WorldWideScience

Sample records for coal fired unit

  1. No more coal-fired units

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    According to Minister of the Environment Pekka Haavisto natural gas, bioenergy and renewables are the ways of responding to future base load power need. Greenhouse gas emissions using natural gas are around 60 % of those with coal. Increasing the share of generation accounted for by natural gas in the Nordic region is just as feasible in principle as elsewhere in Europe. A good proportion of new power stations elsewhere in the community are natural gas-fired. Vattenfall is planning a combined cycle station in the 700 - 900 MW range for Imatra, and Imatran Voima a 600 MW gas-fired unit for Inkoo. Replacing coal with natural gas is an essential part of efforts to stabile CO 2 emissions

  2. Natural desulfurization in coal-fired units using Greek lignite.

    Science.gov (United States)

    Konidaris, Dimitrios N

    2010-10-01

    This paper analyzes the natural desulfurization process taking place in coal-fired units using Greek lignite. The dry scrubbing capability of Greek lignite appears to be extremely high under special conditions, which can make it possible for the units to operate within the legislative limits of sulfur dioxide (SO2) emissions. According to this study on several lignite-fired power stations in northern Greece, it was found that sulfur oxide emissions depend on coal rank, sulfur content, and calorific value. On the other hand, SO2 emission is inversely proportional to the parameter gammaCO2(max), which is equal to the maximum carbon dioxide (CO2) content by volume of dry flue gas under stoichiometric combustion. The desulfurization efficiency is positively correlated to the molar ratio of decomposed calcium carbonate to sulfur and negatively correlated to the free calcium oxide content of fly ash.

  3. Subsequent flue gas desulfurization of coal-fired power plant units

    International Nuclear Information System (INIS)

    Willibal, U.; Braun, Gy.

    1998-01-01

    The presently operating coal-fired power plant in Hungary do not satisfy the pollution criteria prescribed by the European Union norms. The main polluting agent is the sulfur dioxide emitted by some of the power plants in Hungary in quantities over the limit standards. The power plant units that are in good operating state could be made competitive by using subsequent desulfurization measures. Various flue gas desulfurization technologies are presented through examples that can be applied to existing coal-fired power plants. (R.P.)

  4. The Research of Utilization Hours of Coal-Fired Power Generation Units Based on Electric Energy Balance

    Science.gov (United States)

    Liu, Junhui; Yang, Jianlian; Wang, Jiangbo; Yang, Meng; Tian, Chunzheng; He, Xinhui

    2018-01-01

    With grid-connected scale of clean energy such as wind power and photovoltaic power expanding rapidly and cross-province transmission scale being bigger, utilization hours of coal-fired power generation units become lower and lower in the context of the current slowdown in electricity demand. This paper analyzes the influencing factors from the three aspects of demand, supply and supply and demand balance, and the mathematical model has been constructed based on the electric energy balance. The utilization hours of coal-fired power generation units have been solved considering the relationship among proportion of various types of power installed capacity, the output rate and utilization hours. By carrying out empirical research in Henan Province, the utilization hours of coal-fired units of Henan Province in 2020 has been achieved. The example validates the practicability and the rationality of the model, which can provide a basis for the decision-making for coal-fired power generation enterprises.

  5. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D. (Environmental Science Division)

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and

  6. Coal quality influence on availability and reliability of two 620 MW lignite fired units after 100 000 operating hours

    International Nuclear Information System (INIS)

    Markovic, Dragomir

    1997-01-01

    General statistics data on operation of two 620 MW low calorific value coal fired units are foundation for analysis of influence of variable coal characteristics on availability and reliability. Changeable mineralogical structure, ash contents and heating value cause the following problems: increased abrasive wear and unstable firing. Almost 23 % of plant shutting down are caused by the mentioned reasons, which have multiplied in the last years. Analysis will show how it is possible to plan terms of overhaul of boilers with respect to quality of used coal and reliability of pipe system and maintenance of high level of availability and reliability in spite of periodical low heating value of coal. Described experiences are also important for planning, design, construction and operation of new power plants firing with same coal. (Author)

  7. Backstepping-based nonlinear adaptive control for coal-fired utility boiler-turbine units

    International Nuclear Information System (INIS)

    Fang, Fang; Wei, Le

    2011-01-01

    The control system of boiler-turbine unit plays an important role in improving efficiency and reducing emissions of power generation unit. The nonlinear, coupling and uncertainty of the unit caused by varying working conditions should be fully considered during the control system design. This paper presents an efficient control scheme based on backstepping theory for improving load adaptability of boiler-turbines in wide operation range. The design process of the scheme includes model preprocessing, control Lyapunov functions selection, interlaced computation of adaptive control laws, etc. For simplification and accuracy, differential of steam pipe inlet pressure and integral terms of target errors are adopted. Also, to enhance practicality, implementation steps of the scheme are proposed. A practical nonlinear model of a 500 MW coal-fired boiler-turbine unit is used to test the efficiency of the proposed scheme in different conditions.

  8. Coal-fired generation

    CERN Document Server

    Breeze, Paul

    2015-01-01

    Coal-Fired Generation is a concise, up-to-date and readable guide providing an introduction to this traditional power generation technology. It includes detailed descriptions of coal fired generation systems, demystifies the coal fired technology functions in practice as well as exploring the economic and environmental risk factors. Engineers, managers, policymakers and those involved in planning and delivering energy resources will find this reference a valuable guide, to help establish a reliable power supply address social and economic objectives. Focuses on the evolution of the traditio

  9. Coal fires in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Whitehouse, Alfred E.; Mulyana, Asep A.S. [Office of Surface Mining/Ministry of Energy and Mineral Resources Coal Fire Project, Ministry of Energy and Mineral Resources, Agency for Training and Education, Jl. Gatot Subroto, Kav. 49, Jakarta 12950 (Indonesia)

    2004-07-12

    Indonesia's fire and haze problem is increasingly being ascribed to large-scale forest conversion and land clearing activities making way for pulpwood, rubber and oil palm plantations. Fire is the cheapest tool available to small holders and plantation owners to reduce vegetation cover and prepare and fertilize extremely poor soils. Fires that escaped from agricultural burns have ravaged East Kalimantan forests on the island of Borneo during extreme drought periods in 1982-1983, 1987, 1991, 1994 and 1997-1998. Estimates based on satellite data and ground observations are that more than five million hectares were burned in East Kalimantan during the 1997/1998 dry season. Not only were the economic losses and ecological damage from these surface fires enormous, they ignited coal seams exposed at the ground surface along their outcrops.Coal fires now threaten Indonesia's shrinking ecological resources in Kutai National Park and Sungai Wain Nature Reserve. Sungai Wain has one of the last areas of unburned primary rainforest in the Balikpapan-Samarinda area with an extremely rich biodiversity. Although fires in 1997/1998 damaged nearly 50% of this Reserve and ignited 76 coal fires, it remains the most valuable water catchment area in the region and it has been used as a reintroduction site for the endangered orangutan. The Office of Surface Mining provided Indonesia with the capability to take quick action on coal fires that presented threats to public health and safety, infrastructure or the environment. The US Department of State's Southeast Asia Environmental Protection Initiative through the US Agency for International Development funded the project. Technical assistance and training transferred skills in coal fire management through the Ministry of Energy and Mineral Resource's Training Agency to the regional offices; giving the regions the long-term capability to manage coal fires. Funding was also included to extinguish coal fires as

  10. A data envelopment analysis for energy efficiency of coal-fired power units in China

    International Nuclear Information System (INIS)

    Song, Chenxi; Li, Mingjia; Zhang, Fan; He, Ya-Ling; Tao, Wen-Quan

    2015-01-01

    Highlights: • Two kinds of energy efficiency (EE) indices are analyzed and compared. • The influence degrees of different uncontrollable factors on EE are compared. • The influence of load factor on special EE is 82.6% larger than capacity factor. • The influence of cooling method on special EE is 90.32% larger than steam pressure. • The generalized EE indicator is more recommended by the authors. - Abstract: In this article, the non-parametric data envelopment analysis method (DEA) is employed to evaluate energy efficiency (EE) of 34 coal-fired power units in China. Input-oriented CCR (Charnes, Cooper and Rhodes) model is used for EE analysis. Two efficiency indices, generalized EE and special EE are defined and analyzed. The generalized EE is calculated based on four input parameters: coal consumption, oil consumption, water consumption and auxiliary power consumption by power units. The special EE is only based on two input parameters: coal consumption and auxiliary power consumption. Relations between these two EE indices and non-comparable factors including quality of coal, load factor, capacity factor, parameters of main steam and cooling method are studied. Comparison between EE evaluation results of the two indices is conducted. Results show that these two kinds of EE are more sensitive to the load factor than the capacity factor. The influence of the cooling method on EE is larger than that of main steam parameter. The influence of non-comparable factors on the special EE is stronger than that on the generalized EE

  11. SO3 tinges stack gas from scrubbed coal-fired units

    International Nuclear Information System (INIS)

    Jones, C.; Ellison, W.

    1998-01-01

    The small amount of SO 3 in flue gas creates enough problems inside the plant. New US EPA regulations on so-called air toxics are making SO 3 discharge an emission problem as well - and a visible one at that. Units that have installed wet scrubbers to control SO 2 emissions may be most affected. The article explains that SO 3 levels in coal-fired power plants are mainly increased by catalytic oxidation of SO 2 by iron oxide on the fireside surfaces of the superheater tubes. Dependence on air-heater temperature is discussed. Wet FGD systems are responsible for the formation of 'blue eye' where SO 3 causes a blue hue in the plume. Ammonia injection has been effective in reducing SO 3 vapour, as has injecting water ahead of the electrostatic precipitator. Replacement of a wet ESP with a dry ESP is also a solution. 2 figs

  12. Study Improving Performance of Centrifugal Compressor In Paiton Coal Fired Power Plant Unit 1 And 2

    Science.gov (United States)

    Kusuma, Yuriadi; Permana, Dadang S.

    2018-03-01

    The compressed air system becomes part of a very important utility system in a Plant, including the Steam Power Plant. In PLN’S coal fired power plant, Paiton units 1 and 2, there are four Centrifugal air compressor types, which produce compressed air as much as 5.652 cfm and with electric power capacity of 1200 kW. Electricity consumption to operate centrifugal compressor is 7.104.117 kWh per year. This study aims to measure the performance of Centrifugal Compressors operating in Paiton’s coal fired power plant units 1 and 2. Performance Compressor is expressed by Specific Power Consumption (SPC) in kW/100 cfm. For this purpose, we measure the compressed air flow rate generated by each compressor and the power consumed by each compressor. The result is as follows Air Compressor SAC 2B : 15.1 kW/100 cfm, Air Compressor SAC 1B : 15.31 kW/100 cfm,Air Compressor SAC 1A : 16.3 kW/100 cfm and air Compressor SAC 2C : 18.19 kW/100 cfm. From the measurement result, air compressor SAC 2B has the best performance that is 15.1 kW / 100 cfm. In this study we analyze efforts to improve the performance of other compressors to at least match the performance of the SAC 2B air compressor. By increasing the Specific Power Consumption from others Compressor, it will get energy saving up to 284,165 kWh per year.

  13. Analysis of the use of waste heat obtained from coal-fired units in Organic Rankine Cycles and for brown coal drying

    International Nuclear Information System (INIS)

    Łukowicz, Henryk; Kochaniewicz, Andrzej

    2012-01-01

    The ever-increasing restrictions on greenhouse gas emissions have created a need for new energy technologies. One way to meet these new requirements is to optimise the efficiency of power units. This paper presents two energy technologies that, if used, will increase the efficiency of electricity generation. One of the most effective ways to improve the efficiency of brown coal-fired units is by drying the coal that is fed into the boiler. Here, we describe a technology that uses the waste heat obtained from exhaust gases. This paper also presents an analysis of the feasibility of and potential for using waste heat obtained from exhaust gases to feed Organic Rankine Cycles (ORCs). Several low-temperature working fluids were considered, which were selected based on properties that were best suited for these types of cycles. The impact of these working fluids on the efficiency and capacity of the ORC was also examined. The calculations for ORCs fed with waste heat obtained from exhaust gases from hard coal- and brown coal-fired boilers were compared. -- Highlights: ► We describe a technology that uses the waste heat obtained from exhaust gases. ► The impact of using different working fluids with a low boiling point is examined. ► We describe integrating the ORC with the power unit. ► The use of waste heat from boiler exhaust gases to dry brown coal is proposed. ► We demonstrate a possible increase in power unit efficiency.

  14. Near-term implications of a ban on new coal-fired power plants in the United States.

    Science.gov (United States)

    Newcomer, Adam; Apt, Jay

    2009-06-01

    Large numbers of proposed new coal power generators in the United States have been canceled, and some states have prohibited new coal power generators. We examine the effects on the U.S. electric power system of banning the construction of coal-fired electricity generators, which has been proposed as a means to reduce U.S. CO2 emissions. The model simulates load growth, resource planning, and economic dispatch of the Midwest Independent Transmission System Operator (ISO), Inc., Electric Reliability Council of Texas (ERCOT), and PJM under a ban on new coal generation and uses an economic dispatch model to calculate the resulting changes in dispatch order, CO2 emissions, and fuel use under three near-term (until 2030) future electric power sector scenarios. A national ban on new coal-fired power plants does not lead to CO2 reductions of the scale required under proposed federal legislation such as Lieberman-Warner but would greatly increase the fraction of time when natural gas sets the price of electricity, even with aggressive wind and demand response policies.

  15. Compressed Air Quality, A Case Study In Paiton Coal Fired Power Plant Unit 1 And 2

    Science.gov (United States)

    Indah, Nur; Kusuma, Yuriadi; Mardani

    2018-03-01

    The compressed air system becomes part of a very important utility system in a Plant, including the Steam Power Plant. In PLN’S coal fired power plant, Paiton units 1 and 2, there are four Centrifugal air compressor types, which produce compressed air as much as 5.652 cfm and with electric power capacity of 1200 kW. Electricity consumption to operate centrifugal compressor is 7.104.117 kWh per year. Compressed air generation is not only sufficient in quantity (flow rate) but also meets the required air quality standards. compressed air at Steam Power Plant is used for; service air, Instrument air, and for fly Ash. This study aims to measure some important parameters related to air quality, followed by potential disturbance analysis, equipment breakdown or reduction of energy consumption from existing compressed air conditions. These measurements include counting the number of dust particles, moisture content, relative humidity, and also compressed air pressure. From the measurements, the compressed air pressure generated by the compressor is about 8.4 barg and decreased to 7.7 barg at the furthest point, so the pressure drop is 0.63 barg, this number satisfies the needs in the end user. The measurement of the number of particles contained in compressed air, for particle of 0.3 micron reaches 170,752 particles, while for the particle size 0.5 micron reaches 45,245 particles. Measurements of particles conducted at several points of measurement. For some point measurements the number of dust particle exceeds the standard set by ISO 8573.1-2010 and also NACE Code, so it needs to be improved on the air treatment process. To see the amount of moisture content in compressed air, it is done by measuring pressure dew point temperature (PDP). Measurements were made at several points with results ranging from -28.4 to 30.9 °C. The recommendation of improving compressed air quality in steam power plant, Paiton unit 1 and 2 has the potential to extend the life of

  16. Proposition of primary methods for nitrogen oxides emissions reduction at coal-fired 200 MW power unit (Yugoslavia)

    International Nuclear Information System (INIS)

    Repic, B.; Mladenovic, R.; Crnomarkovic, N.

    1997-01-01

    The combustion of coal is followed by increased pollution of the environment with toxic products. Together with the generation of other pollutants, the emission of nitrogen oxides (NO x ) represents, due to its high toxicity, a great environmental risk. Appropriate measures must be taken for lowering NO x emission, both on new facilities and those already in operation. Basic technologies (primary reduction methods) of several generations, developed until now and used in practice, are presented in the paper. The technologies applicable on domestic facilities and adjusted to domestic coals have been given particular consideration. Proposition of primary methods for NO x emission reduction at coal-fired 200 MW power unit at TPS 'Nikola Tesla' is analyzed. The following methods have been considered in detail: flue gases recirculation, multi-stage combustion, low-NO x burners, additional over-fire air, multi-stage air intake into the furnace, staged fuel injection, grinding fineness increase, etc. Considerations were performed according to existing constructive characteristics of the furnace and the burners, and characteristics of used fuels, i. e. lignites from Kolubara pit. (Author)

  17. The enhancement of natural radiation dosage by coal-fired power generation in the United Kingdom

    International Nuclear Information System (INIS)

    Corbett, J.O.

    1980-02-01

    The total fuel cycle of electricity generation from coal is assessed as a source of enhanced exposure to natural radiation. The various routes by which such exposure can arise are discussed and the consequent individual and collective radiation doses in the United Kingdom are estimated on the basis of a critical review of published data augmented by the results of recent, hitherto unpublished work within the CEGB. Further work is in progress to clarify particular areas of uncertainty that have been identified. (author)

  18. Coal fired air turbine cogeneration

    Science.gov (United States)

    Foster-Pegg, R. W.

    Fuel options and generator configurations for installation of cogenerator equipment are reviewed, noting that the use of oil or gas may be precluded by cost or legislation within the lifetime of any cogeneration equipment yet to be installed. A coal fueled air turbine cogenerator plant is described, which uses external combustion in a limestone bed at atmospheric pressure and in which air tubes are sunk to gain heat for a gas turbine. The limestone in the 26 MW unit absorbs sulfur from the coal, and can be replaced by other sorbents depending on types of coal available and stringency of local environmental regulations. Low temperature combustion reduces NOx formation and release of alkali salts and corrosion. The air heat is exhausted through a heat recovery boiler to produce process steam, then can be refed into the combustion chamber to satisfy preheat requirements. All parts of the cogenerator are designed to withstand full combustion temperature (1500 F) in the event of air flow stoppage. Costs are compared with those of a coal fired boiler and purchased power, and it is shown that the increased capital requirements for cogenerator apparatus will yield a 2.8 year payback. Detailed flow charts, diagrams and costs schedules are included.

  19. Performance of double source boiler with coal-fired and solar power tower heat for supercritical power generating unit

    International Nuclear Information System (INIS)

    Zhang, Maolong; Du, Xiaoze; Pang, Liping; Xu, Chao; Yang, Lijun

    2016-01-01

    An approach of high-efficiency utilization of solar energy was proposed, by which the high concentrated heat received by the solar tower was integrated to the supercritical coal-fired boiler. Two schemes that solar energy was used to heat superheat steam or subcooled feed water were presented. The thermodynamic and heat transfer models were established. For a practical 660 MW supercritical power generating unit, the standard coal consumption of power generation could be decreased by more than 17 g/kWh by such double source boiler. The drawbacks of both schemes were found and then were amended by adding a flue gas bypass to the boiler. It also can be concluded that the maximum solar contribution of two schemes for the gross power generation are 6.11% and 4.90%, respectively. The solar power efficiency of the re-modified designs were demonstrated be superior to that of PS10. In terms of turbine efficiency, the comparisons with Solar Two plant having similar initial temperature found that the efficiency of Scheme I was 5.25% higher than that of Solar Two while the advantage of Scheme II was existing either. Additionally, in two schemes with flue bypass when the medium was extracted, the thermal efficiency of boiler could be improved as well. - Highlights: • High concentrated solar tower heat is integrated to the supercritical coal-fired boiler. • The double source boiler can use solar energy to heat superheat steam or subcooled feed water. • Power generating coal consumption can be reduced by more than 17 g/kWh by the double source boiler. • The solar contribution of double source boiler for the gross power generation can be as high as 6.11%.

  20. Research on structural integration of thermodynamic system for double reheat coal-fired unit with CO2 capture

    Science.gov (United States)

    Wang, Lanjing; Shao, Wenjing; Wang, Zhiyue; Fu, Wenfeng; Zhao, Wensheng

    2018-02-01

    Taking the MEA chemical absorption carbon capture system with 85% of the carbon capture rate of a 660MW ultra-super critical unit as an example,this paper puts forward a new type of turbine which dedicated to supply steam to carbon capture system. The comparison of the thermal systems of the power plant under different steam supply schemes by using the EBSILON indicated optimal extraction scheme for Steam Extraction System in Carbon Capture System. The results show that the cycle heat efficiency of the unit introduced carbon capture turbine system is higher than that of the usual scheme without it. With the introduction of the carbon capture turbine, the scheme which extracted steam from high pressure cylinder’ s steam input point shows the highest cycle thermal efficiency. Its indexes are superior to other scheme, and more suitable for existing coal-fired power plant integrated post combustion carbon dioxide capture system.

  1. Co-firing Bosnian coals with woody biomass: Experimental studies on a laboratory-scale furnace and 110 MWe power unit

    Directory of Open Access Journals (Sweden)

    Smajevic Izet

    2012-01-01

    Full Text Available This paper presents the findings of research into cofiring two Bosnian cola types, brown coal and lignite, with woody biomass, in this case spruce sawdust. The aim of the research was to find the optimal blend of coal and sawdust that may be substituted for 100% coal in large coal-fired power stations in Bosnia and Herzegovina. Two groups of experimental tests were performed in this study: laboratory testing of co-firing and trial runs on a large-scale plant based on the laboratory research results. A laboratory experiment was carried out in an electrically heated and entrained pulverized-fuel flow furnace. Coal-sawdust blends of 93:7% by weight and 80:20% by weight were tested. Co-firing trials were conducted over a range of the following process variables: process temperature, excess air ratio and air distribution. Neither of the two coal-sawdust blends used produced any significant ash-related problems provided the blend volume was 7% by weight sawdust and the process temperature did not exceed 1250ºC. It was observed that in addition to the nitrogen content in the co-fired blend, the volatile content and particle size distribution of the mixture also influenced the level of NOx emissions. The brown coal-sawdust blend generated a further reduction of SO2 due to the higher sulphur capture rate than for coal alone. Based on and following the laboratory research findings, a trial run was carried out in a large-scale utility - the Kakanj power station, Unit 5 (110 MWe, using two mixtures; one in which 5%/wt and one in which 7%/wt of brown coal was replaced with sawdust. Compared to a reference firing process with 100% coal, these co-firing trials produced a more intensive redistribution of the alkaline components in the slag in the melting chamber, with a consequential beneficial effect on the deposition of ash on the superheater surfaces of the boiler. The outcome of the tests confirms the feasibility of using 7%wt of sawdust in combination

  2. An Integrated Multi-Criteria Decision Making Model and AHP Weighting Uncertainty Analysis for Sustainability Assessment of Coal-Fired Power Units

    Directory of Open Access Journals (Sweden)

    Dianfa Wu

    2018-05-01

    Full Text Available The transformation of the power generation industry from coal-based to more sustainable energy sources is an irreversible trend. In China, the coal-fired power plant, as the main electric power supply facility at present, needs to know its own sustainability level to face the future competition. A hybrid multi-criteria decision making (MCDM model is proposed in this paper to assess the sustainability levels of the existing Chinese coal-fired power units. The areal grey relational analysis (AGRA method is involved in the hybrid model, and a combined weighting method is used to determine the priorities of the criteria. The combining weight fuses the fuzzy rough set (FRS and entropy objective weighting method together with the analytic hierarchy process (AHP subjective weighting method by game theory. Moreover, an AHP weighting uncertainty analysis using Monte Carlo (MC simulation is introduced to measure the uncertainty of the results, and a 95 percent confidence interval (CI is defined as the uncertainty measurement of the alternatives. A case study about eight coal-fired power units is carried out with a criteria system, which contains five aspects in an operational perspective, such as the flexibility, economic, environmental, reliability and technical criterion. The sustainability assessment is performed at the unit level, and the results give a priority rank of the eight alternatives; additionally, the uncertainty analysis supplies the extra information from a statistical perspective. This work expands a novel hybrid MCDM method to the sustainability assessment of the power generation systems, and it may be a benefit to the energy enterprises in assessing the sustainability at the unit level and enhance its ability in future sustainable development.

  3. Reduction of Nitrogen Oxides Emissions from a Coal-Fired Boiler Unit

    Science.gov (United States)

    Zhuikov, Andrey V.; Feoktistov, Dmitry V.; Koshurnikova, Natalya N.; Zlenko, Lyudmila V.

    2016-02-01

    During combustion of fossil fuels a large amount of harmful substances are discharged into the atmospheres of cities by industrial heating boiler houses. The most harmful substances among them are nitrogen oxides. The paper presents one of the most effective technological solutions for suppressing nitrogen oxides; it is arrangement of circulation process with additional mounting of the nozzle directed into the bottom of the ash hopper. When brown high-moisture coals are burnt in the medium power boilers, generally fuel nitrogen oxides are produced. It is possible to reduce their production by two ways: lowering the temperature in the core of the torch or decreasing the excess-air factor in the boiler furnace. Proposed solution includes the arrangement of burning process with additional nozzle installed in the lower part of the ash hopper. Air supply from these nozzles creates vortex involving large unburned fuel particles in multiple circulations. Thereby time of their staying in the combustion zone is prolonging. The findings describe the results of the proposed solution; and recommendations for the use of this technological method are given for other boilers.

  4. Reduction of Nitrogen Oxides Emissions from a Coal-Fired Boiler Unit

    Directory of Open Access Journals (Sweden)

    Zhuikov Andrey V.

    2016-01-01

    Full Text Available During combustion of fossil fuels a large amount of harmful substances are discharged into the atmospheres of cities by industrial heating boiler houses. The most harmful substances among them are nitrogen oxides. The paper presents one of the most effective technological solutions for suppressing nitrogen oxides; it is arrangement of circulation process with additional mounting of the nozzle directed into the bottom of the ash hopper. When brown high-moisture coals are burnt in the medium power boilers, generally fuel nitrogen oxides are produced. It is possible to reduce their production by two ways: lowering the temperature in the core of the torch or decreasing the excess-air factor in the boiler furnace. Proposed solution includes the arrangement of burning process with additional nozzle installed in the lower part of the ash hopper. Air supply from these nozzles creates vortex involving large unburned fuel particles in multiple circulations. Thereby time of their staying in the combustion zone is prolonging. The findings describe the results of the proposed solution; and recommendations for the use of this technological method are given for other boilers.

  5. Special requirements for the fluid mechanical design of hard coal-fired SCR retrofit units

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The system design of high-dust SCR units for retrofits is a challenge that is to be mastered in order to meet the fluid mechanical requirements. Retrofitting power plants with NOx control technologies is a cost-intensive adventure that many utilities are undertaking. Except for a few recent new boiler installations, SCR installations must be considered as retrofit projects. In most cases the limitation of space on site entails unfavorable conditions that do not allow appropriate upstream conditions for SCR catalysts. To comply with the requirements of high performance DeNOx systems and to lower the investment costs for retrofit units, several technical solutions and concepts for the reactor layout, for NOx and dust distribution, for flow stabilization in diffusers, and advanced ammonia injection systems are explained in this paper. Balcke-Duerr offers customer-tailored solutions for flow optimization, which are evaluated by model studies. Physical flow and dust model tests in an appropriate scale provide flexibility to test various engineering concepts. The experience of Balcke-Duerr is based on continuous research and development activities over the last 25 years and more than 350 executed projects for gas flow optimization applications. The success of these installations is a direct result of the key decisions based on the improved fluid mechanical design and proper system integration. This paper also identifies the sensible design particularities and solutions that have two be considered in the fluid mechanical design of high-dust SCR retrofit units. This article demonstrates that the layout of SCR units must be carefully reviewed in order to meet the performance requirements and to avoid problems, i.e. wear, catalyst plugging and ammonia slip. 9 refs., 18 figs.

  6. Full-scale ash deposition measurements at Avedøre Power Plant unit 2 during suspension-firing of wood with and without coal ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt

    The formation of deposits during suspension-firing of wood at Avedøre Power Plant unit 2 (AVV2) was studied by using an advanced deposit probe system. The tests were conducted both with and without coal ash addition, and at two different locations with flue gas temperatures of 1250-1300 oC and 750...... with a high flue gas temperature of 1250-1300 oC, although the addition of coal fly ash increased the differential deposit formation rate (DDF-rate) and the ash deposition propensity, the deposit removal frequency were considerably increased and the major shedding mechanism was changed from soot...... corrosion. At the location with a low flue gas temperature of 750-800 oC, the addition of coal fly ash reduced the ash deposition propensity and caused the formed deposits being easily removable. Moreover, the KCl and KOH/K2CO3 found in the low-temperature deposits without coal ash addition disappeared when...

  7. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Science.gov (United States)

    2010-07-01

    ... Units With Group 1 or Cell Burner Boilers A Appendix A to Part 76 Protection of Environment... 1 or Cell Burner Boilers Table 1—Phase I Tangentially Fired Units State Plant Unit Operator ALABAMA... Vertically fired boiler. 2 Arch-fired boiler. Table 3—Phase I Cell Burner Technology Units State Plant Unit...

  8. Effects of new environmental regulations on coal-fired generation

    International Nuclear Information System (INIS)

    LaCount, R.

    1999-01-01

    As restructuring of the electricity industry places downward pressure on power production costs, new environmental regulations are having the opposite effect. Although power plants may be subject to a variety of environmental regulations over the next ten years including reductions in mercury, toxics, and carbon dioxide, new regulations for sulfur dioxide (SO2) and nitrogen oxides (NOX) are poised to impact the electricity industry in the very short term. The cost for coal-fired power plants to comply with these new regulations has the potential to alter their competitive position. January 1, 2000 marks the beginning of Phase II for the Environmental Protection Agency's SO2 allowance market. Starting in January, all coal and oil plants above 25 MW will be required to comply with the federal SO2 provisions. Regulatory deadlines for NOX are also fast approaching; though the ultimate requirements are still subject to change. On May 1, 1999, a NOX allowance market began for states within the Northeast Ozone Transport Commission (OTC). A second phase of this program is scheduled to begin in 2003 that will lower the overall cap for allowable NOX emissions in the participating states. EPA is also working to expand the reach of regional NOX reductions in 2003 through its NOX SIP call. This program, which is currently subject to litigation, would require NOX reductions in 14 states outside of the OTC. A new study by Resource Data International (RDI), Coal-Fired Generation in Competitive Power Markets, assessed the potential impact that the new SO2 and NOX regulations may have on the competitiveness of coal-fired generation. Overall, the study shows that coal-fired generation will continue to grow despite significant environmental costs and competition from natural gas-fired units. The new environmental regulations have the effect of increasing the dispatch cost of coal-fired units from $0.65/MWh on average in the WSCC to $4.14/MWh on average in the MAAC region. The addition

  9. Low NOx firing systems for bituminous coal and lignite

    International Nuclear Information System (INIS)

    Knyrim, W.; Scheffknecht, G.

    1997-01-01

    In the case of lignite fluidized boilers the denitrification down to less than 200 mg/m 3 was possible with primary measures on the firing side only. On account of the excellent results achieved with the reconstructed plants the firing systems for the new generation of brown coal fire steam generators with a capacity of 800 MW and more is designed in a similar way. For bituminous coal fire steam generators the primary measures on the firing side are nor sufficient to keep the German NO x emission limit. Therefore these units had to be retrofitted with a SCR-DENOX plant. The experience with the new firing system made in a 110 MW steam generator in Austria with a wide range of fuels is introduced. One of the largest bituminous coal fired once-trough steam generator built by EVT is the boiler for the power station Bexbach I (750 MW). The firing system is designed as a tangential firing system with 32 jet burners. These are arranged in pairs in the corners and divided into 4 burner levels with 4 burner pairs each. One mill is allocated to each burner level. An important characteristic feature is that the four bowl mills are arranged on one side of the steam generator. The plant is constructed with upper air nozzles which are arranged above the top burner level for the reduced of nitrogen oxides. During tests at steam generator with similar design, the nO x formation could be reduced from 750 to 500 mg/m 3 s.t.p. (dry, 6% O 2 ) with an addition of upper air of 20% at 100% unit capacity and constant total flow. As a main approach for the further reduction of the primary NO x emission at bituminous coal fired steam generators with tangential firing systems, the experience gained from the firing of brown coal has also been taken into account. A fundamental aspect in this respect was the vertical air staging in the direction of the furnace height. The results of many tests in a test reactor have shown that the differences of the achievable NO x values of brown and

  10. Coal fire mapping of East Basuria Colliery, Jharia coalfield using ...

    Indian Academy of Sciences (India)

    detect coal fire regions based on surface tem- perature ..... and non-coal fire regions have been delineated well in the ..... System Development Notes; Paterson Grant and Watson .... Schloemer S 2006 Innovative technologies for exploration,.

  11. Proceedings of the advanced coal-fired power systems `95 review meeting, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Mollot, D.J.; Venkataraman, V.K.

    1995-06-01

    This document contains papers presented at The advanced Coal-Fired Power Systems 1995 Review Meeting. Research was described in the areas of: integrated gasification combined cycle technology; pressurized fluidized-bed combustion; externally fired combined cycles; a summary stauts of clean coal technologies; advanced turbine systems and hot gas cleanup. Individual projects were processed separately for the United States Department of Energy databases.

  12. Coal fired flue gas mercury emission controls

    CERN Document Server

    Wu, Jiang; Pan, Weiguo; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of

  13. Firing a sub-bituminous coal in pulverized coal boilers configured for bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    N. Spitz; R. Saveliev; M. Perelman; E. Korytni; B. Chudnovsky; A. Talanker; E. Bar-Ziv [Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2008-07-15

    It is important to adapt utility boilers to sub-bituminous coals to take advantage of their environmental benefits while limiting operation risks. We discuss the performance impact that Adaro, an Indonesian sub-bituminous coal with high moisture content, has on opposite-wall and tangentially-fired utility boilers which were designed for bituminous coals. Numerical simulations were made with GLACIER, a computational-fluid-dynamic code, to depict combustion behavior. The predictions were verified with full-scale test results. For analysis of the operational parameters for firing Adaro coal in both boilers, we used EXPERT system, an on-line supervision system developed by Israel Electric Corporation. It was concluded that firing Adaro coal, compared to a typical bituminous coal, lowers NOx and SO{sub 2} emissions, lowers LOI content and improves fouling behavior but can cause load limitation which impacts flexible operation. 21 refs., 7 figs., 3 tabs.

  14. Coal-fired power materials - Part II

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, V.; Purgert, R.; Rawls, P. [Electric Power Research Institute, Palo Alto, CA (United States)

    2008-09-15

    Part 1 discussed some general consideration in selection of alloys for advanced ultra supercritical (USC) coal-fired power plant boilers. This second part covers results reported by the US project consortium, which has extensively evaluated the steamside oxidation, fireside corrosion, and fabricability of the alloys selected for USC plants. 3 figs.

  15. Coal-fired electricity generation in Ontario

    International Nuclear Information System (INIS)

    2001-03-01

    This report examines coal-fired electricity generation in Ontario and recommends actions to be taken by the provincial government to protect the environment. The recommendations are also designed to assist in making decisions about the environmental safeguards needed for a competitive electricity industry. The report examines air emissions from coal-fired generating plants in the larger context of air pollution in the province; summarizes background information on key air pollutants; provides an individual profile of all coal-fired power stations in the province; and benchmarks Ontario's emissions performance by comparing it with 19 nearby U.S. jurisdictions. Current and proposed environmental controls for fossil fuel power generation in the province are elaborated. Options for maximizing environmental performance and the framework for strengthening environmental protection are reviewed. The report also contains a series of findings and recommendations which are deemed necessary before the moratorium imposed on the sale of coal-fired electricity plants imposed in May 2000, can be lifted. tabs., figs

  16. Ways to Improve Russian Coal-Fired Power Plants

    International Nuclear Information System (INIS)

    Tumanovskii, A. G.; Olkhovsky, G. G.

    2015-01-01

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed

  17. Ways to Improve Russian Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Tumanovskii, A. G., E-mail: vti@vti.ru; Olkhovsky, G. G. [JSC “All-Russia Thermal Engineering Institute,” (Russian Federation)

    2015-07-15

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.

  18. The future of coal-fired generation

    Energy Technology Data Exchange (ETDEWEB)

    White, G. [Sherritt International Corp., Calgary, AB (Canada)

    2004-07-01

    The 3 features that will ensure coal's place as a primary energy source are its affordability, availability and its abundance. Coal reserves represent more than 200 years of supply. Graphs depicting coal consumption in North America, Central and South America, Western Europe, Easter Europe, Middle East, Africa, and Asia show that coal use is expected to grow 1.5 per cent annually. Asia is the greatest consumer of coal, while the consumption of coal in Eastern Europe is steadily declining. About half of the electricity supply in the United States will continue to be generated by coal and non-electrical utilization is also expected to grow. Emerging technologies that are promoting efficiency of coal utilization include combustion technology, clean coal technology, conversion technology and emissions technology. These technologies also address environmental concerns regarding coal combustion, such as removal of carbon dioxide through sequestration and reduction in nitrogen oxides, sulphur dioxide and particulates. Mercury mitigation technologies are also being developed. It was noted that the use of coal is mitigated by other available supply such as nuclear, natural gas and hydro which provide the base load generation. Renewable energy supply can meet up to 20 per cent of the base load, while coal can fill be gap between base load and peak loads. It was noted that the use of coal in direct industrial processes allows for synergies such as syngas for bitumen upgrading, coal as a chemical feedstock with electricity as a by-product, combined heat and power and cogeneration. tabs., figs.

  19. Coal fired flue gas mercury emission controls

    International Nuclear Information System (INIS)

    Wu, Jiang; Pan, Weiguo; Cao, Yan; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  20. Coal fired flue gas mercury emission controls

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiang; Pan, Weiguo [Shanghai Univ. of Electric Power (China); Cao, Yan; Pan, Weiping [Western Kentucky Univ., Bowling Green, KY (United States)

    2015-05-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  1. Slagging in a pulverised-coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Devir, G.P.; Pohl, J.H.; Creelman, R.A. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Chemical Engineering

    2000-07-01

    This paper describes a technique to evaluate the severity of slagging of a coal in a pulverised-coal-fired boiler. There are few data in the literature on the nature of in-situ boiler slags, their rate of growth and/or their strength properties relevant to sootblowing. The latter is thought to be of more concern to boiler operators and gives rise to the significance of selecting suitable strength tests. As well as standardised methods for characterising pulverised coal performance in a boiler, several novel and less popular techniques are discussed in detail. A suite of three sub-bituminous coals from the Callide Coalfields, Biloela (600 km north of Brisbane), has been selected for slagging tests in the 350 MW{sub e} units of Callide 'B' power station. Disposable air-cooled mild steel slagging probes have been constructed to simulate the conditions for deposit formation in the boiler region. To date, tests for one of these coals has been completed and preliminary results are presented. Once testing for the remaining coals has been completed, it is anticipated that the differences exhibited in deposit growth and strength may be correlated with typical variations in physical and chemical properties of the pulverised coal.

  2. Evaluation of NOX emissions from TVA coal-fired power plants

    International Nuclear Information System (INIS)

    Jones, J.W.; Stamey-Hall, S.

    1991-01-01

    The paper gives results of a preliminary evaluation of nitrogen oxide (NOx) emissions from 11 Tennessee Valley Authority (TVA) coal-fired power plants. Current EPA AP-42 emission factors for NOx from coal-fired utility boilers do not account for variations either in these emissions as a function of generating unit load, or in designs of boilers of the same general type, particularly wall-fired boilers. The TVA has compiled short-term NOx emissions data from 30 units at 11 TVA coal-fired plants. These units include cyclone, cell burner, single wall, opposed wall, single tangential, and twin tangential boiler firing designs. Tests were conducted on 29 of the 30 units at high load; 18 were also tested at reduced load. NOx emissions rates were calculated for each test and compared to the calculated rate for each boiler type using AP-42. Preliminary analysis indicates that: (1) TVA cyclone-fired units emit more NOx than estimated using AP-42; (2) TVA cell burner units emit considerably more NOx than estimated; (3) most TVA single-wall-fired units emit slightly more NOx than estimated; (4) most TVA single-furnace tangentially fired units emit less NOx than estimated at high load, but the same as (or more than) estimated at reduced load; and (5) most TVA twin-furnace tangentially fired units, at high load, emit slightly more NOx than estimated using AP-42

  3. Energy economics of nuclear and coal fired power plant

    International Nuclear Information System (INIS)

    Lee, Kee Won; Cho, Joo Hyun; Kim, Sung Rae; Choi, Hae Yoon

    1995-01-01

    The upturn of Korean nuclear power program can be considered to have started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type, considering the current trend of construction on the new plants in the United States. However, with the depletion of natural resources, it is desirable to understand the utilization of two competitive utility technologies in terms of of invested energy. Presented in this paper is a comparison between two systems, nuclear power plant and coal fired steam power plant in terms of energy investment. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (IOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. NEA is conducted for power plants in U.S. because the availability of necessary data are limited in Korea. Although NEA does not offer conclusive solution, this method can work as a screening process in decision making. When considering energy systems, results from such analysis can be used as a general guideline. 2 figs., 12 tabs., 5 refs. (Author)

  4. A dynamic model used for controller design of a coal fired once-through boiler-turbine unit

    International Nuclear Information System (INIS)

    Liu, Ji-Zhen; Yan, Shu; Zeng, De-Liang; Hu, Yong; Lv, You

    2015-01-01

    Supercritical OTB (once-through boiler) units with high steam temperature and pressure have been widely used in modern power plants due to their high cycle efficiency and less emissions. To ensure the effective operation of such power generation systems, it is necessary to build a model for the design of the overall control system. There are already detailed models of once-through boilers; however, their complexity prevents them from being applied in the controller design. This study describes a lumped parameter dynamic model that has a relatively low complexity while faithfully capturing the essential overall plant dynamics. The model structure was derived by fundamental physical laws utilizing reasonable simplifications and data analysis to avoid the phase transition position problem. Parameter identification for the model structure was completed using operational data from a 1000 MW ultra-supercritical OTB. The model was determined to be reasonable by comparison tests between computed data and measured data for both steady and dynamic states. The simplified model is verified to have appropriate fidelity in control system design to achieve effective and economic operation of the unit. - Highlights: • A simplified dynamic model of once-through boiler-turbine unit is given. • The essential dynamics of active power and throttle pressure is presented. • The change of phase transition position is avoided in modeling process. • The model has appropriate complexity and fidelity for controller design.

  5. Coal Field Fire Fighting - Practiced methods, strategies and tactics

    Science.gov (United States)

    Wündrich, T.; Korten, A. A.; Barth, U. H.

    2009-04-01

    Subsurface coal fires destroy millions of tons of coal each year, have an immense impact to the ecological surrounding and threaten further coal reservoirs. Due to enormous dimensions a coal seam fire can develop, high operational expenses are needed. As part of the Sino-German coal fire research initiative "Innovative technologies for exploration, extinction and monitoring of coal fires in Northern China" the research team of University of Wuppertal (BUW) focuses on fire extinction strategies and tactics as well as aspects of environmental and health safety. Besides the choice and the correct application of different extinction techniques further factors are essential for the successful extinction. Appropriate tactics, well trained and protected personnel and the choice of the best fitting extinguishing agents are necessary for the successful extinction of a coal seam fire. The chosen strategy for an extinction campaign is generally determined by urgency and importance. It may depend on national objectives and concepts of coal conservation, on environmental protection (e.g. commitment to green house gases (GHG) reductions), national funding and resources for fire fighting (e.g. personnel, infrastructure, vehicles, water pipelines); and computer-aided models and simulations of coal fire development from self ignition to extinction. In order to devise an optimal fire fighting strategy, "aims of protection" have to be defined in a first step. These may be: - directly affected coal seams; - neighboring seams and coalfields; - GHG emissions into the atmosphere; - Returns on investments (costs of fire fighting compared to value of saved coal). In a further step, it is imperative to decide whether the budget shall define the results, or the results define the budget; i.e. whether there are fixed objectives for the mission that will dictate the overall budget, or whether the limited resources available shall set the scope within which the best possible results shall be

  6. The world behind electricity from coal. The dubious origin of coal for Dutch coal-fired power plants

    International Nuclear Information System (INIS)

    2008-01-01

    Five energy companies in the Netherlands want to build additional coal-fired power plants: Essent and Nuon, the German company RWE and E.ON and the Belgian company Electrabel. Coal-fired power plants emit 70 percent more CO2 than gas-fired power plants. Especially because of the threat to the climate Greenpeace believes that no more coal-fired power plants should be built. In this publication Greenpeace explores the pollution, the working conditions and human rights with regard to the exploitation of coal. That has been elaborated for the three countries from which Dutch energy companies import coal: South Africa, Colombia and Indonesia. In addition to information about the origin of coal also insight is given into the coal market (stocks and use), the enormous coal transport and the world trade [nl

  7. Life Cycle Assessment of Coal-fired Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Spath, P. L.; Mann, M. K.; Kerr, D. R.

    1999-09-01

    Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (this tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).

  8. The economics of coal-fired power plants

    International Nuclear Information System (INIS)

    2008-10-01

    Coal-fired plants are the most polluting way to produce electricity due to their high CO2 emissions. But are they a good choice from an economic point of view? According to Greenpeace the answer is no: the price of coal is rising, construction costs are increasing and CO2 emissions will be priced. Nevertheless, E.On is developing plans for a new coal-fired plant at the Maasvlakte with the support of the Dutch government. [mk] [nl

  9. Historical costs of coal-fired electricity and implications for the future

    International Nuclear Information System (INIS)

    McNerney, James; Doyne Farmer, J.; Trancik, Jessika E.

    2011-01-01

    We study the cost of coal-fired electricity in the United States between 1882 and 2006 by decomposing it in terms of the price of coal, transportation cost, energy density, thermal efficiency, plant construction cost, interest rate, capacity factor, and operations and maintenance cost. The dominant determinants of cost have been the price of coal and plant construction cost. The price of coal appears to fluctuate more or less randomly while the construction cost follows long-term trends, decreasing from 1902 to 1970, increasing from 1970 to 1990, and leveling off since then. Our analysis emphasizes the importance of using long time series and comparing electricity generation technologies using decomposed total costs, rather than costs of single components like capital. By taking this approach we find that the history of coal-fired electricity suggests there is a fluctuating floor to its future costs, which is determined by coal prices. Even if construction costs resumed a decreasing trend, the cost of coal-based electricity would drop for a while but eventually be determined by the price of coal, which fluctuates while showing no long-term trend. - Research highlights: → 125-year history highlights the dominant determinants of coal-fired electricity costs. → Results suggest a fluctuating floor to future costs, determined by coal prices. → Analysis emphasizes importance of comparing technologies using decomposed total costs.

  10. Ash transformation during co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    2007-01-01

    Co-firing straw with coal in pulverized fuel boilers can cause problems related to fly ash utilization, deposit formation, corrosion and SCR catalyst deactivation due to the high contents of Cl and K in the ash. To investigate the interaction between coal and straw ash and the effect of coal...... quality on fly ash and deposit properties, straw was co-fired with three kinds of coal in an entrained flow reactor. The compositions of the produced ashes were compared to the available literature data to find suitable scaling parameters that can be used to predict the composition of ash from straw...... and coal co-firing. Reasonable agreement in fly ash compositions regarding total K and fraction of water soluble K was obtained between co-firing in an entrained flow reactor and full-scale plants. Capture of potassium and subsequent release of HCl can be achieved by sulphation with SO2 and more...

  11. Coal fired power plant fireside problems

    International Nuclear Information System (INIS)

    Mayer, P.; Manolescu, A.V.

    1984-01-01

    This paper describes the recent experience with fireside problems in coal fired subcritical boilers at Ontario Hydro*, and is concerned with boiler tube wastage. Problems with other components such as burners, air pre-heaters and ''back-end'' ductwork are not discussed. In most utilities, boiler tube failures account for a sizable portion of the total forced outages (typically about25%) as well as a very large part of the maintenance outages. The failures shown under the external deterioration category are of interest because they indicate the proportion of problems caused by the tube metal wastage processes initiated on the fireside of the boilers. Fireside problems remain an important cause of boiler tube failures year after year in spite of concentrated efforts to mitigate them

  12. Geographic information technology monitoring and mapping of coal fires in Ukraine, according to the space survey

    Energy Technology Data Exchange (ETDEWEB)

    Pivnyak, G.; Busygin, B.; Garkusha, I. [National Mining Univ., Dnipropetrovsk (Ukraine)

    2010-07-01

    Coal fires are a significant problem around the world, particularly in China, India, and the United States. Coal fires burn thousands of tons of coal reserves and lead to serious problems for the environment, degradation and destruction of landscape, and harm public health. Technology, such as spectrology analysis of signatures with high temperature activity can be used to calculate vegetation algorithms and soil indexes, and multispectral survey data in the thermal channels of scanners. This paper presented the perspectives of technology development in coal fires and the approach to the detection, monitoring, and quantitative estimation of coal fires by the instruments using geographic information systems. Specifically, the paper considered the use of coal fire fragment monitoring technology from data of a diachronous survey obtained by Landsat satellites, to classify dangerous coal waste banks of the Donbass Mine located in Ukraine. The paper provided a description of the study area and discussed the detection technology of temperature-active waste banks. It was concluded that geoinformation technology provides an opportunity to effectively mark mining dumps, in particular, waste banks in multispectrum space images made by Landsat satellites. 7 refs., 6 figs.

