal

    Directory of Open Access Journals (Sweden)

    Wojtacha-Rychter Karolina

    2017-01-01

    Full Text Available One of the most challenging tasks in the coal mining sector is the detection of endogenous fire risks. Under field conditions, the distance between the points where samples for the analyses are collected and the actual place where coal self-heating takes place may be quite remote. Coal is a natural sorbent with a diverse character of pore structures which are surrounded by fractures and cleavage planes constituting ideal spaces for the flow and adsorption of gases. The gases (methane, ethane, ethylene, propane, propylene, acetylene, carbon dioxide, carbon monoxide, hydrogen released from the source of fire migrate through the seam and may be subject to adsorption, or they may cause the desorption of gases accumulated in coal. Therefore, the values of reference sample concentrations may be overstated or understated, respectively. The objective of this experimental study was to investigate the adsorption phenomena accompanying the flow of a multi-component gas mixture through a coal bed which may occur in situ. The research was conducted by means of a method based on a series of calorimetric/chromatographic measurements taken to determine the amount of gases released during coal heating at various temperatures under laboratory conditions. Based on the results obtained in the course of the experiments, it was concluded that the amount of gas adsorbed in the seam depends on the type of coal and the gas. Within the multi-component gas mixture, hydrocarbons demonstrated the largest sorption capacity, especially as concerns propylene.

  20. Prevention and forecasting of coal, rock and gas bursts in mines of Donets Coal Basin in USSR

    Energy Technology Data Exchange (ETDEWEB)

    Swidzinski, A

    1977-11-01

    Coal and methane bursts as well as sandstone and methane bursts are typical for the Donets Coal Basin. The most effective way of forecasting coal and methane bursts is drilling holes (3.5 m long, 45 mm diameter) and measuring the initial speed of gas outflow (5 litres/min gas outflow is a critical value). Additional parameters in this method are: coal firmness and porosity as well as thickness of coal bed. Forecasting sandstone and gas bursts is based on taking rock samples while drilling. When a sample 1 meter long consists of 30 to 40 so called discs, the danger of outburst is substantial, with the decreasing number of discs the probability of bursts also decreases. The following methods of prevention are used in the Donets Coal Basin: preparatory extraction of a layer protecting another layer below or above, where there is a danger of gas burst. This method is effective in 50% of all cases. Other methods include: filling coal beds with water under high pressure (average norm 25 1 water per 1 m

  1. Gas production strategy of underground coal gasification based on multiple gas sources.

    Science.gov (United States)

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  2. Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources

    Directory of Open Access Journals (Sweden)

    Duan Tianhong

    2014-01-01

    Full Text Available To lower stability requirement of gas production in UCG (underground coal gasification, create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  3. Low and medium heating value coal gas catalytic combustor characterization

    Science.gov (United States)

    Schwab, J. A.

    1982-01-01

    Catalytic combustion with both low and medium heating value coal gases obtained from an operating gasifier was demonstrated. A practical operating range for efficient operation was determined, and also to identify potential problem areas were identified for consideration during stationary gas turbine engine design. The test rig consists of fuel injectors, a fuel-air premixing section, a catalytic reactor with thermocouple instrumentation and a single point, water cooled sample probe. The test rig included inlet and outlet transition pieces and was designed for installation into an existing test loop.

  4. Medium Btu gas from coal: a possible solution to the U. S. energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    Taffe, P

    1978-03-03

    The future of coal gasification in the US, and in particular the potential of the Winkler process, are discussed. The economics and the efficiency of the Winkler process are considered. It is believed that medium Btu gas from coal is a better solution to the US energy crisis than is SNG made from coal.

  5. Final Safety Assessment of Coal Tar as Used in Cosmetics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Coal Tar is a semisolid by-product obtained in the destructive distillation of bituminous coal, which functions in cosmetic products as a cosmetic biocide and denaturant-antidandruff agent is also listed as a function, but this is considered an over-the-counter (OTC) drug use. In 2002, Coal Tar was reported to the Food and Drug Administration (FDA) to be used in four formulations, all of which appear to be OTC drug products. Coal Tar is monographed by the FDA as Category I (safe and effective) OTC drug ingredient for use in the treatment of dandruff, seborrhoea, and psoriasis. Coal Tar is absorbed through the skin of animals and humans and is systemically distributed. Although the Cosmetic Ingredient Review (CIR) Expert Panel believes that Coal Tar use as an antidandruff ingredient in OTC drug preparations is adequately addressed by the FDA regulations, the Panel also believes that the appropriate concentration of use of Coal Tar in cosmetic formulations should be that level that does not have a biological effect in the user. Additional data needed to make a safety assessment include product types in which Coal Tar is used (other than as an OTC drug ingredient), use concentrations, and the maximum concentration that does not induce a biological effect in users.

  6. Gas Hydrates of Coal Layers as a Methane Source in the Atmosphere and Mine Working

    Science.gov (United States)

    Dyrdin, Valery; Shepeleva, Sofya; Kim, Tatiana

    2017-11-01

    Living conditions of gas hydrates of a methane in a coal matrix as one of possible forms of finding of molecules of a methane in coal layers are considered. However, gas hydrates are formed not in all mineral coals even under the thermobaric conditions corresponding to their equilibrium state as the minimum humidity and the corresponding pore width are necessary for each brand of coal for formation of gas hydrate. It is shown that it depends on electric electrical dipole moment of a macromolecule of coal. Coals of brands K, D, Zh were considered. The electric field created by the surface of coal does not allow molecules of water to carry out threedimensional driving, and they keep on an internal surface of a time. By means of theoretical model operation a dipole - dipole interaction of molecules of water with the steam surface of coal values of energy of fiber interaction for various functional groups located in coal "fringe" which size for the first and second layers does not allow molecules of water to participate in formation of gas hydrates are received. For coals of brands K, Zh, D, considering distribution of a time on radiuses, the percent of moisture, which cannot share in education solid coal of gas solutions, is calculated.

  7. Method for increasing the calorific value of gas produced by the in situ combustion of coal

    Science.gov (United States)

    Shuck, Lowell Z.

    1978-01-01

    The present invention relates to the production of relatively high Btu gas by the in situ combustion of subterranean coal. The coal bed is penetrated with a horizontally-extending borehole and combustion is initiated in the coal bed contiguous to the borehole. The absolute pressure within the resulting combustion zone is then regulated at a desired value near the pore pressure within the coal bed so that selected quantities of water naturally present in the coal will flow into the combustion zone to effect a hydrogen and carbon monoxide-producing steam-carbon reaction with the hot carbon in the combustion zone for increasing the calorific value of the product gas.

  8. Low severity conversion of activated coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hirschon, A.S.; Ross, D.S.

    1990-01-01

    The results suggest that coal contains regions with structural components significantly reactive under the hydrothermal environment. Although the specific mechanism for this process remains to be developed, this activity is reminiscent of findings in studies of accelerated maturation of oil shale, where hydrothermal treatment (hydrous pyrolysis) leads to the production of petroleum hydrocarbons. In line with what has been seen in the oil shale work, the pretreatment-generated hydrocarbons and phenols appear to represent a further or more complete maturation of some fraction of the organic material within the coal. These observations could have an impact in two areas. The first is in the area of coal structure, where immature, reactive regions have not been included in the structures considered at present. The second area of interest is the more practical one of conversions to coal liquids and pyrolytic tars. It seems clear that the hydrothermal pretreatment changes the coal in some manner that favorably affects the product quality substantially and, as in the CO/water liquefaction case, favorably affects the yields. The conversions of coals of lower rank, i.e., less mature coals, could particularly benefit in terms of both product quality and product quantity. The second portion of this project also shows important benefits to coal conversion technology. It deals with synthesizing catalysts designed to cleave the weak links in the coal structure and then linking these catalysts with the pretreatment methods in Task 2. The results show that highly dispersed catalysts can effectively be used to increase the yields of soluble material. An important aspect of highly dispersed catalysts are that they can effectively catalyze coal conversion even in poor liquefaction solvents, thus making them very attractive in processes such as coprocessing where inexpensive liquefaction media such as resids are used.

  9. Nuclear assay of coal. Volume 7. Coal rheology and its impact on nuclear assay. Final report

    International Nuclear Information System (INIS)

    Hogg, R.; Luckie, P.; Gozani, T.

    1979-01-01

    A number of possible techniques for introducing coal to a continuous on-line nuclear analysis of coal (CONAC) system have been evaluated, including flow methods and nonflow methods. A modified flat-belt feeder system was recommended. The success of such a coal-presentation technique would rely on proper entry to the feed hopper, shape of the withdrawal opening from the feed hopper, and a slow belt speed to minimize demixing

  10. Fast and safe gas detection from underground coal fire by drone fly over

    International Nuclear Information System (INIS)

    Dunnington, Lucila; Nakagawa, Masami

    2017-01-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. - Graphical abstract: Concluding Figure for Gas Ratios: Plotted points and ranges of adjusted literature data. Stars represent bituminous and subbituminous coal types; Ovals represent lignite. - Highlights: • Recognize underground coal fire as a potential source of energy. • Developed a creative, safe, reliable and fast gas detection method. • Developed a concept of gas ratio measurement method that can provide more accurate description of underground burning coal resource.

  11. Ceramic membranes for gas processing in coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Smart, S.; Lin, C.X.C.; Ding, L.; Thambimuthu, K.; da Costa, J.C.D. [University of Queensland, Brisbane, Qld. (Australia)

    2010-07-01

    Pre-combustion options via coal gasification, especially integrated gasification combined cycle (IGCC) processes, are attracting the attention of governments, industry and the research community as an attractive alternative to conventional power generation. It is possible to build an IGCC plant with CCS with conventional technologies however; these processes are energy intensive and likely to reduce power plant efficiencies. Novel ceramic membrane technologies, in particular molecular sieving silica (MSS) and pervoskite membranes, offer the opportunity to reduce efficiency losses by separating gases at high temperatures and pressures. MSS membranes can be made preferentially selective for H{sub 2}, enabling both enhanced production, via a water-gas shift membrane reactor, and recovery of H{sub 2} from the syngas stream at high temperatures. They also allow CO{sub 2} to be concentrated at high pressures, reducing the compression loads for transportation and enabling simple integration with CO{sub 2} storage or sequestration operations. Perovskite membranes provide a viable alternative to cryogenic distillation for air separation by delivering the tonnage of oxygen required for coal gasification at a reduced cost. In this review we examine ceramic membrane technologies for high temperature gas separation and discuss the operational, mechanical, design and process considerations necessary for their successful integration into IGCC with CCS systems.

  12. Propagation characteristics of pulverized coal and gas two-phase flow during an outburst.

    Science.gov (United States)

    Zhou, Aitao; Wang, Kai; Fan, Lingpeng; Tao, Bo

    2017-01-01

    Coal and gas outbursts are dynamic failures that can involve the ejection of thousands tons of pulverized coal, as well as considerable volumes of gas, into a limited working space within a short period. The two-phase flow of gas and pulverized coal that occurs during an outburst can lead to fatalities and destroy underground equipment. This article examines the interaction mechanism between pulverized coal and gas flow. Based on the role of gas expansion energy in the development stage of outbursts, a numerical simulation method is proposed for investigating the propagation characteristics of the two-phase flow. This simulation method was verified by a shock tube experiment involving pulverized coal and gas flow. The experimental and simulated results both demonstrate that the instantaneous ejection of pulverized coal and gas flow can form outburst shock waves. These are attenuated along the propagation direction, and the volume fraction of pulverized coal in the two-phase flow has significant influence on attenuation of the outburst shock wave. As a whole, pulverized coal flow has a negative impact on gas flow, which makes a great loss of large amounts of initial energy, blocking the propagation of gas flow. According to comparison of numerical results for different roadway types, the attenuation effect of T-type roadways is best. In the propagation of shock wave, reflection and diffraction of shock wave interact through the complex roadway types.

  13. Non-mine technology of hydrocarbon resources production at complex development of gas and coal deposits

    International Nuclear Information System (INIS)

    Saginov, A.S.; Adilov, K.N.; Akhmetbekov, Sh.U.

    1997-01-01

    Non-mine technology of coal gas seams exploitation is new geological technological method of complex exploitation of coal gas deposits. The method allows sequentially to extract hydrocarbon resources in technological aggregative-mobile condensed states. According to natural methane content in seams the technology includes: methane extraction from sorption volume where it is bounded up with coal; gas output intensification of coal is due to structural changes of substance at the cost of physico-chemical treatment of seam; increase of seam permeability by the methods of active physical and physico-chemical actions on coal seam (hydro-uncovering, pneumatic hydro action etc.). Pilot testing shows efficiency of well mastering with help of depth pumps. In this case works of action of pumping out of operating liquid and gas extraction from coal seam are integrated

  14. Numerical Assessment of the Influences of Gas Pressure on Coal Burst Liability

    Directory of Open Access Journals (Sweden)

    Haochen Zhao

    2018-01-01

    Full Text Available When coal mines exploit deep seams with high-gas content, risks are encountered due to the additional high likelihood of rock bursting potential problems. The bursts of coal pillars usually lead to severe fatalities, injuries, and destruction of property, including impeding access to active mine workings underground. The danger exists given that conditions in the already highly brittle coal material can be exacerbated by high stress and high gas pressure conditions. It is thus critical to develop methods that improve current understanding about bursting liability, and techniques to forecast or prevent coal bursting in underground coal mines. This study uses field data from a deep coal mine, and numerical modeling to investigate the effects of gas pressure and mechanical compressive stresses on coal bursting liability in high gas content coal seams. The bursting energy index is adopted to determine the coal bursting liability under high gas pressure conditions. The adopted methodology uses a two-staged approach comprising investigating the influence of gas pressure on the bursting liability of coal pillar, and the influence of the gas pressure on the resulting pillar failure mode. Based on numerical simulations of coal pillars, correlations are observed between the magnitudes of gas pressures and the bursting energy index. Irrespective of pillar size, failure time is shortest when the gas pressure achieves a threshold value between 50 kPa to 70 kPa. At 50 kPa, the value of the BEI increases by 50% going from the 4 m pillar to the 6 m pillar. The value of the BEI increases by 43% going from the 6 m high pillar to the 8 m high pillar at 50 kPa. When pillars fail there is a degree of stress relief leading to a reduction in bursting liability. The results suggest that before 50 kPa, pillar failure is largely due to mechanical loading. After 50 kPa, pillar failure is largely due to excessive gas pressures.

  15. Effects of Loading Rate on Gas Seepage and Temperature in Coal and Its Potential for Coal-Gas Disaster Early-Warning

    Directory of Open Access Journals (Sweden)

    Chong Zhang

    2017-08-01

    Full Text Available The seepage velocity and temperature externally manifest the changing structure, gas desorption and energy release that occurs in coal containing gas failure under loading. By using the system of coal containing gas failure under loading, this paper studies the law of seepage velocity and temperature under different loading rates and at 1.0 MPa confining pressure and 0.5 MPa gas pressure, and combined the on-site results of gas pressure and temperature. The results show that the stress directly affects the seepage velocity and temperature of coal containing gas, and the pressure and content of gas have the most sensitivity to mining stress. Although the temperature is not sensitive to mining stress, it has great correlation with mining stress. Seepage velocity has the characteristic of critically slowing down under loading. This is demonstrated by the variance increasing before the main failure of the samples. Therefore, the variance of seepage velocity with time and temperature can provide an early warning for coal containing gas failing and gas disasters in a coal mine.

  16. Identification and quantification of radionuclides in coal ash. Final report

    International Nuclear Information System (INIS)

    Alleman, J.E.; Clikeman, F.M.; Skronski, T.

    1998-01-01

    One of the important environmental issues raised recently in regard to coal ash reuse for highway construction purposes (e.g., embankment development) is that of worker, and public, exposure to radiation which might possibly be emitted by these types of residues. This research project subsequently addressed the associated issue of radiation emission by coal ash residuals generated within the State of Indiana, covering both fly ash and bottom ash materials. Samples were obtained at sixteen different coal-fired power generating facilities within Indiana and subjected to quantitative analysis of their associated gamma-ray emission levels. After identifying the responsible radionuclides, a conservative approximation was then developed for the worst-case potential occupational exposure with construction employees working on this type of high-volume, coal ash embankment. In turn, these potential emissions levels were compared to those of other traditional construction materials and other common sources

  17. Nuclear techniques in the coal industry. Proceedings of a final research co-ordination meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    With the aim of promoting advanced research and facilitating a more extensive application of nuclear techniques for environmental protection in the exploration and exploitation of coal, the IAEA established the present co-ordinated research programme (CRP) in 1989. This report includes an assessment of the current status and trends in nuclear techniques in the coal industry and the results obtained by the participants at the CRP. Proceedings of the final CRP on ``Nuclear Techniques in Exploration and Exploitation of Coal: On-line and Bulk Analysis and Evaluation of Potential Environmental Pollutants in Coal and Coke``, was held in Krakow, Poland, from 9 to 12 May 1994. Refs, figs, tabs.

  18. Production of gasoline from coal or natural gas by the methanol-to-gasoline process

    Energy Technology Data Exchange (ETDEWEB)

    Heinritz-Adrian, M.; Brandl, A.; Zhoa, Xinjin; Tabak, S. [Uhde GmbH, Dortmund (Germany)

    2007-07-01

    After discussing the basis of the methanol-to-gas (MTG) process, the fixed bed and fluid bed versions are described. The Motunui and MTG complex near Montunui, New Zealand that methanol uses natural gas is briefly described. Shanxi Jincheng, Anthracite Coal Mining Co. is currently building its first coal-based MTG plant. 7 refs., 2 tabs.

  19. Water Extraction from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or

  20. Key Technologies and Applications of Gas Drainage in Underground Coal Mine

    Science.gov (United States)

    Zhou, Bo; Xue, Sheng; Cheng, Jiansheng; Li, Wenquan; Xiao, Jiaping

    2018-02-01

    It is the basis for the long-drilling directional drilling, precise control of the drilling trajectory and ensuring the effective extension of the drilling trajectory in the target layer. The technology can be used to complete the multi-branch hole construction and increase the effective extraction distance of the coal seam. The gas drainage and the bottom grouting reinforcement in the advanced area are realized, and the geological structure of the coal seam can be proved accurately. It is the main technical scheme for the efficient drainage of gas at home and abroad, and it is applied to the field of geological structure exploration and water exploration and other areas. At present, the data transmission method is relatively mature in the technology and application, including the mud pulse and the electromagnetic wave. Compared with the mud pulse transmission mode, the electromagnetic wave transmission mode has obvious potential in the data transmission rate and drilling fluid, and it is suitable for the coal mine. In this paper, the key technologies of the electromagnetic wave transmission mode are analyzed, including the attenuation characteristics of the electromagnetic transmission channel, the digital modulation scheme, the channel coding method and the weak signal processing technology. A coal mine under the electromagnetic wave drilling prototype is developed, and the ground transmission experiments and down hole transmission test are carried out. The main work includes the following aspects. First, the equivalent transmission line method is used to establish the electromagnetic transmission channel model of coal mine drilling while drilling, and the attenuation of the electromagnetic signal is measured when the electromagnetic channel measured. Second, the coal mine EM-MWD digital modulation method is developed. Third, the optimal linear block code which suitable for EM-MWD communication channel in coal mine is proposed. Fourth, the noise characteristics

  1. Business venture-analysis case study relating to the manufacture of gas turbines for the generation of utility electric power. Volume II. Private sector and public sector venture studies. Final report. [Use of coal gasifier with combined gas and steam system

    Energy Technology Data Exchange (ETDEWEB)

    Davison, W.R.

    1978-05-05

    Increasing national attention is being directed toward the search for clean, efficient, and reliable energy-conversion systems, capable of using abundant indigenous fuels such as coal, for generation of utility electric power. A prime candidate in this area is the combined gas and steam (COGAS) system employing a high-temperature gas turbine with a steam-turbine bottoming cycle, fed by a coal gasifier. This program demonstrates the use of a logical and consistent venture-analysis methodology which could also be applied to investigate other high-technology, energy-conversion systems that have yet to reach a state of commercialization but which are of significant interest to the U.S. Government. The venture analysis was performed by using a computer to model the development, production, sales, and in-service development phases of programs necessary to introduce new gas turbines in COGAS systems. The simulations were produced in terms of estimated cash flows, rates of returns, and risks which a manufacturer would experience. Similar simulations were used to estimate public-sector benefits resulting from the lower cost of power and improved environment gained from the use of COGAS systems rather than conventional systems. The study shows that substantial social benefits could be realized and private investment would be made by the gas-turbine manufacturers if an infusion of external funds were made during key portions of the gas-turbine development program. It is shown that there is substantial precedent for such public assistance to make possible economic and environmental benefits that otherwise would not be possible. 42 references.

  2. Clean coal and heavy oil technologies for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Todd, D.M. [GE Industrial & Power Systems, Schenectady, NY (United States)

    1994-12-31

    Global power generation markets have shown a steady penetration of GT/CC technology into oil and gas fired applications as the technology has matured. The lower cost, improved reliability and efficiency advantages of combined cycles can now be used to improve the cost of electricity and environmental acceptance of poor quality fuels such as coal, heavy oil, petroleum coke and waste products. Four different technologies have been proposed, including slagging combustors, Pressurized Fluidized Bed Combustion (PFBC), Externally Fired Combined Cycle (EFCC) and Integrated Gasification Combined Cycle (IGCC). Details of the technology for the three experimental technologies can be found in the appendix. IGCC is now a commercial technology. In the global marketplace, this shift is being demonstrated using various gasification technologies to produce a clean fuel for the combined cycle. Early plants in the 1980s demonstrated the technical/environmental features and suitability for power generation plants. Economics, however, were disappointing until the model F GT technologies were first used commercially in 1990. The economic break-through of matching F technology gas turbines with gasification was not apparent until 1993 when a number of projects were ordered for commercial operation in the mid-1990s. GE has started 10 new projects for operation before the year 2000. These applications utilize seven different gasification technologies to meet specific application needs. Early plants are utilizing low-cost fuels, such as heavy oil or petroleum coke, to provide economics in first-of-a-kind plants. Some special funding incentives have broadened the applications to include power-only coal plants. Next generation gas turbines projected for commercial applications after the year 2000 will contribute to another step change in technology. It is expected that the initial commercialization process will provide the basis for clear technology choices on future plants.

  3. The ENCOAL Mild Coal Gasification Project, A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2002-01-01

    This report is a post-project assessment of the ENCOAL(reg s ign) Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL(reg s ign) Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL(reg s ign) mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL(reg s ign) was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL(reg s ign) was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of$90,664,000. ENCOAL(reg s ign) operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC(trademark)) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF(trademark)) and Coal-Derived Liquids (CDL(trademark)). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall

  4. Committing to coal and gas: Long-term contracts, regulation, and fuel switching in power generation

    Science.gov (United States)

    Rice, Michael

    Fuel switching in the electricity sector has important economic and environmental consequences. In the United States, the increased supply of gas during the last decade has led to substantial switching in the short term. Fuel switching is constrained, however, by the existing infrastructure. The power generation infrastructure, in turn, represents commitments to specific sources of energy over the long term. This dissertation explores fuel contracts as the link between short-term price response and long-term plant investments. Contracting choices enable power plant investments that are relationship-specific, often regulated, and face uncertainty. Many power plants are subject to both hold-up in investment and cost-of-service regulation. I find that capital bias is robust when considering either irreversibility or hold-up due to the uncertain arrival of an outside option. For sunk capital, the rental rate is inappropriate for determining capital bias. Instead, capital bias depends on the regulated rate of return, discount rate, and depreciation schedule. If policies such as emissions regulations increase fuel-switching flexibility, this can lead to capital bias. Cost-of-service regulation can shorten the duration of a long-term contract. From the firm's perspective, the existing literature provides limited guidance when bargaining and writing contracts for fuel procurement. I develop a stochastic programming framework to optimize long-term contracting decisions under both endogenous and exogenous sources of hold-up risk. These typically include policy changes, price shocks, availability of fuel, and volatility in derived demand. For price risks, the optimal contract duration is the moment when the expected benefits of the contract are just outweighed by the expected opportunity costs of remaining in the contract. I prove that imposing early renegotiation costs decreases contract duration. Finally, I provide an empirical approach to show how coal contracts can limit

  5. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  6. Wabash River Coal Gasification Repowering Project: A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2002-01-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of$438 million

  7. Fast and safe gas detection from underground coal fire by drone fly over.

    Science.gov (United States)

    Dunnington, Lucila; Nakagawa, Masami

    2017-10-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Applied research and evaluation of process concepts for liquefaction and gasification of western coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W. H.

    1980-09-01

    Fourteen sections, including five subsections, of the final report covering work done between June 1, 1975 to July 31, 1980 on research programs in coal gasification and liquefaction have been entered individually into EDB and ERA. (LTN)

  9. Power-generating process of obtaining gas-energy carrier and reducer from coal

    International Nuclear Information System (INIS)

    Tleugabulov, S.; Duncheva, E.; Zubkevich, M.

    1999-01-01

    The manufacture of power-generating gas has the important economic value for Kazakhstan having large territory, raw and fuel resources especially power coal and clean coal wastes. The technology of reception of gas-energy carrier and reducer from power coal is developed. The basic product of technological process is heated reducing gas. Reducing potential of the gas is characterized by a volumetric share of components (CO+H 2 )-RC in relation to volume of whole mix of gases received with gasification of coal. The value of parameter RC is regulated by a degree of enrichment of air by oxygen r 0 , and the temperature - by the charge of a parity of endothermic reaction in the chamber of gas regeneration. The dependence of the gas structure and temperature on the degree of enrichment of air by oxygen is shown and the circuit of the gas generator is given. (author)

  10. Effect of temperature on the permeability of gas adsorbed coal under triaxial stress conditions

    Science.gov (United States)

    Li, Xiangchen; Yan, Xiaopeng; Kang, Yili

    2018-04-01

    The combined effects of gas sorption, stress and temperature play a significant role in the changing behavior of gas permeability in coal seams. The effect of temperature on nitrogen and methane permeability of naturally fractured coal is investigated. Coal permeability, P-wave velocity and axial strain were simultaneously measured under two effective stresses and six different temperatures. The results showed that the behavior of nitrogen and methane permeability presented nonmonotonic changes with increasing temperature. The variation in the P-wave velocity and axial strain showed a good correspondence with coal permeability. A higher effective stress limited the bigger deformation and caused the small change in permeability. Methane adsorption and desorption significantly influence the mechanical properties of coal and play an important role in the variations in coal permeability. The result of coal permeability during a complete stress-strain process showed that the variation in permeability is determined by the evolution of the internal structure. The increase in the temperature of the gas saturated coal causes the complex interaction between matrix swelling, matrix shrinkage and micro-fracture generation, which leads to the complex changes in coal structure and permeability. These results are helpful to understand the gas transport mechanism for exploiting coal methane by heat injection.

  11. Use of a Nuclear High Temperature Gas Reactor in a Coal-To-Liquids Process

    International Nuclear Information System (INIS)

    Robert S. Cherry; Richard A. Wood

    2006-01-01

    AREVA's High Temperature Gas Reactor (HTGR) can potentially provide nuclear-generated, high-level heat to chemical process applications. The use of nuclear heat to help convert coal to liquid fuels is particularly attractive because of concerns about the future availability of petroleum for vehicle fuels. This report was commissioned to review the technical and economic aspects of how well this integration might actually work. The objective was to review coal liquefaction processes and propose one or more ways that nuclear process heat could be used to improve the overall process economics and performance. Shell's SCGP process was selected as the gasifier for the base case system. It operates in the range of 1250 to 1600 C to minimize the formation of tars, oil, and methane, while also maximizing the conversion of the coal's carbon to gas. Synthesis gas from this system is cooled, cleaned, reacted to produce the proper ratio of hydrogen to carbon monoxide and fed to a Fischer-Tropsch (FT) reaction and product upgrading system. The design coal-feed rate of 18,800 ton/day produces 26.000 barrels/day of FT products. Thermal energy at approximately 850 C from a HTGR does not directly integrate into this gasification process efficiently. However, it can be used to electrolyze water to make hydrogen and oxygen, both of which can be beneficially used in the gasification/FT process. These additions then allow carbon-containing streams of carbon dioxide and FT tail-gas to be recycled in the gasifier, greatly improving the overall carbon recovery and thereby producing more FT fuel for the same coal input. The final process configuration, scaled to make the same amount of product as the base case, requires only 5,800 ton/day of coal feed. Because it has a carbon utilization of 96.9%, the process produces almost no carbon dioxide byproduct Because the nuclear-assisted process requires six AREVA reactors to supply the heat, the capital cost is high. The conventional plant is

  12. Central Arkansas Energy Project. Coal to medium-Btu gas

    Science.gov (United States)

    1982-05-01

    The Central Arkansas Energy Project has as its objective the conversion of coal in a central location to a more readily usable energy source, medium Btu gas (MBG), for use at dispersed locations as fuel for power production and steam generation, or as a feedstock for chemical processing. The project elements consist of a gasification facility to produce MBG from coal, a pipeline to supply the MBG to the dispersed sites. The end of line users investigated were the repowering or refueling of an existing Arkansas Power and Light Co. Generating station, an ammonia plant, and a combined cycle cogeneration facility for the production of steam and electricity. Preliminary design of the gasification plant including process engineering design bases, process flow diagrams, utility requirements, system description, project engineering design, equipment specifications, plot plan and section plot plans, preliminary piping and instrument diagrams, and facilities requirements. Financial analyses and sensitivities are determined. Design and construction schedules and manpower loadings are developed. It is concluded that the project is technically feasible, but the financial soundness is difficult to project due to uncertainty in energy markets of competing fuels.

  13. Development of biological coal gasification (MicGAS Process)

    Energy Technology Data Exchange (ETDEWEB)

    Walia, D.S.; Srivastava, K.C.

    1994-10-01

    The overall goal of the project is to develop an advanced, clean coal biogasification (MicGAS) Process. The objectives of the research during FY 1993--94 were to: (1) enhance kinetics of methane production (biogasification, biomethanation) from Texas lignite (TxL) by the Mic-1 consortium isolated and developed at ARCTECH, (2) increase coal solids loading, (3) optimize medium composition, and (4) reduce retention time. A closer analysis of the results described here indicate that biomethanation of TxL at >5% solids loading is feasible through appropriate development of nutrient medium and further adaptation of the microorganisms involved in this process. Further understanding of the inhibitory factors and some biochemical manipulations to overcome those inhibitions will hasten the process considerably. Results are discussed on the following: products of biomethanation and enhance of methane production including: bacterial adaptation; effect of nutrient amendment substitutes; effects of solids loading; effect of initial pH of the culture medium; effect of hydrogen donors and carbon balance.

  14. The Clean Coal Technology Program 100 MWe demonstration of gas suspension absorption for flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.E.; Hedenhag, J.G. [AirPol Inc., Teterboro, NJ (United States); Marchant, S.K.; Pukanic, G.W. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Norwood, V.M.; Burnett, T.A. [Tennessee Valley Authority, Chattanooga, TN (United States)

    1997-12-31

    AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, air toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.

  15. Nuclear assay of coal. Volume 6. Mass flow devices for coal handling. Final report

    International Nuclear Information System (INIS)

    Gozani, T.; Elias, E.; Bevan, R.

    1980-04-01

    The mass of coal entering the boiler per unit time is an essential parameter for determining the total rate of heat input. The mass flow rate of coal on a conveyor belt is generally determined as a product of the instantaneous mass of material on a short section of the belt and the belt velocity. Belt loading could be measured by conventional transducers incorporating mechanical or electromechanical weighers or by gamma-ray attenuation gauge. This report reviews the state of the art in mass flow devices for coal handling. The various methods are compared and commented upon. Special design issues are discussed relative to incorporating a mass flow measuring device in a Continuous On-Line Nuclear Analysis of Coal (CONAC) system

  16. Dewatering of ultrafine coal: Final report, August 1984-December 1986

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Shiao-Hung; Klinzing, G.E.; Morsi, B.I.; Tierney, J.W.; Badgujar, M.; Binkley, T.; Cheng, Yisun; Huang, Suxuan; Qamar, I.; Venkatadri, R.

    1986-12-01

    The surfactant, Aerosol-OT, was used to wash distilled water cakes. In previous studies, cakes were washed with Triton X-114. The dewatering performance and influence on cake structure of the two reagents are compared. Also, filter cakes were analyzed using an image analysis system and micrographic analysis of coal particles was initiated. In the area of theoretical modelling, the concept of bond-flow correlation greatly improved the network model predicting the experimental desaturation curves. Predicted results for treated cakes suggested that the effect of the presence of surface-active agents was adequately accounted for. The effects of the various operating conditions on the filtration/dewatering characteristics of the 10 ..mu..m coal particles were assessed and comparisons with the -32 mesh coal were made as to its trends in response to changes in the operating conditions. 20 refs., 75 figs., 17 tabs.

  17. Natural gas storage with activated carbon from a bituminous coal

    Science.gov (United States)

    Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  18. Secured electrical supply at least cost: Coal, gas, nuclear, hydro

    Energy Technology Data Exchange (ETDEWEB)

    Gavor, J. [ENA Ltd., Prague (Czechoslovakia); Stary, O.; Vasicek, J. [Czech Technical Univ., Prague (Czechoslovakia)

    1995-12-01

    Electric power sector in East Central European countries finds in a difficult period. In the situation of demand stagnation, enormous investments must be realized in a very short time. Today`s decisions in the development strategy will influence the long term future of the industry. The optimal structure of the sources is one of the most important problem to be solved. Paper describes the current structure of the sources in electric power sector in the Czech Republic. The importance of coal, oil and gas, nuclear and hydro in electric power generation is compared. Taking into account the different position in the load coverage, economy of individual sources is evaluated and basic results of discounted cash flow calculations are presented. Information on specific investment programs and projects are included and further trends are estimated.

  19. Portable rapid gas content measurement - an opportunity for a step change in the coal industry?

    International Nuclear Information System (INIS)

    Beamish, Basil; Kizil, Mehmet; Gu, Ming

    2013-01-01

    The last major advance in gas content measurement for coal seams was the introduction of the quick crush technique in the early 1990s. This is a laboratory test method that has proven very reliable over the years. Recent laboratory testing using a portable quick crushing device, known as the portable gas content analyser, has produced consistent gas content results for a set of core samples obtained from a single borehole that intersected four coal seams. The retained gas content values obtained for the seams show the same increasing gas content pattern and gas composition change with depth as the standard quick crush technique. Use of the portable gas content analyser provides the opportunity to produce rapid, reliable gas content measurement of coal that could be developed for assessing gas compliance cores and outburst-prone conditions at a mine site.

  20. Emission of CO2 Gas and Radioactive Pollutant from Coal Fired Power Plant

    International Nuclear Information System (INIS)

    Ida, N.Finahari; Djati-HS; Heni-Susiati

    2006-01-01

    Energy utilization for power plant in Indonesia is still depending on burning fossil fuel such as coal, oil and gaseous fuel. The direct burning of coal produces CO 2 gas that can cause air pollution, and radioactive pollutant that can increase natural radioactive dosage. Natural radionuclide contained in coal is in the form of kalium, uranium, thorium and their decay products. The amount of CO 2 gas emission produced by coal fired power plant can be reduced by equipping the plant with waste-gas treatment facility. At this facility, CO 2 gas is reacted with calcium hydroxide producing calcium carbonate. Calcium carbonate then can be used as basic material in food, pharmaceutical and construction industries. The alternative method to reduce impact of air pollution is by replacing coal fuel with nuclear fuel or new and renewable fuel. (author)

  1. Indication to distinguish the burst region of coal gas from seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Jian-yuan Cheng; Hong-wei Tang; Lin Xu; Yan-fang Li [China Coal Research Institute, Xi' an (China). Xi' an Research Institute

    2009-09-15

    The velocity of an over-burst coal seam is about 1/3 compared to a normal coal seam based on laboratory test results. This can be considered as a basis to confirm the area of coal and gas burst by seismic exploration technique. Similarly, the simulation result of the theoretical seismic model shows that there is obvious distinction between over-burst coal and normal coal based on the coal reflection's travel-time, energy and frequency. The results from the actual seismic data acquired in the coal and gas over-burst cases is consistent with that of the laboratory and seismic modeling; that is, in the coal and gas burst region, seismic reflection travel time is delayed, seismic amplitude is weakened and seismic frequency is reduced. Therefore, it can be concluded that seismic exploration technique is promising for use in distinguishing coal and gas over-burst regions based on the variation of seismic reflection travel time, amplitude and frequency. 7 refs., 6 figs.

  2. Stress and Damage Induced Gas Flow Pattern and Permeability Variation of Coal from Songzao Coalfield in Southwest China

    Directory of Open Access Journals (Sweden)

    Minghui Li

    2016-05-01

    Full Text Available The permeability of coal is a critical parameter in estimating the performance of coal reservoirs. Darcy’s law describes the flow pattern that the permeability has a linear relationship with the flow velocity. However, the stress induced deformation and damage can significantly influence the gas flow pattern and permeability of coal. Coals from Songzao coalfield in Chongqing, southwest China were collected for the study. The gas flow velocities under different injection gas pressures and effective stresses in the intact coal and damaged coal were tested using helium, incorporating the role of gas flow pattern on the permeability of coal. The relationships between the flow velocity and square of gas pressure gradient were discussed, which can help us to investigate the transformation conditions of gas linear flow and gas nonlinear flow in the coal. The results showed that the gas flow in the intact coal existed pseudo-initial flow rate under low effective stress. The low-velocity non-Darcy gas flow gradually occurred and the start-up pressure gradient increased in the coal as the effective stress increased. The gas flow rate in the damaged coal increased nonlinearly as the square of pressure gradient increased under low effective stress. The instability of gas flow caused by high ratio of injection gas pressure over effective stress in the damaged coal contributed to the increase of the gas flow rate. As the effective stress increased, the increase of gas flow rate in coal turned to be linear. The mechanisms of the phenomena were explored according to the experimental results. The permeability of coal was corrected based on the relationships between the flow velocity and square of gas pressure gradient, which showed advantages in accurately estimating the performance of coal reservoirs.

  3. Nuclear assay of coal. Volume 4. Moisture determination in coal: survey of electromagnetic techniques. Final report

    International Nuclear Information System (INIS)

    Bevan, R.; Luckie, P.; Gozani, T.; Brown, D.R.; Bozorgmanesh, H.; Elias, E.

    1979-01-01

    This survey consists of two basic parts. The first consists of a survey of various non-nuclear moisture determination techniques. Three techniques are identified as promising for eventual on-line application with coal; these are the capacitance, microwave attenuation, and nuclear magnetic resonance (NMR) techniques. The second part is devoted to an in-depth analysis of these three techniques and the current extent to which they have been applied to coal. With a given coal type, accuracies of +- 1% absolute in moisture content are achievable with all three techniques. The accuracy of the two electromagnetic techniques has been demonstrated in the laboratory and on-line in coal burning plants, whereas only small samples have been analyzed with NMR. The current shortcoming of the simple electromagnetic techniques is the sensitivity of calibrations to physical parameters and coal type. NMR is currently limited by small sample sizes and non-rugged design. These findings are summarized and a list of manufacturers of moisture analyzers is given in the Appendix

  4. Coal pyrolysis under synthesis gas, hydrogen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ariunaa, A.; Li Bao-Qing; Li Wen; Purevsuren, B. (and others) [Chinese Academy of Sciences, Taiyuan (China)

    2007-02-15

    Chinese Xundian, Mongolian Shiveeovoo lignites and Khoot oil shale are pyrolyzed under synthesis gas (SG) at temperature range from 400 to 800{sup o}C for lignite and from 300 to 600{sup o}C for oil shale with heating rate of 10{sup o}C/min in a fixed bed reactor. The results were compared with those obtained by pyrolysis under hydrogen and nitrogen. The results showed that unlike pyrolysis at high pressure, there are only slight different in the yields of char and tar among pyrolyses under various gases at room pressure for lignite, while higher liquid yield with lower yields of char and gas was obtained in pyrolysis of oil shale under SG and H{sub 2} than under N{sub 2}. It is found that the pyrite S can be easily removed to partially convert to organic S under various gaseous atmosphere and the total sulfur removal for oil shale is much less than lignite, which might be related to its high ash content. The higher total sulfur removal and less organic S content in the presence of SG in comparison with those under N{sub 2} and even under H{sub 2} in pyrolysis of Xundian lignite might result from the action of CO in SG. However, CO does not show its function in pyrolysis of Khoot oil shale, which might also be related to the high ash content. The results reported show the possibility of using synthesis gas instead of pure hydrogen as the reactive gas for coal hydropyrolysis. 11 refs., 4 figs., 6 tabs.

  5. Gas Concentration Prediction Based on the Measured Data of a Coal Mine Rescue Robot

    Directory of Open Access Journals (Sweden)

    Xiliang Ma

    2016-01-01

    Full Text Available The coal mine environment is complex and dangerous after gas accident; then a timely and effective rescue and relief work is necessary. Hence prediction of gas concentration in front of coal mine rescue robot is an important significance to ensure that the coal mine rescue robot carries out the exploration and search and rescue mission. In this paper, a gray neural network is proposed to predict the gas concentration 10 meters in front of the coal mine rescue robot based on the gas concentration, temperature, and wind speed of the current position and 1 meter in front. Subsequently the quantum genetic algorithm optimization gray neural network parameters of the gas concentration prediction method are proposed to get more accurate prediction of the gas concentration in the roadway. Experimental results show that a gray neural network optimized by the quantum genetic algorithm is more accurate for predicting the gas concentration. The overall prediction error is 9.12%, and the largest forecasting error is 11.36%; compared with gray neural network, the gas concentration prediction error increases by 55.23%. This means that the proposed method can better allow the coal mine rescue robot to accurately predict the gas concentration in the coal mine roadway.

  6. Nuclear assay of coal. Volume 8. Continuous nuclear assay of coal (CONAC). Final report

    International Nuclear Information System (INIS)

    Lagarias, J.; Irminger, P.; Dodson, W.

    1979-01-01

    Using californium-252 as a source of exciting neutrons, prompt gamma photons emitted by elemental nuclei in the coal have been measured using several detectors, including sodium-iodide and germanium-lithium. Several coal types, including bituminous, subbituminous lignite and anthracite were crushed to various top sizes and analyzed carefully by traditional ASTM wet chemistry techniques at two or three different laboratories. The elements (sulfur, hydrogen, carbon, aluminum, silicon, iron, calcium, sodium, nitrogen, and chlorine) were determined by prompt neutron activations and the quantities compared with those of the wet chemical analyses. Since satisfactory correlation has been obtained at bench-scale level using 100 to 200 kG samples, an apparatus has been designed to analyze a coal stream of up to 50 ton/hour, at an electric power generating station

  7. Structural comparison of hazardous and non-hazardous coals based on gas sorption experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J.; Toth, J. [Research Lab. for Mining Chemistry, Hungarian Academy of Sciences, Miskolc-Egyetemvaros (Hungary); Radnai-Gyoengyoes, Z. [Geopard Ltd., Pecs (Hungary); Bokanyi, L. [Miskolc Univ., Miskolc-Egyetemvaros (Hungary). Dept. of Process Engineering

    1997-12-31

    Comparison of carbon-dioxide and propane sorption at ambient temperature was used for characterising the difference of the structure of hazardous and non hazardous coals. However, hazardous coals were found more microporous or contain more closed pores than non hazardous ones, this difference couldn`t have been enlarged and attributed to one petrographic component by producing the density fractions. Gas sorption isobars (nitrogen, methane, ethane) are proposed to make a distinction between fine pore structure of coals. (orig.)

  8. Healy Clean Coal Project, Healy, Alaska final Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-14

    This Environmental Monitoring Plan (EMP) provides the mechanism to evaluate the integrated coal combustion/emission control system being demonstrated by the Healy Clean Coal Project (HCCP) as part-of the third solicitation of the US Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCT-III). The EMP monitoring is intended to satisfy two objectives: (1) to develop the information base necessary for identification, assessment, and mitigation of potential environmental problems arising from replication of the technology and (2) to identify and quantify project-specific and site-specific environmental impacts predicted in the National Environmental Policy Act (NEPA) documents (Environmental Impact Statement and Record of Decision). The EMP contains a description of the background and history of development of the project technologies and defines the processes that will take place in the combustion and spray dryer absorber systems, including the formation of flash-calcined material (FCM) and its use in sulfur dioxide (SO{sub 2}) removal from the flue gases. It also contains a description of the existing environmental resources of the project area. The EMP includes two types of environmental monitoring that are to be used to demonstrate the technologies of the HCCP: compliance monitoring and supplemental monitoring. Compliance monitoring activities include air emissions, wastewater effluents, and visibility. Monitoring of these resources provide the data necessary to demonstrate that the power plant can operate under the required state and federal statutes, regulations, and permit requirements.

  9. Characterization and evaluation of washability of Alaskan coals: Fifty selected seams from various coal fields: Final technical report, September 30, 1976-February 28, 1986. [50 coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Rao, P.D.

    1986-09-01

    This final report is the result of a study initiated in 1976 to obtain washability data for Alaskan coals, to supplement the efforts of the US Department of Energy in their ongoing studies on washability of US coals. Washability characteristics were determined for fifty coal samples from the Northern Alaska, Chicago Creek, Unalakleet, Nenana, Matanuska, Beluga, Yentna and Herendeen Bay coal fields. The raw coal was crushed to 1-1/2 inches, 3/8 inch, 14 mesh and 65 mesh top sizes, and float-sink separations were made at 1.30, 1.40 and 1.60 specific gravities. A limited number of samples were also crushed to 200 and 325 mesh sizes prior to float-sink testing. Samples crushed to 65 mesh top size were also separated at 1.60 specific gravity and the float and sink products were characterized for proximate and ultimate analyses, ash composition and ash fusibility. 72 refs., 79 figs., 57 tabs.

  10. Co-pyrolysis of waste tire/coal mixtures for smokeless fuel, maltenes and hydrogen-rich gas production

    International Nuclear Information System (INIS)

    Bičáková, Olga; Straka, Pavel

    2016-01-01

    Highlights: • Co-pyrolysis of waste tires/coal mixtures yields mainly smokeless fuel (55–74 wt%). • Alternatively, the smokeless fuel can serve as carbonaceous sorbent. • The obtained tar contained maltenes (80–85 wt%) and asphaltenes (6–8 wt%). • Tar from co-pyrolysis can serve as heating oil or a source of maltenes for repairing of asphalt surfaces. • The hydrogen-rich gas was obtained (61–65 vol% H_2, 24–25 vol% CH_4, 1.4–2 vol% CO_2). - Abstract: The processing of waste tires with two different types of bituminous coal was studied through the slow co-pyrolysis of 1 kg of waste tire/coal mixtures with 15, 30 and 60 wt% waste tires on a laboratory scale. The waste tire/coal mixtures were pyrolysed using a quartz reactor in a stationary bed. The mixtures were heated at a rate 5 °C/min up to the final temperature of 900 °C with a soaking time of 30 min at the required temperature. The mass balance of the process and the properties of the coke and tar obtained were evaluated, further, the influence of the admixture in the charge on the amount and composition of the obtained coke and tar was determined. It was found that the smokeless fuel/carbonaceous sorbent and a high yield of tar for further use can be obtained through the slow co-pyrolysis. The obtained tars contained mostly maltenes (80–85 wt%). FTIR analysis showed that the maltenes from the co-pyrolysis of coal/waste tires exhibited significantly lower aromaticity as compared with that from coal alone. The gas obtained from pyrolysis or co-pyrolysis of waste tire/coal mixtures contained a high amount of hydrogen (above 60 vol%) and methane (above 20 vol%).

  11. Cyclone reburn using coal-water fuel: Pilot-scale development and testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  12. Stress Inversion of Coal with a Gas Drilling Borehole and the Law of Crack Propagation

    Directory of Open Access Journals (Sweden)

    Tianjun Zhang

    2017-10-01

    Full Text Available For studying the law of crack propagation around a gas drilling borehole, an experimental study about coal with a cavity under uniaxial compression was carried out, with the digital speckle correlation method capturing the images of coal failure. A sequence of coal failure images and the full-field strain of failure were obtained. The strain softening characteristic was shown by the curve. A method of curve dividing—named fitting-damaging—was proposed, combining the least square fitting residual norm and damage fraction. By this method, the five stages and four key points of a stress-strain curve were defined. Then, the full-field stress was inverted by means of the theory of elasticity and the adjacent element weight sharing model. The results show that σci was 30.28–41.71 percent of σf and σcd was 83.08–87.34 percent of σf, calculated by the fitting-damaging method, agreeing with former research. The results of stress inversion showed that under a low stress level (0.15 σf < σ < 0.5 σf, microdamage evolving into plastic failure later was formed around the cavity. Under a high stress level (0.5 σf < σ < 0.85 σf, the region of stress concentration suddenly crazed and formed a brittle crack. When σ ≥ 0.85 σf, the crack was developing, crack lines were connecting with each other, and the coal finally failed. The outcome of the stress inversion was completely concomitant with the images of crack propagation. Additionally, the stress around the cavity was able to be calculated accurately.

  13. Kinetics assisted design of catalysts for coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.T.; Foley, H.C.; Calkins, W.H.; Scouten, C.

    1998-02-01

    The thermal and catalytic reactions of 4-(1-naphthylmethyl)bibenzyl (NBBM), a resid and coal model compound, were examined. Catalytic reaction of NBBM was carried out at 400 C under hydrogen with a series of transition metal-based catalytic materials including Fe(CO){sub 4}PPh{sub 3}, Fe(CO){sub 3}(PPh{sub 3}){sub 2}, Fe(CO){sub 2}(PPh{sub 3}){sub 2}CS{sub 2}, Fe(CO){sub 5}, Mo(CO){sub 6}, Mn{sub 2}(CO){sub 10}, Fe{sub 2}O{sub 3} and MoS{sub 2}. Experimental findings and derived mechanistic insights were organized into molecular-level reaction models for NBBM pyrolysis and catalysis. Hydropyrolysis and catalysis reaction families occurring during NBBM hydropyrolysis at 420 C were summarized in the form of reaction matrices which, upon exhaustive application to the components of the reacting system, yielded the mechanistic reaction model. Each reaction family also had an associated linear free energy relationship (LFER) which provided an estimate of the rate constant k{sub i} given a structural property of species i or its reaction. Including the catalytic reaction matrices with those for the pyrolysis model provided a comprehensive NBBM catalytic reaction model and allowed regression of fundamental LFER parameters for the catalytic reaction families. The model also allowed specification of the property of an optimal catalyst. Iron, molybdenum and palladium were predicted to be most effective for model compound consumption. Due to the low costs associated with iron and its disposal, it is a good choice for coal liquefaction catalysis and the challenge remains to synthesize small particles able to access the full surface area of the coal macromolecule.

  14. Effects of coal storage in air on physical and chemical properties of coal and on gas adsorption

    Science.gov (United States)

    Mastalerz, Maria; Solano-Acosta, W.; Schimmelmann, A.; Drobniak, A.

    2009-01-01

    This paper investigates changes in the high-volatile bituminous Lower Block Coal Member from Indiana owing to moisture availability and oxidation in air at ambient pressure and temperature over storage time. Specifically, it investigates changes in chemistry, in surface area, and pore structure, as well as changes in methane and carbon dioxide adsorption capacities. Our results document that the methane adsorption capacity increased by 40%, whereas CO2 adsorption capacity increased by 18% during a 13-month time period. These changes in adsorption are accompanied by changes in chemistry and surface area of the coal. The observed changes in adsorption capacity indicate that special care must be taken when collecting samples and preserving coals until adsorption characteristics are measured in the laboratory. High-pressure isotherms from partially dried coal samples would likely cause overestimation of gas adsorption capacities, lead to a miscalculation of coal-bed methane prospects, and provide deceptively optimistic prognoses for recovery of coal-bed methane or capture of anthropogenic CO2. ?? 2009 Elsevier B.V. All rights reserved.

  15. Certification of the contents (mass fraction) of carbon, hydrogen, nitrogen, chlorine, arsenic, cadmium, manganese, mercury, lead, selenium, vanadium and zinc in three coals. Gas coal CRM No. 180; Coking coal CRM No. 181; Steam coal CRM No. 182

    Energy Technology Data Exchange (ETDEWEB)

    Griepink, B; Colinet, E; Wilkinson, H C

    1986-01-01

    The report first describes the preparation of three coal reference materials: Gas coal (BCR No. 180), Coking coal (BCR No. 181) and Steam coal (BCR No. 182). It deals further with the homogeneity and stability tests for major, minor and trace components. The contents (mass fractions) of the elements: C, H, N, Cl, As, Cd, Mn, Hg, Pb, Se, V and Zn are certified. The analytical techniques used in the certification are summarised. All the individual results are given and recommendations for analysis are made.

  16. Upper Paleozoic coal measures and unconventional natural gas systems of the Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Xuan Tang

    2012-11-01

    Full Text Available Upper Paleozoic coal measures in the Ordos Basin consist of dark mudstone and coal beds and are important source rocks for gas generation. Gas accumulations include coal-bed methane (CBM, tight gas and conventional gas in different structural areas. CBM accumulations are mainly distributed in the marginal area of the Ordos Basin, and are estimated at 3.5 × 1012 m3. Tight gas accumulations exist in the middle part of the Yishan Slope area, previously regarded as the basin-centered gas system and now considered as stratigraphic lithologic gas reservoirs. This paper reviews the characteristics of tight gas accumulations: poor physical properties (porosity < 8%, permeability < 0.85 × 10−3 μm2, abnormal pressure and the absence of well-defined gas water contacts. CBM is a self-generation and self-reservoir, while gas derived from coal measures migrates only for a short distance to accumulate in a tight reservoir and is termed near-generation and near-reservoir. Both CBM and tight gas systems require source rocks with a strong gas generation ability that extends together over wide area. However, the producing area of the two systems may be significantly different.

  17. Natural gas from coal : the community consultation process in Alberta

    International Nuclear Information System (INIS)

    Robinson, G.

    2005-01-01

    The community consultation process was examined with reference to natural gas from coal (NGC) development in Alberta. It was suggested that NGC has a huge potential in Canada, and can be developed in an environmentally responsible manner which considers all stakeholders. However, water supply shortages and the effects of development on groundwater remain key stakeholder concerns in Alberta. Issues concerning water protection and handling were discussed, along with issues concerning surface disruption during resource development activities. An outline of road needs and pipeline corridors was presented. An outline of a typical NGC compressor station were given. Issues concerning public anxiety over air quality were discussed with reference to flaring and landowner complaints. It was noted NGC is not sour and contains no liquid hydrocarbons or foreign contaminants. A review of government regulations and best practices was presented with regards to flaring. Multi-stakeholder advisory committee practices were reviewed. It was concluded that Alberta is currently using a variety of consultation processes to enable better communications between industry and stakeholders. figs

  18. Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    Science.gov (United States)

    Grindley, T.

    1988-04-05

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

  19. Thermochemical Equilibrium Model of Synthetic Natural Gas Production from Coal Gasification Using Aspen Plus

    Directory of Open Access Journals (Sweden)

    Rolando Barrera

    2014-01-01

    Full Text Available The production of synthetic or substitute natural gas (SNG from coal is a process of interest in Colombia where the reserves-to-production ratio (R/P for natural gas is expected to be between 7 and 10 years, while the R/P for coal is forecasted to be around 90 years. In this work, the process to produce SNG by means of coal-entrained flow gasifiers is modeled under thermochemical equilibrium with the Gibbs free energy approach. The model was developed using a complete and comprehensive Aspen Plus model. Two typical technologies used in entrained flow gasifiers such as coal dry and coal slurry are modeled and simulated. Emphasis is put on interactions between the fuel feeding technology and selected energy output parameters of coal-SNG process, that is, energy efficiencies, power, and SNG quality. It was found that coal rank does not significantly affect energy indicators such as cold gas, process, and global efficiencies. However, feeding technology clearly has an effect on the process due to the gasifying agent. Simulations results are compared against available technical data with good accuracy. Thus, the proposed model is considered as a versatile and useful computational tool to study and optimize the coal to SNG process.

  20. Development of a pulsed coal combustor fired with CWM (coal-water mixture): Phase 3, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, M.N.; Durai-Swamy, K.

    1986-11-01

    This report presents the results of an R and D program aimed at developing a new burner technology for coal-water mixture (CWM) fuels to enable the substitution of these new fuels in utility and industrial boilers and process heaters currently firing oil and gas. The application of pulse combustion to CWM fuels is chosen to alleviate many of the physical plant and environmental constraints presently associated with the direct use of these fuels in equipment designed for oil and gas firing. Pulse combustion has been shown to be capable of high-intensity burning of coal for acceptably complete combustion within relatively small equipment volumes. It also has the inherent capability to agglomerate ash particles, thus rendering ash more easily separable from the combustion gas prior to its entrance into the convective section of the boiler or heater, thereby reducing ash buildup and pluggage. Pulse combustion is also well-suited to staged combustion for NO/sub x/ control and has excellent potential for enhanced in-furnace SO/sub 2/ removal due to the enhanced levels of mass transfer brought about by the vigorous flow oscillations. The primary objective of the Phase 2 work was to develop a detailed program for laboratory development and evaluation of the pulse CWM combustor and system design concepts. 112 refs., 40 figs., 94 tabs.

  1. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no

  2. Methanol from coal without CO2 production via the modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Engler, D.; Labar, M.P.

    1992-01-01

    Displacement options for petroleum fuels include natural gas (compressed or liquified), synthetic gasoline, biomass fuels, electric vehicles, hydrogen, and methanol. This paper reports that although no alternative meets all the desired characteristics of economics, environmental impact, supply logistics, and vehicle technology, methanol has often been cited as a good compromise and is perhaps the best coal derived fuel. The main criticism leveled at methanol is whether it can be produced economically in sufficient quantities to significantly displace petroleum-derived fuels. Although methanol can be manufactured from biomass, natural gas or coal feedstocks, only coal offers the potential for a substantial long term indigenous U.S. feedstock

  3. A New Tree-Type Fracturing Method for Stimulating Coal Seam Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Qian Li

    2017-09-01

    Full Text Available Hydraulic fracturing is used widely to stimulate coalbed methane production in coal mines. However, some factors associated with conventional hydraulic fracturing, such as the simple morphology of the fractures it generates and inhomogeneous stress relief, limit its scope of application in coal mines. These problems mean that gas extraction efficiency is low. Conventional fracturing may leave hidden pockets of gas, which will be safety hazards for subsequent coal mining operations. Based on a new drilling technique applicable to drilling boreholes in coal seams, this paper proposes a tree-type fracturing technique for stimulating reservoir volumes. Tree-type fracturing simulation experiments using a large-scale triaxial testing apparatus were conducted in the laboratory. In contrast to the single hole drilled for conventional hydraulic fracturing, the tree-type sub-boreholes induce radial and tangential fractures that form complex fracture networks. These fracture networks can eliminate the “blank area” that may host dangerous gas pockets. Gas seepage in tree-type fractures was analyzed, and gas seepage tests after tree-type fracturing showed that permeability was greatly enhanced. The equipment developed for tree-type fracturing was tested in the Fengchun underground coal mine in China. After implementing tree-type fracturing, the gas extraction rate was around 2.3 times greater than that for traditional fracturing, and the extraction rate remained high for a long time during a 30-day test. This shortened the gas drainage time and improved gas extraction efficiency.

  4. ESTIMATION OF NEAR SUBSURFACE COAL FIRE GAS EMISSIONS BASED ON GEOPHYSICAL INVESTIGATIONS

    Science.gov (United States)

    Chen-Brauchler, D.; Meyer, U.; Schlömer, S.; Kus, J.; Gundelach, V.; Wuttke, M.; Fischer, C.; Rueter, H.

    2009-12-01

    Spontaneous and industrially caused subsurface coal fires are worldwide disasters that destroy coal resources, cause air pollution and emit a large amount of green house gases. Especially in developing countries, such as China, India and Malaysia, this problem has intensified over the last 15 years. In China alone, 10 to 20 million tons of coal are believed to be lost in uncontrolled coal fires. The cooperation of developing countries and industrialized countries is needed to enforce internationally concerted approaches and political attention towards the problem. The Clean Development Mechanism (CDM) under the framework of the Kyoto Protocol may provide an international stage for financial investment needed to fight the disastrous situation. A Sino-German research project for coal fire exploration, monitoring and extinction applied several geophysical approaches in order to estimate the annual baseline especially of CO2 emissions from near subsurface coal fires. As a result of this project, we present verifiable methodologies that may be used in the CDM framework to estimate the amount of CO2 emissions from near subsurface coal fires. We developed three possibilities to approach the estimation based on (1) thermal energy release, (2) geological and geometrical determinations as well as (3) direct gas measurement. The studies involve the investigation of the physical property changes of the coal seam and bedrock during different burning stages of a underground coal fire. Various geophysical monitoring methods were applied from near surface to determine the coal volume, fire propagation, temperature anomalies, etc.

  5. Analysis of gas migration patterns in fractured coal rocks under actual mining conditions

    Directory of Open Access Journals (Sweden)

    Gao Mingzhong

    2017-01-01

    Full Text Available Fracture fields in coal rocks are the main channels for gas seepage, migration, and extraction. The development, evolution, and spatial distribution of fractures in coal rocks directly affect the permeability of the coal rock as well as gas migration and flow. In this work, the Ji-15-14120 mining face at the No. 8 Coal Mine of Pingdingshan Tian’an Coal Mining Co. Ltd., Pingdingshan, China, was selected as the test site to develop a full-parameter fracture observation instrument and a dynamic fracture observation technique. The acquired video information of fractures in the walls of the boreholes was vectorized and converted to planarly expanded images on a computer-aided design platform. Based on the relative spatial distances between the openings of the boreholes, simultaneous planar images of isolated fractures in the walls of the boreholes along the mining direction were obtained from the boreholes located at various distances from the mining face. Using this information, a 3-D fracture network under mining conditions was established. The gas migration pattern was calculated using a COMSOL computation platform. The results showed that between 10 hours and 1 day the fracture network controlled the gas-flow, rather than the coal seam itself. After one day, the migration of gas was completely controlled by the fractures. The presence of fractures in the overlying rock enables the gas in coal seam to migrate more easily to the surrounding rocks or extraction tunnels situated relatively far away from the coal rock. These conclusions provide an important theoretical basis for gas extraction.

  6. Liquefaction and desulfurization of coal using synthesis gas

    Science.gov (United States)

    Fu, Yuan C.

    1977-03-08

    A process for desulfurizing and liquefying coal by heating said coal at a temperature of 375.degree.-475.degree. C in the presence of a slurry liquid, hydrogen, carbon monoxide, steam, and a catalyst comprising a desulfurization catalyst and an alkali metal salt.

  7. Economic assessment of advanced flue gas desulfurization processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  8. Gasification in pulverized coal flames. Final report (Part I). Pulverized coal combustion and gasification in a cyclone reactor: experiment and model

    Energy Technology Data Exchange (ETDEWEB)

    Barnhart, J. S.; Laurendeau, N. M.

    1979-05-01

    A unified experimental and analytical study of pulverized coal combustion and low-BTU gasification in an atmospheric cyclone reactor was performed. Experimental results include several series of coal combustion tests and a coal gasification test carried out via fuel-rich combustion without steam addition. Reactor stability was excellent over a range of equivalence ratios from .67 to 2.4 and air flowrates from 60 to 220 lb/hr. Typical carbon efficiencies were 95% for air-rich and stoichiometric tests and 80% for gasification tests. The best gasification results were achieved at an equivalence ratio of 2.0, where the carbon, cold gas and hot gas efficiencies were 83, 45 and 75%, respectively. The corresponding product gas heating value was 70 BTU/scf. A macroscopic model of coal combustion in the cyclone has been developed. Fuel-rich gasification can also be modeled through a gas-phase equilibrium treatment. Fluid mechanics are modeled by a particle force balance and a series combination of a perfectly stirred reactor and a plug flow reactor. Kinetic treatments of coal pyrolysis, char oxidation and carbon monoxide oxidation are included. Gas composition and temperature are checked against equilibrium values. The model predicts carbon efficiency, gas composition and temperature and reactor heat loss; gasification parameters, such as cold and hot gas efficiency and make gas heating value, are calculated for fuel-rich conditions. Good agreement exists between experiment and theory for conditions of this investigation.

  9. The Efficiency Improvement by Combining HHO Gas, Coal and Oil in Boiler for Electricity Generation

    Directory of Open Access Journals (Sweden)

    Chia-Nan Wang

    2017-02-01

    Full Text Available Electricity is an essential energy that can benefit our daily lives. There are many sources available for electricity generation, such as coal, natural gas and nuclear. Among these sources, coal has been widely used in thermal power plants that account for about 41% of the worldwide electricity supply. However, these thermal power plants are also found to be a big pollution source to our environment. There is a need to explore alternative electricity sources and improve the efficiency of electricity generation. This research focuses on improving the efficiency of electricity generation through the use of hydrogen and oxygen mixture (HHO gas. In this research, experiments have been conducted to investigate the combined effects of HHO gas with other fuels, including coal and oil. The results show that the combinations of HHO with coal and oil can improve the efficiency of electricity generation while reducing the pollution to our environment.

  10. The effect of a tectonic stress field on coal and gas outbursts.

    Science.gov (United States)

    An, Fenghua; Cheng, Yuanping

    2014-01-01

    Coal and gas outbursts have always been a serious threat to the safe and efficient mining of coal resources. Ground stress (especially the tectonic stress) has a notable effect on the occurrence and distribution of outbursts in the field practice. A numerical model considering the effect of coal gas was established to analyze the outburst danger from the perspective of stress conditions. To evaluate the outburst tendency, the potential energy of yielded coal mass accumulated during an outburst initiation was studied. The results showed that the gas pressure and the strength reduction from the adsorbed gas aggravated the coal mass failure and the ground stress altered by tectonics would affect the plastic zone distribution. To demonstrate the outburst tendency, the ratio of potential energy for the outburst initiation and the energy consumption was used. Increase of coal gas and tectonic stress could enhance the potential energy accumulation ratio, meaning larger outburst tendency. The component of potential energy for outburst initiation indicated that the proportion of elastic energy was increased due to tectonic stress. The elastic energy increase is deduced as the cause for a greater outburst danger in a tectonic area from the perspective of stress conditions.

  11. Sustainable application of reciprocating gas engines operating on coal mine methane

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.; Teo, T. [Caterpillar China Investment Co., Beijing (China); Tnay, C.H. [Westrac Inc., Beijing (China)

    2008-07-01

    According to the World Coal Institute, coal provides 25 per cent of worldwide primary energy needs and generates 40 per cent of the world's electricity. China produces the largest amount of hard coal. The anthropogenic release of methane (CH{sub 4}) into the environment is a byproduct of the coal mining process. The global warming potential of this methane continues to draw attention around the world. In particular, China's government has recognized the need for environmental responsibility in the pursuit of greater power production. The Kyoto Protocol requires developed countries to reduce their greenhouse gas emissions and targets must be met within a five-year time frame between 2008 and 2012. Sequestering coal mine methane (CMM) as an alternative fuel for reciprocating gas engine generator sets is a mature and proven technology for greenhouse gas mitigation. Prior to commissioning CMM-fueled power systems, the methane gas composition must be evaluated. An integrated systems approach can then be used to develop a CMM-fueled power project. This paper discussed the sustainable application of reciprocating gas engines operating on coal mine methane. It discussed the Kyoto Protocol, clean development mechanism, and CMM as compared to other fuel sources. It was concluded that there is considerable opportunity for growth in the Asia-Pacific region for electric power applications using CMM. 4 refs., 12 figs.

  12. Can Switching from Coal to Shale Gas Bring Net Carbon Reductions to China?

    Science.gov (United States)

    Qin, Yue; Edwards, Ryan; Tong, Fan; Mauzerall, Denise L

    2017-03-07

    To increase energy security and reduce emissions of air pollutants and CO 2 from coal use, China is attempting to duplicate the rapid development of shale gas that has taken place in the United States. This work builds a framework to estimate the lifecycle greenhouse gas (GHG) emissions from China's shale gas system and compares them with GHG emissions from coal used in the power, residential, and industrial sectors. We find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal in all sectors under both 20 year and 100 year global warming potentials (GWP 20 and GWP 100 ). However, primarily due to large uncertainties in methane leakage, the upper bound estimate of the lifecycle carbon footprint of shale gas in China could be approximately 15-60% higher than that of coal across sectors under GWP 20 . To ensure net GHG emission reductions when switching from coal to shale gas, we estimate the breakeven methane leakage rates to be approximately 6.0%, 7.7%, and 4.2% in the power, residential, and industrial sectors, respectively, under GWP 20 . We find shale gas in China has a good chance of delivering air quality and climate cobenefits, particularly when used in the residential sector, with proper methane leakage control.

  13. Determination of coalbed methane potential and gas adsorption capacity in Western Kentucky coals

    Science.gov (United States)

    Mardon, S.M.; Takacs, K.G.; Hower, J.C.; Eble, C.F.; Mastalerz, Maria

    2006-01-01

    The Illinois Basin has not been developed for Coalbed Methane (CBM) production. It is imperative to determine both gas content and other parameters for the Kentucky portion of the Illinois Basin if exploration is to progress and production is to occur in this area. This research is part of a larger project being conducted by the Kentucky Geological Survey to evaluate the CBM production of Pennsylvanian-age western Kentucky coals in Ohio, Webster, and Union counties using methane adsorption isotherms, direct gas desorption measurements, and chemical analyses of coal and gas. This research will investigate relationships between CBM potential and petrographic, surface area, pore size, and gas adsorption isotherm analyses of the coals. Maceral and reflectance analyses are being conducted at the Center for Applied Energy Research. At the Indiana Geological Survey, the surface area and pore size of the coals will be analyzed using a Micrometrics ASAP 2020, and the CO2 isotherm analyses will be conducted using a volumetric adsorption apparatus in a water temperature bath. The aforementioned analyses will be used to determine site specific correlations for the Kentucky part of the Illinois Basin. The data collected will be compared with previous work in the Illinois Basin and will be correlated with data and structural features in the basin. Gas composition and carbon and hydrogen isotopic data suggest mostly thermogenic origin of coalbed gas in coals from Webster and Union Counties, Kentucky, in contrast to the dominantly biogenic character of coalbed gas in Ohio County, Kentucky.

  14. Cleavage and crosslinking of polymeric coal structures during pyrolysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McMillen, D.F.; Malhotra, R.

    1992-02-01

    The ultimate objective of this project was to develop a better understanding of volatiles production to help optimize the yield and character of condensable coproducts during coal pyrolysis or mild gasification. The specific objectives were to (1) Develop pyrolysis procedures that minimize secondary reactions; and (2) Develop coal pretreatments that current knowledge suggests will prorate bond scission or prevent retrograde reactions. Our approach was to study the pyrolysis of coals and tar-loaded coals by using several techniques that span a range of heating rates and pressures. Slow-heating pyrolyses were performed at low pressures in the inlet of a field ionization mass spectrometer and at atmospheric pressures in a thermogravimetric analyzer. Moderately rapid-heating pyrolyses were performed in a vacuum TGA apparatus and in sealed silica ampules heated in a molten-salt bath. The fastest heating rates were achieved with laser pyrolysis at about 30,000 X/s. The high tar yield seen in this work where the entire volume of the coal particle becomes hot and fluid at very nearly the same time, taken together with the evident non-vapor transport of the tar under these conditions, emphasizes the importance of better understanding the development of fluidity during coal heating. This specifically includes the profound effects--long-recognized but poorly understood that mild oxidation has in suppressing coal fluidity. It also includes the more recently recognized fact that heating in the presence of an inert gas produced substantially greater fluidity than does heating in the presence of combustion gases, even if the conditions are very fuel rich and all the oxygen itself has already been consumed when the coal particles are encountered.

  15. Study of gas holdup and pressure characteristics in a column flotation cell using coal

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, S.C.; Kundu, G.; Mukherjee, D. [Indian Institute of Technology, Kharagpur (India). Dept. of Chemical Engineering

    2010-07-15

    Present work has been carried out to observe the effect of process variables (gas flow rate, feed flow rate, solid concentration and frother concentration) on gas holdup and pressure characteristics in flotation column using coal. Gas holdup has been estimated using phase separation method while piezometers have been used to obtain column's axial pressure profile. It was observed that gas holdup in collection zone was affected by both air as well as feed flow rates. Up to 6% change in gas holdup may occur when the feed flow rate changes from 1-2 cm/s. It was also observed that addition of coal decreased the gas holdup while addition of methyl isobutyl carbinol (MIBC) had opposite effect. Almost linear variation in columns axial pressure characteristics has been observed with gas flow rate. An empirical relationship between gas holdup in the flotation column with column's axial pressure difference was developed.

  16. Measurement of slurry droplets in coal-fired flue gas after WFGD.

    Science.gov (United States)

    Wu, Xue-Cheng; Zhao, Hua-Feng; Zhang, Yong-Xin; Zheng, Cheng-Hang; Gao, Xiang

    2015-10-01

    China owns the world's largest capacity of coal-fired power units. By the end of 2012, the capacity of installed national thermal power has been 819.68 million kilowatts. The latest standard requires that newly built power plants emit SO2 in no more than 100 mg/m(3) and the emission of old ones be lower than 200 mg/m(3) while in some key areas the emission should be controlled under 50 mg/m(3). So by the end of 2012, 90% of the active coal-fired units have been equipped with flue gas desulfurization devices. Among the desulfurization methods adopted, limestone-gypsum wet flue gas desulphurization accounts for 92%, causing the problem of fine droplets in the exhaust gas after defogger, which may even form "gypsum rain." At present, sampling methods are widely used at home and abroad, such as magnesium ion tracer method, modified magnesium ion tracer method and chemical analysis. In addition, some scholars use aerodynamic methods, such as ELPI, to measure the diameter distribution and concentration. The methods mentioned above all have their own demerits, such as the inability to on-line, continuous measurements and the need of prolonged measuring time. Thus, in this paper some potential optical on-line methods are presented, such as Fraunhofer diffraction pattern analysis and wavelength-multiplexed laser extinction. Also brought up are their measuring scope and merits. These methods have already been utilized to measure small liquid droplets and their demonstrations and evaluations are as well stated. Finally, a 3D imaging method based on digital holographic microscope is proposed for in-line measurement of size and concentration of slurry droplets. The feasibility of this method is demonstrated by preliminary experimental investigation.

  17. Development of coal gas production technology acceptable for fuel cells; Nenryo denchiyo sekitan gas seizo gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T [Center for Coal Utilization, Japan, Tokyo (Japan); Kimura, N; Omata, K [Electric Power Development Co. Ltd., Tokyo (Japan)

    1996-09-01

    In utilizing coal for high-efficiency direct power generation using fuel cells, it is necessary that coal be fed into the fuel cells after having been made into ash-free gaseous fuel. Research and development works are being carried out with an objective to develop a coal gasification furnace most suitable for fuel cells and establish a system to refine coal up to the one that can be fed into fuel cells. Fiscal 1995 has conducted investigations on coal gasification technologies, air separation technologies, and gas refining technologies as the important element technologies, and a trial design on integrated coal gasification fuel cell (IGFC) systems. This paper reports from among the above items the result of the trial design on an IGFC system using molten carbonate fuel cells. The paper describes system comparison on paths of produced gases and anode waste gas, comparison on refining processes using a wet system and a dry system, and parameter studies on oxygen concentration in gasifying agents. It was made clear that the suitable furnace is an oxygen blown coal gasification furnace, and the power generation efficiency at the system terminal can be higher than 53%. 11 figs., 6 tabs.

  18. The challenge for gas: get price-competitive with coal-fired electricity

    International Nuclear Information System (INIS)

    Gill, Len

    1999-01-01

    The challenge for the gas industry is to become price competitive with coal-fired electricity if it wants a larger share of the energy market. Returning to the issue of greater use of gas for electricity generation, the author points out that although electricity prices were rising they were still below the point where gas-fired electricity generation was viable. Copyright (1999) The Australian Gas Journal

  19. Effects of coal-derived trace species on performance of molten carbonate fuel cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  20. Acoustic Emission Characteristics of Gas-Containing Coal during Loading Dilation Process

    Directory of Open Access Journals (Sweden)

    Z. Q. Yin

    2015-12-01

    Full Text Available Raw coal was used as the study object in this paper to identify the evolution characteristics of acoustic emission (AE during the dilation process of gas-containing coal. The coal specimens were stored in gas seal devices filled with gas at different pressures (0, 0.5, 1.0, and 1.5 MPa for 24 h prior to testing. Then, the specimens were tested in a rock-testing machine, and the deformation and crack fracture patterns were recorded by using strain gauges and an AE system. The axial and volumetric strains–stress curves were analyzed in relation to the AE and the failure mode. Results show that as gas pressure increases, the uniaxial compression strength and elasticity modulus of gas-containing coal decreases, whereas the Poisson’s ratio increases. In all the coal specimens, the dilation initiation stress decreases, and the dilation degree increases. During the dilation process, before the loaded coal specimens reach peak stress, and as the load increases, the changes in the specimens and in the AE energy parameter of specimens can be divided into four phases: crack closure deformation, elastic deformation, stable crack propagation, and unstable crack propagation (dilation process. Across the four phases, the AE energy increases evidently during crack closure and elastic deformation but decreases during stable crack propagation. As the gas pressure increases, the AE signal frequency increases from 4.5 KHz to 8.1 KHz during the dilation process. Thus, the gas presence in coal specimens exerts a significant influence on the closure of sample cracks and dilation damage.

  1. Coupling Effect of Intruding Water and Inherent Gas on Coal Strength Based on the Improved (Mohr-Coulomb Failure Criterion

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2016-11-01

    Full Text Available When employing hydraulic processes to increase gas drainage efficiency in underground coal mines, coal seams become a three-phase medium, containing water intruding into the coal pores with the inherent occurrence of gas. This can change the stress state of the coal and cause instability. This work studied the mechanical properties of coal containing water and gas and derived an appropriate failure criterion. Based on mixture theory of unsaturated porous media, the effective stress of coal, considering the interaction of water and gas, was analyzed, and the failure criterion established by combining this with the Mohr–Coulomb criterion. By introducing the stress factor of matrix suction and using fitted curves of experimentally determined matrix suction and moisture content, the relationships between coal strength, gas pressure, and moisture content were determined. To verify the established strength theory, a series of triaxial compression strength tests of coal containing water and gas were carried out on samples taken from the Songzao, Pingdingshan, and Tashan mines in China. The experimental results correlated well with the theoretical predictions. The results showed a linear decrease in the peak strength of coal with increasing gas pressure and an exponential reduction in peak strength with increasing moisture content. The strength theory of coal containing water and gas can become an important part of multiphase medium damage theory.

  2. Coal

    International Nuclear Information System (INIS)

    Teissie, J.; Bourgogne, D. de; Bautin, F.

    2001-12-01

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  3. CFD analysis of NOx reduction by domestic natural gas added to coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Ziv, E.; Yasur, Y.; Chudnovsky, B. [Ben-Gurion University of the Negev, Beer-Sheva (Israel). Dept. of Mechanical Engineering and Inst. for Applied Research

    2004-07-01

    To date, Israel's electrical energy has been based only on imported fuels. However, with the recently discovered natural gas in the Ashqulon shores, Israel can examine the benefits to its energy resources, environment, and economy of blending its domestic natural gas with imported coal. As for using natural gas, the proposal is to burn it in existing IEC coal-fired boilers in order to significantly reduce NOx emission by reburning. An important aspect is to provide retrofitting in existing IEC boilers by replacing a fraction of the coal by natural gas. This would allow the purchase of coal with a wide range of parameters, which is less expensive. Hence, mixed gas-coal burning would benefit Israel. The authors have made numerical simulations in order to study the optimal conditions of operation and evaluate the economic as well as environmental benefits. Indeed, extensive simulations have shown that there is a significant reduction of NOx emission, as expected, with the addition of relatively small amounts of natural gas. Experiments will now be carried out in a test facility that will provide accurate physicochemical properties of the mixed fuel for more reliable simulations. 19 refs., 6 figs., 1 tab.

  4. Production of synthesis gas and methane via coal gasification utilizing nuclear heat

    International Nuclear Information System (INIS)

    van Heek, K.H.; Juentgen, H.

    1982-01-01

    The steam gasificaton of coal requires a large amount of energy for endothermic gasification, as well as for production and heating of the steam and for electricity generation. In hydrogasification processes, heat is required primarily for the production of hydrogen and for preheating the reactants. Current developments in nuclear energy enable a gas cooled high temperature nuclear reactor (HTR) to be the energy source, the heat produced being withdrawn from the system by means of a helium loop. There is a prospect of converting coal, in optimal yield, into a commercial gas by employing the process heat from a gas-cooled HTR. The advantages of this process are: (1) conservation of coal reserves via more efficient gas production; (2) because of this coal conservation, there are lower emissions, especially of CO 2 , but also of dust, SO 2 , NO/sub x/, and other harmful substances; (3) process engineering advantages, such as omission of an oxygen plant and reduction in the number of gas scrubbers; (4) lower gas manufacturing costs compared to conventional processes. The main problems involved in using nuclear energy for the industrial gasification of coal are: (1) development of HTRs with helium outlet temperatures of at least 950 0 C; (2) heat transfer from the core of the reactor to the gas generator, methane reforming oven, or heater for the hydrogenation gas; (3) development of a suitable allothermal gas generator for the steam gasification; and (4) development of a helium-heated methane reforming oven and adaption of the hydrogasification process for operation in combination with the reactor. In summary, processes for gasifying coal that employ heat from an HTR have good economic and technical prospects of being realized in the future. However, time will be required for research and development before industrial application can take place. 23 figures, 4 tables. (DP)

  5. The Numerical Simulation of the Shock Wave of Coal Gas Explosions in Gas Pipe*

    Science.gov (United States)

    Chen, Zhenxing; Hou, Kepeng; Chen, Longwei

    2018-03-01

    For the problem of large deformation and vortex, the method of Euler and Lagrange has both advantage and disadvantage. In this paper we adopt special fuzzy interface method(volume of fluid). Gas satisfies the conditions of conservation equations of mass, momentum, and energy. Based on explosion and three-dimension fluid dynamics theory, using unsteady, compressible, inviscid hydrodynamic equations and state equations, this paper considers pressure gradient’s effects to velocity, mass and energy in Lagrange steps by the finite difference method. To minimize transport errors of material, energy and volume in Finite Difference mesh, it also considers material transport in Euler steps. Programmed with Fortran PowerStation 4.0 and visualized with the software designed independently, we design the numerical simulation of gas explosion with specific pipeline structure, check the key points of the pressure change in the flow field, reproduce the gas explosion in pipeline of shock wave propagation, from the initial development, flame and accelerate the process of shock wave. This offers beneficial reference and experience to coal gas explosion accidents or safety precautions.

  6. Prediction and control of rock burst of coal seam contacting gas in deep mining

    Energy Technology Data Exchange (ETDEWEB)

    En-yuan Wang; Xiao-fei Liu; En-lai Zhao; Zhen-tang Liu [China University of Mining and Technology, Xuzhou (China). School of Safety Engineering

    2009-06-15

    By analyzing the characteristics and the production mechanism of rock burst that goes with abnormal gas emission in deep coal seams, the essential method of eliminating abnormal gas emission by eliminating the occurrence of rock burst or depressing the magnitude of rock burst was considered. The No.237 working face in Nanshan coal mine was selected as the typical working face contacting gas in deep mining; aimed at this working face, a system of rock burst prediction and control for coal seam contacting gas in deep mining was established using the three-dimensional distinct element code software 3DEC. This system includes three parts: (1) regional prediction of rock burst hazard before mining; (2) local prediction of rock burst hazard during mining; and (3) rock burts control by an electromagnetic radiation method and specific drilling method. 8 refs., 4 figs., 1 tab.

  7. Gas Emission Prediction Model of Coal Mine Based on CSBP Algorithm

    Directory of Open Access Journals (Sweden)

    Xiong Yan

    2016-01-01

    Full Text Available In view of the nonlinear characteristics of gas emission in a coal working face, a prediction method is proposed based on cuckoo search algorithm optimized BP neural network (CSBP. In the CSBP algorithm, the cuckoo search is adopted to optimize weight and threshold parameters of BP network, and obtains the global optimal solutions. Furthermore, the twelve main affecting factors of the gas emission in the coal working face are taken as input vectors of CSBP algorithm, the gas emission is acted as output vector, and then the prediction model of BP neural network with optimal parameters is established. The results show that the CSBP algorithm has batter generalization ability and higher prediction accuracy, and can be utilized effectively in the prediction of coal mine gas emission.

  8. Gas migration from closed coal mines to the surface. Risk assessment methodology and prevention means

    International Nuclear Information System (INIS)

    Pokryszka, Z.; Tauziede, Ch.; Lagny, C.; Guise, Y.; Gobillot, R.; Planchenault, J.M.; Lagarde, R.

    2005-01-01

    French law as regards renunciation to mining concessions calls for the mining operator to first undertake analyses of the risks represented by their underground mining works. The problem of gas migration to the surface is especially significant in the context of coal mines. This is because mine gas can migrate to the earth's surface, then present significant risks: explosion, suffocation or gas poisoning risks. As part of the scheduled closure of all coal mining operations in France, INERIS has drawn up, at the request of national mining operator Charbonnages de France, a general methodology for assessing the risk linked to gas in the context of closed coal mines. This article presents the principles of this methodology. An application example based on a true case study is then described. This is completed by a presentation of the preventive and monitoring resources recommended and usually applied in order to manage the risk linked to gaseous emissions. (authors)

  9. Quantifying greenhouse gas emissions from coal fires using airborne and ground-based methods

    Science.gov (United States)

    Engle, Mark A.; Radke, Lawrence F.; Heffern, Edward L.; O'Keefe, Jennifer M.K.; Smeltzer, Charles; Hower, James C.; Hower, Judith M.; Prakash, Anupma; Kolker, Allan; Eatwell, Robert J.; ter Schure, Arnout; Queen, Gerald; Aggen, Kerry L.; Stracher, Glenn B.; Henke, Kevin R.; Olea, Ricardo A.; Román-Colón, Yomayara

    2011-01-01

    Coal fires occur in all coal-bearing regions of the world and number, conservatively, in the thousands. These fires emit a variety of compounds including greenhouse gases. However, the magnitude of the contribution of combustion gases from coal fires to the environment is highly uncertain, because adequate data and methods for assessing emissions are lacking. This study demonstrates the ability to estimate CO2 and CH4 emissions for the Welch Ranch coal fire, Powder River Basin, Wyoming, USA, using two independent methods: (a) heat flux calculated from aerial thermal infrared imaging (3.7–4.4 t d−1 of CO2 equivalent emissions) and (b) direct, ground-based measurements (7.3–9.5 t d−1 of CO2 equivalent emissions). Both approaches offer the potential for conducting inventories of coal fires to assess their gas emissions and to evaluate and prioritize fires for mitigation.

  10. Evaluating the gas content of coals and isolated maceral concentrates from the Paleocene Guasare Coalfield, Venezuela

    International Nuclear Information System (INIS)

    Berbesi, L.A.; Marquez, G.; Martinez, M.; Requena, A.

    2009-01-01

    This work presents the results from evaluating the gases sorbed by coal samples extracted from the Paleocene Guasare Coalfield (Marcelina Formation, northwestern Venezuela), as well as by their distinct maceral concentrates. The aim of this work has been to obtain an initial experimental main value of the gas content per unit weight of high volatile bituminous A coal samples from the open-pit Paso Diablo mine. An additional goal was to study differences in the CH 4 storage ability of the distinct maceral groups forming part of the coal matrix. Both the coal samples and the maceral concentrates were studied by thermogravimetric analysis (TGA) in order to determine the temperature to be used in subsequent experiments. On-line analyses of hydrocarbons (C 1 , C 2 , C 3 ) and CO 2 yielded gas concentrations, plus δ 13 C values. Thermogenic gas is prevalent in the Guasare coals with vitrinite reflectance (%R o ) values from 0.65% to 0.88%. The amount of gas retained in the coals and maceral concentrates was measured with a special device that allows determination of the volume of gas sorbed by a solid sample subjected to controlled thermal treatment. The average coalbed gas concentration obtained was 0.51 cm 3 /g. The following list of maceral concentrates shows the relative capacity for the volume of sorbed gas per unit weight: inertinite > low-density vitrinite > liptinite ∼ high-density vitrinite. It is concluded that the gas volumes retained in the distinct maceral concentrates are not controlled by porosity but rather by their microscopic morphology.

  11. Modular High Temperature Gas-Cooled Reactor heat source for coal conversion

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Lewis, A.C.