  13. CEZ utility's coal-fired power plants: towards a higher environmental friendliness

    International Nuclear Information System (INIS)

    Kindl, V.; Spilkova, T.; Vanousek, I.; Stehlik, J.

    1996-01-01

    Environmental efforts of the major Czech utility, CEZ a.s., are aimed at reducing air pollution arising from electricity and heat generating facilities. There are 3 main kinds of activity in this respect: phasing out of coal fired power plants; technological provisions to reduce emissions of particulate matter, sulfur dioxide, and nitrogen oxides from those coal fired units that are to remain in operation after 1998; and completion of the Temelin nuclear power plant. In 1995, emissions of particulate matter, sulfur dioxide, nitrogen oxides, and carbon monoxide from CEZ's coal fired power plants were 19%, 79%, 59%, and 60%, respectively, with respect to the situation in 1992. The break-down of electricity generation by CEZ facilities (in GWh) was as follows in 1995: hydroelectric power plants 1673, nuclear power plants 12230, coal fired power plants without desulfurization equipment 30181, and coal fired power plants with desulfurization equipment 2277. Provisions implemented to improve the environmental friendliness of the individual CEZ's coal fired power plants are described in detail. (P.A.). 5 tabs., 1 fig

  14. Application of Paste Backfill in Underground Coal Fires

    Science.gov (United States)

    Masniyom, M.; Drebenstedt, C.

    2009-04-01

    Coal fires are known from different coalfields worldwide. China, India, USA, Australia, Indonesia and South Africa are the main countries affected by coal fires. The fires is thermally intensive and cause numerous sinkholes, large-scale subsidence, air pollution, global warming, loss of mining productivity and increasing safety risk. The Wuda Inner Mongolia coalfield has been selected as a possible test area for paste backfill. The traditional methods, executed by fire fighting teams, by covering the coalfire areas with soil, blasting burning coal outcrops and injecting water in the subsurface fire pockets are continuously improved and extended. Initiatives to introduce modern techniques, such as backfill placement at fracture and borehole, to cool down the burning coal and cut off the air supply. This study is to investigate backfill materials and techniques suited for underground coal fires. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special attention was paid to materials generated as by-products and other cheaply available materials e.g. fly ash from power plants. There is a good chance that one of the different material mixtures investigated can be used as a technically and economically viable backfill for underground coal fires.

  15. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    In this literature report is provided a status for the present knowledge level on ash properties when co-firing coal and biomass. The fly ash formed in boilers using co-firing of coal and straw do have a large influence on ash deposit formation, boiler corrosion, fly ash utilization and operation...

  16. UNEP Demonstrations of Mercury Emission Reduction at Two Coal-fired Power Plants in Russia

    Directory of Open Access Journals (Sweden)

    Jozewicz W.

    2013-04-01

    Full Text Available The United Nations Environment Programme (UNEP partnership area “Mercury releases from coal combustion” (The UNEP Coal Partnership has initiated demonstrations of mercury air emission reduction at two coal-fired power plants in Russia. The first project has modified the wet particulate matter (PM scrubber installed in Toliatti thermal plant to allow for addition of chemical reagents (oxidants into the closedloop liquid spray system. The addition of oxidant resulted in significant improvement of mercury capture from 20% total mercury removal (without the additive up to 60% removal (with the additive. It demonstrates the effectiveness of sorbent injection technologies in conjunction with an electrostatic precipitator (ESP. ESPs are installed at 60%, while wet PM scrubbers are installed at 30% of total coal-fired capacity in Russia. Thus, the two UNEP Coal Partnership projects address the majority of PM emission control configurations occurring in Russia.

  17. Coal-Fired Power Plant Heat Rate Reductions

    Science.gov (United States)

    View a report that identifies systems and equipment in coal-fired power plants where efficiency improvements can be realized, and provides estimates of the resulting net plant heat rate reductions and costs for implementation.

  18. Oxidation and carbonisation of coals: a case study of coal fire affected coals from the Wuda coalfield, Inner Mongolia, China

    Science.gov (United States)

    Kus, Jolanta; Meyer, Uwe; Ma, Jianwei; Chen-Brauchler, Dai

    2010-05-01

    At the coalfield of Wuda (Inner Mongolia, PR China) extensive underground coal fires cause widespread thermal and oxidative effects in coal seams. Within phase B of the Coal Fire Research Project of the Sino-German Initiative, methods for innovative fire-extinguishing technologies were investigated in multifaceted research approaches. Extensive investigations of oxidative and thermally affected coal seams in coal fire zone 18 were conducted in 2008 prior to application of new fire-extinguishing methods. We present results from the outcrop of coal seam No. 4 in the fire zone 18. The coal of seam No. 4 is of Early Permian age and belongs stratigraphically to the Shanxi Formation. The unaffected coal displays a high volatile bituminous A rank with a background value of random vitrinite reflectance ranging from 0.90 to 0.96 % Rr. Coal channel samples were coallected at actively extracted coal faces along multiple profiles with surface temperatures ranging from about 50° to 600°C. Microscopic examinations revealed a variety of products of coal exposure to the fire. Within coal samples, a marked rise in vitrinite reflectance from background values to 5.55% Rr (6.00 % Rmax) is encountered. In addition, a number of coal samples showed suppressed vitrinite reflectances ranging between 0.82 to 0.88% Rr. Further, seemingly heat unaffected coal samples display intensive development of oxidations rims at coal grain edges and cracks as well as shrinkage cracks and formation of iron oxides/hydroxides. Instead, thermally affected coal samples with higher coalification grade are further characterised by development of macropores (devolatilisation pores) in vitrinitic streaks, transformation of liptinite to meta-liptinite and micrinite as well as by natural coke particles of mostly porous nature and fine to coarse grained anisotropic mosaic. Coal petrographic investigations confirmed a hypothesis that both, oxidations as well as low temperature carbonisation govern the thermal

  19. Natural radioactivity level in coal and ash collected from Baoji coal-fired power plant

    International Nuclear Information System (INIS)

    Jia Xiaodan; Lu Xinwei

    2006-01-01

    Specific activities of natural radionuclides 226 Ra, 232 Th and 40 K were assessed in coal (3 samples), fly ash (17 samples) and bottom ash (6 samples) collected from Baoji coal-fired power plant. This paper analyzed the characteristics of 226 Ra, 232 Th and 40 K contents in bottom ash and fly ash, and studied the concentration factors of these radionuclides in ash in relation to those in coal. The level of natural radionuclides 226 Ra, 232 Th and 40 K of coal collected from Baoji coal-fired power plant are in the range of radionuclides contents of Chinese coal. The natural radioactivity level of fly ash collected from Baoji coal-fired power plant is close to Beijing and Shanghai coal-fired power plants. The paper farther assessed the possibility of fly ash of Baoji coal-fired power plant used as building materials according to the state standard. The results show that there are 29% samples exceeding the state limit when fly ash used as building materials. So the usage of fly ash in building material should be controlled. (authors)

  20. Technology Roadmap: High-Efficiency, Low-Emissions Coal-Fired Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Coal is the largest source of power globally and, given its wide availability and relatively low cost, it is likely to remain so for the foreseeable future. The High-Efficiency, Low-Emissions Coal-Fired Power Generation Roadmap describes the steps necessary to adopt and further develop technologies to improve the efficiency of the global fleet of coal. To generate the same amount of electricity, a more efficient coal-fired unit will burn less fuel, emit less carbon, release less local air pollutants, consume less water and have a smaller footprint. High-efficiency, low emissions (HELE) technologies in operation already reach a thermal efficiency of 45%, and technologies in development promise even higher values. This compares with a global average efficiency for today’s fleet of coal-fired plants of 33%, where three-quarters of operating units use less efficient technologies and more than half is over 25 years old. A successful outcome to ongoing RD&D could see units with efficiencies approaching 50% or even higher demonstrated within the next decade. Generation from older, less efficient technology must gradually be phased out. Technologies exist to make coal-fired power generation much more effective and cleaner burning. Of course, while increased efficiency has a major role to play in reducing emissions, particularly over the next 10 years, carbon capture and storage (CCS) will be essential in the longer term to make the deep cuts in carbon emissions required for a low-carbon future. Combined with CCS, HELE technologies can cut CO2 emissions from coal-fired power generation plants by as much as 90%, to less than 100 grams per kilowatt-hour. HELE technologies will be an influential factor in the deployment of CCS. For the same power output, a higher efficiency coal plant will require less CO2 to be captured; this means a smaller, less costly capture plant; lower operating costs; and less CO2 to be transported and stored.

  1. Coal-fired CCS demonstration plants, 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    The present report reviews activities taking place focused on the eventual large-scale deployment of carbon capture systems on coal-fired power plants. With this aim in mind, there are three main CO2 capture technology streams currently being developed and tested; these comprise pre-combustion capture, post-combustion capture, and systems based on oxyfuel technology. Although numerous other capture systems have been proposed, these three are currently the focus of most RD&D efforts and this report concentrates on these. More speculative technologies still at early stages in their development are not addressed. The overall aims of this report are to provide an update of recent technological developments in each of the main categories of CO2 capture, and to review the current state of development of each, primarily through an examination of larger-scale development activities taking place or proposed. However, where appropriate, data generated by smaller-scale testing is noted, especially where this is feeding directly into ongoing programmes aimed at developing further, or scaling-up the particular technology. Each is reviewed and the status of individual coal-based projects and proposals described. These are limited mainly to what are generally described as pilot and/or demonstration scale. Where available, learning experiences and operational data being generated by these projects is noted. Technology Readiness Levels (TRLs) of individual projects have been used to provide an indication of technology scale and maturity. For pre-combustion capture, post-combustion capture and oxyfuel systems, an attempt has been made to identify the technological challenges and gaps in the knowledge that remain, and to determine what technology developers are doing in terms of RD&D to address these. However, issues of commercial confidentiality have meant that in some cases, information in the public domain is limited, hence it has only been possible to identify overarching

  2. Major trends in nuclear and coal fired plants economics

    International Nuclear Information System (INIS)

    Benson, P.H.; Frank, J.R.; Isacson, H.R.

    1984-01-01

    An in-depth analysis of nuclear plant performance in the United States and elsewhere raises basic questions as to the validity of the present pessimism as a guide for long-range policy. The sad story of the plants in trouble has obscured the good performance of the majority of nuclear power installations. Further, it appears that many of the root causes for the outstanding problems may be indigenous to the existing U.S. utility, regulatory, and financial structure, and not relevant to the long-range intrinsic values of nuclear power either in the United States or in other countries. On the other hand, many of the problems affecting coal fired plants, i.e., fuel supply, economics and pollution control appear to be more critical abroad rather than in the U.S. This paper will review these issues

  3. Up the stack : coal-fired electricity's toxic impact : an OCAA air quality report

    International Nuclear Information System (INIS)

    Rang, S.

    2002-07-01

    Ontario Power Generation (OPG) must report annually its releases and transfers of 268 chemicals to the federal National Pollutant Release Inventory (NPRI). Each OPG facility reports the amount of chemicals released to the air, land, water and injected under ground at the facility site. The facilities must also report the amount of chemicals that are transferred off-site for treatment, sewage, disposal, recycling or energy recovery. In 1999 and 2000, atmospheric releases from OPG's coal-fired plants accounted for a significant percentage of the total pollutants released for Ontario and Canada. OPG's facilities are often in the top 5 in Ontario and Canada for releases of various chemicals, including persistent toxic chemicals. In 1999, the Nanticoke coal-fired power plant on Lake Erie was ranked first in Canada for releases to the air. Data reported for the 1999 and 2000 reporting period for dioxins and furans, hexachlorobenzene, mercury, metals (chromium, nickel and arsenic), and acid gases such as hydrochloric acid, hydrogen fluoride, and sulphuric acid clearly indicates that OPG coal-fired plants are a leading source of air pollution in Canada and Ontario. The Ontario Clean Air Alliance suggests the data is sufficient to phase-out the use of coal for power generation in Ontario. It recommends conserving energy and replacing coal-fired power with renewable energy sources such as wind and water power. Converting coal facilities to high-efficiency natural gas units would also reduce the toxic impacts of OPG's coal-fired power plants. As an immediate first step, it was recommended that the government should ban non-emergency exports of coal-fired electricity during smog-alert periods in Ontario. 11 tabs

  4. Coal-fired power plant: airborne routine discharges

    International Nuclear Information System (INIS)

    Zeevaert, T.

    2005-01-01

    The radiological impact from non-nuclear industries is a growing matter of concern to stake holders and regulators. It has been demonstrated that atmospheric discharges from coal-fired power plants can lead to higher dose-impacts to critical groups of the population than nuclear power plants. In Belgium, in the frame of an agreement between electricity producers and national authorities, measures were taken in conventional power plants to restrict airborne discharges of SO 2 , NO x and suspended particles. In the 500 MWe coal-fired power plant of Langerlo, a flue gas purification system was installed, consisting of a denitrification unit and a desulphurization unit, next to the electrostatic dust filter units. These measures have also an important effect on the radioactive atmospheric discharges. The objective of this study was to assess the radiological impact of the airborne releases of the power plant under normal working conditions and in particular the influence of the installation of the flue gas purification system. As a first step, we measured the natural radioactivity content of the coal and the radium content of the fly ash . The quantities of the other radioelements discharged through the chimney, were estimated, assuming the same behaviour as radium, except for the more volatile lead and polonium, which will condense preferably on finer ash particles, against which the electro filters are less effective. (A concentration factor of 4 has been adopted). The radon, present in the coal, is assumed to be discharged completely through the chimney. The atmospheric transport, dispersion and deposition of the discharged radionuclides were modelled, applying the bi-Gaussian plume model IFDM. For the calculations, we used hourly averages of the meteorological observations at Mol over the year 1991. The transfers of the radionuclides from air and soil to the biospheric media, exposing man, were calculated with our biosphere model and the radiological impact to the

  5. A Study of Coal Fire Propagation with Remotely Sensed Thermal Infrared Data

    Directory of Open Access Journals (Sweden)

    Hongyuan Huo

    2015-03-01

    Full Text Available Coal fires are a common and serious problem in most coal-bearing countries. Thus, it is very important to monitor changes in coal fires. Remote sensing provides a useful technique for investigating coal fields at a large scale and for detecting coal fires. In this study, the spreading direction of a coal fire in the Wuda Coal Field (WCF, northwest China, was analyzed using multi-temporal Landsat Thematic Mapper (TM and Enhanced Thematic Mapper (ETM+ thermal infrared (TIR data. Using an automated method and based on the land surface temperatures (LST that were retrieved from these thermal data, coal fires related to thermal anomalies were identified; the locations of these fires were validated using a coal fire map (CFM that was developed via field surveys; and the cross-validation of the results was also carried out using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER thermal infrared images. Based on the results from longtime series of satellite TIR data set, the spreading directions of the coal fires were determined and the coal fire development on the scale of the entire coal field was predicted. The study delineated the spreading direction using the results of the coal fire dynamics analysis, and a coal fire spreading direction map was generated. The results showed that the coal fires primarily spread north or northeast in the central part of the WCF and south or southwest in the southern part of the WCF. In the northern part of the WCF, some coal fires were spreading north, perhaps coinciding with the orientation of the coal belt. Certain coal fires scattered in the northern and southern parts of the WCF were extending in bilateral directions. A quantitative analysis of the coal fires was also performed; the results indicate that the area of the coal fires increased an average of approximately 0.101 km2 per year.

  6. Commerical electric power cost studies. Capital cost addendum multi-unit coal and nuclear stations

    International Nuclear Information System (INIS)

    1977-09-01

    This report is the culmination of a study performed to develop designs and associated capital cost estimates for multi-unit nuclear and coal commercial electric power stations, and to determine the distribution of these costs among the individual units. This report addresses six different types of 2400 MWe (nominal) multi-unit stations as follows: Two Unit PWR Station-1139 MWe Each, Two Unit BWR Station-1190 MWe Each, Two Unit High Sulfur Coal-Fired Station-1232 MWe Each, Two Unit Low Sulfur Coal-Fired Station-1243 MWe Each, Three Unit High Sulfur Coal-Fired Station-794 MWe Each, Three Unit Low Sulfur Coal-Fired Station-801 MWe Each. Recent capital cost studies performed for ERDA/NRC of single unit nuclear and coal stations are used as the basis for developing the designs and costs of the multi-unit stations. This report includes the major study groundrules, a summary of single and multi-unit stations total base cost estimates, details of cost estimates at the three digit account level and plot plan drawings for each multi-unit station identified

  7. Detection and delineation of coal mine fire in Jharia coal field (JCF ...

    Indian Academy of Sciences (India)

    71

    Africa, Indonesia, Poland (Zhang et al. 2005; Kuenzer et al. .... is about 8 Km in west direction from Dhanbad Rrailway station. The location of the ...... International conference on Spontaneous coal seam fires: Mitigating a global. 543 disaster at ...

  8. Sintering in Biofuel and Coal-Biofuel Fired FBC's

    DEFF Research Database (Denmark)

    Lin, Weigang; Dam-Johansen, Kim

    1998-01-01

    This report presents the results of systematic experiments conducted in a laboratory scale fluidized bed combustor in order to study agglomeration phenomena during firing straw and co-firing straw with coal. The influence of operating conditions on ag-glomeration was investigated. The effect of co......-firing straw with coal on agglomeration was also examined. The results show that temperature has the most pronounced effect on the agglomeration tendency. As bed temperature increases, the defluidiza-tion time decreases sharply, which indicates an increasing tendency of agglomera-tion. When co-firing straw...... with coal, the defluidization time can be extended signifi-cantly. Examination of the agglomerates sampled during combustion by various analytical techniques indicates that the high potassium content in straw is the main cause for the formation of agglomerates. In the combustion process, potassium...

  9. Development of a fire detector for underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Hemingway, M.A.; Walsh, P.T.; Hunneyball, S.R.; Williams, M.; Jobling, S.; Pell, B.; West, N.G. [Health and Safety Laboratory, Buxton (United Kingdom)

    2005-07-01

    Current fire detectors in use in UK coal mines, based on semiconductor sensors which detect gaseous products of combustion, are under-utilised, are not user-friendly, have performance limitations due to interferences and are obsolete. A joint research project was therefore instigated to develop an improved fire detector. This paper describes tests performed in an experimental mine roadway on various types of sensor. The sensors were exposed to smouldering conveyor belt, coal, wood, oil and grease, and diesel exhaust fume. A potential advanced detector is based on the combination of blue and infrared optical smoke sensors which distinguish fires and diesel exhaust from coal dust, nitric oxide or nitrogen dioxide sensors to distinguish smoulderi8ng fires form diesel exhaust, and carbon monoxide sensors for general body monitoring. 6 refs., 5 figs.

  10. Corrosion protection pays off for coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T.

    2006-11-15

    Zinc has long been used to hot-dip galvanise steel to deliver protection in harsh environments. Powder River Basin or eastern coal-fired plants benefit from using galvanized steel for conveyors, vibratory feeders, coal hoppers, chutes, etc. because maintenance costs are essentially eliminated. When life cycle costs for this process are compared to an alternative three-coal paint system for corrosion protection, the latter costs 5-10 times more than hot-dip galvanizing. An AEP Power Plant in San Juan, Puerto Rico and the McDuffie Coal Terminal in Mobile, AL, USA have both used hot-dip galvanized steel. 1 fig., 1 tab.

  11. Comparison of electricity production costs of nuclear and coal-fired power plants

    International Nuclear Information System (INIS)

    Peltzer, M.

    1980-01-01

    Electricity production costs of nuclear and coal-fired power plants their structure and future development are calculated and compared. Assumed beginning of operation is in the mid-1980. The technical and economical data are based on a nuclear power unit of 1 300 MW and on a coal-fired twin plant of 2 x 750 MW. The study describes and discusses the calculational method and the results. The costs for the electricity generation show an economic advantage for nuclear power. A sensitivity analysis shows that these results are valid also for changed input parameters. (orig.) [de

  12. Field test corrosion experiences when co-firing straw and coal: 10 year status within Elsam

    DEFF Research Database (Denmark)

    Frandsen, Rasmus Berg; Montgomery, Melanie; Larsen, Ole Hede

    2007-01-01

    and straw at the 150 MW pulverized coal fired boiler Studstrup unit 1. Two exposure series lasting 3000 hours each were performed for co-firing 10 and 20% of straw (% energy basis) with coal. Using built in test tubes in the hot end of the actual superheaters and air/water cooled corrosion probes...... to 575 degrees C and for the flue gas from 1025 to 1300 degrees C. All these test tubes have been removed during the last three years at one year intervals for corrosion studies. The corrosion studies performed on all investigated tubes included measurements of the corrosion attack, light optical...

  13. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A TANGENTIALLY COAL-FIRED UTILITY BOILER (YORKTOWN LIMB DEMONSTRATION)

    Science.gov (United States)

    The report summarizes activities conducted and results achieved in an EPA-sponsored program to demonstrate Limestone Injection Multistage Burner (LIMB) technology on a tangentially fired coal-burning utility boiler, Virginia Power's 180-MWe Yorktown Unit No. 2. his successfully d...

  14. Proceedings of the advanced coal-fired power systems `95 review meeting, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Mollot, D.J.; Venkataraman, V.K.

    1995-06-01

    This report contains papers which were presented at the advanced coal-fired power sytems review meeting. This is volume II. Topics include: hot gas filter issues, hazardous air pollutants, sorbent development, and separation technologies. Individual papers were processed separately for the United States Department of Energy databases.

  15. acme: The Amendable Coal-Fire Modeling Exercise. A C++ Class Library for the Numerical Simulation of Coal-Fires

    Science.gov (United States)

    Wuttke, Manfred W.

    2017-04-01

    At LIAG, we use numerical models to develop and enhance understanding of coupled transport processes and to predict the dynamics of the system under consideration. Topics include geothermal heat utilization, subrosion processes, and spontaneous underground coal fires. Although the details make it inconvenient if not impossible to apply a single code implementation to all systems, their investigations go along similar paths: They all depend on the solution of coupled transport equations. We thus saw a need for a modular code system with open access for the various communities to maximize the shared synergistic effects. To this purpose we develop the oops! ( open object-oriented parallel solutions) - toolkit, a C++ class library for the numerical solution of mathematical models of coupled thermal, hydraulic and chemical processes. This is used to develop problem-specific libraries like acme( amendable coal-fire modeling exercise), a class library for the numerical simulation of coal-fires and applications like kobra (Kohlebrand, german for coal-fire), a numerical simulation code for standard coal-fire models. Basic principle of the oops!-code system is the provision of data types for the description of space and time dependent data fields, description of terms of partial differential equations (pde), their discretisation and solving methods. Coupling of different processes, described by their particular pde is modeled by an automatic timescale-ordered operator-splitting technique. acme is a derived coal-fire specific application library, depending on oops!. If specific functionalities of general interest are implemented and have been tested they will be assimilated into the main oops!-library. Interfaces to external pre- and post-processing tools are easily implemented. Thus a construction kit which can be arbitrarily amended is formed. With the kobra-application constructed with acme we study the processes and propagation of shallow coal seam fires in particular in

  16. Impacts of TMDLs on coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Environmental Science Division

    2010-04-30

    The Clean Water Act (CWA) includes as one of its goals restoration and maintenance of the chemical, physical, and biological integrity of the Nation's waters. The CWA established various programs to accomplish that goal. Among the programs is a requirement for states to establish water quality standards that will allow protection of the designated uses assigned to each water body. Once those standards are set, state agencies must sample the water bodies to determine if water quality requirements are being met. For those water bodies that are not achieving the desired water quality, the state agencies are expected to develop total maximum daily loads (TMDLs) that outline the maximum amount of each pollutant that can be discharged to the water body and still maintain acceptable water quality. The total load is then allocated to the existing point and nonpoint sources, with some allocation held in reserve as a margin of safety. Many states have already developed and implemented TMDLs for individual water bodies or regional areas. New and revised TMDLs are anticipated, however, as federal and state regulators continue their examination of water quality across the United States and the need for new or revised standards. This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements its overall research effort by evaluating water issues that could impact power plants. One of the program missions of the DOE's NETL is to develop innovative environmental control technologies that will enable full use of the Nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. Some of the parameters for which TMDLs are being developed are components in discharges

  17. Planning new coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Benesch, W.A. [STEAG encotec GmbH, Essen (Germany)

    2001-07-01

    When considering fossil energy sources, it can be seen that natural gas and oil will become much scarcer than coal. Therefore, one practical option is to investigate and further develop coal-based energy supplies for the future. However, the existing coal stocks must be used very sparingly. Consequently, the conversion efficiency of the chemically-bonded energy in power and heat needs to be improved. By these means, and also by modern environmental engineering, power can be generated from coal without harming the environment. (orig.)

  18. Thermodynamic analysis and conceptual design for partial coal gasification air preheating coal-fired combined cycle

    Science.gov (United States)

    Xu, Yue; Wu, Yining; Deng, Shimin; Wei, Shirang

    2004-02-01

    The partial coal gasification air pre-heating coal-fired combined cycle (PGACC) is a cleaning coal power system, which integrates the coal gasification technology, circulating fluidized bed technology, and combined cycle technology. It has high efficiency and simple construction, and is a new selection of the cleaning coal power systems. A thermodynamic analysis of the PGACC is carried out. The effects of coal gasifying rate, pre-heating air temperature, and coal gas temperature on the performances of the power system are studied. In order to repower the power plant rated 100 MW by using the PGACC, a conceptual design is suggested. The computational results show that the PGACC is feasible for modernizing the old steam power plants and building the new cleaning power plants.

  19. Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants

    Science.gov (United States)

    Krylov, D. A.; Sidorova, G. P.

    2013-04-01

    This paper presents an analysis of published data on the content of radioactive nuclides in coals originating from various coal deposits, and in ash and slag wastes produced at coal-fired thermal power plants, as well as in fly ash emitted from thermal power plants into the atmosphere. Problems related to the use of coals with an elevated content of natural radionuclides (NRNs) and methods of their solution implemented at the Urtuyskoe coalfield are dealt with. Data on the analysis of Transbaikal coals for the NRN content, as well as weighted mean content of uranium and thorium in coals from the Siberian Region, are given. In order to reduce irradiation of plant personnel and the population of the areas where coal producers and coal-fired thermal power plants are located, it is necessary to organize very careful control of the NRN content in both coals and products of their combustion that are released into the environment. To solve the problem related to the control of radioactivity, the centralized approach and creation of a proper normative base are needed. Experience gained in developing the Urtuyskoe coalfield shows that it is possible to create an efficient system of coal quality control with respect to the radiation hygiene factor and provide protection of the environment and health of the population.

  20. Technologically enhanced natural radioactivity around the coal fired power plant

    International Nuclear Information System (INIS)

    Kovac, J.; Marovic, G.

    1997-01-01

    In some situations the exposure to natural radiation sources is enhanced as a result to technological developments. Burning of coal is one source of enhanced radiation exposure to naturally occurring elements, particularly radium, thorium and uranium. Most of the radioactive substances are concentrated in the ash and slag, which are heavy and drop to the bottom of a furnace. Lighter fly ash is carried up the chimney and into the atmosphere. The bottom ash and slag are usually deposited in a waste pile, from where some activity may leach into aquifers or be dispersed by wind.The main pathways through which the populations living around coal fired power plants are exposed to enhanced levels of natural radionuclides are inhalation and ingestion of the activity discharged into the Exosphere. For this reason, extensive investigations have been under way for several years in the coal fired power plant in Croatia, which uses an anthracite coal with a higher than usual uranium content. (authors)

  1. Detection of coal mine fires in the Jharia coal field using NOAA/AVHRR data

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, R.; Singh, D.; Chauhan, D.S.; Singh, K.P. [Harcourt Butler Technological Institute, Kanpur (India)

    2006-09-15

    Coal fires represent a major problem in most coal producing countries. The Jharia coal field (JCF) has been affected by surface and sub-surface coal fires since the beginning of mining in the region in the mid 1800s. Currently research is focused on using freely available satellite data such as NOAA/AVHRR, MODIS (moderate resolution imaging spectrometer) etc for various applications. The potential of National Oceanographic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) images for detecting coal fires and monitoring their progress and associated environmental hazards and risks to the local communities in the JCF has been reviewed. Three models, namely the thresholding model, the contextual model and the fuel mask model have been used to determine the potential fire pixels. Due to the coarse resolution of the NOAA/AVHRR data it was essential to determine sub-pixel fires as well. Results of this study have been verified using the MODIS active fires product, MOD14 (Terra). We have used ten images of NOAA/AVHRR for the year 2004 in this study, and the results are in broad agreement with the ground truth data.

  2. Cofiring of biofuels in coal fired boilers: Results of case study analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tillman, D.A. [Ebasco Environmental, Sacramento, CA (United States); Hughes, E. [Electric Power Research Institute, Palo Alto, CA (United States); Gold, B.A. [TVA, Chattanooga, TN (United States)

    1993-12-31

    Ebasco Environmental and Reaction Engineering, under contract to EPRI, performed a case study analysis of cofiring biomass in coal-fired boilers of the Tennessee Valley Authority (TVA). The study was also sponsored by DOE. This analysis included evaluating wood fuel receiving, preparation, and combustion in pulverized coal (PC) boilers and cyclone furnaces and an assessment of converting wood into pyrolysis oil or low Btu gas for use in a new combined cycle combustion turbine (CCCT) installation. Cofiring wood in existing coal-fired boilers has the most immediate potential for increasing the utilization of biofuels in electricity generation. Cofiring biofuels with coal can potentially generate significant benefits for utilities including: (1) reducing emissions of SO{sub 2} and NO{sub x}; (2) reducing the net emissions of CO{sub 2}; (3) potentially reducing the fuel cost to the utility depending upon local conditions and considering biomass is potentially exempt from the proposed Btu tax and may get a 1.5 cent/kWh credit for energy generated by wood combustion; (4) supporting local industrial forest industry; and (5) providing a long term market for the development of a biofuel supply and delivery industry. Potential benefits are reviewed in the context of cofiring biofuel at a rate of 15% heat input to the boiler, and compares this cofiring strategy and others previously tested or developed by other utilities. Other issues discussed include: (1) wood fuel specifications as a function of firing method; (2) wood fuel receiving and preparation system requirements; (3) combustion system requirements for cofiring biofuels with coal; (4) combustion impacts of firing biofuels with coal; (5) system engineering issues; (6) the economics of cofiring biofuel with coal. The Allen, TN 330 MW(e) cyclone boiler and Kingston, TN 135 MW(e) Boiler {number_sign}1, a tangentially fired PC unit, case studies are then summarized in the paper, highlighting the cofiring opportunities.

  3. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    Science.gov (United States)

    Karpenko, E. I.; Karpenko, Yu. E.; Messerle, V. E.; Ustimenko, A. B.

    2009-06-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  4. Thermal surface characteristics of coal fires 1 results of in-situ measurements

    Science.gov (United States)

    Zhang, Jianzhong; Kuenzer, Claudia

    2007-12-01

    Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO 2 and - under certain circumstances - to spontaneous combustion. Coal fires occur in many countries world wide - however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N 2O). They additionally contribute to the emission of green house relevant gasses such as CO 2 and CH 4 to the atmosphere. In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered. Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime

  5. Life cycle assessment of coal-fired power plants and sensitivity analysis of CO2 emissions from power generation side

    Science.gov (United States)

    Yin, Libao; Liao, Yanfen; Zhou, Lianjie; Wang, Zhao; Ma, Xiaoqian

    2017-05-01

    The life cycle assessment and environmental impacts of a 1000MW coal-fired power plant were carried out in this paper. The results showed that the operation energy consumption and pollutant emission of the power plant are the highest in all sub-process, which accounts for 93.93% of the total energy consumption and 92.20% of the total emission. Compared to other pollutant emissions from the coal-fired power plant, CO2 reached up to 99.28%. Therefore, the control of CO2 emission from the coal-fired power plants was very important. Based on the BP neural network, the amount of CO2 emission from the generation side of coal-fired power plants was calculated via carbon balance method. The results showed that unit capacity, coal quality and unit operation load had great influence on the CO2 emission from coal-fired power plants in Guangdong Province. The use of high volatile and high heat value of coal also can reduce the CO2 emissions. What’s more, under higher operation load condition, the CO2 emissions of 1 kWh electric energy was less.

  6. Cofiring of rice straw and coal in a coal-fired utility boiler: thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Raphael Guardini; Bazzo, Edson [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Mechanical Engineering], Emails: miyake@labcet.ufsc.br, ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia, Capivari de Baixo, SC (Brazil)], E-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    Cofiring combustion of biomass and coal is a near-term, low cost alternative for reduction fossil greenhouse gas emissions in coal fired power plants. Recent reviews identified over 288 applications in over 16 countries with promising results for different coal and biomass combinations. In Brazil, there is no previous experience of cofiring biomass and coal, resulting in new challenges to fuel handling and boiler operation. A first experience is now proposed into an existing coal power plant, using rice straw as biomass fuel. A thermodynamic model was developed in order to predict operating and emissions data, which should be used in cofiring system design. For 10% of biomass input, the total CO{sub 2} emission is expected to slightly increase. However, considering only the coal CO{sub 2} emission, it is expected to decrease in about 10%. Also, the corresponding SO{sub 2} emission decreases in about 8%. (author)

  7. CHARACTERIZATION AND MODELING OF THE FORMS OF MERCURY FROM COAL-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Dennis L. Laudal

    2001-08-01

    The 1990 Clean Air Act Amendments (CAAAs) required the U.S. Environmental Protection Agency (EPA) to determine whether the presence of mercury in the stack emissions from fossil fuel-fired electric utility power plants poses an unacceptable public health risk. EPA's conclusions and recommendations were presented in the Mercury Study Report to Congress (1) and the Utility Air Toxics Report to Congress (1). The first report addressed both the human health and environmental effects of anthropogenic mercury emissions, while the second addressed the risk to public health posed by the emission of mercury and other hazardous air pollutants from steam-electric generating units. Given the current state of the art, these reports did not state that mercury controls on coal-fired electric power stations would be required. However, they did indicate that EPA views mercury as a potential threat to human health. In fact, in December 2000, the EPA issued an intent to regulate for mercury from coal-fired boilers. However, it is clear that additional research needs to be done in order to develop economical and effective mercury control strategies. To accomplish this objective, it is necessary to understand mercury behavior in coal-fired power plants. The markedly different chemical and physical properties of the different mercury forms generated during coal combustion appear to impact the effectiveness of various mercury control strategies. The original Characterization and Modeling of the Forms of Mercury from Coal-Fired Power Plants project had two tasks. The first was to collect enough data such that mercury speciation could be predicted based on relatively simple inputs such as coal analyses and plant configuration. The second was to field-validate the Ontario Hydro mercury speciation method (at the time, it had only been validated at the pilot-scale level). However, after sampling at two power plants (the Ontario Hydro method was validated at one of them), the EPA issued

  8. Heavy metal atmospheric emissions from coal-fired power plants - Assessment and uncertainties

    International Nuclear Information System (INIS)

    Lecuyer, I.; Ungar, A.; Peter, H.; Karl, U.

    2004-01-01

    Power generation using fossil fuel combustion (coal and fuel-oil) participates, with other sectors, to heavy metal atmospheric emissions. The dispersion of these hazardous pollutants throughout the environment is more and more regulated. In order to assess the annual flows emitted from EDF coal-fired power plants, a computerized tool has been developed, based on the methodology defined by IFARE/DFIU in 1997. The heavy metal partition factors within the plant unit are determined according to the type of unit and the coal characteristics. Heavy metals output flows, and especially those emitted with flue gas at the stack, are then deduced from the actual coal consumption and chemical composition. A first inventory of heavy metal emissions from EDF coal-fired power plants has been achieved for year 2001. Values are accurate (± 40 %) for nonvolatile elements (Cr, Cu, Co, Mn, Ni, V) and for PM 10 and PM 2.5 (particulate matter below 10 μm and 2.5 μm). The uncertainty is higher (± 80 %) for volatile elements (As, Pb, Zn). Excess indicative values are given for elements which are both volatile and at low concentrations in coal (Hg, Se, Cd). (author)

  9. Monitoring subsurface coal fires in Jharia coalfield using ...

    Indian Academy of Sciences (India)

    ing adverse effects on the regional environment ... subsurface coal fires and to study its lateral prop- ... as is the case with the recently developed Persis- .... using Statistical-Cost, Network-Flow Algorithm ..... dence of Kolkata (Calcutta) City, India during the 1990s ... a case study in the east of France; Int. J. Remote Sens.

  10. Co-firing straw and coal in a 150-MWe utility boiler: in situ measurements

    DEFF Research Database (Denmark)

    Hansen, P. F.B.; Andersen, Karin Hedebo; Wieck-Hansen, K.

    1998-01-01

    A 2-year demonstration program is carried out by the Danish utility I/S Midtkraft at a 150-MWe PF-boiler unit reconstructed for co-firing straw and coal. As a part of the demonstration program, a comprehensive in situ measurement campaign was conducted during the spring of 1996 in collaboration...... with the Technical University of Denmark. Six sample positions have been established between the upper part of the furnace and the economizer. The campaign included in situ sampling of deposits on water/air-cooled probes, sampling of fly ash, flue gas and gas phase alkali metal compounds, and aerosols as well...... deposition propensities and high temperature corrosion during co-combustion of straw and coal in PF-boilers. Danish full scale results from co-firing straw and coal, the test facility and test program, and the potential theoretical support from the Technical University of Denmark are presented in this paper...

  11. Waste generation comparison: Coal-fired versus nuclear power plants

    International Nuclear Information System (INIS)

    LaGuardia, T.S.

    1998-01-01

    Low-level radioactive waste generation and disposal attract a great deal of attention whenever the nuclear industry is scrutinized by concerned parties, be it the media, the public, or political interests. It is therefore important to the nuclear industry that this issue be put into perspective relative to other current forms of energy production. Most of the country's fossil-fueled power comes from coal-fired plants, with oil and gas as other fuel sources. Most of the generated waste also comes from coal plants. This paper, therefore, compares waste quantities generated by a typical (1150-MW(electric)) pressurized water reactor (PWR) to that of a comparably sized coal-fired power plant

  12. Coal fired steam generation for heavy oil recovery

    International Nuclear Information System (INIS)

    Firmin, K.

    1992-01-01

    In Alberta, some 21,000 m 3 /d of heavy oil and bitumen are produced by in-situ recovery methods involving steam injection. The steam generation requirement is met by standardized natural-gas-fired steam generators. While gas is in plentiful supply in Alberta and therefore competitively priced, significant gas price increases could occur in the future. A 1985 study investigating the alternatives to natural gas as a fuel for steam generation concluded that coal was the most economic alternative, as reserves of subbituminous coal are not only abundant in Alberta but also located relatively close to heavy oil and bitumen production areas. The environmental performance of coal is critical to its acceptance as an alternate fuel to natural gas, and proposed steam generator designs which could burn Alberta coal and control emissions satisfactorily are assessed. Considerations for ash removal, sulfur dioxide sorption, nitrogen oxides control, and particulate emission capture are also presented. A multi-stage slagging type of coal-fired combustor has been developed which is suitable for application with oilfield steam generators and is being commissioned for a demonstration project at the Cold Lake deposit. An economic study showed that the use of coal for steam generation in heavy oil in-situ projects in the Peace River and Cold Lake areas would be economic, compared to natural gas, at fuel price projections and design/cost premises for a project timing in the mid-1990s. 7 figs., 3 tabs

  13. The coal-fired gas turbine locomotive - A new look

    Science.gov (United States)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.

    1983-01-01

    Advances in turbomachine technology and novel methods of coal combustion may have made possible the development of a competitive coal fired gas turbine locomotive engine. Of the combustor, thermodynamic cycle, and turbine combinations presently assessed, an external combustion closed cycle regenerative gas turbine with a fluidized bed coal combustor is judged to be the best suited for locomotive requirements. Some merit is also discerned in external combustion open cycle regenerative systems and internal combustion open cycle regenerative gas turbine systems employing a coal gasifier. The choice of an open or closed cycle depends on the selection of a working fluid and the relative advantages of loop pressurization, with air being the most attractive closed cycle working fluid on the basis of cost.

  14. Water vulnerabilities for existing coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were

  15. Economic evaluation of a coal fired boiler

    International Nuclear Information System (INIS)

    Briem, J.J.

    1983-01-01

    This paper provides basic information on boiler economics which will assist steam users in analyzing the feasibility of using coal to generate steam - in either new or existing facilities. The information presented covers boilers ranging in size from 10,000 to 100,000 pounds per hour steaming capacity

  16. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China

    International Nuclear Information System (INIS)

    Xue, Yifeng; Tian, Hezhong; Yan, Jing; Zhou, Zhen; Wang, Junling; Nie, Lei; Pan, Tao; Zhou, Junrui; Hua, Shenbing; Wang, Yong; Wu, Xiaoqing

    2016-01-01

    Coal-fired combustion is recognized as a significant anthropogenic source of atmospheric compounds in Beijing, causing heavy air pollution events and associated deterioration in visibility. Obtaining an accurate understanding of the temporal trends and spatial variation characteristics of emissions from coal-fired industrial combustion is essential for predicting air quality changes and evaluating the effectiveness of current control measures. In this study, an integrated emission inventory of primary air pollutants emitted from coal-fired industrial boilers in Beijing is developed for the period of 2007–2013 using a technology-based approach. Future emission trends are projected through 2030 based on current energy-related and emission control policies. Our analysis shows that there is a general downward trend in primary air pollutants emissions because of the implementation of stricter local emission standards and the promotion by the Beijing municipal government of converting from coal-fired industrial boilers to gas-fired boilers. However, the ratio of coal consumed by industrial boilers to total coal consumption has been increasing, raising concerns about the further improvement of air quality in Beijing. Our estimates indicate that the total emissions of PM 10 , PM 2.5 , SO 2 , NO x , CO and VOCs from coal-fired industrial boilers in Beijing in 2013 are approximately 19,242 t, 13,345 t, 26,615 t, 22,965 t, 63,779 t and 1406 t, respectively. Under the current environmental policies and relevant energy savings and emission control plans, it may be possible to reduce NO x and other air pollutant emissions by 94% and 90% by 2030, respectively, if advanced flue gas purification technologies are implemented and coal is replaced with natural gas in the majority of existing boilers. - Highlights: • A unit-based emission inventory of coal-fired industrial boilers is developed. • Temporal trend of historical period 2007–2013 and the future till 2030 is

  17. Prediction method of unburnt carbon for coal fired utility boiler using image processing technique of combustion flame

    International Nuclear Information System (INIS)

    Shimoda, M.; Sugano, A.; Kimura, T.; Watanabe, Y.; Ishiyama, K.

    1990-01-01

    This paper reports on a method predicting unburnt carbon in a coal fired utility boiler developed using an image processing technique. The method consists of an image processing unit and a furnace model unit. temperature distribution of combustion flames can be obtained through the former unit. The later calculates dynamics of the carbon reduction from the burner stages to the furnace outlet using coal feed rate, air flow rate, chemical and ash content of coal. An experimental study shows that the prediction error of the unburnt carbon can be reduced to 10%

  18. Fires Across the Western United States

    Science.gov (United States)

    2007-01-01

    Days of record heat made the western United States tinder dry in early July 2007. Numerous wildfires raced across the dry terrain during the weekend of July 7. From Washington to Arizona, firefighters were battling fast-moving wildfires that threatened residences, businesses, gas wells, coal mines, communications equipment, and municipal watersheds. This image of the West was captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite on Sunday, July 8. Places where MODIS detected actively burning fires are marked in red. Some of the largest blazes are labeled. Utah's Milford Flat was the largest; according to the July 9 morning report from the National Interagency Fire Center, the blaze was more than 280,000 acres, having grown more than 124,000 acres in the previous 24 hours. The fires have destroyed homes, forced evacuations, shut down trains and highways, and killed several people. Weather conditions were not expected to improve significantly across much of the area for several days, with hot temperatures and dry thunderstorms (lightning and winds, but little rain) likely in many places. Nearly the entire western United States was experiencing some level of drought as of July 3, according to the U.S. Drought Monitor. The drought had reached the 'extreme' category in southern California and western Arizona, and ranged from moderate to severe across most of the rest of the Southwest and Great Basin. The large image provided above has a spatial resolution (level of detail) of 500 meters per pixel. The MODIS Rapid Response Team provides twice-daily images of the region in additional resolutions and formats, including an infrared-enhanced version that makes burned terrain appear brick red. NASA image courtesy the MODIS Rapid Response Team, Goddard Space Flight Center

  19. Natural radionuclides in coal and waste material originating from coal fired power plant

    International Nuclear Information System (INIS)

    Marovic, Gordana; Franic, Zdenko; Sencar, Jasminka; Petrinec, Branko; Bituh, Tomislav; Kovac, Jadranka

    2008-01-01

    This paper presents long-term investigations of natural radioactivity in coal, used for power production in the coal-fired power plant (CFPP) situated on the Adriatic coast, and resulting slag and ash. Activity concentrations of 40 K, 232 Th, 226 Ra and 238 U in used coal and resulting waste material have been measured for 25 years. As expected, it was demonstrated that the content of radionuclides in deposited bottom and filter ash material are closely related with radionuclide activity concentrations and mineral matter fraction in used coals. The external hazard index has been calculated and discussed for the slag and ash depository. During the first decade of operation of the CFPP has been used domestic coal produced in nearby area characterized by higher background radiation compared with the rest of Croatia. Therefore, the coal itself had relatively high 226 Ra and 238 U activity concentrations while potassium and thorium content was very low, 40 K activity concentrations being 2-9% and those of 232 Th 1-3% of total activity. As, in addition, the sulphur concentrations in coal were very high use of domestic coal was gradually abandoned till it was completely substituted by imported coal originated from various sources and of low natural radioactivity. Upon this, activity concentrations of uranium series radionuclides in deposited waste materials decreased significantly. Consequently, waste material i.e., slag and ash, generated in the last several years of coal fired power plant operation could be readily used in cement industry and as additive to other building materials, without any special restrictions according to the Croatian regulations dealing with building materials and European directives. (author)

  20. Development of a coal fired pulse combustor for residential space heating. Phase I, Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-04-01

    This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

  1. Biomass Cofiring in Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    2004-06-01

    Cofiring biomass-for example, forestry residues such as wood chips-with coal in existing boilers is one of the easiest biomass technologies to implement in a federal facility. The current practice is to substitute biomass for up to 20% of the coal in the boiler. Cofiring has many benefits: it helps to reduce fuel costs as well as the use of landfills, and it curbs emissions of sulfur oxide, nitrogen oxide, and the greenhouse gases associated with burning fossil fuels. This Federal Technology Alert was prepared by the Department of Energy's Federal Energy Management Program to give federal facility managers the information they need to decide whether they should pursue biomass cofiring at their facilities.

  2. Economic aspects of advanced coal-fired gas turbine locomotives

    Science.gov (United States)

    Liddle, S. G.; Bonzo, B. B.; Houser, B. C.

    1983-01-01

    Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.

  3. Coal fires in Northwest China. Detection, monitoring, and prediction using remote sensing data

    International Nuclear Information System (INIS)

    Zhang, Xiangmin

    1998-01-01

    Coal fires in China occur within a region that stretches over 5,000 km in the east- western part and 750 km. in the north-southern part. These fires cause an economic and environmental threat by making a significant contribution to the global CO2 budget. The studies made in this thesis can be divided into two parts. Part one is based on field work and laboratory analysis that includes the dating of the paleo coal fires; part two concerns remote sensing applications for the active coal fires. In Chapter 2, the evolution of the paleo coal fires in Toutunhe and Xinjiang areas are studied. Several age groups of burnt rock have been recognized and their relationships with the river terraces will be discussed. The causes of the paleo coal fires are addressed, and the areas of coal fires with different ages have been dated. In Chapter 3, the physical basis of thermal infrared remote sensing for the detection and measurement of coal fires are addressed with an emphasis on the spatial, spectral, and radiometric resolution. In Chapter 4, a method to reduce the effect of solar heating, the main factor of confusion when investigating the thermal anomalies of coal fires, is discussed with the help of a DEM. In Chapter 5, as the coal fires normally occupy only part of one pixel of the Landsat TM thermal channel data, the capability of sub pixel coal fire detection is addressed. In Chapter 6, the airborne data from different wavelengths acquired at different times are studied to analyze the spatial thermal characteristics of the coal fires. Spreading direction and different types of coal fires are studied. Chapter 7 presents, based on multi-sensor data fusion techniques, a hierarchical methodology for detection and monitoring of the coal fires. 120 refs

  4. Refurbishment priorities at the Russian coal-fired power sector for cleaner energy production case studies

    Energy Technology Data Exchange (ETDEWEB)

    P. Grammelis; N. Koukouzas; G. Skodras; E. Kakaras; A. Tumanovsky; V. Kotler [Centre for Research and Technology Hellas/Institute of Solid Fuels Technology and Applications (CERTH/ISFTA), Ptolemaida (Greece)

    2006-11-15

    The paper reviews the current status of the coal-fired power sector in Russia, the prospects for renovation activities based on Clean Coal Technologies (CCT) and presents two case studies on potential refurbishment projects. Data were collected for 180 thermoelectric units with capacity higher than 100 MWe and the renovation needs of the power sector, among the retrofitting, repowering and reconstruction options, were estimated through a multi-criteria analysis. The most attractive system to renovate a power plant between the Supercritical Combustion (SC) and the Fluidized Bed Combustion (FBC) technologies was evaluated. The application of each of the aforementioned technologies at the Kashirskaya and Shaturskaya power plants was studied and their replication potential in the Russian coal-fired power plant park was examined. Nowadays, the installed capacity of coal-fired power plants in the Russian Federation is 29.3 GWe, while they account for about 19% of the total electricity generation in the area. The low efficiency and especially the advanced age are the determinant factors for renovation applications at the Russian units. Even in the more conservative modernization scenario, over 30% of the thermoelectric units have to be repowered or reconstructed. Concrete proposals about the profitable and reliable operation of two Russian thermoelectric units with minimized environmental effects were elaborated. A new unit of 315 MWe with supercritical steam parameters and reburning for NOx abatement is envisaged to upgrade Unit 1 of Kashirskaya power station, while new circulating fluidized bed (CFB) boilers of the same steam generation is the most promising renovation option for the boilers of Unit 1 in Shaturskaya power station. 11 refs., 15 figs., 7 tabs.

  5. Feedlot biomass co-firing: a renewable energy alternative for coal-fired utilities. Paper no. IGEC-1-128

    International Nuclear Information System (INIS)

    Arumugam, S.; Thien, B.; Annamalai, K.; Sweeten, J.

    2005-01-01

    The swiftly growing feedlot industry in the United States upshots in the production of manure from one or more animal species in excess of what can safely be applied to farmland in accordance with nutrient management plans. Disposal of the vast quantity of manure produced as a by-product of the cattle feeding industry is one of the major operating tasks of the industry. Aside from the traditional means of disposal as fertilizer, an alternative and attractive way of overcoming this threat is to develop processes that make use of manure as an energy resource. In the present study, the feasibility of using of manure as a fuel in existing coal fired power plants is considered and appropriately termed Feedlot Biomass (FB). The technology of co-firing coal: feedlot biomass facilitates an environment friendly utilization of animal waste for the production of valuable power/steam concurrently addressing the renewable energy, groundwater contamination, and greenhouse gas concerns. Co-firing tests were performed at the Texas AandM University 30 kW t (100,000 Btu/h) laboratory-scale facility. The trials revealed the enhanced combustion of the blends. The NO emissions were less for the blend even with higher nitrogen content of FB as compared to coal. (author)

  6. Direct estimation of diffuse gaseous emissions from coal fires: current methods and future directions

    Science.gov (United States)

    Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.

    2013-01-01

    Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.

  7. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    Energy Technology Data Exchange (ETDEWEB)

    Patel, R.; Borio, R.W.; Liljedahl, G. [Combustion Engineering, Inc., Windsor, CT (United States)] [and others

    1995-11-01

    Under US Department of Energy, Pittsburgh Energy Technology Center (PETC) support, the development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 at the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment.

  8. 77 FR 58170 - Proposed Renewal of Existing Information Collection; Fire Protection (Underground Coal Mines)

    Science.gov (United States)

    2012-09-19

    ... Renewal of Existing Information Collection; Fire Protection (Underground Coal Mines) AGENCY: Mine Safety... INFORMATION: I. Background Fire protection standards for underground coal mines are based on section 311(a) of the Federal Mine Safety and Health Act of 1977 (Mine Act). 30 CFR 75.1100 requires that each coal mine...

  9. CFD simulation of coal and straw co-firing

    DEFF Research Database (Denmark)

    Junker, Helle; Hvid, Søren L.; Larsen, Ejvind

    This paper presents the results of a major R&D program with the objective to develop CFD based tools to assess the impact of biomass co-firing in suspension fired pulverized coal power plants. The models have been developed through a series of Danish research projects with the overall objective...... to collect results from fundamental research and make it operational in boiler design through implementation in a Computational Fluid Dynamics based simulation tool. This paper summarizes the developments in modeling of; particle motion, particle conversion, ash deposition on heat transfer surfaces, and NOx...

  10. Use of continuous mercury monitors at coal-fired utilities

    Energy Technology Data Exchange (ETDEWEB)

    Laudal, Dennis L.; Thompson, Jeffrey S.; Pavlish, John H. [Energy and Environmental Research Center, PO Box 9018, Grand Forks, ND 58202-9018 (United States); Brickett, Lynn A. [U.S. Department of Energy National Energy Technology Laboratory, PO Box 10940 MS 922-273C, Pittsburgh, PA 15236-0940 (United States); Chu, Paul [EPRI, 3412 Hillview Avenue, PO Box 10412, Palo Alto, CA 94303 (United States)

    2004-06-15

    In December 2000, the U.S. Environmental Protection Agency (EPA) published a notice of its determination that regulation of coal-fired utilities for mercury is appropriate and necessary as part of the hazardous air pollutant emission regulation for electric utility steam-generating units. To aid in the determination of mercury emissions from these sources, on-line mercury semicontinuous emission monitors (Hg SCEMs) have been developed and tested in recent years. Although Hg SCEMs have shown promise during these previous tests, rigorous field or long-term testing has not been done. In the past year, commercially available and prototype Hg SCEMs have been used by the Energy and Environmental Research Center (EERC) and others at several power plants. As part of the EERC work, Hg SCEMs were operated at a range of conditions and locations. In addition, the Hg SCEMs were operated for up to 1 month. The use of Hg SCEMs at these plants allowed for near-real-time data to be collected under changing plant conditions, as well as during normal ranges of operating conditions. Mercury emission data were obtained from different plants with different configurations. The plant configurations incorporated various pollution control technologies, including selective catalytic reduction (SCR), selective noncatalytic reduction, ammonium sulfate injection for flue gas conditioning, and flue gas desulfurization (FGD). The particulate control devices included electrostatic precipitators (ESPs), a fabric filter (FF), and a venturi scrubber. The testing at these sites included the operation of Hg SCEMs before and after particulate control devices, in wet and dry stack conditions, and at high temperatures (343 C). The results from these field measurements have provided data that have been evaluated to determine the reliability, variability, biases, and overall capability of Hg SCEMs for monitoring mercury at coal-fired utilities. Even under the best conditions, operation of Hg SCEMs is by no

  11. A probe into informatisation management in coal-fired enterprises

    International Nuclear Information System (INIS)

    Zhang Zhenghai

    2003-01-01

    Starting from an analysis of the current situation and the reason about the application of MIS in the power plant, this paper is intended to expound some new way to informatisation management and positioning of MIS in the power plant from the designer. In addition, it probes into the idea and requirement about how to update the management efficiency in the coal-fired enterprises with the informatisation technology. What is more, the ways to choose the core applied platform in the power plant according to different management methods are discussed, thus, some suggestions about how to implement the informatisation are made in and attempt to offer an informatisation management model for the coal-fired enterprises. (authors)

  12. The magnetohydrodynamics Coal-Fired Flow Facility

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    In this quarterly technical progress report, UTSI summarizes the results of a multi-task research and development project directed toward the development of the technology for the commercialization of the steam bottoming plant for the MHD steam combined cycle power plant. The report covers the final test in a 2000-hour proof-of-concept (POC) test series on eastern coal, the plans and progress for the facility modifications and the conduct of the POC tests to be conducted with western coal. Results summarized in the report include chloride emissions from the particle removal (ESP/BH) processes, nitrogen and sulfur oxide emissions for various tests conditions, measurements of particulate control efficiency and management of the facility holding ponds during testing. Activities relating to corrosion and deposition probe measurements during testing and the fouling of heat transfer tubes and interaction with sootblowing cycles are summarized. The performance of both UTSI and Mississippi State University (MSU) advanced diagnostic systems is reported. Significant administrative and contractual actions are included. 2 refs., 28 figs., 7 tabs.

  13. Coal-fired high performance power generating system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  14. Partitioning behaviour of trace elements in a stoker-fired combustion unit : An example using bituminous coals from the Greymouth coalfield (Cretaceous), New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.; Moore, T.A.; Weaver, S.D. [University of Canterbury, Department of Geological Science, Christchurch (New Zealand); Clemens, A.H.; Gong, D. [CRL Energy Ltd, PO Box 31 244, Lower Hutt (New Zealand); Eby, N. [Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA 01854 (United States)

    2005-07-20

    In order to understand trace element behaviour during combustion of coals from the Greymouth coalfield, combustion tests were performed on three seam composite samples. The major and trace elements from sub-samples of feed coal, bottom ash, fly ash, and flue gas were analysed by different techniques including inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma-atomic emission spectrometry (ICP-AES), wavelength dispersive X-ray fluorescence (WD-XRF), and scanning electron microscopy with energy-dispersive X-ray analyser (SEM-EDXA). To help better understand trace element partitioning in combustion ash, float-sink and sequential leaching experiments were also employed to determine the association of trace elements with mineral matter or organic matter. Instrumental Neutron Activation Analysis (INAA) was also employed to determine trace element content in float and sink fractions of fly ash as well as in three major phases in the bottom ash. The partitioning behaviour of trace elements, including some that are environmentally sensitive, was also investigated through the use of float-sink tests and direct determination of trace elements in different combustion ash types and phases. Mass balance and partitioning of major and trace elements have been studied to determine the fate of trace elements after combustion. The partitioning of trace elements, especially hazardous air pollutants (HAPs), in different combustion ashes can be summarised as follows:1.Most trace elements, especially As, Ba, Co, Cr, Mn, Ni, are partitioned in the glassy and refractory bottom ash fractions. 2.A significant proportion of trace elements of As, Se, and Pb are partitioned into fly ash fractions. 3.Some volatile elements (e.g. > 90% of S and Hg and up to 64% of Cl) and, to a lesser extent, B (up to 44%) and Cd (up to 50%) are partitioned in the flue gas fraction. 4.Although the low ash yield of Greymouth coal seams have the advantage of generating less solid

  15. Digital bus technology in new coal-fired plants

    Energy Technology Data Exchange (ETDEWEB)

    Blaney, J.; Murray, J. [Emerson Process Management (United States)

    2007-10-15

    The main issues associated with including digital bus technology such as Foundation fieldbus, Profibus-DP or DeviceNet, in a coal-fired power plant are deciding which systems to install and determining how to implement it. Although still new, digital bus experiences to date have shown that the technology performs solidly and when wiring best practices are followed a significantly shorted commissioning cycle can be achieved. 1 fig., 2 tabs.

  16. Natural radioactivity around the coal-fired power plant

    International Nuclear Information System (INIS)

    Kovac, J.; Bajlo, M.

    1996-01-01

    By far the greatest part of the radiation received by the worlds population comes from natural sources, in some situations the exposure to natural radiation sources is enhanced as a result of technological developments. Burning of coal is one source of enhanced radiation exposure to naturally occurring elements, particularly radium, thorium and uranium. Extensive investigations have been performed in the coal-fired power plant (CFPP) Plomin in Croatia, using an anthracite coal with a higher than usual uranium content and normal thorium content. A network of TL dosimeters (TLD), working levels (WL) measurements, air pollution monitoring and monitoring of waste pile were organized. Some of the measurements have been repeated, and the results have shown decreased contamination. (author)

  17. Committed CO2 Emissions of China's Coal-fired Power Plants

    Science.gov (United States)

    Suqin, J.

    2016-12-01

    The extent of global warming is determined by the cumulative effects of CO2 in the atmosphere. Coal-fired power plants, the largest anthropogenic source of CO2 emissions, produce large amount of CO2 emissions during their lifetimes of operation (committed emissions), which thus influence the future carbon emission space under specific targets on mitigating climate change (e.g., the 2 degree warming limit relative to pre-industrial levels). Comprehensive understanding of committed CO2 emissions for coal-fired power generators is urgently needed in mitigating global climate change, especially in China, the largest global CO2emitter. We calculated China's committed CO2 emissions from coal-fired power generators installed during 1993-2013 and evaluated their impact on future emission spaces at the provincial level, by using local specific data on the newly installed capacities. The committed CO2 emissions are calculated as the product of the annual coal consumption from newly installed capacities, emission factors (CO2emissions per unit crude coal consumption) and expected lifetimes. The sensitivities about generators lifetimes and the drivers on provincial committed emissions are also analyzed. Our results show that these relatively recently installed coal-fired power generators will lead to 106 Gt of CO2 emissions over the course of their lifetimes, which is more than three times the global CO2 emissions from fossil fuels in 2010. More than 80% (85 Gt) of their total committed CO2 will be emitted after 2013, which are referred to as the remaining emissions. Due to the uncertainties of generators lifetime, these remaining emissions would increase by 45 Gt if the lifetimes of China's coal-fired power generators were prolonged by 15 years. Furthermore, the remaining emissions are very different among various provinces owing to local developments and policy disparities. Provinces with large amounts of secondary industry and abundant coal reserves have higher committed

  18. Process simulation of co-firing torrefied biomass in a 220 MWe coal-fired power plant

    International Nuclear Information System (INIS)

    Li, Jun; Zhang, Xiaolei; Pawlak-Kruczek, Halina; Yang, Weihong; Kruczek, Pawel; Blasiak, Wlodzimierz

    2014-01-01

    Highlights: • The performances of torrefaction based co-firing power plant are simulated by using Aspen Plus. • Mass loss properties and released gaseous components have been studied during biomass torrefaction processes. • Mole fractions of CO 2 and CO account for 69–91% and 4–27% in total torrefied gases. • The electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. - Abstract: Torrefaction based co-firing in a pulverized coal boiler has been proposed for large percentage of biomass co-firing. A 220 MWe pulverized coal-power plant is simulated using Aspen Plus for full understanding the impacts of an additional torrefaction unit on the efficiency of the whole power plant, the studied process includes biomass drying, biomass torrefaction, mill systems, biomass/coal devolatilization and combustion, heat exchanges and power generation. Palm kernel shells (PKS) were torrefied at same residence time but 4 different temperatures, to prepare 4 torrefied biomasses with different degrees of torrefaction. During biomass torrefaction processes, the mass loss properties and released gaseous components have been studied. In addition, process simulations at varying torrefaction degrees and biomass co-firing ratios have been carried out to understand the properties of CO 2 emission and electricity efficiency in the studied torrefaction based co-firing power plant. According to the experimental results, the mole fractions of CO 2 and CO account for 69–91% and 4–27% in torrefied gases. The predicted results also showed that the electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. A deep torrefaction may not be recommended, because the power saved from biomass grinding is less than the heat consumed by the extra torrefaction process, depending on the heat sources

  19. Cleaning up coal-fired plants : multi-pollutant technology

    Energy Technology Data Exchange (ETDEWEB)

    Granson, E.

    2009-06-15

    Coal is the source of 41 per cent of the world's electricity. Emission reduction technologies are needed to address the rapid growth of coal-fired plants in developing countries. This article discussed a multi-pollutant technology currently being developed by Natural Resources Canada's CANMET Energy Technology Centre. The ECO technology was designed to focus on several types of emissions, including sulfur oxides (SOx), nitrogen oxides (NOx), mercury and particulates, as well as acid gases and other metals from the exhaust gas of coal-fired plants. The ECO process converts and absorbs incoming pollutants in a wet electrostatic precipitator while at the same time producing a valuable fertilizer. The ECO system is installed as part of the plant's existing particulate control device and treats flue gas in 3 process steps: (1) a dielectric barrier discharge reactor oxidizes gaseous pollutants to higher oxides; (2) an ammonia scrubber then removes sulfur dioxide (SO{sub 2}) not converted by the reactor while also removing the NOx; and (3) the wet electrostatic precipitator captures acid aerosols produced by the discharge reactor. A diagram of the ECO process flow was included. It was concluded that the systems will be installed in clean coal plants by 2015. 2 figs.

  20. Development of a mathematical model simulating the multiply connected automatic control system of a coal-fired power unit equipped with a direct-injection dust feed system

    Energy Technology Data Exchange (ETDEWEB)

    V.A. Shorokhov; A.P. Smol' nikov; D.A. Kurochkin; N.N. Komarova; A.S. Mar' yasov; A.R. Gudovich; S.N. Bartosh [ZAO SibKOTES, Krasnoyarsk (Russian Federation)

    2009-07-01

    Matters relating to development and identification of a mathematical model for simulating a power unit and its individual systems are discussed. Results obtained from a large series of the active experiments on an operating power unit are presented.

  1. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  2. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  3. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    The properties of the ash from co-firing of coal and straw have a large influence on boiler operation, flue gas cleaning equipment and appropriate utilization of the fly ash. A study on the fuel composition and local conditions influence on fly ash properties has been done by making entrained flo...

  4. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    To study the influence of local conditions on the reaction between gaseous KCl and kaolin or coal fly ash experiments were done on CHECs electrically heated entrained flow reactor, which can simulate the local conditions in suspension fired boilers. The experimental results were compared with mod...

  5. Low NO{sub x} burner modifications to front-fired pulverized coal boilers

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, R G; Wagner, M

    1998-07-01

    Madison Gas and Electric Blount Street Station Units 8 and 9 are Babcock and Wilcox pulverized coal fired and natural gas fired boilers. These boilers were build in the late 1950's and early 1960's with each boiler rated at 425,000 lb./hr of steam producing 50 MW of electricity. The boilers are rated at 9,500 F at 1,350 psig. Each unit is equipped with one Ljungstroem air heater and two B and W EL pulverizers. These units burn subbituminous coal with higher heating value of 10,950 Btu/LB on an as-received basis. The nitrogen content is approximately 1.23% with 15% moisture. In order to comply with the new Clean Air Act Madison Gas and Electric needs to reduce NO{sub x} on these units to less than .5 LB/mmBtu. Baseline NO{sub x} emissions on these units range between .8--.9 lb./mmBtu. LOIs average approximately 8%. Madison Gas and Electric contracted with RJM Corporation to modify the existing burners to achieve this objective. These modifications consisted of adding patented circumferentially and radially staged flame stabilizers, modifying the coal pipe, and replacing the coal impeller with a circumferentially staged coal spreader. RJM Corporation utilized computational fluid dynamics modeling in order to design the equipment to modify these burners. The equipment was installed during the March 1997 outage and start-up and optimization was conducted in April 1997. Final performance results and economic data will be included in the final paper.

  6. Exergetic and Parametric Study of a Solar Aided Coal-Fired Power Plant

    Directory of Open Access Journals (Sweden)

    Eric Hu

    2013-03-01

    Full Text Available A solar-aided coal-fired power plant realizes the integration of a fossil fuel (coal or gas and clean energy (solar. In this paper, a conventional 600 MW coal-fired power plant and a 600 MW solar-aided coal-fired power plant have been taken as the study case to understand the merits of solar-aided power generation (SAPG technology. The plants in the case study have been analyzed by using the First and Second Laws of Thermodynamics principles. The solar irradiation and load ratio have been considered in the analysis. We conclude that if the solar irradiation was 925 W/m2 and load ratio of the SAPG plant was 100%, the exergy efficiency would be 44.54% and the energy efficiency of the plant (46.35%. It was found that in the SAPG plant the largest exergy loss was from the boiler, which accounted for about 76.74% of the total loss. When the load ratio of the unit remains at 100%, and the solar irradiation varies from 500 W/m2 to 1,100 W/m2, the coal savings would be in the range of 8.6 g/kWh to 15.8 g/kWh. If the solar irradiation were kept at 925 W/m2 while the load ratio of the plant changed from 30% to 100%, the coal savings could be in the range of 11.99 g/kWh to 13.75 g/kWh.

  7. Controlling ventilation for safe escape from coal mine fires

    Energy Technology Data Exchange (ETDEWEB)

    Wala, A M [University of Kentucky, Lexington, KY (United States). Mining Engineering Dept.

    1966-04-01

    If a fire occurs outby an underground coal mine section, the immediate safe evacuation of miners from the working section should always take precedence. Unfortunately, in many cases, the dedicated escapeway (escape routes) for the evacuation of the miners become contaminated by the byproducts of fire from the adjacent entries. The purpose of this paper is to present the ventilation-control process that would keep the escapeway free from contaminants and, thus, available for travel. A few scenarios of mine fires in longwall development panels are analysed and discussed. To perform these studies, a mine-fire simulator (MFS) was used. This (MFS) provides a dynamic representation of the fire`s progress (in real time) and gives a color-graphic visualization of the spready of oxygen, combustion products and temperature of the gases throughout the ventilation system. Also presented and discussed are ways in which the MFS can be used as a training and teaching tool for miners and particularly, for ventilation and safety specialists. 7 refs., 10 figs.

  8. Advanced optimisation - coal fired power plant operations

    Energy Technology Data Exchange (ETDEWEB)

    Turney, D.M.; Mayes, I. [E.ON UK, Nottingham (United Kingdom)

    2005-03-01

    The purpose of this unit optimization project is to develop an integrated approach to unit optimisation and develop an overall optimiser that is able to resolve any conflicts between the individual optimisers. The individual optimisers have been considered during this project are: on-line thermal efficiency package, GNOCIS boiler optimiser, GNOCIS steam side optimiser, ESP optimisation, and intelligent sootblowing system. 6 refs., 7 figs., 3 tabs.

  9. Recent coal-fire and land-use status of Jharia Coalfield, India from satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Martha, T.R.; Guha, A.; Kumar, K.V.; Kamaraju, M.V.V.; Raju, E.V.R. [NRSC, Hyderabad (India). Geoscience Division

    2010-07-01

    The Jharia Coalfield (JCF) in India is known for its high grade coal and associated coal fires. Before it can be exploited, valuable coal reserves are destroyed in the sub-surface due to fire. The combined act of fire and subsidence has endangered the environmental safety of the JCF, although several methods have been adopted to control the coal fires. Coal fire is a dynamic phenomenon, hence, its location and extent changes with time. To control the coal fires effectively, the status of the fires and the landscape must be assessed periodically. In this study, the thermal band in Landsat-7 Enhanced Thematic Mapper Plus (ETM+) data (daytime) of 29 March 2003 and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data (night-time) of 9 October 2006 are used to delineate the coal-fire areas. The kinetic temperature of the coal fire-affected areas is calculated from Landsat-7 ETM+ data using a Normalized Difference Vegetation Index (NDVI)-derived emissivity model, and from band 13 of ASTER data with a fixed emissivity value. The study showed that the eastern part of the JCF is more affected by coal fires than the western part. The affected collieries in the eastern part are Kusunda, Lodna, Bararee, Gonudih and Ena. Among all collieries, Kusunda is the most affected by coal fires (29% of the area) and showed a 0.56 km2 increase in fire area from the year 2003 to 2006. During this period, a total increase in coal-fire area of 0.51 km{sup 2} occurs in the JCF. The land-use map prepared from Indian Remote Sensing (IRS) Satellite-P6 Linear Imaging Self-scanning Sensor (LISS)-III data showed that 6.9% of the area in the JCF is occupied by mining-related activities, which indicates its vulnerability to environmental degradation.

  10. Fossil fuel-fired power generation. Case studies of recently constructed coal- and gas-fired plants

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. [IEA Clean Coal Centre, London (United Kingdom)

    2007-10-23

    To meet future energy demand growth and replace older or inefficient units, a large number of fossil fuel-fired plants will be required to be built worldwide in the next decade. Yet CO{sub 2} emissions from fossil-fired power generation are a major contributor to climate change. As a result, new plants must be designed and operated at highest efficiency both to reduce CO{sub 2} emissions and to facilitate deployment of CO{sub 2} capture and storage in the future. The series of case studies in this report, which respond to a request to the IEA from the G8 Summit in July 2005, were conducted to illustrate what efficiency is achieved now in modern plants in different parts of the world using different grades of fossil fuels. The plants were selected from different geographical areas, because local factors influence attainable efficiency. The case studies include pulverized coal combustion (PCC) with both subcritical and supercritical (very high pressure and temperature) steam turbine cycles, a review of current and future applications of coal-fuelled integrated gasification combined cycle plants (IGCC), and a case study of a natural gas fired combined cycle plant to facilitate comparisons. The results of these analyses show that the technologies for high efficiency (low CO{sub 2} emission) and very low conventional pollutant emissions (particulates, SO{sub 2}, NOx) from fossil fuel-fired power generation are available now through PCC, IGCC or NGCC at commercially acceptable cost. This report contains comprehensive technical and indicative cost information for modern fossil fuel-fired plants that was previously unavailable. It serves as a valuable sourcebook for policy makers and technical decision makers contemplating decisions to build new fossil fuel-fired power generation plants.

  11. Political and technical issues of coal fire extinction in the Kyoto framework

    Science.gov (United States)

    Meyer, U.; Chen-Brauchler, D.; Rüter, H.; Fischer, C.; Bing, K.

    2009-04-01

    It is a highly desirable effort to extinguish as much coal fires as possible in short time to prevent large losses of energy resources and to minimise CO2 and other exhaust gas releases from such sources. Unfortunately, extinguishing coal fires needs massive financial investments, skilled man power, suited technology and a long time. Even mid to small scale coal fires need several months of extinguishing measures and of monitoring time after extinction resulting in expenditures of a minimum of several hundred thousand Euros. Large companies might be willing to spend money for coal fire extinction measures but smaller holdings or regional governments might not have the monetary resources for it. Since there is no law in China that demands coal fire extinction, measures under the Kyoto framework may be applied to sell CO2 certificates for prevented emissions from extinguished coal fires and thus used as a financial stimulus for coal fire extinction activities. The set-up for methodologies and project designs is especially complex for coal fire extinction measures and thus for necessary exploration, evaluation and monitoring using geophysical and remote sensing methods. A brief overview of most important formal and technical aspects is given to outline the conditions for a potentially successful CDM application on coal fires based on geophysical observations and numerical modelling.

  12. Forecast of advanced technology adoption for coal fired power generation towards the year of 2050

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Keiji [Japanese Center for Asia Pacific Coal Flow (JAPAC), Tokyo (Japan). Japan coal Energy Center (JCOAL)

    2013-07-01

    Needs for electricity is growing rapidly in many countries and it is expected the increase of electricity by 2030 is almost double. Fossil fuels, renewables, nuclear energy will play leading parts in the future, but fossil power generation will continue to play a major role. Especially, coal will be used continuously due to its stable supply and lower price. However, global warming countermeasures should be considered for large amount of coal use. High efficient systems and Carbon Capture and Storage (CCS) will be most applicable solution for the problems. USC, IGCC and A-USC have higher efficiencies, but costs are normally higher. So it is very important to evaluate the future trend of the plants, that is the cost, performance and the share of each plant. It is also essential to evaluate high efficient plants which will be constructed mainly and which system investment should be paid to. But no less important is to evaluate each system from the neutral position. So Japan Coal Energy Center (JCOAL) constructed its own program to expect the future trend of each plant. JCOAL made a basic concept and the programming was done by SRI International of the United States. The considered systems of coal fired power generation are Supercritical Unit, Ultra Supercritical Unit, Advanced- Supercritical Unit, Integrated Gasification Combined Cycle (IGCC) and Integrated Gasification Fuel Cell (IGFC). In order to compare with the natural gas case, Natural Gas Combined Cycle (NGCC) is included. Evaluation will be done for both without and with CCS cases. This program covers by the year of 2050. The results are trends of following items: capital cost, operational and maintenance cost, levelized cost of electricity, etc. We can also expect the future share of high efficient coal fired systems by 2050. Here the share will be decided by the levelized cost of electricity. The plant that has the lowest cost will get more share under the scenario of this program. This chapter summarizes

  13. Wintertime Overnight NOx Removal in a Southeastern United States Coal-fired Power Plant Plume: A Model for Understanding Winter NOx Processing and its Implications

    Science.gov (United States)

    Fibiger, Dorothy L.; McDuffie, Erin E.; Dubé, William P.; Aikin, Kenneth C.; Lopez-Hilfiker, Felipe D.; Lee, Ben H.; Green, Jaime R.; Fiddler, Marc N.; Holloway, John S.; Ebben, Carlena; Sparks, Tamara L.; Wooldridge, Paul; Weinheimer, Andrew J.; Montzka, Denise D.; Apel, Eric C.; Hornbrook, Rebecca S.; Hills, Alan J.; Blake, Nicola J.; DiGangi, Josh P.; Wolfe, Glenn M.; Bililign, Solomon; Cohen, Ronald C.; Thornton, Joel A.; Brown, Steven S.

    2018-01-01

    Nitric oxide (NO) is emitted in large quantities from coal-burning power plants. During the day, the plumes from these sources are efficiently mixed into the boundary layer, while at night, they may remain concentrated due to limited vertical mixing during which they undergo horizontal fanning. At night, the degree to which NO is converted to HNO3 and therefore unable to participate in next-day ozone (O3) formation depends on the mixing rate of the plume, the composition of power plant emissions, and the composition of the background atmosphere. In this study, we use observed plume intercepts from the Wintertime INvestigation of Transport, Emissions and Reactivity campaign to test sensitivity of overnight NOx removal to the N2O5 loss rate constant, plume mixing rate, background O3, and background levels of volatile organic compounds using a 2-D box model of power plant plume transport and chemistry. The factor that exerted the greatest control over NOx removal was the loss rate constant of N2O5. At the lowest observed N2O5 loss rate constant, no other combination of conditions converts more than 10% of the initial NOx to HNO3. The other factors did not influence NOx removal to the same degree.

  14. Wintertime Overnight NOx Removal in a Southeastern United States Coal-Fired Power Plant Plume: A Model for Understanding Winter NOx Processing and Its Implications

    Science.gov (United States)

    Fibiger, Dorothy L.; McDuffie, Erin E.; Dube, William P.; Aikin, Kenneth C.; Lopez-Hilifiker, Felipe D.; Lee, Ben H.; Green, Jaime R.; Fiddler, Marc N.; Holloway, John S.; Ebben, Carlena; hide

    2018-01-01

    Nitric oxide (NO) is emitted in large quantities from coal-�burning power plants. During the day, the plumes from these sources are efficiently mixed into the boundary layer, while at night, they may remain concentrated due to limited vertical mixing during which they undergo horizontal fanning. At night, the degree to which NO is converted to HNO3 and therefore unable to participate in next-�day ozone (O3) formation depends on the mixing rate of the plume, the composition of power plant emissions, and the composition of the background atmosphere. In this study, we use observed plume intercepts from the Wintertime INvestigation of Transport, Emissions and Reactivity (WINTER) campaign to test sensitivity of overnight NOx removal to the N2O5 loss rate constant, plume mixing rate, background O3, and background levels of volatile organic compounds using a 2-�D box model of power plant plume transport and chemistry. The factor that exerted the greatest control over NOx removal was the loss rate constant of N2O5. At the lowest observed N2O5 loss rate constant, no other combination of conditions converts more than 10 percent of the initial NOx to HNO3. The other factors did not influence NOx removal to the same degree.

  15. Nighttime NOx Chemistry in Coal-Fired Power Plant Plumes

    Science.gov (United States)

    Fibiger, D. L.; McDuffie, E. E.; Dube, W. P.; Veres, P. R.; Lopez-Hilfiker, F.; Lee, B. H.; Green, J. R.; Fiddler, M. N.; Ebben, C. J.; Sparks, T.; Weinheimer, A. J.; Montzka, D.; Campos, T. L.; Cohen, R. C.; Bililign, S.; Holloway, J. S.; Thornton, J. A.; Brown, S. S.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) play a key role in atmospheric chemistry. During the day, they catalyze ozone (O3) production, while at night they can react to form nitric acid (HNO3) and nitryl chloride (ClNO2) and remove O3 from the atmosphere. These processes are well studied in the summer, but winter measurements are more limited. Coal-fired power plants are a major source of NOx to the atmosphere, making up approximately 30% of emissions in the US (epa.gov). NOx emissions can vary seasonally, as well as plant-to-plant, with important impacts on the details of the plume chemistry. In particular, due to inefficient plume dispersion, nighttime NOx emissions from power plants are held in concentrated plumes, where rates of mixing with ambient O3 have a strong influence on plume evolution. We will show results from the aircraft-based WINTER campaign over the northeastern United States, where several nighttime intercepts of power plant plumes were made. Several of these intercepts show complete O3 titration, which can have a large influence on NOx lifetime, and thus O3 production, in the plume. When power plant NO emissions exceed background O3 levels, O3 is completely consumed converting NO to NO2. In the presence of O3, NO2 will be oxidized to NO3, which will then react with NO2 to form N2O5, which can then form HNO3 and/or ClNO2 and, ultimately, remove NOx from the atmosphere or provide next-day oxidant sources. If there is no O3 present, however, no further chemistry can occur and NO and NO2 will be transported until mixing with sufficient O3 for higher oxidation products. Modeling results of plume development and mixing, which can tell us more about this transport, will also be presented.

  16. Techno-Economic Analysis of Integration of Low-Temperature Geothermal Resources for Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Bearden, Mark D.; Davidson, Casie L.; Horner, Jacob A.; Heldebrant, David J.; Freeman, Charles J.

    2016-05-11

    Presented here are the results of a techno-economic (TEA) study of the potential for coupling low-grade geothermal resources to boost the electrical output from coal-fired power plants. This study includes identification of candidate 500 MW subcritical coal-fired power plants in the continental United States, followed by down-selection and characterization of the North Valmy generating station, a Nevada coal-fired plant. Based on site and plant characteristics, ASPEN Plus models were designed to evaluate options to integrate geothermal resources directly into existing processes at North Valmy. Energy outputs and capital costing are presented for numerous hybrid strategies, including integration with Organic Rankine Cycles (ORCs), which currently represent the primary technology for baseload geothermal power generation.

  17. Leaching and geochemical behavior of fired bricks containing coal wastes.

    Science.gov (United States)

    Taha, Yassine; Benzaazoua, Mostafa; Edahbi, Mohamed; Mansori, Mohammed; Hakkou, Rachid

    2018-03-01

    High amounts of mine wastes are continuously produced by the mining industry all over the world. Recycling possibility of some wastes in fired brick making has been investigated and showed promising results. However, little attention is given to the leaching behavior of mine wastes based fired bricks. The objective of this paper is to evaluate the geochemical behavior of fired bricks containing different types of coal wastes. The leachates were analyzed for their concentration of As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Zn and sulfates using different leaching tests; namely Tank Leaching tests (NEN 7375), Toxicity Characteristic Leaching Procedure (TCLP) and pH dependence test (EPA, 1313). The results showed that the release of constituents of potential interest was highly reduced after thermal treatment and were immobilized within the glassy matrix of the fired bricks. Moreover, it was also highlighted that the final pH of all fired samples changed and stabilized around 8-8.5 when the initial pH of leaching solution was in the range 2.5-11.5. The release of heavy metals and metalloids (As) tended to decrease with the increase of pH from acidic to alkaline solutions while Mo displayed a different trend. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. ESTIMATION OF NEAR SUBSURFACE COAL FIRE GAS EMISSIONS BASED ON GEOPHYSICAL INVESTIGATIONS

    Science.gov (United States)

    Chen-Brauchler, D.; Meyer, U.; Schlömer, S.; Kus, J.; Gundelach, V.; Wuttke, M.; Fischer, C.; Rueter, H.

    2009-12-01

    Spontaneous and industrially caused subsurface coal fires are worldwide disasters that destroy coal resources, cause air pollution and emit a large amount of green house gases. Especially in developing countries, such as China, India and Malaysia, this problem has intensified over the last 15 years. In China alone, 10 to 20 million tons of coal are believed to be lost in uncontrolled coal fires. The cooperation of developing countries and industrialized countries is needed to enforce internationally concerted approaches and political attention towards the problem. The Clean Development Mechanism (CDM) under the framework of the Kyoto Protocol may provide an international stage for financial investment needed to fight the disastrous situation. A Sino-German research project for coal fire exploration, monitoring and extinction applied several geophysical approaches in order to estimate the annual baseline especially of CO2 emissions from near subsurface coal fires. As a result of this project, we present verifiable methodologies that may be used in the CDM framework to estimate the amount of CO2 emissions from near subsurface coal fires. We developed three possibilities to approach the estimation based on (1) thermal energy release, (2) geological and geometrical determinations as well as (3) direct gas measurement. The studies involve the investigation of the physical property changes of the coal seam and bedrock during different burning stages of a underground coal fire. Various geophysical monitoring methods were applied from near surface to determine the coal volume, fire propagation, temperature anomalies, etc.

  19. Quantifying greenhouse gas emissions from coal fires using airborne and ground-based methods

    Science.gov (United States)

    Engle, Mark A.; Radke, Lawrence F.; Heffern, Edward L.; O'Keefe, Jennifer M.K.; Smeltzer, Charles; Hower, James C.; Hower, Judith M.; Prakash, Anupma; Kolker, Allan; Eatwell, Robert J.; ter Schure, Arnout; Queen, Gerald; Aggen, Kerry L.; Stracher, Glenn B.; Henke, Kevin R.; Olea, Ricardo A.; Román-Colón, Yomayara

    2011-01-01

    Coal fires occur in all coal-bearing regions of the world and number, conservatively, in the thousands. These fires emit a variety of compounds including greenhouse gases. However, the magnitude of the contribution of combustion gases from coal fires to the environment is highly uncertain, because adequate data and methods for assessing emissions are lacking. This study demonstrates the ability to estimate CO2 and CH4 emissions for the Welch Ranch coal fire, Powder River Basin, Wyoming, USA, using two independent methods: (a) heat flux calculated from aerial thermal infrared imaging (3.7–4.4 t d−1 of CO2 equivalent emissions) and (b) direct, ground-based measurements (7.3–9.5 t d−1 of CO2 equivalent emissions). Both approaches offer the potential for conducting inventories of coal fires to assess their gas emissions and to evaluate and prioritize fires for mitigation.

  20. Slag processing system for direct coal-fired gas turbines

    Science.gov (United States)

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  1. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS; TOPICAL

    International Nuclear Information System (INIS)

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-01-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems

  2. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected

  3. Geochemistry of coals, coal ashes and combustion wastes from coal-fired power stations

    International Nuclear Information System (INIS)

    Vassilev, S.V.; Vassileva, C.G.

    1997-01-01

    Contents, concentration trends, and modes of occurrence of 67 elements in coals, coal ashes, and combustion wastes at eleven Bulgarian thermoelectric power stations (TPS) were studied. A number of trace elements in coal and coal ash have concentrations greater than their respective worldwide average contents (Clarke values). Trace elements are concentrated mainly in the heavy accessory minerals and organic matter in coal. In decreasing order of significance, the trace elements in coal may occur as: element-organic compounds; impurities in the mineral matter; major components in the mineral matter; major and impurity components in the inorganic amorphous matter; and elements in the fluid constituent. A number of trace elements in the waste products, similar to coal ashes, exceed known Clarke contents. Trace elements are mainly enriched in non-magnetic, heavy and fine-grained fractions of fly ash. They are commonly present as impurities in the glass phases, and are included in the crystalline components. Their accessory crystalline phases, element-organic compounds, liquid and gas forms, are of subordinate importance. Some elements from the chalcophile, lithophile and siderophile groups may release into the atmosphere during coal burning. For others, the combustion process appears to be a powerful factor causing their relative enrichment in the fly ash and rarely in the bottom ash and slag. 65 refs., 1 fig., 11 tabs

  4. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    study therefore determines the steam cycle parameters and combustion technology that would yield the lowest cost of electricity (COE) for the next generation of coal-fired steam power plants. The second part of the study (Repowering) explores the means of upgrading the efficiency and output of an older existing coal fired steam power plant. There are currently more than 1,400 coal-fired units in operation in the United States generating about 54 percent of the electricity consumed. Many of these are modern units are clean and efficient. Additionally, there are many older units in excellent condition and still in service that could benefit from this repowering technology. The study evaluates the technical feasibility, thermal performance, and economic viability of this repowering concept.

  5. Neural networks improve performance of coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Radl, B.J. [Pegasus Technologies Ltd., Painesville, OH (United States)

    1999-03-01

    Work sponsored by the US Department of Energy through its NICE{sup 3} programme, and co-funded by industry partners First Energy Corp. (host organisation and co-funder) and Pegasus Technologies (inventor, developer and supplier), has resulted in the development of online, real-time neural networks which help coal-fired utility boilers to dynamically adjust combustion setpoints. The payoff is a system which helps reduce NOx emissions up to 60%, while improving heat rate up to 2% overall. The system has avoided or postponed large capacity expenditures while meeting environmental compliance requirements. 3 figs., 1 tab.

  6. The coal fired power plant of Vado Ligure

    International Nuclear Information System (INIS)

    Ferrara, V.

    1987-01-01

    The problem of radiological impact from radioactive effluents released by the forecast new coal-fired power plant of Vado Ligure, is examinated. Using health physic metodologies of evaluation, the highest levels of dose equivalents to the population are computed. Taken into account the possible errors due to conservative models adopted, it is concluded that the induced radiological risks are to be considered negligible, both referring to the actual natural radiological levels in the environment, and considering the maximum permissible levels stated in international raccomandations

  7. Natural radionuclides near a coal-fired power station

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Briggs, J L

    1984-06-15

    An experiment was carried out to measure the specific activity of Pb-210 and Po-210 in livers from cattle that had grazed in a field near Didcot coal-fired power station. Livers from cattle in the Cotswold region were measured for comparison. The specific activities of Pb-210 and Po-210 in soil and grass samples from both areas were also measured at 3-monthly intervals over a year. No statistically significant increases were observed in the Pb-210 and Po-210 levels in liver, soil or grass samples which could be attributed to the operation of the power station.

  8. Upgrading and efficiency improvement in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Improving the efficiencies of the large number of older coal-fired power plants operating around the world would give major savings in CO2 emissions together with significant other benefits. This report begins with a summary of the ways efficiency can become degraded and of the means available to combat the decrease in performance. These include improvements to operating and maintenance practices and more major techniques that are available, including boiler and turbine retrofits. There is also an update on fuel drying developments as a route to higher efficiency in plants firing high moisture lignites. The largest chapter of the report contains a number of descriptions of case study improvement projects, to illustrate measures that have been applied, benefits that have been achieved and identify best practices, which are summarised. Major national and international upgrading programmes are described.

  9. Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning?

    DEFF Research Database (Denmark)

    Ryberg, Morten W.; Owsianiak, Mikolaj; Laurent, Alexis

    2015-01-01

    Power generation from high-ash coals is a niche technology for power generation, but coal cleaning is deemed necessary to avoid problems associated with low combustion efficiencies and to minimize environmental burdens associated with emissions of pollutants originating from ash. Here, chemical...... beneficiation of coals using acid and alkali–acid leaching procedures is evaluated as a potential coal cleaning technology employing life cycle assessment (LCA). Taking into account the environmental benefits from firing cleaner coal in pulverized coal power plants and the environmental burden of the cleaning...... itself, it is demonstrated that for a wide range of cleaning procedures and types of coal, chemical cleaning generally performs worse than combustion of the raw coals and physical cleaning using dense medium separation. These findings apply for many relevant impact categories, including climate change...

  10. Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA.

    Science.gov (United States)

    Engle, Mark A; Radke, Lawrence F; Heffern, Edward L; O'Keefe, Jennifer M K; Hower, James C; Smeltzer, Charles D; Hower, Judith M; Olea, Ricardo A; Eatwell, Robert J; Blake, Donald R; Emsbo-Mattingly, Stephen D; Stout, Scott A; Queen, Gerald; Aggen, Kerry L; Kolker, Allan; Prakash, Anupma; Henke, Kevin R; Stracher, Glenn B; Schroeder, Paul A; Román-Colón, Yomayra; ter Schure, Arnout

    2012-03-15

    Ground-based surveys of three coal fires and airborne surveys of two of the fires were conducted near Sheridan, Wyoming. The fires occur in natural outcrops and in abandoned mines, all containing Paleocene-age subbituminous coals. Diffuse (carbon dioxide (CO(2)) only) and vent (CO(2), carbon monoxide (CO), methane, hydrogen sulfide (H(2)S), and elemental mercury) emission estimates were made for each of the fires. Additionally, gas samples were collected for volatile organic compound (VOC) analysis and showed a large range in variation between vents. The fires produce locally dangerous levels of CO, CO(2), H(2)S, and benzene, among other gases. At one fire in an abandoned coal mine, trends in gas and tar composition followed a change in topography. Total CO(2) fluxes for the fires from airborne, ground-based, and rate of fire advancement estimates ranged from 0.9 to 780mg/s/m(2) and are comparable to other coal fires worldwide. Samples of tar and coal-fire minerals collected from the mouth of vents provided insight into the behavior and formation of the coal fires. Published by Elsevier B.V.

  11. Using the Large Fire Simulator System to map wildland fire potential for the conterminous United States

    Science.gov (United States)

    LaWen Hollingsworth; James Menakis

    2010-01-01

    This project mapped wildland fire potential (WFP) for the conterminous United States by using the large fire simulation system developed for Fire Program Analysis (FPA) System. The large fire simulation system, referred to here as LFSim, consists of modules for weather generation, fire occurrence, fire suppression, and fire growth modeling. Weather was generated with...

  12. Impact of Heat and Mass Transfer during the Transport of Nitrogen in Coal Porous Media on Coal Mine Fires

    OpenAIRE

    Shi, Bobo; Zhou, Fubao

    2014-01-01

    The application of liquid nitrogen injection is an important technique in the field of coal mine fire prevention. However, the mechanism of heat and mass transfer of cryogenic nitrogen in the goaf porous medium has not been well accessed. Hence, the implementation of fire prevention engineering of liquid nitrogen roughly relied on an empirical view. According to the research gap in this respect, an experimental study on the heat and mass transfer of liquid nitrogen in coal porous media was pr...

  13. Life assessment and emissions monitoring of Indian coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    At the request of the Pittsburgh Energy Technology Center (PETC) of the United States Department of Energy (USDOE), the traveler, along with Dr. R. P. Krishnan, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee spent three weeks in India planning and performing emissions monitoring at the coal-fired Vijayawada Thermal Power Station (VTPS). The coordination for the Indian participants was provided by BHEL, Trichy and CPRI, Bangalore. The trip was sponsored by the PETC under the United States Agency for International Development (USAID)/Government of India (GOI)P Alternate Energy Resources Development (AERD) Project. The AERD Project is managed by PETC, and ORNL is providing the technical coordination and support for four coal projects that are being implemented with BHEL, Trichy. The traveler, after briefing the USAID mission in New Delhi visited BHEL, Trichy and CPRI, Bangalore to coordinate and plan the emissions test program. The site selection was made by BHEL, CPRI, TVA, and PETC. Monitoring was performed for 4 days on one of the 4 existing 210 MW coal-fired boilers at the VTPS, 400 km north of Madras, India.

  14. Life assessment and emissions monitoring of Indian coal-fired power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    At the request of the Pittsburgh Energy Technology Center (PETC) of the United States Department of Energy (USDOE), the traveler, along with Dr. R. P. Krishnan, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee spent three weeks in India planning and performing emissions monitoring at the coal-fired Vijayawada Thermal Power Station (VTPS). The coordination for the Indian participants was provided by BHEL, Trichy and CPRI, Bangalore. The trip was sponsored by the PETC under the United States Agency for International Development (USAID)/Government of India (GOI)P Alternate Energy Resources Development (AERD) Project. The AERD Project is managed by PETC, and ORNL is providing the technical coordination and support for four coal projects that are being implemented with BHEL, Trichy. The traveler, after briefing the USAID mission in New Delhi visited BHEL, Trichy and CPRI, Bangalore to coordinate and plan the emissions test program. The site selection was made by BHEL, CPRI, TVA, and PETC. Monitoring was performed for 4 days on one of the 4 existing 210 MW coal-fired boilers at the VTPS, 400 km north of Madras, India.

  15. Cost-Effectiveness of Emission Reduction for the Indonesian Coal-Fired Power Plants

    NARCIS (Netherlands)

    Handayani, Kamia; Krozer, Yoram

    2014-01-01

    This paper presents the result of research on the cost-effectiveness of emission reduction in the selected coal-fired power plants (CFPPs) in Indonesia. The background of this research is the trend of more stringent environmental regulation regarding air emission from coal-fired power plants (CFPPs)

  16. Fast and safe gas detection from underground coal fire by drone fly over.

    Science.gov (United States)

    Dunnington, Lucila; Nakagawa, Masami

    2017-10-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Emissions from coal-fired electric stations : environmental health effects and reduction options

    International Nuclear Information System (INIS)

    Love, P.; Lourie, B.; Pengelly, D.; Labatt, S.; Ogilvie, K.; Kelly, B.