    1992-09-01

    In the industrial nations, transportable fuels in the form of natural gas and petroleum derivatives constitute a primary energy source nearly equivalent to that consumed for generating electric power. Nations with large coal deposits have the option of coal conversion to meet their transportable fuel demands. But these processes themselves consume huge amounts of energy and produce undesirable combustion by-products. Therefore, this represents a major opportunity to apply nuclear energy for both the environmental and energy conservation reasons. Because the most desirable coal conversion processes take place at 800 degree C or higher, only the High Temperature Gas-Cooled Reactors (HTGRs) have the potential to be adapted to coal conversion processes. This report provides a discussion of this utilization of HTGR reactors

  12. H-coal fluid dynamics. Final report, August 1, 1977-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-16

    This report presents the results of work aimed at understanding the hydrodynamic behavior of the H-Coal reactor. A summary of the literature search related to the fluid dynamic behavior of gas/liquid/solid systems has been presented. Design details of a cold flow unit were discussed. The process design of this cold flow model followed practices established by HRI in their process development unit. The cold fow unit has been used to conduct experiments with nitrogen, kerosene, or kerosene/coal char slurries, and HDS catalyst, which at room temperature have properties similar to those existing in the H-Coal reactor. Mineral oil, a high-viscosity liquid, was also used. The volume fractions occupied by gas/liquid slurries and catalyst particles were determined by several experimental techniques. The use of a mini-computer for data collection and calculation has greatly accelerated the analysis and reporting of data. Data on nitrogen/kerosene/HDS catalyst and coal char fines are presented in this paper. Correlations identified in the literature search were utilized to analyze the data. From this analysis it became evident that the Richardson-Zaki correlation describes the effect of slurry flow rate on catalyst expansion. Three-phase fluidization data were analyzed with two models.

  13. THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS. Includes quarterly technical progress report No.25 from 10/01/1997-12/31/1997, and quarterly technical progress report No.26 from 01/01/1998-03/31/1998; FINAL

    International Nuclear Information System (INIS)

    1999-01-01

    This project was divided into two parts. One part evaluated possible catalysts for producing higher-alcohols (C(sub 2) to C(sub 5+)) as fuel additives. The other part provided guidance by looking both at the economics of mixed-alcohol production from coal-derived syngas and the effect of higher alcohol addition on gasoline octane and engine performance. The catalysts studied for higher-alcohol synthesis were molybdenum sulfides promoted with potassium. The best catalysts produced alcohols at a rate of 200 g/kg of catalyst/h. Higher-alcohol selectivity was over 40%. The hydrocarbon by-product was less than 20%. These catalysts met established success criteria. The economics for mixed alcohols produced from coal were poor compared to mixed alcohols produced from natural gas. Syngas from natural gas was always less expensive than syngas from coal. Engine tests showed that mixed alcohols added to gasoline significantly improved fuel quality. Mixed-alcohols as produced by our catalysts enhanced gasoline octane and decreased engine emissions. Mixed-alcohol addition gave better results than adding individual alcohols as had been done in the 1980's when some refiners added methanol or ethanol to gasoline

  14. Electric plants to gas, influence of both Mineral Matter and Air Oxidation in coal pyrolysis

    International Nuclear Information System (INIS)

    Mondragon, F.; Jaramillo, A.; Quintero, G.

    1995-01-01

    In this work some coal samples from different Colombia's deposits are analyzed. In first stage, material matter is removed from coal by acid treatment with HF/HCl, and aerial oxidation of coal is made with air in oven to 150 Centigrade degree temperature. In second stage, pyrolysis is carried out in two different techniques: 1. Thermogravimetric Analysis (TGA) and 2. Programmed Temperature Pyrolysis (PTP) in a pyrolyzer equipped with a quadrupole mass spectrometer. In both techniques, the coal samples are heated in different rates to 650 Centigrade degree. During PTP trials the evolution of CH4, H2S, hydrocarbons (m/z=42), CO2, benzene and toluene are monitored. Studied coal samples showed: 1). A gas conversion range between 48.8% to 21.8%; 2). A decrease in the gas conversion between 2% to 4%, when oxidation it is applied; 3). The temperature at the one which is presented the maximum evolution of CH4 is similar for all coal samples; 4). The maximum evolution of H2S depends on mineral matter composition, occurs between 480 to 550 Centigrade degrees and is presented due to pyrite decomposition. 5). The evolution of CO2 occurs between 100 to 650 Centigrade degree, its production is generated in different stage of the mentioned temperature range, and in some coal samples is presented due to inorganic origin

  15. Combustion reactivity of chars from copyrolysis of coal with coke-oven gas

    Energy Technology Data Exchange (ETDEWEB)

    Liao Hongqiang; Sun Chenggong; Li Baoqing [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion

    1997-12-31

    The combustion reactivity of char from pyrolysis of Xianfeng lignite with coke-oven gas (COG) is related to the pyrolysis pressure and heating rate. Decreasing pressure and increasing heating rate enhance the char yields and combustion reactivity. The combustion reactivities of char from coal pyrolysis with COG nearly reach to that of char from hydropyrolysis, but lower than those of char from coal pyrolysis under N{sub 2}. (orig.)

  16. The Efficiency Improvement by Combining HHO Gas, Coal and Oil in Boiler for Electricity Generation

    OpenAIRE

    Chia-Nan Wang; Min-Tsong Chou; Hsien-Pin Hsu; Jing-Wein Wang; Sridhar Selvaraj

    2017-01-01

    Electricity is an essential energy that can benefit our daily lives. There are many sources available for electricity generation, such as coal, natural gas and nuclear. Among these sources, coal has been widely used in thermal power plants that account for about 41% of the worldwide electricity supply. However, these thermal power plants are also found to be a big pollution source to our environment. There is a need to explore alternative electricity sources and improve the efficiency of elec...

  17. Economic comparison of clean coal generating technologies with natural gas-combined cycle systems

    International Nuclear Information System (INIS)

    Sebesta, J.J.; Hoskins, W.W.

    1990-01-01

    This paper reports that there are four combustion technologies upon which U.S. electric utilities are expected to rely for the majority of their future power generating needs. These technologies are pulverized coal- fired combustion (PC); coal-fired fluidized bed combustion (AFBC); coal gasification, combined cycle systems (CGCC); and natural gas-fired combined cycle systems (NGCC). The engineering and economic parameters which affect the choice of a technology include capital costs, operating and maintenance costs, fuel costs, construction schedule, process risk, environmental and site impacts, fuel efficiency and flexibility, plant availability, capacity factors, timing of startup, and the importance of utility economic and financial factors

  18. Greenhouse gas emission factor development for coal-fired power plants in Korea

    International Nuclear Information System (INIS)

    Jeon, Eui-Chan; Myeong, Soojeong; Sa, Jae-Whan; Kim, Jinsu; Jeong, Jae-Hak

    2010-01-01

    Accurate estimation of greenhouse gas emissions is essential for developing an appropriate strategy to mitigate global warming. This study examined the characteristics of greenhouse gas emission from power plants, a major greenhouse gas source in Korea. The power plants examined use bituminous coal, anthracite, and sub-bituminous coal as fuel. The CO 2 concentration from power plants was measured using GC-FID with methanizer. The amount of carbon, hydrogen, and calorific values in the input fuel was measured using an elemental analyzer and calorimeter. For fuel analysis, CO 2 emission factors for anthracite, bituminous coal, and sub-bituminous coal were 108.9, 88.4, and 97.9 Mg/kJ, respectively. The emission factors developed in this study were compared with those for IPCC. The results showed that CO 2 emission was 10.8% higher for anthracite, 5.5% lower for bituminous coal, and 1.9% higher for sub-bituminous coal than the IPCC figures.

  19. Lack of oil and gas resources leads to concentration on coal and nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-20

    The Bulgarian energy sector is characterised by a marked shortage of domestic resources. The country has no oil to speak of, no gas, relatively little hydro potential compared with its neighbours, and the one resource it does have in fair abundance - coal - is of the poorest quality. This poverty of resources has led to an extraordinary dependence on the Soviet Union for supplies of every resource and for technology to utilise them. Most oil, all gas, some electricity and even significant quantities of coal are all imported from the USSR. There is little Bulgaria can do about its oil needs for the transport sector, but otherwise current policy is to concentrate development in the nuclear and coal sectors. One of the main thrusts of the energy policy is to continue expansion of coal, largely opencast lignite deposits, in order to feed thermal power stations and, when clean coal technology is developed, to use coal in CHP plants. The country uses a small amount of natural gas but no development is foreseen; instead district heating is considered a more efficient use of resources. 5 figs., 1 tab.

  20. Biogeochemical interactions between of coal mine water and gas well cement

    Science.gov (United States)

    Gulliver, D. M.; Gardiner, J. B.; Kutchko, B. G.; Hakala, A.; Spaulding, R.; Tkach, M. K.; Ross, D.

    2017-12-01

    Unconventional natural gas wells drilled in Northern Appalachia often pass through abandoned coal mines before reaching the Marcellus or Utica formations. Biogeochemical interactions between coal mine waters and gas well cements have the potential to alter the cement and compromise its sealing integrity. This study investigates the mineralogical, geochemical, and microbial changes of cement cores exposed to natural coal mine waters. Static reactors with Class H Portland cement cores and water samples from an abandoned bituminous Pittsburgh coal mine simulated the cement-fluid interactions at relevant temperature for time periods of 1, 2, 4, and 6 weeks. Fluids were analyzed for cation and anion concentrations and extracted DNA was analyzed by 16S rRNA gene sequencing and shotgun sequencing. Cement core material was evaluated via scanning electron microscope. Results suggest that the sampled coal mine water altered the permeability and matrix mineralogy of the cement cores. Scanning electron microscope images display an increase in mineral precipitates inside the cement matrix over the course of the experiment. Chemistry results from the reaction vessels' effluent waters display decreases in dissolved calcium, iron, silica, chloride, and sulfate. The microbial community decreased in diversity over the 6-week experiment, with Hydrogenophaga emerging as dominant. These results provide insight in the complex microbial-fluid-mineral interactions of these environments. This study begins to characterize the rarely documented biogeochemical impacts that coal waters may have on unconventional gas well integrity.

  1. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR; F

    International Nuclear Information System (INIS)

    K.C. Kwon

    2002-01-01

    Removal of hydrogen sulfide (H(sub 2)S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that employ coal and natural gas and produce electric power and clean transportation fuels. These Vision 21 plants will require highly clean coal gas with H(sub 2)S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at Research Triangle Institute (RTI) in which the H(sub 2)S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H(sub 2)S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objective of this research is to support the near- and long-term DOE efforts to commercialize this direct oxidation technology. Specifically, we aim to: Measure the kinetics of direct oxidation of H(sub 2)S to elemental sulfur over selective catalysts in the presence of major

  2. Clean coal reference plants: Pulverized coal boiler with flue gas desulfurization. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Clean Coal Technology Demonstration Program (CCT) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsive coal-using technologies. To achieve this goal, a multiphased effort consisting of five separate solicitations has been completed. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which, in general, correspond to the center`s areas of technology development. Primarily the categories of METC CCT projects are: atmospheric fluid bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications.

  3. A new method for calculating gas content of coal reservoirs with consideration of a micro-pore overpressure environment

    Directory of Open Access Journals (Sweden)

    Jinxing Song

    2017-05-01

    Full Text Available When the gas content of a coal reservoir is calculated, the reservoir pressure measured by well logging and well testing is generally used for inversion calculation instead of gas pressure. However, the calculation result is not accurate because the reservoir pressure is not equal to the gas pressure in overpressure environments. In this paper, coal samples of different ranks in Shanxi and Henan are collected for testing the capillary pressure of coal pores. Based on the formation process of CBM reservoirs and the hydrocarbon generation and expulsion history of coal beds, the forming mechanisms of micro-pore overpressure environments in coal reservoirs were analyzed. Accordingly, a new method for calculating the gas content of coal reservoirs with consideration of a micro-pore overpressure environment was developed. And it was used to calculate the gas content of No. 1 coal bed of the 2nd member of Lower Permian Shanxi Fm in the Zhongmacun Coal Mine in Jiaozuo, Henan. It is indicated that during the formation and evolution of coals, some solid organic matters were converted into gas and water, and gas–water contact is surely formed in pores. In the end, capillary pressure is generated, so the gas pressure in micro-pores is much higher than the hydrostatic column pressure, which results in a micro-pore overpressure environment. Under such an environment, gas pressure is higher than reservoir pressure, so the gas content of coal reservoirs calculated previously based on the conventional reservoir pressure evaluation are usually underestimated. It is also found that the micro-pore overpressure environment exerts a dominating effect on the CBM content calculation of 3–100 nm pores, especially that of 3–10 nm pores, but a little effect on that of pores >100 nm. In conclusion, this new method clarifies the pressure environment of CBM gas reservoirs, thereby ensuring the calculation accuracy of gas content of coal reservoirs.

  4. Study on the propagation law of shock wave resulting from coal and gas outburst

    Institute of Scientific and Technical Information of China (English)

    WANG Kai; ZHOU Ai-tao; ZHANG Pin; LI Chuan; GUO Yan-wei

    2011-01-01

    According to the formation of shock wave resulting from coal and gas outburst, the gas flow of coal and gas outburst was transformed from an unsteady flow to a steady one based on selected appropriate reference coordinates, and the mathematical expressions were then established by applying mass conservation, momentum conservation equation, and energy conservation equation. On this basis, analyzed gas flow mitigation of variable cross-section area and the outburst intensity, and the relations between cross-section area, velocity, and density; the relations between overpressures and outburst intensity were deduced. Furthermore, shock waves resulting from coal and gas outburst and outburst intensity were measured by experimental setup, the overpressure and outburst intensity of different gas pressures were obtained, and the similar conditions of the experiment were numerically simulated. The averaged overpressure and gas flow velocity of variable cross-section under different gas pressures were numerically derived. The results show that the averaged overpressure and outburst intensity obtained from simulation are in good agreement with the experimental results. Moreover, the gas flow velocity of variable cross-sections approximates to the theoretical analysis.

  5. Environmental impact of coal mining and coal seam gas production on surface water quality in the Sydney basin, Australia.

    Science.gov (United States)

    Ali, A; Strezov, V; Davies, P; Wright, I

    2017-08-01

    The extraction of coal and coal seam gas (CSG) will generate produced water that, if not adequately treated, will pollute surface and groundwater systems. In Australia, the discharge of produced water from coal mining and related activities is regulated by the state environment agency through a pollution licence. This licence sets the discharge limits for a range of analytes to protect the environment into which the produced water is discharged. This study reports on the impact of produced water from coal mine activities located within or discharging into high conservation environments, such as National Parks, in the outer region of Sydney, Australia. The water samples upstream and downstream from the discharge points from six mines were taken, and 110 parameters were tested. The results were assessed against a water quality index (WQI) which accounts for pH, turbidity, dissolved oxygen, biochemical oxygen demand, total dissolved solids, total phosphorus, nitrate nitrogen and E .coli. The water quality assessment based on the trace metal contents against various national maximum admissible concentration (MAC) and their corresponding environmental impacts was also included in the study which also established a base value of water quality for further study. The study revealed that impacted water downstream of the mine discharge points contained higher metal content than the upstream reference locations. In many cases, the downstream water was above the Australia and New Zealand Environment Conservation Council and international water quality guidelines for freshwater stream. The major outliers to the guidelines were aluminium (Al), iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn). The WQI of surface water at and downstream of the discharge point was lower when compared to upstream or reference conditions in the majority of cases. Toxicology indices of metals present in industrial discharges were used as an additional tool to assess water quality, and the newly

  6. The application of a coupled artificial neural network and fault tree analysis model to predict coal and gas outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Ruilin, Zhang [School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454003, PR (China); Lowndes, Ian S. [Process and Environmental Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2010-11-01

    This paper proposes the use of a coupled fault tree analysis (FTA) and artificial neural network (ANN) model to improve the prediction of the potential risk of coal and gas outburst events during the underground mining of thick and deep Chinese coal seams. The model developed has been used to investigate the gas emission characteristics and the geological conditions that exist within the Huaibei coal mining region, Anhui province, China. The coal seams in this region exhibit a high incidence of coal and gas outbursts. An analysis of the results obtained from an initial application of an FTA model, identified eight dominant model parameters related to the gas content or geological conditions of the coal seams, which characterize the potential risk of in situ coal and gas outbursts. The eight dominant model parameters identified by the FTA method were subsequently used as input variables to an ANN model. The results produced by the ANN model were used to develop a qualitative risk index to characterize the potential risk level of occurrence of coal and gas outburst events. Four different potential risk alarm levels were defined: SAFE, POTENTIAL, HIGH and STRONG. Solutions to the prediction model were obtained using a combination of quantitative and qualitative data including the gas content or gas pressure and the geological and geotechnical conditions of coal seams. The application of this combined solution method identified more explicit and accurate model relationships between the in situ geological conditions and the potential risk of coal and gas outbursts. An analysis of the model solutions concluded that the coupled FTA and ANN model may offer a reliable alternative method to forecast the potential risk of coal and gas outbursts. (author)

  7. Effects of atmospheric gas composition and temperature on the gasification of coal in hot briquetting carbon composite iron ore

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Y.; Kanayama, M.; Maeda, T.; Nishika, K.; Shimizu, M. [Kyushu University, Fukuoka (Japan). Dept. of Materials Science & Engineering

    2007-01-15

    The gasification behavior of carbon composite iron ore produced by hot briquetting process was examined under various gas atmospheres such as CO-N{sub 2}, CO{sub 2}-N, and CO-CO{sub 2} at various temperatures. The gasification of coal was affected strongly by atmospheric gas concentration and reaction temperature. Kinetic analysis in various gas atmospheres was carried out by using the first order reaction model, which yields the straight line relation between reaction rate constants for the gasification of coal and the gas concentration. Therefore, reaction rate constants for the gasification of coal in CO-CO{sub 2}-N{sub 2} gas atmosphere were derived.

  8. Combustion of producer gas from gasification of south Sumatera lignite coal using CFD simulation

    Directory of Open Access Journals (Sweden)

    Vidian Fajri

    2017-01-01

    Full Text Available The production of gasses from lignite coal gasification is one of alternative fuel for the boiler or gas turbine. The prediction of temperature distribution inside the burner is important for the application and optimization of the producer gas. This research aims to provide the information about the influence of excess air on the temperature distribution and combustion product in the non-premixed burner. The process was carried out using producer gas from lignite coal gasification of BA 59 was produced by the updraft gasifier which is located on Energy Conversion Laboratory Mechanical Engineering Department Universitas Sriwijaya. The excess air used in the combustion process were respectively 10%, 30% and 50%. CFD Simulations was performed in this work using two-dimensional model of the burner. The result of the simulation showed an increase of excess air, a reduction in the gas burner temperature and the composition of gas (carbon dioxide, nitric oxide and water vapor.

  9. Technical study gas storage. Final report

    International Nuclear Information System (INIS)

    Borowka, J.; Moeller, A.; Zander, W.; Koischwitz, M.A.

    2001-01-01

    This study will answer the following questions: (a) For what uses was the storage facility designed and for what use is it currently applied? Provide an overview of the technical data per gas storage facility: for instance, what is its capacity, volume, start-up time, etc.; (b) How often has this facility been used during the past 10 years? With what purpose was the facility brought into operation at the time? How much gas was supplied at the time from the storage facility?; (c) Given the characteristics and the use of the storage facility during the past 10 years and projected gas consumption in the future, how will the storage facility be used in the future?; (d) Are there other uses for which the gas storage facility can be deployed, or can a single facility be deployed for numerous uses? What are the technical possibilities in such cases? Questions (a) and (b) are answered separately for every storage facility. Questions (c) and (d) in a single chapter each (Chapter 2 and 3). An overview of the relevant storage data relating to current use, use in the last 10 years and use in future is given in the Annex

  10. Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA.

    Science.gov (United States)

    Engle, Mark A; Radke, Lawrence F; Heffern, Edward L; O'Keefe, Jennifer M K; Hower, James C; Smeltzer, Charles D; Hower, Judith M; Olea, Ricardo A; Eatwell, Robert J; Blake, Donald R; Emsbo-Mattingly, Stephen D; Stout, Scott A; Queen, Gerald; Aggen, Kerry L; Kolker, Allan; Prakash, Anupma; Henke, Kevin R; Stracher, Glenn B; Schroeder, Paul A; Román-Colón, Yomayra; ter Schure, Arnout

    2012-03-15

    Ground-based surveys of three coal fires and airborne surveys of two of the fires were conducted near Sheridan, Wyoming. The fires occur in natural outcrops and in abandoned mines, all containing Paleocene-age subbituminous coals. Diffuse (carbon dioxide (CO(2)) only) and vent (CO(2), carbon monoxide (CO), methane, hydrogen sulfide (H(2)S), and elemental mercury) emission estimates were made for each of the fires. Additionally, gas samples were collected for volatile organic compound (VOC) analysis and showed a large range in variation between vents. The fires produce locally dangerous levels of CO, CO(2), H(2)S, and benzene, among other gases. At one fire in an abandoned coal mine, trends in gas and tar composition followed a change in topography. Total CO(2) fluxes for the fires from airborne, ground-based, and rate of fire advancement estimates ranged from 0.9 to 780mg/s/m(2) and are comparable to other coal fires worldwide. Samples of tar and coal-fire minerals collected from the mouth of vents provided insight into the behavior and formation of the coal fires. Published by Elsevier B.V.

  11. Adult Education and Radical Habitus in an Environmental Campaign: Learning in the Coal Seam Gas Protests in Australia

    Science.gov (United States)

    Ollis, Tracey; Hamel-Green, Michael

    2015-01-01

    This paper examines the adult learning dimensions of protestors as they participate in a campaign to stop coal seam gas exploration in Gippsland in Central Victoria, Australia. On a global level, the imposition of coal seam gas exploration by governments and mining companies has been the trigger for movements of resistance from environmental…

  12. Hydrate-based methane separation from coal mine methane gas mixture by bubbling using the scale-up equipment

    International Nuclear Information System (INIS)

    Cai, Jing; Xu, Chun-Gang; Xia, Zhi-Ming; Chen, Zhao-Yang; Li, Xiao-Sen

    2017-01-01

    Highlights: •Hydrate-based methane separation was achieved in the large scale using SHW-II. •Bubbling method was beneficial to reduce energy consumption. •The optimal conditions were determined. •The morphology and flow characteristic of hydrate formation were filmed. -- Abstract: In this work, the hydrate-based methane (CH 4 ) separation from coal mine methane (CMM) gas mixture was carried out by bubbling with a scale-up equipment (SHW-II). The influences of gas/liquid volume ratios (0.25 and 0.60), gas bubble sizes (diameter: 20, 50 and 100 μm) and gas flow rates (7.50, 16.13 and 21.50 mL/min/L) on gas consumption and CH 4 recovery were systematically investigated at 277.15 K and 1.50 MPa. The hydrate formation morphology was filmed by a camera and the hydrate structure was determined by powder X-ray diffraction (PXRD). Gas bubbles generated when gas mixture flowed into bulk solution through a bubble plate from the bottom of SHW-II. Initially, the gas hydrates formed at the bubble boundary and grew up as the shell around the bubble with the continuously rising of the gas bubble, and finally accumulated in the interface between the gaseous phase and solution. The experimental results showed that the THF/CH 4 /N 2 hydrate in SHW-II presented structure II (sII). The gas/liquid volume ratio, gas bubble size and gas flow rate had influences on gas consumption and CH 4 recovery. The increase of gas/liquid volume ratio resulted in the decrease of gas consumption and CH 4 recovery, while the increase of gas flow rate caused the decrease of gas consumption. Both the maximum gas consumption and CH 4 recovery were achieved at the gas bubble with diameter of 50 μm. The optimal operating condition for large-scale CH 4 separation via clatharate hydrate was comprehensively defined as the gas/liquid volume ratio of 0.25, the gas bubble diameter of 50 μm and the gas flow rate of 16.13 mL/min/L at 277.15 K and 1.50 MPa.

  13. Reservoir characteristics of coal-shale sedimentary sequence in coal-bearing strata and their implications for the accumulation of unconventional gas

    Science.gov (United States)

    Wang, Yang; Zhu, Yanming; Liu, Yu; Chen, Shangbin

    2018-04-01

    Shale gas and coalbed methane (CBM) are both considered unconventional natural gas and are becoming increasingly important energy resources. In coal-bearing strata, coal and shale are vertically adjacent as coal and shale are continuously deposited. Research on the reservoir characteristics of coal-shale sedimentary sequences is important for CBM and coal-bearing shale gas exploration. In this study, a total of 71 samples were collected, including coal samples (total organic carbon (TOC) content >40%), carbonaceous shale samples (TOC content: 6%-10%), and shale samples (TOC content TOC content. Clay and quartz also have a great effect on the porosity of shale samples. According to the FE-SEM image technique, nanoscale pores in the organic matter of coal samples are much more developed compared with shale samples. For shales with low TOC, inorganic minerals provide more pores than organic matter. In addition, TOC content has a positive relationship with methane adsorption capacity, and the adsorption capacity of coal samples is more sensitive than the shale samples to temperature.

  14. Report for fiscal 1995 by Coal Gasification Committee; 1995 nendo sekitan gas ka iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This is a summary primarily of the distributed material. As of December 14, 1995, the 200t/d pilot plant for power generation by entrained bed coal gasification records a total coal gasification operation time of 4,485 hours with an accumulated amount of power generation of 9,227MWh. A large combustor is tested, and it is found that combustion is stable under a 1/4 load with low NOx emissions. The combustor is sufficiently cooled with a small supply of air. Coal ash and coal, supplied in a constant state for an improved heat recovery efficiency in the development of hydrogen-from-coal technology, are heated to a temperature near their melting points. They are then allowed to impinge at a heat transfer plane simulating a gasifier heat recovery section, and a study is made of the mechanism of ash adhesion, molten or semi-molten, to the heat recovery section. The reduction of the heat transfer coefficient due to added grains is 30-50%, and the reduction is small when the heat transfer pipe surface velocity is high or when the carbon concentration in the grains is high. In another effort, utilization of coal-derived gas as town gas is studied. As for yields as indicated by the Curie gas pyrolyzer, the gas yield increases and liquid yield decreases when the reaction temperature is high. Using a small test unit, it is found that a rise in the hydrogen partial pressure increases the production of both gas and liquid. (NEDO)

  15. Coal Combustion Behavior in New Ironmaking Process of Top Gas Recycling Oxygen Blast Furnace

    Science.gov (United States)

    Zhou, Zhenfeng; Xue, Qingguo; Tang, Huiqing; Wang, Guang; Wang, Jingsong

    2017-10-01

    The top gas recycling oxygen blast furnace (TGR-OBF) is a new ironmaking process which can significantly reduce the coke ratio and emissions of carbon dioxide. To better understand the coal combustion characteristics in the TGR-OBF, a three dimensional model was developed to simulate the lance-blowpipe-tuyere-raceway of a TGR-OBF. The combustion characteristics of pulverized coal in TGR-OBF were investigated. Furthermore, the effects of oxygen concentration and temperature were also analyzed. The simulation results show that the coal burnout increased by 16.23% compared to that of the TBF. The oxygen content has an obvious effect on the burnout. At 70% oxygen content, the coal burnout is only 21.64%, with a decrease of 50.14% compared to that of TBF. Moreover, the effect of oxygen temperature is also very obvious.

  16. Mathematical modelling of flue gas tempered flames produced from pulverised coal fired with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Breussin, A.; Weber, R.; Kamp, W.L. van de

    1997-10-01

    The combustion of pulverised coal in conventional utility boilers contributes significantly to global CO{sub 2} emissions. Because atmospheric air is used as the combustion medium, the exhaust gases of conventional pulverised coal fired utility boilers contain approximately 15 % CO{sub 2}. This relatively low concentration makes separating and recovering CO{sub 2} a very energy-intensive process. This process can be simplified if N{sub 2} is eliminated from the comburent before combustion by firing the pulverised coal with pure oxygen. However, this concept will result in very high flames temperatures. Flue gas recirculation can be used to moderate the flame temperature, whilst generating a flue gas with a CO{sub 2} concentration of 95 %. In this presentation, both experimental and modelling work will be described. The former deals with identifying the issues related to the combustion of pulverised coal in simulated turbine exhaust gas, particularly with respect to stability, burnout and pollutant emissions. The second part of this presentation describes mathematical modelling of type 2 as well as type 1 swirling pulverised coal flames. Future work will concentrate on high CO{sub 2} levels environments. (orig.)

  17. PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2002-01-01

    For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char-for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumented and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests

  18. Method of gas emission control for safe working of flat gassy coal seams

    Science.gov (United States)

    Vinogradov, E. A.; Yaroshenko, V. V.; Kislicyn, M. S.

    2017-10-01

    The main problems at intensive flat gassy coal seam longwall mining are considered. For example, mine Kotinskaja JSC “SUEK-Kuzbass” shows that when conducting the work on the gassy coal seams, methane emission control by means of ventilation, degassing and insulated drain of methane-air mixture is not effective and stable enough. It is not always possible to remove the coal production restrictions by the gas factor, which leads to financial losses because of incomplete using of longwall equipment and the reduction of the technical and economic indicators of mining. To solve the problems, the authors used a complex method that includes the compilation and analysis of the theory and practice of intensive flat gassy coal seam longwall mining. Based on the results of field and numerical researches, the effect of parameters of technological schemes on efficiency of methane emission control on longwall panels, the non-linear dependence of the permissible according to gas factor longwall productivity on parameters of technological schemes, ventilation and degassing during intensive mining flat gassy coal seams was established. The number of recommendations on the choice of the location and the size of the intermediate section of coal heading to control gassing in the mining extracted area, and guidelines for choosing the parameters of ventilation of extracted area with the help of two air supply entries and removal of isolated methane-air mixture are presented in the paper. The technological scheme, using intermediate entry for fresh air intake, ensuring effective management gassing and allowing one to refuse from drilling wells from the surface to the mined-out space for mining gas-bearing coal seams, was developed.

  19. Forecast and Prevention of Coal and Gas Outbursts in the Case of Application of a New Mining Method - Drilling of a Coal Pillar

    Directory of Open Access Journals (Sweden)

    Vlastimil Hudeček

    2010-10-01

    Full Text Available Coal and gas outbursts are one of risk factors accompanying the mining of coal in low seams in the Ostrava-Karviná Coalfield.At the use of the method of longwall mining, all coal reserves have not been mined out owing to tectonic faults. For mining outthe residual reserves, the application of a new mining method - drilling of a coal pillar was proposed.The method of mining of a coal seam utilizing long large diameter boreholes is verified in the Paskov Mine (company OKD, JSC –Czech Republic under conditions of rock mass with hazard of rock and gas outbursts in localities of residual pillars left in seams afterfinishing the mining operations performed with using the classical method of longwall working along the strike. [5]Forecast and preventive measures applied to the verification of the new method were based on previous experience withthe mining of seams with hazard of coal and gas outbursts. They accepted fully valid legislation, i.e. Ordinance of Ostrava RegionalMining Authority No. 3895/2002 and supplementary materials (Instructions and Guidelines. The proposed measures respectedthe character of the method being verified. [4]For all areas being mined, projects containing also chapters specifying the problems of ensuring the safety of mining worksand operation under conditions of hazard of coal and gas outbursts were prepared.In the contributions, basic proposals for the principles of coal and gas outburst forecast and prevention when applying the newmining method – drilling of a coal pillar are presented

  20. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in COAL IGCC Powerplants

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Yackly

    2004-09-30

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, has been re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for Coal IGCC powerplants. The new program has been re-titled as ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants'' to better match the new scope. This technical progress report summarizes the work accomplished in the reporting period April 1, 2004 to August 31, 2004 on the revised Re-Directed and De-Scoped program activity. The program Tasks are: Task 1--IGCC Environmental Impact on high Temperature Materials: This first materials task has been refocused to address Coal IGCC environmental impacts on high temperature materials use in gas turbines and remains in the program. This task will screen material performance and quantify the effects of high temperature erosion and corrosion of hot gas path materials in Coal IGCC applications. The materials of interest will include those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: This second task develops and demonstrates new sensor technologies to determine the in-service health of advanced technology Coal IGCC powerplants, and remains in the program with a reduced scope. Its focus is now on only two critical sensor need areas for advanced Coal IGCC gas turbines: (1) Fuel Quality Sensor for detection of fuel impurities that could lead to rapid component degradation, and a Fuel Heating Value Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware.

  1. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  2. Fractionation of mercury stable isotopes during coal combustion and seawater flue gas desulfurization

    International Nuclear Information System (INIS)

    Huang, Shuyuan; Yuan, Dongxing; Lin, Haiying; Sun, Lumin; Lin, Shanshan

    2017-01-01

    In the current study, fractionation of mercury isotopes during coal combustion and seawater flue gas desulfurization (SFGD) in a coal-fired power plant using a SFGD system was investigated. Fourteen samples were collected from the power plant. The samples were pretreated with a combustion-trapping method and were analyzed with a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS). Compared with the raw coal, the bottom ash was enriched with lighter mercury isotopes with δ 202 Hg values ranging from −0.45 to −0.03‰. The fly ash was enriched with lighter mercury isotopes with δ 202 Hg values ranging from −1.49 to −0.73‰ for Chinese coal and from −1.47 to −0.62‰ for Indonesian coal. The δ 202 Hg of fresh seawater and desulfurized seawater was found to be −1.32 and −0.32‰ respectively. These δ 202 Hg values indicated that the desulfurized seawater was enriched with heavier mercury isotopes. Based upon the calculated results obtained from the mass balance equation, it was suggested that the stack emissions were enriched with lighter mercury isotopes. Mass independent fractionation was observed in most of the samples with a Δ 199 Hg/Δ 201 Hg ratio of approximately 0.96. The results help in improving the understanding of mercury isotope fractionation during coal combustion and SFGD, and are also useful in tracing the mercury emissions from coal fired power plants. - Highlights: • Spread of 1.5‰ was observed in δ 202 Hg values of raw coals and coal related samples. • The δ 202 Hg values were more negative in fly ash than those in the raw coal. • The flue gas had a significant Hg fractionation after desulfurization. • The stack emissions were enriched with lighter isotopes compared with the raw coal.

  3. Production of activated char from Illinois coal for flue gas cleanup

    Science.gov (United States)

    Lizzio, A.A.; DeBarr, J.A.; Kruse, C.W.

    1997-01-01

    Activated chars were produced from Illinois coal and tested in several flue gas cleanup applications. High-activity chars that showed excellent potential for both SO2 and NOx removal were prepared from an Illinois No. 2 bituminous coal. The SO2 (120 ??C) and NOx (25 ??C) removal performance of one char compared favorably with that of a commercial activated carbon (Calgon Centaur). The NOx removal performance of the same char at 120 ??C exceeded that of the Centaur carbon by more than 1 order of magnitude. Novel char preparation methods were developed including oxidation/thermal desorption and hydrogen treatments, which increased and preserved, respectively, the active sites for SO2 and NOx adsorption. The results of combined SO2/NOx removal tests, however, suggest that SO2 and NOx compete for similar adsorption sites and SO2 seems to be more strongly adsorbed than NO. A low-activity, low-cost char was also developed for cleanup of incinerator flue gas. A three-step method involving coal preoxidation, pyrolysis, and CO2 activation was used to produce the char from Illinois coal. Five hundred pounds of the char was tested on a slipstream of flue gas from a commercial incinerator in Germany. The char was effective in removing >97% of the dioxins and furans present in the flue gas; mercury levels were below detectable limits.

  4. Gas generation by co-gasification of biomass and coal in an autothermal fluidized bed gasifier

    International Nuclear Information System (INIS)

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    In this study, thermochemical biomass and coal co-gasification were performed on an autothermal fluidized bed gasifier, with air and steam as oxidizing and gasifying media. The experiments were completed at reaction temperatures of 875 °C–975 °C, steam-to-biomass ratio of 1.2, and biomass-to-coal ratio of 4. This research aims to determine the effects of reaction temperature on gas composition, lower heating value (LHV), as well as energy and exergy efficiencies, of the product gas. Over the ranges of the test conditions used, the product gas LHV varies between 12 and 13.8 MJ/Nm 3 , and the exergy and energy efficiencies of the product gas are in the ranges of 50.7%–60.8% and 60.3%–85.1%, respectively. The results show that high reaction temperature leads to higher H 2 and CO contents, as well as higher exergy and energy efficiencies of the product gas. In addition, gas LHV decreases with temperature. The molar ratio of H 2 /CO is larger than 1 at temperatures above 925 °C. Our experimental analysis shows that co-gasification of biomass and coal in an autothermal fluidized bed gasifier for gas production is feasible and promising. -- Highlights: • An innovative steam co-gasification process for gas production was proposed. • Co-gasification of biomass and coal in an autothermal fluidized bed gasifier was tested. • High temperature favors H 2 production. • H 2 and CO contents increase, whereas CO 2 and CH 4 levels decrease with increase in T. • Exergy and energy efficiencies of gases increase with increase in T

  5. System and method for producing substitute natural gas from coal

    Science.gov (United States)

    Hobbs, Raymond [Avondale, AZ

    2012-08-07

    The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

  6. Coal-packed methane biofilter for mitigation of green house gas emissions from coal mine ventilation air.

    Science.gov (United States)

    Limbri, Hendy; Gunawan, Cindy; Thomas, Torsten; Smith, Andrew; Scott, Jason; Rosche, Bettina

    2014-01-01

    Methane emitted by coal mine ventilation air (MVA) is a significant greenhouse gas. A mitigation strategy is the oxidation of methane to carbon dioxide, which is approximately twenty-one times less effective at global warming than methane on a mass-basis. The low non-combustible methane concentrations at high MVA flow rates call for a catalytic strategy of oxidation. A laboratory-scale coal-packed biofilter was designed and partially removed methane from humidified air at flow rates between 0.2 and 2.4 L min-1 at 30°C with nutrient solution added every three days. Methane oxidation was catalysed by a complex community of naturally-occurring microorganisms, with the most abundant member being identified by 16S rRNA gene sequence as belonging to the methanotrophic genus Methylocystis. Additional inoculation with a laboratory-grown culture of Methylosinus sporium, as investigated in a parallel run, only enhanced methane consumption during the initial 12 weeks. The greatest level of methane removal of 27.2±0.66 g methane m-3 empty bed h-1 was attained for the non-inoculated system, which was equivalent to removing 19.7±2.9% methane from an inlet concentration of 1% v/v at an inlet gas flow rate of 1.6 L min-1 (2.4 min empty bed residence time). These results show that low-cost coal packing holds promising potential as a suitable growth surface and contains methanotrophic microorganisms for the catalytic oxidative removal of methane.

  7. Coal-Packed Methane Biofilter for Mitigation of Green House Gas Emissions from Coal Mine Ventilation Air

    Science.gov (United States)

    Limbri, Hendy; Gunawan, Cindy; Thomas, Torsten; Smith, Andrew; Scott, Jason; Rosche, Bettina

    2014-01-01

    Methane emitted by coal mine ventilation air (MVA) is a significant greenhouse gas. A mitigation strategy is the oxidation of methane to carbon dioxide, which is approximately twenty-one times less effective at global warming than methane on a mass-basis. The low non-combustible methane concentrations at high MVA flow rates call for a catalytic strategy of oxidation. A laboratory-scale coal-packed biofilter was designed and partially removed methane from humidified air at flow rates between 0.2 and 2.4 L min−1 at 30°C with nutrient solution added every three days. Methane oxidation was catalysed by a complex community of naturally-occurring microorganisms, with the most abundant member being identified by 16S rRNA gene sequence as belonging to the methanotrophic genus Methylocystis. Additional inoculation with a laboratory-grown culture of Methylosinus sporium, as investigated in a parallel run, only enhanced methane consumption during the initial 12 weeks. The greatest level of methane removal of 27.2±0.66 g methane m−3 empty bed h−1 was attained for the non-inoculated system, which was equivalent to removing 19.7±2.9% methane from an inlet concentration of 1% v/v at an inlet gas flow rate of 1.6 L min−1 (2.4 min empty bed residence time). These results show that low-cost coal packing holds promising potential as a suitable growth surface and contains methanotrophic microorganisms for the catalytic oxidative removal of methane. PMID:24743729

  8. Greenhouse gas implications of using coal for transportation: Life cycle assessment of coal-to-liquids, plug-in hybrids, and hydrogen pathways

    International Nuclear Information System (INIS)

    Jaramillo, Paulina; Samaras, Constantine; Wakeley, Heather; Meisterling, Kyle

    2009-01-01

    Using coal to produce transportation fuels could improve the energy security of the United States by replacing some of the demand for imported petroleum. Because of concerns regarding climate change and the high greenhouse gas (GHG) emissions associated with conventional coal use, policies to encourage pathways that utilize coal for transportation should seek to reduce GHGs compared to petroleum fuels. This paper compares the GHG emissions of coal-to-liquid (CTL) fuels to the emissions of plug-in hybrid electric vehicles (PHEV) powered with coal-based electricity, and to the emissions of a fuel cell vehicle (FCV) that uses coal-based hydrogen. A life cycle approach is used to account for fuel cycle and use-phase emissions, as well as vehicle cycle and battery manufacturing emissions. This analysis allows policymakers to better identify benefits or disadvantages of an energy future that includes coal as a transportation fuel. We find that PHEVs could reduce vehicle life cycle GHG emissions by up to about one-half when coal with carbon capture and sequestration is used to generate the electricity used by the vehicles. On the other hand, CTL fuels and coal-based hydrogen would likely lead to significantly increased emissions compared to PHEVs and conventional vehicles using petroleum-based fuels.

  9. Numerical simulation of coupled binary gas-solid interaction during carbon dioxide sequestration in a coal bed

    International Nuclear Information System (INIS)

    Feng Qiyan; Zhou Lai; Chen Zhongwei; Liu Jishan

    2008-01-01

    Complicated coupled binary gas-solid interaction arises during carbon dioxide sequestration in a coal seam, which combines effects of CO 2 -CH 4 counter adsorption, CO 2 -CH 4 counter diffusion, binary gas flow and coal bed deformation. Through solving a set of coupled field governing equations, a novel full coupled Finite Element (FE) model was established by COMSOL Multiphysics. The new FE model was applied to the quantification of coal porous pressure, coal permeability, gas composition fraction and coal displacement when CO 2 was injected in a CH 4 saturated coal bed. Numerical results demonstrate that CH 4 is swept by the injected CO 2 accompanied by coal volumetric deformation. Compared to the single CH 4 in situ, CH 4 -CO 2 counter-diffusion induced coal swelling can make more compensation for coal shrinkage due to effective stress. Competing influences between the effective stress and the CH 4 -CO 2 counter-diffusion induced volume change governs the evolution of porous pressure and permeability, which is controlled by the porous pressure correspondingly. This achievement extends our ability to understand the coupled multi-physics of the CO 2 geological sequestration and CO 2 enhanced coal bed methane recovery under field conditions. (authors)

  10. Development of the first coal seam gas exploration program in Indonesia: Reservoir properties of the Muaraenim Formation, south Sumatra

    Energy Technology Data Exchange (ETDEWEB)

    Sosrowidjojo, I.B. [R and D Centre for Oil and Gas Technology, LEMIGAS, Jakarta (Indonesia); Saghafi, A. [CSIRO Energy Technology, P O Box 330, Newcastle, NSW, 2300 (Australia)

    2009-09-01

    The Late Miocene Muaraenim Formation in southern Sumatra contains thick coal sequences, mostly of low rank ranging from lignite to sub-bituminous, and it is believed that these thick low rank coals are the most prospective for the production of coal seam gas (CSG), otherwise known as coalbed methane (CBM), in Indonesia. As part of a major CSG exploration project, gas exploration drilling operations are being undertaken in Rambutan Gasfields in the Muaraenim Formation to characterize the CSG potential of the coals. The first stage of the project, which is described here, was designed to examine the gas reservoir properties with a focus on coal gas storage capacity and compositional properties. Some five CSG exploration boreholes were drilled in the Rambutan Gasfield, south of Palembang. The exploration boreholes were drilled to depths of {proportional_to} 1000 m into the Muaraenim Formation. Five major coal seams were intersected by these holes between the depths of 450 and 1000 m. The petrography of coal samples collected from these seams showed that they are vitrinite rich, with vitrinite contents of more than 75% (on a mineral and moisture free basis). Gas contents of up to 5.8 m{sup 3}/t were measured for the coal samples. The gas desorbed from coal samples contain mainly methane (CH{sub 4}) ranging from 80 to 93% and carbon dioxide (CO{sub 2}) ranging from 6 to 19%. The composition of the gas released into the production borehole/well is, however, much richer in CH{sub 4} with about 94 to 98% CH{sub 4} and less than 5% CO{sub 2}. The initial results of drilling and reservoir characterization studies indicate suitable gas recovery parameters for three of the five coal seams with a total thickness of more than 30 m. (author)

  11. A sequential approach to control gas for the extraction of multi-gassy coal seams from traditional gas well drainage to mining-induced stress relief

    International Nuclear Information System (INIS)

    Kong, Shengli; Cheng, Yuanping; Ren, Ting; Liu, Hongyong

    2014-01-01

    Highlights: • The gas reservoirs characteristics are measured and analyzed. • A sequential approach to control gas of multi-gassy coal seams is proposed. • The design of gas drainage wells has been improved. • The utilization ways of different concentrations of gas production are shown. - Abstract: As coal resources become exhausted in shallow mines, mining operations will inevitably progress from shallow depth to deep and gassy seams due to increased demands for more coal products. However, during the extraction process of deeper and gassier coal seams, new challenges to current gas control methods have emerged, these include the conflict between the coal mine safety and the economic benefits, the difficulties in reservoirs improvement, as well as the imbalance between pre-gas drainage, roadway development and coal mining. To solve these problems, a sequential approach is introduced in this paper. Three fundamental principles are proposed: the mining-induced stress relief effect of the first-mined coalbed should be sufficient to improve the permeability of the others; the coal resource of the first-mined seams must be abundant to guarantee the economic benefits; the arrangement of the vertical wells must fit the underground mining panel. Tunlan coal mine is taken as a typical example to demonstrate the effectiveness of this approach. The approach of integrating surface coalbed methane (CBM) exploitation with underground gas control technologies brings three major benefits: the improvement of underground coal mining safety, the implementation of CBM extraction, and the reduction of greenhouse gas emissions. This practice could be used as a valuable example for other coal mines having similar geological conditions

  12. Development of a coal fired pulse combustor for residential space heating. Phase I, Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-04-01

    This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

  13. The natural gas guideline... Finally a good agreement

    International Nuclear Information System (INIS)

    Beltrame-Devoti, M.C.

    1998-01-01

    After 18 months of intense negotiations, the European Energy Council came on December 8, 1997 to an agreement about the internal gas market. The essential point of this guideline is the possibility for some customers to deal with the supplier of their choice. This opening of national gas markets will lead to the disappearance of gas importation monopolies. This paper summarizes the final option retained for the opening of the European gas market, its schedule, the protection of take or pay contracts, and the future perspectives for industrialists (new operators for the storage, transport, terminals management, distribution and trade, diversification of services, competition..). (J.S.)

  14. Study on Resources Assessment of Coal Seams covered by Long-Distance Oil & Gas Pipelines

    Science.gov (United States)

    Han, Bing; Fu, Qiang; Pan, Wei; Hou, Hanfang

    2018-01-01

    The assessment of mineral resources covered by construction projects plays an important role in reducing the overlaying of important mineral resources and ensuring the smooth implementation of construction projects. To take a planned long-distance gas pipeline as an example, the assessment method and principles for coal resources covered by linear projects are introduced. The areas covered by multiple coal seams are determined according to the linear projection method, and the resources covered by pipelines directly and indirectly are estimated by using area segmentation method on the basis of original blocks. The research results can provide references for route optimization of projects and compensation for mining right..

  15. Subsequent flue gas desulfurization of coal-fired power plant units

    International Nuclear Information System (INIS)

    Willibal, U.; Braun, Gy.

    1998-01-01

    The presently operating coal-fired power plant in Hungary do not satisfy the pollution criteria prescribed by the European Union norms. The main polluting agent is the sulfur dioxide emitted by some of the power plants in Hungary in quantities over the limit standards. The power plant units that are in good operating state could be made competitive by using subsequent desulfurization measures. Various flue gas desulfurization technologies are presented through examples that can be applied to existing coal-fired power plants. (R.P.)

  16. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2007-09-01

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  17. Copyrolysis of coal with coke-oven gas. III. Analysis of tar

    Energy Technology Data Exchange (ETDEWEB)

    Liao, H.; Sun, C.; Li, B.; Liu, Z. [Chinese Academy of Sciences, Taiyuan (China). State Key Laboratory of Coal Conversion, Institute of Coal Chemistry

    1998-02-01

    Tars from copyrolysis of Xianfeng lignite with coke-oven gas (COG) at different pressures (0.1-5 MPa) and heating rates (5-25{degree}C/min) to a final temperature of 650{degree}C were analyzed and compared with hydropyrolysis under the same H{sub 2} partial pressure. The results indicated that high contents of BTX, PCX and naphthalene were found in the tar from copyrolysis of Xianfeng lignite with COG. Pressure and heating rate have important effects on tar yields and the contents of BTX, PCX and naphthalene in oil. Increasing pressure and decreasing heating rate enhance the tar yields and result in high yields of BTX and PCX. When compared with hydropyrolysis under the same H{sub 2} partial pressure, the tar yield increases by 1.2 times and the yields of BTX, PCX and naphthalene by about 1.6, 1.3 and 1.6 times, respectively. At the same total pressure (3MPa), the yields of BTX and naphthalene from copyrolysis are equal to those from hydropyrolysis. The results reveal that other components in COG, such as methane, carbon monoxide etc., are of importance for pyrolysis behaviour of coal under COG and improvement of oil qualities. 5 refs., 5 figs., 2 tabs.

  18. Pra Desain Pabrik Substitute Natural Gas (SNG dari Low Rank Coal

    Directory of Open Access Journals (Sweden)

    Asti Permatasari

    2014-09-01

    rendah dan sedang yang sangat banyak, yaitu masing-masing sebesar 2.426,00 juta ton dan 186,00 juta ton. Maka dari itu, pabrik SNG dari low rank coal ini akan didirikan di Kecamatan Ilir Timur, Sumatera Selatan. Rencananya pabrik ini akan didirikan pada tahun 2016 dan siap beroperasi pada tahun 2018. Diperkirakan konsumsi gas alam pada tahun 2018 sebesar 906.599,3 MMSCF sehingga pendirian pabrik yang baru diharapkan dapat menggantikan kebutuhan gas alam sebesar 4% di Indonesia, yaitu sebanyak 36.295,502 MMSCF per tahun atau sebesar 109.986 MMSCFD. Proses pembuatan SNG dari low rank coal terdiri dari empat proses utama, yaitu coal preparation, gasifikasi, gas cleaning, dan metanasi. Dari analisa perhitungan ekonomi didapat Investasi 823.947.924 USD, IRR sebesar 13,12%, POT selama 5 tahun, dan BEP sebesar 68,55%.

  19. Experimental Analyses of the Major Parameters Affecting the Intensity of Outbursts of Coal and Gas

    Science.gov (United States)

    Nie, W.; Peng, S. J.; Xu, J.; Liu, L. R.; Wang, G.; Geng, J. B.

    2014-01-01

    With an increase in mining depth and production, the intensity and frequency of outburst of coal and gas have a tendency to increase. Estimating the intensity of outbursts of coal and gas plays an important role because of its relation with the risk value. In this paper, we described the semiquantitative relations between major parameters and intensity of outburst based on physical experiments. The results showed increment of geostress simulated by horizontal load (from 1.4, 2.4, 3.2, to 3.4 MPa) or vertical load (from 2, 3, 3.6, to 4 MPa) improved the relative intensity rate (3.763–7.403% and 1.273–7.99%); the increment of porosity (from 1.57, 2.51, 3, to 3.6%) improved the relative intensity rate from 3.8 to 13.8%; the increment of gas pressure (from 0, 0.5, 0.65, 0.72, 1, to 1.5 Mpa) induced the relative intensity rate to decrease from 38.22 to 0%; the increment of water content (from 0, 2, 4, to 8%) caused the relative intensity rate to drop from 5.425 to 0.5%. Furthermore, sensitivity and range analysis evaluates coupled factors affecting the relative intensity. In addition, the distinction with initiation of outburst of coal and gas affected by these parameters is discussed by the relative threshold of gas content rate. PMID:25162042

  20. NOx results from two combustors tested on medium BTU coal gas

    Science.gov (United States)

    Sherlock, T. P.; Carl, D. E.; Vermes, G.; Schwab, J.; Notardonato, J. J.

    1982-01-01

    The results of tests of two combustor configurations using coal gas from a 25 ton/day fluidized bed coal gasifier are reported. The trials were run with a ceramic-lined, staged rich/lean burner and an integral, all metal multiannular swirl burner (MASB) using a range of temperatures and pressures representative of industrial turbine inlet conditions. A lean mixture was examined at 104, 197, and 254 Btu/Scf, yielding NO(x) emissions of 5, 20, and 70 ppmv, respectively. The MASB was employed only with a gas rated at 220-270 Btu/Scf, producing 80 ppmv NO(x) at rated engine conditions. The results are concluded to be transferrable to current machines. Further tests on the effects of gas composition, the scaling of combustors to utility size, and the development of improved wall cooling techniques and variable geometry are indicated.

  1. Layout of an internally heated gas generator for the steam gasification of coal

    International Nuclear Information System (INIS)

    Feistel, P.P.; Duerrfeld, R.; Heck, K.H. van; Juentgen, H.

    1975-01-01

    Industrial-scale steam gasification of coal using heat from high temperature reactors requires research and development on allothermal gas generators. Bergbau-Forschung GmbH, Essen, does theoretical and experimental work in this field. The experiments deal with reaction kinetics, heat transfer and material tests. Their significance for the layout of a full-scale gas generator is shown. Including material specifications, the feasibility of a gasifier, characterized by a fluid bed volume of 318 m 3 and a heat transferring area of 4000 m 2 , results. The data, now available, are used to determine the gasification throughput from the heat balance, i.e. the equality of heat consumed and heat transferred. Throughputs of about 50 t/hr of coal are possible for a single gas generator, the helium outlet temperature of the HTR being 950 0 C/ Bergbau-Forschung has commissioned a medium-scale pilot plant (200 kg/hr). (Auth.)

  2. Simulation of Synthesis Gas Production from Steam Oxygen Gasification of Colombian Coal Using Aspen Plus®

    Directory of Open Access Journals (Sweden)

    Jorge E. Preciado

    2012-11-01

    Full Text Available A steady state simulation of syngas production from a Steam Oxygen Gasification process using commercial technologies was performed using Aspen Plus®. For the simulation, the average proximate and ultimate compositions of bituminous coal obtained from the Colombian Andean region were employed. The simulation was applied to conduct sensitivity analyses in the O2 to coal mass ratio, coal slurry concentration, WGS operating temperature and WGS steam to dry gas molar ratio (SDG over the key parameters: syngas molar composition, overall CO conversion in the WGS reactors, H2 rich-syngas lower heating value (LHV and thermal efficiency. The achieved information allows the selection of critical operating conditions leading to improve system efficiency and environmental performance. The results indicate that the oxygen to carbon ratio is a key variable as it affects significantly both the LHV and thermal efficiency. Nevertheless, the process becomes almost insensitive to SDG values higher than 2. Finally, a thermal efficiency of 62.6% can be reached. This result corresponds to a slurry solid concentration of 0.65, a WGS process SDG of 0.59, and a LTS reactor operating temperature of 473 K. With these fixed variables, a syngas with H2 molar composition of 92.2% and LHV of 12 MJ Nm−3 was attained.

  3. TVA coal-gasification commercial demonstration plant project. Volume 5. Plant based on Koppers-Totzek gasifier. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This volume presents a technical description of a coal gasification plant, based on Koppers-Totzek gasifiers, producing a medium Btu fuel gas product. Foster Wheeler carried out a conceptual design and cost estimate of a nominal 20,000 TPSD plant based on TVA design criteria and information supplied by Krupp-Koppers concerning the Koppers-Totzek coal gasification process. Technical description of the design is given in this volume.

  4. Framing scenarios of electricity generation and gas use: EPRI report series on gas demands for power generation. Final report

    International Nuclear Information System (INIS)

    Thumb, S.; Glover, W.; Hughes, W.R.

    1996-07-01

    Results of three EPRI projects have been combined to analyze power industry consumption of gas and other generating fuels. The report's capstone is a scenario analysis of power industry generation and fuel consumption. The Utility Fuel Consumption Model (UFCM), developed for the project, predicts generating capacity and generation by region and fuel through 2015, based on load duration curves, generation dispatch, and expected capacity additions. Scenarios embody uncertain factors, such as electricity demand growth, fuel switching, coal-gas competition, the merit order of gas-coal dispatch, and retirement of nuclear units, that substantially affect gas consumption. Some factors, especially electricity demand have very large effects. The report includes a consistent database on NUG (non-utility generation) capacity and generation and assesses historical and prospective trends in NUG generation. The report shows that NUG capacity growth will soon decline substantially. The study assesses industry capability for price-induced fuel switching from gas to oil and coal, documenting conversions of coal units to dual coal-gas capability and determining that gas-to-oil switching remains a strong influence on fuel availability and gas prices, though regulation and taxation have increased trigger prices for switching. 61 tabs

  5. Relaxation and gas drainage boreholes for high performance longwall operations in low permeability coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Imgrund, Thomas [DMT GmbH und Co. KG, Essen (Germany); Bauer, Frank [Hazemag und EPR GmbH, Duelmen (Germany). Mining

    2013-06-15

    With an increasing depth of cover, gas emission control and gas outbursts prevention has become an increasingly important issue in coal mining. Deep multi-seam mining often requires operation in an environment characterised by a high gas content and gas pressure. Control of gas related risks has to be realised during heading and close to the longwall by proper risk assessment and flexible drilling schemes. These cover exploration and relaxation drilling, in-seam drilling for pre-drainage and cross measure drilling for drainage of roof and the floor gas emissions. DMT provides comprehensive solutions based on a scientific background. These solutions are engineered considering their technical feasibility. Hazemag Mining offers a large number of complete machinery including tools systems for the implementation of those solutions. (orig.)

  6. N2 O A greenhouse gas released from the combustion of coals in fluidized beds

    International Nuclear Information System (INIS)

    Boavida, D.; Lobo, L. S.; Gulyurtlu, I.; Cabrita, I.

    1996-01-01

    This paper discusses the results of the experimental work investigating the formation of N-2 O and NO during fluidized bed combustion of coals, and of chars and volatiles produced from the pyrolysis of these coals. Ammonia (N H 3 ) and hydrogen cyanide (HCN) are shown to play important roles as gas phase precursors of both NO and N 2 O. The conversion of fuel-N through N H 3 and HCN to N 2 O and NO was studied using a fluidized bed combustor in the temperature range between 973 K and 1273 K, for two different coals. The results suggest that the principal contribution to N 2 O emission Originated from volatile-N, however, char-N could also have an important role, depending upon the temperature. 1 fig., 8 tabs

  7. Supplementary study of possible risks and consequences of the exploration and exploitation of shale and coal gas in the Netherlands. Final report of the research questions A and B; Aanvullend onderzoek naar mogelijke risico's en gevolgen van de opsporing en winning van schalie- en steenkoolgas in Nederland. Eindrapport onderzoeksvragen A en B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The Dutch Ministry of Economic Affairs has given the consortium consisting of Witteveen and Bos, Arcadis and Fugro an assignment to investigate the possible risks and effects of exploration and exploitation of shale gas and coal bed methane in The Netherlands. The main questions of the research have been outlined in 55 research question that have been answered in the shape of technical notes. This summary contains the most important findings of this research. Attention is paid to Conventional versus unconventional gas, Footprint and nuisance, Methane emissions and climate footprint, Earthquakes and subsidence, Water usage, Fraccing fluid, Safety, Ground water, Relation with current legislation [Dutch] Het Ministerie van Economische Zaken heeft het consortium Witteveen+Bos, Arcadis en Fugro opdracht gegeven voor een onderzoek naar mogelijke risico's en gevolgen van opsporen en winnen van schaliegas (en steenkoolgas) in Nederland. De hoofdvragen van het onderzoek zijn uitgewerkt in 55 onderzoeksvragen, die in achtergrondnotities zijn beantwoord. Aandacht is besteed aan Conventioneel versus onconventioneel gas, Ruimtebeslag en hinder, Methaanemissies en klimaatvoetafdruk, Bodembewegingen, Watergebruik, Frac-vloeistof, Veiligheid, Grondwater, en de Relatie met huidige mijnbouwwetgeving.

  8. New coal-based energy systems

    International Nuclear Information System (INIS)

    Barnert, H.

    1986-01-01

    Conversion of coal into liquid fuels or into coal gas is considered and the use of high temperature nuclear reactors whose waste heat can be used for remote (district) heating mentioned. The use of high temperature reactors as energy source for coal gasification is also examined and, finally, the extraction of heat from combined coal, steel and high temperature nuclear reactors is suggested. (G.M.E.)

  9. ENHANCED CONTROL OF MERCURY BY WET FLUE GAS DESULFURIZATION SYSTEMS; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    The U.S. Department of Energy and EPRI co-funded this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project has investigated catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installations. Field tests were conducted to determine whether candidate catalyst materials remain active towards mercury oxidation after extended flue gas exposure. Catalyst life will have a large impact on the cost effectiveness of this potential process. A mobile catalyst test unit was used to test the activity of four different catalyst materials for a period of up to six months each at three utility sites. Catalyst testing was completed at the first site, which fires Texas lignite, in December 1998; at the second test site, which fires a Powder River Basin subbituminous coal, in November 1999; and at the third site, which fires a medium- to high-sulfur bituminous coal, in January 2001. Results of testing at each of the three sites were reported in previous technical notes. At Site 1, catalysts were tested only as powders dispersed in sand bed reactors. At Sites 2 and 3, catalysts were tested in two forms, including powders dispersed in sand and in commercially available forms such as extruded pellets and coated honeycomb structures. This final report summarizes and presents results from all three sites, for the various catalyst forms tested. Field testing was supported by laboratory tests to screen catalysts for activity at specific flue gas compositions, to investigate catalyst deactivation mechanisms and methods for regenerating spent catalysts. Laboratory results are also summarized and discussed in this report

  10. Combustion of pulverized coal in vortex structures. Final report, October 1, 1993--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gollahalli, S.R.; Butuk, N.

    1996-03-01

    The objectives of the project were: (i) to understand the effects of heating one of the streams on the characteristics of shear layers, (ii) to investigate the changes in the characteristics of large scale vortex structures in the shear layer caused by the introduction of inert solid particles in one of the feed streams; (iii) to understand the effects of pyrolyzing solids on the shear layer behavior; and (iv) to study the effects of combustion of particles and their pyrolysis products on the shear layer structure, heat release rate, and pollutant emission characteristics. An experimental facility for generating two-dimensional shear layers containing vortex structures has been designed and fabricated. The experimental facility is essentially a low speed wind tunnel designed to (i) provide two gas streams, initially with uniform velocity profiles and isotropic turbulence, mixing at the end of a splitter plate, (ii) introduce vorticity by passively perturbing one of the streams, (iii) allow heating of one of the streams to temperatures high enough to cause pyrolysis of coal particles, and (iv) provide a natural gas flame in one of the streams to result in ignition and burning of coal particles.

  11. Heat recovery from flue gas of coal fired installations with reduced pollutant emission - the Zittau process

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H; Strauss, R; Hofmann, K -D; Suder, M; Hultsch, T; Wetzel, W; Gabrysch, H; Jung, J [Technische Hochschule, Zittau (German Democratic Republic)

    1989-01-01

    Explains the Zittau technology of combined flue gas heat recovery and flue gas desulfurization in small brown coal fired power plants. Steam generators to be equipped with this technology have 6.5 or 10 t/h steam capacity and are intended for combustion of low-grade brown coal (8.2 MJ/kg). An industrial 6.5 t/h prototype steam generator is in operation and it achieves 95% SO{sub 2} removal from flue gas with 5600 to 7800 mg SO{sub 2} per m{sup 3} of dry flue gas. The Zittau technology is available in 3 variants: with maximum waste heat recovery, with partial waste heat recovery or without waste heat recovery and only wet flue gas scrubbing. Two flowsheets of flue gas and suspension circulation are provided. The first variant recovers 25.7% of nominal heat capacity (1.1 thermal MW from a 4.2 MW steam generator with 6.5 t/h steam capacity), which amounts to economizing 2,400 t/a brown coal equivalent over 4,000 annual operating hours. The second variant recovers 6.5% of waste heat, requiring less investment by installing smaller heat exchangers than used in the first variant. All three variants have contact spray separators, suction units and suspension preparation equipment. Flue gas suspension scrubbing is carried out with fly ash produced by the steam generator. This ash is capable of absorbing 50 to 70% of flue gas SO{sub 2}. Supply of additional ash from other plants achieve a further 25% SO{sub 2} removal; a higher desulfurization degree is obtained by adding limestone to suspensions. 5 refs.

  12. Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Huang, Runze; Ries, Robert J.; Masanet, Eric

    2015-01-01

    China has the world's largest shale gas reserves, which might enable it to pursue a new pathway for electricity generation. This study employed hybrid LCI (life cycle inventory) models to quantify the ETW (extraction-to-wire) GHG (greenhouse gas) emissions and water consumption per kWh of coal- and shale gas-fired electricity in China. Results suggest that a coal-to-shale gas shift and upgrading coal-fired power generation technologies could provide pathways to less GHG and water intensive power in China. Compared to different coal-fired generation technologies, the ETW GHG emissions intensity of gas-fired CC (combined cycle) technology is 530 g CO 2 e/kWh, which is 38–45% less than China's present coal-fired electricity. Gas-fired CT (combustion turbine) technology has the lowest ETW water consumption intensity at 960 g/kWh, which is 34–60% lower than China's present coal-fired electricity. The GHG-water tradeoff of the two gas-fired power generation technologies suggests that gas-fired power generation technologies should be selected based on regional-specific water resource availabilities and electricity demand fluctuations in China. However, the low price of coal-fired electricity, high cost of shale gas production, insufficient pipeline infrastructures, and multiple consumers of shale gas resources may serve as barriers to a coal-to-shale gas shift in China's power sector in the near term. - Highlights: • The GHG and water footprints of coal- and shale gas-fired electricity are estimated. • A coal-to-shale gas shift can enable less GHG and water intensive power in China. • The GHG emissions of shale gas-fired combined cycle technology is 530 g CO 2 e/kWh. • The water consumption of shale gas-fired combustion turbine technology is 960 g/kWh. • Shale gas-fired power generation technologies selection should be regional-specific

  13. Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires

    Science.gov (United States)

    Sun, Jielun; Brady, T.A.; Rood, M.J.; Lehmann, C.M.; Rostam-Abadi, M.; Lizzio, A.A.

    1997-01-01

    Activated carbons for natural gas storage were produced from Illinois bituminous coals (IBC-102 and IBC-106) and scrap tires by physical activation with steam or CO2 and by chemical activation with KOH, H3PO4, or ZnCl2. The products were characterized for N2-BET area, micropore volume, bulk density, pore size distribution, and volumetric methane storage capacity (Vm/Vs). Vm/Vs values for Illinois coal-derived carbons ranged from 54 to 83 cm3/cm3, which are 35-55% of a target value of 150 cm3/cm3. Both granular and pelletized carbons made with preoxidized Illinois coal gave higher micropore volumes and larger Vm/Vs values than those made without preoxidation. This confirmed that preoxidation is a desirable step in the production of carbons from caking materials. Pelletization of preoxidized IBC-106 coal, followed by steam activation, resulted in the highest Vm/Vs value. With roughly the same micropore volume, pelletization alone increased Vm/Vs of coal carbon by 10%. Tire-derived carbons had Vm/Vs values ranging from 44 to 53 cm3/cm3, lower than those of coal carbons due to their lower bulk densities. Pelletization of the tire carbons increased bulk density up to 160%. However, this increase was offset by a decrease in micropore volume of the pelletized materials, presumably due to the pellet binder. As a result, Vm/Vs values were about the same for granular and pelletized tire carbons. Compared with coal carbons, tire carbons had a higher percentage of mesopores and macropores.

  14. Durable zinc oxide-containing sorbents for coal gas desulfurization

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1996-01-01

    Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

  15. Softening behaviour of brown coal ashes. Influence of ash components and gas atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hegermann, R; Huettinger, K J [Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Chemische Technik

    1990-03-01

    The softening behaviour of brown coal ashes during gasification is important for three reasons: (1) Formation of large agglomerates, (2) inactivation of catalytically active ash components, (3) encapsulation of parts of the coal. The softening behaviour of the ashes was studied with a high temperature dilatometer at ambient pressure in various atmospheres (air, CO{sub 2}, Ar/H{sub 2}O, Ar, H{sub 2}/H{sub 2}O, H{sub 2}) using a push-rod with a conical tip. The heating rate was 5 Kmin{sup -1}, the final temperature 1000deg C, the residence time 1 h. (orig.).

  16. Core-in-shell sorbent for hot coal gas desulfurization

    Science.gov (United States)

    Wheelock, Thomas D.; Akiti, Jr., Tetteh T.

    2004-02-10

    A core-in-shell sorbent is described herein. The core is reactive to the compounds of interest, and is preferably calcium-based, such as limestone for hot gas desulfurization. The shell is a porous protective layer, preferably inert, which allows the reactive core to remove the desired compounds while maintaining the desired physical characteristics to withstand the conditions of use.

  17. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Andrew Kramer [Gas Technology Inst., Des Plaines, IL (United States)

    2016-09-30

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition region at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.

  18. Measurements of Gasification Characteristics of Coal and Char in CO2-Rich Gas Flow by TG-DTA

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2013-01-01

    Full Text Available Pyrolysis, combustion, and gasification properties of pulverized coal and char in CO2-rich gas flow were investigated by using gravimetric-differential thermal analysis (TG-DTA with changing O2%, heating temperature gradient, and flow rate of CO2-rich gases provided. Together with TG-DTA, flue gas generated from the heated coal, such as CO, CO2, and hydrocarbons (HCs, was analyzed simultaneously on the heating process. The optimum O2% in CO2-rich gas for combustion and gasification of coal or char was discussed by analyzing flue gas with changing O2 from 0 to 5%. The experimental results indicate that O2% has an especially large effect on carbon oxidation at temperature less than 1100°C, and lower O2 concentration promotes gasification reaction by producing CO gas over 1100°C in temperature. The TG-DTA results with gas analyses have presented basic reference data that show the effects of O2 concentration and heating rate on coal physical and chemical behaviors for the expected technologies on coal gasification in CO2-rich gas and oxygen combustion and underground coal gasification.

  19. Theoretical study on composition of gas produced by coal gasification; Sekitan gas ka de seiseisuru gas no sosei ni kansuru kosatsu (HYCOL data no doteki kaiseki)

    Energy Technology Data Exchange (ETDEWEB)

    Kaiho, M.; Yasuda, H.; Kobayashi, M.; Yamada, O.; Soneda, Y.; Makino, M. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    In relation to considerations on composition of gas produced by coal gasification, the HYCOL hydrogen generation process data were analyzed. From the fact that CO concentration (Y) decreases linearly with CO2 concentration (X), element balance of gasification of reacted coal was used to introduce a reaction analysis equation. The equation includes a term of oxygen excess {Delta}(amount of oxygen consumed for combustion of CO and H2 in excess of the theoretical amount), derived by subtracting the stoichiometric oxygen amount used to gasify coal into CO and H2 from the consumed oxygen amount. The {Delta} can be used as a reference to oxygen utilization efficiency. An equation for the {Delta} was introduced. Also introduced was a term for steam decomposition amount derived by subtracting the generated steam from the supplied steam. These terms may be used as a clue to permeate into the gasifying reaction process. This suggestion was discussed by applying the terms to gas composition value during operation. According to the HYCOL analysis, when a gasification furnace is operated at higher than the reference oxygen amount, coal supply variation is directly reflected to the combustion reaction, making the {Delta} distribution larger. In an inverse case, unreacted carbon remains in the furnace due to oxygen shortage, and shift reaction may occur more easily even if oxygen/coal supply ratio varies. 6 figs., 1 ref.

  20. Application of the third theory of quantification in coal and gas outburst forecast

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.; Qin, Y.; Zhang, X. [China University of Mining and Technology, Xuzhou (China). School of Resource and Geoscience Engineering

    2004-12-01

    The essential principles of the third theory of quantification are discussed. The concept and calculated method of reaction degree are put forward which extend the applying range and scientificalness of the primary reaction. Taking the Zhongmacun mine as example, on the base of analyzing the rules of gas geology synthetically and traversing the geological factors affecting coal and gas outburst. The paper adopts the method of combining statistical units with the third theory of quantification, screens out 8 sensitive geological factors from 11 geological indexes and carries through the work of gas geology regionalism to the exploited area of Zhongmacun according to the research result. The practice shows that it is feasible to apply the third theory of quantification to gas geology, which offers a new thought to screen the sensitive geological factors of gas outburst forecast. 3 refs., 3 figs., 3 tabs.

  1. Technical review of coal gasifiers for production of synthetic natural gas

    International Nuclear Information System (INIS)

    Lee, Geun Woo; Shin, Yong Seung

    2012-01-01

    Because of the increasing cost of oil and natural gas, energy production technologies using coal, including synthetic natural gas (SNG) and integrated gasification combined cycle (IGCC), have attracted attention because of the relatively low cost of coal. During the early stage of a project, the developer or project owner has many options with regard to the selection of a gasifier. In particular, from the viewpoint of feasibility, the gasifier is a key factor in the economic evaluation. This study compares the technical aspects of gasifiers for a real SNG production project in an early stage. A fixed bed slagging gasifier, wet type entrained gasifier, and dry type entrained gasifier, all of which have specific advantages, can be used for the SNG production project. Base on a comparison of the process descriptions and performances of each gasifier, this study presents a selection guideline for a gasifier for an SNG production project that will be beneficial to project developers and EPC (Engineering, Procurement, Construction) contractors

  2. Moderate temperature gas purification system: Application to high calorific coal-derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M.; Shirai, H.; Nunokawa, M. [Central Research Institute of Electric Power Industry, Kanagawa (Japan)

    2008-01-15

    Simultaneous removal of dust, alkaline and alkaline-earth metals, halides and sulfur compounds is required to enlarge application of coal-derived gas to the high-temperature fuel cells and the fuel synthesis through chemical processing. Because high calorific fuel gas, such as oxygen-blown coal gas, has high carbon monoxide content, high-temperature (above 450{sup o}C) gas purification system is always subjected to the carbon deposition. We suggest moderate temperature (around 300{sup o}C) operation of the gas purification system to avoid the harmful disproportionation reaction and efficient removal of the various contaminants. Because the reaction rate is predominant to the performance of contaminant removal in the moderate temperature gas purification system, we evaluated the chemical removal processes; performance of the removal processes for halides and sulfur compounds was experimentally evaluated. The halide removal process with sodium aluminate sorbent had potential performance at around 300{sup o}C. The sulfur removal process with zinc ferrite sorbent was also applicable to the temperature range, though the reaction kinetics of the sorbent is essential to be approved.

  3. Moderate temperature gas purification system: application to high calorific coal derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    M. Kobayashi; H. Shirai; M. Nunokawa [Central Research Institute of Electric Power Industry (CRIEPI), Kanagawa (Japan)

    2005-07-01

    Simultaneous removal of dust, alkaline and alkaline-earth metals, halides and sulfur compounds is required to enlarge application of coal-derived gas to the high temperature fuel cells and the fuel synthesis through chemical processing. Because high calorific fuel gas, such as oxygen-blown coal gas, has high carbon monoxide content, high temperature gas purification system is always subjected to the carbon deposition and slippage of contaminant of high vapor pressure. It was suggested that moderate temperature operation of the gas purification system is applied to avoid the harmful disproportionation reaction and efficient removal of the various contaminants. To establish the moderate temperature gas purification system, the chemical-removal processes where the reaction rate is predominant to the performance of contaminant removal should be evaluated. Performance of the removal processes for halides and sulfur compounds were experimentally evaluated. The halide removal process with sodium based sorbent had potential good performance at around 300{sup o}C. The sulfur removal process was also applicable to the temperature range, although the improvement of the sulfidation reaction rate is considered to be essential. 11 refs., 8 figs., 1 tab.

  4. Dew point of flue gas in the combustion of brown coal briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Schinkel, W

    1977-08-01

    Economical operation of small steam generators can follow two courses, viz. to channel the emitted gases through the plant and reduce waste gas loss. Two possibilities exist to achieve this: firstly a steam generating process with only slight excess air; secondly a reduction of the emitted gas temperature. The lowest waste gas temperature found in sulphur-containing combustion materials is measured by finding the acid dew-point of the waste gas. The following results in the case of brown coal briquettes were found. Measurements of the dew point of flue gas in two steam generators, both of the double flue type, one having a capacity of 12.5 t/h, the other 25 t/h, one using brown coal briquettes with 1% sulphur content, the other with 3%, resulted in the fact that the dew point can be measured. It was shown that a low air ratio leads to a lowering of the dew point. However this process is unfortunately economically unviable in chain grate generators as the waste gas becomes so thin under a high air ratio that the dew point can only be minimally reduced. Further the acid dew point is only slightly influenced by partial operation of the generator and the infusion of briquette residue.

  5. Fiscal 1999 report on basic research for promotion of joint implementation programs. Research on collection and utilization of coal mine methane gas in Russia (Kuznetsk coal field); Russia (Kuznetsk tanden) ni okeru tanko methane gas kaishu riyo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The above-mentioned effort is to comply with the COP3 (Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change) joint implementation clause. At this coal field, mining facilities are growing superannuated and obsolescent in the prolonged business depression, causing frequent occurrence of disasters such as gas explosions. The coal mine gas collection rate at the Kuznetsk coal field is as low as 17%, with concern for safety discouraging sufficient collection. Even the small amount of the collected gas is, in the absence of gas utilizing facilities, totally discharged into the air. For the mitigation of global warming, for mining safety, and for the establishment of a foundation for business, it is desired that coal mine methane gas collection/utilization facilities and related technologies be introduced into the coal field. Gas purging from the pits is incomplete, which is attributed to the lack of equipment capable of excavating proper-diameter bores longer than 100m for longwall mining. Ventilation also needs improvement. The research is under way on the premise that highly reliable intermediate range (300m) boring equipment and gas management technologies will be available. Collection of gas of a 30-35% concentration level at a collection rate of 40% is the target. (NEDO)

  6. Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  7. Potential for thermal coal and Clean Coal Technology (CCT) in the Asia-Pacific. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.J.; Long, S.

    1991-11-22

    The Coal Project was able to make considerable progress in understanding the evolving energy situation in Asia and the future role of coal and Clean Coal Technologies. It is clear that there will be major growth in consumption of coal in Asia over the next two decades -- we estimate an increase of 1.2 billion metric tons. Second, all governments are concerned about the environmental impacts of increased coal use, however enforcement of regulations appears to be quite variable among Asian countries. There is general caution of the part of Asian utilities with respect to the introduction of CCT`s. However, there appears to be potential for introduction of CCT`s in a few countries by the turn of the century. It is important to emphasize that it will be a long term effort to succeed in getting CCT`s introduced to Asia. The Coal Project recommends that the US CCT program be expanded to allow the early introduction of CCT`s in a number of countries.

  8. Coal pump

    Science.gov (United States)

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  9. Adsorption of iodine from COIL waste gas on soaked coal-based activated carbon

    Science.gov (United States)

    Zhou, Junbo; Hao, Shan; Gao, Liping

    2014-04-01

    The chemical oxygen-iodine laser (COIL) has wide application prospects in military, industrial and medical treatment fields as a second generation gas chemical laser to follow the first HF/DF chemical laser. However, a COIL releases large amounts of gas, such as helium, oxygen, chlorine and iodine. Chlorides have a serious corrosive effect on the system, especially iodine vapor crystallization, which seriously endangers the normal use of vacuum systems, and radioactive methyl iodide, which is hazardous to operators and pollutes the environment. The use of soaked coal-based activated carbon as an adsorbent for removing methyl iodine is proposed, while it is proposed that coal-based activated carbon is an effective adsorbent for removing stable iodine. The research conducted in this work shows that iodine residues are less than 0.5 μg ml-1 after the adsorption treatment and the decontamination factor of the coal-based activated carbon for removing stable iodine is more than 1000. Using this method can achieve the purpose of removing harmful iodine, satisfy the requirements for engineering applications, and also be applied to other nuclear power plant flue gas treatments.

  10. Experimental evaluation of sorbents for sulfur control in a coal-fueled gas turbine slagging combustor

    International Nuclear Information System (INIS)

    Cowell, L.H.; Wen, C.S.; LeCren, R.T.

    1992-01-01

    This paper reports on a slagging combustor that has been used to evaluate three calcium-based sorbents for sulfur capture efficiency in order to assess their applicability for use in a oil-fueled gas turbine. Testing is competed in a bench-scale combustor with one-tenth the heat input needed for the full-scale gas turbine. The bench-scale rig is a two-stage combustor featuring a fuel-rich primary zone an a fuel-lean secondary zone. The combustor is operated at 6.5 bars with inlet air preheated to 600 K. Gas temperatures of 1840 K are generated in the primary zone and 1280 K in the secondary zone. Sorbents are either fed into the secondary zone or mixed with the coal-water mixture and fed into the primary zone. Dry powered sorbents are fed into the secondary zone by an auger into one of six secondary air inlet ports. The three sorbents tested in the secondary zone include dolomite, pressure-hydrated dolomitic lime, and hydrated lime. Sorbents have been tested while burning coal-water mixtures with coal sulfur loadings of 0.56 to 3.13 weight percent sulfur. Sorbents are injected into the secondary zone at varying flow rates such that the calcium/sulfur ratio varies from 0.5 to 10.0

  11. Place of petroleum in the U. K. fuel market. [In relation to electricity, gas, and coal

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaou, G B

    1977-06-01

    An attempt is made to study the interaction process that occurs between petroleum products and the remainder of the fuel market. Petroleum competes with electricity, gas, and coal as a source of fuel, and an assessment is made of the demand elasticities of its place in the fuel market. In the U.K. fuel market the question is to what extent petroleum is a substitute or complement to the others. Petroleum consumption constituted 25 percent in 1960 of the total fuel consumption and has grown constantly since. The extent to which it changes depends upon its close substitutes. Which out of gas, coal, and electricity is, in fact, the closest substitute for petroleum; is it sensitive to price or to other things. In order to attempt to answer these questions, two models are presented. The first presents a straightforward linear equation for the demand for petroleum due to a change in total fuel consumption. This is then used in Model 2, which is basically the Slutsky equation, to obtain the mean substitution effect between petroleum and coal, gas and electricity. This, then, measures the net substitution or complementarity between petroleum and the commodities mentioned. 11 references.

  12. Report for fiscal 1993 by coal gasification committee; 1993 nendo sekitan gas ka iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-03-01

    This report is a compilation mainly of distributed material. In the development of entrained bed coal gasification power generation, gasification is tested in a 2t/d-capable facility and gasification efficiency and operation characteristics are grasped, these constituting the studies of elements to assist pilot plant operation etc. The fluid temperature point of slag is found to decrease by 200 degrees C at the maximum upon addition of flux (CaO), and this improves on slag fluidity. For the development of a demonstration gas turbine, an experimentally built combustor is tested using a real gas. A combined cycle power system is studied by simulation. In the study of pilot plant operation, measures relative to slagging are implemented, inspection and maintenance are conducted for each facility, and the combustor for a demonstration plant is subjected to oil and coal combustion tests. In the study of a pilot plant for developing technologies for hydrogen production using coal, the plant stably runs more than 1,000 hours under 100% load at in a RUN-8-3 operation. Some deposit collects in the neighborhood of the contracted area of the blow nozzle and on some part in the slip stream, but it does not affect operation. No abnormalities are detected in the cyclone or heat recovery boiler. The pilot plant is let to continue its operation, and excellent results are achieved, which are beyond the targets of carbon conversion efficiency of 98% or higher and gas cooling efficiency of 78% or higher. (NEDO)

  13. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS; FINAL

    International Nuclear Information System (INIS)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO(sub x) in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO(sub x) emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames-particularly under low NO(sub x) conditions. A CO/H(sub 2)/O(sub 2)/N(sub 2) flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state(sup 13)C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  14. Effect of Colombian coal rank and its feeding technology on substitute natural gas production by entrained gasification

    Directory of Open Access Journals (Sweden)

    Juan Fernando Pérez-Bayer

    2016-01-01

    Full Text Available The effect of coal rank (from sub-bituminous to semi-anthracite and type of fuel feeding technology (slurry and dry on the production of substitute natural gas (SNG in entrained flow gasifiers is studied. Ten coals from important Colombian mines were selected. The process is modeled under thermochemical equilibrium using Aspen Plus, and its performance is evaluated in function of output parameters that include SNG heating value, Wobbe index, coal conversion efficiency, cold gas efficiency, process efficiency, global efficiency, and SNG production rate, among others. In descending order, the coal-to-SNG process improves energetically with the use of coals with: higher volatile-matter to fixed-carbon ratio, lower ash content, higher C+H/O ratio, and higher coal heating value. The overall energy efficiency of the slurry-feed technology (S-FT to produce SNG by gasification is 17% higher than the dry-feed technology (D-FT, possibly as a consequence of the higher CH4 concentration in the syngas (around 7 vol. % when the coal is fed as aqueous slurry. As the simulated SNG meets the natural gas (NG quality standards in Colombia, the substitute gaseous fuel could be directly transported through pipelines. Therefore, the coal-to-SNG process is a technically feasible and unconventional alternative for NG production.

  15. Fundamental study for improvement of dewatering of fine coal/refuse. Final report, August 1981-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, S.H.; Klinzing, G.E.; Morsi, B.I.; Tierney, J.W.; Binkley, T.; Chi, S.M.; Huang, S.; Qamar, I.; Venkatadri, R.

    1984-12-01

    Fine coal in slurry form must be dewatered to minimize handling and transportation problems and be reduced to a desirable level for subsequent preparation of coal/water mixtures as a substitute utility fuel. The current practice is inadequate for the dewatering of fine coal, particularly for coal particles with sizes smaller than 400 mesh. Therefore, it is most desirable to develop improved mechanical methods for reducing the moisture content of fine coal. In the light of this, a fundamental study of the dewatering of fine coal/refuse was initiated in June 1979 and continued through 1984. The overall objective of the study is to seek improved methods of dewatering through a better understanding of the filtration and post-filtration processes. As a first step, efforts have been focused on the mechanism of dewatering in terms of the basic properties of coal (and refuse) particles and the microstructures of filter cakes, and their relations to filtration rate and final moisture content. Pittsburgh seam-Bruceton Mine coal was used as a base coal. During the past year, filter cakes from coals with widely varying size ranges were micrographically characterized. The effects of a number of surface active agents and of entrapped air bubbles on the filter cake properties were also studied. Modules of the network model for calculating single phase and two phase permeabilities were formulated and tested. The report is divided into four parts: summary and deliverables; work forecast for 1984-1985; detailed description of technical progress; and appendices. 21 refs., 55 figs., 17 tabs.

  16. Chemical kinetics and transport processes in supercritical fluid extraction of coal. Final report, August 10, 1990--December 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, B.J.; Smith, J.M.; Wang, M.; Zhang, C.J.

    1993-02-01

    The overall objective of this project was to study the supercritical fluid extraction of hydrocarbons from coal. Beyond the practical concern of deriving products from coal, the research has provided insights into the structure, properties, and reactivities of coal. Information on engineering fundamentals of coal thermolysis and extraction, including physical and chemical processes, is presented in this final report. To accomplish the goals of the project we developed continuous-flow experiments for fixed-bed samples of coal that allow two types of analysis of the extract: continuous spectrophotometric absorbance measurements of the lumped concentration of extract, and chromatographic determinations of molecular-weight distributions as a function of time. Thermolysis of coal yields a complex mixture of many extract products whose molecular-weight distribution (MWD) varies with time for continuous-flow, semibatch experiments. The flow reactor with a differential, fixed bed of coal particles contacted by supercritical t-butanol was employed to provide dynamic MWD data by means of HPLC gel permeation chromatography of the extract. The experimental results, time-dependent MWDs of extract molecules, were interpreted by a novel mathematical model based on continuous-mixture kinetics for thermal cleavage of chemical bonds in the coal network. The parameters for the MWDs of extractable groups in the coal and the rate constants for one- and two-fragment reaction are determined from the experimental data. The significant effect of temperature on the kinetics of the extraction was explained in terms of one- and two-fragment reactions in the coal.

  17. A study of toxic emissions from a coal-fired gasification plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Under the Fine Particulate Control/Air Toxics Program, the US Department of Energy (DOE) has been performing comprehensive assessments of toxic substance emissions from coal-fired electric utility units. An objective of this program is to provide information to the US Environmental Protection Agency (EPA) for use in evaluating hazardous air pollutant emissions as required by the Clean Air Act Amendments (CAAA) of 1990. The Electric Power Research Institute (EPRI) has also performed comprehensive assessments of emissions from many power plants and provided the information to the EPA. The DOE program was implemented in two. Phase 1 involved the characterization of eight utility units, with options to sample additional units in Phase 2. Radian was one of five contractors selected to perform these toxic emission assessments.Radian`s Phase 1 test site was at southern Company Service`s Plant Yates, Unit 1, which, as part of the DOE`s Clean Coal Technology Program, was demonstrating the CT-121 flue gas desulfurization technology. A commercial-scale prototype integrated gasification-combined cycle (IGCC) power plant was selected by DOE for Phase 2 testing. Funding for the Phase 2 effort was provided by DOE, with assistance from EPRI and the host site, the Louisiana Gasification Technology, Inc. (LGTI) project This document presents the results of that effort.