    1998-01-01

    Findings of a study on the environmental effects of current emissions from coal-fired electric stations were summarized. Current and projected emissions from coal-fired electric stations for five emission reduction scenarios were estimated for Ontario, Eastern Canada, Ohio Valley/Great Lakes, and the U.S. northeast regions. Coal-fired electric stations generate a wide range of environmentally significant air emissions. The five pollutants selected - sulphur dioxide, nitrogen oxides, particulate matter (less than 10 micrometres in size), mercury, and carbon dioxide - are considered to impact most on environmental health. This report focused on 312 coal-fired electric stations in the regions named above. They were selected based on the likelihood that long-range transport of the emissions from these coal-fired utilities would have an impact on human health and the environment. 55 refs., 10 tabs., 8 figs

  18. Bioremediation for coal-fired power stations using macroalgae.

    Science.gov (United States)

    Roberts, David A; Paul, Nicholas A; Bird, Michael I; de Nys, Rocky

    2015-04-15

    Macroalgae are a productive resource that can be cultured in metal-contaminated waste water for bioremediation but there have been no demonstrations of this biotechnology integrated with industry. Coal-fired power production is a water-limited industry that requires novel approaches to waste water treatment and recycling. In this study, a freshwater macroalga (genus Oedogonium) was cultivated in contaminated ash water amended with flue gas (containing 20% CO₂) at an Australian coal-fired power station. The continuous process of macroalgal growth and intracellular metal sequestration reduced the concentrations of all metals in the treated ash water. Predictive modelling shows that the power station could feasibly achieve zero discharge of most regulated metals (Al, As, Cd, Cr, Cu, Ni, and Zn) in waste water by using the ash water dam for bioremediation with algal cultivation ponds rather than storage of ash water. Slow pyrolysis of the cultivated algae immobilised the accumulated metals in a recalcitrant C-rich biochar. While the algal biochar had higher total metal concentrations than the algae feedstock, the biochar had very low concentrations of leachable metals and therefore has potential for use as an ameliorant for low-fertility soils. This study demonstrates a bioremediation technology at a large scale for a water-limited industry that could be implemented at new or existing power stations, or during the decommissioning of older power stations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Coal-fired magnetohydrodynamic (MHD) electric power generation

    International Nuclear Information System (INIS)

    Sens, P.F.

    1992-01-01

    Since 1986 Directorate-General XII 'Science, Research and Development' of the Commission of the European Communities has kept a watching brief on the development of coal-fired magnetohydrodynamic (MHD) electric power generation from the 'solid fuels' section of its non-nuclear energy R and D programme. It established, in 1987, the Faraday Working Group (FWG) to assess the development status of coal-fired MHD and to evaluate its potential contribution to the future electricity production in the Community. The FWG expressed as its opinion, at the end of 1987, that in sufficient data were available to justify a final answer to the question about MHD's potential contribution to future electricity production and recommended that studies be undertaken in three areas; (i) the lifetime of the generator, (ii) cost and performance of direct air preheating, (iii) cost and efficiency of seed recovery/reprocessing. These studies were contracted and results were presented in the extended FWG meeting on 15 November 1990, for an audience of about 70 people. The present volume contains the proceedings of this meeting. The introduction describes the reasons for establishing the FWG, its activities and the content of its extended meeting followed by the summary of the discussions and the concluding remarks of this meeting. The main part of the volume consists of the text either of the oral presentations during the meeting or of the final reports resulting from the studies under contract

  20. How can we reduce carbon in ash in firing pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, W. (and others)

    1992-12-01

    The article discusses solutions to the problem of reducing carbon in ash in firing pulverized coal. Suggested solutions to the problem include: reviewing air flow through the mills; examining the pulverizers for coal fineness variations; investigating air distribution in the burners; review dual-firing equations; examining the burners for slag build up; checking coal fineness is appropriate to the boiler; increasing air flow; and checking instrumentation. 2 figs., 1 photo.

  1. Cocombustion of biomass in coal-fired power plants; Meestoken van biomassa in kolengestookte E-centrales

    Energy Technology Data Exchange (ETDEWEB)

    Albrink, W.G.M. [Stork Thermeq, Hengelo (Netherlands)

    2001-12-01

    The aim of the desk study is to determine to what degree several types of biomass can be cofired with existing coal fired utility boilers in the Netherlands. All results with regard to boiler performances are obtained by making use of a computer model of a typical coal fired boiler which make part of a 600 MWe coal fired power plant. Because the existing coal fired units in the Netherlands do deviate more or less from the used model all outcomes and conclusions of this study are indicative. Slagging and corrosion which become more important when firing biogas in a coal fired boiler are considered superficially. More close investigations are necessary when carry out concrete projects. Furthermore all results are based on 100% boiler load and may not be used or extrapolated to part load conditions. The extent of firing biomass gas may depend on available space in the boiler house and correlated restrictions for necessary constructive adaptations. These aspects were leave out of consideration. For information the necessary size of piping for biomass gas from gasifier to the boiler has been determined for several amounts of biomass. [Dutch] Het doel van de studie is te onderzoeken hoeveel biomassa, in percentage van het thermisch vermogen, volgens verschillende concepten kan worden meegestookt in een kolengestookte elektriciteitscentrale. Dit wordt in deze studie behandeld aan de hand van een aantal aspecten: Rookgashoeveelheden door de ketel. Hierbij kornen de volgende zaken aan de orde: snelheden, drukval, belasting van DeNox, DeSox en E-filters, capaciteit van de ventilatoren; Rookgastemperaturen. Dit betreft temperaturen uitlaat vuurhaard, uitlaat ketel en uitlaat LUVO (luchtverhitter); Verslakking en corrosie van oververhitters; Water/stoomzijdige flows. Dit betreft aspecten als flows, temperaturen, flow door de turbine (slikvermogen) en uitlaatconditie stoomturbine (vochtgehalte). Voor de verwerking van biomassa worden alleen vergassing (in hoofdzaak) en, minder

  2. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    International Nuclear Information System (INIS)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Suuberg; Eric Eddings; Larry Baxter

    2002-01-01

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates

  3. Mitsubishi latest coal fired USC boiler technology (CFE Pacifico 700 MW)

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T.; Sakamoto, K. [Mitsubishi Heavy Industries, Ltd., Nagasaki (Japan). Power Systems; Fujitab, M. [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan). Power Systems

    2013-07-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has successfully completed commissioning work for CFE (Comision Federal de Electricidad) Pacifico 700 MW coal-fired unit in March 2010 which is the first supercritical unit in Latin America. This supercritical boiler was designed with state of the art technologies such as low NOx burners, high fineness pulverizers, advanced vertical furnace wall technology and so on. Especially the advanced vertical furnace wall technology with some improvements is a key technology to realize swift load changes such as 5% load per minute ramping rate with assuring dynamic characteristics. Recently the requirement of the high efficiency and the swift load changes for the power boilers has been increased so that even a coal-fired unit needs flexible operation characteristics for balancing variety of power sources. One of the challenges for the swift load change is to keep the furnace wall metal temperature low during the load change, which the advanced vertical furnace wall could realize. The report describes the features of the unit and commissioning result including load swing test results in details.

  4. Fast and safe gas detection from underground coal fire by drone fly over

    International Nuclear Information System (INIS)

    Dunnington, Lucila; Nakagawa, Masami

    2017-01-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. - Graphical abstract: Concluding Figure for Gas Ratios: Plotted points and ranges of adjusted literature data. Stars represent bituminous and subbituminous coal types; Ovals represent lignite. - Highlights: • Recognize underground coal fire as a potential source of energy. • Developed a creative, safe, reliable and fast gas detection method. • Developed a concept of gas ratio measurement method that can provide more accurate description of underground burning coal resource.

  5. Theoretical-probability evaluation of the fire hazard of coal accumulations

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, F F

    1978-01-01

    An evaluation is suggested for the fire hazard of coal accumulations, based on determining the probability of an endogenic fire. This probability is computed by using the statistical characteristics of the temperature distribution of spontaneous heating in large accumulations, and the criteria of Gluzberg's fire hazard that is determined by the coal's physico-chemical properties, oxygen concentration, and the size of the accumulations. 4 references.

  6. Coal-fired high performance power generating system

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO[sub x] SO [sub x] and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW[sub e] combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO[sub x] production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  7. ANN-GA based optimization of a high ash coal-fired supercritical power plant

    International Nuclear Information System (INIS)

    Suresh, M.V.J.J.; Reddy, K.S.; Kolar, Ajit Kumar

    2011-01-01

    Highlights: → Neuro-genetic power plant optimization is found to be an efficient methodology. → Advantage of neuro-genetic algorithm is the possibility of on-line optimization. → Exergy loss in combustor indicates the effect of coal composition on efficiency. -- Abstract: The efficiency of coal-fired power plant depends on various operating parameters such as main steam/reheat steam pressures and temperatures, turbine extraction pressures, and excess air ratio for a given fuel. However, simultaneous optimization of all these operating parameters to achieve the maximum plant efficiency is a challenging task. This study deals with the coupled ANN and GA based (neuro-genetic) optimization of a high ash coal-fired supercritical power plant in Indian climatic condition to determine the maximum possible plant efficiency. The power plant simulation data obtained from a flow-sheet program, 'Cycle-Tempo' is used to train the artificial neural network (ANN) to predict the energy input through fuel (coal). The optimum set of various operating parameters that result in the minimum energy input to the power plant is then determined by coupling the trained ANN model as a fitness function with the genetic algorithm (GA). A unit size of 800 MWe currently under development in India is considered to carry out the thermodynamic analysis based on energy and exergy. Apart from optimizing the design parameters, the developed model can also be used for on-line optimization when quick response is required. Furthermore, the effect of various coals on the thermodynamic performance of the optimized power plant is also determined.

  8. Study of the Radiological Impact of the Coal Fired Power Plants on the Environment. The As Pontes coal-fired Power Plant

    International Nuclear Information System (INIS)

    Cancio, D.; Robles, B.; Mora, J. C.

    2009-01-01

    As part of the Study carried out to determine the radiological impact of the four main Spanish coal-fired power plants, the Study on the As Pontes Coal-Fired Coal Power Plant was finalized. In the Report containing the study are included every measurement performed, as well as the modelling and evaluations carried out in order to assess the radiological impact. The general conclusion obtained is that under a radiological point of view, the impact of this installation on the public and the environment is very small. Also the radiological impact on the workers of the installation was assessed, obtaining too very small increases over the natural background. (Author) 61 refs.

  9. LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, D.D.; MORRIS, S.M.; BANDO, A.; ET AL.

    2004-03-30

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. There are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows (Lopez et al. 2003)). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg

  10. Efficiency and environmental impacts of electricity restructuring on coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Chan, H. Ron [Maryland Univ., College Park, MD (United States). Dept. of Economics; Fell, Harrison [Colorado School of Mines, Golden, CO (United States). Division of Economics and Business; Lange, Ian [Stirling Univ. (United Kingdom). Division of Economics; Li, Shanjun [Cornell Univ., Ithaca, NY (United States). Dyson School of Applied Economics and Management

    2013-03-15

    We investigate the impacts of electricity market restructuring on fuel efficiency, utilization and, new to this area, cost of coal purchases among coal-fired power plants using a panel data set from 1991 to 2005. Our study focuses exclusively on coal-fired power plants and uses panel data covering several years after implementation of restructuring. The estimation compares how investor-owned (IOs) plants in states with restructuring changed their behavior relative to IOs in states without. Our analysis finds that restructuring led to: (1) a two percent improvement in fuel efficiency for IOs, (2) a ten percent decrease in unit cost of heat input, and (3) a lower capacity factor even after adjusting for cross-plant generation re-allocation due to cost reductions. Based on these estimates, back-of-the-envelope calculations find that restructuring has led to about 6.5 million dollars in annual cost savings or nearly 12 percent of operating expenses and up to a 7.6 percent emissions reduction per plant.

  11. Economic comparison of nuclear, coal, and oil-fired electric generation in the Chicago area

    International Nuclear Information System (INIS)

    Corey, G.R.

    1981-01-01

    The current and historical performances of 17 large nuclear and coal- and oil-fired steam-electric generating units now operated by Commonwealth Edison Company are examined, and the actual busbar costs of electricity generated by these units in recent years are summarized. Cost estimates for future steam-electric units are provided, and attempts are made to deal realistically with the effect of inflation. Social and regulatory constraints are seen to affect the economics of future units and the willingness of the industry to finance them. It is concluded that, given the uncertainties, utility managers have an incentive to diversify their sources of power generation when society seems to discourage such a course of action. 6 refs

  12. Evidence of Human Health Impacts from Uncontrolled Coal Fires in Jharia, India

    Science.gov (United States)

    Dhar, U.; Balogun, A. H.; Finkelman, R.; Chakraborty, S.; Olanipekun, O.; Shaikh, W. A.

    2017-12-01

    Uncontrolled coal fires and burning coal waste piles have been reported from dozens of countries. These fires can be caused by spontaneous combustion, sparks from machinery, lightning strikes, grass or forest fires, or intentionally. Both underground and surface coal fires mobilize potentially toxic elements such as sulfur, arsenic, selenium, fluorine, lead, and mercury as well as dangerous organic compounds such as benzene, toluene, xylene, ethylbenzene and deadly gases such as CO2 and CO. Despite the serious health problems that can be caused by uncontrolled coal fires it is rather surprising that there has been so little research and documentation of their health impacts. Underground coal fires in the Jharia region of India where more than a million people reside, have been burning for 100 years. Numerous villages exist above the underground fires exposing the residents daily to dangerous emissions. Local residents near the fire affected areas do their daily chores without concern about the intensity of nearby fires. During winter children enjoy the heat of the coal fires oblivious to the potentially harmful emissions. To determine if these uncontrolled coal fires have caused health problems we developed a brief questionnaire on general health indices and administered it to residents of the Jharia region. Sixty responses were obtained from residents of two villages, one proximal to the coal fires and one about 5 miles away from the fires. The responses were statistically analyzed using SAS 9.4. It was observed that at a significance level of 5%, villagers who lived more than 5 miles away from the fires had a 98.3% decreased odds of having undesirable health outcomes. This brief survey indicates the risk posed by underground coal fires and how it contributes to the undesirable health impacts. What remains is to determine the specific health issues, what components of the emissions cause the health problems, and what can be done to minimize these problems

  13. Coal

    International Nuclear Information System (INIS)

    Teissie, J.; Bourgogne, D. de; Bautin, F.

    2001-12-01

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  14. Opportunities for Decarbonizing Existing U.S. Coal-Fired Power Plants via CO2 Capture, Utilization and Storage.

    Science.gov (United States)

    Zhai, Haibo; Ou, Yang; Rubin, Edward S

    2015-07-07

    This study employs a power plant modeling tool to explore the feasibility of reducing unit-level emission rates of CO2 by 30% by retrofitting carbon capture, utilization, and storage (CCUS) to existing U.S. coal-fired electric generating units (EGUs). Our goal is to identify feasible EGUs and their key attributes. The results indicate that for about 60 gigawatts of the existing coal-fired capacity, the implementation of partial CO2 capture appears feasible, though its cost is highly dependent on the unit characteristics and fuel prices. Auxiliary gas-fired boilers can be employed to power a carbon capture process without significant increases in the cost of electricity generation. A complementary CO2 emission trading program can provide additional economic incentives for the deployment of CCS with 90% CO2 capture. Selling and utilizing the captured CO2 product for enhanced oil recovery can further accelerate CCUS deployment and also help reinforce a CO2 emission trading market. These efforts would allow existing coal-fired EGUs to continue to provide a significant share of the U.S. electricity demand.

  15. Feasibility of applying coal-fired boiler technology to process heaters

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, T F

    1978-01-01

    The preponderance of coal in US fossil fuel reserves has raised the question of the conversion of hydrocarbon process heaters to coal firing. A review undertaken in 1977 by an API sub-committee concluded that neither existing heaters nor existing heater designs were capable of modification or revision to burn coal, and that new coal-fired design consistent with process requirements would be needed for this purpose. In recognition of this need a cooperative investigation was undertaken by Combustion Engineering and Lummus. The present paper, reporting on this investigation, reviews existing coal-fired boiler equipment and techniques and describes their adaptation to the development of a design concept for a coal-fired process heater. To this end, the design parameters for both steam boilers and fired heaters have been compared and have been incorporated into a workable coal-fired process heater design which includes the following features; a coutant bottom for ash removal, an ash-hopper located under both radiant and convection chambers, a tangent type finned wall construction, a straight through gas flow pattern, a vertical tube convection section, horizontal firing using round burners, and an overall geometry allowing a coil arrangement capable of accommodating varying numbers of parallel serpentine coils. These features are integrated into a conceptual heater design which is detailed in a series of illustrations.

  16. Radiological effects of Yatagan coal-fired power plant

    International Nuclear Information System (INIS)

    Barlas, F.; Buke, T.

    2004-01-01

    Radiation dose calculations and also limit radiation dose calculations have been carried out by the code CAP88-PC around the Yatagan coal-fired power plant environment by using the result of previous studies about maximum measured gross alpha activity in the flying ash samples as radioactive sources. A modified Gaussian plume equation is used to estimate the average dispersion of radionuclides released from up to six emitting sources. The sources maybe either elevated stacks or uniform area sources. Assessments are done for a circular grid of distances and directions for a radius up to 80 kilometers, 16 wind sectors and 20 mesh distances around the facility in calculations. The limit doses obtained from the calculations and their radiological effects have been interpreted. Finally the effects of various radionuclides have been carried out and their results have been compared with each other. (author)

  17. Simulation of pulverized coal fired boiler: reaction chamber

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, C.P.; Lansarin, M.A.; Secchi, A.R.; Mendes, T.F. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Engenharia Quimica. Grupo de Modelagem, Simulacao, Controle e Otimizacao de Processos)]. E-mail: {cperdomo, marla, arge, talita}@enq.ufrgs.br

    2005-06-15

    This work is part of a joint project to built a computational tool for power plant simulation, dealing specifically with the reaction chamber (place of the boiler where the fuel is burned). In order to describe the conversion of chemical energy to thermal energy, an one dimensional pseudo-homogeneous mathematical model, with variable physical properties, and based on mass and energy balances, was developed. The equations were implemented in the gPROMS simulator and the model parameters were estimated using the module gEST of this software, with experimental data from a large-scale coal-fired utility boiler and kinetic data from the open literature. The results showed that the model predicts the composition of the outlet combustion gas satisfactorily. (author)

  18. Environmental impacts of nuclear and coal-fired power plants

    International Nuclear Information System (INIS)

    Horyna, J.; Horynova, H.

    1984-01-01

    The current situation in the development of nuclear power in the world and in Czechoslovakia is briefly outlined and the possibilities are discussed of alternative energy resources. The environmental impact is described of conventional power plants firing coal; sulphur and nitrogen oxides are mentioned and their environmental impacts shown. Their quantities and the quantities of other gaseous, liquid and soid wastes produced by coal power plants are given. Annual estimates are presented of radioactive material emissions; trace amount emissions of toxic metals and their ecological risks are shown. Concern over the increasing concentration of CO 2 in the atmosphere is voiced. For nuclear power plants, the amount of radionuclides in stack emission and of those released into water flows is tabulated. Their effect on the aqueous ecosystem is characterized as is thermal pollution of water flows and the environmental impact of cooling towers. Other factors are also mentioned, such as the increased industrial land use, the effect of high voltage transmission lines and aesthetic effects. The conclusion is arrived at that the construction of nuclear power plants will eliminate the adverse environmental impact of emissions while the other impacts of the two types of power plants are comparable. (A.K.)

  19. Predicting the market penetration of the next generation of coal-fired technologies

    International Nuclear Information System (INIS)

    Guha, M.K.; McCall, G.W.

    1990-01-01

    This paper discusses what role clean coal-fired technology will have in future generating capacity based on availability and prices of coal and natural gas, the nuclear option, environmental regulations, limitations of current air pollution control technologies, and economics. The topics of the paper include the need for new electric generating capacity, why coal must remain a source of energy for generating electricity, technology effectiveness and market penetration analysis methodologies, coal-fired technology economic and technical assumptions, cost estimates, and high and low growth scenarios

  20. Application of Coal Thermal Treatment Technology for Oil-Free Firing of Boilers

    Science.gov (United States)

    Aliyarov, B.; Mergalimova, A.; Zhalmagambetova, U.

    2018-04-01

    The theoretical and practical introduction of this kind of firing boiler units in coal thermal power plants is considered in the article. The results of an experimental study of three types of coals are presented in order to obtain the required gaseous fuel. The aim of the study is to develop a new, economically and ecologically more acceptable method for firing boilers at thermal power plants, which is able to exclude the use of expensive and inconvenient fuel oil. The tasks of the experiment are to develop a technological scheme of kindling of boilers at thermal power plants, using as a type of ignition fuel volatile combustible substances released during the heating of coal, and to investigate three types of coal for the suitability of obtaining gaseous fuels, in sufficient volume and with the required heat of combustion. The research methods include the analysis of technical and scientific-methodological literature on the problem of the present study, the study of the experience of scientists of other countries, the full-scale experiment on the production of volatile combustible substances. During the full-scale experiment, the coal of 3 fields of Kazakhstan has been studied: Shubarkul, Maikuben and Saryadyr. The analysis has been performed and the choice of the most convenient technology for boiler kindling and maintenance of steady burning of the torch has been made according to the proposed method, as well as the corresponding technological scheme has been developed. As a result of the experiment, it can be stated that from coal in the process of its heating (without access to oxygen), it is possible to obtain a sufficient amount of combustible volatile substances. The released gaseous fuel has the necessary parameters and is quite capable of replacing an expensive fuel oil. The resulting gaseous fuel is quite convenient to use and environmentally cleaner. The piloting scheme developed as a result of the experiment can be introduced in pulverized-coal

  1. Ultra-supercritical (USC) technology. The best practical and economic way to reduce CO{sub 2} emissions from coal fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jianxiong [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering

    2013-07-01

    China is the largest coal producer and consumer with largest coal power capacity in the world. By the end of 2010, the total installed power capacity in China was 962,190 MWe, in which coal fired power capacity was 706,630 MWe, accounting for over 73.4%. China has been the largest CO{sub 2} emission country as well and its huge coal power capacity is the largest CO{sub 2} emission source. How does China reduce its CO{sub 2} emissions from coal fired power plants is an austere challenge now we are facing. How does China reduce its CO{sub 2} emissions from coal fired power plants? There are three ways to reduce CO{sub 2} emissions from coal fired power plants: (1) carbon capture and storage (CCS); (2) co-firing biomass with coal; (3) much improvement of efficiency. For the first option of CCS, the technology is still under development and there are still several uncertainties today to be widely used for coal fired power plants in the short term. For the second option of biomass co-firing, it can reduce CO{sub 2} emissions in a way, but it is difficult to implement it in China without strong support of incentive policy. Therefore, the third option of improvement of efficiency is the only but also the best and feasible economic option for China to much reduce CO{sub 2} emissions from coal fired power plants. This paper will discuss how China to take a active policy to strongly promote the application of supercritical (SC)/Ultra supercritical (USC) technology. Only in 4 years from 2007 to 2010, ordered capacity of coal fired SC/USC units was 482 units with installed capacity of 230,060 MWe, in which, 1,000 MWe USC with 600 C steam parameters was almost 100 units with 100,000 MWe in which 33 units have been in operation. Today, China has been a country with the largest SC/USC units and capacity. The fast application of SC/USC units for coal fired power plants has resulted in energy saving and reduction of emissions. The average coal consumption in China reduced from 366

  2. Expanding exports, increasing smog : Ontario Power Generation's and Hydro One's strategies to continue coal-fired electricity generation in Ontario

    International Nuclear Information System (INIS)

    Gibbons, J.

    2002-06-01

    The production of coal-fired electricity increased by approximately 150 per cent in Ontario between 1995 and 2000. As a result, the smog-causing emissions generated by the five coal-fired power plants operated by Ontario Power Generation caused an increase in smog and worsened air quality in the province as well as affecting air quality as far afield as the Atlantic provinces. Between 2002 and 2005, it is expected that the Pickering and Bruce nuclear plants will be returned to service, making the electricity generated by the coal plants surplus to Ontario's needs. Increasing this surplus are the planned natural gas generating stations. Ontario Power Generation is planning on using this surplus to export it to the United States rather than phasing out its reliance on coal. The increase in exports to the United States Northeast and Midwest is planned with Hydro One, already busy increasing its transmission capacity to the United States by 1,000 megawatt (MW). This plan involves laying 975 MW submarine cable from the Nanticoke Generating Station (operated by Ontario Power Generation) under Lake Erie to Pennsylvania, Ohio, or both states. At the moment, the exports are constrained by the government emissions limits imposed by the Ontario government on sulphur dioxide and nitrogen oxides. This constraint could be removed if Ontario Power Generation decides to pay further for pollution controls for sulphur dioxide and nitrogen oxides at its coal stations. Unfortunately, increasing the exports would also result in emissions increases for 28 other uncapped pollutants such as lead, mercury and arsenic. The author recommended that the Ontario government ban non-emergency coal-fired electricity exports to improve air quality in the province. refs., 8 figs

  3. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Topical report, LNCFS Levels 1 and 3 test results

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-17

    This report presents results from the third phase of an Innovative Clean Coal Technology (ICC-1) project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The purpose of this project was to study the NO{sub x} emissions characteristics of ABB Combustion Engineering`s (ABB CE) Low NO{sub x} Concentric Firing System (LNCFS) Levels I, II, and III. These technologies were installed and tested in a stepwise fashion at Gulf Power Company`s Plant Lansing Smith Unit 2. The objective of this report is to provide the results from Phase III. During that phase, Levels I and III of the ABB C-E Services Low NO{sub x} Concentric Firing System were tested. The LNCFS Level III technology includes separated overfire air, close coupled overfire air, clustered coal nozzles, flame attachment coal nozzle tips, and concentric firing. The LNCFS Level I was simulated by closing the separated overfire air nozzles of the LNCFS Level III system. Based upon long-term data, LNCFS Level HI reduced NO{sub x} emissions by 45 percent at full load. LOI levels with LNCFS Level III increased slightly, however, tests showed that LOI levels with LNCFS Level III were highly dependent upon coal fineness. After correcting for leakage air through the separated overfire air system, the simulated LNCFS Level I reduced NO{sub x} emissions by 37 percent. There was no increase in LOI with LNCFS Level I.

  4. Coal-fired MHD combustor development project: Phase 3D

    Science.gov (United States)

    1985-05-01

    This fourth quarterly technical progress report of the Coal-Fired MHD Combustor Development Project (Phase 3D) presents the accomplishments during the period February 1 to April 30, 1985. The scope of work covered by this quarterly report encompasses development work on the 50 MW/sub t/ combustor related to test support at the CDIF, assembly and checkout of first and second stage hardware, second stage design verification testing, designs for a continuous slag rejector and low preheat inlet section, and planning for power train testing. Progress includes the following: assembly and checkout of the second first stage, two second stages, and PEM was completed and the hardware was shipped to CDIF and FETS; integration of first and second stage hardware on the FETS Cell No. 2 test stand was completed, cold flow functional tests were performed, and hot fire checkout testing was initiated; assembly of the continuous slag rejector test set-up was 70% completed; the low preheat air inlet section Preliminary Design Review was held (work on the detail design was initiated and is 85% complete); and the Users' Manual was updated to include material for the second stage and final revisions to the power train test plan were made.

  5. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    Science.gov (United States)

    Fofrich, R.; Shearer, C.; Davis, S. J.

    2017-12-01

    India represents a critical unknown in global projections of future CO2 emissions due to its growing population, industrializing economy, and large coal reserves. In this study, we assess existing and proposed construction of coal-fired power plants in India and evaluate their implications for future energy production and emissions in the country. In 2016, India had 369 coal-fired power plants under development totaling 243 gigawatts (GW) of generating capacity. These coal-fired power plants would increase India's coal-fired generating capacity by 123% and would exceed India's projected electricity demand. Therefore, India's current proposals for new coal-fired power plants would be forced to retire early or operate at very low capacity factors and/or would prevent India from meeting its goal of producing at least 40% of its power from renewable sources by 2030. In addition, future emissions from proposed coal-fired power plants would exceed India's climate commitment to reduce its 2005 emissions intensity 33% - 35% by 2030.

  6. Detection of Coal Fires: A Case Study Conducted on Indian Coal Seams Using Neural Network and Particle Swarm Optimization

    Science.gov (United States)

    Singh, B. B.

    2016-12-01

    India produces majority of its electricity from coal but a huge quantity of coal burns every day due to coal fires and also poses a threat to the environment as severe pollutants. In the present study we had demonstrated the usage of Neural Network based approach with an integrated Particle Swarm Optimization (PSO) inversion technique. The Self Potential (SP) data set is used for the early detection of coal fires. The study was conducted over the East Basuria colliery, Jharia Coal Field, Jharkhand, India. The causative source was modelled as an inclined sheet like anomaly and the synthetic data was generated. Neural Network scheme consists of an input layer, hidden layers and an output layer. The input layer corresponds to the SP data and the output layer is the estimated depth of the coal fire. A synthetic dataset was modelled with some of the known parameters such as depth, conductivity, inclination angle, half width etc. associated with causative body and gives a very low misfit error of 0.0032%. Therefore, the method was found accurate in predicting the depth of the source body. The technique was applied to the real data set and the model was trained until a very good correlation of determination `R2' value of 0.98 is obtained. The depth of the source body was found to be 12.34m with a misfit error percentage of 0.242%. The inversion results were compared with the lithologs obtained from a nearby well which corresponds to the L3 coal seam. The depth of the coal fire had exactly matched with the half width of the anomaly which suggests that the fire is widely spread. The inclination angle of the anomaly was 135.510 which resembles the development of the geometrically complex fracture planes. These fractures may be developed due to anisotropic weakness of the ground which acts as passage for the air. As a result coal fires spreads along these fracture planes. The results obtained from the Neural Network was compared with PSO inversion results and were found in

  7. Performance analysis of US coal-fired power plants by measuring three DEA efficiencies

    International Nuclear Information System (INIS)

    Sueyoshi, Toshiyuki; Goto, Mika; Ueno, Takahiro

    2010-01-01

    Data Envelopment Analysis (DEA) has been widely used for performance evaluation of many organizations in private and public sectors. This study proposes a new DEA approach to evaluate the operational, environmental and both-unified performance of coal-fired power plants that are currently operating under the US Clean Air Act (CAA). The economic activities of power plants examined by this study are characterized by four inputs, a desirable (good) output and three undesirable (bad) outputs. This study uses Range-Adjusted Measure (RAM) because it can easily incorporate both desirable and undesirable outputs in the unified analytical structure. The output unification proposed in this study has been never investigated in the previous DEA studies even though such a unified measure is essential in guiding policy makers and corporate leaders. Using the proposed DEA approach, this study finds three important policy implications. First, the CAA has been increasingly effective on their environmental protection. The increased environmental performance leads to the enhancement of the unified efficiency. Second, the market liberalization/deregulation was an important business trend in the electric power industry. Such a business trend was legally prepared by US Energy Policy Act (EPAct). According to the level of the market liberalization, the United States is classified into regulated and deregulated states. This study finds that the operational and unified performance of coal-fired power plants in the regulated states outperforms those of the deregulated states because the investment on coal-fired power plants in the regulated states can be utilized as a financial tool under the rate-of-return criterion of regulation. The power plants in the deregulated states do not have such a regulation premium. Finally, plant managers need to balance between their environmental performance and operational efficiency.

  8. Evaluating the Thermal Pollution Caused by Wastewaters Discharged from a Chain of Coal-Fired Power Plants along a River

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2015-05-01

    Full Text Available Reliable and safe operation of a coal-fired power plant is strongly linked to freshwater resources, and environmental problems related to water sources and wastewater discharge are challenges for power station operation. In this study, an evaluation on the basis of a wastewater thermal pollution vector is reported for the environmental impact of residual water generated and discharged in the Jiu River during the operation of thermoelectric units of the Rovinari, Turceni and Craiova coal-fired power plants in Romania. Wastewater thermal pollutant vector Plane Projection is applied for assessing the water temperature evolution in the water flow lane created downstream of each power plant wastewater outlet channel. Simulation on the basis of an Electricity of France model, and testing validation of the results for thermoelectric units of 330 MW of these power plants are presented.

  9. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-03-31

    This is the fifteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. At AEP's Gavin Plant, data from the corrosion probes showed that corrosion rate increased as boiler load was increased. During an outage at the plant, the drop in boiler load, sensor temperature and corrosion rate could all be seen clearly. Restarting the boiler saw a resumption of corrosion activity. This behavior is consistent with previous observations made at a 600MWe utility boiler. More data are currently being examined for magnitudes of corrosion rates and changes in boiler operating conditions. Considerable progress was made this quarter in BYU's laboratory study of catalyst deactivation. Surface sulfation appears to partially suppress NO adsorption when the catalyst is not exposed to NH3; NH3 displaces surface-adsorbed NO on SCR catalysts and surface sulfation increases the amount of adsorbed NH3, as confirmed by both spectroscopy and TPD experiments. However, there is no indication of changes in catalyst activity despite changes in the amount of adsorbed NH3. A monolith test reactor (MTR), completed this quarter, provided the first comparative data for one of the fresh and field-exposed monolith SCR catalysts yet developed in this project. Measurements of activity on one of the field-exposed commercial monolith catalysts do not show significant changes in catalyst activity (within experimental error) as compared to the fresh catalyst. The exposed surface of the sample contains large amounts of Ca and Na, neither of which is present in the fresh sample, even after removal of visibly obvious fouling deposits. However, these fouling compounds do

  10. Refurbishment priorities at the Russian coal-fired power sector for cleaner energy production-Case studies

    International Nuclear Information System (INIS)

    Grammelis, P.; Koukouzas, N.; Skodras, G.; Kakaras, E.; Tumanovsky, A.; Kotler, V.

    2006-01-01

    The paper aims to present the current status of the coal-fired power sector in Russia, the prospects for renovation activities based on Clean Coal Technologies (CCT) and two case studies on potential refurbishment projects. Data were collected for 180 thermoelectric units with capacity higher than 100 MWe and the renovation needs of the power sector, among the retrofitting, repowering and reconstruction options, were estimated through a multi-criteria analysis. The most attractive system to renovate a power plant between the Supercritical Combustion (SC) and the Fluidized Bed Combustion (FBC) technologies was evaluated. The application of each of the aforementioned technologies at the Kashirskaya and Shaturskaya power plants was studied and their replication potential in the Russian coal-fired power plant park was examined. Nowadays, the installed capacity of coal-fired power plants in the Russian Federation is 29.3 GWe, while they account for about 19% of the total electricity generation in the area. The low efficiency and especially the advanced age are the determinant factors for renovation applications at the Russian units. Even in the more conservative modernization scenario, over 30% of the thermoelectric units have to be repowered or reconstructed. Concrete proposals about the profitable and reliable operation of two Russian thermoelectric units with minimized environmental effects were elaborated. A new unit of 315 MWe with supercritical steam parameters and reburning for NO x abatement is envisaged to upgrade Unit 1 of Kashirskaya power station, while new Circulating Fluidized Bed (CFB) boilers of the same steam generation is the most promising renovation option for the boilers of Unit 1 in Shaturskaya power station

  11. Refurbishment priorities at the Russian coal-fired power sector for cleaner energy production-Case studies

    Energy Technology Data Exchange (ETDEWEB)

    Grammelis, P. [Centre for Research and Technology Hellas/Institute of Solid Fuels Technology and Applications (CERTH/ISFTA), 4 km N.R. Ptolemaida-Kozani, P.O. Box 95, Ptolemaida 50200 (Greece) and Laboratory of Steam Boilers and Thermal Plants, Mechanical Engineering Department, National Technical University of Athens, Athens (Greece)]. E-mail: pgra@central.ntua.gr; Koukouzas, N. [Centre for Research and Technology Hellas/Institute of Solid Fuels Technology and Applications (CERTH/ISFTA), 4 km N.R. Ptolemaida-Kozani, P.O. Box 95, Ptolemaida 50200 (Greece); Skodras, G. [Centre for Research and Technology Hellas/Institute of Solid Fuels Technology and Applications (CERTH/ISFTA), 4 km N.R. Ptolemaida-Kozani, P.O. Box 95, Ptolemaida 50200 (Greece); Kakaras, E. [Centre for Research and Technology Hellas/Institute of Solid Fuels Technology and Applications (CERTH/ISFTA), 4 km N.R. Ptolemaida-Kozani, P.O. Box 95, Ptolemaida 50200 (Greece); Laboratory of Steam Boilers and Thermal Plants, Mechanical Engineering Department, National Technical University of Athens, Athens (Greece); Tumanovsky, A. [VTI All Russia Thermal Engineering Institute (Russian Federation); Kotler, V. [VTI All Russia Thermal Engineering Institute (Russian Federation)

    2006-11-15

    The paper aims to present the current status of the coal-fired power sector in Russia, the prospects for renovation activities based on Clean Coal Technologies (CCT) and two case studies on potential refurbishment projects. Data were collected for 180 thermoelectric units with capacity higher than 100 MWe and the renovation needs of the power sector, among the retrofitting, repowering and reconstruction options, were estimated through a multi-criteria analysis. The most attractive system to renovate a power plant between the Supercritical Combustion (SC) and the Fluidized Bed Combustion (FBC) technologies was evaluated. The application of each of the aforementioned technologies at the Kashirskaya and Shaturskaya power plants was studied and their replication potential in the Russian coal-fired power plant park was examined. Nowadays, the installed capacity of coal-fired power plants in the Russian Federation is 29.3 GWe, while they account for about 19% of the total electricity generation in the area. The low efficiency and especially the advanced age are the determinant factors for renovation applications at the Russian units. Even in the more conservative modernization scenario, over 30% of the thermoelectric units have to be repowered or reconstructed. Concrete proposals about the profitable and reliable operation of two Russian thermoelectric units with minimized environmental effects were elaborated. A new unit of 315 MWe with supercritical steam parameters and reburning for NO {sub x} abatement is envisaged to upgrade Unit 1 of Kashirskaya power station, while new Circulating Fluidized Bed (CFB) boilers of the same steam generation is the most promising renovation option for the boilers of Unit 1 in Shaturskaya power station.

  12. Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2012-06-29

    Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination

  13. Current and future emissions of primary pollutants from coal-fired power plants in Shaanxi, China.

    Science.gov (United States)

    Xu, Yong; Hu, Jianlin; Ying, Qi; Hao, Hongke; Wang, Dexiang; Zhang, Hongliang

    2017-10-01

    A high-resolution inventory of primary atmospheric pollutants from coal-fired power plants in Shaanxi in 2012 was built based on a detailed database compiled at unit level involving unit capacity, boiler size and type, commission time, corresponding control technologies, and average coal quality of 72 power plants. The pollutants included SO 2 , NO x , fine particulate matter (PM 2.5 ), inhalable particulate matter (PM 10 ), organic carbon (OC), elemental carbon (EC), carbon monoxide (CO) and non-methane volatile organic compounds (NMVOC). Emission factors for SO 2 , NO x , PM 2.5 and PM 10 were adopted from standardized official promulgation, supplemented by those from local studies. The estimated annual emissions of SO 2 , NO x , PM 2.5 , PM 10 , EC, OC, CO and NMVOC were 152.4, 314.8, 16.6, 26.4, 0.07, 0.27, 64.9 and 2.5kt, respectively. Small units (emission rates compared to medium (≥100MW and emissions were decontamination efficiency, sulfur content and ash content of coal. Weinan and Xianyang were the two cities with the highest emissions, and Guanzhong Plain had the largest emission density. Despite the projected growth of coal consumption, emissions would decrease in 2030 due to improvement in emission control technologies and combustion efficiencies. SO 2 and NO x emissions would experience significant reduction by ~81% and ~84%, respectively. PM 2.5 , PM 10 , EC and OC would be decreased by ~43% and CO and NMVOC would be reduced by ~16%. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Analysis of radionuclides in airborne effluents from coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, G.; Chatterjee, B.; Hoetzl, H.; Winkler, R.

    1982-01-01

    In order to assess the level of radioactivity emitted by coal-fired power plants in detail, specific activities of several radionuclides have been measured in samples from a coal-fired and a brown coal-fired plant in the Federal Republic of Germany. Samples measured included coal, brown coal, bottom ash, collected fly ash from the various electrostatic precipitator stages and sieve fractions of collected fly ash as well as samples of escaping fly ash taken from the exhaust stream, all taken simultaneously on three operating days. Nuclides measured were U-238, U-234, Th-232, Th-230, Th-228, Ra-226, Pb-210, Po-210 and K-40. Methods applied included (i) direct gamma spectrometry, (ii) radiochemical separation with subsequent alpha spectrometry and (iii) direct alpha spectrometry. Methods are described and discussed. Finally, annual emission rates of airborne radionuclides are calculated for both plants.

  15. Analysis of radionuclides in airborne effluents from coal-fired power plants

    International Nuclear Information System (INIS)

    Rosner, G.; Chatterjee, B.; Hoetzl, H.; Winkler, R.

    1982-01-01

    In order to assess the level of radioactivity emitted by coal-fired power plants in detail, specific activities of several radionuclides have been measured in samples from a coal-fired and a brown coal-fired plant in the Federal Republic of Germany. Samples measured included coal, brown coal, bottom ash, collected fly ash from the various electrostatic precipitator stages and sieve fractions of collected fly ash as well as samples of escaping fly ash taken from the exhaust stream, all taken simultaneously on three operating days. Nuclides measured were U-238, U-234, Th-232, Th-230, Th-228, Ra-226, Pb-210, Po-210 and K-40. Methods applied included (i) direct gamma spectrometry, (ii) radiochemical separation with subsequent alpha spectrometry and (iii) direct alpha spectrometry. Methods are described and discussed. Finally, annual emission rates of airborne radionuclides are calculated for both plants. (orig.)

  16. Coal-Fired Power Plants, Region 9, 2011, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Approximate locations of active coal-fired power plants located in US EPA's Region 9. Emission counts from the 2005 National Emissions Inventory (NEI) are included...

  17. MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES

    Science.gov (United States)

    Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...

  18. Nuclear and coal-fired power plant capital costs 1978 -June 1981

    International Nuclear Information System (INIS)

    Harbour, R.T.

    1981-07-01

    This bibliography covers 16 papers dealing with the economics of power generation - mainly comparisons between the capital costs of nuclear and coal fired plants. Some of the papers additionally discuss fuel, operating and maintenance costs, and performance. (U.K.)

  19. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    Science.gov (United States)

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  20. Life cycle assessment of solar aided coal-fired power system with and without heat storage

    International Nuclear Information System (INIS)

    Zhai, Rongrong; Li, Chao; Chen, Ying; Yang, Yongping; Patchigolla, Kumar; Oakey, John E.

    2016-01-01

    Highlights: • The comprehensive performances of three kinds of different systems were compared through LCA. • The comprehensive results of all systems were evaluated by grey relation theory. • The effects of life span, coal price, and solar collector field cost, among other factors, on the results were explored. - Abstract: Pollutant emissions from coal-fired power system have been receiving increasing attention over the past few years. Integration of solar thermal energy can greatly reduce pollutant emissions from these power stations. The performances of coal-fired power system (S1), solar aided coal-fired power system with thermal storage (S2), and solar aided coal-fired power system without thermal storage (S3) with three capacities of each kind of system (i.e., nine subsystems) were analyzed over the entire life span. The pollutant emissions and primary energy consumptions (PECs) of S1, S2, and S3 were estimated using life cycle assessment (LCA). The evaluation value of global warming potential (GWP), acidification potential (AP), respiratory effects potential (REP) and PEC were obtained based on the LCA results. Furthermore, the system investments were estimated, and grey relation theory was used to evaluate the performance of the three types of systems comprehensively. Finally, in order to find the effect of some main factors on the solar aided coal-fired power system (SACFPS), uncertainty analysis has been carried out. The LCA results show that the pollutant emissions and PEC mainly take place in the fuel processing and operation stages for all three system types, and S2 performs the best among the three systems based on the grey relation analysis results. And the uncertainty analysis shows that with longer life span, the power system have better performance; with higher coal price, the power system will have worse performance; with lower solar collector field cost, the solar aided coal-fired power system will be more profitable than the base

  1. A study of toxic emissions from a coal-fired gasification plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Under the Fine Particulate Control/Air Toxics Program, the US Department of Energy (DOE) has been performing comprehensive assessments of toxic substance emissions from coal-fired electric utility units. An objective of this program is to provide information to the US Environmental Protection Agency (EPA) for use in evaluating hazardous air pollutant emissions as required by the Clean Air Act Amendments (CAAA) of 1990. The Electric Power Research Institute (EPRI) has also performed comprehensive assessments of emissions from many power plants and provided the information to the EPA. The DOE program was implemented in two. Phase 1 involved the characterization of eight utility units, with options to sample additional units in Phase 2. Radian was one of five contractors selected to perform these toxic emission assessments.Radian`s Phase 1 test site was at southern Company Service`s Plant Yates, Unit 1, which, as part of the DOE`s Clean Coal Technology Program, was demonstrating the CT-121 flue gas desulfurization technology. A commercial-scale prototype integrated gasification-combined cycle (IGCC) power plant was selected by DOE for Phase 2 testing. Funding for the Phase 2 effort was provided by DOE, with assistance from EPRI and the host site, the Louisiana Gasification Technology, Inc. (LGTI) project This document presents the results of that effort.

  2. Coal-fired power plants and the causes of high temperature corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Oakey, J E; Simms, N J [British Coal Corporation, Coal Technology Development Div., Cheltenham, Glos (United Kingdom); Tomkings, A B [ERA Technology Ltd., Leatherhead, Surrey (United Kingdom)

    1996-12-01

    The heat exchangers in all types of coal-fired power plant operate in aggressive, high temperature environments where high temperature corrosion can severely limit their service lives. The extent of this corrosion is governed by the combined effects of the operating conditions of the heat exchanger and the presence of corrosive species released from the coal during operation. This paper reviews the coal-related factors, such as ash deposition, which influence the operating environments of heat exchangers in three types of coal-fired power plant - conventional pulverized coal boilers, fluidized bed boilers and coal gasification systems. The effects on the performance of the materials used for these heat exchangers are then compared. (au) 35 refs.

  3. Water Extraction from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or

  4. The effect of Co-firing with Straw and Coal on High Temperature Corrosion

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Frandsen, Flemming; Larsen, OH

    2001-01-01

    As a part of ELSAMS development programme into alternative energy sources, various concepts of straw-firing have been investigated. This paper concerns co-firing of straw with coal to reduce the corrosion rate observed in straw-fired power plants. Co-firing with coal reduces the amount of potassium......: a) the exposure of metal rings on water/air cooled probes, and b) the exposure of a range of materials built into the existing superheaters. A range of austenitic and ferritic steels was exposed in the steam temperature region of 520-580°C. The flue gas temperature ranged from 925-1100°C....... The corrosion products for the various steel types were investigated using light optical and scanning electron microscopy. Corrosion mechanisms for the austenitic and ferritic steels are presented. These are discussed in relation to temperature and deposit composition. Co-firing with coal has removed potassium...

  5. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; J. E. Locke

    2006-02-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the tenth in a series of topical reports, describes the results and analysis of mercury sampling performed on two 468 MW units burning bituminous coal containing 1.3-1.7% sulfur. Unit 2 is equipped with an SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions

  6. Natural radionuclides from the coal in atmospheric environment of the coal fired power plants

    International Nuclear Information System (INIS)

    Antic, D.; Kostic-Soskic, M.; Milovanovic, S.; Telenta, B.

    1995-01-01

    The inhalation radiation exposure of the public in the vicinity of the selected coal fired power plants near from Belgrade (30-50 km) has been studied, using a set of data for natural radionuclides from the analysed power plants. A generalised model for analysis of radiological impact of an energy source, that includes the two-dimensional version of the cloud model, has been used for simulation of the transport of radionuclides released to the atmosphere. The inhalation dose rates for an adult are assessed and analysed during fast changeable meteorological conditions. A set of realistic meteorological conditions (wind, radiosonde sounding temperature, pressure, and humidity data) has been used for the numerical simulations. (author)

  7. Radionuclide emissions from a coal-fired power plant

    International Nuclear Information System (INIS)

    Amin, Y.M.; Uddin Khandaker, Mayeen; Shyen, A.K.S.; Mahat, R.H.; Nor, R.M.; Bradley, D.A.