  18. Integrated process for synthetic natural gas production from coal and coke-oven gas with high energy efficiency and low emission

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Siyu; Qian, Yu

    2016-01-01

    Highlights: • A novel coal and coke-oven gas to SNG (CGtSNG) process is proposed. • Energy efficiency of CGtSNG increases 8% compared to coal-to-SNG process. • CGtSNG reduces 60% CO_2 emission and 72% effluent discharge. • CGtSNG proposes an idea of using redundant coke-oven gas for producing SNG production. - Abstract: There was a rapid development of coal to synthetic natural gas (SNG) projects in the last few years in China. The research from our previous work and some other researchers have found coal based SNG production process has the problems of environmental pollution and emission transfer, including CO_2 emission, effluent discharge, and high energy consumption. This paper proposes a novel co-feed process of coal and coke-oven gas to SNG process by using a dry methane reforming unit to reduce CO_2 emissions, more hydrogen elements are introduced to improve resource efficiency. It is shown that the energy efficiency of the co-feed process increases by 4%, CO_2 emission and effluent discharge is reduced by 60% and 72%, whereas the production cost decreases by 16.7%, in comparison to the conventional coal to SNG process. As coke-oven gas is a waste gas in most of the coking plant, this process also allows to optimize the allocation of resources.

  19. Calculating the flue gas dew point for raw brown coal fired steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Schinkel, W.

    1977-01-01

    The paper analyzes parameters influencing the sulfuric acid dew point in flue gas of steam generators. Sulfur content and alkaline earths content in the fuel air ratio during combustion, fly ash content in the flue gas (which absorbs sulfur dioxide and sulfur trioxide) and combustion conditions in steam generators are relevant parameters in the combustion process. A thermodynamic and reaction kinetic calculation of the sulfuric acid dew point is, however, not yet possible. A statistical evaluation of dew point measurements in steam generators is, therefore, employed. Various diagrams show results of dew point measurements carried out at generators with steam capacities ranging from 40 to 660 t/h, which demonstrate relations of these parameters to flue gas dew points, in particular the relative sulfur content (sulfur content in the raw brown coal compared to coal ash content and alkaline earths content). A function is derived for the conversion of fuel sulfur to sulfur trioxide. A diagram presents the relation of the flue gas dew point to partial pressures of sulfuric acid and steam. Direct calculation of the flue gas dew point was achieved by the proposed method. It is applied in steam generator design. (17 refs.)

  20. Report for fiscal 1994 by gasification technology subcommittee, Coal Gasification Committee; 1994 nendo sekitan gas ka iinkai gas ka gijutsu bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    As the result of a RUN-9 operation in the research on technologies for hydrogen production from coal and for pilot plants, it is found that the Muswellbrook, Datong, and Blair Athol coals are all suitable for gasification in pilot plants. Their handlability is considerably improved when the grain sizes after crushing are allowed to remain coarse (with the Blair Athol coal still retaining some disadvantage). A concept design is prepared for a HYCOL (hydrogen from coal) process demonstration plant. The reference coal is an imported coal similar to the Taiheiyo coal, and the hydrogen production target is set at 1-million m{sup 3}N/d (590t/d in terms of Taiheiyo coal) and hydrogen purity at 95% or higher. The whole process consists of coal gasification (with oxygen serving as gasification agent), dedusting, conversion to CO, desulfurization and decarboxylation (recovery of sulfur), and methanation. The gasification furnace is a 1-chamber entrained bed type with a 2-stage gyration flow. Dried and pulverized coal is conveyed aboard an air flow into the gasification furnace, where it is thrown into partial combustion reaction with the gasification agent for gasification in a high-temperature zone (1,500-1,600 degrees C), and the ash is taken out as slag. The generated gas is cooled in a heat recovery boiler, dedusted in a cyclone dust filter, and then forwarded to the washing unit. (NEDO)

  1. Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Carl Richardson; Katherine Dombrowski; Douglas Orr

    2006-12-31

    This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates

  2. Greenhouse gas emissions trading - implications for the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Joshua, F. [Arthur Andersen, London (United Kingdom). Greenhouse Gas Emissions Trading Services

    2000-07-01

    The Kyoto Protocol has initiated a process whereby greenhouse gas emissions markets are beginning to emerge and risks can be assessed at the corporate level. The talk discussed the three flexible market mechanisms to be available to companies for the management of carbon risk. It explained how a carbon-constrained environment will increase the emphasis on an efficient risk management strategy and infrastructure. The 'Clean Development Mechanism market place' may provide business opportunities. Recent increases in energy use and emissions, and forecasts to 2020, were discussed. Issues to be tackled at the next conference of the parties, COP6, in finalising the Kyoto Protocol are outlined. The proceedings contain only overheads/viewgraphs presented at the conference.

  3. Electron beam coal combustion flue gas treatment developments in Poland

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1994-01-01

    The research on EB(electron beam) flue gas treatment has started in Poland since 1985. It followed early tests performed in Japan, USA and Germany. The first tests using batch method were carried out in Institute of Atomic Energy. The continuous flow laboratory installation (400 Nm 3 /h) has been constructed in the Institute of Nuclear Chemistry and Technology (INCT) then. This installation containing ILV-6 electron beam accelerator (power 20 kW, energy of electrons 0-2 MeV) is equipped with additional microwaves generator. The eb or eb/mw energy can be applied to treated flue gas. On the basis of laboratory test an industrial pilot plant has been constructed at EPS Kaweczyn near Warsaw. At this plant being the biggest of this kind (20 000 Nm 3 /h) for the first time in industrial conditions multistage irradiation has been applied (two ELW-3 accelerators 50 kW each, energy of electrons 600-800 keV). High efficiency of SO 2 and NO x simultaneous removal, usable product (fertilizer), lower (in comparison with conventional technologies - FGD/SCR) investment and operational costs are the main advantages which have led to decision about starting demonstration industrial project. Feasibility study has been prepared for EPS Pomorzany, Szczecin, Poland. The plant planned will treat flue gases from power/heat generation block (2 Benson type boilers 56 MW e plus 40 MW th each). To meet Polish limits of 1997 half of flue gases will be treated with removal efficiency of 90% for SO 2 and 70% for NO x . Total flow rate will be equal to 270 000 Nm 3 /h. (author)

  4. Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David

    2013-09-30

    The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis

  5. Enchancing the use of coal by gas reburning and sorben injection

    International Nuclear Information System (INIS)

    Keen, R.T.; Hong, C.C.; Opatrny, J.C.; Sommer, T.M.; Folsom, B.A.; Payne, R.; Ritz, H.J.; Pratapas, J.M.; May, T.J.; Krueger, M.S.

    1993-01-01

    The Gas Reburning-Sorbent Injection (GR-SI) Process was demonstrated on a 71 MWe net tangentially fired boiler at Hennepin, Illinois, and is being demonstrated on a 33 MWe net cyclone-fired boiler at Springfield, Illinois as a Clean Coal Technology Round I demonstration project. The Hennepin demonstration was completed after more than 2,000 hours of successful operation. In long-term demonstration testing at a Ca/S molar ratio of 1.75 an 19 percent gas heat input, 53 percent SO 2 reduction and 67 percent NO x reduction were achieved without any adverse impacts on boiler performance or electrostatic precipitator performance with flue gas humidification. These achievements exceeded the project goals of 50 and 60 percent, respectively. The CO 2 reduction due to the use of 18 percent natural gas was 8 percent

  6. Visual detection of gas shows from coal core and cuttings using liquid leak detector

    Energy Technology Data Exchange (ETDEWEB)

    Barker, C.E. [United States Geological Survey, Denver, CO (United States)

    2006-09-15

    Coal core descriptions are difficult to obtain, as they must be obtained immediately after the core is retrieved and before the core is closed in a canister. This paper described a method of marking gas shows on a core surface by coating the core with a water-based liquid leak detector and photographing the subsequent foam developed on the core surface while the core is still in the core tray. Coals from a borehole at the Yukon Flats Basin in Alaska and the Maverick Basin in Texas were used to illustrate the method. Drilling mud and debris were removed from the coal samples before the leak detector solution was applied onto the core surfaces. A white froth or dripping foam developed rapidly at gas shows on the sample surfaces. A hand-held lens and a binocular microscope were used to magnify the foaming action. It was noted that foaming was not continuous across the core surface, but was restricted to localized points along the surface. It was suggested that the localized point foaming may have resulted from the coring process. However, the same tendency toward point gas show across the sample surface was found in some hard, well-indurated samples that still had undisturbed bedding and other sedimentary structures. It was concluded that gas shows marked as separate foam centres may indicate a real condition of local permeability paths. Results suggested that the new gas show detection method could be used in core selection studies to reduce the costs of exploration programs. 6 refs., 4 figs.

  7. A Novel Acoustic Liquid Level Determination Method for Coal Seam Gas Wells Based on Autocorrelation Analysis

    Directory of Open Access Journals (Sweden)

    Ximing Zhang

    2017-11-01

    Full Text Available In coal seam gas (CSG wells, water is periodically removed from the wellbore in order to keep the bottom-hole flowing pressure at low levels, facilitating the desorption of methane gas from the coal bed. In order to calculate gas flow rate and further optimize well performance, it is necessary to accurately monitor the liquid level in real-time. This paper presents a novel method based on autocorrelation function (ACF analysis for determining the liquid level in CSG wells under intense noise conditions. The method involves the calculation of the acoustic travel time in the annulus and processing the autocorrelation signal in order to extract the weak echo under high background noise. In contrast to previous works, the non-linear dependence of the acoustic velocity on temperature and pressure is taken into account. To locate the liquid level of a coal seam gas well the travel time is computed iteratively with the non-linear velocity model. Afterwards, the proposed method is validated using experimental laboratory investigations that have been developed for liquid level detection under two scenarios, representing the combination of low pressure, weak signal, and intense noise generated by gas flowing and leakage. By adopting an evaluation indicator called Crest Factor, the results have shown the superiority of the ACF-based method compared to Fourier filtering (FFT. In the two scenarios, the maximal measurement error from the proposed method was 0.34% and 0.50%, respectively. The latent periodic characteristic of the reflected signal can be extracted by the ACF-based method even when the noise is larger than 1.42 Pa, which is impossible for FFT-based de-noising. A case study focused on a specific CSG well is presented to illustrate the feasibility of the proposed approach, and also to demonstrate that signal processing with autocorrelation analysis can improve the sensitivity of the detection system.

  8. Computational Fluid Dynamics Simulation of Oxygen Seepage in Coal Mine Goaf with Gas Drainage

    Directory of Open Access Journals (Sweden)

    Guo-Qing Shi

    2015-01-01

    Full Text Available Mine fires mainly arise from spontaneous combustion of coal seams and are a global issue that has attracted increasing public attention. Particularly in china, the closure of coal workfaces because of spontaneous combustion has contributed to substantial economic loss. To reduce the occurrence of mine fires, the spontaneous coal combustion underground needs to be studied. In this paper, a computational fluid dynamics (CFD model was developed for coal spontaneous combustion under goaf gas drainage conditions. The CFD model was used to simulate the distribution of oxygen in the goaf at the workface in a fully mechanized cave mine. The goaf was treated as an anisotropic medium, and the effects of methane drainage and oxygen consumption on spontaneous combustion were considered. The simulation results matched observational data from a field study, which indicates CFD simulation is suitable for research on the distribution of oxygen in coalmines. The results also indicated that near the workface spontaneous combustion was more likely to take place in the upper part of the goaf than near the bottom, while further from workface the risk of spontaneous combustion was greater in the lower part of the goaf. These results can be used to develop firefighting approaches for coalmines.

  9. Mercury removal from coal combustion flue gas by fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Junyan [Chinese Academy of Sciences, Beijing (China). Research Center for Process Pollution Control; Chinese Academy of Sciences, Beijing (China). Graduate Univ.; Xu, Wenqing; Zhu, Tingyu; Jing, Pengfei [Chinese Academy of Sciences, Beijing (China). Research Center for Process Pollution Control

    2013-07-01

    The effect of physicochemical properties on the mercury adsorption performance of three fly ash samples has been investigated. The samples were tested for mercury adsorption using a fixed-bed with a simulated gas. X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy and other methods were used to characterize the samples. The results indicate that mercury adsorption on fly ash is mainly physisorption and chemisorption. Uncompleted burned carbon is an important factor for the improvement of mercury removal efficiency, especially, the C-M bond may improve the oxidation of mercury, which formed via the reaction of C and Ti, Si and other elements. The higher specific surface areas and smaller pore diameter are all beneficial for the high mercury removal efficiency. The presence of O{sub 2} plays a positive role on Hg adsorption of modified fly ash, while SO{sub 2} has double role of inhibition because of competitive adsorption and promotion to chemisorption. In addition, sample modified with FeCl{sub 3} has a great performance in Hg removal.

  10. Investigation into the potential for dust and gas explosions in underground coal mines with reference to pick tip geometry

    International Nuclear Information System (INIS)

    Dawood, Albert D.

    2011-01-01

    In underground coal mines, methane gas, if present in sufficient concentration, may be ignited by sparks from hot spots on the picks of coal cutting machines striking hard bands of rock. During the coal cutting, wear-flat areas develop on the trailing side of the tips of picks. As pick wear progresses, the generation of frictional heat and coal dust increases and the development of hot spots at the cutting tips may lead to an explosion of methane gas. Field experience and research work over the last few years have facilitated excellent cutting performance for certain picks through the optimisation of the cutting parameters. Such performance improvements show great promise in preventing the incidence of gas or dust explosions occurring at the coal face area. This study sets out some of the fundamentals of pick geometry and cutting parameters and the methods which have been employed to achieve improvements in reducing the hazards of gas or dust explosions. It is based on the comparative trial results of two types of picks with different designs and on a range of available research information on the subject. My investigation looked at the fundamentals of pick geometry and cutting parameters and the current suppression techniques in place to control the dust and gas explosions on the coal operating face.

  11. Gas cooled reactor assessment. Volume II. Final report, February 9, 1976--June 30, 1976

    International Nuclear Information System (INIS)

    1976-08-01

    This report was prepared to document the estimated power plant capital and operating costs, and the safety and environmental assessments used in support of the Gas Cooled Reactor Assessment performed by Arthur D. Little, Inc. (ADL), for the U.S. Energy Research and Development Administration. The gas-cooled reactor technologies investigated include: the High Temperature Gas Reactor Steam Cycle (HTGR-SC), the HTGR Direct Cycle (HTGR-DC), the Very High Temperature Reactor (VHTR) and the Gas Cooled Fast Reactor (GCFR). Reference technologies used for comparison include: Light Water Reactors (LWR), the Liquid Metal Fast Breeder Reactor (LMFBR), conventional coal-fired steam plants, and coal combustion for process heat

  12. Nuclear assay of coal. Volume 1. Coal composition by prompt neutron activation analysis: basic experiments. Final report

    International Nuclear Information System (INIS)

    Reynolds, G.; Bozorganesh, H.; Elias, E.; Gozani, T.; Maung, T.; Orphan, V.

    1979-01-01

    Using californium-252 as a source of exciting neutrons, prompt gamma photons emitted by elemental nuclei in the coal have been measured using several detectors, including sodium--iodide and germanium--lithium. Several coal types, including bituminous, subbituminous lignite and anthracite were crushed to various top sizes and analyzed carefully be traditional ASTM wet chemistry techniques at two or three different laboratories. The elements (sulfur, hydrogen, carbon, aluminum, silicon, iron, calcium, sodium, nitrogen, and chlorine) were determined by prompt neutron activations and the quantities compared with those of the wet chemical analyses

  13. Method of treating final products from flue gas desulfurization

    International Nuclear Information System (INIS)

    Bloss, W.; Mohn, U.

    1984-01-01

    A method of treating final products from a flue gas desulfurization. The flue gas desulfurization is carried out by the absorption of sulfur oxide in a spray dryer with a suspension which contains lime, or in a reactor with a dry, fine-grained, absorbent which contains lime. Prior to desulfurization, the fly ash carried along by the flue gas which is to be desulfurized is separated entirely, partially, or not at all from the flue gas, and the final products from the flue gas desulfurization, prior to any further treatment thereof, amount to 1-99% by weight, preferably 1-70% by weight, of fly ash, and 1-99% by weight, preferably 30-99% by weight, of the sum of the desulfurization products, preferably calcium sulfite hemihydrate, and/or calcium sulfite, and/or calcium sulfate dyhydrate, and/or calcium sulfate hemihydrate, and/or calcium sulfate, as well as residue of the absorbent. The reduction of the amount of calcium sulfite is implemented by a dry oxidation with air

  14. Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Radisav Vidic; Joseph Flora; Eric Borguet

    2008-12-31

    The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

  15. Microbial desulfurization of coal

    International Nuclear Information System (INIS)

    Bos, P.; Boogerd, F.C.; Kuenen, J.G.

    1992-01-01

    In recent years, studies have been initiated to explore the possibilities of the use of biological systems in coal technology. This chapter discusses the principles behind the bioprocessing of coal, the advantages and disadvantages, and the economic feasibility of the process. For large-scale, coal-using, energy-producing plants, stack gas cleaning should be the treatment of choice. Biodesulfurization is preferable with industrial, small-scale, energy-producing plants. Treatment of the stack gases of these plants is not advisable because of high investment costs. Finally, it should be realized that biodesulfurization produces a waste stream that needs further treatment. 91 refs

  16. Hydrogen-rich gas production by cogasification of coal and biomass in an intermittent fluidized bed.

    Science.gov (United States)

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    This paper presents the experimental results of cogasification of coal and biomass in an intermittent fluidized bed reactor, aiming to investigate the influences of operation parameters such as gasification temperature (T), steam to biomass mass ratio (SBMR), and biomass to coal mass ratio (BCMR) on hydrogen-rich (H2-rich) gas production. The results show that H2-rich gas free of N2 dilution is produced and the H2 yield is in the range of 18.25~68.13 g/kg. The increases of T, SBMR, and BCMR are all favorable for promoting the H2 production. Higher temperature contributes to higher CO and H2 contents, as well as H2 yield. The BCMR has a weak influence on gas composition, but the yield and content of H2 increase with BCMR, reaching a peak at the BCMR of 4. The H2 content and yield in the product gas increase with SBMR, whilst the content of CO increases first and then decreases correspondingly. At a typical case, the relative linear sensitivity coefficients of H2 production efficiency to T, SBMR, and BCMR were calculated. The results reveal that the order of the influence of the operation parameters on H2 production efficiency is T > SBMR > BCMR.

  17. Comparative assessment of coal tars obtained from 10 former manufactured gas plant sites in the eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.G.; Gupta, L.; Kim, T.H.; Moo-Young, H.K.; Coleman, A.J. [Lehigh University, Bethlehem, PA (United States). Dept. of Civil & Environmental Engineering

    2006-11-15

    A comparative analysis was performed on eleven coal tars obtained from former manufactured gas plant sites in the eastern United States. Bulk properties analyzed included percent ash, Karl Fisher water content, viscosity and average molecular weight. Chemical properties included monocyclic- and polycyclic-aromatic hydrocarbon (PAH) concentrations, alkylated aromatic concentrations, and concentrations of aliphatic and aromatic fractions. It was found that there was at least an order-of-magnitude variation in all properties measured between the eleven coal tars. Additionally, two coal tars obtained from the same manufactured gas plant site had very different properties, highlighting that there can be wide variations in coal tar properties from different samples obtained from the same site. Similarities were also observed between the coal tars. The relative chemical distributions were similar for all coal tars, and the coal tars predominantly consisted of PAHs, with naphthalene being the single-most prevalent compound. The C{sub 9-22} aromatic fraction, an indicator of all PAHs up to a molecular weight of approximately 276 g mole{sup -1}, showed a strong power-law relationship with the coal tar average molecular weight (MWct). And the concentrations of individual PAHs decreased linearly as MWct increased up to ca. 1000 g mole{sup -1}, above which they remained low and variable. Implications of these properties and their variation with MWct on groundwater quality are discussed. Ultimately, while these similarities do allow generalities to be made about coal tars, the wide range of coal tar bulk and chemical properties reported here highlights the complex nature of coal tars.

  18. Modeling of integrated environmental control systems for coal-fired power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to ``conventional`` technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  19. Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Romeo M.; Rice, Cynthia A.; Stricker, Gary D.; Warden, Augusta; Ellis, Margaret S. [U.S. Geological Survey, Box 25046, MS 939, Denver, Colorado 80225 (United States)

    2008-10-02

    Coal-bed gas of the Tertiary Fort Union and Wasatch Formations in the Powder River Basin in Wyoming and Montana, U.S. was interpreted as microbial in origin by previous studies based on limited data on the gas and water composition and isotopes associated with the coal beds. To fully evaluate the microbial origin of the gas and mechanisms of methane generation, additional data for 165 gas and water samples from 7 different coal-bed methane-bearing coal-bed reservoirs were collected basinwide and correlated to the coal geology and stratigraphy. The C{sub 1}/(C{sub 2} + C{sub 3}) ratio and vitrinite reflectance of coal and organic shale permitted differentiation between microbial gas and transitional thermogenic gas in the central part of the basin. Analyses of methane {delta}{sup 13}C and {delta}D, carbon dioxide {delta}{sup 13}C, and water {delta}D values indicate gas was generated primarily from microbial CO{sub 2} reduction, but with significant gas generated by microbial methyl-type fermentation (aceticlastic) in some areas of the basin. Microbial CO{sub 2} reduction occurs basinwide, but is generally dominant in Paleocene Fort Union Formation coals in the central part of the basin, whereas microbial methyl-type fermentation is common along the northwest and east margins. Isotopically light methane {delta}{sup 13}C is distributed along the basin margins where {delta}D is also depleted, indicating that both CO{sub 2}-reduction and methyl-type fermentation pathways played major roles in gas generation, but gas from the latter pathway overprinted gas from the former pathway. More specifically, along the northwest basin margin gas generation by methyl-type fermentation may have been stimulated by late-stage infiltration of groundwater recharge from clinker areas, which flowed through highly fractured and faulted coal aquifers. Also, groundwater recharge controlled a change in gas composition in the shallow Eocene Wasatch Formation with the increase of nitrogen and

  20. Evaluation of technology modifications required to apply clean coal technologies in Russian utilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The report describes the following: overview of the Russian power industry; electric power equipment of Russia; power industry development forecast for Russia; clean coal technology demonstration program of the US Department of Energy; reduction of coal TPS (thermal power station) environmental impacts in Russia; and base options of advanced coal thermal power plants. Terms of the application of clean coal technology at Russian TPS are discussed in the Conclusions.

  1. Analysis of rationality of coal-based synthetic natural gas (SNG) production in China

    International Nuclear Information System (INIS)

    Li, Hengchong; Yang, Siyu; Zhang, Jun; Kraslawski, Andrzej; Qian, Yu

    2014-01-01

    To alleviate the problem of the insufficient reserves of natural gas in China, coal-based synthetic natural gas (SNG) is considered to be a promising option as a source of clean energy, especially for urban use. However, recent study showed that SNG will not accomplish the task of simultaneous energy conservation and CO 2 reduction. In this paper, life cycle costing is made for SNG use in three main applications in residential sector: heating, household use, and public transport. Comparisons are conducted between SNG and coal, natural gas, liquefied petroleum gas (LPG), diesel, and methanol. The results show that SNG is a competitive option only for household use. The use of SNG for heating boilers or city buses is not as cost-effective as expected. The biggest shortcoming of SNG is the large amount of pollutants generated in the production stage. At the moment, the use of SNG is promoted by the government. However, as shown in this paper, one can expect a transfer of pollution from the urban areas to the regions where SNG is produced. Therefore, it is suggested that well-balanced set of environmental damage-compensating policies should be introduced to compensate the environmental losses in the SNG-producing regions. - Highlights: • Life cycle costing was applied on the coal-based SNG. • The SNG was compared with conventional fuels of three residential applications. • The SNG is not so cost-effective except of household use. • Ecological compensation policy is useful to deal with the transfer of pollutions

  2. Carbon formation and metal dusting in hot-gas cleanup systems of coal gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Tortorelli, P.F.; Judkins, R.R.; DeVan, J.H.; Wright, I.G. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1995-11-01

    The product gas resulting from the partial oxidation of Carboniferous materials in a gasifier is typically characterized by high carbon and sulfur, but low oxygen, activities and, consequently, severe degradation of the structural and functional materials can occur. The objective of this task was to establish the potential risks of carbon deposition and metal dusting in advanced coal gasification processes by examining the current state of knowledge regarding these phenomena, making appropriate thermochemical calculations for representative coal gasifiers, and addressing possible mitigation methods. The paper discusses carbon activities, iron-based phase stabilities, steam injection, conditions that influence kinetics of carbon deposition, and influence of system operating parameters on carbon deposition and metal dusting.

  3. Critical evaluation of high-temperature gas-cooled reactors applicable to coal conversion

    International Nuclear Information System (INIS)

    Spiewak, I.; Jones, J.E. Jr.; Rittenhouse, P.L.; DeStefano, J.R.; Delene, J.G.

    1975-12-01

    A critical review is presented of the technology and costs of very high-temperature gas-cooled reactors (VHTRs) applicable to nuclear coal conversion. Coal conversion processes suitable for coupling to reactors are described. Vendor concepts of the VHTR are summarized. The materials requirements as a function of process temperature in the range 1400 to 2000 0 F are analyzed. Components, environmental and safety factors, economics and nuclear fuel cycles are reviewed. It is concluded that process heat supply in the range 1400 to 1500 0 F could be developed with a high degree of assurance. Process heat at 1600 0 F would require considerably more materials development. While temperatures up to 2000 0 F appear to be attainable, considerably more research and risk were involved. A demonstration plant would be required as a step in the commercialization of the VHTR

  4. Agglomeration and reaction characteristics of various coal chars in fluidized-bed coal gasifier; Ryudoso sekitan gas ka ronai deno sekitan no gyoshu tokusei to hanno tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Uemiya, S.; Aoki, K.; Mori, S.; Kojima, T. [Seikei University, Tokyo (Japan). Faculty of Engineering

    1996-10-28

    With relation to the coals delivered as common samples in the coal fundamental technology development project, an experimental study was conducted on agglomeration characteristics and reaction characteristics in the fluidized-bed coal gasifier. For the experiment, used was a fluidized bed gasifier inserted with a cone-shape dispersion plate with a nozzle in the center. After raising the temperature of the gasifier up to 773K, gasification was conducted sending to the gasifier air from the nozzle and steam from the dispersion plate. The mean particle diameter and gas concentration of chars were measured till the temperature reaches 1373K. As a result of the experiment, it was confirmed that the carbon conversion ratio increases with a decrease in coalification degree of the coal. Moreover, influence of the coal kind was markedly observed at the grid zone of the lower part of the bed, and it was clarified that the lower carbon content ratio the coal kind has, the faster the speed of CO formation and water gasification get. The agglomeration temperature of charcoal which is a product of the condensate is lower by as many as several hundred K than the point of softening, and it was considered to be necessary to study the relation with the temperature distribution in the bed. 3 refs., 3 figs., 1 tab.

  5. H/sub 2/S-removal processes for low-Btu coal gas

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, M. S.

    1979-01-01

    Process descriptions are provided for seven methods of removing H/sub 2/S from a low-Btu coal-derived gas. The processes include MDEA, Benfield, Selexol, Sulfinol, Stretford, MERC Iron Oxide, and Molecular Sieve. Each of these processes was selected as representing a particular category of gas treating (e.g., physical solvent systems). The open literature contains over 50 processes for H/sub 2/S removal, of which 35 were briefly characterized in the literature survey. Using a technical evaluation of these 35 processes, 21 were eliminated as unsuitable for the required application. The remaining 14 processes represent six categories of gas treating. A seventh category, low-temperature solid sorption, was subsequently added. The processes were qualitatively compared within their respective categories to select a representative process in each of the seven categories.

  6. Heat recovery from flue gas of coal fired installations with reduced pollutant emission - the Zittau process

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H; Strauss, R; Hofmann, K -D; Suder, M; Hultsch, T; Wetzel, W; Gabrysch, H; Jung, J [Technische Hochschule, Zittau (German Democratic Republic)

    1988-12-01

    Reviews the technology applied in the Zittau process for flue gas heat recovery and flue gas desulfurization in small brown coal fired power plants. Steam generators have a capacity of 6.5 or 10 t/h, low grade fuel with 8.2 MJ/kg calorific value is combusted. Technology has been developed on an experimental 10 t/h steam generator since 1986; an industrial 6.5 t/h prototype steam generator is now in operation achieving 95% SO{sub 2} removal from flue gas with 5600 to 7800 mg SO{sub 2} per m{sup 3} of dry flue gas. The Zittau technology is available in 3 variants: with maximum waste heat recovery, with partial waste heat recovery or without waste heat recovery and only wet flue gas scrubbing. Two flowsheets of flue gas and suspension circulation are provided. The first variant recovers 25.7% of nominal heat capacity (1.1 thermal MW from a 4.2 MW steam generator with 6.5 t/h steam capacity), the second variant recovers 6.5% of waste heat by reducing heat exchangers to 20% of the size of the first variant. Flue gas suspension scrubbing utilizes power plant ash, which is capable of absorbing 50 to 70% of SO{sub 2}, additional 25% SO{sub 2} removal is achieved by providing either 40% ash from another power plant or limestone for suspensions. Various technological details are included. 5 refs.

  7. Lifecycle greenhouse gas emissions of coal, conventional and unconventional natural gas for electricity generation

    Science.gov (United States)

    An analysis of the lifecycle greenhouse gas (GHG) emissions associated with natural gas use recently published by Howarth et al. (2011) stated that use of natural gas produced from shale formations via hydraulic fracturing would generate greater lifecycle GHG emissions than petro...

  8. Underground coal gasification: Development of theory, laboratory experimentation, interpretation, and correlation with the Hanna field tests: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gunn, R.D.; Krantz, W.B.

    1987-03-01

    The following report is a description of a 7 year effort to develop a theoretical understanding of the underground coal gasification process. The approach used is one of the mathematical model development from known chemical and principles, simplification of the models to isolate important effects, and through validation of models to isolate important effects, and through validation of models with laboratory experiments and field test data. Chapter I contains only introductory material. Chapter II describes the development of two models for reverse combustion: a combustion model and a linearized model for combustion front instability. Both models are required for realistic field predictions. Chapter III contains a discussion of a successful forward gasification model. Chapter IV discusses the spalling-enhanced-drying model is applicable to prediction of cavity growth and subsidence. Chapter VI decribes the correct use of energy and material balances for the analysis of UCG field test data. Chapter VII shows how laboratory experiments were used to validate the models for reverse combustion and forward gasification. It is also shown that laboratory combustion tube experiments can be used to simulate gas compositions expected from field tests. Finally, Chapter VII presents results from a comprehensive economic analysis of UCG involving 1296 separate cases. 37 refs., 49 figs., 12 tabs.

  9. Cooperative research in coal liquefaction. Final report, May 1, 1990-- April 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1992-02-15

    The Consortium for Fossil Fuel Liquefaction Science (CFFLS) is currently engaged in a three year contract with the US Department of Energy investigating a range of research topics dealing with direct coal liquefaction. This report summarizes the results of this program in its second year, from May 1, 1990 to April 30, 1991. Accomplishments for this period are presented for the following tasks: Iron-based catalysts for coal liquefaction, exploratory research on coal conversion, novel coal liquefaction concepts, and novel catalysts for coal liquefaction.

  10. Chemomechanical phenomena in the grinding of coal. Final report, February 1, 1976--May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Macmillan, N.H.

    1977-08-01

    Vickers microhardness, drilling rate, grinding rate and zeta-potential measurements have been made on coals of various rank in both aqueous and organic environments in order to determine whether: (a) chemomechanical (Rebinder) effects exist in coal; and (b) any such effects as do exist can be used to improve the comminution of coal. The results reveal the mechanical behavior of coal to be remarkably environment-insensitive as compared to inorganic non-metals. As a result, it is concluded that chemomechanical phenomena offer little prospect of reducing the cost of comminuting coal.

  11. STUDY OF THE EFFECT OF CHLORINE ADDITION ON MERCURY OXIDATION BY SCR CATALYST UNDER SIMULATED SUBBITUMINOUS COAL FLUE GAS

    Science.gov (United States)

    An entrained flow reactor is used to study the effect of addition of chlorine-containing species on the oxidation of elemental mercury (Hgo)by a selective catalytic reduction (SCR) catalyst in simulated subbituminous coal combustion flue gas. The combustion flue gas was doped wit...

  12. Methane recovery from coal mine gas using hydrate formation in water-in-oil emulsions

    International Nuclear Information System (INIS)

    Zhong, Dong-Liang; Ding, Kun; Lu, Yi-Yu; Yan, Jin; Zhao, Wei-Long

    2016-01-01

    Highlights: • A water-in-oil emulsion was developed for CH_4 separation from coal mine methane gas. • Stable W/O emulsions were obtained with water cut in the range of (10–70%). • Gas hydrates nucleated faster with the reduction of water–oil volume ratio. • Gas uptake increased with the decrease of water–oil volume ratio. • CH_4 recovery was greatly enhanced by hydrate formation in W/O emulsions. - Abstract: In this work, a water-in-oil (W/O) emulsion was developed using liquid water, mineral oil, Sorbitan monooleate (Span 80), and cyclopentane. It was employed to enhance gas hydrate formation for CH_4 separation from a simulated coal mine methane (CMM) gas (30 mol% CH_4, 60 mol% N_2, and 10 mol% O_2). The stability test at atmospheric pressure and at a high pressure of 3.5 MPa showed that stable W/O emulsions were obtained when the water–oil volume ratio (WOR) was below 80%. The emulsified droplets size was measured with WOR ranging from 10% to 70%. Then kinetic experiments of CH_4 separation by hydrate formation in W/O emulsions were carried out at 273.6 K and (3.5–5.0) MPa in batch operation. The results indicated that water–oil volume ratio is a key factor that affects the kinetics of gas hydrate formation from the CMM gas mixture. Hydrate nucleation was observed to occur faster while WOR was decreased, and gas uptake increased significantly with the decrease of WOR. CH_4 concentration in the recovered gas mixture was increased to 52 mol% as compared to 30 mol% in the original gas mixture through one-stage hydrate formation in the W/O emulsions. It was found that the experimental conditions of 273.6 K, 3.5 MPa and WOR = 30% were favorable for CH_4 recovery from the CMM gas. The CH_4 recovery obtained under these conditions was 43%. It was higher than those obtained at WOR = 10% and 70%, and was greatly increased as compared with those obtained in the same reactor with the presence of TBAB (26%) and CP (33%).

  13. Co-pyrolysis of coal with hydrogen-rich gases. 1. Coal pyrolysis under coke-oven gas and synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Liao, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion

    1998-06-01

    To improve the economics of the hydropyrolysis process, it has been suggested that cheaper hydrogen-rich gases (such as coke oven gas, synthesis gas) could be used instead of pure hydrogen. Pyrolysis of Chinese Xianfeng lignite was carried out with coke oven gas (COG) and synthesis gas (SG) as reactive gases at 0.1-5 MPa and at a final temperature up to 650{degree}C with a heating rate of 5-25{degree}C min{sup -1} in a 10 g fixed-bed reactor. The results indicate that it is possible to use COG and SG instead of pure hydrogen in hydropyrolysis, but that the experimental conditions must be adjusted to optimize the yields of the valuable chemicals. 14 refs., 3 figs., 6 tabs.

  14. Characterization and supply of coal based fuels. Volume 1, Final report and appendix A (Topical report)

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  15. Managing produced water from coal seam gas projects: implications for an emerging industry in Australia.

    Science.gov (United States)

    Davies, Peter J; Gore, Damian B; Khan, Stuart J

    2015-07-01

    This paper reviews the environmental problems, impacts and risks associated with the generation and disposal of produced water by the emerging coal seam gas (CSG) industry and how it may be relevant to Australia and similar physical settings. With only limited independent research on the potential environmental impacts of produced water, is it necessary for industry and government policy makers and regulators to draw upon the experiences of related endeavours such as mining and groundwater extraction accepting that the conclusions may not always be directly transferrable. CSG is widely touted in Australia as having the potential to provide significant economic and energy security benefits, yet the environmental and health policies and the planning and regulatory setting are yet to mature and are continuing to evolve amidst ongoing social and environmental concerns and political indecision. In this review, produced water has been defined as water that is brought to the land surface during the process of recovering methane gas from coal seams and includes water sourced from CSG wells as well as flowback water associated with drilling, hydraulic fracturing and gas extraction. A brief overview of produced water generation, its characteristics and environmental issues is provided. A review of past lessons and identification of potential risks, including disposal options, is included to assist in planning and management of this industry.

  16. Geodynamic methods for assessing methane distribution in bituminous coal deposits and measures to intensify methane fluxes during mine gas drainage

    Directory of Open Access Journals (Sweden)

    Е. В. Гончаров

    2016-12-01

    Full Text Available This paper explores states of methane within the coal bearing stratum and shows heavy dependency of the intrastratal gas migration on the forms of porous space and petrographic properties of coal. The adsorbed methane is found to be predominant in the coal of Kuznetsk Basin. Different forms of coal diffusion and filtration are described revealing their dependency on geological and thermodynamic conditions. The paper provides justification for the primary focus on geodynamic processes when designing gas drainage systems and applicability of morphometric methods and remote sensing data for their identification. The significance of researches into the processes activating exothermic reactions resulting in methane transition to free state is explained. The paper presents the results of using seismic-acoustic stimulation techniques as one of the practical approaches to addressing this issue. Results of successful industrial testing have been compared with the results of numerical modelling of stress-strain state, which can also be managed through seismic-acoustic stimulation.

  17. Removal of mercury from coal-combustion flue gas using regenerable sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C S; Albiston, J; Broderick, T E; Stewart, R M

    1999-07-01

    The US EPA estimates that coal-fired power plants constitute the largest anthropogenic source of mercury emissions in the US. The Agency has contemplated emission regulations for power plants, but the large gas-flow rates and low mercury concentrations involved have made current treatment options prohibitively expensive. ADA Technologies, Inc. (Englewood, Colorado), in conjunction with the US DOE, is developing regenerable sorbents for the removal and recovery of mercury from flue gas. These sorbents are based on the ability of noble metals to amalgamate mercury at typical flue-gas temperatures and release mercury at higher temperatures. The process allows for recovery of mercury with minimal volumes of secondary wastes and no impact on fly ash quality. In 1997 and 1998, ADA tested a 20-cfm sorbent unit at CONSOL Inc.'s coal-combustion test facility in Library, PA. Results from the 1997 tests indicated that the sorbent can remove elemental and oxidized mercury and can be regenerated without loss of capacity. Design changes were implemented in 1998 to enhance the thermal efficiency of the process and to recover the mercury in a stable form. Testing during autumn, 1998 demonstrated 60% to 90% removal efficiency of mercury from a variety of different coals. However, contradictory removal results were obtained at the end of the test period. Subsequent laboratory analyses indicated that the sorbent had lost over half its capacity for mercury due to a decrease in available sites for mercury sorption. The presence of sulfur compounds on the sorbent suggests that thermal cycling may have condensed acid gases on the sorbent leading to deterioration of the active sorption sites. The regeneration time/temperature profile has been altered to minimize this potential in the upcoming power plant tests.

  18. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas

    International Nuclear Information System (INIS)

    Zhang, F.M.; Liu, B.S.; Zhang, Y.; Guo, Y.H.; Wan, Z.Y.; Subhan, Fazle

    2012-01-01

    Highlights: ► A series of mesoporous Cu x Mn y O z /SBA-15 sorbents were fabricated for hot coal gas desulfurization. ► 1Cu9Mn/SBA-15 sorbent with high breakthrough sulfur capacity is high stable and regenerable. ► Utilization of SBA-15 constrained the sintering and pulverization of sorbents. - Abstract: A series of mesoporous xCuyMn/SBA-15 sorbents with different Cu/Mn atomic ratios were prepared by wet impregnation method and their desulfurization performance in hot coal gas was investigated in a fixed-bed quartz reactor in the range of 700–850 °C. The successive nine desulfurization–regeneration cycles at 800 °C revealed that 1Cu9Mn/SBA-15 presented high performance with durable regeneration ability due to the high dispersion of Mn 2 O 3 particles incorporated with a certain amount of copper oxides. The breakthrough sulfur capacity of 1Cu9Mn/SBA-15 observed 800 °C is 13.8 g S/100 g sorbents, which is remarkably higher than these of 40 wt%LaFeO 3 /SBA-15 (4.8 g S/100 g sorbents) and 50 wt%LaFe 2 O x /MCM-41 (5.58 g S/100 g sorbents) used only at 500–550 °C. This suggested that the loading of Mn 2 O 3 active species with high thermal stability to SBA-15 support significantly increased sulfur capacity at relatively higher sulfidation temperature. The fresh and used xCuyMn/SBA-15 sorbents were characterized by means of BET, XRD, XPS, XAES, TG/DSC and HRTEM techniques, confirmed that the structure of the sorbents remained intact before and after hot coal gas desulfurization.

  19. Vadose Zone Fate and Transport Simulation of Chemicals Associated with Coal Seam Gas Extraction

    Science.gov (United States)

    Simunek, J.; Mallants, D.; Jacques, D.; Van Genuchten, M.

    2017-12-01

    The HYDRUS-1D and HYDRUS (2D/3D) computer software packages are widely used finite element models for simulating the one-, and two- or three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, respectively. While the standard HYDRUS models consider only the fate and transport of individual solutes or solutes subject to first-order degradation reactions, several specialized HYDRUS add-on modules can simulate far more complex biogeochemical processes. The objective of this presentation is to provide an overview of the HYDRUS models and their add-on modules, and to demonstrate applications of the software to the subsurface fate and transport of chemicals involved in coal seam gas extraction and water management operations. One application uses the standard HYDRUS model to evaluate the natural soil attenuation potential of hydraulic fracturing chemicals and their transformation products in case of an accidental release. By coupling the processes of retardation, first-order degradation and convective-dispersive transport of the biocide bronopol and its degradation products, we demonstrated how natural attenuation reduces initial concentrations by more than a factor of hundred in the top 5 cm of the vadose zone. A second application uses the UnsatChem module to explore the possible use of coal seam gas produced water for sustainable irrigation. Simulations with different irrigation waters (untreated, amended with surface water, and reverse osmosis treated) provided detailed results regarding chemical indicators of soil and plant health, notably SAR, EC and sodium concentrations. A third application uses the coupled HYDRUS-PHREEQC module to analyze trace metal transport involving cation exchange and surface complexation sorption reactions in the vadose zone leached with coal seam gas produced water following some accidental water release scenario. Results show that the main process responsible for trace metal migration is complexation of

  20. Achievement report for fiscal 1997 on investigative research on society compatibility of development of coal hydrogasification technology; 1997 nendo sekitan suiso tenka gas ka gijutsu kaihatsu shakai tekigosei ni kansuru chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In view of possibility of the future tightness in natural gas supply, establishment of coal gasification technology was set as the final objective, which can supply cheaply and stably the substitution natural gas of high quality by using coal existing affluently over the world as the raw material. An investigative research is carried out under a five-year plan on society compatibility required to assess the possibility of the practical application thereof. Fiscal 1997 has performed in continuation from the previous year the 'survey on process level elevation' and 'survey on the society compatibility'. This report summarizes the achievements thereon. In the investigative research on the process level elevation, the Shell's methane synthesis process based on an oxygen blown and dry feed coal gasifier was evaluated, and the calculation process was pursued on material balance in a hydrogasification reactor as having been performed in the 'survey on developing the coal hydrogasification technology' in which its reasonability was verified. In the survey on the society compatibility of the process, a survey was carried out on natural gas (including non-conventional methane hydrate and coal bed methane) and coals as raw materials for hydrogasification. (NEDO)

  1. Energy conservation in coal conversion. Final report, September 15, 1977--September 1, 1978. Selected case studies and conservation methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Purcupile, J.C.

    1978-09-01

    The purpose of this study is to apply the methodologies developed in the Energy Conservation in Coal Conversion August, 1977 Progress Report - Contract No. EY77S024196 - to an energy efficient, near-term coal conversion process design, and to develop additional, general techniques for studying energy conservation and utilization in coal conversion processes. The process selected for study was the Ralph M. Parsons Company of Pasadena, California ''Oil/Gas Complex, Conceptual Design/Economic Analysis'' as described in R and D Report No. 114 - Interim Report No. 4, published March, 1977, ERDA Contract No. E(49-18)-1975. Thirteen papers representing possible alternative methods of energy conservation or waste heat utilization have been entered individually into EDB and ERA. (LTN)

  2. CO2 emission costs and Gas/Coal competition for power production

    International Nuclear Information System (INIS)

    Santi, Federico

    2005-01-01

    This paper demonstrates how a CO 2 emission reduction programme can change the competition between the two power production technologies which will probably dominate the future of the Italian power industry: the coal fired USC steam power plant and the natural gas fired CCGT power plant. An economic value of the CO 2 emission is calculated, in order to make the short-run-marginal-cost (or the long-run-marginal-cost). equal for both technologies, under a CO 2 emission trading scheme and following a single-plant specific CO 2 emission homogenizing approach [it

  3. Determination of leveled costs of electric generation for gas plants, coal and nuclear

    International Nuclear Information System (INIS)

    Alonso V, G.; Palacios H, J.C.; Ramirez S, J.R.; Gomez, A.