    2013-01-01

    Current study concerns measurement of radioactivity levels in areas surrounding a 2420 MW thermal power plant fueled predominantly by bituminous coal. The concentrations of 226 Ra, 232 Th and 40 K in onsite bottom-ash were found to be 139 Bq/kg, 108 Bq/kg and 291 Bq/kg, respectively, the levels for these radiolnuclides in soil decreasing with distance from the power plant. At the plant perimeter the respective radionuclide concentrations were 87 Bq/kg, 74 Bq/kg and 297 Bq/kg. In a nearby town, the corresponding concentrations were 104 Bq/kg, 52 Bq/kg and 358 Bq/kg, suggestive of use of TENORM affected soils. The mean radium equivalent activities (Ra eq ) in soil and ash sample in the town were 205 Bq/kg and 316 Bq/kg, respectively. The Kapar plant ash/slag appears to contain a higher level of TENORM than the world average. The degree of contamination is much higher inside the town where slag has been mixed with topsoil as landfill or as simple domestic waste. For the prevailing levels of exposure and a worst case senario, the predicted committed effective dose due to ingestion and inhalation for intake durations of 1- and 30 years would be 4.2 μSv and 220 μSv, respectively. - Highlights: • Detailed studies on naturally occuring radionuclide emissions due to a 2420 MW coal-fired power plant in Malaysia. • Assessment of radiation exposures to the public around the power plant due to an intake of the radionuclides. • The Kapar plant ash/slag appears to contain a higher level of TENORM than the world average. • The degree of contamination is much higher inside the town where slag has been mixed with topsoil as landfill or as simple domestic waste

  8. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-06-30

    This is the sixteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. During an unplanned outage, damage occurred to the electrochemical noise corrosion probes installed at the AEP Gavin plant; testing is expected to resume in August. The KEMCOP corrosion coupons were not affected by the unplanned outage; the coupons were removed and sent for analysis. BYU conducted a series of tests before the ISSR lab was relocated. Ammonia adsorption experiments provided clear evidence of the types of acidic sites present on catalyst surfaces. Data collected this quarter indicate that surface sulfation decreases Lewis acid site concentrations for all catalysts thus far studied, confirming that catalytic activity under commercial coal-based SCR conditions occurs primarily on Br{o}nsted acid sites and would be susceptible to basic impurities such as alkali and alkaline earth oxides, chlorides, and sulfates. SCR activity tests based on MS analysis showed that increasing sulfation generally increases NO reduction activity for both 0% and 1% vanadia catalysts. During this quarter, the slipstream reactor at Rockport operated for 720 hours on flue gas. Catalyst exposure time reached 4500 hours since installation. The reactor is out of service at the Rockport plant and plans are being made to move it to the Gadsden Plant. At Gadsden, modifications have begun in preparation for installation of the slipstream reactor next quarter.

  9. China's coal-fired power plants impose pressure on water resources

    NARCIS (Netherlands)

    Zhang, Xinxin; Liu, Junguo; Tang, Yu; Zhao, Xu; Yang, Hong; Gerbens-Leenes, P.W.; Vliet, van Michelle T.H.; Yan, Jinyue

    2017-01-01

    Coal is the dominant fuel for electricity generation around the world. This type of electricity generation uses large amounts of water, increasing pressure on water resources. This calls for an in-depth investigation in the water-energy nexus of coal-fired electricity generation. In China,

  10. Calculating analysis of firing different composition artificial coal liquid fuels (ACLF) in the cyclone primary furnace

    Energy Technology Data Exchange (ETDEWEB)

    Tsepenok, A. [Novosibirsk State Technological Univ. (Russian Federation); Joint Stock company ' ' ZiO-COTES' ' , Novosibirsk (Russian Federation); Ovchinnikov, Yu. [Novosibirsk State Technological Univ. (Russian Federation); Serant, F. [Joint Stock company ' ' ZiO-COTES' ' , Novosibirsk (Russian Federation)

    2013-07-01

    This chapter describes the preparation technologies, results of computer simulation of combustion processes in a cyclone primary furnace during firing of artificial coal liquid fuels prepared from different coal grades and results of live testing. As a result the values of unburned carbon, NO{sub x} emissions and other concentrations in the outlet section primary furnace were estimated.

  11. Operational experiences of (in)direct co-combustion in coal and gas fired power plants in Europe

    International Nuclear Information System (INIS)

    Van Ree, R.; Korbee, R.; Meijer, R.; Konings, T.; Van Aart, F.

    2001-02-01

    The operational experiences of direct and indirect co-combustion of biomass/waste in European coal and natural gas fired power plants are addressed. The operational experiences of mainly Dutch direct co-combustion activities in coal fired power plants are discussed; whereas an overview of European indirect co-combustion activities is presented. The technical, environmental, and economic feasibility of different indirect co-combustion concepts (i.e. upstream gasification, pyrolysis, combustion with steam-side integration) is investigated, and the results are compared with the economic preferable concept of direct co-combustion. Main technical constraints that limit the co-combustion capacity of biomass/waste in conventional coal fired power plants are: the grindability of the biomass/coal blend, the capacity of available unit components, and the danger of severe slagging, fouling, corrosion and erosion. The main environmental constraints that have to be taken into account are the quality of produced solid waste streams (fly ash, bottom ash, gypsum) and the applicable air emission regulations. 6 refs

  12. Statistical modeling of an integrated boiler for coal fired thermal power plant

    Directory of Open Access Journals (Sweden)

    Sreepradha Chandrasekharan

    2017-06-01

    Full Text Available The coal fired thermal power plants plays major role in the power production in the world as they are available in abundance. Many of the existing power plants are based on the subcritical technology which can produce power with the efficiency of around 33%. But the newer plants are built on either supercritical or ultra-supercritical technology whose efficiency can be up to 50%. Main objective of the work is to enhance the efficiency of the existing subcritical power plants to compensate for the increasing demand. For achieving the objective, the statistical modeling of the boiler units such as economizer, drum and the superheater are initially carried out. The effectiveness of the developed models is tested using analysis methods like R2 analysis and ANOVA (Analysis of Variance. The dependability of the process variable (temperature on different manipulated variables is analyzed in the paper. Validations of the model are provided with their error analysis. Response surface methodology (RSM supported by DOE (design of experiments are implemented to optimize the operating parameters. Individual models along with the integrated model are used to study and design the predictive control of the coal-fired thermal power plant. Keywords: Chemical engineering, Applied mathematics

  13. Statistical modeling of an integrated boiler for coal fired thermal power plant.

    Science.gov (United States)

    Chandrasekharan, Sreepradha; Panda, Rames Chandra; Swaminathan, Bhuvaneswari Natrajan

    2017-06-01

    The coal fired thermal power plants plays major role in the power production in the world as they are available in abundance. Many of the existing power plants are based on the subcritical technology which can produce power with the efficiency of around 33%. But the newer plants are built on either supercritical or ultra-supercritical technology whose efficiency can be up to 50%. Main objective of the work is to enhance the efficiency of the existing subcritical power plants to compensate for the increasing demand. For achieving the objective, the statistical modeling of the boiler units such as economizer, drum and the superheater are initially carried out. The effectiveness of the developed models is tested using analysis methods like R 2 analysis and ANOVA (Analysis of Variance). The dependability of the process variable (temperature) on different manipulated variables is analyzed in the paper. Validations of the model are provided with their error analysis. Response surface methodology (RSM) supported by DOE (design of experiments) are implemented to optimize the operating parameters. Individual models along with the integrated model are used to study and design the predictive control of the coal-fired thermal power plant.

  14. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

    2003-12-31

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

  15. Natural Radionuclides in Slag/Ash Pile from Coal-Fired Power Plant Plomin

    International Nuclear Information System (INIS)

    Barisic, D.; Lulic, S.; Marovic, G.; Sencar, J.

    2001-01-01

    Full text: The coal slag/ash pile contains about one million tons of different (bottom ash, filter ash, gypsum) waste material deposited in vicinity of Plomin coal-fired power plant. Activities of 40 K, 228 Ra, 226 Ra and 238 U in materials deposited on slag/ash pile as well as in used coals were occasionally measured during past more than two and half decades of Plomin coal-fired plant operation. The radionuclides content in deposited bottom and filter ash material are related with radionuclide activities and mineral matter fraction in coals used. Up to the middle of nineties, the majority of coal used was anthracite from Istrian local mines. In that period, deposited waste material was characterised with relatively high 226 Ra and 238 U activities while potassium and thorium content was very low. When Istrian coal has been completely substituted with imported coal, uranium series radionuclide concentrations in deposited waste materials decreased significantly. Meanwhile, potassium and thorium activities in slag/ash pile material increased. It seems that slag/ash pile material generated in the last several years of Plomin coal-fired power plant operation could be generally used in cement industry without any special restriction. (author)

  16. Coal-92

    International Nuclear Information System (INIS)

    Hillring, B.; Sparre, C.

    1992-11-01

    Swedish consumption of coal and coke during 1991 and trends in technology, environment and market aspects of coal use are reported. Steam coal use in the heating sector was unchanged from 1991, 1.2 Mtons. Reduced consumption in smaller district heating units (due to conversion to biofuels and gas) was compensated by increased use for power generation in cogeneration plants. Coal consumption in industry fell 0.10 Mton to 0.84 Mton due to lower production in one industry branch. Import of steam coal was 1.1 Mton (down 0.5 Mton from 1990) since new rules for strategic reserves allowed a reduction of stocks. During the last five years stocks have been reduced by 2 Mtons. Import of metallurgical coal was 1.6 Mton, unchanged from 1990. The report also gives statistics for the coal using plants in Sweden, on coal R and D, and on emission laws for coal firing. (9 tabs., 2 figs.)

  17. Effect of air ingress on the energy performance of coal fired thermal power plants

    International Nuclear Information System (INIS)

    Siddhartha Bhatt, M.

    2007-01-01

    Ingress of air in boilers leads to drops in energy efficiency. This paper presents the effects of air ingress in the combustion zone, post-combustion zone and air pre-heater (APH) on the energy efficiency and loading capacity of a coal fired thermal power plant operating on fuel with high ash (35-45%). The optimal O 2 in the flue gas for a pulverized coal fired system is 3.5% (corresponding to 20% excess air). The operating values are in the range of 4.2-6.0% in membrane type boilers and up to 10% in refractory type boilers (after sustained periods of operation). The leakage rate of boilers (up to the entrance of the APH) is designed at 0.2% while the average operating values are 7.25% for membrane type enclosures and 33.61% for refractory enclosures. The leakage rate of the APH is designed at 5.0% while the operating values range from 13.66% to 20.13% for rotary and tubular APHs. When the O 2 in the combustion zone varies from 3.5% to 8.0%, efficiency drops of 2.0% points are experienced in the boiler and turbine separately, and the gross overall efficiency drop is ∼3.0% points. The units do not experience any capacity drop up to an O 2 in the flue gas of 6.0% before the APH. At an O 2 in the flue gas (before APH) of 7.2%, a mild limitation on the unit capacity of around 2-3% is experienced. When O 2 in the flue gas (before APH) reaches a level of 9.0%, 20% capacity drop of the unit is experienced due to which the plant load cannot be raised higher than 80%. Beyond the level of 9.0% (rare occurrence), the unit is quite difficult to operate and has to be taken off for overhaul

  18. Radiological Impact Study of the Coal-Fired Power Plant of Narcea

    Energy Technology Data Exchange (ETDEWEB)

    Robles, B.; Baeza, A.; Mora, J. a.; Corbacho, J. a.; Trueba, C.; Guillen, J.; Rodriguez, Miralles, Y.

    2014-04-01

    Coal, fuel used in thermal power plants for electricity production, contains variable concentrations of naturally occurring radionuclides from natural disintegration series of {sup 2}38U, {sup 2}35U, {sup 2}32Th and also the 40K, which are enhanced in the wastes and coproducts due to the industrial process. For this reason, natural radionuclides which are part of the noncombustible fraction of coal, except those volatiles which incorporate directly to the flue gases, concentrates and are partitioned between fly ashes and bottom ashes. This enhancement could cause, to the workers of the installation and to members of the public around the plant, an increase in the exposure which should be assessed under the radiation protection point of view. Present report collect the results obtained from a screening assessment of the radiological impact derived from the normal operation of the Narcea coal-fired power plant. The project where this assessment was performed is part of a bigger project which is jointly developed by the Unit of Radiation Protection of the Public and the Environment (UPRPYMA) of CIEMAT and the Environmental Radioactivity Laboratory of the Extremadura University (LARUEX) in agreement with the Spanish Association of the Electrical Industry (ENUSA). (Author)

  19. Development of I and C system for the coal feeder of coal firing plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Teak Soo; Park, Chan Ho [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-12-31

    KECC(Kepco Coal Feeder Control System) receives coal weight, conveyor speed and boiler demand signals. It controls coal flow by generating speed signal of feeder which conveys coal in hopper to pulverizer, displaying measured coal quantity and providing local auto and manual manipulator (author). 33 figs.

  20. Local Impacts of Mercury Emissions from the Three Pennsylvania Coal Fired Power Plants.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan,T.; Adams,J.; Bender, M.; Bu, C.; Piccolo, N.; Campbell, C.

    2008-02-01

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots of mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury 'hot spots'. Soil and oak leaf samples from around three large U.S. coal-fired power plants in Western Pennsylvania were collected and analyzed for evidence of 'hot spots'. These three plants (Conemaugh, Homer City, and Keystone) are separated by a total distance of approximately 30 miles. Each emits over 500 pounds of mercury per year which is well above average for mercury emissions from coal plants in the U.S. Soil and oak leaf sampling programs were performed around each power plant. Sampling rings one-mile apart were used with eight or nine locations on each ring. The prevailing winds in the region are from the west. For this reason, sampling was conducted out to 10 miles from the Conemaugh plant which is southeast of the others. The other plants were sampled to a distance of five miles. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with wind patterns. The study

  1. Income risk of EU coal-fired power plants after Kyoto

    International Nuclear Information System (INIS)

    Abadie, Luis M.; Chamorro, Jose M.

    2009-01-01

    Coal-fired power plants enjoy a significant advantage relative to gas plants in terms of cheaper fuel cost. This advantage may erode (or turn into disadvantage) depending on CO 2 emission allowance price. Financial risks are further reinforced when the price of electricity is determined by natural gas-fired plants' marginal costs. We aim to empirically assess the risks in EU coal plants' margins up to the year 2020. Parameter values are derived from actual market data. Monte Carlo simulation allows compute the expected value and risk profile of coal plants' earnings. Future allowance prices may spell significant risks on utilities' balance sheets. (author)

  2. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2003-06-30

    This is the twelfth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a new effort was begun on the development of a corrosion management system for minimizing the impacts of low NOx combustion systems on waterwalls; a kickoff meeting was held at the host site, AEP's Gavin Plant, and work commenced on fabrication of the probes. FTIR experiments for SCR catalyst sulfation were finished at BYU and indicated no vanadium/vanadyl sulfate formation at reactor conditions. Improvements on the mass-spectrometer system at BYU have been made and work on the steady state reactor system shakedown neared completion. The slipstream reactor continued to operate at AEP's Rockport plant; at the end of the quarter, the catalysts had been exposed to flue gas for about 1000 hours. Some operational problems were addressed that enable the reactor to run without excessive downtime by the end of the quarter.

  3. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Connie Senior Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-09-30

    This is the seventeenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. The SCR slipstream reactor was assembled and installed at Plant Gadsden this quarter. Safety equipment for ammonia had not been installed at the end of the quarter, but will be installed at the beginning of next quarter. The reactor will be started up next quarter. Four ECN corrosion probes were reinstalled at Gavin and collected corrosion data for approximately one month. Two additional probes were installed and removed after about 30 hours for future profilometry analysis. Preliminary analysis of the ECN probes, the KEMA coupons and the CFD modeling results all agree with the ultrasonic tube test measurements gathered by AEP personnel.

  4. Natural radionuclides near a coal-fired power station

    International Nuclear Information System (INIS)

    Smith-Briggs, J.L.

    1984-01-01

    A previous assessment of the radiological consequences of the emission of natural radionuclides from coal-fired power stations had indicated that 210 Pb was the main contributor to the maximum individual dose. This dose arose from the consumption of foodstuffs particularly cattle liver contaminated by deposited fly ash. Uncertainty surrounded some of the factors used in the assessment, and a limited environmental monitoring programme was recommended to improve it. An experiment has been performed to measure the specific activities of 210 Pb and 210 Po in livers from cattle that had grazed in a field near Didcot power station. Livers from cattle in the Cotswold region have been measured for comparison. The specific activities of 210 Pb and 210 Po in soil and grass samples from both areas have also been measured at three-monthly intervals over a year. No statistically significant increases were observed in the 210 Pb and 210 Po levels in liver, soil or grass samples which could be attributed to the operation of the power station. Transfer coefficients for 210 Pb from forage to liver were about two orders of magnitude less than that used in the original assessment, and the transfer coefficients for 210 Po about a factor a two less. (orig.)

  5. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further

  6. Coal-fired high performance power generating system. Quarterly progress report, July 1, 1993--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This report covers work carried out under Task 3, Preliminary Research and Development, and Task 4, Commercial Generating Plant Design, under contract DE-AC22-92PC91155, {open_quotes}Engineering Development of a Coal Fired High Performance Power Generation System{close_quotes} between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of >47% thermal efficiency; NO{sub x}, SO{sub x}, and particulates {le} 25% NSPS; cost {ge} 65% of heat input; and all solid wastes benign. The report discusses progress in cycle analysis, chemical reactor modeling, ash deposition rate calculations for HITAF (high temperature advanced furnace) convective air heater, air heater materials, and deposit initiation and growth on ceramic substrates.

  7. The modernization potential of gas turbines in the coal-fired power industry thermal and economic effectiveness

    CERN Document Server

    Bartnik, Ryszard

    2013-01-01

    The opportunity of repowering the existing condensing power stations by means of  gas turbogenerators offers an important opportunity to considerably improvement of their energy efficiency. The Modernization Potential of Gas turbines in the Coal-Fired Power Industry presents the methodology, calculation procedures and tools used to support enterprise planning for adapting power stations to dual-fuel gas-steam combined-cycle technologies. Both the conceptual and practical aspects of the conversion of existing coal-fired power plants is covered. Discussions of the feasibility, advantages and disadvantages and possible methods are supported by chapters presenting equations of energy efficiency for the conditions of repowering a power unit by installing a gas turbogenerator in a parallel system and the results of technical calculations involving the selection heating structures of heat recovery steam generators. A methodology for analyzing thermodynamic and economic effectiveness for the selection of a structure...

  8. Conference on alternatives for pollution control from coal-fired low emission sources, Plzen, Czech Republic. Plzen Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The Conference on Alternatives for Pollution Control from Coal-Fired Emission Sources presented cost-effective approaches for pollution control of low emission sources (LES). It also identified policies and strategies for implementation of pollution control measures at the local level. Plzen, Czech Republic, was chosen as the conference site to show participants first hand the LES problems facing Eastern Europe today. Collectively, these Proceedings contain clear reports on: (a) methods for evaluating the cost effectiveness of alternative approaches to control pollution from small coal-fired boilers and furnaces; (b) cost-effective technologies for controlling pollution from coal-fired boilers and furnaces; (c) case studies of assessment of cost effective pollution control measures for selected cities in eastern Europe; and (d) approaches for actually implementing pollution control measures in cities in Eastern Europe. It is intended that the eastern/central European reader will find in these Proceedings useful measures that can be applied to control emissions and clean the air in his city or region. The conference was sponsored by the United States Agency for International Development (AID), the United States Department of Energy (DOE), and the Czech Ministry of Industry and Trade. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  9. Advanced char burnout models for the simulation of pulverized coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    T. Severin; S. Wirtz; V. Scherer [Ruhr-University, Bochum (Germany). Institute of Energy Plant Technology (LEAT)

    2005-07-01

    The numerical simulation of coal combustion processes is widely used as an efficient means to predict burner or system behaviour. In this paper an approach to improve CFD simulations of pulverized coal fired boilers with advanced coal combustion models is presented. In simple coal combustion models, first order Arrhenius rate equations are used for devolatilization and char burnout. The accuracy of such simple models is sufficient for the basic aspects of heat release. The prediction of carbon-in-ash is one aspect of special interest in the simulation of pulverized coal fired boilers. To determine the carbon-in-ash levels in the fly ash of coal fired furnaces, the char burnout model has to be more detailed. It was tested, in how far changing operating conditions affect the carbon-in-ash prediction of the simulation. To run several test cases in a short time, a simplified cellnet model was applied. To use a cellnet model for simulations of pulverized coal fired boilers, it was coupled with a Lagrangian particle model, used in CFD simulations, too. 18 refs., 5 figs., 5 tabs.

  10. Influence of the co-firing on the leaching of trace pollutants from coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Maria Izquierdo; Natalia Moreno; Oriol Font; Xavier Querol; Esther Alvarez; Diano Antenucci; Henk Nugteren; Yolanda Luna; Constantino Fernandez-Pereira [Institute of Earth Sciences ' Jaume Almera' (CSIC), Barcelona (Spain)

    2008-08-15

    The (co)-firing of low-cost alternative fuels is expected to increase in the forthcoming years in the EU because of the economic and environmental benefits provided by this technology. This study deals with the impact of the different coal/waste fuel ratio of the feed blend on the mineralogy, the chemical composition and especially on the leaching properties of fly ash. Different blends of coal, petroleum coke, sewage sludge, wood pellets, coal tailings and other minor biomass fuels were tested in PCC (pulverised coal combustion) and FBC (fluidized bed combustion) power plants. The co-firing of the studied blends did not drastically modify the mineralogy, bulk composition or the overall leaching of the fly ash obtained. This suggests that the co-firing process using the alternative fuels studied does not entail significant limitations in the re-use or management strategies of fly ash. 34 refs., 4 figs., 3 tabs.

  11. Economic aspects of ecological risk due to nuclear and coal-fired electricity production (general comparison, related to the USSR)

    International Nuclear Information System (INIS)

    Novikov, V.; Wahlstroem, B.; Demin, V.; Lebedev, O.; Ignatiyev, V.

    1991-05-01

    The content of this paper is reflected in the chapter headings: (1) Introduction (2) Environmental problems relating to the coal-fired power plants (3) Costs of environmental protection for coal-fired power plants (4) Comparison of economic efficiency of nuclear and coal-fired power plants (5) Cost of environmental protection for normal operation of a nuclear power plant and its fuel facilities (6) Accidental risk from off-reactor nuclear fuel cycle facilities (7) Conclusion. (Quittner)

  12. CHALLENGES AND OPPORTUNITIES FOR EMISSION REDUCTIONS FROM THE COAL-FIRED POWER SECTOR IN GROWING ECONOMIES: THE CASE OF COAL-FIRED ELECTRIC UTILITY PLANTS IN RUSSIA

    Science.gov (United States)

    China, Russia and India together contribute over one-fourth of the total global greenhouse gas emissions from the combustion of fossil-fuels. This paper focuses on the Russian coal-fired power sector, and identifies potential opportunities for reducing emissions. The Russian powe...

  13. Comparative analysis of large biomass & coal co-utilization units

    NARCIS (Netherlands)

    Liszka, M.; Nowak, G.; Ptasinski, K.J.; Favrat, D.; Marechal, F.

    2010-01-01

    The co-utilization of coal and biomass in large power units is considered in many countries (e.g. Poland) as fast and effective way of increasing renewable energy share in the fuel mix. Such a method of biomass use is especially suitable for power systems where solid fuels (hard coal, lignite) are

  14. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Withum; S.C. Tseng; J.E. Locke

    2005-11-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dryer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the seventh in a series of topical reports, describes the results and analysis of mercury sampling performed on a 1,300 MW unit burning a bituminous coal containing three percent sulfur. The unit was equipped with an ESP and a limestone-based wet FGD to control particulate and SO2 emissions, respectively. At the time of sampling an SCR was not installed on this unit. Four sampling tests were performed in September 2003. Flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. The results show that the FGD inlet flue gas oxidized:elemental mercury ratio was roughly 2:1, with 66% oxidized mercury and 34% elemental mercury. Mercury removal, on a coal

  15. Impact of heat and mass transfer during the transport of nitrogen in coal porous media on coal mine fires.

    Science.gov (United States)

    Shi, Bobo; Zhou, Fubao

    2014-01-01

    The application of liquid nitrogen injection is an important technique in the field of coal mine fire prevention. However, the mechanism of heat and mass transfer of cryogenic nitrogen in the goaf porous medium has not been well accessed. Hence, the implementation of fire prevention engineering of liquid nitrogen roughly relied on an empirical view. According to the research gap in this respect, an experimental study on the heat and mass transfer of liquid nitrogen in coal porous media was proposed. Overall, the main mechanism of liquid nitrogen fire prevention technology in the coal mine is the creation of an inert and cryogenic atmosphere. Cryogenic nitrogen gas vapor cloud, heavier than the air, would cause the phenomenon of "gravity settling" in porous media firstly. The cryogen could be applicable to diverse types of fires, both in the openings and in the enclosures. Implementation of liquid nitrogen open-injection technique in Yangchangwan colliery achieved the goals of fire prevention and air-cooling. Meanwhile, this study can also provide an essential reference for the research on heat and mass transfer in porous media in the field of thermal physics and engineering.

  16. Impact of Heat and Mass Transfer during the Transport of Nitrogen in Coal Porous Media on Coal Mine Fires

    Directory of Open Access Journals (Sweden)

    Bobo Shi

    2014-01-01

    Full Text Available The application of liquid nitrogen injection is an important technique in the field of coal mine fire prevention. However, the mechanism of heat and mass transfer of cryogenic nitrogen in the goaf porous medium has not been well accessed. Hence, the implementation of fire prevention engineering of liquid nitrogen roughly relied on an empirical view. According to the research gap in this respect, an experimental study on the heat and mass transfer of liquid nitrogen in coal porous media was proposed. Overall, the main mechanism of liquid nitrogen fire prevention technology in the coal mine is the creation of an inert and cryogenic atmosphere. Cryogenic nitrogen gas vapor cloud, heavier than the air, would cause the phenomenon of “gravity settling” in porous media firstly. The cryogen could be applicable to diverse types of fires, both in the openings and in the enclosures. Implementation of liquid nitrogen open-injection technique in Yangchangwan colliery achieved the goals of fire prevention and air-cooling. Meanwhile, this study can also provide an essential reference for the research on heat and mass transfer in porous media in the field of thermal physics and engineering.

  17. Relative population exposures from coal-fired and nuclear power plants in India

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, T.V.; Lalit, B.Y.; Mishra, U.C.

    1987-01-01

    Coal combustion for electric power generation results in dispersal of fly ash, and hence an additional radiation dose to the population living in the neighbourhood of the coal-fired power plants due to natural radioactivity present in coal. The radiation hazards of coal based and nuclear power plants operating in India are given. The dose commitments to the population living within an 88.5 km radius of the thermal and nuclear power plants in India have been computed using the method outlined in an ORNL report. The estimated dose rates for these two types of power plant were compared. The present study shows that the radiation dose from coal-fired and nuclear power plants are comparable.

  18. Characterization of seven United States coal regions. The development of optimal terrace pit coal mining systems

    Energy Technology Data Exchange (ETDEWEB)

    Wimer, R.L.; Adams, M.A.; Jurich, D.M.

    1981-02-01

    This report characterizes seven United State coal regions in the Northern Great Plains, Rocky Mountain, Interior, and Gulf Coast coal provinces. Descriptions include those of the Fort Union, Powder River, Green River, Four Corners, Lower Missouri, Illinois Basin, and Texas Gulf coal resource regions. The resource characterizations describe geologic, geographic, hydrologic, environmental and climatological conditions of each region, coal ranks and qualities, extent of reserves, reclamation requirements, and current mining activities. The report was compiled as a basis for the development of hypothetical coal mining situations for comparison of conventional and terrace pit surface mining methods, under contract to the Department of Energy, Contract No. DE-AC01-79ET10023, entitled The Development of Optimal Terrace Pit Coal Mining Systems.

  19. Mapping severe fire potential across the contiguous United States

    Science.gov (United States)

    Brett H. Davis

    2016-01-01

    The Fire Severity Mapping System (FIRESEV) project is an effort to provide critical information and tools to fire managers that enhance their ability to assess potential ecological effects of wildland fire. A major component of FIRESEV is the development of a Severe Fire Potential Map (SFPM), a geographic dataset covering the contiguous United States (CONUS) that...

  20. Cause analysis and suggestion of urea consumption in denitrification system of coal-fired power plant

    Science.gov (United States)

    Zhang, Xueying; Dong, Ruifeng; Guo, Yang; Wang, Fangfang; Yang, Shuo

    2018-02-01

    In the daily operation of many power plants, the urea consumption of denitration system is much more than normal. Therefore, the process of site testing and laboratory analysis are carried out. Several suggestions are given out. (1) The position of sampling hole on the exit flue of denitrification system should be redesigned. (2) The denitrification optimization and adjustment should be carried out based on the technical specifications for the operation system. (3) The flue gas CEMS system for single point sampling should be transformed into two or three point sampling mode. (4) When the coal - fired unit is shutting down, examine the ammonia injection and nozzle branch, in order to improve the operation reliability of denitration system.

  1. Costs of producing electricity from nuclear, coal-fired and oil-fired power stations

    International Nuclear Information System (INIS)

    1980-07-01

    The Board publishes generation costs per kW h incurred at recently commissioned power stations so that the costs and performance of nuclear and conventional stations of roughly the same date of construction can be compared. The term 'conventional power station' is used to describe coal-fired and oil-fired steam power stations. The Board has now decided: (A) to supplement the past method of calculating costs at main stations commissioned between 1965 and 1977 by giving the associated figures for interest during construction, for research, and for training; (B) to give similar figures for the contemporary stations Hinkley Point B and the first half of Drax, (C) to provide estimates of generating costs of stations under construction; (D) to set out explicitly the relationship of this method of calculation to that employed in taking investment decisions on future stations. In this way the figures for stations in commission and under construction are arrived at more in line with the general principles of evaluating investment proposals. The present document provides this information. (author)

  2. Coal Fields and Federal Lands of the Conterminous United States

    Science.gov (United States)

    Biewick, Laura

    1997-01-01

    The map depicts the relationship of coal and public lands in the conterminous U. S. Multiple GIS layers are being created for the purpose of deriving estimates of how much coal is owned and administered by the Federal government. Federal coal areas have a profound effect on land-management decisions. Regulatory agencies attempt to balance energy development with alternative land-use and environmental concerns. A GIS database of Federal lands used in energy resource assessments is being developed by the U. S. Geological Survey (USGS) in cooperation with the U.S. Bureau of Land Management (BLM) to integrate information on status of public land, and minerals owned by the Federal government with geologic information on coal resources, other spatial data, coal quality characteristics, and coal availability for development. Using national-scale data we estimate that approximately 60 percent of the area underlain by coal-bearing rocks in the conterminous United States are under Federal surface. Coal produced from Federal leases has tripled from about 12 percent of the total U.S. production in 1976 to almost 34 percent in 1995 (Energy Information Administration website ftp://ftp.eia.doe.gov/pub/coal/cia_95_tables/t13p01.txt). The reason for this increase is demand for low-sulfur coal for use in power plants and the fact that large reserves of this low-sulfur coal are in the western interior U.S., where the Federal government owns the rights to most of the coal reserves. The map was created using Arc/Info 7.0.3 on a UNIX system. The HPGL2 plot file for this map is available from the USGS Energy Resource Surveys Team from http://energy.cr.usgs.gov:8080/energy/coal.html.

  3. CO(2), CO, and Hg emissions from the Truman Shepherd and Ruth Mullins coal fires, eastern Kentucky, USA.

    Science.gov (United States)

    O'Keefe, Jennifer M K; Henke, Kevin R; Hower, James C; Engle, Mark A; Stracher, Glenn B; Stucker, J D; Drew, Jordan W; Staggs, Wayne D; Murray, Tiffany M; Hammond, Maxwell L; Adkins, Kenneth D; Mullins, Bailey J; Lemley, Edward W

    2010-03-01

    Carbon dioxide (CO(2)), carbon monoxide (CO), and mercury (Hg) emissions were quantified for two eastern Kentucky coal-seam fires, the Truman Shepherd fire in Floyd County and the Ruth Mullins fire in Perry County. This study is one of the first to estimate gas emissions from coal fires using field measurements at gas vents. The Truman Shepherd fire emissions are nearly 1400t CO(2)/yr and 16kg Hg/yr resulting from a coal combustion rate of 450-550t/yr. The sum of CO(2) emissions from seven vents at the Ruth Mullins fire is 726+/-72t/yr, suggesting that the fire is consuming about 250-280t coal/yr. Total Ruth Mullins fire CO and Hg emissions are estimated at 21+/-1.8t/yr and >840+/-170g/yr, respectively. The CO(2) emissions are environmentally significant, but low compared to coal-fired power plants; for example, 3.9x10(6)t CO(2)/yr for a 514-MW boiler in Kentucky. Using simple calculations, CO(2) and Hg emissions from coal-fires in the U.S. are estimated at 1.4x10(7)-2.9x10(8)t/yr and 0.58-11.5t/yr, respectively. This initial work indicates that coal fires may be an important source of CO(2), CO, Hg and other atmospheric constituents.

  4. Benefits of coal-fired power generation with flexible CCS in a future northwest European power system with large scale wind power

    NARCIS (Netherlands)

    Van der Wijk, Pieter Cornelis; Brouwer, Anne Sjoerd|info:eu-repo/dai/nl/330822748; Van den Broek, Machteld|info:eu-repo/dai/nl/092946895; Slot, Thijs; Stienstra, Gerard; Van der Veen, Wim; Faaij, André P C

    Coal-fired power generation with carbon capture and storage (CCS) is projected as a cost-effective technology to decarbonize the power sector. Intermittent renewables could reduce its load factor and revenues, so flexible capture unit operation strategies (flexible CCS) have been suggested to

  5. Environmental implications of United States coal exports: a comparative life cycle assessment of future power system scenarios.

    Science.gov (United States)

    Bohnengel, Barrett; Patiño-Echeverri, Dalia; Bergerson, Joule

    2014-08-19

    Stricter emissions requirements on coal-fired power plants together with low natural gas prices have contributed to a recent decline in the use of coal for electricity generation in the United States. Faced with a shrinking domestic market, many coal companies are taking advantage of a growing coal export market. As a result, U.S. coal exports hit an all-time high in 2012, fueled largely by demand in Asia. This paper presents a comparative life cycle assessment of two scenarios: a baseline scenario in which coal continues to be burned domestically for power generation, and an export scenario in which coal is exported to Asia. For the coal export scenario we focus on the Morrow Pacific export project being planned in Oregon by Ambre Energy that would ship 8.8 million tons of Powder River Basin (PRB) coal annually to Asian markets via rail, river barge, and ocean vessel. Air emissions (SOx, NOx, PM10 and CO2e) results assuming that the exported coal is burned for electricity generation in South Korea are compared to those of a business as usual case in which Oregon and Washington's coal plants, Boardman and Centralia, are retrofitted to comply with EPA emissions standards and continue their coal consumption. Findings show that although the environmental impacts of shipping PRB coal to Asia are significant, the combination of superior energy efficiency among newer South Korean coal-fired power plants and lower emissions from U.S. replacement of coal with natural gas could lead to a greenhouse gas reduction of 21% in the case that imported PRB coal replaces other coal sources in this Asian country. If instead PRB coal were to replace natural gas or nuclear generation in South Korea, greenhouse gas emissions per unit of electricity generated would increase. Results are similar for other air emissions such as SOx, NOx and PM. This study provides a framework for comparing energy export scenarios and highlights the importance of complete life cycle assessment in

  6. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2003-09-30

    This is the thirteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. The corrosion probe task is proceeding: Two plant visits were made to prepare for field testing and shakedown tests for the probes were conducted at the University of Utah''s L1500 furnace. Corrosion probes will be installed at the Gavin Plant site in the next quarter. Laboratory studies of SCR catalyst continued this quarter. FTIR studies of catalyst sulfation and of adsorption of NH3 and NO were continued at BYU. NO activities have been measured for a number of samples of BYU catalyst and insights have been gained from the results. Plans are being detailed to test monolith and plate catalysts exposed in the field. In this quarter, the catalysts in the slipstream reactor at AEP's Rockport plant were exposed to the dusty flue gas for 1695 hours. Thus the cumulative catalyst exposure to flue gas rose from 980 hours last quarter to 2677 hours in this quarter. Loss of catalyst activity was noted between April (when the catalysts were fresh) and August. Further analysis of activity data will be needed.

  7. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Temi Linjewile; Connie Senior; Hong-Shig Shim; Bob Hurt; Eric Eddings; Larry Baxter

    2003-01-30

    This is the tenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, progress was made on the computational simulation of a full-scale boiler with the purpose of understanding the potential impacts of burner operating conditions on soot and NO{sub x} generation. Sulfation tests on both the titania support and vanadia/titania catalysts were completed using BYU's in situ spectroscopy reactor this quarter. These experiments focus on the extent to which vanadia and titania sulfate in an SO{sub 2}-laden, moist environment. Construction of the CCS reactor system is essentially complete and the control hardware and software are largely in place. A large batch of vanadia/titania catalyst in powder form has been prepared for use in poisoning tests. During this quarter, minor modifications were made to the multi-catalyst slipstream reactor and to the control system. The slipstream reactor was installed at AEP's Rockport plant at the end of November 2002. In this report, we describe the reactor system, particularly the control system, which was created by REI specifically for the reactor, as well as the installation at Rockport.

  8. Measurement of slurry droplets in coal-fired flue gas after WFGD.

    Science.gov (United States)

    Wu, Xue-Cheng; Zhao, Hua-Feng; Zhang, Yong-Xin; Zheng, Cheng-Hang; Gao, Xiang

    2015-10-01

    China owns the world's largest capacity of coal-fired power units. By the end of 2012, the capacity of installed national thermal power has been 819.68 million kilowatts. The latest standard requires that newly built power plants emit SO2 in no more than 100 mg/m(3) and the emission of old ones be lower than 200 mg/m(3) while in some key areas the emission should be controlled under 50 mg/m(3). So by the end of 2012, 90% of the active coal-fired units have been equipped with flue gas desulfurization devices. Among the desulfurization methods adopted, limestone-gypsum wet flue gas desulphurization accounts for 92%, causing the problem of fine droplets in the exhaust gas after defogger, which may even form "gypsum rain." At present, sampling methods are widely used at home and abroad, such as magnesium ion tracer method, modified magnesium ion tracer method and chemical analysis. In addition, some scholars use aerodynamic methods, such as ELPI, to measure the diameter distribution and concentration. The methods mentioned above all have their own demerits, such as the inability to on-line, continuous measurements and the need of prolonged measuring time. Thus, in this paper some potential optical on-line methods are presented, such as Fraunhofer diffraction pattern analysis and wavelength-multiplexed laser extinction. Also brought up are their measuring scope and merits. These methods have already been utilized to measure small liquid droplets and their demonstrations and evaluations are as well stated. Finally, a 3D imaging method based on digital holographic microscope is proposed for in-line measurement of size and concentration of slurry droplets. The feasibility of this method is demonstrated by preliminary experimental investigation.

  9. Assessing the Exergy Costs of a 332-MW Pulverized Coal-Fired Boiler

    Directory of Open Access Journals (Sweden)

    Victor H. Rangel-Hernandez

    2016-08-01

    Full Text Available In this paper, we analyze the exergy costs of a real large industrial boiler with the aim of improving efficiency. Specifically, the 350-MW front-fired, natural circulation, single reheat and balanced draft coal-fired boiler forms part of a 1050-MW conventional power plant located in Spain. We start with a diagram of the power plant, followed by a formulation of the exergy cost allocation problem to determine the exergy cost of the product of the boiler as a whole and the expenses of the individual components and energy streams. We also define a productive structure of the system. Furthermore, a proposal for including the exergy of radiation is provided in this study. Our results show that the unit exergy cost of the product of the boiler goes from 2.352 to 2.5, and that the maximum values are located in the ancillary electrical devices, such as induced-draft fans and coil heaters. Finally, radiation does not have an effect on the electricity cost, but affects at least 30% of the unit exergy cost of the boiler’s product.

  10. Assessment of nitrogen oxide emission for designing boilers fired with coal dust

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Gusev, L.N.; Babii, V.I.

    1983-09-01

    A method for forecasting emission of nitrogen oxides from steam boilers fired with coal is described. The method produces accurate results when nitrogen oxide emission from furnaces with straight-flow burners and turbulent-type burners fired with coal dusts is forecast. Oxides formed by decomposition of chemical compounds in coal (so-called 'fuel' nitrogen oxides) and nitrogen oxides formed by oxidation of molecular nitrogen by atomic oxygen (so-called 'thermal' nitrogen oxides) are evaluated. Zones in which the two types of nitrogen oxide are formed in flames are characterized. Factors which influence formation of nitrogen oxides in a furnace are evaluated: excess air, flue gas recirculation, design of a furnace and burners, movement of air and coal dust mixture in a furnace, temperature, methods for coal dust preparation, coal dust properties. Equations for forecasting emission of nitrogen oxides from furnaces are derived. Nomograms for easy calculation of emission are also given. Examples of using the method for forecasting emission of nitrogen oxides from furnaces fired with coal from the Kuzbass, the Donbass and Ehkibastuz are discussed. Comparisons of emission of nitrogen oxides calculated on the basis of the method and emission determined experimentally show that forecasting accuracy is high and errors do not exceed 10%. 5 references.

  11. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; S. C. Tseng; J. E. Locke

    2006-01-31

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that these data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the ninth in a series of topical reports, describes the results and analysis of mercury sampling performed on Unit 1 at Plant 7, a 566 MW unit burning a bituminous coal containing 3.6% sulfur. The unit is equipped with a SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO

  12. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; S.C. Tseng; J. E. Locke

    2004-10-31

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. This document, the second in a series of topical reports, describes the results and analysis of mercury sampling performed on a 330 MW unit burning a bituminous coal containing 1.0% sulfur. The unit is equipped with a SCR system for NOx control and a spray dryer absorber for SO{sub 2} control followed by a baghouse unit for particulate emissions control. Four sampling tests were performed in March 2003. Flue gas mercury speciation and concentrations were determined at the SCR inlet, air heater outlet (ESP inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. Due to mechanical problems with the boiler feed water pumps, the actual gross output was between 195 and 221 MW during the tests. The results showed that the SCR/air heater combination oxidized nearly 95% of the elemental mercury. Mercury removal, on a

  13. Understanding China’s electricity market reform from the perspective of the coal-fired power disparity

    International Nuclear Information System (INIS)

    Mou, Dunguo

    2014-01-01

    In China, electricity consumption has grown quickly, supply is highly dependent on coal-fired power, and the prices of electricity are determined by the government, which increases the need for reform to enhance efficiency. In response to disputes about China’s electricity market reform, this paper analyses the efficiency of China’s coal-fired power plants using the Data Envelopment Analysis—Slack Based Measure (DEA-SBM) method on three levels: groups, provinces, and plants. The results indicate that there are both coal-electricity efficiency disparities and generation-hour arrangement unfairness across groups; the disparity across provinces is obvious and long-lasting, as indicated by capacity surpluses and coal-electricity efficiencies; and the disparities are displayed in detail by the estimation at the plant level. The disparities are primarily caused by the generator combination and generation hour arrangement. Competition may be able to solve the disparities, but a further comparison indicates that competition at the national level will enhance the efficiency to a greater degree than competition at the regional level. These results demonstrate that both competition and a united electricity market are necessary for further electricity market reform. - Highlights: • This paper analyses the coal-fired electricity efficiency from three levels. • There are efficiency disparities and hour arrangement unfairness at group level. • The disparities and unfairness are long-lasting across provinces. • The disparities and unfairness are detailed by analysis at plant level. • Competition at national market can improve the efficiency better than at regional market

  14. Environmental radioactivity and radiation exposure by radioactive emissions of coal-fired power plants

    International Nuclear Information System (INIS)

    Jacobi, W.

    1981-03-01

    On the basis of measurements of the radioactive emissions of a 300 MW coal-fired power plant and of a 600 MW lignite-fired power plant the expected activity increase in air and soil in the environment of both plants is estimated and compared with the normal, natural activity level. Due to these emissions it results for the point of maximum immission a committed effective dose equivalent per GW x a of about 0.2 mrem = 0.002 mSv for the coal-fired plant and of about 0.04 mrem = 0.0004 mSv for the lignite-fired plant. This dose is caused to nearly equal parts by inhalation, ingestion and external γ-radiation. The normalized effective dose equivalent in the environment of the modern coal-fired power plant is in the same order of magnitude like that of a modern pressurized water reactor. The total, collective effective dose equivalent commitment by the annual radioactive emissions of coal-fired power plants in the F.R.Germany is estimated to 2000-6000 Man x rem = 20-60 Man x Sv. This corresponds to a mean per caput-dose in the population of the F.R.Germany of about 0.03-0.1 mrem = 0.0003-0.001 mSv; this is about 0.02-0.06% of the mean normal natural radiation exposure of the population. (orig.) [de

  15. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31

    degradation in Polaris membrane performance during two months of continuous operation in a simulated flue gas environment containing up to 1,000 ppm SO{sub 2}. A successful slipstream field test at the APS Cholla power plant was conducted with commercialsize Polaris modules during this project. This field test is the first demonstration of stable performance by commercial-sized membrane modules treating actual coal-fired power plant flue gas. Process design studies show that selective recycle of CO{sub 2} using a countercurrent membrane module with air as a sweep stream can double the concentration of CO{sub 2} in coal flue gas with little energy input. This pre-concentration of CO{sub 2} by the sweep membrane reduces the minimum energy of CO{sub 2} separation in the capture unit by up to 40% for coal flue gas. Variations of this design may be even more promising for CO{sub 2} capture from NGCC flue gas, in which the CO{sub 2} concentration can be increased from 4% to 20% by selective sweep recycle. EPRI and WP conducted a systems and cost analysis of a base case MTR membrane CO{sub 2} capture system retrofitted to the AEP Conesville Unit 5 boiler. Some of the key findings from this study and a sensitivity analysis performed by MTR include: The MTR membrane process can capture 90% of the CO{sub 2} in coal flue gas and produce high-purity CO{sub 2} (>99%) ready for sequestration. CO{sub 2} recycle to the boiler appears feasible with minimal impact on boiler performance; however, further study by a boiler OEM is recommended. For a membrane process built today using a combination of slight feed compression, permeate vacuum, and current compression equipment costs, the membrane capture process can be competitive with the base case MEA process at 90% CO{sub 2} capture from a coal-fired power plant. The incremental LCOE for the base case membrane process is about equal to that of a base case MEA process, within the uncertainty in the analysis. With advanced membranes (5,000 gpu for

  16. Inhibition Effect of Phosphorus Flame Retardants on the Fire Disasters Induced by Spontaneous Combustion of Coal

    Directory of Open Access Journals (Sweden)

    Yibo Tang

    2017-01-01

    Full Text Available Coal spontaneous combustion (CSC generally induces fire disasters in underground mines, thus causing serious casualties, environmental pollution, and property loss around the world. By using six P-containing additives to process three typical coal samples, this study investigated the variations of the self-ignition characteristics of the coal samples before and after treatment. The analysis was performed by combining thermogravimetric analysis/differential scanning calorimetry (TG/DSC Fourier transform infrared spectrometer (FTIR and low temperature oxidation. Experimental results showed that P-containing inhibitors could effectively restrain the heat emitted in the combustion of coal samples and therefore the ignition temperature of the coal samples was delayed at varying degrees. The combustion rate of the coal samples was reduced as well. At the temperatures ranging from 50°C to 150°C, the activation energy of the coal samples after the treatment was found to increase, which indicated that the coal samples were more difficult to be oxidized. After being treated with phosphorus flame retardants (PFRs, the content of several active groups represented by the C-O structure in the three coal samples was proved to be obviously changed. This suggested that PFRs could significantly inhibit the content of CO generated by the low temperature oxidation of coal, and the flame-retardant efficiency grew with the increasing temperature. At 200°C, the maximal inhibition efficiency reached approximately 85%.

  17. A Study on Spreading Direction of Coal-fire Based with TIR Remote Sensing in Wuda Coalfield from 2000 to 2006, Northern China

    International Nuclear Information System (INIS)

    Huo, H-Y; Jiang, X-G; Song, X-F; Liu, L; Ni, Z-Y; Gao, C-X; Zhang, Y-Z

    2014-01-01

    Coal fires are a common and serious problem in most coal producing countries. Coal fires could not only lead to a huge loss of non-renewable energy resources, but it also can cause many environmental problems such as GHG emission, land subsidence and increment of surface temperature. So it is very important to monitor the dynamic changes of coal fires. As far as large scale coal field, remote sensing provided researchers with a new and useful technique for coal fire detection. This paper developed a research over coal fire spreading direction using a multi-temporal TIR remote sensing approach. The results successfully showed that the direction of coal fire spreading and predicted the coal fire direction of development on a regional scale or on a whole coal field scale, and a quantitative analysis of coal fires was made in the research. The results showed that the coal fires had an average annual increase of 0.5 million square meters from 1999 to 2006, and the TIR remote sensing proved to be an available tool for coal fire mapping and prediction of coal fire development

  18. Recent advances in prediction of emission of hazardous air pollutants from coal-fired power plants

    International Nuclear Information System (INIS)

    Senior, C.L.; Helble, J.J.; Sarofim, A.F.