    2005-01-01

    The present work analyzes the leveled costs of electric generation for different types of nuclear reactors known as Generation III, these costs are compared with the leveled costs of electric generation of plants with the help of natural gas and coal. In the study several discount rates were used to determine their impact in the initial investment. The obtained results are comparable with similar studies and they show that it has more than enough the base of the leveled cost the nuclear option it is quite competitive in Mexico. Also in this study it is also thinks about the economic viability of a new nuclear power station in Mexico. (Author)

  4. Inverse gas chromatography determination of some physicochemical parameters of a high rank Colombian coal

    Energy Technology Data Exchange (ETDEWEB)

    Baquero-Haeberlin, M.C.; Rincon, J.M. [Universidad Nacional de Colombia, Santafe de Bogota (Colombia). Departamento de Quimica

    1997-12-31

    Dispersive component of the free surface energy of a Colombian semianthracite type coal - Paramo de Guerrero - was determined by Inverse Gas Chromatography (IGC), at zero coverage injecting the series of n-alkanes at 313, 333, 353 and 373 K. For the retention time, the mass center determination was used instead of the maximum peak in the chromatograms. The free surface energy (-{Delta}G{sub A}) increase linearly with the carbon atom number to the alkanes but is not constant due, probably to the conformational structure of the probes. The IGC study of the adsorption process in function of the temperature, provides the respective Enthalpy and Entropy values. (orig.)

  5. Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, Gerald

    2012-12-31

    This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation's urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

  6. Semiconductor electrochemistry of coal pyrite. Final technical report, September 1990--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Wei, Dawei

    1996-01-01

    This project seeks to advance the fundamental understanding of the physico-chemical processes occurring at the pyrite/aqueous interface, in the context of coal cleaning, coal desulfurization, and acid mine drainage. Central to this research is the use of synthetic microsize particles of pyrite as model microelectrodes to investigate the semiconductor electrochemistry of pyrite. The research focuses on: (a) the synthesis of microsize particles of pyrite in aqueous solution at room temperature, (b) the formation of iron sulfide complex, the precursor of FeS or FeS{sub 2}, and (c) the relationship between the semiconductor properties of pyrite and its interfacial electrochemical behavior in the dissolution process. In Chapter 2, 3 and 4, a suitable protocol for preparing microsize particles of pyrite in aqueous solution is given, and the essential roles of the precursors elemental sulfur and ``FeS`` in pyrite formation are investigated. In Chapter 5, the formation of iron sulfide complex prior to the precipitation of FeS or FeS{sub 2} is investigated using a fast kinetics technique based on a stopped-flow spectrophotometer. The stoichiometry of the iron sulfide complex is determined, and the rate and formation constants are also evaluated. Chapter 6 provides a summary of the semiconductor properties of pyrite relevant to the present study. In Chapters 7 and 8, the effects of the semiconductor properties on pyrite dissolution are investigated experimentally and the mechanism of pyrite dissolution in acidic aqueous solution is examined. Finally, a summary of the conclusions from this study and suggestions for future research are presented in Chapter 9.

  7. PM1 particles at coal- and gas-fired power plant work areas.

    Science.gov (United States)

    Hicks, Jeffrey B; McCarthy, Sheila A; Mezei, Gabor; Sayes, Christie M

    2012-03-01

    With the increased interest in the possible adverse health effects attributed to inhalation of fine particle matter, this study was conducted to gather preliminary information about workplace exposures at coal- and gas-fired power plants to fine particles (PM(1); i.e. <1 μm) and ultrafine particles (i.e. <0.1 μm). Combustion of fossil fuel is known to produce fine particles, and due to their proximity and durations of exposure, power plant workers could be a group of individuals who experience high chronic exposures to these types of particles. The results of a series of real-time instrument measurements showed that concentrations of PM(1) were elevated in some locations in power plants. The highest concentrations were in locations near combustion sources, indicating that combustion materials were leaking from conventional fossil fuel-fired boilers or it was associated with emission plume downwash. Concentrations were the lowest inside air-conditioned control rooms where PM(1) were present at levels similar to or lower than upwind concentrations. Microscopic examinations indicate that PM(1) at the coal-fired plants are dominated by vitrified spheres, although there were also unusual elongated particles. Most of the PM(1) were attached to larger coal fly ash particles that may affect where and how they could be deposited in the lung.

  8. Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition in High-Temperature Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Ronald [Stanford Univ., CA (United States); Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States)

    2014-12-01

    The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiple species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.

  9. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  10. New approach to the characterization of pyrolysis coal products by gas chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Cappiello, A.; Mangani, F.; Bruner, F.; Bonfanti, L. [University of Urbino, Urbino (Italy)

    1996-06-07

    A method for the characterization of coal thermal behaviour, based on gas chromatographic-mass spectrometric analysis of the pyrolysate, is presented. Twelve different coal samples representative of the entire coal rank, were selected. The pyrolysis products, obtained at 800{degree}C, were first collected and then analysed in two GC-MS systems. The sampling apparatus consisted of three different traps in order to separate the products into three fractions on the basis of their volatility. The GC-MS analysis was also arranged according to this criterion. A packed column, coupled to a double-focusing magnetic mass spectrometer, was used for the volatile fractions of the pyrolysate and a capillary column, coupled to a quadruple analyser, was employed for the analysis of the condensed fraction. Sampling and analysis procedures were carried out separately, thus allowing careful optimization of the strategy for the characterization of the pyrolysate. The condensate was analysed in the selected-ion monitoring mode for the determination of different classes of compounds. Some evaluations and comparisons, extrapolated from the results obtained, are presented.

  11. The economic production of alcohol fuels from coal-derived synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1995-12-31

    The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2); (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)

  12. Coal seam gas-supply and impact on U.S. markets and Canadian producers

    International Nuclear Information System (INIS)

    Kelafant, J.

    1992-01-01

    The basic ways in which coalbed methane differs from natural gas are described. Coalbed methane is stored at a higher capacity in the coal seam, has a different production curve, and exploration costs are lower. Comparing a conventional gas well having 2 billion ft 3 reserves with coalbed methane wells in the San Juan and Warrior basins, gas from the conventional well costs $1.90 per 1,000 ft 3 and methane from the San Juan and Warrior wells costs $1.50 and $2.40 per 1,000 ft 3 respectively. A 90 cent per 1,000 ft 3 tax credit on coalbed methane reduces the two latter costs significantly and is without doubt the driving force behind the coalbed methane industry in some areas. Examples from the Warrior and San Juan basins are described to illustrate the technology driven economics of coalbed methane. Substantial improvements in gas production can be achieved by such means as multiple seam completion technologies, improved well stimulation, optimum well spacing, and the use of cavitation completion. Technically recoverable coalbed methane resources in the USA are estimated at 145 trillion ft 3 , concentrated in the western coal basins. At a wellhead price of $2 per 1,000 ft 3 , the economically recoverable potential is ca 13 trillion ft 3 . Examining future production potential, by developing new technologies or bringing more basins on stream, production could be increased to ca 3 billion ft 3 /d in the late 1990s. It is suggested that the increased volumes of coalbed methane have had minimal impact on gas prices. 9 figs., 12 tabs

  13. DEVELOPMENT OF ANALYTICAL METHODS FOR THE QUANTIFICATION OF THE CHEMICAL FORMS OF MERCURY AND OTHER TARGET POLLUTANTS IN COAL-FIRED BOILER FLUE GAS

    Energy Technology Data Exchange (ETDEWEB)

    Terence J. McManus, Ph.D.

    1999-06-30

    . (ATS) as a secondary DOE contractor on this project, assessed the sampling and analytical plans and the emission reports of the five primary contractors to determine how successful the contractors were in satisfying their defined objectives. ATS identified difficulties and inconsistencies in a number of sampling and analytical methodologies in these studies. In particular there was uncertainty as to the validity of the sampling and analytical methods used to differentiate the chemical forms of mercury observed in coal flue gas. Considering the differences in the mercury species with regard to human toxicity, the rate of transport through the ecosystem and the design variations in possible emission control schemes, DOE sought an accurate and reliable means to identify and quantify the various mercury compounds emitted by coal-fired utility boilers. ATS, as a contractor for DOE, completed both bench- and pilot-scale studies on various mercury speciation methods. The final validation of the modified Ontario-Hydro Method, its acceptance by DOE and submission of the method for adoption by ASTM was a direct result of these studies carried out in collaboration with the University of North Dakota's Energy and Environmental Research Center (UNDEERC). This report presents the results from studies carried out at ATS in the development of analytical methods to identify and quantify various chemical species, particularly those of mercury, in coal derived flue gas. Laboratory- and pilot-scale studies, not only on mercury species, but also on other inorganics and organics present in coal combustion flue gas are reported.

  14. Effects of Igneous Intrusion on Microporosity and Gas Adsorption Capacity of Coals in the Haizi Mine, China

    Science.gov (United States)

    2014-01-01

    This paper describes the effects of igneous intrusions on pore structure and adsorption capacity of the Permian coals in the Huaibei Coalfield, China. Twelve coal samples were obtained at different distances from a ~120 m extremely thick sill. Comparisons were made between unaltered and heat-affected coals using geochemical data, pore-fracture characteristics, and adsorption properties. Thermal alteration occurs down to ~1.3 × sill thickness. Approaching the sill, the vitrinite reflectance (R o) increased from 2.30% to 2.78%, forming devolatilization vacuoles and a fine mosaic texture. Volatile matter (VM) decreased from 17.6% to 10.0% and the moisture decreased from 3.0% to 1.6%. With decreasing distance to the sill, the micropore volumes initially increased from 0.0054 cm3/g to a maximum of 0.0146 cm3/g and then decreased to 0.0079 cm3/g. The results show that the thermal evolution of the sill obviously changed the coal geochemistry and increased the micropore volume and adsorption capacity of heat-affected coal (60–160 m from the sill) compared with the unaltered coals. The trap effect of the sill prevented the high-pressure gas from being released, forming gas pocket. Mining activities near the sill created a low pressure zone leading to the rapid accumulation of methane and gas outbursts in the Haizi Mine. PMID:24723841

  15. Effects of igneous intrusion on microporosity and gas adsorption capacity of coals in the Haizi Mine, China.

    Science.gov (United States)

    Jiang, Jingyu; Cheng, Yuanping

    2014-01-01

    This paper describes the effects of igneous intrusions on pore structure and adsorption capacity of the Permian coals in the Huaibei Coalfield, China. Twelve coal samples were obtained at different distances from a ~120 m extremely thick sill. Comparisons were made between unaltered and heat-affected coals using geochemical data, pore-fracture characteristics, and adsorption properties. Thermal alteration occurs down to ~1.3 × sill thickness. Approaching the sill, the vitrinite reflectance (R(o)) increased from 2.30% to 2.78%, forming devolatilization vacuoles and a fine mosaic texture. Volatile matter (VM) decreased from 17.6% to 10.0% and the moisture decreased from 3.0% to 1.6%. With decreasing distance to the sill, the micropore volumes initially increased from 0.0054 cm(3)/g to a maximum of 0.0146 cm(3)/g and then decreased to 0.0079 cm(3)/g. The results show that the thermal evolution of the sill obviously changed the coal geochemistry and increased the micropore volume and adsorption capacity of heat-affected coal (60-160 m from the sill) compared with the unaltered coals. The trap effect of the sill prevented the high-pressure gas from being released, forming gas pocket. Mining activities near the sill created a low pressure zone leading to the rapid accumulation of methane and gas outbursts in the Haizi Mine.

  16. A study of Multistage/Multifunction Column for Fine Coal Cleaning CRADA PC93-005, Final Report; FINAL

    International Nuclear Information System (INIS)

    Ralph Lai; Shiao-Hung Chiang; Daxin He; Yuru Feng

    1998-01-01

    The overall objective of the this research project is to explore the potential applicability of a multistage column for fine coal cleaning and other applications in fluid particle separation. The research work identifies the design parameters and their effects on the performance of the separation device. The results of this study provide an engineering data basis for further development of this technology in coal cleaning and in general areas of fluid and particle separations

  17. Wettability determination by contact angle measurements: hvbB coal-water system with injection of synthetic flue gas and CO2.

    Science.gov (United States)

    Shojai Kaveh, Narjes; Rudolph, E Susanne J; Wolf, Karl-Heinz A A; Ashrafizadeh, Seyed Nezameddin

    2011-12-01

    Geological sequestration of pure carbon dioxide (CO(2)) in coal is one of the methods to sequester CO(2). In addition, injection of CO(2) or flue gas into coal enhances coal bed methane production (ECBM). The success of this combined process depends strongly on the wetting behavior of the coal, which is function of coal rank, ash content, heterogeneity of the coal surface, pressure, temperature and composition of the gas. The wetting behavior can be evaluated from the contact angle of a gas bubble, CO(2) or flue gas, on a coal surface. In this study, contact angles of a synthetic flue gas, i.e. a 80/20 (mol%) N(2)/CO(2) mixture, and pure CO(2) on a Warndt Luisenthal (WL) coal have been determined using a modified pendant drop cell in a pressure range from atmospheric to 16 MPa and a constant temperature of 318 K. It was found that the contact angles of flue gas on WL coal were generally smaller than those of CO(2). The contact angle of CO(2) changes from water-wet to gas-wet by increasing pressure above 8.5 MPa while the one for the flue gas changes from water-wet to intermediate-wet by increasing pressure above 10 MPa. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants.

    Science.gov (United States)

    Lee, Joo-Youp; Keener, Tim C; Yang, Y Jeffery

    2009-06-01

    For geological sequestration of carbon dioxide (CO2) separated from pulverized coal combustion flue gas, it is necessary to adequately evaluate the potential impacts of flue gas impurities on groundwater aquifers in the case of the CO2 leakage from its storage sites. This study estimated the flue gas impurities to be included in the CO2 stream separated from a CO2 control unit for a different combination of air pollution control devices and different flue gas compositions. Specifically, the levels of acid gases and mercury vapor were estimated for the monoethanolamine (MEA)-based absorption process on the basis of published performance parameters of existing systems. Among the flue gas constituents considered, sulfur dioxide (SO2) is known to have the most adverse impact on MEA absorption. When a flue gas contains 3000 parts per million by volume (ppmv) SO2 and a wet flue gas desulfurization system achieves its 95% removal, approximately 2400 parts per million by weight (ppmw) SO2 could be included in the separated CO2 stream. In addition, the estimated concentration level was reduced to as low as 135 ppmw for the SO2 of less than 10 ppmv in the flue gas entering the MEA unit. Furthermore, heat-stable salt formation could further reduce the SO2 concentration below 40 ppmw in the separated CO2 stream. In this study, it is realized that the formation rates of heat-stable salts in MEA solution are not readily available in the literature and are critical to estimating the levels and compositions of flue gas impurities in sequestered CO2 streams. In addition to SO2, mercury, and other impurities in separated CO2 streams could vary depending on pollutant removal at the power plants and impose potential impacts on groundwater. Such a variation and related process control in the upstream management of carbon separation have implications for groundwater protection at carbon sequestration sites and warrant necessary considerations in overall sequestration planning

  19. Integrated petrographic and geochemical study of coal and gas shales from the Sabinas and Chihuahua basins, North of Mexico: estimation of methane gas resources

    International Nuclear Information System (INIS)

    De La O Burrola, Francisco

    2013-01-01

    This comprehensive characterization study was performed using organic petrology and geochemistry conducted in the Sabinas basin and Chihuahua in northern Mexico. This information allowed a numerical modeling of gas formation, considering the thermal subsidence of coal and carbonaceous shales. The objectives of this thesis are: - Establish a characterization methodology for the studied rocks - Estimate potential gas generator and its regional distribution - Estimate the methane gas resources For the development of this project, we conducted an intensive campaign representative sampling of coal, carbonaceous shales and coal gas 'in situ'. For the Sabinas basin were studied 97 samples and 114 samples in the basin of Chihuahua. The analyses carried out that were used on the samples analyzed allowed to characterize the kerogen and gas. The methodology used to cross petrographic and geochemical information to analyze the petroleum system by numerical modeling. Analyses were: Petrographic, reflectance %Ro, elemental analysis and immediate, Rock Eval6 R (Bulk rock), isotopic analysis, δ 13 C, δD, (coal gas), scanning electron microscopy, image analysis and analysis of macerals fluid inclusions. The analyzes that were used on the samples allowed to characterize the sample, the kerogen and gas. The methodology used to cross petrographic and geochemical information for analyze the oil system by numerical modeling. Analyses were: Petrographic, reflectance %Ro, elemental analysis and immediate, Rock Eval6 R (Bulk rock), isotopic analysis, δ 13 C, δD, (coal gas), scanning electron microscopy, image analysis and analysis of macerals fluid inclusions A computer program was constructed to cross the information with the analysis of samples of artificial maturation experiments in the laboratory. This approach allowed estimation of methane gas resources generated by coal and carbonaceous shales. The main results obtained for Sabinas Basin were: - The kerogen of the

  20. Coal-92

    International Nuclear Information System (INIS)

    Hillring, B.; Sparre, C.

    1992-11-01

    Swedish consumption of coal and coke during 1991 and trends in technology, environment and market aspects of coal use are reported. Steam coal use in the heating sector was unchanged from 1991, 1.2 Mtons. Reduced consumption in smaller district heating units (due to conversion to biofuels and gas) was compensated by increased use for power generation in cogeneration plants. Coal consumption in industry fell 0.10 Mton to 0.84 Mton due to lower production in one industry branch. Import of steam coal was 1.1 Mton (down 0.5 Mton from 1990) since new rules for strategic reserves allowed a reduction of stocks. During the last five years stocks have been reduced by 2 Mtons. Import of metallurgical coal was 1.6 Mton, unchanged from 1990. The report also gives statistics for the coal using plants in Sweden, on coal R and D, and on emission laws for coal firing. (9 tabs., 2 figs.)

  1. Revised users manual, Pulverized Coal Gasification or Combustion: 2-dimensional (87-PCGC-2): Final report, Volume 2. [87-PCGC-2

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Smoot, L.D.; Brewster, B.S.

    1987-12-01

    A two-dimensional, steady-state model for describing a variety of reactive and non-reactive flows, including pulverized coal combustion and gasification, is presented. Recent code revisions and additions are described. The model, referred to as 87-PCGC-2, is applicable to cylindrical axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using either a flux method or discrete ordinates method. The particle phase is modeled in a Lagrangian framework, such that mean paths of particle groups are followed. Several multi-step coal devolatilization schemes are included along with a heterogeneous reaction scheme that allows for both diffusion and chemical reaction. Major gas-phase reactions are modeled assuming local instantaneous equilibrium, and thus the reaction rates are limited by the turbulent rate mixing. A NO/sub x/ finite rate chemistry submodel is included which integrates chemical kinetics and the statistics of the turbulence. The gas phase is described by elliptic partial differential equations that are solved by an iterative line-by-line technique. Under-relaxation is used to achieve numerical stability. The generalized nature of the model allows for calculation of isothermal fluid mechanicsgaseous combustion, droplet combustion, particulate combustion and various mixtures of the above, including combustion of coal-water and coal-oil slurries. Both combustion and gasification environments are permissible. User information and theory are presented, along with sample problems. 106 refs.

  2. Biodesulfurization techniques: Application of selected microorganisms for organic sulfur removal from coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, B.B.

    1993-08-01

    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating a potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.

  3. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION; FINAL

    International Nuclear Information System (INIS)

    Michael T. Klein; William H. Calkins; Jasna Tomic

    2000-01-01

    To provide a better understanding of the roles of a solid catalyst and the solvent in Direct Coal Liquefaction, a small reactor was equipped with a porous-walled basket which was permeable to the solvent but was not permeable to the coal or solid catalyst. With this equipment and a high volatile bituminous coal it was found that direct contact between the catalyst in the basket and the coal outside the basket is not required for catalyzed coal liquefaction. The character of the solvent in this system makes a significant difference in the conversion of the coal, the better solvents being strong donor solvents. Because of the extensive use of thermogravimetric analysis in this laboratory, it was noted that the peak temperature for volatiles evolution from coal was a reliable measure of coal rank. Because of this observation, a variety of coals of a range of ranks was investigated. It was shown in this work that measuring the peak temperature for volatiles evolution was a quite precise indicator of rank and correlated closely with the rank value obtained by measuring vitrinite reflectance, a more difficult measurement to make. This prompted the desire to know the composition of the volatile material evolved as a function of coal rank. This was then measured by coupling a TGA to a mass spectrometer using laser activation and photoionization detection TG-PI-MS. The predominant species in volatiles of low rank coal turned out to be phenols with some alkenes. As the rank increases, the relative amounts of alkene and aromatic hydrocarbons increases and the oxygenated species decrease. It was shown that these volatiles were actually pyrolytic products and not volatilization products of the coal. Solvent extraction experiments coupled with Thermogravimetric-photoionization-mass spectrometry (TG-PI-MS) indicated that the low boiling and more extractable material are essentially similar in chemical types to the non-extractable portions but apparently higher molecular weight

  4. International Coal Report's coal year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McCloskey, G [ed.

    1991-05-31

    Following introductory articles on factors affecting trade in coal and developments in the freight market, tables are given for coal exports and coal imports for major countries worldwide for 1989 and 1990. Figures are also included for coal consumption in Canada and the Eastern bloc,, power station consumption in Japan, coal supply and demand in the UK, electric utility coal consumption and stocks in the USA, coal production in Australia, Canada and USA by state, and world hard coal production. A final section gives electricity production and hard coal deliveries in the EEC, sales of imported and local coal and world production of pig iron and steel.

  5. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  6. Synergistic Utilization of Coal Fines and Municipal Solid Waste in Coal-Fired Boilers. Phase I Final Report

    Energy Technology Data Exchange (ETDEWEB)

    V. Zamansky; P. Maly; M. Klosky

    1998-06-12

    A feasibility study was performed on a novel concept: to synergistically utilize a blend of waste coal fines with so-called E-fuel for cofiring and reburning in utility and industrial boilers. The E-fuel is produced from MSW by the patented EnerTech's slurry carbonization process. The slurry carbonization technology economically converts MSW to a uniform, low-ash, low-sulfur, and essentially chlorine-free fuel with energy content of about 14,800 Btu/lb.

  7. Particular cases of materials balance equation generalized for gas deposits associated to the coal

    International Nuclear Information System (INIS)

    Penuela, G; Ordonez, A; Bejarano, A

    1997-01-01

    One of the fundamental principles used in the work, developed in engineering is the law of the matter conservation. The application of this principle to the hydrocarbons fields, with the purpose of to quantify and to be predicted expresses by means of materials balance method. While the equation construction of conventional materials balance and the calculations that come with their application are not a difficult task, the approach of selection of the solution that better it represents the deposit it is one of the problems that the petroleum engineer should face. The materials balance is a useful analysis method of the deposit operation, reserves estimate of raw and gas, and prediction of the future behavior of the deposit. The coal, beds, devonian shales and geo pressurized-aquifer are some examples of natural gas sources and to possess production mechanisms and behaviors significantly different to the traditional than have been considered as non conventional deposits

  8. Social licence, corporate social responsibility and coal seam gas: framing the new political dynamics of contestation

    International Nuclear Information System (INIS)

    Curran, Giorel

    2017-01-01

    This paper explores the contestation dynamics between the unconventional gas mining sector and its challengers through the prism of the social licence to operate. Social licence is a dominant narrative in the mining sector today and as a signifier of the sector's CSR credentials, the term is an influential one. Its capacity to confer project legitimacy, and hence avoid the risks of community opposition, helps explain why most companies seek to gain one. Today both gas proponents and opponents talk the language of social licence: the former to defend their projects, the latter to challenge them. Yet, beyond rhetoric, the precise meaning of social licence remains elusive. This paper uses a case study of community opposition to primarily coal seam gas projects in an eastern Australian region to explore how the absence of a precise meaning for social licence has created a strategic opportunity space for the industry's opponents to invest social licence with a potent democracy frame. This democracy framing has proved particularly effective as a contestation tool and helps explain the outcomes in this case. - Highlights: • Unconventional gas exploration and mining is becoming increasingly contested. • A key way of managing this contestation is through the social licence to operate. • Both proponents and opponents of gas mining use social licence strategically. • Social licence has become increasingly politicised. • A democratic frame assists the effectiveness of contestation.

  9. Ecological aspects of coal combustion - utilization of CO2 from flue gas

    Directory of Open Access Journals (Sweden)

    Markoš Jozef

    1998-09-01

    Full Text Available Slovakia belongs to the group of twenty worst polluters throughout the world, releasing 10 - 12 tons of carbon dioxide per capita, whereas the worldwide average value is about 5 tons. It is known that the big electric and thermal power stations produce only 25 % of the overall production of carbon dioxide in Slovakia, whereas the biggest producer of carbon dioxide is the industry by 31%. The aim of the present contribution is to show possibilities of the further chemical conversion of the separated carbon dioxide from flue gas as a chemical raw material. We focused our attention to the feasibility of the conversion of carbon dioxide into carbon oxide or synthesis gas and its further conversion into methanol. The production of synthesis gas from carbon dioxide, coke (coal and natural gas was assumed. On the basis of our studies we can claim that the fulfilment of the national target of the Slovak Republic set up for 2005, i.e., the reduction of carbon dioxide emissions by 20 % against 1988 by the chemical transformation of carbon dioxide from the electric power stations flue gas is not realistic. In our opinion a profound reduction of carbon dioxide emission can be reached by lower demands for energy produced by burning fossil fuels or by the substitution of these fuels by alternative energy sources.

  10. Effect of stress on the diffusion kinetics of methane during gas desorption in coal matrix under different equilibrium pressures

    Science.gov (United States)

    Li, Chengwu; Xue, Honglai; Hu, Po; Guan, Cheng; Liu, Wenbiao

    2018-06-01

    Stress has a significant influence on gas diffusion, which is a key factor for methane recovery in coal mines. In this study, a series of experiments were performed to investigate effect of stress on the gas diffusivity during desorption in tectonic coal. Additionally, the desorbed data were modeled using the unipore and bidisperse models. The results show that the bidisperse model better describes the diffusion kinetics than the unipore model in this study. Additionally, the modeling results using the bidisperse approach suggest that the stress impact on the macropore diffusivity is greater than the stress on the micropore diffusivity. Under the same equilibrium pressure, the diffusivity varies with stress according to a four-stage function, which shows an ‘M-shape’. As the equilibrium gas pressure increased from 0.6 to 1.7 MPa, the critical point between stage 2 and stage 3 and between stage 3 and stage 4 transferred to a low stress. This difference is attributed to the gas pressure effects on the physical and mechanical properties of coal. These observations indicate that both the stress and gas pressure can significantly impact gas diffusion and may have significant implications on methane recovery in coal mines.

  11. Microporous Organic Polymers Based on Hyper-Crosslinked Coal Tar: Preparation and Application for Gas Adsorption.

    Science.gov (United States)

    Gao, Hui; Ding, Lei; Bai, Hua; Li, Lei

    2017-02-08

    Hyper-crosslinked polymers (HCPs) are promising materials for gas capture and storage, but high cost and complicated preparation limit their practical application. In this paper, a new type of HCPs (CTHPs) was synthesized through a one-step mild Friedel-Crafts reaction with low-cost coal tar as the starting material. Chloroform was utilized as both solvent and crosslinker to generate a three-dimensional crosslinked network with abundant micropores. The maximum BET surface area of the prepared CTHPs could reach up to 929 m 2  g -1 . Owing to the high affinity between the heteroatoms on the coal-tar building blocks and the CO 2 molecules, the adsorption capacity of CTHPs towards CO 2 reached up to 14.2 wt % (1.0 bar, 273 K) with a high selectivity (CO 2 /N 2 =32.3). Furthermore, the obtained CTHPs could adsorb 1.27 wt % H 2 at 1.0 bar and 77.3 K, and also showed capacity for the capture of high organic vapors at room temperature. In comparison with other reported porous organic polymers, CTHPs have the advantages of low-cost, easy preparation, and high gas-adsorption performance, making them suitable for mass production and practical use in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Pyrolysis gas chromatographic atomic emission detection for sediments, coals and other petrochemical precursors

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, J.A.; Zeng, Y.D.; Uden, P.C.; Eglinton, T.I.; Ericson, I. (Massachusetts University, Amherst, MA (USA). Dept. of Chemistry)

    1992-09-01

    On-line flash pyrolysis coupled to a capillary gas chromatograph for the characterization of marine sediments, coals and other heterogeneous solid samples is described. A helium microwave-induced plasma is used for chromatographic detection by atomic emission spectrometry. Simultaneous multi-element detection is achieved with a photodiode array detector. The optical path of the gas chromatographic atomic emission detector is purged with helium, allowing simultaneous, sensitive detection of atomic emission from sulfur 181 nm, phosphorous 186 nm, arsenic 189 nm, selenium 196 nm and carbon 193 nm. Several sediment and coal samples have been analysed for their carbon, nitrogen, sulfur, oxygen, phosphorous, arsenic and selenium content. Qualitative information indicating the occurrence and distribution of these elements in the samples can be used to gauge the relative stage of diagenetic evolution of the samples and provide information on their depositional environment. In some instances the chromatographic behaviour of the compounds produced upon pyrolysis is improved through on-line alkylation. This on-line derivatization is achieved by adding liquid reagents to the pyrolysis probe or by adding liquid reagents to the pyrolysis probe or by adding solid reagents either to the solid sample or by packing the reagent in the injection port of the chromatograph.

  13. Removal of organic and inorganic sulfur from Ohio coal by combined physical and chemical process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Attia, Y.A.; Zeky, M.El.; Lei, W.W.; Bavarian, F.; Yu, S. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1989-04-28

    This project consisted of three sections. In the first part, the physical cleaning of Ohio coal by selective flocculation of ultrafine slurry was considered. In the second part, the mild oxidation process for removal of pyritic and organic sulfur.was investigated. Finally, in-the third part, the combined effects of these processes were studied. The physical cleaning and desulfurization of Ohio coal was achieved using selective flocculation of ultrafine coal slurry in conjunction with froth flotation as flocs separation method. The finely disseminated pyrite particles in Ohio coals, in particular Pittsburgh No.8 seam, make it necessary to use ultrafine ({minus}500 mesh) grinding to liberate the pyrite particles. Experiments were performed to identify the ``optimum`` operating conditions for selective flocculation process. The results indicated that the use of a totally hydrophobic flocculant (FR-7A) yielded the lowest levels of mineral matters and total sulfur contents. The use of a selective dispersant (PAAX) increased the rejection of pyritic sulfur further. In addition, different methods of floc separation techniques were tested. It was found that froth flotation system was the most efficient method for separation of small coal flocs.

  14. Greenhouse gas emission factor for coal power chain in China and the comparison with nuclear power chain

    International Nuclear Information System (INIS)

    Ma Zhonghai; Pan Ziqiang; He Huimin

    1999-01-01

    The Greenhouse Gas Emission for coal power chain in China is analyzed in detail and comprehensively by using the Life Cycle Analysis method. The Greenhouse Gas Emission Factors (GGEF) in each link and for the total power chain are calculated. The total GGEF for coal power chain is 1302.3 gCO 2 /kWh, about 40 times more than that for nuclear power chain. And consequently greenhouse effect could not be aggravated further by nuclear power. The energy strategy for nuclear power development is one of reality ways to retard the greenhouse effect, put resources into rational use and protect environment

  15. Zero-Headspace Coal-Core Gas Desorption Canister, Revised Desorption Data Analysis Spreadsheets and a Dry Canister Heating System

    Science.gov (United States)

    Barker, Charles E.; Dallegge, Todd A.

    2005-01-01

    Coal desorption techniques typically use the U.S. Bureau of Mines (USBM) canister-desorption method as described by Diamond and Levine (1981), Close and Erwin (1989), Ryan and Dawson (1993), McLennan and others (1994), Mavor and Nelson (1997) and Diamond and Schatzel (1998). However, the coal desorption canister designs historically used with this method have an inherent flaw that allows a significant gas-filled headspace bubble to remain in the canister that later has to be compensated for by correcting the measured desorbed gas volume with a mathematical headspace volume correction (McLennan and others, 1994; Mavor and Nelson, 1997).

  16. Coal upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, S. [IEA Clean Coal Centre, London (United Kingdom)

    2009-10-15

    This report examines current technologies and those likely to be used to produce cleaner coal and coal products, principally for use in power generation and metallurgical applications. Consideration is also given to coal production in the leading coal producing countries, both with developed and developing industries. A range of technologies are considered. These include the coal-based liquid fuel called coal water mixture (CWM) that may compete with diesel, the production of ultra-clean coal (UCC) and coal liquefaction which competes with oil and its products. Technologies for upgrading coal are considered, especially for low rank coals (LRC), since these have the potential to fill the gap generated by the increasing demand for coal that cannot be met by higher quality coals. Potential advantages and downsides of coal upgrading are outlined. Taking into account the environmental benefits of reduced pollution achieved through cleaner coal and reduced transport costs, as well as other positive aspects such as a predictable product leading to better boiler design, the advantages appear to be significant. The drying of low rank coals improves the energy productively released during combustion and may also be used as an adjunct or as part of other coal processing procedures. Coal washing technologies vary in different countries and the implications of this are outlined. Dry separation technologies, such as dry jigging and electrostatic separation, are also described. The demonstration of new technologies is key to their further development and demonstrations of various clean coal technologies are considered. A number of approaches to briquetting and pelletising are available and their use varies from country to country. Finally, developments in upgrading low rank coals are described in the leading coal producing countries. This is an area that is developing rapidly and in which there are significant corporate and state players. 81 refs., 32 figs., 3 tabs.

  17. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

    1987-04-01

    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  18. Studies for the stabilization of coal-oil mixtures. Final report, August 1978-May 1981

    Energy Technology Data Exchange (ETDEWEB)

    Botsaris, G.D.; Glazman, Y.M.; Adams-Viola, M.

    1981-01-01

    A fundamental understanding of the stabilization of coal-oil mixtures (COM) was developed. Aggregation of the coal particles was determined to control both the sedimentation and rheological properties of the COM. Sedimentation stability of COM prepared with coal, 80% < 200 mesh, is achieved by particle aggregation, which leads to the formation of a network of particles throughout the oil. The wettability of coal powders was evaluated by the Pickering emulsion test and a spherical agglomeration test to assess its effect on the stability of various COM formulations. Sedimentation stability of hydrophilic coal-oil-water mixtures (COWM) involves the formation of water bridges between the coal particles, while less stabilization of oleophilic COWM is achieved by the formation of an emulsion. Anionic SAA were least sensitive to the coal type and enhanced the aggregation stability of the suspension. The effect of cationic SAA, nonionic SAA and polymer additives depended upon the specific chemical structure of the SAA, the water content of the COM and the type of coal. The sedimentation stability of ultrafine COM was not directly due to the fineness of the powder but due to the formation of a network of flocculated particles.

  19. High temperature gas cleaning for pressurized gasification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alden, H.; Hagstroem, P.; Hallgren, A.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    The purpose of the project was to build an apparatus to study pressurized, high temperature gas cleaning of raw gasification gas generated from biomass. A flexible and easy to operate pressurized apparatus was designed and installed for the investigations in high temperature gas cleaning by means of thermal, catalytic or chemical procedures. A semi continuos fuel feeding concept, at a maximum rate of 700 g/h, allowed a very constant formation of a gas product at 700 deg C. The gas product was subsequently introduced into a fixed bed secondary reactor where the actual gas cleanup or reformation was fulfilled. The installation work was divided into four work periods and apart from a few delays the work was carried out according to the time plan. During the first work period (January - June 1994) the technical design, drawings etc. of the reactor and additional parts were completed. All material for the construction was ordered and the installation work was started. The second work period (July - December 1994) was dedicated to the construction and the installation of the different components. Initial tests with the electrical heating elements, control system and gas supply were assigned to the third work period (January - June 1995). After the commissioning and the resulting modifications, initial pyrolysis and tar decomposition experiments were performed. During the fourth and final work period, (June - December 1995) encouraging results from first tests allowed the experimental part of the project work to commence, however in a slightly reduced program. The experimental part of the project work comparatively studied tar decomposition as a function of the process conditions as well as of the choice of catalyst. Two different catalysts, dolomite and a commercial Ni-based catalyst, were evaluated in the unit. Their tar cracking ability in the pressure interval 1 - 20 bar and at cracker bed temperatures between 800 - 900 deg C was compared. Long term tests to study

  20. 75 FR 63823 - Final Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Science.gov (United States)

    2010-10-18

    ... COUNCIL ON ENVIRONMENTAL QUALITY Final Guidance, ``Federal Greenhouse Gas Accounting and Reporting...''), entitled ``Federal Leadership in Environmental, Energy, and Economic Performance.'' 74 FR 52117, Oct. 8... emissions associated with agency operations. This Final Guidance, ``Federal Greenhouse Gas Accounting and...

  1. Thermal-maturity limit for primary thermogenic-gas generation from humic coals as determined by hydrous pyrolysis

    Science.gov (United States)

    Lewan, Michael; Kotarba, M.J.

    2014-01-01

    Hydrous-pyrolysis experiments at 360°C (680°F) for 72 h were conducted on 53 humic coals representing ranks from lignite through anthracite to determine the upper maturity limit for hydrocarbon-gas generation from their kerogen and associated bitumen (i.e., primary gas generation). These experimental conditions are below those needed for oil cracking to ensure that generated gas was not derived from the decomposition of expelled oil generated from some of the coals (i.e., secondary gas generation). Experimental results showed that generation of hydrocarbon gas ends before a vitrinite reflectance of 2.0%. This reflectance is equivalent to Rock-Eval maximum-yield temperature and hydrogen indices (HIs) of 555°C (1031°F) and 35 mg/g total organic carbon (TOC), respectively. At these maturity levels, essentially no soluble bitumen is present in the coals before or after hydrous pyrolysis. The equivalent kerogen atomic H/C ratio is 0.50 at the primary gas-generation limit and indicates that no alkyl moieties are remaining to source hydrocarbon gases. The convergence of atomic H/C ratios of type-II and -I kerogen to this same value at a reflectance of indicates that the primary gas-generation limits for humic coal and type-III kerogen also apply to oil-prone kerogen. Although gas generation from source rocks does not exceed vitrinite reflectance values greater than , trapped hydrocarbon gases can remain stable at higher reflectance values. Distinguishing trapped gas from generated gas in hydrous-pyrolysis experiments is readily determined by of the hydrocarbon gases when a -depleted water is used in the experiments. Water serves as a source of hydrogen in hydrous pyrolysis and, as a result, the use of -depleted water is reflected in the generated gases but not pre-existing trapped gases.

  2. "Knitting Nannas" and "Frackman": A Gender Analysis of Australian Anti-Coal Seam Gas Documentaries (CSG) and Implications for Environmental Adult Education

    Science.gov (United States)

    Larri, Larraine J.; Newlands, Maxine

    2017-01-01

    "Frackman" ("FM") and "Knitting Nannas" ("KN") are two documentaries about the anti-coal seam gas movement in Australia. "Frackman" features a former construction worker turned eco-activist, Dayne Pratzky (DP), fighting coal seam gas extraction. "Knitting Nannas" follows a group of women…

  3. Coal supply and transportation markets during Phase One: Change, risk and opportunity. Final report

    International Nuclear Information System (INIS)

    Heller, J.N.; Kaplan, S.

    1996-01-01

    The Clean Air Act Amendments of 1990 (CAAA) required many utilities to sharply reduce sulfur emissions by January 1, 1995. This study describes and analyzes how the coal and transportation markets responded to this major development. The study focuses on five key coal supply regions and their associated transportation networks: the Uinta Basin (Colorado/Utah), Wyoming Powder River Basin, Illinois Basin, Monongahela region (Pittsburgh seam) and the central Appalachian region. From these regional studies, the report identifies key risk areas for future coal planning and general lessons for the fuels planning process. The study provides statistical information on coal production, demand, and transportation flows for each region. The analysis for each region focuses on developments which were generally unexpected; e.g., the relatively large volumes of medium-sulfur coal produced in the Illinois Basin and Monongahela region, the eastern penetration of Utah and Colorado coals, and the relatively modest growth in demand for central Appalachian coals. These developments generally worked to the advantage of utilities; i.e., medium- and low-sulfur coal was available at a lower price, in greater volumes and from a wider range of sources than many had expected. Utilities both took advantage of and helped to encourage these developments in the coal and transportation market. Looking ahead to Phase 11 strategies and future coal procurement, a major challenge will be to maintain the choice among supply and transportation alternatives which was so important to utility success in Phase 1. The report identifies rail transportation to be the major area of risk in most regions

  4. Temperature effects on chemical structure and motion in coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, G.E.

    1996-09-30

    The objective of this project was to apply recently developed, state-of-the-art nuclear magnetic resonance (NMR) techniques to examine in situ changes in the chemical structure and molecular/macromolecular motion in coal as the temperature is increased above room temperature. Although alterations in the chemical structure of coal have been studied previously by {sup 13}C NMR, using quenched samples, the goal of this project was to examine these chemical structural changes, and changes in molecular/macromolecular mobility that may precede or accompany the chemical changes, at elevated temperatures, using modern {sup 13}C and {sup 1}H NMR techniques, especially {sup 1}H dipolar-dephasing techniques and related experiments pioneered in the laboratory for examining pyridine-saturated coals. This project consisted of the following four primary segments and related efforts on matters relevant to the first four tasks. (1) {sup 1}H NMR characterization of coal structure and mobility as a function of temperature variation over a temperature range (30--240 C) for which substantial chemical transformations were not anticipated. (2) {sup 1}H NMR characterization of coal structure, mobility and conversion as a function of temperature variation over a temperature range (240--500 C) for which chemical transformations of coal are known to occur. (3) {sup 13}C NMR investigation of coal structure/mobility as a function of temperature over a temperature range (30--240 C) for which substantial chemical transformations were not anticipated. (4) {sup 13}C NMR investigation of coal structure, dynamics and conversion as a function of temperature variation over a range (240--500 C) for which chemical transformations of coal are known to occur. (5) Related matters relevant to the first four tasks: (a) {sup 1}H CRAMPS NMR characterization of oil shales and their kerogen concentrates; and (b) improved quantitation in {sup 13}C MAS characterization of coals.

  5. Purification of coal fired boiler flue gas and fertilizer production by using electron beam

    International Nuclear Information System (INIS)

    Maezawa, Akihiko

    1996-01-01

    Electron beam irradiation technology which is applied in electron accelerators is used in a variety of fields, including industry, medicine and etc.. In collaboration with the Japan Atomic Energy Research Institute, Ebara Corporation has developed a novel flue-gas treatment process by making use of the electron beam for the purification of flue gas emitted from industrial plant such as thermal power station. The E-beam flue gas treatment process (EBA Process) is applied to clean flue gas generated in the combustion of coal containing sulfur oxides (SOx) and nitrogen oxides (NOx), which are chemical pollutants responsible for acid rain. As a by-product of this process, ammonium sulfate and ammonium nitrate mixture is obtained. This mixture can be recovered from the process as a valuable fertilizer to promote the growth of agricultural produce. The EBA process thus serves two important purposes at the same time: It helps prevent environmental pollution and produces a fertilizer that is vitally important for increasing food production to meet the world's future population growth. (J.P.N.)

  6. Panorama 2015 - Gas and Coal Competition in the EU Power Sector

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2014-12-01

    Never have the fossil-fueled thermal European power sector, and natural gas in this sector, seen such a crisis. EON's recent announcement of its future withdrawal from fossil-fueled thermal power generation illustrates the difficulties faced by producers in Germany. But the whole European power sector is in deep crisis, and natural gas is its first victim. Faced with a flat electricity demand in Europe, the rapid development of renewable energies, and competition from coal, natural gas is losing market share and its consumption is in decline. In 2013, total gas consumption in the European Union (EU) fell for the third year running. Projections for 2014 are no better, consumption is forecast to decline by approximately 10%, greatly affected by the mild winter of 2013/2014 compared with the previous one which was particularly cold over a long period. The milder temperatures impact the need for heating, therefore consumption in the residential/services sectors and also the demand for electricity. The International Energy Agency (IEA) is now predicting that European consumption will not get back to its 2010 level until 2032. (author)

  7. Characteristic analysis of methane-gas generation by oxidizing heat of stored coal and hold ventilation control; Sekitan unpansen ni okeru sanka hatsunetsu ni yoru methane gas hassei to sonai kankyo seigyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fukuchi, N; Nakashima, T [Kyushu Univ., Fukuoka (Japan); Kudo, S

    1999-12-31

    A demand of coal shows the tendency in the increase worldwide, with this, the marine transportation of the coal gradually increases, and the collier has also enlarged. The traffic pattern of coal is mainly the bulk transportation. In this transportation system, by the oxidation exothermic reaction of the coal, methane gas is produced, simultaneously the coal quality such as coking property or heat quantity is decreased and sometimes spontaneous ignition is caused. Therefore, it is necessary to equip with a ventilator to control the concentration of methane gas and to avoid the self heating of the coal. In this study, the quantity of methane-gas produced by heating coal using an electric furnace was measured and the experiment to investigate the temperature dependency of the methane-gas generated from the coal was conducted. By using the result of the measurement, the quantity of methane-gas produced from the coal stored in the hold of a coal cargo was estimated. And, the mathematical analyses on the changing degree depend on the times of a temperature in the hold under navigation, a concentration of oxygen and a concentration of methane-gas, were conducted. 11 refs., 19 figs., 2 tabs.