    2000-01-01

    Coal-fired power plants are a primary source of mercury discharge into the atmosphere along with fine particulates containing arsenic, selenium, cadmium, and other hazardous air pollutants. Information regarding the speciation of these toxic metals is necessary to accurately predict their atmospheric transport and fate in the environment. New predictive tools have been developed to allow utilities to better estimate the emissions of toxic metals from coal-fired power plants. These prediction equations are based on fundamental physics and chemistry and can be applied to a wide variety of fuel types and combustion conditions. The models have significantly improved the ability to predict the emissions of air toxic metals in fine particulate and gas-phase mercury. In this study, the models were successfully tested using measured mercury speciation and mass balance information collected from coal-fired power plants

  19. An assessment of mercury emissions and health risks from a coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fthenakis, V.M.; Lipfert, F.W.; Moskowitz, P.D.; Saroff, L. [Brookhaven National Laboratory, Upton, NY (United States)

    1995-12-01

    Title III of the 1990 Clean Air Act Amendments (CAAA) directed the US Environmental Protection Agency (EPA) to evaluate the rate and effect of mercury emissions in the atmosphere and technologies to control the emissions. The US DOE sponsored a risk assessment project at Brookhaven (BNL) to evaluate health risks of mercury emissions from coal combustion. Methylmercury (MeHg) is the compound predominantly responsible for human exposure to atmospheric mercury in the United States, through fish ingestion. In the BNL study, health risks to adults resulting from Hg emissions from a hypothetical coal-fired power plant were estimated using probabilistic risk assessment techniques. This study showed that the effects of emissions of a single large power plant may double the background exposures to MeHg resulting from consuming fish obtained from a localized are near the power plant. Even at these more elevated exposure levels, the attributable incidence in mild neurological symptoms (paresthesia) was estimated to be quite small, especially when compared with the estimated background incidence in the population. 29 refs., 5 figs., 2 tabs.

  20. An assessment of mercury emissions and health risks from a coal-fired power plant

    International Nuclear Information System (INIS)

    Fthenakis, V.M.; Lipfert, F.W.; Moskowitz, P.D.; Saroff, L.

    1995-01-01

    Title III of the 1990 Clean Air Act Amendments (CAAA) directed the US Environmental Protection Agency (EPA) to evaluate the rate and effect of mercury emissions in the atmosphere and technologies to control the emissions. The US DOE sponsored a risk assessment project at Brookhaven (BNL) to evaluate health risks of mercury emissions from coal combustion. Methylmercury (MeHg) is the compound predominantly responsible for human exposure to atmospheric mercury in the United States, through fish ingestion. In the BNL study, health risks to adults resulting from Hg emissions from a hypothetical coal-fired power plant were estimated using probabilistic risk assessment techniques. This study showed that the effects of emissions of a single large power plant may double the background exposures to MeHg resulting from consuming fish obtained from a localized are near the power plant. Even at these more elevated exposure levels, the attributable incidence in mild neurological symptoms (paresthesia) was estimated to be quite small, especially when compared with the estimated background incidence in the population. 29 refs., 5 figs., 2 tabs

  1. Techno-economic assessments of oxy-fuel technology for South African coal-fired power stations

    CSIR Research Space (South Africa)

    Oboirien, BO

    2014-03-01

    Full Text Available at the technical and economic viability of oxy-fuel technology for CO(sub2) capture for South African coal-fired power stations. This study presents a techno-economic analysis for six coal fired power stations in South Africa. Each of these power stations has a...

  2. Coal industry - problems and prospects. [United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Siddall, N

    1984-01-01

    Presidential Address by Sir Norman Siddall is presented which considers the problems and prospects facing the UK coal industry. The range of changes which business management is subject to are outlined together with the coal industry's response to these changes. Fluctuations in the energy market and the economy have resulted in a customer orientated approach to marketing, and improved efficiency throughout the industry. New technology has increased the efficiency of some aspects of operations but at the some time developments in the areas of industrial relations and public accountability have limited management's ability to respond to changes in the commercial environment.

  3. Case study of the effects of public safety regulation on the construction costs of coal-fired and nuclear power plants

    International Nuclear Information System (INIS)

    Morris, C.D.

    1987-01-01

    Regulations intended to reduce the number of accidents at nuclear plants and the discharge of sulfur and particulate wastes at coal-fired power plants have become an important cause of construction cost escalation. Measuring the costs of these regulatory interventions is a difficult research task. The three-unit Bruce Mansfield coal-fired plant and the two-unit Beaver Valley nuclear power station located in Shippingport, Pennsylvania, provide a unique opportunity for a case study of the costs of regulation in the construction of both kinds of plants. The units of each plant were built sequentially over a period of intensifying regulation. The method used to measure the costs of public safety regulation in the construction of each kind of plant is to determine the connections between the issuances of the regulatory agencies (EPA and NRC) and cost escalations of succeeding units. The small cost escalations of the Mansfield 3 unit, in comparison to the massive costs of the Beaver Valley 2 unit, suggest that the design and construction of new coal-fired plants are not disrupted by regulatory interventions nearly as extensively as are nuclear units. Certain technical features of Beaver Valley 2, especially its small size and a design that is identical to the first unit's, further contribute to its cost escalations

  4. Analysis and study on the membrane method of CO2 removal of coal-fired boilers

    International Nuclear Information System (INIS)

    Fangqin, Li; Henan, Li; Jianxing, Ren; Jiang, Wu; Zhongzhu, Qiu

    2010-01-01

    Carbon dioxide (CO 2 ) is one kind of harmful substances from the burning process of fossil fuel. CO 2 emissions cause serious pollution on atmospheric environment, especially greenhouse effect. In this paper, CO 2 formation mechanism and control methods were researched. Membrane technology was studied to control CO 2 emissions from coal-fired boilers. The relationship between CO 2 removal efficiency and parameters of membrane contactor was analyzed. Through analysis and study, factors affecting on CO 2 removal efficiency were gotten. How to choose the best parameters was known. This would provide theoretical basis for coal-fired utility boilers choosing effective way of CO 2 removal. (author)

  5. Multi-objective Optimization of Coal-fired Boiler Combustion Based on NSGA-II

    OpenAIRE

    Tingfang Yu; Hongzhen Zhu; Chunhua Peng

    2013-01-01

    NOx emission characteristics and overall heat loss model for a 300MW coal-fired boiler were established by Back Propagation (BP) neural network, by which the the functional relationship between outputs (NOx emissions & overall heat loss of the boiler) and inputs (operational parameters of the boiler) of a coal-fired boiler can be predicted. A number of field test data from a full-scale operating 300MWe boiler were used to train and verify the BP model. The NOx emissions & heat loss pr...

  6. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    Science.gov (United States)

    Shearer, Christine; Fofrich, Robert; Davis, Steven J.

    2017-04-01

    With its growing population, industrializing economy, and large coal reserves, India represents a critical unknown in global projections of future CO2 emissions. Here, we assess proposed construction of coal-fired power plants in India and evaluate their implications for future emissions and energy production in the country. As of mid-2016, 243 gigawatts (GW) of coal-fired generating capacity are under development in India, including 65 GW under construction and an additional 178 GW proposed. These under-development plants would increase the coal capacity of India's power sector by 123% and, when combined with the country's goal to produce at least 40% of its power from non-fossil sources by 2030, exceed the country's projected future electricity demand. The current proposals for new coal-fired plants could therefore either "strand" fossil energy assets (i.e., force them to retire early or else operate at very low capacity factors) and/or ensure that the goal is not met by "locking-out" new, low-carbon energy infrastructure. Similarly, future emissions from the proposed coal plants would also exceed the country's climate commitment to reduce its 2005 emissions intensity 33% to 35% by 2030, which—when combined with the commitments of all other countries—is itself not yet ambitious enough to meet the international goal of holding warming well below 2°C relative to the pre-industrial era.

  7. Heat recovery from flue gas of coal fired installations with reduced pollutant emission - the Zittau process

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H; Strauss, R; Hofmann, K -D; Suder, M; Hultsch, T; Wetzel, W; Gabrysch, H; Jung, J [Technische Hochschule, Zittau (German Democratic Republic)

    1989-01-01

    Explains the Zittau technology of combined flue gas heat recovery and flue gas desulfurization in small brown coal fired power plants. Steam generators to be equipped with this technology have 6.5 or 10 t/h steam capacity and are intended for combustion of low-grade brown coal (8.2 MJ/kg). An industrial 6.5 t/h prototype steam generator is in operation and it achieves 95% SO{sub 2} removal from flue gas with 5600 to 7800 mg SO{sub 2} per m{sup 3} of dry flue gas. The Zittau technology is available in 3 variants: with maximum waste heat recovery, with partial waste heat recovery or without waste heat recovery and only wet flue gas scrubbing. Two flowsheets of flue gas and suspension circulation are provided. The first variant recovers 25.7% of nominal heat capacity (1.1 thermal MW from a 4.2 MW steam generator with 6.5 t/h steam capacity), which amounts to economizing 2,400 t/a brown coal equivalent over 4,000 annual operating hours. The second variant recovers 6.5% of waste heat, requiring less investment by installing smaller heat exchangers than used in the first variant. All three variants have contact spray separators, suction units and suspension preparation equipment. Flue gas suspension scrubbing is carried out with fly ash produced by the steam generator. This ash is capable of absorbing 50 to 70% of flue gas SO{sub 2}. Supply of additional ash from other plants achieve a further 25% SO{sub 2} removal; a higher desulfurization degree is obtained by adding limestone to suspensions. 5 refs.

  8. Hazardous air pollutants emission from coal and oil-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Deepak Pudasainee; Jeong-Hun Kim; Sang-Hyeob Lee; Ju-Myon Park; Ha-Na Jang; Geum-Ju Song; Yong-Chil Seo [Yonsei University, Wonju (Republic of Korea). Department of Environmental Engineering

    2010-03-15

    Hazardous air pollutants (HAPs) emission characteristics from coal (anthracite, bituminous) and oil-fired power plants were studied in order to control pollutants by formulating US maximum achievable control technology (MACT)-like regulation in Korea. Sampling and analysis were carried out according to either Korean standard test method or US EPA method. Relatively lower levels of NOx and SOx were emitted from plants burning bituminous than the anthracite coal. Less dust was emitted from oil-fired power plants. Mercury, lead, and chromium were dominant in coal-fired power plants, following which, nickel and chromium were emitted from oil-fired power plants. The major volatile organic compounds (VOCs) emitted from coal-fired plants were 1,2-dichloroethane, benzene, carbon tetrachloride, chloroform, trichloro-ethylene. The emission of mercury and other heavy metals in flue gas was attributed to fuel types, operating conditions, residence time in the control devices and the type of air pollution control devices. After emission tests in the field and on analysis of the continuous emission monitoring data collected from facilities under operation and consideration of other various factors, management guidelines will be suggested with special reference to US MACT-like regulation.

  9. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F.; Zheng, B.; He, K.B. [Tsinghua Univ., Beijing (China). State Key Joint Laboratory of Environment Simulation and Pollution Control; Zhang, Q. [Tsinghua Univ., Beijing (China). Ministry of Education Key Laboratory for Earth System Modeling; Tong, D.; Li, M. [Tsinghua Univ., Beijing (China). Ministry of Education Key Laboratory for Earth System Modeling; Tsinghua Univ., Beijing (China). State Key Joint Laboratory of Environment Simulation and Pollution Control; Huo, H. [Tsinghua Univ., Beijing (China). Inst. of Energy, Environment and Economy

    2015-07-01

    This paper, which focuses on emissions from China's coal-fired power plants during 1990-2010, is the second in a series of papers that aims to develop a high-resolution emission inventory for China. This is the first time that emissions from China's coal-fired power plants were estimated at unit level for a 20-year period. This inventory is constructed from a unit-based database compiled in this study, named the China coal-fired Power plant Emissions Database (CPED), which includes detailed information on the technologies, activity data, operation situation, emission factors, and locations of individual units and supplements with aggregated data where unit-based information is not available. Between 1990 and 2010, compared to a 479 % growth in coal consumption, emissions from China's coal-fired power plants increased by 56, 335, and 442 % for SO{sub 2}, NO{sub x}, and CO{sub 2}, respectively, and decreased by 23 and 27 % for PM{sub 2.5} and PM{sub 10} respectively. Driven by the accelerated economic growth, large power plants were constructed throughout the country after 2000, resulting in a dramatic growth in emissions. The growth trend of emissions has been effectively curbed since 2005 due to strengthened emission control measures including the installation of flue gas desulfurization (FGD) systems and the optimization of the generation fleet mix by promoting large units and decommissioning small ones. Compared to previous emission inventories, CPED significantly improved the spatial resolution and temporal profile of the power plant emission inventory in China by extensive use of underlying data at unit level. The new inventory developed in this study will enable a close examination of temporal and spatial variations of power plant emissions in China and will help to improve the performances of chemical transport models by providing more accurate emission data.

  10. High tech conveyors unitize Selby coal

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    Designs proposed by Anderson Strathclyde PLC and Cable Belt for single-flight conveyors to bring the output of the five Selby mines to the surface have both been developed by the UK National Coal Board. Both designs extend the limits of conveyor technology and are expected to economise on transport and longwalling costs. 4 references.

  11. Emission of CO2 Gas and Radioactive Pollutant from Coal Fired Power Plant

    International Nuclear Information System (INIS)

    Ida, N.Finahari; Djati-HS; Heni-Susiati

    2006-01-01

    Energy utilization for power plant in Indonesia is still depending on burning fossil fuel such as coal, oil and gaseous fuel. The direct burning of coal produces CO 2 gas that can cause air pollution, and radioactive pollutant that can increase natural radioactive dosage. Natural radionuclide contained in coal is in the form of kalium, uranium, thorium and their decay products. The amount of CO 2 gas emission produced by coal fired power plant can be reduced by equipping the plant with waste-gas treatment facility. At this facility, CO 2 gas is reacted with calcium hydroxide producing calcium carbonate. Calcium carbonate then can be used as basic material in food, pharmaceutical and construction industries. The alternative method to reduce impact of air pollution is by replacing coal fuel with nuclear fuel or new and renewable fuel. (author)

  12. The challenge for gas: get price-competitive with coal-fired electricity

    International Nuclear Information System (INIS)

    Gill, Len

    1999-01-01

    The challenge for the gas industry is to become price competitive with coal-fired electricity if it wants a larger share of the energy market. Returning to the issue of greater use of gas for electricity generation, the author points out that although electricity prices were rising they were still below the point where gas-fired electricity generation was viable. Copyright (1999) The Australian Gas Journal

  13. Radioactivity of combustion residues from coal-fired power stations

    International Nuclear Information System (INIS)

    Vom Berg, W.; Puch, K.H.

    1996-01-01

    Each year in Germany, about 18 mill. t of combustion residues are produced from the combustion of bituminous coal and lignite. They are utilized to a great extent in the construction industry and in mining. During the combustion of coal, the radio-nuclides remain predominantly in the ash. The radionuclide concentration in lignite ash is within the range of that in natural soil. The combustion residues of bituminous coal contain radio-nuclides of a similar order of magnitude as also can occur in natural rock. The utilization of combustion residues in construction materials makes a negligible contribution to radiation exposure through retention in buildings. (orig.) [de

  14. Reserve reporting in the United States coal industry

    International Nuclear Information System (INIS)

    Grubert, Emily

    2012-01-01

    United States energy policymaking can be better supported with accurate and consistent data on coal reserves, both in the public and private sectors. In particular, reserve data for coal and other energy resources should be directly comparable so that decision-makers can easily understand the relationship among available resources. Long-term policy and investment choices regarding energy security, the environment, and resource allocation depend on accurate information, but existing and easily available data on the magnitude of geologically, environmentally, economically, socially, and legally accessible coal reserves are of insufficient quality to guide such decisions. Even still, these data are often presented for use in policy and energy analysis. Currently, coal reserves are overstated relative to competitor energy resource reserves, in part because coal reporting standards have historically been more liberal and vague than standards for resources like natural gas. Overstating the marketable coal resource could lead to inefficient allocation of limited capital investment that can be difficult to reverse. US government bodies like the Energy Information Administration, United States Geological Survey, Securities and Exchange Commission, and Bureau of Land Management can help correct deficiencies by clarifying standards and collecting data that are relevant for decision-makers, such as energy-based reserve information. - Highlights: ► US Coal reserves are important to public and private policy and investment decisions. ► Poor quality data and coal reserve overreporting misrepresent reality. ► Choices made based on bad information can lead to long-term capital misallocation. ► Numerous government agencies are tasked with providing public data on coal reserves. ► Clearer, more restrictive reserves reporting standards can aid decision-makers.

  15. RAM investigation of coal-fired thermal power plants: A case study

    Directory of Open Access Journals (Sweden)

    D. Bose

    2012-04-01

    Full Text Available Continuous generation of electricity of a power plant depends on the higher availability of its components/equipments. Higher availability of the components/equipments is inherently associated with their higher reliability and maintainability. This paper investigates the reliability, availability and maintainability (RAM characteristics of a 210 MW coal-fired thermal power plant (Unit-2 from a thermal power station in eastern region of India. Critical mechanical subsystems with respect to failure frequency, reliability and maintainability are identified for taking necessary measures for enhancing availability of the power plant and the results are compared with Unit-1 of the same Power Station. Reliability-based preventive maintenance intervals (PMIs at various reliability levels of the subsystems are estimated also for performing their preventive maintenance (PM. The present paper highlights that in the Unit-2, Economizer (ECO & Furnace Wall Tube (FWT exhibits lower reliability as compared to the other subsystems and Economizer (ECO & Baffle Wall Tube (BWT demands more improvement in maintainability. Further, it has been observed that FSH followed Decreasing Failure Rate (DFR and Economizer (ECO is the most critical subsystem for both the plants. RAM analysis is very much effective in finding critical subsystems and deciding their preventive maintenance program for improving availability of the power plant as well as the power supply.

  16. Should a coal-fired power plant be replaced or retrofitted?

    Energy Technology Data Exchange (ETDEWEB)

    Dalia Patino-Echeverri; Benoit Morel; Jay Apt; Chao Chen [Carnegie Mellon University, Pittsburgh, PA (USA)

    2007-12-15

    In a cap-and-trade system, a power plant operator can choose to operate while paying for the necessary emissions allowances, retrofit emissions controls to the plant, or replace the unit with a new plant. Allowance prices are uncertain, as are the timing and stringency of requirements for control of mercury and carbon emissions. We model the evolution of allowance prices for SO{sub 2}, NOx, Hg, and CO{sub 2} using geometric Brownian motion with drift, volatility, and jumps, and use an options-based analysis to find the value of the alternatives. In the absence of a carbon price, only if the owners have a planning horizon longer than 30 years would they replace a conventional coal-fired plant with a high-performance unit such as a supercritical plant; otherwise, they would install SO{sub 2} and NOx controls on the existing unit. An expectation that the CO{sub 2} price will reach $50/t in 2020 makes the installation of an IGCC with carbon capture and sequestration attractive today, even for planning horizons as short as 20 years. A carbon price below $40/t is unlikely to produce investments in carbon capture for electric power. 1 ref., 5 figs., 2 tabs.

  17. Turbine-generators for 400 mw coal-fired power plants

    International Nuclear Information System (INIS)

    Engelke, W.; Bergmann, D.; Boer, J.; Termuehlen, H.

    1991-01-01

    This paper reports that presently, standard coal-fired power plant concepts including flue gas desulfurization (FGD) and DENO x systems are in the design stage to be built on relatively short delivery schedules. The rating in the 400 MW range has generally been selected, because such small power plant units with short delivery times cause a minimum financial burden during planning, delivery and installation. They also follow more closely the growth of electric energy demand at specific locations. However economical considerations could lead to larger unit ratings, since the planning and building process of higher capacity plants is not significantly different but specific plant costs are certainly smaller with increased unit size. Historically large tandem-compound steam turbine-generators have been built and have proven reliable operation with ratings in excess of 800 MW. Already in the late 1950's main steam pressures and temperatures as high as 4,500 psig and 1,200 degrees F respectively were successfully used for smaller steam turbines

  18. Coal-Powered Electric Generating Unit Efficiency and Reliability Dialogue: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Emmanuel [Energetics, Inc., Columbia, MD (United States)

    2018-02-01

    Coal continues to play a critical role in powering the Nation’s electricity generation, especially for baseload power plants. With aging coal generation assets facing decreased performance due to the state of the equipment, and with challenges exacerbated by the current market pressures on the coal sector, there are opportunities to advance early-stage technologies that can retrofit or replace equipment components. These changes will eventually result in significant improvements in plant performance once further developed and deployed by industry. Research and development in areas such as materials, fluid dynamics, fuel properties and preparation characteristics, and a new generation of plant controls can lead to new components and systems that can help improve the efficiency and reliability of coal-fired power plants significantly, allowing these assets to continue to provide baseload power. Coal stockpiles at electricity generation plants are typically large enough to provide 30 to 60 days of power prior to resupply—significantly enhancing the stability and reliability of the U.S. electricity sector. Falling prices for non-dispatchable renewable energy and mounting environmental regulations, among other factors, have stimulated efforts to improve the efficiency of these coal-fired electric generating units (EGUs). In addition, increased reliance on natural gas and non-dispatchable energy sources has spurred efforts to further increase the reliability of coal EGUs. The Coal Powered EGU Efficiency and Reliability Dialogue brought together stakeholders from across the coal EGU industry to discuss methods for improvement. Participants at the event reviewed performance-enhancing innovations in coal EGUs, discussed the potential for data-driven management practices to increase efficiency and reliability, investigated the impacts of regulatory compliance on coal EGU performance, and discussed upcoming challenges for the coal industry. This report documents the key

  19. Low cost combustion tuning and fuel nozzles modification to reduce NOx emission in large coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    B. Chudnovsky; L. Levin; A. Talanker; E. Bar-Ziv; A. Vikhansky; A.F. Sarofim [Israel Electric Corporation (IEC), Haifa (Israel)

    2003-07-01

    This work focuses on low-cost combustion tuning to reduce NOx emission in coal-fired tangential boilers, testing the furnace in various operation modes. We have also experimented different coal nozzle types. The measurements were accompanied by computer simulations of the combustion process. We also used an on-line supervision system. The data obtained from 575 MW boilers show that with tuning and modified nozzles NOx was considerably reduced. The emission of NOx was reduced from 1200 to 570 mg/dNm{sup 3} at 6% O{sub 2} for South African coal at full load. At partial load NOx emission dropped from 1400 to 750-850 mg/dNm{sup 3} at 6% O{sub 2}. High volatile coal firing led to additional NOx reduction. A series of tests were performed with Colombian and Indonesian coals as well, dropping NOx emission to 400-450 mg/dNm{sup 3} at6% O{sub 2} at full load. Sootblowing optimization using the supervision system enabled us to further reduce NOx emission by approximately 10%. The boiler and unit performance was not influenced by any of the techniques used for NOx reduction. In such a manner, the results presented in this work clearly show that technological methods for reduction NOx are available and capable of obtaining the required NOx emission. We believe that the conclusions of the present study are general and may be applied to other utility boilers as well. 13 refs., 12 figs., 7 tabs.

  20. Dry sorbent injection of trona to control acid gases from a pilot-scale coal-fired combustion facility

    Directory of Open Access Journals (Sweden)

    Tiffany L. B. Yelverton

    2016-01-01

    Full Text Available  Gaseous and particulate emissions from the combustion of coal have been associated with adverse effects on human and environmental health, and have for that reason been subject to regulation by federal and state governments. Recent regulations by the United States Environmental Protection Agency have further restricted the emissions of acid gases from electricity generating facilities and other industrial facilities, and upcoming deadlines are forcing industry to consider both pre- and post-combustion controls to maintain compliance. As a result of these recent regulations, dry sorbent injection of trona to remove acid gas emissions (e.g. HCl, SO2, and NOx from coal combustion, specifically 90% removal of HCl, was the focus of the current investigation. Along with the measurement of HCl, SO2, and NOx, measurements of particulate matter (PM, elemental (EC, and organic carbon (OC were also accomplished on a pilot-scale coal-fired combustion facility. Gaseous and particulate emissions from a coal-fired combustor burning bituminous coal and using dry sorbent injection were the focus of the current study. From this investigation it was shown that high levels of trona were needed to achieve the goal of 90% HCl removal, but with this increased level of trona injection the ESP and BH were still able to achieve greater than 95% fine PM control. In addition to emissions reported, measurement of acid gases by standard EPA methods were compared to those of an infrared multi-component gas analyzer. This comparison revealed good correlation for emissions of HCl and SO2, but poor correlation in the measurement of NOx emissions.

  1. United Kingdom Ireland coal ports directory

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The directory gives details of ports at 65 locations in the UK and Ireland. For each port, the directory lists the name of the terminal; the name, address, contact name and numbers of the terminal owner and of the terminal operator; and the name and telephone/fax numbers of ship's agents. It also give details, for each terminal, where available, of tidal rise, access routes, vessel maxima, working hours, coal traders and handlers, discharge facilities, daily discharge rate, coal loading facilities, daily loading rate, stocking area dimensions and capacity, stocking area facilities and inland transport infrastructure. Research for the directory was undertaken by S. Fazal and C. Measham of Sheffield Hallam University, Business School.

  2. Southeast Asia - air pollution control and coal-fired power generation

    Energy Technology Data Exchange (ETDEWEB)

    Soud, H.N.

    1997-12-01

    Coal-fired power generation in Southeast Asia continues to grow in order to satisfy the increasing demand for electricity throughout the region. Emissions standards have been adopted in some Southeast Asian countries. Particulate matter, SO{sub 2} and NO{sub x} emissions are the main air pollutants for which standards have been introduced. Coal cleaning, and upgrading are not used much currently. Blending is used in Thailand and is being investigated in Indonesia. Pulverised coal combustion continues to dominate the coal-fired generating capacity. FBC is used at smaller scale and in a few cases. PFBC and IGCC are considered only as options for the future. Control priority is given to particulate matter and ESPs are installed on most (existing and new) coal-fired plants. Although FGD has been installed at Mae Moh in Thailand and is planned for Paiton in Indonesia and Sual in the Philippines, the technology is still considered expensive and its application is likely to remain limited. Boiler optimisation is the main NO{sub x} abatement method currently used. It is expected that low NO{sub x} burners will be used in the future especially in new plant. 166 refs., 1 fig., 40 tabs.

  3. Depositional history of the Fire Clay coal bed (Late Duckmantian), Eastern Kentucky, USA

    Science.gov (United States)

    Greb, S.F.; Eble, C.F.; Hower, J.C.

    1999-01-01

    More than 3800 coal thickness measurements, proximate analyses from 97 localities, and stratigraphic and sedimentological analyses from more than 300 outcrops and cores were used in conjunction with previously reported palynological and petrographic studies to map individual benches of the coal and document bench-scale variability in the Fire Clay (Hazard No. 4) coal bed across a 1860 km2 area of the Eastern Kentucky Coal Field. The bench architecture of the Fire Clay coal bed consists of uncommon leader benches, a persistent but variable lower bench, a widespread, and generally thick upper bench, and local, variable rider benches. Rheotrophic conditions are inferred for the leader benches and lower bench based on sedimentological associations, mixed palynomorph assemblages, locally common cannel coal layers, and generally high ash yields. The lower bench consistently exhibits vertical variability in petrography and palynology that reflects changing trophic conditions as topographic depressions infilled. Infilling also led to unconfined flooding and ultimately the drowning of the lower bench mire. The drowned mire was covered by an air-fall volcanic-ash deposit, which produced the characteristic flint clay parting. The extent and uniform thickness of the parting suggests that the ash layer was deposited in water on a relatively flat surface without a thick canopy or extensive standing vegetation across most of the study area. Ash deposits led to regional ponding and establishment of a second planar mire. Because the topography had become a broadly uniform, nutrient-rich surface, upper-bench peats became widespread with large areas of the mire distant to clastic sources. Vertical sections of thick (> 70 cm), low-ash yield, upper coal bench show a common palynomorph change from arborescent lycopod dominance upward to fern and densospore-producing, small lycopod dominance, inferred as a shift from planar to ombrotrophic mire phases. Domed mires appear to have been

  4. PROTOTYPE SCALE TESTING OF LIMB TECHNOLOGY FOR A PULVERIZED-COAL-FIRED BOILER

    Science.gov (United States)

    The report summarizes results of an evaluation of furnace sorbent injection (FSI) to control sulfur dioxide (SO2) emissions from coal-fired utility boilers. (NOTE: FSI of calcium-based sorbents has shown promise as a moderate SO2 removal technology.) The Electric Power Research I...

  5. NOVEL ECONOMICAL HG(0) OXIDATION REAGENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED BOILERS

    Science.gov (United States)

    The authors have developed a novel economical additive for elemental mercury (Hg0) removal from coal-fired boilers. The oxidation reagent was rigorously tested in a lab-scale fixed-bed column with the Norit America's FGD activated carbon (DOE's benchmark sorbent) in a typical PRB...

  6. NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS

    Science.gov (United States)

    The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...

  7. Control of mercury emissions from coal fired electric uitlity boilers: An update

    Science.gov (United States)

    Coal-fired power plants in the U.S. are known to be the major anthropogenic source of domestic mercury emissions. The Environmental Protection Agency (EPA) has recently proposed to reduce emissions of mercury from these plants. In March 2005, EPA plans to promulgate final regulat...

  8. CONTROL OF NOX EMISSIONS FROM U.S. COAL-FIRED ELECTRIC UTILITY BOILERS

    Science.gov (United States)

    The paper discusses the control of nitrogen oxide (NOx) emissions from U.S. coal-fired electric utility boilers. (NOTE: In general, NOx control technologies are categorized as being either primary or secondary control technologies. Primary technologies reduce the amount of NOx pr...

  9. Dynamics of clean coal-fired power generation development in China

    International Nuclear Information System (INIS)

    Yue, Li

    2012-01-01

    Coal-fired power technology will play an important role over a long period in China. Clean coal-fired power technology is essential for the global GHG emission reduction. Recently, advanced supercritical (SC)/ultra-supercritical (USC) technology has made remarkable progress in China and greatly contributed to energy saving and emission reduction. This study analyzes the dynamics of SC/USC development in China from an integrated perspective. The result indicates that, besides the internal demand, the effective implementation of domestic public policy and technology transfer contributed greatly to the development of SC/USC technology in China. In future low carbon scenario, SC/USC coal-fired power technology might still be the most important power generation technology in China until 2040, and will have a significant application prospect in other developing countries. The analysis makes a very useful introduction for other advanced energy technology development, including a renewable energy technology, in China and other developing countries. - Highlights: ► The US/USC technology is the key clean coal-fired power technology in current China. ► The domestic policy and technology transfer largely contributed to their development. ► This makes a useful introduction for the development of renewable energy in China.

  10. Developing an international consortium to build an 800 MW coal fired power plant in Indonesia

    International Nuclear Information System (INIS)

    Jones, R.H.; Hashima, T.

    1990-01-01

    This paper describes the cooperative construction of a fossil-fueled power plant in Indonesia. The topics discussed in the paper include energy use and the market for electric power, fuel resources, history of business activities, the role of joint resources and government business policy, and preparing for bidding an 800MW coal-fired power plant

  11. FUNDAMENTAL SCIENCE AND ENGINEERING OF MERCURY CONTROL IN COAL-FIRED POWER PLANTS

    Science.gov (United States)

    The paper discusses the existing knowledge base applicable to mercury (Hg) control in coal-fired boilers and outlines the gaps in knowledge that can be filled by experimentation and data gathering. Mercury can be controlled by existing air pollution control devices or by retrofit...

  12. Combined Heat and Power: Coal-Fired Air Turbine (CAT)-Cycle Plant

    International Nuclear Information System (INIS)

    Lee Recca

    1999-01-01

    By combining an integrated system with a gas turbine, coal-fired air turbine cycle technology can produce energy at an efficiency rate of over 40%, with capital and operating costs below those of competing conventional systems. Read this fact sheet to discover the additional benefits of this exciting new technology

  13. Transport of the radionuclides and doses for some coal fired power plants

    International Nuclear Information System (INIS)

    Antic, D.; Telenta, B.; Sokcic-Kostic, M.

    1994-01-01

    The radiation exposure of the public in the vicinity of the selected coal fired power plants near from Belgrade has been studied. The contents of natural radionuclides according to experimental data have been used and dose rates from inhalation have been calculated using a two dimensional version of the cloud model. (author)

  14. Evaluation methods of solar contribution in solar aided coal-fired power generation system

    International Nuclear Information System (INIS)

    Zhu, Yong; Zhai, Rongrong; Zhao, Miaomiao; Yang, Yongping; Yan, Qin

    2015-01-01

    Highlights: • Five methods for evaluating solar contribution are analyzed. • Method based on the second law of thermodynamics and thermal economics is more suitable for SACPGS. • Providing reliable reference for the formulation of feed-in tariff policies in China. - Abstract: Solar aided coal-fired power plants utilize solar thermal energy to couple with coal-fired power plants of various types by adopting characteristics of different thermal needs of plants. In this way, the costly thermal storage system and power generating system will become unnecessary, meanwhile the intermittent and unsteady nature of power generation can be avoided. In addition, large-scale utilization of solar thermal power and energy saving can be achieved. With the ever-deepening analyses of solar aided coal-fired power plants, the contribution evaluating system of solar thermal power is worth further exploration. In this paper, five common evaluation methods of solar contribution are analyzed, and solar aided coal-fired power plants of 1000 MW, 600 MW and 330 MW are studied with these five methods in a comparative manner. Therefore, this study can serve as a theoretical reference for future research of evaluation methods and subsidies for new energy

  15. APPLICATION OF REBURNING TO COAL-FIRED INDUSTRIAL BOILERS IN TAIWAN

    Science.gov (United States)

    The paper gives an overview of the characteristics of coal-fired industrial boilers in Taiwan and projections of the cost and performance data for retrofitting several boilers with reburning. The impacts of reburning fuel type on the reburning system design and cost effectivenes...

  16. Main characteristics of the radioactive enrichment in ashes produced in coal-fired power stations

    International Nuclear Information System (INIS)

    Baeza, Antonio; Corbacho, Jose A.; Cancio, David; Robles, Beatriz; Mora, Juan C.

    2008-01-01

    Under contract with the Spain's 'Nuclear Safety Council', a study is being conducted of the nation's largest nominal output coal-fired power stations. Its purpose is to assess the radiological impact on workers and local populations due to this source of NORM activity. One of the aspects of particular interest is the study of the radioactive enrichment in the combustion wastes relative to the different coals used as fuel (usually local bituminous coal or lignite, or imported coal). These wastes consist of fly ash (mostly fine particles collected in electrostatic precipitators), and bottom ash (larger in size, and collected wet or dry in hoppers below the boilers). In general terms, the enrichment factors measured were between 2 and 18 for the radionuclides 40 K, 226 Ra, 232 Th, and 210 Po. The magnitude of this enrichment factor depended mainly on the ash content of each coal, and hence on the type of coal used as fuel and the specific operation cycle in the different power stations. For the radionuclides 40 K, 226 Ra, and 232 Th, the enrichment was relatively similar in value in the fly and bottom ashes produced by the different types of coal used in the power stations studied. For 210 Po, however, as was expected, the enrichment was much greater in the fly ash than in the bottom ash for each coal analyzed. (author)

  17. Mercury emissions from South Africa’s coal-fired power stations

    Directory of Open Access Journals (Sweden)

    Belinda L. Garnham

    2016-12-01

    Full Text Available Mercury is a persistent and toxic substance that can be bio-accumulated in the food chain. Natural and anthropogenic sources contribute to the mercury emitted in the atmosphere. Eskom’s coal-fired power stations in South Africa contributed just under 93% of the total electricity produced in 2015 (Eskom 2016. Trace amounts of mercury can be found in coal, mostly combined with sulphur, and can be released into the atmosphere upon combustion. Coal-fired electricity generation plants are the highest contributors to mercury emissions in South Africa. A major factor affecting the amount of mercury emitted into the atmosphere is the type and efficiency of emission abatement equipment at a power station. Eskom employs particulate emission control technology at all its coal-fired power stations, and new power stations will also have sulphur dioxide abatement technology. A co-beneficial reduction of mercury emissions exists as a result of emission control technology. The amount of mercury emitted from each of Eskom’s coal-fired power stations is calculated, based on the amount of coal burnt and the mercury content in the coal. Emission Reduction Factors (ERF’s from two sources are taken into consideration to reflect the co-benefit received from the emission control technologies at the stations. Between 17 and 23 tons of mercury is calculated to have been emitted from Eskom’s coal-fired power stations in 2015. On completion of Eskom’s emission reduction plan, which includes fabric filter plant retrofits at two and a half stations and a flue gas desulphurisation retrofit at one power station, total mercury emissions from the fleet will potentially be reduced by 6-13% by 2026 relative to the baseline. Mercury emission reduction is perhaps currently not the most pressing air quality problem in South Africa. While the focus should then be on reducing emissions of other pollutants which have a greater impact on human health, mercury emission reduction

  18. Empirical prediction of ash deposition propensities in coal-fired utilities

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.

    1997-01-01

    This report contain an outline of some of the ash chemistry indices utilized in the EPREDEPO (Empirical PREdiction of DEPOsition) PC-program, version 1.0 (DEPO10), developed by Flemming Frandsen, The CHEC Research Programme, at the Department of Chemical Engineering, Technical University of Denmark. DEPO10 is a 1st generation FTN77 Fortran PC-programme designed to empirically predict ash deposition propensities in coal-fired utility boilers. Expectational data (empirical basis) from an EPRI-sponsored survey of ash deposition experiences at coal-fired utility boilers, performed by Battelle, have been tested for use on Danish coal chemistry - boiler operational conditions, in this study. (au) 31 refs.

  19. Strategic planning on carbon capture from coal fired plants in Malaysia and Indonesia: A review

    International Nuclear Information System (INIS)

    Othman, M.R.; Martunus; Zakaria, R.; Fernando, W.J.N.

    2009-01-01

    Malaysia and Indonesia benefit in various ways by participating in CDM and from investments in the GHG emission reduction projects, inter alia, technology transfer such as carbon capture (CC) technology for the existing and future coal fired power plants. Among the fossil fuel resources for energy generation, coal is offering an attractive solution to the increasing fuel cost. The consumption of coal in Malaysia and Indonesia is growing at the fastest rate of 9.7% and 4.7%, respectively, per year since 2002. The total coal consumption for electricity generation in Malaysia is projected to increase from 12.4 million tons in 2005 to 36 million tons in 2020. In Indonesia, the coal consumption for the same cause is projected to increase from 29.4 million tons in 2005 to 75 million tons in 2020. CO 2 emission from coal fired power plants are forecasted to grow at 4.1% per year, reaching 98 million tons and 171 million tons in Malaysia and Indonesia, respectively.

  20. Fuel characterization requirements for cofiring biomass in coal-fired boilers

    International Nuclear Information System (INIS)

    Prinzing, D.E.; Tillman, D.A.; Harding, N.S.

    1993-01-01

    The cofiring of biofuels with coal in existing boilers, or the cofiring of biofuels in combined cycle combustion turbine (CCCT) systems presents significant potential benefits to utilities, including reductions in SO 2 and NO x emissions as a function of reducing the mass flow of sulfur and nitrogen to the boiler, reducing CO 2 emissions from the combustion of fossil fuels; potentially reducing fuel costs both by the availability of wood residues and by the fact that biofuels are exempt from the proposed BTU tax; and providing support to industrial customers from the forest products industry. At the same time, cofiring requires careful attention to the characterization of the wood and coal, both singly and in combination. This paper reviews characterization requirements associated with cofiring biofuels and fossil fuels in boilers and CCCT installations with particular attention not only to such concerns as sulfur, nitrogen, moisture, and Btu content, but also to such issues as total ash content, base/acid ratio of the wood ash and the coal ash, alkali metal content in the wood ash and wood fuel (including converted fuels such as low Btu gas or pyrolytic oil), slagging and fouling indices, ash fusion temperature, and trace metal contents in the wood and coal. The importance of each parameter is reviewed, along with potential consequences of a failure to adequately characterize these parameters. The consequences of these parameters are reviewed with attention to firing biofuels with coal in pulverized coal (PC) and cyclone boilers, and firing biofuels with natural gas in CCCT installations

  1. Control strategies of atmospheric mercury emissions from coal-fired power plants in China.

    Science.gov (United States)

    Tian, Hezhong; Wang, Yan; Cheng, Ke; Qu, Yiping; Hao, Jiming; Xue, Zhigang; Chai, Fahe

    2012-05-01

    Atmospheric mercury (Hg) emission from coal is one of the primary sources of anthropogenic discharge and pollution. China is one of the few countries in the world whose coal consumption constitutes about 70% of total primary energy, and over half of coals are burned directly for electricity generation. Atmospheric emissions of Hg and its speciation from coal-fired power plants are of great concern owing to their negative impacts on regional human health and ecosystem risks, as well as long-distance transport. In this paper, recent trends of atmospheric Hg emissions and its species split from coal-fired power plants in China during the period of 2000-2007 are evaluated, by integrating each plant's coal consumption and emission factors, which are classified by different subcategories of boilers, particulate matter (PM) and sulfur dioxide (SO2) control devices. Our results show that the total Hg emissions from coal-fired power plants have begun to decrease from the peak value of 139.19 t in 2005 to 134.55 t in 2007, though coal consumption growing steadily from 1213.8 to 1532.4 Mt, which can be mainly attributed to the co-benefit Hg reduction by electrostatic precipitators/fabric filters (ESPs/FFs) and wet flue gas desulfurization (WFGD), especially the sharp growth in installation of WFGD both in the new and existing power plants since 2005. In the coming 12th five-year-plan, more and more plants will be mandated to install De-NO(x) (nitrogen oxides) systems (mainly selective catalytic reduction [SCR] and selective noncatalytic reduction [SNCR]) for minimizing NO(x) emission, thus the specific Hg emission rate per ton of coal will decline further owing to the much higher co-benefit removal efficiency by the combination of SCR + ESPs/FFs + WFGD systems. Consequently, SCR + ESPs/FFs + WFGD configuration will be the main path to abate Hg discharge from coal-fired power plants in China in the near future. However advanced specific Hg removal technologies are necessary

  2. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    International Nuclear Information System (INIS)

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

    1996-09-01

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO x emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O ampersand M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO x removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system

  3. [Emission Characteristics of Water-Soluble Ions in Fumes of Coal Fired Boilers in Beijing].

    Science.gov (United States)

    Hu, Yue-qi; Ma, Zhao-hui; Feng, Ya-jun; Wang, Chen; Chen, Yuan-yuan; He, Ming

    2015-06-01

    Selecting coal fired boilers with typical flue gas desulfurization and dust extraction systems in Beijing as the study objects, the issues and characteristics of the water-soluble ions in fumes of coal fired boilers and theirs influence factors were analyzed and evaluated. The maximum mass concentration of total water-soluble ions in fumes of coal fired boilers in Beijing was 51.240 mg x m(-3) in the benchmark fume oxygen content, the minimum was 7.186 mg x m(-3), and the issues of the water-soluble ions were uncorrelated with the fume moisture content. SO4(2-) was the primary characteristic water-soluble ion for desulfurization reaction, and the rate of contribution of SO4(2-) in total water-soluble ions ranged from 63.8% to 81.0%. F- was another characteristic water-soluble ion in fumes of thermal power plant, and the rate of contribution of F- in total water-soluble ions ranged from 22.2% to 32.5%. The fume purification technologies significantly influenced the issues and the emission characteristics of water-soluble ions in fumes of coal fired boilers. Na+ was a characteristic water-soluble ion for the desulfurizer NaOH, NH4+ and NO3+ were characteristic for the desulfurizer NH4HCO3, and Mg2+ was characteristic for the desulfurizer MgO, but the Ca2+ emission was not increased by addition of the desulfurizer CaO or CaCO3 The concentrations of NH4+ and NO3- in fumes of thermal power plant were lower than those in fumes of industrial or heating coal fired boilers. The form of water-soluble ions was significantly correlated with fume temperature. The most water-soluble ions were in superfine state at higher fume temperature and were not easily captured by the filter membrane.

  4. Design and fabrication of a 50 MWt prototypical MHD coal-fired combustor

    International Nuclear Information System (INIS)

    Albright, J.; Braswell, R.; Listvinsky, G.; McAllister, M.; Myrick, S.; Ono, D.; Thom, H.

    1992-01-01

    A prototypical 50 MWt coal-fired combustor has been designed and fabricated as part of the Magnetohydrodynamic (MHD) Integrated Topping Cycle (ITC) Program. This is a DOE-funded program to develop a prototypical MHD power train to be tested at the Component Development and Integration Facility (CDIF) in Butte, Montana. The prototypical combustor is an outgrowth of the 50 MWt workhorse combustor which has previously been tested at the CDIF. In addition to meeting established performance criteria of the existing 50 MWt workhorse combustor, the prototypical combustor design is required to be scaleable for use at the 250 MWt retrofit level. This paper presents an overview of the mechanical design of the prototypical combustor and a description of its fabrication. Fabrication of the 50 MWt prototypical coal-fired combustor was completed in February 1992 and hot-fire testing is scheduled to begin in May 1992

  5. Ozone Monitoring Instrument Observations of Interannual Increases in SO2 Emissions from Indian Coal-fired Power Plants During 2005-2012

    Science.gov (United States)

    Lu, Zifeng; Streets, David D.; de Foy, Benjamin; Krotkov, Nickolay A.

    2014-01-01

    Due to the rapid growth of electricity demand and the absence of regulations, sulfur dioxide (SO2) emissions from coal-fired power plants in India have increased notably in the past decade. In this study, we present the first interannual comparison of SO2 emissions and the satellite SO2 observations from the Ozone Monitoring Instrument (OMI) for Indian coal-fired power plants during the OMI era of 2005-2012. A detailed unit-based inventory is developed for the Indian coal-fired power sector, and results show that its SO2 emissions increased dramatically by 71 percent during 2005-2012. Using the oversampling technique, yearly high-resolution OMI maps for the whole domain of India are created, and they reveal a continuous increase in SO2 columns over India. Power plant regions with annual SO2 emissions greater than 50 Gg year-1 produce statistically significant OMI signals, and a high correlation (R equals 0.93) is found between SO2 emissions and OMI-observed SO2 burdens. Contrary to the decreasing trend of national mean SO2 concentrations reported by the Indian Government, both the total OMI-observed SO2 and average SO2 concentrations in coal-fired power plant regions increased by greater than 60 percent during 2005-2012, implying the air quality monitoring network needs to be optimized to reflect the true SO2 situation in India.

  6. Oxygen-Fired CO{sub 2} Recycle for Application to Direct CO{sub 2} Capture form Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Gale

    2010-09-26

    The Southern Research/Southern Company 1 MWth Pilot-Scale Coal-Fired Test Facility was successfully retrofit to fire in either the traditional air-fired mode or with 100% oxygen and recycled flue gas, with a fully integrated feedback and control system, including oxygen and recycled flue gas modulation during startup, transfer, and shutdown, safety and operational interlocks, and data acquisition. A MAXON Staged Oxygen Burner for Oxy-Coal Applications produced a stable flame over a significant range of firing turn-down, staging, and while firing five different U.S. coal types. The MAXON burner design produces lower flame temperatures than for air firing, which will enable (A) Safe operation, (B) Reduction of recycle flow without concern about furnace flame temperatures, and (C) May likely be affective at reducing slagging and fouling in the boiler and super heater at full-scale Power Plants. A CFD model of the Oxy-fired Combustion Research Facility (OCRF) was used to predict the flame geometry and temperatures in the OCRF and make a comparison with the air-fired case. The model predictions were consistent with the experimental data in showing that the MAXON burner fired with oxygen produced lower flame temperatures than the air-fired burner while firing with air.

  7. Suspension-firing of wood with coal ash addition: Probe measurements of ash deposit build-up at Avedøre Power Plant (AVV2)

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    This report is about full-scale probe measurements of deposit build-up and removal conducted at the Avedøreværket Unit 2, a 800 MWth suspension boiler, firing wood and natural gas with the addition of coal ash. Coal ash was used as an additive to capture potassium (K) from wood-firing. Investigat...... to the gas phase as HCl(g). Effect of boiler operational parameters on gas emissions has also been investigated.......This report is about full-scale probe measurements of deposit build-up and removal conducted at the Avedøreværket Unit 2, a 800 MWth suspension boiler, firing wood and natural gas with the addition of coal ash. Coal ash was used as an additive to capture potassium (K) from wood...... and boiler load on ash deposition propensity was investigated. Results of ash deposition propensity showed increasing trend with increasing flue gas temperature. Video monitoring revealed that the deposits formed were not sticky and could be easily removed, and even at very high flue gas temperatures (> 1350...

  8. Mercury speciation and distribution in a 660-megawatt utility boiler in Taiwan firing bituminous coals.

    Science.gov (United States)

    Hsi, Hsing-Cheng; Lee, Hsiu-Hsia; Hwang, Jyh-Feng; Chen, Wang

    2010-05-01

    Mercury speciation and distribution in a 660-MW tangential-fired utility boiler in Taiwan burning Australian and Chinese bituminous coal blends was investigated. Flue gases were simultaneously sampled at the selective catalytic reduction (SCR) inlet, the SCR outlet, the electrostatic precipitator (ESP) outlet, and the stack. Samplings of coal, lime, bottom ash/slag, fly ash, and gypsum slurry were also conducted. Results indicated that flue gases at the inlet to SCR contained a great potion of particle-bound mercury (Hg(p)), 59-92% of the total mercury. Removal of mercury was not observed for the SCR system. However, repartitioning of mercury species across the SCR occurred that significantly increased the portion of elemental mercury (Hg0) to up to 29% and oxidized mercury (Hg2+) to up to 33% in the SCR outlet gas. Overreporting of Hg(p) at the inlet of SCR may cause the observed repartitioning; the high ammonia/nitric oxide circumstance in the SCR unit was also speculated to cause the mercury desorption from ash particles and subsequent reentrance into the gas phase. ESP can remove up to 99% of Hg(p), and wet flue gas desulfurization (FGD) can remove up to 84% of Hg2+. Mercury mass balances were calculated to range between 81 and 127.4%, with an average of 95.7% wherein 56-82% was in ESP fly ash, 8.7-18.6% was retained in the FGD gypsum, and 6.2-26.1% was emitted from the stack. Data presented here suggest that mercury removal can be largely enhanced by increasing the conversion of Hg0 into Hg(p) and Hg2+.

  9. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  10. NO{sub x} controls for coal-fired utility boilers in East Central Europe

    Energy Technology Data Exchange (ETDEWEB)

    Eskinazi, D. [Electric Power Research Inst., Washington, DC (United States); Tavoulareas, E.S. [Energy Technologies Enterprises Corp., McLean, VA (United States)

    1995-12-01

    Increasing environmental pressures worldwide, including East Central Europe are placing greater emphasis on NO{sub x} emission controls in utility power plants. Western Europe, Japan and the U.S. have significant experience in applying NO{sub x} controls, especially in boilers firing hard coal. Some countries in Europe (i.e., Germany and Austria), have gained experience in applying NO{sub x} controls in boilers firing low-rank coal. This experience can be applied to East Central European countries in providing the basis for planning NO{sub x} control projects, suggesting cost-effective solutions, and providing lessons learned. However, while the experience is generally applicable to East Central European countries, differences in boiler design, operation and coal characteristics also need to be considered. This paper begins with a comparison of the NO{sub x} regulations, identifies the key NO{sub x} control technologies and the worldwide experience with them, and discusses the achievable NO{sub x} reduction, O&M impacts, and retrofit costs for each technology. Emphasis is placed on retrofit applications for existing boilers, because new coal-fired power plants are not expected to be built for the next 5-10 years. This paper also focuses on technologies with relatively low cost and operational simplicity: combustion system tuning/optimization. low-NO{sub x} burners (LNB), overfire air (OFA), selective non-catalytic reduction (SNCR), and reburning.

  11. Mathematical modelling of flue gas tempered flames produced from pulverised coal fired with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Breussin, A.; Weber, R.; Kamp, W.L. van de

    1997-10-01

    The combustion of pulverised coal in conventional utility boilers contributes significantly to global CO{sub 2} emissions. Because atmospheric air is used as the combustion medium, the exhaust gases of conventional pulverised coal fired utility boilers contain approximately 15 % CO{sub 2}. This relatively low concentration makes separating and recovering CO{sub 2} a very energy-intensive process. This process can be simplified if N{sub 2} is eliminated from the comburent before combustion by firing the pulverised coal with pure oxygen. However, this concept will result in very high flames temperatures. Flue gas recirculation can be used to moderate the flame temperature, whilst generating a flue gas with a CO{sub 2} concentration of 95 %. In this presentation, both experimental and modelling work will be described. The former deals with identifying the issues related to the combustion of pulverised coal in simulated turbine exhaust gas, particularly with respect to stability, burnout and pollutant emissions. The second part of this presentation describes mathematical modelling of type 2 as well as type 1 swirling pulverised coal flames. Future work will concentrate on high CO{sub 2} levels environments. (orig.)

  12. Small, modular, low-cost coal-fired power plants for the international market

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.; Frain, B.; Borck, B. [Coal Tech Corp., Merion Station, PA (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center

    1997-12-31

    This paper presents recent operating results of Coal Tech`s second generation, air cooled, slagging coal combustor, and its application to power plants in the 1 to 20 MW range. This 20 MMBtu/hour combustor was installed in a new demonstration plant in Philadelphia, PA in 1995. It contains the combustion components of a 1 MWe coal fired power plant, a 17,500 lb/hour steam boiler, coal storage and feed components, and stack gas cleanup components. The plant`s design incorporates improvements resulting from 2,000 hours of testing between 1987 and 1993 on a first generation, commercial scale, air cooled combustor of equal thermal rating. Since operations began in early 1996, a total of 51 days of testing have been successfully completed. Major results include durability of the combustor`s refractory wall, excellent combustion with high ash concentration in the fuel, removal of 95% to 100% of the slag in the combustor, very little ash deposition in the boiler, major reduction of in-plant parasitic power, and simplified power system control through the use of modular designs of sub-systems and computer control. Rapid fuel switching between oil, gas, and coal and turndown of up to a factor of three was accomplished. All these features have been incorporated in advanced coal fired plant designs in the 1 to 20 MWe range. Incremental capital costs are only $100 to $200/kW higher than comparable rated gas or oil fired steam generating systems. Most of its components and subsystems can be factory assembled for very rapid field installation. The low capital, low operating costs, fuel flexibility, and compatibility with very high ash fuels, make this power system very attractive in regions of the world having domestic supplies of these fuels.

  13. Environmental impact assessment of coal fired thermal power stations

    International Nuclear Information System (INIS)

    Nambi, K.S.V.; Sadasivan, S.; Negi, B.S.; Meenakshy, V.

    1992-01-01

    Coal fly ash samples collected from various thermal power plants and one lignite ash sample were analysed for various elements such as As, Ca, Ce, Co, Cr, Cu, Eu, Fe, Hf, K, La, Lu, Mn, Na, Ni, Pb, Rb, Se, Si, Sb, Sc, Sm, Sr, Ti, V, Yb and Zn using energy dispersive X-ray fluorescence and instrumental neutron activation analysis methods. The two-step maximum leachability test was also performed on all fly ash samples. 13 refs, 9 tabs

  14. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    Appendix C: Paper in Fuel 87 (2008) 3304-3312: A kinetic study of gaseous potassium capture by coal minerals in a high temperature fixed-bed reactor......Appendix C: Paper in Fuel 87 (2008) 3304-3312: A kinetic study of gaseous potassium capture by coal minerals in a high temperature fixed-bed reactor...

  15. Radiological hazard from coal-fired power plants in Poland

    International Nuclear Information System (INIS)

    Nowina-Konopka, M.

    1991-01-01

    The radiobiological hazard of Polish population due to coal combustion for electric power production was assessed. Activity concentrations of the elementary radionuclides in coal and all kinds of ashes were measured. The ATMO computer program was applied to calculate the annual increase of the activity concentration in the air and of the annual increase of activity falling on the ground. Exposition by inhalation, oral ingestion and external irradiation was taken into account. The assessed value of irradiation was taken into account. The assessed value of individual effective dose equivalent commitments for the critical group is 0.1 mSv, i.e. 4% of the total dose rate from natural radiation. The collective effective dose equivalent commitments received of all sources by an inhabitant of Poland as a consequence of annual coal combustion in Polish CPP is 367 manSv/a (i.e. 47 manSv per GWa), i.e. 0.4% of the dose from natural radiation. (author). 11 refs, 3 figs, 8 tabs

  16. Characteristics of an open-cut coal mine fire pollution event

    Science.gov (United States)

    Reisen, Fabienne; Gillett, Rob; Choi, Jason; Fisher, Gavin; Torre, Paul

    2017-02-01

    On 9 February 2014, embers from a nearby grass/shrub fire spotted into an unused part of the Hazelwood open-cut brown coal mine located in the Latrobe Valley of Victoria, Australia and started a fire that spread rapidly and extensively throughout the mine under strong south-westerly winds and burned over a period of 45 days. The close proximity of the town to the coal mine and the low buoyancy of the smoke plume led to the accumulation of dense smoke levels in the township of Morwell (population of 14,000) particularly under south-westerly winds. A maximum daily PM2.5 concentration of 731 μg m-3 and 8-h CO concentration of 33 ppm were measured at Morwell South, the closest residential area located approximately 500 m from the mine. These concentrations were significantly higher than national air quality standards. Air quality monitoring undertaken in the Latrobe Valley showed that smoke from the Hazelwood mine fire affected a wide area, with particle air quality standards also exceeded in Traralgon (population of 25,000) located approximately 13 km from the mine. Pollutant levels were significantly elevated in February, decreased in March once the fire abated and then returned to background levels once the fire was declared safe at the end of March. While the smoke extent was of a similar order of magnitude to other major air pollution events worldwide, a closer look at emissions ratios showed that the open combustion of lignite brown coal in the Hazelwood mine was different to open combustion of biomass, including peat. It suggested that the dominant combustion process was char combustion. While particle and carbon monoxide monitoring started approximately 4 days after the fire commenced when smoke levels were very high, targeted monitoring of air toxics only began on 26 February (17 days after the fire) when smoke levels had subsided. Limited research on emission factors from open-cut coal mine fires make it difficult to assess the likely concentrations of air

  17. Constructing a sustainable power sector in China: current and future emissions of coal-fired power plants from 2010 to 2030

    Science.gov (United States)

    Tong, D.; Zhang, Q.

    2017-12-01

    As the largest energy infrastructure in China, power sector consumed more coal than any other sector and threatened air quality and greenhouse gas (GHG) abatement target. In this work, we assessed the evolution of coal-fired power plants in China during 2010-2030 and the evolution of associated emissions for the same period by using a unit-based emission projection model which integrated the historical power plants information, turnover of the future power plant fleet, and the evolution of end-of-pipe control technologies. We found that, driven by the stringent environmental legislation, SO2, NOx, and PM2.5 emissions from China's coal-fired power plants decreased by 49%, 45%, and 24% respectively during 2010-2015, comparing to 14% increase of coal consumption and 15% increase in CO2 emissions. We estimated that under current national energy development planning, coal consumption and CO2 emissions from coal-fired power plants will continue to increase until 2030, in which against the China's Intended Nationally Determined Contributions (INDCs) targets. Early retirement of old and low-efficient power plants will cumulatively reduce 2.2 Pg CO2 emissions from the baseline scenario during 2016-2030, but still could not curb CO2 emissions from the peak before 2030. Owing to the implementation of "near zero" emission control policy, we projected that emissions of air pollutants will significantly decrease during the same period under all scenarios, indicating the decoupling trends of air pollutants and CO2 emissions. Although with limited direct emission reduction benefits, increasing operating hours of power plants could avoid 236 GW of new power plants construction, which could indirectly reduce emissions embodied in the construction activity. Our results identified a more sustainable pathway for China's coal-fired power plants, which could reduce air pollutant emissions, improve the energy efficiency, and slow down the construction of new units. However, continuous

  18. Radiological impact from airborne routine discharges of Coal-Fired power plant

    International Nuclear Information System (INIS)

    Norasalwa Zakaria; Rohyiza Baan; Kathiravale, Sivapalan

    2010-01-01

    Radioactivity exists everywhere in nature. We are exposed to intense and continuous natural radiation coming from the sun, cosmic radiation, telluric radiation and even to the internal radiation of our own body. The fly ash emitted from burning coal for electricity by a power plant carries into the surrounding environment 100 times more radiation than a nuclear power plant producing the same amount of energy. This paper presents the information of studies on the radiological impact from airborne routine discharge of coal-fired power plants. (author)

  19. Computerized information system on the impacts of coal-fired energy development in the Southwest

    International Nuclear Information System (INIS)

    Layton, D.W.

    1975-01-01

    An important part of the process of assessing the environmental impacts of coal-fired energy development in the Southwest is the transfer of information between electric utilities, federal agencies, and the interested public. There are, however, several problems associated with the transfer of information among the different groups. The acquisition of factual material on power projects by the interested public, for example, is adversely affected by the sufficiency, convenience, and credibility of present sources. Efforts of electric utilities and federal agencies to effectively communicate impact information are hindered by the inability of existing sources to selectively transfer information and to rapidly transmit information on the cumulative impacts of many combinations of power plants. This research concerns the development and evaluation of a computerized information system designed to selectively transfer information on both the cumulative and individual impacts of several electric generating facilities located in the southwestern United States. The information system incorporates features of management information systems, environmental information systems, and an issue-oriented system developed at The University of Illinois, making it a hybrid system capable of communicating impact information derived from a variety of sources

  20. Studies of the fate of sulfur trioxide in coal-fired utility boilers based on modified selected condensation methods.

    Science.gov (United States)

    Cao, Yan; Zhou, Hongcang; Jiang, Wu; Chen, Chien-Wei; Pan, Wei-Ping

    2010-05-01

    The formation of sulfur trioxide (SO(3)) in coal-fired utility boilers can have negative effects on boiler performance and operation, such as fouling and corrosion of equipment, efficiency loss in the air preheater (APH), increase in stack opacity, and the formation of PM(2.5). Sulfur trioxide can also compete with mercury when bonding with injected activated carbons. Tests in a lab-scale reactor confirmed there are major interferences between fly ash and SO(3) during SO(3) sampling. A modified SO(3) procedure to maximize the elimination of measurement biases, based on the inertial-filter-sampling and the selective-condensation-collecting of SO(3), was applied in SO(3) tests in three full-scale utility boilers. For the two units burning bituminous coal, SO(3) levels starting at 20 to 25 ppmv at the inlet to the selective catalytic reduction (SCR), increased slightly across the SCR, owing to catalytic conversion of SO(2) to SO(3,) and then declined in other air pollutant control device (APCD) modules downstream to approximately 5 ppmv and 15 ppmv at the two sites, respectively. In the unit burning sub-bituminous coal, the much lower initial concentration of SO(3) estimated to be approximately 1.5 ppmv at the inlet to the SCR was reduced to about 0.8 ppmv across the SCR and to about 0.3 ppmv at the exit of the wet flue gas desulfurization (WFGD). The SO(3) removal efficiency across the WFGD scrubbers at the three sites was generally 35% or less. Reductions in SO(3) across either the APH or the dry electrostatic precipitator (ESP) in units burning high-sulfur bituminous coal were attributed to operating temperatures being below the dew point of SO(3).

  1. Feasibility Study for Bioethanol Co-Location with a Coal Fired Power Plant: 29 November 2001--28 July 2002

    Energy Technology Data Exchange (ETDEWEB)

    2002-12-01

    This study looks at the feasibility of co-locating 30, 50, and 70 million gallon per year bioethanol facilities with coal fired power plants in Indiana and Nebraska. Corn stover is the feedstock for ethanol production in both cases.

  2. ASSESSMENT OF CONTROL TECHNOLOGIES FOR REDUCING EMISSIONS OF SO2 AND NOX FROM EXISTING COAL-FIRED UTILITY BOILERS

    Science.gov (United States)

    The report reviews information and estimated costs on 15 emissioncontrol technology categories applicable to existing coal-fired electric utility boilers. he categories include passive controls such as least emission dispatching, conventional processes, and emerging technologies ...

  3. The Tiptop coal-mine fire, Kentucky: Preliminary investigation of the measurement of mercury and other hazardous gases from coal-fire gas vents

    Energy Technology Data Exchange (ETDEWEB)

    Hower, James C.; Henke, Kevin [University of Kentucky Center for Applied Energy Research, Lexington, KY 40511 (United States); O' Keefe, Jennifer M.K. [Morehead State University, Morehead, KY 40351 (United States); Engle, Mark A. [U.S. Geological Survey, Reston, VA 20192 (United States); Blake, Donald R. [Department of Chemistry, University of California - Irvine, Irvine, CA 92697 (United States); Stracher, Glenn B. [East Georgia College, Swainsboro, GA 30401 (United States)

    2009-10-01

    The Tiptop underground coal-mine fire in the Skyline coalbed of the Middle Pennsylvanian Breathitt Formation was investigated in rural northern Breathitt County, Kentucky, in May 2008 and January 2009, for the purpose of determining the concentrations of carbon dioxide (CO{sub 2}), carbon monoxide (CO), and mercury (Hg) in the vent and for measuring gas-vent temperatures. At the time of our visits, concentrations of CO{sub 2} peaked at 2.0% and > 6.0% (v/v) and CO at 600 ppm and > 700 ppm during field analysis in May 2008 and January 2009, respectively. For comparison, these concentrations exceed the U.S. Occupational Safety and Health Administration (OSHA) eight-hour safe exposure limits (0.5% CO{sub 2} and 50 ppm CO), although the site is not currently mined. Mercury, as Hg{sup 0}, in excess of 500 and 2100 {mu}g/m{sup 3}, in May and January, respectively, in the field, also exceeded the OSHA eight-hour exposure limit (50 {mu}g/m{sup 3}). Carbonyl sulfide, dimethyl sulfide, carbon disulfide, and a suite of organic compounds were determined at two vents for the first sampling event. All gases are diluted by air as they exit and migrate away from a gas vent, but temperature inversions and other meteorological conditions could lead to unhealthy concentrations in the nearby towns. Variation in gas temperatures, nearly 300 C during the January visit to the fire versus < 50 C in May, demonstrates the large temporal variability in fire intensity at the Tiptop mine. These preliminary results suggest that emissions from coal fires may be important, but additional data are required that address the reasons for significant variations in the composition, flow, and temperature of vent gases. (author)

  4. Radioactivity in coal, ashes and selected wastewaters from Canadian coal-fired steam electric generating stations

    International Nuclear Information System (INIS)

    1985-09-01

    Coal is known to contain naturally occurring radioactive elements and there has been speculation that as a results, coal-fuelled power generation stations may be significant emitters of these substances. In this report, the subject of radioactivity is introduced. The kinds of radioactive substances which occur naturally in coal formations, the nature of their emissions and the existing information on their behaviour and their effects on environmental organisms are also reviewed. The results of an examination of levels of alpha, beta and gamma radiaton levels, and the substances which produce them in coals, fly ashes, bottom ashes and related wastewaters at six Canadian coal-fuelled power stations are presented. Difficulties in studies of this nature and the potential effects of these releases on organisms in the adjacent aquatic environment are discussed. Existing and potential technologies for the removal of these substances from wastewaters are examined. In general the releases in wastewaters from the six stations were found to be lower than those known to cause short-term or acute biological effects. The potential for long-term effects from such low-level releases could not be accurately assessed because of the paucity of information. A number of recommendations for: improvements in further studies of this nature; the further examination of the fate of naturally occurring radionuclides in the environment; and the determination of the long-term effects of low levels of naturally occurring radioactive substances on aquatic organisms, are made

  5. Spatial and temporal variability of atmospheric mercury concentrations emitted from a coal-fired power plant in Mexico.

    Science.gov (United States)

    García, Gilberto Fuentes; Álvarez, Humberto Bravo; Echeverría, Rodolfo Sosa; de Alba, Sergio Rosas; Rueda, Víctor Magaña; Dosantos, Ernesto Caetano; Cruz, Gustavo Vázquez

    2017-09-01

    Atmospheric mercury in the environment as a result of the consumption of fossil fuels, such as coal used in electricity generation, has gained increased attention worldwide because of its toxicity, atmospheric persistence, and bioaccumulation. Determining or predicting the concentration of this pollutant in ambient air is essential for determining sensitive areas requiring health protection. This study investigated the spatiotemporal variability of gaseous elemental mercury (GEM) concentrations and its dry deposition surrounding the Presidente Plutarco Elías Calles (CETEPEC) coal-fired power plant, located on Mexico's Pacific coast. The CALPUFF dispersion model was applied on the basis of the daily consumption of coal during 2013 for each generating unit in the power plant and considering the local scale. The established 300-ng/m 3 annual average risk factor considered by the U.S. Department of Health and Human Services (U.S. DHHS) and Integrated Risk Information System (IRIS) must not be exceeded to meet satisfactory air quality levels. An area of 65 × 60 km was evaluated, and the results show that the risk level for mercury vapor was not exceeded because the annual average concentration was 2.8 ng/m 3 . Although the predicted risk level was not exceeded, continuous monitoring studies of GEM and of particulates in the atmosphere, soil, and water may be necessary to identify the concentration of this pollutant, specifically that resulting from coal-fired power plants operated in environmental areas of interest in Mexico. The dry mercury deposition was low in the study area; according to the CALPUFF model, the annual average was 1.40E-2 ng/m 2 /sec. These results represent a starting point for Mexico's government to implement the Minamata Convention on Mercury, which Mexico signed in 2013. The obtained concentrations of mercury from a bigger coal-fired plant in Mexico, through the application of the CALPUFF dispersion model by the mercury emissions, are below the

  6. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  7. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Bradley [Univ. of Utah, Salt Lake City, UT (United States); Davis, Kevin [Univ. of Utah, Salt Lake City, UT (United States); Senior, Constance [Univ. of Utah, Salt Lake City, UT (United States); Shim, Hong Shim [Univ. of Utah, Salt Lake City, UT (United States); Otten, Brydger Van [Univ. of Utah, Salt Lake City, UT (United States); Fry, Andrew [Univ. of Utah, Salt Lake City, UT (United States); Wendt, Jost [Univ. of Utah, Salt Lake City, UT (United States); Eddings, Eric [Univ. of Utah, Salt Lake City, UT (United States); Paschedag, Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shaddix, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cox, William [Brigham Young Univ., Provo, UT (United States); Tree, Dale [Brigham Young Univ., Provo, UT (United States)

    2013-09-30

    Reaction Engineering International (REI) managed a team of experts from University of Utah, Siemens Energy, Praxair, Vattenfall AB, Sandia National Laboratories, Brigham Young University (BYU) and Corrosion Management Ltd. to perform multi-scale experiments, coupled with mechanism development, process modeling and CFD modeling, for both applied and fundamental investigations. The primary objective of this program was to acquire data and develop tools to characterize and predict impacts of CO{sub 2} flue gas recycle and burner feed design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) inherent in the retrofit of existing coal-fired boilers for oxy-coal combustion. Experimental work was conducted at Sandia National Laboratories’ Entrained Flow Reactor, the University of Utah Industrial Combustion Research Facility, and Brigham Young University. Process modeling and computational fluid dynamics (CFD) modeling was performed at REI. Successful completion of the project objectives resulted in the following key deliverables: 1) Multi-scale test data from 0.1 kW bench-scale, 100 kW and 200 kW laboratory-scale, and 1 MW semi-industrial scale combustors that describe differences in flame characteristics, fouling, slagging and corrosion for coal combustion under air-firing and oxygen-firing conditions, including sensitivity to oxy-burner design and flue gas recycle composition. 2) Validated mechanisms developed from test data that describe fouling, slagging, waterwall corrosion, heat transfer, char burnout and sooting under coal oxy-combustion conditions. The mechanisms were presented in a form suitable for inclusion in CFD models or process models. 3) Principles to guide design of pilot-scale and full-scale coal oxy-firing systems and flue gas recycle configurations, such that boiler operational impacts from oxy-combustion retrofits are minimized. 4

  8. Utilization of coal-water fuels in fire-tube boilers

    International Nuclear Information System (INIS)

    Sommer, T.M.; Melick, T.A.

    1991-01-01

    The Energy and Environmental Research Corporation (EER), in cooperation with the University of Alabama and Jim Walter Resources, has been awarded a DOE contract to retrofit an existing fire-tube boiler with a coal-water slurry firing system. Recognizing that combustion efficiency is the principle concern when firing slurry in fire-tube boilers, EER has focused the program on innovative approaches for improving carbon burnout without major modifications to the boiler. This paper reports on the program which consists of five tasks. Task 1 provides for the design and retrofit of the host boiler to fire coal-water slurry. Task 2 is a series of optimization tests that will determine the effects of adjustable parameters on boiler performance. Task 3 will perform about 1000 hours of proof-of-concept system tests. Task 4 will be a comprehensive review of the test data in order to evaluate the economics of slurry conversions. Task 5 will be the decommissioning of the test facility if required

  9. Dynamic behavior of tobacco waste in the coal-fired fluidized-bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Chang, Jian; Chen, Honggang; Yang, Yongping [North China Electric Power Univ., Beijing (China). National Eng Lab for Biomass Power Generation Equipment; Yu, Bangting [China Univ. of Petroleum, Beijing (China). State Key Lab. of Heavy Oil Processing

    2013-07-01

    Circulating fluidized bed (CFB) technology is an advanced method for utilizing coal and other solid fuels in an environmentally acceptable manner. During the processing procedure in the nicotiana tabacum plants, lots of tobacco stem wastes are produced, which are normally being dumped to the landfill field. If this kind of waste can be used as a part of the fuel to be added into the coal in a CFB combustor, it will reduce the use of coal and then cut the net carbon emissions. To understand the complicated fluid dynamics of nicotiana tabacum wastes in the coal-fired CFB boiler, the mixing and segregation behavior of tobacco stalk are preliminary measured in a cylindrical fluidized bed. Obvious segregation behavior is found due to distinct differences in density and shape between tobacco stem and coal, which results in poor fluidization quality and bad combustion efficiency. To overcome this disadvantage, a jet with high gas velocity is introduced through the air distributor and a detailed experimental study is conducted in a fluidized bed made up of stem-sand mixture with different solid components at various jet velocities, which greatly improve the mixing performance of stem in the fluidized bed. The above findings are helpful for the technological upgrading of small- or middle-sized CFB boiler with adding tobacco stem into coal.

  10. Increasing coal-fired power generation efficiency to reduce electric cost and environmental emissions

    International Nuclear Information System (INIS)

    Torrens, I.M.; Stenzel, W.C.

    1997-01-01

    New generating capacity required globally between 1993 and 2010 is estimated to be around 1500 GW, of which some two-thirds will be outside the OECD, and some 40 % in the Asian non-OECD countries. Coal is likely to account for a substantial fraction of this new generation. Today's state-of-the-art supercritical coal-fired power plant has a conversion efficiency of some 42-45 %. The capital cost increase associated with the supercritical or ultra-supercritical pulverized coal power plant compared to a conventional subcritical plant is small to negligible. The increased efficiency associated with the supercritical plant leads to an actual reduction in the total cost of electricity generated in cents/kWh, relative to a conventional plant. Despite this, the power sector continues to build subcritical plants and has no near term plans to increase the efficiency of power plants in the projects it is developing. Advanced clean coal technologies such as integrated gasification combined cycle and pressurized fluidized bed combustion will be selected for independent power projects only in very specific circumstances. Advanced clean coal plants can be operated reliably and with superior performance, and specifically that their present estimated capital costs can be reduced substantially to a point where they are competitive with state-of-the-art pulverized coal technologies. (R.P.)

  11. Radiological impact of airborne effluents of coal-fired and nuclear power plants

    International Nuclear Information System (INIS)

    McBride, J.P.; Moore, R.E.; Witherspoon, J.P.; Blanco, R.E.

    1977-06-01

    Radiological impact of naturally occurring radionuclides in airborne effluents of a model coal-fired steam plant is evaluated assuming a release to the atmosphere of 1 percent of the ash in the coal burned and compared with the impact of radioactive materials in the airborne effluents of model light-water reactors. The principal exposure pathway for radioactive materials released from both types of plants is ingestion of contaminated foodstuffs. For nuclear plants immersion in the airborne effluents is also a significant factor in the dose commitment. Assuming that the coal burned contains 1 ppM uranium and 2 ppM thorium together with their decay products and using the same impact analysis methods used in evaluating nuclear facilities, the maximum individual dose commitments from the coal plant for the whole body and most organs (except the thyroid) are shown to be greater than those from a pressurized-water reactor (PWR) and, with the exception of the bone and kidney doses, less than those from a boiling-water reactor (BWR). With the exception of the bone dose, the maximum individual dose commitments from the coal plant are less than the numerical design guideline limits listed for light-water reactors (LWRs). Population dose commitments from the coal plant are higher than those from either nuclear plant

  12. Development of a pulsed coal combustor fired with CWM (coal-water mixture): Phase 3, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, M.N.; Durai-Swamy, K.

    1986-11-01

    This report presents the results of an R and D program aimed at developing a new burner technology for coal-water mixture (CWM) fuels to enable the substitution of these new fuels in utility and industrial boilers and process heaters currently firing oil and gas. The application of pulse combustion to CWM fuels is chosen to alleviate many of the physical plant and environmental constraints presently associated with the direct use of these fuels in equipment designed for oil and gas firing. Pulse combustion has been shown to be capable of high-intensity burning of coal for acceptably complete combustion within relatively small equipment volumes. It also has the inherent capability to agglomerate ash particles, thus rendering ash more easily separable from the combustion gas prior to its entrance into the convective section of the boiler or heater, thereby reducing ash buildup and pluggage. Pulse combustion is also well-suited to staged combustion for NO/sub x/ control and has excellent potential for enhanced in-furnace SO/sub 2/ removal due to the enhanced levels of mass transfer brought about by the vigorous flow oscillations. The primary objective of the Phase 2 work was to develop a detailed program for laboratory development and evaluation of the pulse CWM combustor and system design concepts. 112 refs., 40 figs., 94 tabs.

  13. Coal Transition in the United States. An historical case study for the project 'Coal Transitions: Research and Dialogue on the Future of Coal'

    International Nuclear Information System (INIS)

    Kok, Irem

    2017-01-01

    This is one of the 6 country case-studies commissioned to collect experience on past coal transitions. The 6 countries are: Czech Republic, the Netherlands, Poland, Spain, UK, USA. Their role in the Coal Transitions project was to provide background information for a Synthesis Report for decision makers, and provide general lessons for national project teams to take into account in developing their coal transitions pathways for the future. Over the past decade, the US started to cut down the production and the use of coal, which was affected by unfavorable market dynamics and changing federal regulatory environment. Even before the shale gas revolution and uptake of renewables diminish the use of coal in power generation, coal communities were struggling to meet ends. The regional cost differences between producing states, such as the Appalachian and the Powder River Basins, indicates that coal-impacted communities and workers have lived through the impacts of coal transition at varying magnitudes and time periods. In the period between 2014 and 2016, we have seen the crash of major US coal companies due to declining demand for US coal domestically and internationally. Furthermore, Obama administration's climate change policies negatively impacted coal-fired power plants with additional GHG emission requirements, contributing to declining domestic demand for coal. Combined with market downturn, US coal producers already struggle to pay for high operational costs and legal liabilities under bankruptcy conditions. With under-funded state budgets, coal states are also grappling with financial exposure resulting from pension, health care and reclamation liabilities of bankrupt coal companies. In 2016, former President Obama announced the Power Plus Plan to aid coal-impacted communities and workers to prepare for a low carbon future. The federal budget plan targeted diversification of local economies, funding of health and pension funds of miners and retraining for

  14. Do emission ceilings ruin coal-fired power plants?; Emissieplafonds nekken kolencentrales?

    Energy Technology Data Exchange (ETDEWEB)

    Wijmenga, J. [Ministerie van Infrastructuur en Milieu, Den Haag (Netherlands)

    2011-04-15

    The case of the new coal-fired power plants has already racked the brains of many. The advice offered to the court by the attorney-general constitutes the next step in this process. A temporary solution has been found for the coal-fired plants, but one question remains unanswered so far: how should an emission ceiling be used as a test instrument for permits? This article provides a direction in which a solution can be found. [Dutch] De zaak betreffende de nieuwe kolencentrales heeft al tot heel wat hoofdbrekens geleid. Het advies dat de advocaat-generaal heeft uitgebracht aan het hof is een volgende stap in dit proces. Voor de kolencentrales is een tijdelijke oplossing gevonden, maar de vraag is nog niet beantwoord hoe een emissieplafond moet worden gebruikt als toetsinstrument voor vergunningen. In dit artikel wordt aangegeven in welke richting een oplossing kan worden gezocht.

  15. Soil to plant transfer factor in the vicinity of coal fired power plants

    International Nuclear Information System (INIS)

    Nikolic, J.; Todorovic, D.; Jankovic, M.; Radenkovic, M.; Joksic, J.

    2009-01-01

    In this paper, the monitoring of working and living environment results in 5 coal fired powered plants, for the period from 2004. to 2009. are presented. Soil-plant transfer factor, suitable for estimation of possible contamination of food chain was chosen, as a measure of influence of power plants on the environment. The results gathered over the years of monitoring of working and living environment in the vicinity of the coal fired power plant were analyzed, and it was determined that no significant discrepancy exists comparing to the results reported in world literature. Also, the basic mathematical analysis was conducted, in order to assess the model of the behavior of the results in respect to the frequency count. (author) [sr

  16. Novel approach for extinguishing large-scale coal fires using gas-liquid foams in open pit mines.

    Science.gov (United States)

    Lu, Xinxiao; Wang, Deming; Qin, Botao; Tian, Fuchao; Shi, Guangyi; Dong, Shuaijun

    2015-12-01

    Coal fires are a serious threat to the workers' security and safe production in open pit mines. The coal fire source is hidden and innumerable, and the large-area cavity is prevalent in the coal seam after the coal burned, causing the conventional extinguishment technology difficult to work. Foams are considered as an efficient means of fire extinguishment in these large-scale workplaces. A noble foam preparation method is introduced, and an original design of cavitation jet device is proposed to add foaming agent stably. The jet cavitation occurs when the water flow rate and pressure ratio reach specified values. Through self-building foaming system, the high performance foams are produced and then infused into the blast drilling holes at a large flow. Without complicated operation, this system is found to be very suitable for extinguishing large-scale coal fires. Field application shows that foam generation adopting the proposed key technology makes a good fire extinguishment effect. The temperature reduction using foams is 6-7 times higher than water, and CO concentration is reduced from 9.43 to 0.092‰ in the drilling hole. The coal fires are controlled successfully in open pit mines, ensuring the normal production as well as the security of personnel and equipment.

  17. Characterizing toxic emissions from a coal-fired power plant demonstrating the AFGD ICCT Project and a plant utilizing a dry scrubber/baghouse system: Bailly Station Units 7 and 8 and AFGD ICCT Project. Final report. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dismukes, E.B.

    1994-10-20

    This report describes results of assessment of the risk of emissions of hazardous air pollutants at one of the electric power stations, Bailly Station, which is also the site of a Clean Coal Technology project demonstrating the Pure Air Advanced Flue Gas Desulfurization process (wet limestone). This station represents the configuration of no NO{sub x} reduction, particulate control with electrostatic precipitators, and SO{sub 2} control with a wet scrubber. The test was conducted September 3--6, 1993. Sixteen trace metals were determined along with 5 major metals. Other inorganic substances and organic compounds were also determined.

  18. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    International Nuclear Information System (INIS)

    Kenneth E. Baldrey

    2002-01-01

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO(sub 3) and ammonia. During this reporting quarter, performance testing of flue gas conditioning was underway at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. This represents the first long-term full-scale testing of this class of products. Modifications to the flue gas conditioning system at Jim Bridger, including development of alternate injection lances, was also undertaken to improve chemical spray distribution and to avoid spray deposition to duct interior surfaces. Also in this quarter, a firm commitment was received for another long-term test of the cohesivity additives. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative

  19. Economic evaluation of environmental externalities in China’s coal-fired power generation

    International Nuclear Information System (INIS)

    Zhao, Xiaoli; Cai, Qiong; Ma, Chunbo; Hu, Yanan; Luo, Kaiyan; Li, William

    2017-01-01

    Serious environmental externalities exist in China’s power industry. Environmental economics theory suggests that the evaluation of environmental externality is the basis of designing an efficient regulation. The purposes of this study are: (1) to identify Chinese respondents’ preferences for green development of electric power industry and the socio-economic characteristics behind them; (2) to investigate the different attitudes of the respondents towards pollution and CO_2 reduction; (3) to quantitatively evaluate the environmental cost of China’s coal-fired power generation. Based on the method of choice experiments (CE) and the 411 questionnaires with 2466 data points, we found that Chinese respondents prefer PM2.5, SO_2 and NO_x reduction to CO_2 reduction and that the environment cost of coal-fired power plants in China is 0.30 yuan per kWh. In addition, we found that the socio-economic characteristics of income, education, gender, and environmental awareness have significant impacts on respondents’ choices. These findings indicate that the environmental cost of coal-fired power generation is a significant factor that requires great consideration in the formulation of electric power development policies. In addition, importance should also be attached to the implementation of green power price policy and enhancement of environmental protection awareness. - Highlights: • Chinese respondents have willingness to pay premium for green development. • The environment cost of coal-fired power plants in China is 0.30 yuan/kwh. • Chinese respondents prefer PM2.5, SO_2 and NO_x reduction to CO_2 reduction. • Environmental awareness has significant impacts on respondents’ preferences. • Income, education and gender affect the evaluation results.

  20. Assessment of 210Po deposition in moss species and soil around coal-fired power plant

    International Nuclear Information System (INIS)

    Nita Salina Abu Bakar; Ahmad Saat

    2013-01-01

    In the present study, the depositions of 210 Po were assessed in the surface soil and some mosses species found in the area around coal fired power plant using radiochemical deposition and alpha spectrometry counting system. The purposes of the study were to determine activity concentrations of 210 Po in mosses and surface soil collected around coal-fired power plant in relation to trace the potential source of 210 Po and to identify most suitable moss species as a bio-indicator for 210 Po deposition. In this study, different species of mosses, Orthodontium imfractum, Campylopus serratus and Leucobryum aduncum were collected in May 2011 at the area around 15 km radius from Tanjung Bin coal-fired power plant located in Pontian, Johor. The 210 Po activity concentrations in mosses and soil varied in the range 102 ± 4 to 174 ± 8 Bq/kg dry wt. and 37 ± 2 to 184 ± 8 Bq/kg dry wt., respectively. Corresponding highest activity concentration of 210 Po observed in L. aduncum, therefore, this finding can be concluded this species was the most suitable as a bio-indicator for 210 Po deposition. On the other hand, it is clear the accumulation of 210 Po in mosses might be supplied from various sources of atmospheric deposition such as coal-fired power plant operation, industrial, plantation, agriculture and fertilizer activities, burned fuel fossil and forest; and other potential sources. Meanwhile, the main source of 210 Po in surface soil is supplied from the in situ deposition of radon decay and its daughters in the soil itself. (author)

  1. Dry cooling for coal fired power plants: the new state-of-the-art

    Energy Technology Data Exchange (ETDEWEB)

    Souvenir, C.; Nagel, P. [SPX Cooling Technologies (Belgium)

    2008-07-01

    In the first part of this paper an update is provided regarding the use of dry cooling in power plants. The evolution of the reasons leading to this technical solution, the trends in the market place, and the growth over the last 15 years are described. In the second part, the use of current advanced dry cooling technologies for coal-fired plants in China is illustrated. 34 figs.

  2. Natural radionuclides in soil profiles surrounding the largest coal-fired power plant in Serbia

    OpenAIRE

    Tanić Milan N.; Janković-Mandić Ljiljana J.; Gajić Boško A.; Daković Marko Z.; Dragović Snežana D.; Bačić Goran G.

    2016-01-01

    This study evaluates the influence of the largest Serbian coal-fired power plant on radionuclide concentrations in soil profiles up to 50 cm in depth. Thirty soil profiles were sampled from the plant surroundings (up to 10 km distance) and analyzed using standard methods for soil physicochemical properties and gamma ray spectrometry for specific activities of natural radionuclides (40K, 226Ra and 232Th). Spatial and vertical distribution of radionuclides wa...

  3. Study on the Concentration Measurement of the Pollution Gases from Coal-Fired Power Station

    International Nuclear Information System (INIS)

    Zheng, L J; Li, W

    2006-01-01

    CO 2 is a main kind of pollution gases discharged from coal-fired power station. The relationship between gas concentration and pressure, temperature is deduced base on the law of Beer-Lambert and the theory of gas line-shape. The tunable diode laser spectral technology is used to analyze the changing regularity of the peak, half-peak width of the absorption curve with pressure and temperature

  4. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  5. Heavy metals in Parmelia sulcata collected in the neighborhood of a coal-fired power station

    International Nuclear Information System (INIS)

    Freitas, M.C.

    1994-01-01

    The epiphytic lichen Parmelia sulcata was collected in the neighborhood of a Portuguese coal-fired power station (Sines coal power station) as monitor for heavy metal air pollution. A study of the metal contents variability along 1991 and 1992 was performed. The heavy metals Ag, As, Br, Co, Cr, Fe, Hg, Sb, Se, and Zn were determined by k0-based instrumental neutron activation analysis. The concentrations found in 1991 and 1992 show an accumulating process of Co and Fe (approximately 5%/mo) and of Cr and Sb (approximately 7%/mo). Low accumulation is observed for Ag, Se, and Zn (approximately 2%/mo), and no concentration variation is observed for As, Br, and Hg. It is concluded that the metal accumulation observed is the result of the nearby ash and coal deposits

  6. Utilizing Multi-Sensor Fire Detections to Map Fires in the United States

    Science.gov (United States)

    Howard, S. M.; Picotte, J. J.; Coan, M. J.

    2014-11-01

    In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 "unknown" or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.

  7. PM1 particles at coal- and gas-fired power plant work areas.

    Science.gov (United States)

    Hicks, Jeffrey B; McCarthy, Sheila A; Mezei, Gabor; Sayes, Christie M

    2012-03-01

    With the increased interest in the possible adverse health effects attributed to inhalation of fine particle matter, this study was conducted to gather preliminary information about workplace exposures at coal- and gas-fired power plants to fine particles (PM(1); i.e. <1 μm) and ultrafine particles (i.e. <0.1 μm). Combustion of fossil fuel is known to produce fine particles, and due to their proximity and durations of exposure, power plant workers could be a group of individuals who experience high chronic exposures to these types of particles. The results of a series of real-time instrument measurements showed that concentrations of PM(1) were elevated in some locations in power plants. The highest concentrations were in locations near combustion sources, indicating that combustion materials were leaking from conventional fossil fuel-fired boilers or it was associated with emission plume downwash. Concentrations were the lowest inside air-conditioned control rooms where PM(1) were present at levels similar to or lower than upwind concentrations. Microscopic examinations indicate that PM(1) at the coal-fired plants are dominated by vitrified spheres, although there were also unusual elongated particles. Most of the PM(1) were attached to larger coal fly ash particles that may affect where and how they could be deposited in the lung.

  8. Measurements and simulation for design optimization for low NOx coal-firing system

    Energy Technology Data Exchange (ETDEWEB)

    E. Bar-Ziv; Y. Yasur; B. Chudnovsky; L. Levin; A. Talanker [Ben-Gurion University of Negev, Beer-Sheva (Israel)

    2003-07-01

    The information required to design a utility steam generator is the heat balance, fuel analysis and emission. These establish the furnace wall configuration, the heat release rates, and the firing technology. The furnace must be sized for (1) residence time for complete combustion with low NOx, and (2) reduction of flue gas temperature to minimize ash deposition. To meet these, computational fluid dynamics (CFD) of the combustion process in the furnace were performed and proven to be a powerful tool for this purpose. Still, reliable numerical simulations require careful interpretation and comparison with measurements. We report numerical results and measurements for a 575 MW pulverized coal tangential firing boiler of the Hadera power plant of Israel Electric Corporation (IEC). Measured and calculated values were found to be in reasonable agreement. We used the simulations for optimization and investigated temperature distribution, heat fluxes and concentration of chemical species. We optimized both the furnace flue gas temperature entering the convective path and the staged residence time for low NOx. We tested mass flow rates through close-coupled and separate overfire air ports and its arrangement and the coal powder fineness. These parameters can control the mixing rate between the fuel and the oxidizer streams and can affect the most important characteristics of the boiler such as temperature regimes, coal burning rate and nitrogen oxidation/reduction. From this effort, IEC started to improve the boiler performance by replacing the existing typical tangential burners to low NOx firing system to ensure the current regulation requirements of emission pollutions.

  9. Radiation doses from coal-fired plants in Oxfordshire and Berkshire

    International Nuclear Information System (INIS)

    Wan, S.L.; Wrixon, A.D.

    1988-12-01

    This report contains an assessment of the radiation doses to members of the public living in Oxfordshire and Berkshire from the releases to atmosphere of natural radioactivity from Didcot Power Station and the coal-fired boilers that operate at the Atomic Weapons Establishment (AWE) at Aldermaston and the Harwell Laboratory of UKAEA. The calculated annual effective dose equivalents to adults from the emissions from Didcot Power Station and the coal-fired plants at AWE, Aldermaston, and UKAEA, Harwell, at 5 km from the sites are, respectively, 0.3, 0.06 and 0.01 μSv. The dose to red bone marrow are broadly comparable with these values. The doses to the other age groups considered (1-year-old and 10-year-old children) are similar to those to the adults. The conclusion is therefore drawn that the discharges from the coal-fired plants make a negligible contribution to the total radiation doses received by the population living around the sites. (author)

  10. Radioactivity level of soil around Baqiao coal-fired power plant in China

    International Nuclear Information System (INIS)

    Lu, Xinwei; Zhao, Caifeng; Chen, Cancan; Liu, Wen

    2012-01-01

    Natural radioactivity level of soil around Baqiao coal-fired power plant in China was determined using gamma ray spectrometry. The concentrations of 226 Ra, 232 Th and 40 K in the studied soil samples range from 27.6 to 48.8, 44.4 to 61.4 and 640.2 to 992.2 Bq kg −1 with an average of 36.1, 51.1 and 733.9 Bq kg −1 , respectively, which are slightly higher than the average values of Shaanxi soil. The radium equivalent activity, the air absorbed dose rate and the annual effective dose rate were calculated and compared with the internationally reported or reference values. The radium equivalent activities of the studied samples are below the internationally accepted values. The air absorbed dose rate and the annual effective dose rate received by the local residents due to the natural radionuclides in soil are slightly higher than the mean value of Xi'an and worldwide. - Highlights: ► Natural radioactivity in soil around the coal-fired power plant was determined. ► Radiological parameters were used to assess radiation hazard. ► The coal-fired power plant has affected the local radioactivity level.

  11. Drivers of biomass co-firing in U.S. coal-fired power plants

    Science.gov (United States)

    Michael E. Goerndt; Francisco X. Aguilar; Kenneth Skog

    2013-01-01

    Substantial knowledge has been generated in the U.S. about the resource base for forest and other residue-derived biomass for bioenergy including co-firing in power plants. However, a lack of understanding regarding power plant-level operations and manager perceptions of drivers of biomass co-firing remains. This study gathered information from U.S. power plant...

  12. [Emission characteristics of PM10 from coal-fired industrial boiler].

    Science.gov (United States)

    Li, Chao; Li, Xing-Hua; Duan, Lei; Zhao, Meng; Duan, Jing-Chun; Hao, Ji-Ming

    2009-03-15

    Through ELPI (electrical low-pressure impactor) based dilution sampling system, the emission characteristics of PM10 and PM2.5 was studied experimentally at the inlet and outlet of dust catchers at eight different coal-fired industrial boilers. Results showed that a peak existed at around 0.12-0.20 microm of particle size for both number size distribution and mass size distribution of PM10 emitted from most of the boilers. Chemical composition analysis indicated that PM2.5 was largely composed of organic carbon, elementary carbon, and sulfate, with mass fraction of 3.7%-21.4%, 4.2%-24.6%, and 1.5%-55.2% respectively. Emission factors of PM10 and PM2.5 measured were 0.13-0.65 kg x t(-1) and 0.08-0.49 kg x t(-1) respectively for grate boiler using raw coal, and 0.24 kg x t(-1) and 0.22 kg x t(-1) for chain-grate boiler using briquette. In comparison, the PM2.5 emission factor of fluidized bed boiler is 1.14 kg x t(-1), much her than that of grate boiler. Due to high coal consumption and low efficiency of dust separator, coal-fired industrial boiler may become the most important source of PM10, and should be preferentially controlled in China.

  13. Industry perspectives on increasing the efficiency of coal-fired power generation

    Energy Technology Data Exchange (ETDEWEB)

    Torrens, I.M. [Shell Coal International, London (United Kingdom); Stenzel, W.C.

    1997-12-31

    Independent power producers will build a substantial fraction of expected new coal-fired power generation in developing countries over the coming decades. To reduce perceived risk and obtain financing for their projects, they are currently building and plan to continue to build subcritical coal-fired plants with generating efficiency below 40%. Up-to-date engineering assessment leads to the conclusion that supercritical generating technology, capable of efficiencies of up to 45%, can produce electricity at a lower total cost than conventional plants. If such plants were built in Asia over the coming decades, the savings in carbon dioxide emissions over their lifetime would be measured in billions of tons. IPPs perceive supercritical technology as riskier and higher cost than conventional technology. The truth needs to be confirmed by discussions with additional experienced power engineering companies. Better communication among the interested parties could help to overcome the IPP perception issue. Governments working together with industry might be able to identify creative financing arrangements which can encourage the use of more efficient pulverized clean coal technologies, while awaiting the commercialization of advanced clean coal technologies like gasification combined cycle and pressurized fluidized bed combustion.