  8. Thermodynamic properties calculation of the flue gas based on its composition estimation for coal-fired power plants

    International Nuclear Information System (INIS)

    Xu, Liang; Yuan, Jingqi

    2015-01-01

    Thermodynamic properties of the working fluid and the flue gas play an important role in the thermodynamic calculation for the boiler design and the operational optimization in power plants. In this study, a generic approach to online calculate the thermodynamic properties of the flue gas is proposed based on its composition estimation. It covers the full operation scope of the flue gas, including the two-phase state when the temperature becomes lower than the dew point. The composition of the flue gas is online estimated based on the routinely offline assays of the coal samples and the online measured oxygen mole fraction in the flue gas. The relative error of the proposed approach is found less than 1% when the standard data set of the dry and humid air and the typical flue gas is used for validation. Also, the sensitivity analysis of the individual component and the influence of the measurement error of the oxygen mole fraction on the thermodynamic properties of the flue gas are presented. - Highlights: • Flue gas thermodynamic properties in coal-fired power plants are online calculated. • Flue gas composition is online estimated using the measured oxygen mole fraction. • The proposed approach covers full operation scope, including two-phase flue gas. • Component sensitivity to the thermodynamic properties of flue gas is presented.

  9. Characterization and suitability of superclean coals for hydroliquefaction feedstocks: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam

    1989-05-30

    Superclean coals have been studied for their suitability as liquefaction feedstocks. The effects of ash and sulfur contents and two catalysts on a hydrogen donor solvent liquefaction reaction have been studied. Experiments were run using a unique coal of small particle size (90% <22 microns). The coal was characterized in terms of its chemical and its physical properties. This information made it possible to determine the effects of the static tube flotation separation on the coal. Once characterized the coals were liquefied in the hydrogen donor tetralin under a hydrogen atmosphere of 500 psig. The first series of experiments was to determine the effects of the ash on the liquefaction reaction. The second group of experiments dealt with the effects of catalysts (ammonium molybdate and titanium carbide) on low ash coals at various conditions. A model for batch liquefaction in a hydrogen donor solvent is then developed. This model is based on the assumption that the reaction is due to two competing mechanisms; (1) a thermal decomposition of the coal and (2) a catalytic reaction. The thermal reaction produces unwanted products while the catalytic reaction produces the desired products. To accurately model the batch system, mass transfer is considered. 51 refs., 50 figs., 29 tabs.

  10. Thermal maturity and organic composition of Pennsylvanian coals and carbonaceous shales, north-central Texas: Implications for coalbed gas potential

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, Paul C. [U.S. Geological Survey, 956 National Center, Reston, VA 20192 (United States); Guevara, Edgar H.; Hentz, Tucker F. [Bureau of Economic Geology, The University of Texas at Austin, Austin, TX 78713 (United States); Hook, Robert W. [1301 Constant Springs Drive, Austin, TX 78746 (United States)

    2009-01-31

    Thermal maturity was determined for about 120 core, cuttings, and outcrop samples to investigate the potential for coalbed gas resources in Pennsylvanian strata of north-central Texas. Shallow (< 600 m; 2000 ft) coal and carbonaceous shale cuttings samples from the Middle-Upper Pennsylvanian Strawn, Canyon, and Cisco Groups in Archer and Young Counties on the Eastern Shelf of the Midland basin (northwest and downdip from the outcrop) yielded mean random vitrinite reflectance (R{sub o}) values between about 0.4 and 0.8%. This range of R{sub o} values indicates rank from subbituminous C to high volatile A bituminous in the shallow subsurface, which may be sufficient for early thermogenic gas generation. Near-surface (< 100 m; 300 ft) core and outcrop samples of coal from areas of historical underground coal mining in the region yielded similar R{sub o} values of 0.5 to 0.8%. Carbonaceous shale core samples of Lower Pennsylvanian strata (lower Atoka Group) from two deeper wells (samples from {proportional_to} 1650 m; 5400 ft) in Jack and western Wise Counties in the western part of the Fort Worth basin yielded higher R{sub o} values of about 1.0%. Pyrolysis and petrographic data for the lower Atoka samples indicate mixed Type II/Type III organic matter, suggesting generated hydrocarbons may be both gas- and oil-prone. In all other samples, organic material is dominated by Type III organic matter (vitrinite), indicating that generated hydrocarbons should be gas-prone. Individual coal beds are thin at outcrop (< 1 m; 3.3 ft), laterally discontinuous, and moderately high in ash yield and sulfur content. A possible analog for coalbed gas potential in the Pennsylvanian section of north-central Texas occurs on the northeast Oklahoma shelf and in the Cherokee basin of southeastern Kansas, where contemporaneous gas-producing coal beds are similar in thickness, quality, and rank. (author)

  11. The modernization potential of gas turbines in the coal-fired power industry thermal and economic effectiveness

    CERN Document Server

    Bartnik, Ryszard

    2013-01-01

    The opportunity of repowering the existing condensing power stations by means of  gas turbogenerators offers an important opportunity to considerably improvement of their energy efficiency. The Modernization Potential of Gas turbines in the Coal-Fired Power Industry presents the methodology, calculation procedures and tools used to support enterprise planning for adapting power stations to dual-fuel gas-steam combined-cycle technologies. Both the conceptual and practical aspects of the conversion of existing coal-fired power plants is covered. Discussions of the feasibility, advantages and disadvantages and possible methods are supported by chapters presenting equations of energy efficiency for the conditions of repowering a power unit by installing a gas turbogenerator in a parallel system and the results of technical calculations involving the selection heating structures of heat recovery steam generators. A methodology for analyzing thermodynamic and economic effectiveness for the selection of a structure...

  12. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.

    Science.gov (United States)

    Rodríguez-Pérez, Jorge; López-Antón, M Antonia; Díaz-Somoano, Mercedes; García, Roberto; Martínez-Tarazona, M Rosa

    2013-09-15

    This work demonstrates that regenerable sorbents containing nano-particles of gold dispersed on an activated carbon are efficient and long-life materials for capturing mercury species from coal combustion flue gases. These sorbents can be used in such a way that the high investment entailed in their preparation will be compensated for by the recovery of all valuable materials. The characteristics of the support and dispersion of gold in the carbon surface influence the efficiency and lifetime of the sorbents. The main factor that determines the retention of mercury and the regeneration of the sorbent is the presence of reactive gases that enhance mercury retention capacity. The capture of mercury is a consequence of two mechanisms: (i) the retention of elemental mercury by amalgamation with gold and (ii) the retention of oxidized mercury on the activated carbon support. These sorbents were specifically designed for retaining the mercury remaining in gas phase after the desulfurization units in coal power plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Rapid fuel switching from coal to natural gas through effective carbon pricing

    Science.gov (United States)

    Wilson, I. A. Grant; Staffell, Iain

    2018-05-01

    Great Britain's overall carbon emissions fell by 6% in 2016, due to cleaner electricity production. This was not due to a surge in low-carbon nuclear or renewable sources; instead it was the much-overlooked impact of fuel switching from coal to natural gas generation. This Perspective considers the enabling conditions in Great Britain and the potential for rapid fuel switching in other coal-reliant countries. We find that spare generation and fuel supply-chain capacity must already exist for fuel switching to deliver rapid carbon savings, and to avoid further high-carbon infrastructure lock-in. More important is the political will to alter the marketplace and incentivize this switch, for example, through a stable and strong carbon price. With the right incentives, fuel switching in the power sector could rapidly achieve on the order of 1 GtCO2 saving per year worldwide (3% of global emissions), buying precious time to slow the growth in cumulative carbon emissions.

  14. Dynamic simulation model of a coal thermoelectric plant with a flue gas desulphurisation system

    International Nuclear Information System (INIS)

    Caselles-Moncho, Antonio; Ferrandiz-Serrano, Liliana; Peris-Mora, Eduardo

    2006-01-01

    In this paper a Dynamic Simulation Model has been used to present the likely responses of the electricity industries' latest perturbations such as: changes in environmental regulations, international fuel market evolution, restriction on fuel supply and increase on fuel prices, liberalisation of the European Electricity Market, and the results of applying energy policies and official tools such as taxes and emission allowances. The case under study refers to the Teruel Power Plant, built after the 1970s oil crisis to ensure national electricity supply; burning domestically produced coal in order to ensure local mining activity. The Teruel Power Plant has made relevant investments in order to meet emission limits, such as a Flue Gas Desulphurisation Plant. The economic viability of the power stations has to be analysed after environmental costs have been internalised. A system is defined that studies the coal-firing Electric Power Plant selling energy to the free electricity market, whenever the generation cost is competitive. A Dynamic Simulation Model would appear to be an accurate tool to optimise power station management within different frameworks

  15. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.

    Science.gov (United States)

    Li, Dekui; Han, Jieru; Han, Lina; Wang, Jiancheng; Chang, Liping

    2014-07-01

    Higher concentrations of Hg can be emitted from coal pyrolysis or gasification than from coal combustion, especially elemental Hg. Highly efficient Hg removal technology from coal-derived fuel gas is thus of great importance. Based on the very excellent Hg removal ability of Pd and the high adsorption abilities of activated carbon (AC) for H₂S and Hg, a series of Pd/AC sorbents was prepared by using pore volume impregnation, and their performance in capturing Hg and H₂S from coal-derived fuel gas was investigated using a laboratory-scale fixed-bed reactor. The effects of loading amount, reaction temperature and reaction atmosphere on Hg removal from coal-derived fuel gas were studied. The sorbents were characterized by N₂ adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the efficiency of Hg removal increased with the increasing of Pd loading amount, but the effective utilization rate of the active component Pd decreased significantly at the same time. High temperature had a negative influence on the Hg removal. The efficiency of Hg removal in the N₂-H₂S-H₂-CO-Hg atmosphere (simulated coal gas) was higher than that in N₂-H₂S-Hg and N₂-Hg atmospheres, which showed that H₂ and CO, with their reducing capacity, could benefit promote the removal of Hg. The XPS results suggested that there were two different ways of capturing Hg over sorbents in N₂-H₂S-Hg and N₂-Hg atmospheres. Copyright © 2014. Published by Elsevier B.V.

  16. Development and reactivity tests of Ce-Zr-based Claus catalysts for coal gas cleanup

    Energy Technology Data Exchange (ETDEWEB)

    No-Kuk Park; Dong Cheul Han; Gi Bo Han; Si Ok Ryu; Tae Jin Lee; Ki Jun Yoon [Yeungnam University, Gyeongbuk (Republic of Korea). National Research Laboratory, School of Chemical Engineering and Technology

    2007-09-15

    Claus reaction (2H{sub 2}S + SO{sub 2} {leftrightarrow} 3/nS{sub n} + 2H{sub 2}O) was used to clean the gasified coal gas and the reactivity of several metal oxide-based catalysts on Claus reaction was investigated at various operating conditions. In order to convert H{sub 2}S contained in the gasified coal gas to elemental sulfur during Claus reaction, the catalysts having the high activity under the highly reducing condition with the moisture should be developed. CeO{sub 2}, ZrO{sub 2}, and Ce{sub 1-x}Zr{sub x}O{sub 2} catalysts were prepared for Claus reaction and their reactivity changes due to the existence of the reducing gases and H{sub 2}O in the fuel gas was investigated in this study. The Ce-based catalysts shows that their activity was deteriorated by the reduction of the catalyst due to the reducing gases at higher than 220{sup o}C. Meanwhile, the effect of the reducing gases on the catalytic activity was not considerable at low temperature. The activities of all three catalysts were degraded on the condition that the moisture existed in the test gas. Specifically, the Ce-based catalysts were remarkably deactivated by their sulfation. The Ce-Zr-based catalyst had a high catalytic activity when the reducing gases and the moisture co-existed in the simulated fuel gas. The deactivation of the Ce-Zr-based catalyst was not observed in this study. The lattice oxygen of the Ce-based catalyst was used for the oxidation of H{sub 2}S and the lattice oxygen vacancy on the catalyst was contributed to the reduction of SO{sub 2}. ZrO{sub 2} added to the Ce-Zr-based catalyst improved the redox properties of the catalyst in Claus reaction by increasing the mobility of the lattice oxygen of CeO{sub 2}. 21 refs., 14 figs.

  17. Cooperative research in coal liquefaction. Final report, May 1, 1992--April 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1996-03-01

    Research on sulfate and metal (Mo, Sn) promoted Fe{sub 2}O{sub 3} catalysts in the current year focused on optimization of conditions. Parameters varied included temperature, solvent, solvent-to-coal ratio, and the effect of presulfiding versus in situ sulfiding. Oil yields were found to increase approximately proportionately with both temperature and solvent-to-coal ratio. The donor solvent, tetralin, proved to give better total conversion and oil yields than either 1-methylnaphthalene or Wilsonville recycle oil. A significant enhancement of both total liquefaction yields and oil yields from lignites and subbituminous coals has been achieved by incorporating iron into the coal matrix by cation exchange. A study has been conducted on the synthesis of iron, molybdenum, and tungsten catalysts using a laser pyrolysis technique.

  18. Final report on dust monitoring near Kellingley coal mine, North Yorkshire

    International Nuclear Information System (INIS)

    Vallack, H.W.

    1992-06-01

    Dust deposition was monitored at a residential location near Kellingley Coal Mine over two four-weekly periods (November/December 1991 and March/April 1992) using a wet Frisbee dust deposit gauge. The mean rates of dust deposition for both periods (696.4 and 415.5 mg m -2 day -1 respectively) were well in excess of a proposed acceptable upper limit (195 mg m -2 day -1 ) for residential conditions. Mean estimated coal dust content during both periods (80.9 and 49.7 per cent) was also high. It is concluded that coal dust from Kellingley Coal Mine gave rise to excessively high levels of dust deposition at the monitoring site, especially during the first four-weekly period. The situation would appear to have deteriorated since a similar monitoring exercise was carried out in 1989. 4 refs, 2 figs, 2 tabs

  19. Comments on "Proposal for a Regenerative High-Temperature Process for Coal Gas Cleanup with Calcined Limestone"

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Trnka, Otakar

    2002-01-01

    Roč. 41, č. 24 (2002), s. 6207-6208 ISSN 0888-5885 R&D Projects: GA ČR GA203/98/0101; GA AV ČR IAA4072711 Keywords : H2S removal * coal gas * limestone Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.247, year: 2002

  20. Pilot plant experience in electron-beam treatment of iron-ore sintering flue gas and its application to coal boiler flue gas cleanup

    International Nuclear Information System (INIS)

    Kawamura, K.

    1984-01-01

    The present development status of the electron-beam flue gas treatment process, which is a dry process capable of removing SOx and NOx simultaneously, is described. The most advanced demonstration of this process was accomplished with a pilot plant in Japan where the maximum gas flow rate of 10,000 Nm 3 /h of an iron-ore sintering machine flue gas was successfully treated. The byproduct produced in this process is collected as a dry powder which is a mixture of ammonia sulfate and ammonium nitrate and is saleable as a fertilizer or a fertilizer component. A preliminary economic projection showed that this process costs less than the lime scrubber which removes SOx but does not remove NOx. Tests using simulated coal combustion gases suggest that this process will be applicable to coal-fired boiler flue gas treatment as well. However, tests on actual coal-fired flue gases are still required for commercial application decisions. A process development unit program consisting of the design, construction and testing of actual coal-fired power station flue gases is underway in the U.S.A. The design and engineering of the test plant is far advanced and the construction phase will be launched in the very near future. (author)

  1. Pilot-scale test for electron beam purification of flue gas from coal-combustion boiler

    International Nuclear Information System (INIS)

    Namba, Hideki; Tokunaga, Okihiro; Hashimoto, Shoji; Doi, Yoshitaka; Aoki, Shinji; Izutsu, Masahiro

    1995-01-01

    A pilot-scale test for electron beam treatment of flue gas (12,000m 3 N/hr) from coal-fired boiler was conducted by Japan Atomic Energy Research Institute, Chubu Electric Power Company and Ebara Corporation, in the site of Shin-Nagoya Thermal Power Plant in Nagoya, Japan. During 14 months operation, it was proved that the method is possible to remove SO 2 and NO x simultaneously in wide concentration range of SO 2 (250-2,000ppm) and NO x (140-240ppm) with higher efficiency than the conventional methods, with appropriate operation conditions (dose, temperature etc.). The pilot plant was easily operated with well controllability and durability, and was operated for long period of time without serious problems. The byproduct, ammonium sulfate and ammonium nitrate, produced by the treatment was proved to be a nitrogenous fertilizer with excellent quality. (author)

  2. GAS AND COAL EXTRACTIVE INDUSTRY DURING THE SOCIALIST INDUSTRIALIZATION PERIOD (1948-1989

    Directory of Open Access Journals (Sweden)

    MARIUS BULEARCA

    2015-12-01

    Full Text Available This article shows that since 1949 the extractive industry has undergone a strong process of restructuring when enterprises were nationalized and a strict control over all components of the economy was established. The new leadership of the country had the intention of developing the industrial sector as well, basically laying the foundations of the new Romanian economy where the industrial sector economy would bring considerable income. This program will lead to the development of the energy sector in Romania also, thus contributing to a great extent to the development and consolidation of coal and gas extraction. Despite of all the economic and social development achieved during the period 1950-1989, at the end of it, Romania ranked a marginal position in the European countries hierarchy since between its level of development and the market economy developed countries large gaps in respect to the main economic and social indicators occurred.

  3. Solar power. [comparison of costs to wind, nuclear, coal, oil and gas

    Science.gov (United States)

    Walton, A. L.; Hall, Darwin C.

    1990-01-01

    This paper describes categories of solar technologies and identifies those that are economic. It compares the private costs of power from solar, wind, nuclear, coal, oil, and gas generators. In the southern United States, the private costs of building and generating electricity from new solar and wind power plants are less than the private cost of electricity from a new nuclear power plant. Solar power is more valuable than nuclear power since all solar power is available during peak and midpeak periods. Half of the power from nuclear generators is off-peak power and therefore is less valuable. Reliability is important in determining the value of wind and nuclear power. Damage from air pollution, when factored into the cost of power from fossil fuels, alters the cost comparison in favor of solar and wind power. Some policies are more effective at encouraging alternative energy technologies that pollute less and improve national security.

  4. Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1999-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  5. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1997-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  6. SO3 tinges stack gas from scrubbed coal-fired units

    International Nuclear Information System (INIS)

    Jones, C.; Ellison, W.

    1998-01-01

    The small amount of SO 3 in flue gas creates enough problems inside the plant. New US EPA regulations on so-called air toxics are making SO 3 discharge an emission problem as well - and a visible one at that. Units that have installed wet scrubbers to control SO 2 emissions may be most affected. The article explains that SO 3 levels in coal-fired power plants are mainly increased by catalytic oxidation of SO 2 by iron oxide on the fireside surfaces of the superheater tubes. Dependence on air-heater temperature is discussed. Wet FGD systems are responsible for the formation of 'blue eye' where SO 3 causes a blue hue in the plume. Ammonia injection has been effective in reducing SO 3 vapour, as has injecting water ahead of the electrostatic precipitator. Replacement of a wet ESP with a dry ESP is also a solution. 2 figs

  7. Optimized CO2-flue gas separation model for a coal fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Arachchige, Udara S.P.R. [Telemark University College, Porsgrunn (Norway); Mohsin, Muhammad [Telemark University College, Porsgrunn (Norway); Melaaen, Morten C. [Telemark University College, Porsgrunn (Norway); Tel-Tek, Porsgrunn (Norway)

    2013-07-01

    The detailed description of the CO2 removal process using mono-ethylamine (MEA) as a solvent for coal-fired power plant is present in this paper. The rate based Electrolyte NRTL activity coefficient model was used in the Aspen Plus. The complete removal process with re-circulating solvent back to the absorber was implemented with the sequential modular method in Aspen Plus. The most significant cost related to CO2 capture is the energy requirement for re-generating solvent, i.e. re-boiler duty. Parameters’ effects on re-boiler duty were studied, resulting decreased re-boiler duty with the packing height and absorber packing diameter, absorber pressure, solvent temperature, stripper packing height and diameter. On the other hand, with the flue gas temperature, re-boiler duty is increased. The temperature profiles and CO2 loading profiles were used to check the model behavior.

  8. Coal seam gas water: potential hazards and exposure pathways in Queensland.

    Science.gov (United States)

    Navi, Maryam; Skelly, Chris; Taulis, Mauricio; Nasiri, Shahram

    2015-01-01

    The extraction of coal seam gas (CSG) produces large volumes of potentially contaminated water. It has raised concerns about the environmental health impacts of the co-produced CSG water. In this paper, we review CSG water contaminants and their potential health effects in the context of exposure pathways in Queensland's CSG basins. The hazardous substances associated with CSG water in Queensland include fluoride, boron, lead and benzene. The exposure pathways for CSG water are (1) water used for municipal purposes; (2) recreational water activities in rivers; (3) occupational exposures; (4) water extracted from contaminated aquifers; and (5) indirect exposure through the food chain. We recommend mapping of exposure pathways into communities in CSG regions to determine the potentially exposed populations in Queensland. Future efforts to monitor chemicals of concern and consolidate them into a central database will build the necessary capability to undertake a much needed environmental health impact assessment.

  9. The experimental modeling of gas percolation mechanisms in a coal-measure tight sandstone reservoir: A case study on the coal-measure tight sandstone gas in the Upper Triassic Xujiahe Formation, Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Shizhen Tao

    2016-12-01

    Full Text Available Tight sandstone gas from coal-measure source rock is widespread in China, and it is represented by the Xujiahe Formation of the Sichuan Basin and the Upper Paleozoic of the Ordos Basin. It is affected by planar evaporative hydrocarbon expulsion of coal-measure source rock and the gentle structural background; hydrodynamics and buoyancy play a limited role in the gas migration-accumulation in tight sandstone. Under the conditions of low permeability and speed, non-Darcy flow is quite apparent, it gives rise to gas-water mixed gas zone. In the gas displacing water experiment, the shape of percolation flow curve is mainly influenced by core permeability. The lower the permeability, the higher the starting pressure gradient as well as the more evident the non-Darcy phenomenon will be. In the gas displacing water experiment of tight sandstone, the maximum gas saturation of the core is generally less than 50% (ranging from 30% to 40% and averaging at 38%; it is similar to the actual gas saturation of the gas zone in the subsurface core. The gas saturation and permeability of the core have a logarithm correlation with a correlation coefficient of 0.8915. In the single-phase flow of tight sandstone gas, low-velocity non-Darcy percolation is apparent; the initial flow velocity (Vd exists due to the slippage effect of gas flow. The shape of percolation flow curve of a single-phase gas is primarily controlled by core permeability and confining pressure; the lower the permeability or the higher the confining pressure, the higher the starting pressure (0.02–0.08 MPa/cm, whereas, the higher the quasi-initial flow speed, the longer the nonlinear section and the more obvious the non-Darcy flow will be. The tight sandstone gas seepage mechanism study shows that the lower the reservoir permeability, the higher the starting pressure and the slower the flow velocity will be, this results in the low efficiency of natural gas migration and accumulation as well as

  10. Determining the radiative properties of pulverized-coal particles from experiments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Menguec, M.P.

    1992-02-01

    A comprehensive coupled experimental-theoretical study has been performed to determine the effective radiative properties of pulverized-coal/char particles. The results obtained show that the ``effective`` scattering phase function of coal particles are highly forward scattering and show less sensitivity to the size than predicted from the Lorenz-Mie theory. The main reason for this is the presence of smaller size particles associated with each larger particle. Also, the coal/char particle clouds display more side scattering than predicted for the same size range spheres, indicating the irregular shape of the particles and fragmentation. In addition to these, it was observed that in the visible wavelength range the coal absorption is not gray, and slightly vary with the wavelength. These two experimental approaches followed in this study are unique in a sense that the physics of the problem are not approximated. The properties determined include all uncertainties related to the particle shape, size distribution, inhomogeneity and spectral complex index of refraction data. In order to obtain radiative property data over a wider wavelength spectrum, additional ex-situ experiments have been carried out using a Fourier Transform Infrared (FT-IR) Spectrometer. The spectral measurements were performed over the wavelength range of 2 to 22 {mu}m. These results were interpreted to obtain the ``effective`` efficiency factors of coal particles and the corresponding refractive index values. The results clearly show that the coal/char radiative properties display significant wavelength dependency in the infrared spectrum.

  11. Peat and the greenhouse effect - Comparison of peat with coal, oil, natural gas and wood

    International Nuclear Information System (INIS)

    Hillebrand, K.

    1993-01-01

    The earth's climate is effected both by natural factors and human activities. So called greenhouse gas emissions increase the increment of the temperature of the air nearby the earth's surface, due to which the social changes can be large. The increment of greenhouse gas concentration in the atmosphere is due to increasing energy consumption. About 50 % of the climatic changes are caused by increase of the CO 2 concentration in the atmosphere. Other gases, formed in the energy production, intensifying the greenhouse effect are methane and nitrous oxide. The effect of greenhouse gases is based on their ability to absorb infrared radiation coming from the earth. This presentation discusses some of the greenhouse effect caused by some peat production and utilization chains in comparison with corresponding effects of coal, oil, natural gas and wood. The instantaneous greenhouse effects and the cumulative effects of the emissions of the gases (CO 2 , CH 4 and N 2 O) during a time period has been reviewed. The greenhouse effect has been calculated as CO 2 - equivalents. (5 figs.)

  12. Production of carbon molecular sieves from Illinois coal. Final technical report, 1 September, 1992--31 August 1993

    Energy Technology Data Exchange (ETDEWEB)

    Lizzio, A.A.; Rostam-Abadi, M. [Illinois State Geological Survey, Champaign, IL (United States)

    1993-12-31

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recovery processes. The overall objective of this project is to determine whether Illinois Basin coals are a suitable feedstock for the production of CMS and to evaluate the potential application of these products in commercial gas separation processes. In Phase 1 of this project, gram quantities of char were prepared from Illinois coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. Chars having surface areas of 1,500--2,100 m{sup 2}/g were produced by chemical activation using potassium hydroxide (KOH) as the chemical activant. These high surface area (HSA) chars had more than twice the adsorption capacity of commercial molecular sieves. The kinetics of adsorption of various gases, e.g., O{sub 2}, N{sub 2}, CO{sub 2}, CH{sub 4}, and H{sub 2}, on these chars at 25 C was determined. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4} and CH{sub 4}/H{sub 2} separation. In Phase 2 of this project, larger quantities of char are being prepared from Illinois coal in a batch fluidized-bed reactor and in a continuous rotary tube kiln. The ability of these chars to separate binary gas mixtures is tested in an adsorption column/gas chromatography system. Oxygen and nitrogen breakthrough curves obtained for selected chars were compared to those of a commercial zeolite. Selected chars were subjected to a nitric acid oxidation treatment. The air separation capability of nitric acid treated char was strongly dependent on the outgassing conditions used prior to an O{sub 2}/N{sub 2} adsorption experiment. An outgassing temperature of 130--160 C produced chars with the most favorable air separation properties. 61 refs.

  13. Appearance of rapid carbon on hydrogasification of coal; Suiten gas ka ni okeru kokassei tanso no hatsugen

    Energy Technology Data Exchange (ETDEWEB)

    Soneda, Y.; Makino, M. [National Institute for Resources and Environment, Tsukuba (Japan)9] Xu, W. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1998-09-20

    The technology of hydrogasification of coal now under development under a State project aims to produce light oil as well as methane-rich high calorie gas through the direct reaction between coal and hydrogen, and is expected to deal with the difficult natural gas demand/supply relationship anticipated for the future. Although it is mandatory to fully understand the reaction between coal and hydrogen for the completion of this technology, yet there are many tasks to be fulfilled. One of the tasks is the elucidation of the behavior of what is named rapid carbon that appears upon the rapid heating of coal in a high-pressure hydrogen environment. In this paper, some interesting findings about the appearance of rapid carbon are reported. When coal is placed in such an environment, volatile components are lost first of all and then the active carbon reaction occurs. When the behavior of active carbon in the reaction is observed, it is found that active carbon is not so small in quantity, and the result of observation of its appearance and deactivation during the reaction justifies an inference that the reaction is regarded as one of the primary reactions in the process of hydrogasification. Accordingly, systematic studies of its physical and chemical features from various viewpoints are necessary. 5 refs., 3 figs., 1 tab.

  14. Comparison of carbon monoxide poisonings originated from coal stove and natural gas and the evaluation of Neutrophil/Lymphocyte ratio

    Directory of Open Access Journals (Sweden)

    Yahya Kemal Günaydın

    2015-09-01

    Full Text Available Objective: The aim of our study is to present the epidemiologic, clinical, laboratory and prognosis differences between the coal stove origin poisoning and natural gas leakages. We also aimed to investigate relationship between the severity of clinical picture, prognosis, complications develop in CO poisoning with neutrophil/lymphocyte ratio (NLR at the initial admission. Methods: All the acute carbon monoxide cases who applied to Ankara Training and Research Hospital Emergency Medicine Clinic between October 2009 and April 2010 were included to this prospective study. CO poisoning diagnosis was made by the history of CO poisoning with carboxyl hemoglobin (COHb concentration is over 10%. 100 patients were included to our study. Results: Of the patients, 55(55% were poisoned from the coal-stove and 45(45% from natural gas leakage. The mean COHb level of the natural gas group was significantly high (p=0.01. The mean value of GCS of the natural gas group was significantly lower (p=0.018. The number of patients with indication for HBO therapy were 17 and 6 in the natural gas group and coal-stove group, respectively, being significantly higher in the natural gas group(p=0.001. There was no statistically significant relationship between the value of NLR and values of COHb, troponin, and GCS (p=0.872, p=0.470, and p=0.896, respectively. Conclusions: Carbon monoxide poisoning from natural gas leakage is more toxic than that from the coal-stove. There is no relationship between NLR at the time of presentation and the severity of clinical findings, prognosis and complications.

  15. Effect of volume change of coal during plastic and resolidifying phase on the internal gas pressure in coke ovens; Sekitan nanka saikoka katei ni okeru taiseki henka ga cokes ro no nanka yoyu sonai gas atsu ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, S; Arima, T [Nippon Steel Corp., Tokyo (Japan)

    2000-08-01

    The coking pressure in coke oven, which is caused by the internal gas pressure in the coal plastic layer, is determined by the gas permeability of the layer. The gas permeability of the plastic layer depends on its density as well as the physical property of the plastic coal itself The plastic layer is between the coke layer and the coal layer and the effect of the volume change of these outer layers, i.e. contraction and compression, on the density and the internal gas pressure of the plastic layer was studied. Sandwich carbonization test, where different coals were charged in the test coke oven, showed that the internal gas pressure in the plastic layer depends not only on the one kind of coal in plastic phase but also on the other kind of coal in resolidifying phase near the oven walls. The relative volume of coke transformed from the unit volume of coal was measured using X-ray CT scanner and it varied greatly across the coke oven width depending on the kinds of coals. The volume change of coal during plastic and resolidifying phase affects the density and the internal gas pressure of the plastic layer The relative volume of semicoke and coke transformed from the unit volume of coal near the oven walls is higher for a high coking pressure coal than that for a low coking pressure coal. This leads to the high density of the plastic layer and the generation of dangerously high internal gas pressure in the oven centre. (author)

  16. The production of synthetic material gas (SNG) from pit coal by a combined auto-allothermic steam gasification

    International Nuclear Information System (INIS)

    Buch, A.

    1975-01-01

    The steam gasification of pit coal requires temperatures which cannot yet be reached with the present state of HTGR technology for material technical reasons. The use of nuclear heat thus remains limited to some fields of application outside the gasifier, which are specified. The production costs of synthetic natural gas from autothermal gasification on the one hand, and from combined auto-allothermal gasification on the other hand are calculated considering the heat price of pit coal and of the selling price of electrical energy and are compared. (GG/LH) [de

  17. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale

    Science.gov (United States)

    Orem, William H.; Tatu, Calin A.; Varonka, Matthew S.; Lerch, Harry E.; Bates, Anne L.; Engle, Mark A.; Crosby, Lynn M.; McIntosh, Jennifer

    2014-01-01

    Organic substances in produced and formation water from coalbed methane (CBM) and gas shale plays from across the USA were examined in this study. Disposal of produced waters from gas extraction in coal and shale is an important environmental issue because of the large volumes of water involved and the variable quality of this water. Organic substances in produced water may be environmentally relevant as pollutants, but have been little studied. Results from five CBM plays and two gas shale plays (including the Marcellus Shale) show a myriad of organic chemicals present in the produced and formation water. Organic compound classes present in produced and formation water in CBM plays include: polycyclic aromatic hydrocarbons (PAHs), heterocyclic compounds, alkyl phenols, aromatic amines, alkyl aromatics (alkyl benzenes, alkyl biphenyls), long-chain fatty acids, and aliphatic hydrocarbons. Concentrations of individual compounds range from gas shale unimpacted by production chemicals have a similar range of compound classes as CBM produced water, and TOC levels of about 8 mg/L. However, produced water from the Marcellus Shale using hydraulic fracturing has TOC levels as high as 5500 mg/L and a range of added organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at levels of 1000 s of μg/L for individual compounds. Levels of these hydraulic fracturing chemicals and TOC decrease rapidly over the first 20 days of water recovery and some level of residual organic contaminants remain up to 250 days after hydraulic fracturing. Although the environmental impacts of the organics in produced water are not well defined, results suggest that care should be exercised in the disposal and release of produced waters containing these organic substances into the environment because of the potential toxicity of many of these substances.

  18. Modelling of Gas Flow in the Underground Coal Gasification Process and its Interactions with the Rock Environment

    Directory of Open Access Journals (Sweden)

    Tomasz Janoszek

    2013-01-01

    Full Text Available The main goal of this study was the analysis of gas flow in the underground coal gasification process and interactions with the surrounding rock mass. The article is a discussion of the assumptions for the geometric model and for the numerical method for its solution as well as assumptions for modelling the geochemical model of the interaction between gas-rock-water, in terms of equilibrium calculations, chemical and gas flow modelling in porous mediums. Ansys-Fluent software was used to describe the underground coal gasification process (UCG. The numerical solution was compared with experimental data. The PHREEQC program was used to describe the chemical reaction between the gaseous products of the UCG process and the rock strata in the presence of reservoir waters.

  19. DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

    2012-09-30

    The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

  20. Solvent-refined-coal (SRC) process. Volume II. Sections V-XIV. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    This report documents the completion of development work on the Solvent Refined Coal Process by The Pittsburgh and Midway Coal Mining Co. The work was initiated in 1966 under Office of Coal Research, US Department of Interior, Contract No. 14-01-0001-496 and completed under US Department of Energy Contract No. DE-AC05-79ET10104. This report discusses work leading to the development of the SRC-I and SRC-II processes, construction of the Fort Lewis Pilot Plant for the successful development of these processes, and results from the operation of this pilot plant. Process design data generated on a 1 ton-per-day Process Development Unit, bench-scale units and through numerous research projects in support of the design of major demonstration plants are also discussed in summary form and fully referenced in this report.

  1. Relocation of belt conveyors along the final slope of the Belacevac surface coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Maksimovic, N; Rosic, Z

    1987-07-01

    Describes how following a landslide on the northern wing of the Belacevac surface coal mine the belt conveyor lines had to be relocated in order to assure a reliable coal supply to the Kosovo A and Kosovo B thermal power stations. The relocation was achieved in three phases with new approach cuts being made, necessitating the removal of 280,000 m/sup 3/ of overburden in the first phase and 870,000 m/sup 3/ in the second phase of the reconstruction. Illustrates the relocation of the conveyor system by means of site plans and notes that the production of coal and the removal of overburden were not interrupted during the relocation exercise. 2 refs.

  2. 78 FR 68161 - Greenhouse Gas Reporting Program: Final Amendments and Confidentiality Determinations for...

    Science.gov (United States)

    2013-11-13

    ... 98 Greenhouse Gas Reporting Program: Final Amendments and Confidentiality Determinations for...-HQ-OAR-2011-0028; FRL-9845-6] RIN 2060-AR61 Greenhouse Gas Reporting Program: Final Amendments and... monitoring methodologies for electronics manufacturers covered by the Greenhouse Gas Reporting Rule. These...

  3. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    Energy Technology Data Exchange (ETDEWEB)

    Patel, R.; Borio, R.W.; Liljedahl, G. [Combustion Engineering, Inc., Windsor, CT (United States)] [and others

    1995-11-01

    Under US Department of Energy, Pittsburgh Energy Technology Center (PETC) support, the development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 at the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment.

  4. Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, J.C.; Alonso, G.; Ramirez, R.; Gomez, A.; Ortiz, J.; Longoria, L.C.

    2004-10-06

    In the case of new nuclear power stations, it is necessary to pay special attention to the financial strategy that will be applied, time of construction, investment cost, and the discount and return rate. The levelized cost quantifies the unitary cost of the electricity (the kWh) generated during the lifetime of the nuclear power plant; and allows the immediate comparison with the cost of other alternative technologies. The present paper shows levelized cost for different nuclear technologies and it provides comparison among them as well as with gas and coal electricity plants. For the calculations we applied our own methodology to evaluate the levelized cost considering investment, fuel and operation and maintenance costs, making assumptions for the Mexican market, and taking into account the gas prices projections. The study also shows comparisons using different discount rates (5% and 10%), and some comparisons between our results and an OECD 1998 study. The results are i n good agreement and shows that nuclear option is cost competitive in Mexico on the basis of levelized costs.

  5. Report for fiscal 1994 by Coal Gasification Committee; 1994 nendo sekitan gas ka iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    Summarized in this report is the material already distributed concerning the program for modifying the Nakoso 200t/d pilot plant entrained bed coal gasification furnace. The program aims to verify the overall suitability for power generation use of the air-blow pressurized 2-chamber 2-stage flow entrained bed gasification furnace. Although each specific feature of gasification furnace performance is found to be satisfactory, yet a 100% operation and extended continuous operation remain to be accomplished. Slagging is a phenomenon of ash grains in high-temperature gas adhering to and growing on the furnace walls to block up the furnace to eventually disable the furnace from continuous operation. In view of past achievements and test results, it is found that slagging is closely related to the behavior of floating or molten ash and to the transition temperature range. Various slagging measures have been taken for the current gasification furnace, but they prove to be ineffective. Some drastic measures need to be implemented for improvement. Under study using model furnaces and test furnaces are the reduction of slag generation at its source (re-entrained slag), prevention of adhesion (untrapped slag), removal of slag, optimization of gyration in the furnace, modification of slag properties for enhanced discharge, optimization of the transition gas temperature range, and the modification of furnace dimensions. (NEDO)

  6. Shell coal IGCCS with carbon capture. Conventional gas quench vs. innovative configurations

    Energy Technology Data Exchange (ETDEWEB)

    Martellia, E.; Consonni, S. [Politecnico di Milano, Via Scalabrini 76, Piacenza (Italy); Kreutz, T. [Princeton University, Guyot Hall, Room 129, Princeton, NJ (United States); Carbo, M.; Jansen, D. [Energy research Centre of the Netherlands ECN, P.O. Box 1, 1755 ZG, Petten (Netherlands)

    2011-11-15

    The Shell coal integrated gasification combined cycle (IGCC) based on the gas quench system is one of the most fuel flexible and energy efficient gasification processes because is dry feed and employs high temperature syngas coolers capable of rising high pressure steam. Indeed the efficiency of a Shell IGCC with the best available technologies is calculated to be 47-48%. However the system looses many percentage points of efficiency (up to 10) when introducing carbon capture. To overcome this penalty, two approaches have been proposed. In the first, the expensive syngas coolers are replaced by a 'partial water quench' where the raw syngas stream is cooled and humidified via direct injection of hot water. This design is less costly, but also less efficient. The second approach retains syngas coolers but instead employs novel water-gas shift (WGS) configurations that requires substantially less steam to obtain the same degree of CO conversion to CO2, and thus increases the overall plant efficiency. We simulate and optimize these novel configurations, provide a detailed thermodynamic and economic analysis and investigate how these innovations alter the plant's efficiency, cost and complexity.

  7. Low NO subx heavy fuel combustor concept program. Phase 1A: Coal gas addendum

    Science.gov (United States)

    Rosfjord, T.; Sederquist, R.

    1982-01-01

    The performance and emissions from a rich-lean combustor fired on simulated coal gas fuels were investigated using a 12.7-cm diameter axially-staged burner originally designed for operation with high heating value liquid fuels. A simple, tubular fuel injector was substituted for the liquid fuel nozzle; no other combustor modifications were made. Four test fuels were studied including three chemically bound nitrogen-free gas mixtures with higher heating values of 88, 227, and 308 kj/mol (103, 258 and 349 Btu/scf), and a 227 kj/mol (258 Btu/scf) heating value doped with ammonia to produce a fuel nitrogen content of 0.5% (wt). Stable, ultra-low nitrogen oxide, smoke-free combustion was attained for the nitrogen-free fuels. Results with the doped fuel indicated that less than 5% conversion of NH3 to nitrogen oxide levels below Environmental Protection Agency limits could be achieved. In some instances, excessive CO levels were encountered. It is shown that use of a burner design employing a less fuel-rich primary zone than that found optimum for liquid fuels would yield more acceptable CO emissions.

  8. Prediction of Coal Face Gas Concentration by Multi-Scale Selective Ensemble Hybrid Modeling

    Directory of Open Access Journals (Sweden)

    WU Xiang

    2014-06-01

    Full Text Available A selective ensemble hybrid modeling prediction method based on wavelet transformation is proposed to improve the fitting and generalization capability of the existing prediction models of the coal face gas concentration, which has a strong stochastic volatility. Mallat algorithm was employed for the multi-scale decomposition and single-scale reconstruction of the gas concentration time series. Then, it predicted every subsequence by sparsely weighted multi unstable ELM(extreme learning machine predictor within method SERELM(sparse ensemble regressors of ELM. At last, it superimposed the predicted values of these models to obtain the predicted values of the original sequence. The proposed method takes advantage of characteristics of multi scale analysis of wavelet transformation, accuracy and fast characteristics of ELM prediction and the generalization ability of L1 regularized selective ensemble learning method. The results show that the forecast accuracy has large increase by using the proposed method. The average relative error is 0.65%, the maximum relative error is 4.16% and the probability of relative error less than 1% reaches 0.785.

  9. Global resources and energy trade. An overview for coal, natural gas, oil and uranium

    Energy Technology Data Exchange (ETDEWEB)

    Remme, U.; Blesl, M.; Fahl, U.

    2007-07-15

    Despite efforts to improve energy effi-ciency and increase the usage of renewable energy carriers, fossil fuels and nuclear energy will continue to be important sources of global energy supply for the coming decades. Present global oil and gas supply is characterized by a concentration of production in a few world areas, mainly the Middle East and the Former Soviet Union, and a transport from these regions to the industrialized countries. Depletion of conventional reserves, especially oil, in combination with a surge for energy in emerging economies, as China and India, how-ever, is expected to change this picture in the future: unconventional resources in other world regions may be exploited to cover the surge energy demand, infrastructure for energy transport along new routes may have to be established. To provide a data base for such ques-tions, this report gives an overview of the current global resource situation for coal, natural gas, oil and uranium. In the first part, an assessment of the con-ventional and unconventional reserves and resources as well as their supply costs is given for the different regions of the world. The second part describes the current energy trade infrastructure between world regions and estimates the costs for existing and new trade links between these regions. (orig.)

  10. Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario

    International Nuclear Information System (INIS)

    Palacios, J.C.; Alonso, G.; Ramirez, R.; Gomez, A.; Ortiz, J.; Longoria, L.C.

    2004-01-01

    In the case of new nuclear power stations, it is necessary to pay special attention to the financial strategy that will be applied, time of construction, investment cost, and the discount and return rate. The levelized cost quantifies the unitary cost of the electricity (the kWh) generated during the lifetime of the nuclear power plant; and allows the immediate comparison with the cost of other alternative technologies. The present paper shows levelized cost for different nuclear technologies and it provides comparison among them as well as with gas and coal electricity plants. For the calculations we applied our own methodology to evaluate the levelized cost considering investment, fuel and operation and maintenance costs, making assumptions for the Mexican market, and taking into account the gas prices projections. The study also shows comparisons using different discount rates (5% and 10%), and some comparisons between our results and an OECD 1998 study. The results are i n good agreement and shows that nuclear option is cost competitive in Mexico on the basis of levelized costs

  11. FUNDAMENTAL KINETICS OF SUPERCRITICAL COAL LIQUEFACTION: EFFECT OF CATALYSTS AND HYDROGEN-DONOR SOLVENTS; FINAL

    International Nuclear Information System (INIS)

    Benjamin J. McCoy; J.M. Smith

    1998-01-01

    This report outlines a distribution kinetics approach to macromolecular reactions that has been applied to several processes. The objective was to develop an understanding of high-temperature, dense-phase thermolytic processes for complex macromolecular systems, such as coal. Experiments and theory are described for chemical models that simulate depolymerization of coal. The approach has been exceptionally successful for the model macromolecular systems. Development of a novel chemical reaction engineering analysis, based on distribution kinetics, was a major accomplishment of the current research

  12. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    International Nuclear Information System (INIS)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27 C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully ''gettered'' by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  13. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-09-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27°C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully “gettered” by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  14. Transient Climate Impacts for Scenarios of Aerosol Emissions from Asia: A Story of Coal versus Gas

    Science.gov (United States)

    Grandey, B. S.; Cheng, H.; Wang, C.

    2014-12-01

    Projections of anthropogenic aerosol emissions are uncertain. In Asia, it is possible that emissions may increase if business continues as usual, with economic growth driving an increase in coal burning. But it is also possible that emissions may decrease rapidly due to the widespread adoption of cleaner technology or a shift towards non-coal fuels, such as natural gas. In this study, the transient climate impacts of three aerosol emissions scenarios are investigated: an RCP4.5 (Representative Concentration Pathway 4.5) control; a scenario with reduced Asian anthropogenic aerosol emissions; and a scenario with enhanced Asian anthropogenic aerosol emissions. A coupled atmosphere-ocean configuration of CESM (Community Earth System Model), including CAM5 (Community Atmosphere Model version 5), is used. Enhanced Asian aerosol emissions are found to delay global mean warming by one decade at the end of the century. Aerosol-induced suppression of the East Asian and South Asian summer monsoon precipitation occurs. The enhanced Asian aerosol emissions also remotely impact precipitation in other parts of the world: over the Sahel, West African monsoon precipitation is suppressed; and over Australia, austral summer monsoon precipitation is enhanced. These remote impacts on precipitation are associated with a southward shift of the ITCZ. The aerosol-induced sea surface temperature (SST) response appears to play an important role in the precipitation changes over South Asia and Australia, but not over East Asia. These results indicate that energy production in Asia, through the consequent aerosol emissions and associated radiative effects, might significantly influence future climate both locally and globally.

  15. Determination of Penetration Depth of 800 keV Electron Beam into Coal Fired Power Plant Flue Gas at in a Electron Beam Machine Flue Gas Treatment System

    International Nuclear Information System (INIS)

    Rany Saptaaji

    2008-01-01

    Penetration depth calculation of 800 keV electron beam into flue gas from coal fired power plan is presented in this paper. Electron Beam for Flue Gas Treatment (EB-FGT) is a dry treatment process using electron beam to simultaneously reduce SO 2 and NO x . Flue gas irradiation produces active radicals and then reaction with SO 2 and NO x produces nitrate acid and sulphate acid. Process vessel is needed in this process as reaction container of flue gas with electron beam. The calculation of electron beam penetration depth into flue gas is used to determine the process vessel dimension. The result of calculation of optimum penetration depth of 800 keV electron beam into flue gas is 188.67 cm. (author)

  16. A novel concept for high conversion of coal to liquids. Final report, 1 September 1988--31 August 1992

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W.H.; Shabtai, J.

    1994-04-01

    A batch microreactor was designed and fabricated as a means of investigating maximum yields of liquids obtainable in very short reaction times of the order of a few seconds, and the maximum ratios of liquids/hydrocarbon (HC) gases obtainable under those conditions. A Wyodak sub-bituminous coal, crushed and sieved to {minus}200 mesh particle size, was used in the experiments, with a temperature of 500{degrees}C and a pressure of 1500 psi. The fine coal particles were fed dry to the reactor and heated to reaction temperature in times of one to two seconds. At a time of 3 seconds at reaction temperature, in a single pass a liquid yield of 60% by weight of the coal was obtained, accompanied by a ratio of liquids/(HC) gases of 30/1. When the unreacted solids were recycled to the reactor, and the results combined with those of the first pass, a liquid yield of 82% by weight of the coal was achieved, accompanied by a ratio of liquids/HC gases of 30/1. This ratio represents only about 3 wt percent HC gases, much lower that is produced in current advanced technologies, and represents a large saving in hydrogen consumption. A simulated distillation technique was applied to the liquids. The liquid product contained 86% by weight (of the liquids) total distillables (boiling point below 538{degrees}C), including 70% by weight of low-boiling fractions in the gasoline, kerosene and gas oil range (boiling point up to 325{degrees}C). The liquid product exhibited a H/C ratio of 1.5, which is considerably higher than observed in current advanced technologies for the primary liquids. Several catalysts were investigated. Iron catalysts, specifically ferric chloride hexahydrate and ferric sulfate pentahydrate, each produced these high conversions and high ratios of liquids/HC gases.

  17. Potential health and environmental impacts attributable to the nuclear and coal fuel cycles: Final report

    International Nuclear Information System (INIS)

    Gotchy, R.L.

    1987-06-01

    Estimates of mortality and morbidity are presented based on present-day knowledge of health effects resulting from current component designs and operations of the nuclear and coal fuel cycles, and anticipated emission rates and occupational exposure for the various fuel cycle facilities expected to go into operation during the next decade. The author concluded that, although there are large uncertainties in the estimates of potential health effects, the coal fuel cycle alternative has a greater health impact on man than the uranium fuel fycle. However, the increased risk of health effects for either fuel cycle represents a very small incremental risk to the average individual in the public for the balance of this century. The potential for large impacts exists in both fuel cycles, but the potential impacts associated with a runaway Greenhouse Effect from combustion of fossil fuels, such as coal, cannot yet be reasonably quantified. Some of the potential environmental impacts of the coal fuel cycle cannot currently be realistically estimated, but those that can appear greater than those from the nuclear fuel cycle. 103 refs., 1 fig., 18 tabs

  18. Materials, process, product analysis of coal process technology. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, J. C.; Roig, R. W.; Loridan, A.; Leggett, N. E.; Capell, R. G.; Humpstone, C. C.; Mudry, R. N.; Ayres, E.

    1976-02-01

    The purpose of materials-process-product analysis is a systematic evaluation of alternative manufacturing processes--in this case processes for converting coal into energy and material products that can supplement or replace petroleum-based products. The methodological steps in the analysis include: Definition of functional operations that enter into coal conversion processes, and modeling of alternative, competing methods to accomplish these functions; compilation of all feasible conversion processes that can be assembled from combinations of competing methods for the functional operations; systematic, iterative evaluation of all feasible conversion processes under a variety of economic situations, environmental constraints, and projected technological advances; and aggregative assessments (economic and environmental) of various industrial development scenarios. An integral part of the present project is additional development of the existing computer model to include: A data base for coal-related materials and coal conversion processes; and an algorithmic structure that facilitates the iterative, systematic evaluations in response to exogenously specified variables, such as tax policy, environmental limitations, and changes in process technology and costs. As an analytical tool, the analysis is intended to satisfy the needs of an analyst working at the process selection level, for example, with respect to the allocation of RDandD funds to competing technologies.

  19. Transformations of inorganic coal constituents in combustion systems. Volume 1, sections 1--5: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J. [ed.; Srinivasachar, S.; Wilemski, G.; Boni, A.A. [PSI Technology Co., Andover, MA (United States); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. [Arizona Univ., Tucson, AZ (United States); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. [Kentucky Univ., Lexington, KY (United States)

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles? What determines their composition? Whether or not particles deposit? How combustion conditions, including reactor size, affect these processes? remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

  20. Ultrasonic characterization of coal liquefaction products. Final report, April 11, 1979-February 11, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Leffert, C. B.; Weisman, L.; Moore, D.

    1980-02-29

    The Wayne State University ultrasonic device and technique was used successfully to calibrate coal-derived 0 to 45% wt % asphaltene-in-oil mixtures (2 wt % increments) for transmitted signal strength versus temperature (25 to 100/sup 0/C). Computer-aided cross plots of the transmitted signal strength versus concentration of asphaltene showed that a wide range of concentration and temperature exists where the viscosity-dominated (lower temperature) sound absorption is such that a single-valued number for the concentration of the asphaltene can be obtained from measurement of the sample temperature and transmitted signal strength and thus obtain a measure of the quality of the coal-derived product. Sufficient samples were not provided to obtain a complete calibration of added particulate matter of ash and undissolved coal at all asphaltene in oil concentrations; however, calibrations were made of added ash to three concentrations of asphaltene-in-oil and the data showed the greatest effect at the higher temperatures indicating (as planned) that sound attenuation from Rayleigh scattering is predominant with the suspended particles. We conclude from these two sets of measurements that there is a excellent expectation that the Wayne State ultrasonic device and technique could be used to simultaneously measure (on-line) the suspended particle concentration as well as the quality of the coal-derived product.

  1. Semiconductor electrochemistry of coal pyrite. Final technical report, September 1990--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Osseo-Asare, K.; Wei, D.

    1996-01-01

    This project is concerned with the physiochemical processes occuring at the pyrite/aqueous interface, in the context of coal cleaning, desulfurization, and acid mine drainage. The use of synthetic particles of pyrite as model electrodes to investigate the semiconductor electrochemistry of pyrite is employed.

  2. Micronized Coal Reburning Demonstration for NOx Control: A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2001-01-01

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment of a project selected in CCT Round IV, the Micronized Coal Reburning (MCR) Demonstration for NO(sub x) Control, as described in a report to Congress (U.S. Department of Energy 1999). The need to meet strict emissions requirements at a minimum cost prompted the Tennessee Valley Authority (TVA), in conjunction with Fuller Company, Energy and Environmental Research Corporation (EER), and Fluor Daniel, to submit the proposal for this project to be sited at TVA's Shawnee Fossil Plant. In July 1992, TVA entered into a cooperative agreement with DOE to conduct the study. However, because of operational and environmental compliance strategy changes, the Shawnee site became unavailable

  3. Development of a dry-feed system for a coal-fired gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rothrock, J.W. Jr.; Smith, C.F.

    1993-11-01

    The objective of the reported of the reported work is to develop a dry coal feed system that provides smooth, controllable flow of coal solids into the high pressure combustor of the engine and all test rigs. The system must start quickly and easily, run continuously with automatic transfer of coal from low pressure hoppers to the high pressure delivery system, and offer at least a 3:1 smooth turn-down ratio. cost of the equipment must be minimized to maintain the economic attractiveness of the whole system. Before the current contract started some work was done with dry powder coal. For safety and convenience reasons, coal water slurry was selected as the fuel for all work on the program. Much of the experimental work, including running the Allison 501-KM engine was done with coal slurry. Recent economic analysis led to a change to powdered coal.

  4. Shell coal IGCCS with carbon capture: Conventional gas quench vs. innovative configurations

    International Nuclear Information System (INIS)

    Martelli, Emanuele; Kreutz, Thomas; Carbo, Michiel; Consonni, Stefano; Jansen, Daniel

    2011-01-01

    Highlights: → We aim at defining the preferred IGCC design for dry feed gasifiers with CO 2 capture. → Multiple options of syngas cooling, humidification, and WGS are considered. → Plants are designed, modeled, numerically optimized and costs are carefully assessed. → Partial water quench has poor efficiency but low capital cost, then good performance. → Gas quench with the ECN staged WGS design has the best thermo-economic performance. -- Abstract: The Shell coal integrated gasification combined cycle (IGCC) based on the gas quench system is one of the most fuel flexible and energy efficient gasification processes because is dry feed and employs high temperature syngas coolers capable of rising high pressure steam. Indeed the efficiency of a Shell IGCC with the best available technologies is calculated to be 47-48%. However the system looses many percentage points of efficiency (up to 10) when introducing carbon capture. To overcome this penalty, two approaches have been proposed. In the first, the expensive syngas coolers are replaced by a 'partial water quench' where the raw syngas stream is cooled and humidified via direct injection of hot water. This design is less costly, but also less efficient. The second approach retains syngas coolers but instead employs novel water-gas shift (WGS) configurations that requires substantially less steam to obtain the same degree of CO conversion to CO 2 , and thus increases the overall plant efficiency. We simulate and optimize these novel configurations, provide a detailed thermodynamic and economic analysis and investigate how these innovations alter the plant's efficiency, cost and complexity.

  5. Low NO sub x heavy fuel combustor concept program. Phase 1A: Combustion technology generation coal gas fuels

    Science.gov (United States)

    Sherlock, T. P.

    1982-01-01

    Combustion tests of two scaled burners using actual coal gas from a 25 ton/day fluidized bed coal gasifier are described. The two combustor configurations studied were a ceramic lined, staged rich/lean burner and an integral, all metal multiannual swirl burner (MASB). The tests were conducted over a range of temperature and pressures representative of current industrial combustion turbine inlet conditions. Tests on the rich lean burner were conducted at three levels of product gas heating values: 104, 197 and 254 btu/scf. Corresponding levels of NOx emissions were 5, 20 and 70 ppmv. Nitrogen was added to the fuel in the form of ammonia, and conversion efficiencies of fuel nitrogen to NOx were on the order of 4 percent to 12 percent, which is somewhat lower than the 14 percent to 18 percent conversion efficiency when src-2 liquid fuel was used. The MASB was tested only on medium btu gas (220 to 270 btu/scf), and produced approximately 80 ppmv NOx at rated engine conditions. Both burners operated similarly on actual coal gas and erbs fuel, and all heating values tested can be successfully burned in current machines.

  6. Cooperative research in coal liquefaction. Final report, May 1, 1991--April 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1996-03-01

    Extensive research continued on catalysts based on novel anion-treated (mainly sulfated) oxides and oxyhydroxides of iron [Fe{sub x}O{sub y}/SO{sub 4}]. In addition, sulfated oxides of tin as well as molybdenum promoted iron oxides were used. Incorporation of small amounts of sulfate, molybdate, or tungstate anions by wet precipitation/impregnation methods was found to increase the surface acidic character of iron oxides; more importantly, it reduced the grain sizes significantly with corresponding increases in specific surface areas. These anion-treated iron and tin oxides were more active for direct coal liquefaction and coal-heavy oil coprocessing than their untreated counterparts. With these catalyst systems, higher conversion levels are obtained as compared to the soluble precursors of iron and molybdenum at the same catalyst metalloading (3500 ppm iron and 50 ppm molybdenum with respect to coal). Sulfated iron oxides and oxyhydroxides were equally active as coal liquefaction catalysts. The sulfate, molybdate, and tungstate anions were found to have similar promotional effects on the properties and activities of iron oxides. One step in the synthesis of anion-treated iron and tin oxides is precipitation as hydroxides using either urea or ammonium hydroxide. The catalysts prepared using urea as a precipitation agent were more reproducible than those using ammonium, hydroxide in terms of activities and properties. These catalysts/catalyst precursors were characterized by several techniques to determine their physical (size and structure related) and chemical (acidity) properties. Sulfated and molybdated iron oxides were found to have grain sizes as small as 10-20 nm. An attempt was made to correlate the physicochemical properties of these catalysts with their activity for coal liquefaction.

  7. Assessment of an atmospheric fluidized-bed coal-combustion gas-turbine cogeneration system for industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R. L.; Holcomb, R. S.; Tallackson, J. R.

    1979-10-01

    This study was initiated to provide information on the future potential industrial market for a cogeneration system consisting of a fluidized-bed coal combustor coupled to a gas-turbine (Brayton cycle) power system that uses air as the working fluid. In assessing the potential applications for the system, the process heat energy consumption by industry is identified, with special detail included on the six most energy-intensive industries. The potential impact on the nation's oil and natural gas consumption that would result from wide-spread utilization of coal for process heat is also estimated. The fraction of industrial process heat that the system could feasibly satisfy from a thermodynamic viewpoint is estimated, and the performance (potential fuel efficiency and heat/power ratio) of the atmospheric fluidized-bed gas-turbine system is calculated. Also treated are several specific case studies of industries in which the system could be incorporated. Major parameters are specified, and flow sheets are derived for systems that would satisfy the heat and power requirements of the process or industry. The overall fuel utilization efficiency, thermal power rating, and potential number of installations are specified for these case studies. The findings of the study indicate that there is a sizable potential market for the system, with over 1000 possible installations disclosed after reviewing only 8 specific industries from 6 major Standard Industrial Classification (SIC) groups. The potential displacement of oil and gas by coal in process heating is shown to be about 1.60 m/sup 3//sec (870,000 bbl/d) of oil and 4590 m/sup 3//sec (14.0 billion ft/sup 3//d) of natural gas for all industries combined. Continued development of the fluidized-bed coal combustor and power system is recommended so that this potential may be at least partially realized.

  8. A Gas–Solid–Liquid Coupling Model of Coal Seams and the Optimization of Gas Drainage Boreholes

    Directory of Open Access Journals (Sweden)

    Yuexia Chen

    2018-03-01

    Full Text Available For a gas–solid–liquid coupling model of coal seams, previous permeability models basically supposed uniaxial strains as the boundary condition for coal reservoirs without considering the deformation caused by changes in humidity. The permeability model varies under different boundary conditions. According to the true triaxial stress state of coal reservoirs, a permeability model considering the effective stress, sorption and desorption, and wet strain was established. Based on the permeability model, the continuity equation of gas and water and the stress field equation were coupled. Then, the model was incorporated in the COMSOL suite to simulate gas drainage from boreholes in floor roadways passing through seams in a coal mine. By comparing with the measured gas flow on site, the model was verified as being reliable. Moreover, the spacing and layout shape of boreholes in floor roadways were simulated. To achieve the aim of eliminating regional outburst within 180 days and decreasing the number of boreholes so as to reduce the cost, the spacing and shape of boreholes were optimized. When the superimposed effect of the boreholes was not considered, the optimal spacing of boreholes was 3 r; if the superimposed effect was taken into account, the spacing could be set to within 3 r ≤ L ≤ R, where r and R represent the effective gas drainage radius and the influence radius of gas drainage, respectively. The borehole spacing could be appropriately increased when the boreholes were arranged in rhomboidal form. To achieve the same range of outburst elimination, the rhomboidal layout can decrease the number of boreholes to reduce cost, thus realizing the objective of this optimization process.

  9. Re-Use of Clean Coal Technology By-Products in the Construction of Low Permeability Liners. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, William E. [The Ohio State Univ., Columbus, OH (United States); Butalia, Tarunjit S. [The Ohio State Univ., Columbus, OH (United States); Walker, Harold [The Ohio State Univ., Columbus, OH (United States); Mitsch, William [The Ohio State Univ., Columbus, OH (United States)

    2005-07-15

    This final project report presents the results of a research program conducted at The Ohio State University from January 3, 2000 to June 30, 2005 to investigate the long-term use of stabilized flue gas desulfurization (FGD) materials in the construction of low permeability liners for ponds and wetlands. The objective of the research program was to establish long-term field-verified time-dependent relationships for the performance of liners constructed from stabilized FGD byproducts generated in Ohio. The project objective was accomplished with a coordinated program of testing and analyzing small-scale laboratory specimens under controlled conditions, mediumscale wetland experiments, and monitoring of a full-scale FGD-lined pond facility. Although the specific uses directly addressed by this report include liners for surface impoundments, the results presented in this study are also useful in other applications especially in the design of daily covers and liners for landfills, seepage cutoff walls and trenches, and for nutrient retention and pollution mitigation wetlands. The small-scale laboratory tests and monitoring of the full-scale FGD lined facility (capacity of one million gallons) shows that stabilized FGD materials can be used as low permeability liners in the construction of water and manure holding ponds. Actual long-term permeability coefficients in the range of 10-7 cm/sec (3 x 10-9 ft/sec) can be obtained in the field by compacting lime and fly ash enriched stabilized FGD materials. Leachate from the FGD material meets Ohio’s non-toxic criteria for coal combustion by-products, and for most potential contaminants the national primary and secondary drinking water standards are also met. The low permeability non-toxic FGD material investigated in this study poses very minimal risks, if any, for groundwater contamination. The FGD wetland experiments indicated no significant differences in phosphorus retention between the clay and FGD

  10. Biological carbon fixation: A study of Isochrysis sp. growth under actual coal-fired power plant's flue gas

    International Nuclear Information System (INIS)

    Yahya, Liyana; Chik, Muhammad Nazry; Pang, Mohd Asyraf Mohd Azmir

    2013-01-01

    Preliminary study on the growth of marine microalgae Isochrysis sp. was carried out using actual flue gas from a coal-fired power station. The species was cultured using a 2×10-L customized bubble column photobioreactor skid under specified culture conditions. With an initial culture density of 0.459 Abs (optical density at 560 nm wavelength), the species was found able to survive – observed by increases in optical densities, number of cells and weights – in the presence of actual coal-fired flue gas containing on average 4.08 % O 2 , 200.21 mg/m 3 SO 2 , 212.29 mg/m 3 NO x , 4.73 % CO 2 and 50.72 mg/m 3 CO. Results thus add value to the potential and capability of microalgae, especially for Isochrysis sp., to be the biological carbon fixer in neutralizing carbon emissions from power plants.

  11. High resolution seismic survey (of the) Rawlins, Wyoming underground coal gasification area. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Youngberg, A.D.; Berkman, E.; Orange, A.S.

    1983-01-01

    In October 1982, a high resolution seismic survey was conducted at the Gulf Research and Development Company's underground coal gasification test site near Rawlins, Wyoming. The objectives of the survey were to utilize high resolution seismic technology to locate and characterize two underground coal burn zones. Seismic data acquisition and processing parameters were specifically designed to emphasize reflections at the shallow depths of interest. A three-dimensional grid of data was obtained over the Rawlins burn zones. Processing included time varying filters, trace composition, and two-dimensional areal stacking of the data in order to identify burn zone anomalies. An anomaly was discernable resulting from the rubble-collapse cavity associated with the burn zone which was studied in detail at the Rawlins 1 and 2 test sites. 21 refs., 20 figs.

  12. Light-duty vehicle greenhouse gas emission standards and corporate average fuel economy standards : final rule

    Science.gov (United States)

    2010-05-07

    Final Rule to establish a National Program consisting of new standards for light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. This joint : Final Rule is consistent with the National Fuel Efficiency Policy announce...

  13. Coal-based synthetic natural gas (SNG): A solution to China’s energy security and CO2 reduction?

    International Nuclear Information System (INIS)

    Ding, Yanjun; Han, Weijian; Chai, Qinhu; Yang, Shuhong; Shen, Wei

    2013-01-01

    Considering natural gas (NG) to be the most promising low-carbon option for the energy industry, large state owned companies in China have established numerous coal-based synthetic natural gas (SNG) projects. The objective of this paper is to use a system approach to evaluate coal-derived SNG in terms of life-cycle energy efficiency and CO 2 emissions. This project examined main applications of the SNG and developed a model that can be used for evaluating energy efficiency and CO 2 emissions of various fuel pathway systems. The model development started with the GREET model, and added the SNG module and an end-use equipment module. The database was constructed with Chinese data. The analyses show when the SNG are used for cooking, power generation, steam production for heating and industry, life-cycle energies are 20–108% higher than all competitive pathways, with a similar rate of increase in life-cycle CO 2 emissions. When a compressed natural gas (CNG) car uses the SNG, life-cycle CO 2 emission will increase by 150–190% compared to the baseline gasoline car and by 140–210% compared to an electric car powered by electricity from coal-fired power plants. The life-cycle CO 2 emission of SNG-powered city bus will be 220–270% higher than that of traditional diesel city bus. The gap between SNG-powered buses and new hybrid diesel buses will be even larger—life-cycle CO 2 emission of the former being around 4 times of that of the latter. It is concluded that the SNG will not accomplish the tasks of both energy conservation and CO 2 reduction. - Highlights: ► We evaluated life-cycle energy efficiency and CO 2 emissions of coal-derived SNG. ► We used GREET model and added a coal-based SNG and an end-use modules. ► The database was constructed with Chinese domestic data. ► Life-cycle energies and CO 2 emissions of coal-based SNG are 20–100% higher. ► Coal-based SNG is not a solution to both energy conservation and CO 2 reduction

  14. Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas

    Energy Technology Data Exchange (ETDEWEB)

    Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

    2010-09-30

    One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to < 35% for new coal-based power plants which include CO{sub 2} capture and sequestration addresses both the growing social concern for global climate change resulting from the emission of greenhouse gas and in particular CO{sub 2} and the need to control cost increases to power production necessary to meet this social objective. Similar improvements to technologies for trace contaminants are getting similar pressure to reduce environmental emissions and reduce production costs for the syngas to enable production of chemicals from coal that is cost competitive with oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this

  15. Recovering uranium from coal in-situ. Final report, February 1980-July 1981

    International Nuclear Information System (INIS)

    1981-01-01

    In Situ Technology, Inc., ''InTech,'' has designed a new process for recovery of uranium from coal in situ. Prime objectives of the program reported herein are to reduce two uncertainties related to eventual commercialization of the process. The first uncertainty concerns appropriate field sites and their potential. The work involved laboratory tests and analysis of field samples, burning the samples to ash and leaching uranium from residual ash at laboratory scale, and burning the samples to ash and leaching uranium from residual ash at pilot plant scale. Laboratory and pilot plant tests were designed to simulate significant elements of the underground process. Field samples from New Mexico averaged 0.061% U 3 O 8 and from North Dakota 0.058% of U 3 O 8 in the coal, both on a dry basis. Phase I laboratory tests on New Mexico field samples were successfully conducted with no difficulties in reducing uraniferous coal to ash. Leaching tests resulted in uranium recoveries to 77.9% with acid leach and to 56% with alkaline leach. Phase II laboratory and pilot plant scale tests were successfully conducted on North Dakota field samples, but required supplemental fuel and/or enrichment for reducing uraniferous coal to ash. Acid leaching of residual ash resulted in uranium recoveries to 83.8%. Acid consumption was 71.0 pounds per ton during pilot plant scale leaching tests. The overall analysis and test program is considered to be highly successful and resulted in significant reduction of the uncertainties for eventual commercialization of the process. 3 refs

  16. Co-pyrolysis of waste tire/coal mixtures for smokeless fuel, maltenes and hydrogen-rich gas production

    Czech Academy of Sciences Publication Activity Database

    Bičáková, Olga; Straka, Pavel

    2016-01-01

    Roč. 116, MAY 15 (2016), s. 203-213 ISSN 0196-8904 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21538 Program:OPPK Institutional support: RVO:67985891 Keywords : waste tires * coal * co-pyrolysis * smokeless fuel * tar * hydrogen -rich gas Subject RIV: DM - Solid Waste and Recycling Impact factor: 5.589, year: 2016 http://www.sciencedirect.com/science/article/pii/S0196890416300991

  17. Coal, gas, petroleum, assets and weaknesses: up to when?; Charbon, gaz, petrole, atouts et faiblesses: jusqu'a quand?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-01

    The meeting on the perenniality of the coal, the gas and the petroleum, organized the 24 april 2003 at Bordeaux, took place around four topics: what about the fossil fuels reserves, how to conciliate the greenhouse effect, the air pollution and the energy consumption, the future energies as the carbon dioxide catchment and the hydrogen use, the fossil energies future in function of their use. The document presents the whole interventions and the opening allocution. (A.L.B.)

  18. Life assessment and emissions monitoring of Indian coal-fired power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    At the request of the Pittsburgh Energy Technology Center (PETC) of the United States Department of Energy (USDOE), the traveler, along with Dr. R. P. Krishnan, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee spent three weeks in India planning and performing emissions monitoring at the coal-fired Vijayawada Thermal Power Station (VTPS). The coordination for the Indian participants was provided by BHEL, Trichy and CPRI, Bangalore. The trip was sponsored by the PETC under the United States Agency for International Development (USAID)/Government of India (GOI)P Alternate Energy Resources Development (AERD) Project. The AERD Project is managed by PETC, and ORNL is providing the technical coordination and support for four coal projects that are being implemented with BHEL, Trichy. The traveler, after briefing the USAID mission in New Delhi visited BHEL, Trichy and CPRI, Bangalore to coordinate and plan the emissions test program. The site selection was made by BHEL, CPRI, TVA, and PETC. Monitoring was performed for 4 days on one of the 4 existing 210 MW coal-fired boilers at the VTPS, 400 km north of Madras, India.

  19. Coal option. [Shell Co

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  20. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas

    International Nuclear Information System (INIS)

    Ko, T.-H.; Chu Hsin; Lin, H.-P.; Peng, C.-Y.

    2006-01-01

    In this study, hydrogen sulfide (H 2 S) was removed from coal gas by red soil under high temperature in a fixed-bed reactor. Red soil powders were collected from the northern, center and southern of Taiwan. They were characterized by XRPD, porosity analysis and DCB chemical analysis. Results show that the greater sulfur content of LP red soils is attributed to the higher free iron oxides and suitable sulfidation temperature is around 773 K. High temperature has a negative effect for use red soil as a desulfurization sorbent due to thermodynamic limitation in a reduction atmosphere. During 10 cycles of regeneration, after the first cycle the red soil remained stable with a breakthrough time between 31 and 36 min. Hydrogen adversely affects sulfidation reaction, whereas CO exhibits a positive effect due to a water-shift reaction. COS was formed during the sulfidation stage and this was attributed to the reaction of H 2 S and CO. Results of XRPD indicated that, hematite is the dominant active species in fresh red soil and iron sulfide (FeS) is a product of the reaction between hematite and hydrogen sulfide in red soils. The spinel phase FeAl 2 O 4 was found during regeneration, moreover, the amount of free iron oxides decreased after regeneration indicating the some of the free iron oxide formed a spinel phase, further reducting the overall desulfurization efficiency

  1. The effect of zeolite treatment by acids on sodium adsorption ratio of coal seam gas water.

    Science.gov (United States)

    Wang, Xiaoyu; Ozdemir, Orhan; Hampton, Marc A; Nguyen, Anh V; Do, Duong D

    2012-10-15

    Many coal seam gas (CSG) waters contain a sodium ion concentration which is too high relative to calcium and magnesium ions for environment acceptance. Natural zeolites can be used as a cheap and effective method to control sodium adsorption ratio (SAR, which is a measure of the relative preponderance of sodium to calcium and magnesium) due to its high cation exchange capacity. In this study, a natural zeolite from Queensland was examined for its potential to treat CSG water to remove sodium ions to lower SAR and reduce the pH value. The results demonstrate that acid activated zeolite at 30%wt solid ratio can reduce the sodium content from 563.0 to 182.7 ppm; the pH from 8.74 to 6.95; and SAR from 70.3 to 18.5. Based on the results of the batch experiments, the sodium adsorption capacity of the acid-treated zeolite is three times greater than that of the untreated zeolite. Both the untreated and acid-treated zeolite samples were characterized using zeta potential, surface characterization, DTA/TG and particle size distribution in order to explain their adsorption behaviours. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. On the high-temperature desulfurization of coal gas: The development of a regenerable absorbent

    Energy Technology Data Exchange (ETDEWEB)

    Van Yperen, Renee

    1994-05-18

    There is actually no solid absorbent based on bulk metal oxides available that meets the conditions for application in high-temperature desulfurization processes. This research was aimed to develop an absorbent that fulfills all the specifications for employment in hot-gas clean up. Chapter 2 deals with the development of amorphous aluminium phosphate as a support material. The influence of the preparation conditions onto the specific surface area, pore structure, thermal and chemical stability, and acidity of amorphous aluminium phosphate was investigated. The application of iron oxide onto amorphous aluminium phosphate by means of deposition-precipitation from a homogeneous solution is discussed in chapter 3. The influence of amorphous aluminium phosphate onto the stability, activity, and capacity of the iron oxide is described in detail. Chapter 4 surveys the activity and capacity of several active materials in the absorption of hydrogen sulphide. It is shown that the most promising active material is a mixture of iron oxide and molybdenum oxide. In chapter 5 the properties of iron-molybdenum mixed oxide absorbents are discussed. The effect of the iron to molybdenum ratio onto the formation of iron-(III)-sulphates and the stability of the molybdenum compound is examined. Chapter 6 deals with the preparation of iron-molybdenum mixed oxide absorbents by means of impregnation of modified pre-shaped alumina support bodies. In chapter 7 the effect of the hydrogen and carbon monoxide concentration and in chapter 8 the effect of the water concentration in the coal gas on the activity and the capacity of the iron-molybdenum mixed oxide absorbents is described. Regeneration of the loaded absorbents is an important part of the desulfurization process, dealt with in chapter 9. A number of regeneration procedures have been tested. (Abstract Truncated)

  3. Advanced coal-fueled industrial cogeneration gas turbine system -- combustion development

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.

    1994-06-01

    This topical report summarizes the combustor development work accomplished under the subject contract. The objective was to develop a combustion system for the Solar 4MW Type H Centaur gas turbine generator set which was to be used to demonstrate the economic, technical and environmental feasibility of a direct coal-fueled gas turbine in a 100 hour proof-of-concept test. This program started with a design configuration derived during the CSC program. The design went through the following evolution: CSC design which had some known shortcomings, redesigned CSC now designated as the Two Stage Slagging Combustor (TSSC), improved TSSC with the PRIS evaluated in the IBSTF, and full scale design. Supporting and complimentary activities included computer modelling, flow visualization, slag removal, SO{sub x} removal, fuel injector development and fuel properties evaluation. Three combustor rigs were utilized: the TSSC, the IBSTF and the full scale rig at Peoria. The TSSC rig, which was 1/10th scale of the proposed system, consisted of a primary and secondary zone and was used to develop the primary zone performance and to evaluate SO{sub x} and slag removal and fuel properties variations. The IBSTF rig which included all the components of the proposed system was also 1/10th scale except for the particulate removal system which was about 1/30th scale. This rig was used to verify combustor performance data obtained on the TSSC and to develop the PRIS and the particulate removal system. The full scale rig initially included the primary and secondary zones and was later modified to incorporate the PRIS. The purpose of the full scale testing was to verify the scale up calculations and to provide a combustion system for the proof-of-concept engine test that was initially planned in the program.

  4. Comparing Statewide Economic Impacts of New Generation from Wind, Coal, and Natural Gas in Arizona, Colorado, and Michigan: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S.

    2005-08-01

    With increasing concerns about energy independence, job outsourcing, and risks of global climate change, it is important for policy makers to understand all impacts from their decisions about energy resources. This paper assesses one aspect of the impacts: direct economic effects. The paper compares impacts to states from equivalent new electrical generation from wind, natural gas, and coal. Economic impacts include materials and labor for construction, operations, maintenance, fuel extraction, and fuel transport, as well as project financing, property tax, and landowner revenues. We examine spending on plant construction during construction years, in addition to all other operational expenditures over a 20-year span. Initial results indicate that adding new wind power can be more economically effective than adding new gas or coal power, and that a higher percentage of dollars spent on coal and gas will leave the state. For this report, we interviewed industry representatives and energy experts, in addition to consulting government documents, models, and existing literature. The methodology for this research can be adapted to other contexts for determining economic effects of new power generation in other states and regions.

  5. Comparing Statewide Economic Impacts of New Generation from Wind, Coal, and Natural Gas in Arizona, Colorado, and Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S.

    2006-05-01

    With increasing concerns about energy independence, job outsourcing, and risks of global climate change, it is important for policy makers to understand all impacts from their decisions about energy resources. This paper assesses one aspect of the impacts: direct economic effects. The paper compares impacts to states from equivalent new electrical generation from wind, natural gas, and coal. Economic impacts include materials and labor for construction, operations, maintenance, fuel extraction, and fuel transport, as well as project financing, property tax, and landowner revenues. We examine spending on plant construction during construction years, in addition to all other operational expenditures over a 20-year span. Initial results indicate that adding new wind power can be more economically effective than adding new gas or coal power and that a higher percentage of dollars spent on coal and gas will leave the state. For this report, we interviewed industry representatives and energy experts, in addition to consulting government documents, models, and existing literature. The methodology for this research can be adapted to other contexts for determining economic effects of new power generation in other states and regions.

  6. Achievement report for fiscal 1984 on Sunshine Program. Basic research on coal type and gasification characteristics; 1984 nendo tanshu to gas ka tokusei no kiso kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-03-01

    The study of pressurized fluidized gasification of coal chars started in fiscal 1975, and a 0.2t/d unit was in operation until fiscal 1979. Since fiscal 1980, a 1t/d unit has been in operation. In fiscal 1984, an entrained bed gasification furnace was constructed, capable of high-temperature gasification of various coals, and it is now undergoing a test operation. This report consists of pressurized gasification tests for coal char, the result of a study on the effect of coal type on the char gasification reaction rate, and the result of experiments on the treatment of coal liquefaction residue, all accomplished in the 1t/d gasification unit. For the investigation of the effect of coal type, chars of 13 types of coals are subjected to reaction tests in the carbon dioxide gas, and weight reduction rates and changes in residue surface areas are determined while reaction is under way. The results are analyzed and parameters are made clear that enable a quantitative assessment of the effect of coal type on gasification reaction rates. Pulverized grains and coal liquefaction residue are blended and gasified in the fluidized bed in the presence of oxygen and steam. As the result, a gas capable of 2,000kcal/Nm{sup 3} containing 30% hydrogen and 25% carbon monoxide is acquired, when catalyst grains in the residue are segregated. (NEDO)

  7. Kaunas gas, Lithuania. Operation and maintenance report. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The main objective of this project was to transfer knowledge accumulated in Denmark about modern techniques of natural gas distribution to employees of the Lithuanian gas sector by informing them about modern measuring equipment and evaluating the results. The main objectives were: To improve the efficiency of maintenance and repair works of the distribution network in Kaunas; To decrease the number of leakages and to improve the operation of the cathodic protection system; To ensure protection of the pipelines and to avoid damages on other constructions and installations. The project consisted of four components which will all exert an influence on the future rehabilitation of steel pipe networks in the gas sector of Lithuania. The components were the following: Preparation of Operation and Maintenance Manual for Kaunas Gas Company; Cathodic measuring and pilot investigation; Analysis and improvement of the organisation of the Kaunas Gas Company; Training material for cathodic protection in Lithaunia. (au)

  8. The Tiptop coal-mine fire, Kentucky: Preliminary investigation of the measurement of mercury and other hazardous gases from coal-fire gas vents

    Energy Technology Data Exchange (ETDEWEB)

    Hower, James C.; Henke, Kevin [University of Kentucky Center for Applied Energy Research, Lexington, KY 40511 (United States); O' Keefe, Jennifer M.K. [Morehead State University, Morehead, KY 40351 (United States); Engle, Mark A. [U.S. Geological Survey, Reston, VA 20192 (United States); Blake, Donald R. [Department of Chemistry, University of California - Irvine, Irvine, CA 92697 (United States); Stracher, Glenn B. [East Georgia College, Swainsboro, GA 30401 (United States)

    2009-10-01

    The Tiptop underground coal-mine fire in the Skyline coalbed of the Middle Pennsylvanian Breathitt Formation was investigated in rural northern Breathitt County, Kentucky, in May 2008 and January 2009, for the purpose of determining the concentrations of carbon dioxide (CO{sub 2}), carbon monoxide (CO), and mercury (Hg) in the vent and for measuring gas-vent temperatures. At the time of our visits, concentrations of CO{sub 2} peaked at 2.0% and > 6.0% (v/v) and CO at 600 ppm and > 700 ppm during field analysis in May 2008 and January 2009, respectively. For comparison, these concentrations exceed the U.S. Occupational Safety and Health Administration (OSHA) eight-hour safe exposure limits (0.5% CO{sub 2} and 50 ppm CO), although the site is not currently mined. Mercury, as Hg{sup 0}, in excess of 500 and 2100 {mu}g/m{sup 3}, in May and January, respectively, in the field, also exceeded the OSHA eight-hour exposure limit (50 {mu}g/m{sup 3}). Carbonyl sulfide, dimethyl sulfide, carbon disulfide, and a suite of organic compounds were determined at two vents for the first sampling event. All gases are diluted by air as they exit and migrate away from a gas vent, but temperature inversions and other meteorological conditions could lead to unhealthy concentrations in the nearby towns. Variation in gas temperatures, nearly 300 C during the January visit to the fire versus < 50 C in May, demonstrates the large temporal variability in fire intensity at the Tiptop mine. These preliminary results suggest that emissions from coal fires may be important, but additional data are required that address the reasons for significant variations in the composition, flow, and temperature of vent gases. (author)

  9. Relations between flash pyrolysis reactivity and oil/gas products from coals of different rank; Sekitankado no kotonaru shushu no sekitan no flash pyrolysis hannosei to gas oyobi eki seiseibutsu no kankei

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, T.; Kishino, M.; Sakanishi, K.; Korai, Y.; Mochida, I. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1996-10-28

    Curie point flash pyrolysis (FP) reactivity was studied experimentally using three kinds of coals with different coal ranks such as Yallourn brown coal, Tanitoharum sub-bituminous coal and Wandoan sub-bituminous coal. Experiment was performed using a curie point pyrolyzer in carrier gas of 20ml/min in gas flow rate at 450, 590 and 740{degree}C for 5sec. The experimental results were as follows. Each gas component obviously increased at 450-590{degree}C, however, C4-C6 gases drastically decreased at 590-740{degree}C accompanying reduction of the whole gas quantity. All of each polar component remarkably increased at 450-590{degree}C. Yallourn brown coal with high Owt%, in particular, contained a large amount of alkyl-hydroxybenzene group. The amount of cresol of all of three coal specimens also increased at 740{degree}C. It was thus suggested that this is coal constituent molecules derived from cutting of methylene-ether bridged bond by higher-temperature FP. 8 refs., 5 figs., 3 tabs.

  10. Novel approaches to a study of the fundamental organic chemistry of coal. Final report, September 1, 1977-September 1, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Giam, C.S.; Goodwin, T.E.; Tabor, R.L.; Neff, G.; Smith, S.; Ionescu, F.; Trujillo, D.

    1979-01-01

    The studies are preliminary in nature, and the following conclusions are tentative. (1) The results with mixed carboxylic-sulfonic anhydrides seem to indicate an increase in polymerization of the coal molecular structure, when based on the results of pyrolysis/gas chromatographic analyses. The mixed anhydrides are such powerful acylating reagents that they should be capable of causing profound and dramatic structural modifications of coal and the results suggest sub-optimal reaction conditions. The results may also be due to the presence of only a small number of ether linkages connecting large molecular units together. Possibly, at elevated pressures and larger concentrations of mixed anhydride, a greater extent of depolymerization would occur, coupled perhaps with acylation. (2) The Nimz lignin degradation reaction has now been fully implemented and good conditions have been found for lignite reaction. The products from this degradation were basically hydrocarbon in nature. Thus, in the absence of monolignols, we postulate that such phenolic linkages of the type found in lignin are not found to a large degree in Texas lignites. (3) Our recently developed technique of analyzing methylene to methyl ratios by IR spectroscopy represents a useful method for characterization of both soluble and insoluble coal-derived products. The technique is less expensive than mass spectroscopy and not limited by solubility as in the case of NMR spectroscopy. (4) From the measurements of the acidic hydrogen content of the lignites studies, we have formed a postulate as to the involvement of heteroatoms (especially oxygen) in the lignite structure. We feel that heteroatoms in Texas lignites are involved mainly in carbonyl, low molecular weight alkoxy and/or heterocyclic units. (5) Conditions for depolymerizing and solubilizing lignites by use of t-butyllithium have been developed and utilized successfully.

  11. Screening of candidate corrosion resistant materials for coal combustion environments -- Volume 4. Final report, January 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Boss, D.E.

    1997-12-31

    The development of a silicon carbide heat exchanger is a critical step in the development of the Externally-Fired Combined Cycle (EFCC) power system. SiC is the only material that provides the necessary combination of resistance to creep, thermal shock, and oxidation. While the SiC structural materials provide the thermomechanical and thermophysical properties needed for an efficient system, the mechanical properties of the SiC tubes are severely degraded through corrosion by the coal combustion products. To obtain the necessary service life of thousands of hours at temperature, a protective coating is needed that is stable with both the SiC tube and the coal combustion products, resists erosion from the particle laden gas stream, is thermal-shock resistant, adheres to SiC during repeated thermal shocks (start-up, process upsets, shut-down), and allows the EFCC system to be cost competitive. The candidate protective materials ide