  14. Local deposition of mercury in topsoils around coal-fired power plants: is it always true?

    Science.gov (United States)

    Rodriguez Martin, José Antonio; Nanos, Nikos; Grigoratos, Theodoros; Carbonell, Gregoria; Samara, Constantini

    2014-09-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere through human activities, mainly fossil fuel combustion. Hg accumulations in soil are associated with atmospheric deposition, while coal-burning power plants remain the most important source of anthropogenic mercury emissions. In this study, we analyzed the Hg concentration in the topsoil of the Kozani-Ptolemais basin where four coal-fired power plants (4,065 MW) run to provide 50 % of electricity in Greece. The study aimed to investigate the extent of soil contamination by Hg using geostatistical techniques to evaluate the presumed Hg enrichment around the four power plants. Hg variability in agricultural soils was evaluated using 276 soil samples from 92 locations covering an area of 1,000 km(2). We were surprised to find a low Hg content in soil (range 1-59 μg kg(-1)) and 50 % of samples with a concentration lower than 6 μg kg(-1). The influence of mercury emissions from the four coal-fired power plants on soil was poor or virtually nil. We associate this effect with low Hg contents in the coal (1.5-24.5 μg kg(-1)) used in the combustion of these power plants (one of the most Hg-poor in the world). Despite anthropic activity in the area, we conclude that Hg content in the agricultural soils of the Kozani-Ptolemais basin is present in low concentrations.

  15. Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation

    International Nuclear Information System (INIS)

    Bartela, Łukasz; Skorek-Osikowska, Anna; Kotowicz, Janusz

    2014-01-01

    Energy investments in Poland are currently focused on supercritical coal-fired unit technology. It is likely, that in the future, these units are to be integrated with carbon capture and storage (CCS) installations, which enable a significant reduction of greenhouse gas emissions into the atmosphere. A significant share of the energy market in Poland is constituted by coal-fired combined heat and power (CHP) plants. The integration of these units with CCS installation can be economically inefficient. However, the lack of such integration enhances the investment risk due to the possibility of appearing on the market in the near future high prices of emission allowances. The aforementioned factors and additional favorable conditions for the development of cogeneration can cause one to consider investing in large supercritical CHP plants. This paper presents the results of an economic analysis aimed at comparing three cases of CHP plants, one without an integrated CCS installation and two with such installations. The same steam cycle structure for all variants was adopted. The cases of integrated CHP plants differ from each other in the manner in which they recover heat. For the evaluation of the respective solutions, the break-even price of electricity and avoided emission cost were used. - Highlights: • The simulations of operation of CHP plants under changing load have been realized. • For analyzed cases sensitivity analyses of economic indices have been conducted. • Conditions of competitiveness for integration with CCS units have been identified. • Integration can be profitable if prices of allowance will reach high values, exceeding 50 €/MgCO 2 . • Others important factors are the investment costs and operation and maintenance costs

  16. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, W.S. [W.S. Hinton and Associates, Cantonment, FL (United States); Maxwell, J.D.; Healy, E.C.; Hardman, R.R. [Southern Company Services, Inc., Birmingham, AL (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States)

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test program was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.

  17. Coal information 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Coal Information (1997 edition) is the latest edition of a publication that has been produced annually by the IEA since 1983. The report is intended to provide both Member countries of the OECD and those employed in all sectors of the coal industry with information on current world coal market trends and long-term prospects. It includes information on coal prices, demand, trade, supply, production capacity, transport, environmental issues (including emission standards for coal-fired boilers), coal ports, coal-fired power stations and coal used in non -OECD countries. Part I of the publication contains a wide ranging review of world coal market developments in 1996 and current prospects to 2010. The review is based on historical data of OECD energy supply and demand, data on other world regions, projections of OECD coal supply, demand and trade and information provided by the CIAB. Part II provides, in tabular and graphical form, a more detailed and comprehensive statistical picture of coal developments and future prospects for coal in the OECD, by region and for individual Member countries. Readers interested in projections are strongly advised to read the notes for individual countries in Principles and Definitions in Part II. Coal statistics for non-OECD countries are presented in Part III of the book. Summary data are available on hard coal supply and end-use statistics for about 40 countries and regions world-wide. Data are based on official national submissions to the United Nations in Geneva and New York, national energy publications, information provided to the IEA Secretariat by national statistical offices as well as other unofficial Secretariat sources. Further information on coal used in non-OECD countries is published annually by the IEA in Energy Statistics and Balances of Non-OECD Countries. Also included in Part III are the Survey of Coal Ports world-wide and the Survey of Coal-fired Power Stations in coal-importing countries

  18. Experimental analysis of a combustion reactor under co-firing coal with biomass

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Fabyo Luiz; Bazzo, Edson; Oliveira Junior, Amir Antonio Martins de [Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil). LabCET], e-mail: ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia S.A., Complexo Termeletrico Jorge Lacerda, Capivari de Baixo, SC (Brazil)], e-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    Mitigation of greenhouse gases emission is one of the most important issues in energy engineering. Biomass is a potential renewable source but with limited use in large scale energy production because of the relative smaller availability as compared to fossil fuels, mainly to coal. Besides, the costs concerning transportation must be well analysed to determine its economic viability. An alternative for the use of biomass as a primary source of energy is the co-firing, that is the possibility of using two or more types of fuels combined in the combustion process. Biomass can be co-fired with coal in a fraction between 10 to 25% in mass basis (or 4 to 10% in heat-input basis) without seriously impacting the heat release characteristics of most boilers. Another advantage of cofiring, besides the significant reductions in fossil CO{sub 2} emissions, is the reduced emissions of NO{sub x} and SO{sub x}. As a result, co-firing is becoming attractive for power companies worldwide. This paper presents results of some experimental analysis on co-firing coal with rice straw in a combustion reactor. The influence of biomass thermal share in ash composition is also discussed, showing that alkali and earth alkaline compounds play the most important role on the fouling and slagging behavior when co-firing. Some fusibility correlations that can assist in the elucidation of these behavior are presented and discussed, and then applied to the present study. Results show that for a biomass thermal share up to 20%, significant changes are not expected in fouling and slagging behavior of ash. (author)

  19. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-03-31

    Proposed activities for quarter 7 (12/15/01-3/14/2002): (1) Incorporation of moisture model into PCGC2 code. Parametric study of moisture effects on flame structure and pollutants emissions in cofiring of coal and Liter Biomass (LB) (Task 4); (2) Use the ash tracer method to determine the combustion efficiency and comparison it to results from gas analysis (Task 2); (3) Effect of swirl on combustion performance (Task 2); (4) Completion of the proposed modifications to the gasifier setup (Task 3); (5) Calibration of the Gas Chromatograph (GC) used for measuring the product gas species (Task 3); and (6) To obtain temperature profiles for different fuels under different operating conditions in the fixed bed gasifier (Task 3).

  20. Wireless vibration monitoring in a US coal-fired plant

    Energy Technology Data Exchange (ETDEWEB)

    Gbur, G.L.; Wier, W.; Bark, T.

    2006-07-15

    Choosing a reliable wireless systems able to provide data on vibration magnitudes in a coal pulveriser was never going to be easy, so two systems were tested alongside each other. One was the Wireless MCT System produced by SKF Reliability Systems; the other was from an alternative vendor. A replacement wireless vibration monitor was required at the Baldwin Energy Complex near Decartar, Illinois, USA. A single CE-Raymond model 923.RP pulverizer equipped with eight Wilcox on 786A accelerometers was chosen for monitoring. Five days after installation, the pulverizer experienced a failure. The wireless system provided vibration magnitudes to Dynegy's OSI PI Historian software. Analysis of this data coupled with an unsuccessful attempt to adjust the grinding roll, revealed that the number two grinding roll bearing had failed. The SKF Reliability System proved to detect the fault earlier than the non-SKF system and was chosen for the plant. 10 figs., 1 tab.

  1. Transformations and affinities for sulfur of Chinese Shenmu coal ash in a pulverized coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.; Zhou, J.H.; Liu, J.Z.; Cao, X.Y.; Cen, K.F. [Zhejiang University, Hangzhou (China)

    2009-07-01

    The self-desulfurization efficiency of Shenmu coal with a high initial Ca/S molar ratio of 2.02 was measured in a 1,025 t/h pulverized coal-fired boiler. It increases from 29% to 32% when the power capacity decreases from 100% to 70%. About 60% of the mineral matter and calcium element fed into the furnace is retained in the fly ash, while less than 10% is retained in the bottom ash. About 70% of the sulfur element fed into the furnace is emitted as SO{sub 2} in the flue gas, while less than 10% is retained in the fly ash and less than 1% is retained in the bottom ash. The mineralogical compositions of feed coal, fly ash, and bottom ash were obtained by X-ray diffraction analysis. It is found that the initial amorphous phase content is 91.17% and the initial CaCO{sub 3} phase content is 2.07% in Shenmu coal. The vitreous phase and sulfation product CaSO{sub 4} contents are, respectively, 70.47% and 3.36% in the fly ash obtained at full capacity, while the retained CaCO{sub 3} and CaO contents are, respectively, 4.73% and 2.15%. However, the vitreous phase content is only 25.68% and no CaSO{sub 4} is detected in the bottom ash obtained at full capacity. When the power capacity decreases from 100% to 70%, the vitreous phase content in fly ash decreases from 70.47% to 67.41% and that in bottom ash increases from 25.68% to 28.10%.

  2. Study on the reliability of large coal-fired and nuclear power plants. Factors affecting power plant reliability. Volume I. Final report

    International Nuclear Information System (INIS)

    1975-01-01

    The study consisted of a comparative evaluation of 2 nuclear units (Indian Point 2 - Consolidated Edison of New York, Turkey Point 4 - Florida Power and Light Company) and 2 coal-fired units (Bull Run and Widows Creek Unit 8 - Tennessee Valley Authority). The purpose of the study was to identify and assess the underlying causes of unit reliability and the causes of the observed differences in reliability performance of the units. Recommended actions for improving the reliability of one of the study units was to be presented in a format useful to other utility companies for improving reliability of their generating units. The emphasis of the study was on the aspects of management, manning, operations, and maintenance which had a significant impact on unit reliability. Volume 1 includes a summary, a description of the major findings from the comparative evaluation, conclusions based on these findings, and recommendations for improving the reliability of the below average units

  3. Application of the decree 2910 for coal fired boilers; Application de l`arrete 2910 aux chaudieres a charbon

    Energy Technology Data Exchange (ETDEWEB)

    Hing, K. [CDF Energie, Charbonnages de France, 92 - Rueil-Malmaison (France)

    1997-12-31

    The impacts of the new French decree 2910 concerning the classification of all combustion equipment with regards to their energy sources, energy efficiency and pollution control, on 2 to 20 MW coal-fired boilers, are discussed, with emphasis on their pollutant emissions (SO{sub 2}, NO{sub x} and ashes). The compositions of several coals is presented and the various types of coal-fired boilers adapted to the new decree are presented: automatic boilers, dense fluidized bed boilers, vibrating and chain grids with fume tubes and water tubes

  4. PCDDs/PCDFs, dl-PCBs and HCB in the flue gas from coal fired CFB boilers.

    Science.gov (United States)

    Grochowalski, Adam; Konieczyński, Jan

    2008-08-01

    The aim of the project was to measure the actual emissions of polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (dl-PCBs) and hexachlorobenzene (HCB) from four selected power plants in Poland in order to update the national inventory of PCDDs/PCDFs emission. Relatively low PCDDs/PCDFs as well as dl-PCBs concentrations in flue gas obtained in measurements in this study for four different circulated fluidized bed (CFB) boilers indicate practical absence of any hazards caused by PCDDs/PCDFs emission from these units. The results of PCDDs/PCDFs determination obtained in this study indicate that hard coal combustion in large CFB in the four central heating plants (CHP) is not a significant source of PCDDs/PCDFs emission to the environment even if operated by co-firing of waste coal. PCDDs/PCDFs concentration in flue gases as well as emission factors were recorded in the range of 0.012-0.060 ng I-TEQ/m(n)(3) and 7.51-46.4 microg I-TEQ/TJ, respectively. Dl-PCBs concentration was practically below the LOQ=0.006 ng WHO-PCB TEQ/m(n)(3) in all experiments. HCB concentration as well as emission factors were recorded in the range of 11.5-42.0 ng/m(n)(3) and 6.19-26.7 mg/TJ, respectively, where the highest value was obtained for co-firing of waste coal, however. Obtained in this work emission factors will be used for national emission inventory purposes instead of the factors proposed by Toolkit or taken from previous measurements. However, consideration should be given to the fact that the measurements in most cases are related to single installations. Therefore, the need for further development of national factors for the power generation industry in Poland is desired.

  5. Pain without gain? Reviewing the risks and rewards of investing in Russian coal-fired electricity

    International Nuclear Information System (INIS)

    Gorbacheva, Natalya V.; Sovacool, Benjamin K.

    2015-01-01

    Highlights: • This study explores the risks and rewards facing coal in Russia. • Rewards include low costs, investment, rural modernization, exports, and innovation. • Risks include development challenges, air pollution and climate change, and policy support. - Abstract: Coal use—and thus investment—is expected to grow considerably in the Russian Federation over the next few decades. Projections suggest that at least $200 billion of investment will be needed to modernize existing coal-fired power plants by 2030, but the bulk of this financing is to come from the private sector or foreign enterprises. This study asks: what are the possible investment risks and rewards of pursuing this expansion of coal in the Russian power sector? To provide an answer, the study uses a mixed methods approach consisting of elite semi-structured interviews and a review of English and Russian peer-reviewed literature. The study provides a brief overview of the Russian electricity sector before discussing five distinct rewards to investing in coal such as low production costs, competitive returns on investment, rural modernization, expansion of exports, and the acceleration of innovation. These benefits however are offset by five risks: inferior performance to investments in oil and gas, development challenges, air pollution and climate change, social degradation from mining, and a tradeoff with existing policies incentivizing renewable energy and energy efficiency. The study concludes by analyzing what these disparate risks and rewards mean for policymakers and energy analysts

  6. Pollution control technologies applied to coal-fired power plant operation

    Directory of Open Access Journals (Sweden)

    Maciej Rozpondek

    2009-09-01

    Full Text Available Burning of fossil fuels is the major source of energy in today's global economy with over one-third of the world's powergeneration derived from coal combustion. Although coal has been a reliable, abundant, and relatively inexpensive fuel source for mostof the 20th century, its future in electric power generation is under increasing pressure as environmental regulations become morestringent worldwide. Current pollution control technologies for combustion exhaust gas generally treat the release of regulatedpollutants: sulfur dioxide, nitrogen oxides and particulate matter as three separate problems instead of as parts of one problem. Newand improved technologies have greatly reduced the emissions produced per ton of burning coal. The term “Clean Coal CombustionTechnology” applies generically to a range of technologies designed to greatly reduce the emissions from coal-fired power plants.The wet methods of desulfurization at present are the widest applied technology in professional energetics. This method is economicand gives good final results but a future for clean technologies is the biomass. Power from biomass is a proven commercial optionof the electricity generation in the World. An increasing number of power marketers are starting to offer environmentally friendlyelectricity, including biomass power, in response to the consumer demand and regulatory requirements.

  7. Computational fluid dynamic simulations of coal-fired utility boilers: An engineering tool

    Energy Technology Data Exchange (ETDEWEB)

    Efim Korytnyi; Roman Saveliev; Miron Perelman; Boris Chudnovsky; Ezra Bar-Ziv [Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2009-01-15

    The objective of this study was to develop an engineering tool by which the combustion behavior of coals in coal-fired utility boilers can be predicted. We presented in this paper that computational fluid dynamic (CFD) codes can successfully predict performance of - and emission from - full-scale pulverized-coal utility boilers of various types, provided that the model parameters required for the simulation are properly chosen and validated. For that purpose we developed a methodology combining measurements in a 50 kW pilot-scale test facility with CFD simulations using the same CFD code configured for both test and full-scale furnaces. In this method model parameters of the coal processes are extracted and validated. This paper presents the importance of the validation of the model parameters which are used in CFD codes. Our results show very good fit of CFD simulations with various parameters measured in a test furnace and several types of utility boilers. The results of this study demonstrate the viability of the present methodology as an effective tool for optimization coal burning in full-scale utility boilers. 41 refs., 9 figs., 3 tabs.

  8. Analysis of natural radioactivity in Yatağan coalfired power plant in Turkey

    Directory of Open Access Journals (Sweden)

    Altıkulaç Aydan

    2017-01-01

    Full Text Available Use of the coal in order to generate electricity increases the exposure of people to radiation. In this paper, the activity concentrations of nuclides 226Ra, 232Th and 40K in samples of coal and bottom ash from the Yatagan Coal–Fired thermal power plant determined using gamma ray spectrometer with a NaI(Tl scintillation detector. The mean activity concentrations of 226Ra, 232Th, and 40K in the coal were found to be 37.2±2.8 Bqkg-1, 51.8±3.4 Bqkg-1 and 166.7±11.1 Bqkg-1, respectively. Whereas in the bottom ashes, the concentrations of the corresponding radionuclides were found to be 62.2±5.6 Bqkg-1, 87.4±5.9 Bqkg-1 and 221.0 ±12.5 Bqkg-1, respectively. The findings show that bottom ashes show higher activity concentrations of related radionuclide to coal samples. The absorbed gamma dose rate in outdoor air DROUT and annual effective dose rate (AED from coal were calculated to define radıologıcal rısk. The average findings of annual effective doses were detected as 68.6±5.1 μSvy-1 and 110.3±11.2 μSvy-1, respectively.

  9. Study on the radiological Impact of Coal Fired Power Plants

    International Nuclear Information System (INIS)

    Cancio, D.; Robles, B.; Mora, J. C.; Baeza, A.; Corbacho, J. A.; Vasco, J.; Guillen, J.

    2008-01-01

    The study is part of the goal set forth in Title VII of the European Basic Safety Standards and the Spanish regulations on radiation protection related to work activities that may involve a significant increase in exposure of workers and the public to natural radiation. Coal contains small quantities of radionuclides in the series of uranium, thorium and potassium which in the industrial process can lead to radiological exposure. This work presents the measurements and evaluations conducted in one of the power plants object of study: The Unidad Termica de Produccion de Litoral in the Almeria Province. The maximum dose assessed for workers are in the order of 0.14 mSv per year and in the order of 0.05 mSv per year for the public in the realistic scenarios considered. These values are well below the 1mSv per year reference levels, recommended in Europe to have some interest from the radiation protection point of view. (Author) 52 refs

  10. Deposit growth and property development in coal-fired furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L. [Sandia National Lab., Livermore, CA (United States)

    1995-11-01

    The objectives of this research project are: (1) to provide a self-consistent database of simultaneously measured, time-resolved ash deposit properties in well-controlled and well-defined environments and (2) to provide analytical expressions that relate deposit composition and structure to deposit properties of immediate relevance to PETC`s Combustion 2000 program. This project is distinguished from related work being done elsewhere by: (1) the development and deployment of in-situ diagnostics to monitor deposit properties, including heat transfer coefficients, porosity, emissivity, tenacity, strength, density, and viscosity; (2) the time resolution of such properties during deposit growth; (3) simultaneous measurement of structural and composition properties; (4) development of algorithms from a self-consistent, simultaneously measured database that includes the interdependence of properties; and (5) application of the results to technologically relevant environments such as those being planned under Combustion 2000 program. Work completed during FY94 emphasized diagnostic development. During FY95, this development work will be completed and we will emphasize application of the diagnostics to meet the other project objectives. Included in this work are the development and application of two in-situ, real-time diagnostic systems for monitoring the properties of inorganic materials on Heat transfer surfaces and in the gas-phase during controlled combustion of selected coal samples in Sandia`s Multifuel Combustor (MFC). Also, several diagnostics are being incorporated into the MFC that will eventually be used to characterize ash deposit properties.

  11. Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar Sequestration.

    Science.gov (United States)

    Dang, Qi; Mba Wright, Mark; Brown, Robert C

    2015-12-15

    This study investigates a novel strategy of reducing carbon emissions from coal-fired power plants through co-firing bio-oil and sequestering biochar in agricultural lands. The heavy end fraction of bio-oil recovered from corn stover fast pyrolysis is blended and co-fired with bituminous coal to form a bio-oil co-firing fuel (BCF). Life-cycle greenhouse gas (GHG) emissions per kWh electricity produced vary from 1.02 to 0.26 kg CO2-eq among different cases, with BCF heavy end fractions ranging from 10% to 60%, which corresponds to a GHG emissions reduction of 2.9% to 74.9% compared with that from traditional bituminous coal power plants. We found a heavy end fraction between 34.8% and 37.3% is required to meet the Clean Power Plan's emission regulation for new coal-fired power plants. The minimum electricity selling prices are predicted to increase from 8.8 to 14.9 cents/kWh, with heavy end fractions ranging from 30% to 60%. A minimum carbon price of $67.4 ± 13 per metric ton of CO2-eq was estimated to make BCF power commercially viable for the base case. These results suggest that BCF co-firing is an attractive pathway for clean power generation in existing power plants with a potential for significant reductions in carbon emissions.

  12. Pilot plant development of a new catalytic process for improved electrostatic separation of fly ash in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Olivares del Valle, J.; Martinez, L.S.; Baum, B.M.; Galeano, V.C. [Universidad de Sevilla (Spain)

    1995-12-31

    The design and operation of pulverized-coal-fired power plants (PCFPP) are usually regarded as fuel range in terms of sulphur and ash contents. These units may give severe environmental problems of fly ash emissions as a result of lower SO{sub 3} contents in the flue gas (FG) because the electrical resistivity of the solid particles is correspondingly lower, with consequent adverse effects on electrostatic precipitator (ESP) efficiency. More stringent air pollution laws cause many power companies to burn lower sulphur coal under boilers in plants that formerly burned higher S coal or ran with abnormal operational conditions (only remediable by shutdown and repairs). This presentation of the GASOX process is a contribution to the improvement of existing technology for flue gas conditioning (FGC), which is defined as a control system for (ESP) efficiency in PCFPP.

  13. Biomass co-firing in coal power plants in the Netherlands. Effects on performance and air pollutant emissions

    Energy Technology Data Exchange (ETDEWEB)

    Smekens, K. [ECN Policy Studies, Petten (Netherlands)

    2013-07-15

    This note is intended for use in the UNECE (United Nations Economic Commission for Europe)-EGTEI (Expert Group on Techno-Economic Issues) work related to cost of emission reduction technologies for large combustion plants (LCP). This work is coordinated by KIT (Karlsruhe) and CITEPA (Paris). As the Netherlands is considered to be a valuable country for data regarding biomass co-firing in large coal fired power plants, EGTEI expressed its interest on data ECN has available. For this purpose, based on available data from annual environmental reports of power plants, ECN has looked into the relationship between the percentage of co -firing and the plant performance. It should be noted that the evaluation has been based on annual data, not on real-time simultaneous measurements of the different parameters mentioned in this note. Cumulative annual data give no insights in e.g. the effects of the load factor, of start-ups or shut-downs, seasonal circumstances, fuel qualities, etc. Therefore, the findings in this report should be treated with due care and not be generalised.

  14. Assessment of geothermal assisted coal-fired power generation using an Australian case study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Cheng [Priority Research Centre for Energy, Discipline of Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308 (Australia); Doroodchi, Elham [Priority Research Centre for Advanced Particle Processing and Transport, Discipline of Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308 (Australia); Moghtaderi, Behdad [Priority Research Centre for Energy, Discipline of Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2014-06-01

    Highlights: • Systematic techno-economic analyses of GAPG system completed for Australian conditions. • Greater utilisation efficiency of both geothermal and fossil fuel resources was achieved. • Reference maps developed to predict conditions when hybrid plant outperforms two stand-alone plants. • Carbon tax and RECs rates of 40 $/tonne and 60 cents/kW h are adequate. • HDR resources should be located no further than 20 km from the plant. - Abstract: A systematic techno-economic analysis of geothermal assisted power generation (GAPG) was performed for a 500 MW unit of a typical coal-fired power plant located at the upper Hunter region of New South Wales, Australia. Specifically, the GAPG viability and performance was examined by investigating the impacts of reservoir temperature, resource distance, hybridisation scheme, and economic conditions including carbon tax and Renewable Energy Certificates (REC). The process simulation package, Aspen HYSYS, was employed for all simulation purposes. Thermodynamically, GAPG system was found to increase the power output of the plant by up to 19% under the booster mode whilst in fuel saving mode the coal consumption reduced by up to 0.3 million tonne/year decreasing the Green House Gas (GHG) emission by up to 15% (0.6 million tonne/year). Economic analyses showed that for a typical HDR resource with a reservoir temperature about 150 °C located within a 5 km radius from the power plant, the GAPG system becomes economically competitive to the stand-alone fossil fuel based plant when minimum carbon tax and RECs rates of 40 $/tonne and 60 cents/kW h are introduced. The figure of merit analyses comparing GAPG system with both stand-alone fossil fuel and stand-alone geothermal plants showed that an economically feasible GAPG system requires the use of HDR resources located no further than 20 km from the plants. Reference maps were also developed to predict suitable conditions for which the hybrid plant outperforms the

  15. Assessment of geothermal assisted coal-fired power generation using an Australian case study

    International Nuclear Information System (INIS)

    Zhou, Cheng; Doroodchi, Elham; Moghtaderi, Behdad

    2014-01-01

    Highlights: • Systematic techno-economic analyses of GAPG system completed for Australian conditions. • Greater utilisation efficiency of both geothermal and fossil fuel resources was achieved. • Reference maps developed to predict conditions when hybrid plant outperforms two stand-alone plants. • Carbon tax and RECs rates of 40 $/tonne and 60 cents/kW h are adequate. • HDR resources should be located no further than 20 km from the plant. - Abstract: A systematic techno-economic analysis of geothermal assisted power generation (GAPG) was performed for a 500 MW unit of a typical coal-fired power plant located at the upper Hunter region of New South Wales, Australia. Specifically, the GAPG viability and performance was examined by investigating the impacts of reservoir temperature, resource distance, hybridisation scheme, and economic conditions including carbon tax and Renewable Energy Certificates (REC). The process simulation package, Aspen HYSYS, was employed for all simulation purposes. Thermodynamically, GAPG system was found to increase the power output of the plant by up to 19% under the booster mode whilst in fuel saving mode the coal consumption reduced by up to 0.3 million tonne/year decreasing the Green House Gas (GHG) emission by up to 15% (0.6 million tonne/year). Economic analyses showed that for a typical HDR resource with a reservoir temperature about 150 °C located within a 5 km radius from the power plant, the GAPG system becomes economically competitive to the stand-alone fossil fuel based plant when minimum carbon tax and RECs rates of 40 $/tonne and 60 cents/kW h are introduced. The figure of merit analyses comparing GAPG system with both stand-alone fossil fuel and stand-alone geothermal plants showed that an economically feasible GAPG system requires the use of HDR resources located no further than 20 km from the plants. Reference maps were also developed to predict suitable conditions for which the hybrid plant outperforms the

  16. Emission spectroscopy for coal-fired cyclone furnace diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Wehrmeyer, J.A.; Boll, D.E.; Smith, R. [Vanderbilt University, Nashville, TN (United States). Dept. of Mechanical Engineering

    2003-08-01

    Using a spectrograph and charge-coupled device (CCD) camera, ultraviolet and visible light emission spectra were obtained from a coal-burning electric utility's cyclone furnaces operating at either fuel-rich or fuel-lean conditions. The aim of this effort is to identify light emission signals that can be related to a cyclone furnace's operating condition in order to adjust its air/fuel ratio to minimize pollutant production. Emission spectra at the burner and outlet ends of cyclone furnaces were obtained. Spectra from all cyclone burners show emission lines for the trace elements Li, Na, K, and Rb, as well as the molecular species OH and CaOH. The Ca emission line is detected at the burner end of both the fuel-rich and fuellean cyclone furnaces but is not detected at the outlet ends of either furnace type. Along with the disappearance of Ca is a concomitant increase in the CaOH signal at the outlet end of both types of furnaces. The OH signal strength is in general stronger when viewing at the burner end rather than the exhaust end of both the fuel-rich and fuel-lean cyclone furnaces, probably due to high, non-equilibrium amounts of OH present inside the furnace. Only one molecular species was detected that could be used as a measure of air/fuel ratio: MgOH. It was detected at the burner end of fuel-rich cyclone furnaces but not detected in fuel-lean cyclone furnaces. More direct markers of air/fuel ratio, such as CO and 02 emission, were not detected, probably due to the generally weak nature of molecular emission relative to ambient blackbody emission present in the cyclone furnaces, even at ultraviolet wavelengths.

  17. Metallurgical Analysis of Cracks Formed on Coal Fired Boiler Tube

    Science.gov (United States)

    Kishor, Rajat; Kyada, Tushal; Goyal, Rajesh K.; Kathayat, T. S.

    2015-02-01

    Metallurgical failure analysis was carried out for cracks observed on the outer surface of a boiler tube made of ASME SA 210 GR A1 grade steel. The cracks on the surface of the tube were observed after 6 months from the installation in service. A careful visual inspection, chemical analysis, hardness measurement, detailed microstructural analysis using optical and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy were carried out to ascertain the cause for failure. Visual inspection of the failed tube revealed the presence of oxide scales and ash deposits on the surface of the tube exposed to fire. Many cracks extending longitudinally were observed on the surface of the tube. Bulging of the tube was also observed. The results of chemical analysis, hardness values and optical micrographs did not exhibit any abnormality at the region of failure. However, detailed SEM with EDS analysis confirmed the presence of various oxide scales. These scales initiated corrosion at both the inner and outer surfaces of the tube. In addition, excessive hoop stress also developed at the region of failure. It is concluded that the failure of the boiler tube took place owing to the combined effect of the corrosion caused by the oxide scales as well as the excessive hoop stress.

  18. Co-firing of coal with biomass and waste in full-scale suspension-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, Kim; Frandsen, Flemming J.; Jensen, Peter A.; Jensen, Anker D. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of chemical and Biochemical Engineering

    2013-07-01

    The energy policy in Denmark has for many years focused on lowering the net CO{sub 2} emission from heat and power production by replacing fossil fuels by renewable resources. This has been done by developing dedicated grate-fired boilers for biomass and waste fuels but also by developing coal-based suspension-fired boilers to accept still higher fractions of biomass or waste material as fuels. This last development has been challenging of many reasons, including pre-treatment of fuels, and solving potential emission and operational problems during the simultaneous development of supercritical steam cycles with steam temperatures close to 600 C, providing power efficiencies close to 50% (Hein KRG, Sustainable energy supply and environment protection - strategies, resources and technologies. In: Gupta R, Wall T, Hupa M, Wigley F, Tillman D, Frandsen FJ (eds) Proceedings of international conference on impact of fuel quality on power production and the environment, Banff Conference Centre, Banff, Alberta, Canada, 29 Sept-4 Oct, 2008). For 25 years the CHEC (Combustion and Harmful Emission Control) Research Centre at DTU Chemical Engineering, has attained a leading role in research, supporting power producing industry, plant owners and boiler manufacturers to optimize design and operation and minimize cost and environmental impact using alternative fuels in suspension fired boilers. Our contribution has been made via a combination of full-scale measuring campaigns, pilot-scale studies, lab-scale measurements and modeling tools. The research conducted has addressed many issues important for co-firing, i.e. fuel processing, ash induced boiler deposit formation and corrosion, boiler chamber fuel conversion and emission formation, influence on flue gas cleaning equipment and the utilization of residual products. This chapter provides an overview of research activities, aiming at increasing biomass shares during co-firing in suspension, conducted in close collaboration with

  19. Energy utilisation of biowaste - Sunflower-seed hulls for co-firing with coal

    Energy Technology Data Exchange (ETDEWEB)

    Raclavska, Helena; Juchelkova, Dagmar; Roubicek, Vaclav; Matysek, Dalibor [VSB-Technical University of Ostrava, 17. listopadu 15, CZ-70833 Ostrava (Czech Republic)

    2011-01-15

    Sunflower-seed hulls (SSH) represent a source of combustible biomass characterised by high contents of potassium and phosphorus and a low silica content. The relatively high net calorific value of 20 MJ/kg d.m. is mainly influenced by the lignin content. Potassium and phosphorus are very important elements in biomass combustion for fuel, influencing slagging and fouling problems. Mixtures with different ratios of brown coal and sunflower-seed hulls (0-22% SSH) were co-fired in the Olomouc power plant. The behaviour of elements in the fly ash and the bottom ash (SiO{sub 2}, Al{sub 2}O{sub 3}, K{sub 2}O, P{sub 2}O{sub 5}, Zn, Cu and Cd) varied in relation to the amount of SSH added to the coal. The fly ash from the co-firing of 20% SSH with coal had a high content of water-leachable sulphates and total dissolved solids. The utilisation of fly ash in civil engineering (land reclamation) should fulfil criteria established by the Council Decision 2003/33/EC for non-hazardous waste. To ensure that the required water-leachable sulphate concentrations are within regulatory limits the fuel may contain a maximum of 14% SSH. (author)

  20. Pulverized coal firing of aluminum melting furnaces. First annual technical progress report, May 1978-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    West, C.E.; Hines, J.E.; Stewart, D.L. Jr.; Yu, H.

    1979-10-01

    The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has begun with the design and construction of a 350 lb/h (coal) staged slagging cyclone combustor (SSCC) attached to a 7-ft dia aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 lb capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time. A major design subcontract for assistance in the design of the SSCC is 80% completed.

  1. [Engineering development of advanced coal-fired low-emission boiler systems]. Technical progress report, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wesnor, J.D.; Bakke, E. [ABB Environmental Systems, Birmingham, AL (United States); Bender, D.J.; Kaminski, R.S. [Raytheon Engineers and Constructors, Inc., Philadelphia, PA (United States)

    1995-12-31

    The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emisssion boiler systems. The primary objectives are: NO{sub x} emissions, lb/million Btu; SO{sub 2} emissions, lb/million Btu; particulate emissions, lb/million Btu; and net plant efficiency, not less than 42%. The secondary objectives are: improved ash disposability; reduced waste generation; and reduced air toxics emissions. Accomplishments to date are summarized for the following tasks: task 1, project planning and management; task 7, component development and optimization; task 8, preliminary POC test facility design; task 9, subsystem test design and plan; task 10, subsystem test unit construction; and task 11, subsystem test operation and evaluation.

  2. Results of the desulfurization programme at coal-fired power plants operated by CEZ a.s

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The Czech utility CEZ, which is the major power plant operator in the Czech Republic, is running an extensive coal-fired power plant desulfurization programme to improve the environmental situation in the region. Flue gas desulfurization is achieved in 2 ways: by augmenting the existing units with desulfurization equipment, and by replacing old boilers with new, fluidized-bed combustion facilities. Both wet limestone scrubbing and the dry limestone method are applied. A survey of the power plants, desulfurized power, desulfurization equipment suppliers, and contract prices is presented in a tabular form. Plots showing the contribution of CEZ's power plants to sulfur dioxide emissions in the Czech Republic are reproduced. (P.A.). 1 tab., 3 figs

  3. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Soyuz Priyadarsan (PhD)

    2003-06-01

    Reburn with animal waste yield NO{sub x} reduction of the order of 70-80%, which is much higher than those previously reported in the literature for natural gas, coal and agricultural biomass as reburn fuels. Further, the NO{sub x} reduction is almost independent of stoichiometry from stoichiometric to upto 10% deficient air in reburn zone. As a first step towards understanding the reburn process in a boiler burner, a simplified zero-dimensional model has been developed for estimating the NO{sub x} reduction in the reburn process using simulated animal waste based biomass volatiles. However the first model does not include the gradual heat up of reburn fuel particle, pyrolysis and char combustion. Hence there is a need for more rigorous treatment of the model with animal waste as reburn fuel. To address this issue, an improved zero-dimensional model is being developed which can handle any solid reburn fuel, along with more detailed heterogeneous char reactions and homogeneous global reactions. The model on ''NO{sub x} Reduction for Reburn Process using Feedlot Biomass,'' incorporates; (a) mixing between reburn fuel and main-burner gases, (b) gradual heat-up of reburn fuel accompanied by pyrolysis, oxidation of volatiles and char oxidation, (c) fuel-bound nitrogen (FBN) pyrolysis, and FBN including both forward and backward reactions, (d) prediction of NO{sub x} as a function of time in the reburn zone, and (e) gas phase and solid phase temperature as a function of time. The fuel bound nitrogen is assumed to be released to the gas phase by two processes, (a) FBN evolution to N{sub 2}, HCN, and NH{sub 3}, and (b) FBN oxidation to NO at the char surface. The formulation has been completed, code has been developed, and preliminary runs have been made to test the code. Note that, the current model does not incorporate the overfire air. The results of the simulation will be compared with the experimental results. During this quarter, three journal and

  4. 30 CFR 74.5 - Tests of coal mine dust personal sampler units.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of coal mine dust personal sampler units... Personal Sampler Unit § 74.5 Tests of coal mine dust personal sampler units. (a) The National Institute for... tests and evaluations to determine whether the pump unit of a CMDPSU that is submitted for approval...

  5. Mercury emission and speciation of coal-fired power plants in China

    Science.gov (United States)

    Wang, S. X.; Zhang, L.; Li, G. H.; Wu, Y.; Hao, J. M.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.

    2010-02-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  6. Mercury emission and speciation of coal-fired power plants in China

    Directory of Open Access Journals (Sweden)

    S. X. Wang

    2010-02-01

    Full Text Available Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR, electrostatic precipitators (ESP, and flue gas desulfurization (FGD using the Ontario Hydro Method (OHM. The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92–27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66–94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  7. Coal Transition in the United Kingdom. An historical case study for the project 'Coal Transitions: Research and Dialogue on the Future of Coal'

    International Nuclear Information System (INIS)

    Fothergill, Steve

    2017-01-01

    This is one of the 6 country case-studies commissioned to collect experience on past coal transitions. The 6 countries are: Czech Republic, the Netherlands, Poland, Spain, UK, USA. Their role in the Coal Transitions project was to provide background information for a Synthesis Report for decision makers, and provide general lessons for national project teams to take into account in developing their coal transitions pathways for the future. The UK has virtually completed its move away from the production and use of coal - an astonishing transformation for an economy that once relied overwhelmingly on coal power. This is however a transformation that was never really 'planned' and the move away from coal started long before concerns about climate change achieved political prominence. Until as late as November 2015, for example, there was no government commitment to phase out coal in UK electricity generation. But it was already happening, and some of the most rapid change was actually in 2016, triggered in particular by the impact of a 'carbon tax' which has tipped the economics away from coal to gas-fired generation. A handful of coal-fired power stations will remain on the grid for a few years to help meet peak demand, but to all intents the UK is already entering the post-coal era. Whether this has been achieved without undue pain to coal mining areas is however deeply questionable. Job losses were for many years managed by a combination of redundancies and transfers to surviving mines. Redundancy payments, welfare benefits and early access to pensions provided support former miners, and careers advice and training was on offer. Most former miners have now reached retirement age. The big problem for mining communities has been replacement of the lost jobs. The UK has a long history of efforts to regenerate areas affected by coal closures and there is clear evidence that this has delivered positive results in the form of new jobs. Nevertheless, there continues to

  8. Enginnering development of coal-fired high performance power systems phase II and III

    International Nuclear Information System (INIS)

    1998-01-01

    This report presents work carried out under contract DE-AC22-95PC95144 ''Engineering Development of Coal-Fired High Performance Systems Phase II and III.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) >47%; NOx, SOx, and particulates 65% of heat input; all solid wastes benign; cost of electricity <90% of present plants. Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R ampersand D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase II, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update

  9. Coal-fired MHD test progress at the Component Development and Integration Facility

    International Nuclear Information System (INIS)

    Hart, A.T.; Rivers, T.J.; Alsberg, C.M.; Filius, K.D.

    1992-01-01

    The Component Development and Integration Facility (CDIF) is a Department of Energy test facility operated by MSE, Inc. In the fall of 1984, a 50-MW t , pressurized, slag rejecting coal-fired combustor (CFC) replaced the oil-fired combustor in the test train. In the spring of 1989, a coal-fired precombustor was added to the test hardware, and current controls were installed in the spring of 1990. In the fall of 1990, the slag rejector was installed. MSE test hardware activities included installing the final workhorse channel and modifying the coalfired combustor by installing improved design and proof-of-concept (POC) test pieces. This paper discusses the involvement of this hardware in test progress during the past year. Testing during the last year emphasized the final workhorse hardware testing. This testing will be discussed. Facility modifications and system upgrades for improved operation and duration testing will be discussed. In addition, this paper will address long-term testing plans

  10. Waterwall corrosion evaluation in coal-fired boilers using electrochemical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K.; Lee, C.; Seeley, R.; Harding, S.; Heap, M.; Cox, W.

    2000-07-01

    Until recently, waterwall corrosion in North American coal-fired boilers was uncommon and relatively mild. However, the introduction of combustion modifications to reduce in-furnace NOx formation has led to notable increases in the frequency and severity of waterwall wastage. Reaction Engineering International (REI) has worked with the Department of Energy and EPRI to improve predictive capabilities and provide solutions for furnace wall wastage for a wide range of coal-fired furnaces. To date, this work has emphasized computational simulations. More recently, REI in partnership with Corrosion Management has begun complementary efforts to improve their services by evaluating technologies capable of determining the location/rate of high water wall wastage resulting from corrosion. After an evaluation of commercially available options, electrochemical noise (EN) technology has been chosen for continued development. This approach has been successfully applied to corrosion-related problems involving acid dewpoint corrosion in flue gas ductwork, FGD systems, cooling water systems, oil and gas production, and acid cleaning (Cox et al, 1999). This paper presents the results of preliminary testing of an EN probe in a high temperature environment typical of the lower furnace of a cyclone-fired boiler operating under staged conditions. The relationship between electrochemical responses and (1) stoichiometry and (2) local hydrogen sulfide concentration is investigated and the qualitative and quantitative usefulness of the approach for on-line risk management is considered.

  11. Options for near-term phaseout of CO(2) emissions from coal use in the United States.

    Science.gov (United States)

    Kharecha, Pushker A; Kutscher, Charles F; Hansen, James E; Mazria, Edward

    2010-06-01

    The global climate problem becomes tractable if CO(2) emissions from coal use are phased out rapidly and emissions from unconventional fossil fuels (e.g., oil shale and tar sands) are prohibited. This paper outlines technology options for phasing out coal emissions in the United States by approximately 2030. We focus on coal for physical and practical reasons and on the U.S. because it is most responsible for accumulated fossil fuel CO(2) in the atmosphere today, specifically targeting electricity production, which is the primary use of coal. While we recognize that coal emissions must be phased out globally, we believe U.S. leadership is essential. A major challenge for reducing U.S. emissions is that coal provides the largest proportion of base load power, i.e., power satisfying minimum electricity demand. Because this demand is relatively constant and coal has a high carbon intensity, utility carbon emissions are largely due to coal. The current U.S. electric grid incorporates little renewable power, most of which is not base load power. However, this can readily be changed within the next 2-3 decades. Eliminating coal emissions also requires improved efficiency, a "smart grid", additional energy storage, and advanced nuclear power. Any further coal usage must be accompanied by carbon capture and storage (CCS). We suggest that near-term emphasis should be on efficiency measures and substitution of coal-fired power by renewables and third-generation nuclear plants, since these technologies have been successfully demonstrated at the relevant (commercial) scale. Beyond 2030, these measures can be supplemented by CCS at power plants and, as needed, successfully demonstrated fourth-generation reactors. We conclude that U.S. coal emissions could be phased out by 2030 using existing technologies or ones that could be commercially competitive with coal within about a decade. Elimination of fossil fuel subsidies and a substantial rising price on carbon emissions are the

  12. Wasteless combined aggregate-coal-fired steam-generator/melting-converter

    International Nuclear Information System (INIS)

    Pioro, L.S.; Pioro, I.L.

    2003-01-01

    A method of reprocessing coal sludge and ash into granulate for the building industry in a combined wasteless aggregate-steam-generator/melting-converter was developed and tested. The method involves melting sludge and ash from coal-fired steam-generators of power plants in a melting-converter installed under the steam-generator, with direct sludge drain from the steam generator combustion chamber. The direct drain of sludge into converter allows burnup of coal with high ash levels in the steam-generator without an additional source of ignition (natural gas, heating oil, etc.). Specific to the melting process is the use of a gas-air mixture with direct combustion inside a melt. This feature provides melt bubbling and helps to achieve maximum heat transfer from combustion products to the melt, to improve mixing, to increase rate of chemical reactions and to improve the conditions for burning the carbon residue from the sludge and ash. The 'gross' thermal efficiency of the combined aggregate is about 93% and the converter capacity is about 18 t of melt in 100 min. The experimental data for different aspects of the proposed method are presented. The effective ash/charging materials feeding system is also discussed. The reprocessed coal ash and sludge in the form of granules can be used as fillers for concretes and as additives in the production of cement, bricks and other building materials

  13. Mercury capture within coal-fired power plant electrostatic precipitators: model evaluation.

    Science.gov (United States)

    Clack, Herek L

    2009-03-01

    Efforts to reduce anthropogenic mercury emissions worldwide have recently focused on a variety of sources, including mercury emitted during coal combustion. Toward that end, much research has been ongoing seeking to develop new processes for reducing coal combustion mercury emissions. Among air pollution control processes that can be applied to coal-fired boilers, electrostatic precipitators (ESPs) are by far the most common, both on a global scale and among the principal countries of India, China, and the U.S. that burn coal for electric power generation. A previously reported theoretical model of in-flight mercury capture within ESPs is herein evaluated against data from a number of full-scale tests of activated carbon injection for mercury emissions control. By using the established particle size distribution of the activated carbon and actual or estimated values of its equilibrium mercury adsorption capacity, the incremental reduction in mercury concentration across each ESP can be predicted and compared to experimental results. Because the model does not incorporate kinetics associated with gas-phase mercury transformation or surface adsorption, the model predictions representthe mass-transfer-limited performance. Comparing field data to model results reveals many facilities performing at or near the predicted mass-transfer-limited maximum, particularly at low rates of sorbent injection. Where agreement is poor between field data and model predictions, additional chemical or physical phenomena may be responsible for reducing mercury removal efficiencies.

  14. Direct energy balance based active disturbance rejection control for coal-fired power plant.

    Science.gov (United States)

    Sun, Li; Hua, Qingsong; Li, Donghai; Pan, Lei; Xue, Yali; Lee, Kwang Y

    2017-09-01

    The conventional direct energy balance (DEB) based PI control can fulfill the fundamental tracking requirements of the coal-fired power plant. However, it is challenging to deal with the cases when the coal quality variation is present. To this end, this paper introduces the active disturbance rejection control (ADRC) to the DEB structure, where the coal quality variation is deemed as a kind of unknown disturbance that can be estimated and mitigated promptly. Firstly, the nonlinearity of a recent power plant model is analyzed based on the gap metric, which provides guidance on how to set the pressure set-point in line with the power demand. Secondly, the approximate decoupling effect of the DEB structure is analyzed based on the relative gain analysis in frequency domain. Finally, the synthesis of the DEB based ADRC control system is carried out based on multi-objective optimization. The optimized ADRC results show that the integrated absolute error (IAE) indices of the tracking performances in both loops can be simultaneously improved, in comparison with the DEB based PI control and H ∞ control system. The regulation performance in the presence of the coal quality variation is significantly improved under the ADRC control scheme. Moreover, the robustness of the proposed strategy is shown comparable with the H ∞ control. Copyright © 2017. Published by Elsevier Ltd.

  15. Environmentally Friendly Replacement of Mature 200 MW Coal-Fired Power Blocks with 2 Boilers Working on One 500 MW Class Steam Turbine Generator (2on1 Unit Concept)

    Science.gov (United States)

    Grzeszczak, Jan; Grela, Łukasz; Achter, Thomas

    2017-12-01

    The paper covers problems of the owners of a fleet of long-operated conventional power plants that are going to be decommissioned soon in result of failing to achieve new admissible emissions levels or exceeding pressure elements design lifetime. Energoprojekt-Katowice SA, Siemens AG and Rafako SA presents their joint concept of the solution which is a 2on1 concept - replacing two unit by two ultra-supercritical boilers feeding one turbine. Polish market has been taken as an example.

  16. Concept selection for advanced low-emission coal fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Gorrell, R.L. [Babcock and Wilcox Co., Barberton, OH (United States); Rodgers, L.W.; Farthing, G.A. [Babcock and Wilcox Co., Alliance, OH (United States)

    1993-12-31

    The Babcock & Wilcox Company (B&W), under contract to the US Department of Energy (DOE) with subcontract to Physical Sciences, Inc. (PSIT), the Massachusetts Institute of Technology (MIT) and United Engineers and Constructors (UE&C) has begun development of an advanced low-emission boiler system (LEBS). The initial phase of this multi-phase program required a thorough review and assessment of potential advanced technologies and techniques for control of combustion and flue gas emissions. Results of this assessment are presented in this paper.

  17. Scrubbing system design for CO{sub 2} capture in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Heischkamp, Elizabeth

    2017-07-01

    Within the last decades a continuous tightening of environmental regulations has been observed in several countries around the world. These include restriction of anthropogenic CO{sub 2} emissions, since they are considered responsible for intensifying global warming. Coal-fired power plants represent a good possibility for capturing CO{sub 2} before it is emitted in the atmosphere, thereby contributing to combat global warming. This work focuses on reducing the CO{sub 2} emissions of such a power plant by 90 %. For this purpose a hard coal power plant is retrofitted with a chemical absorption using different solutions of piperazine promoted potassium carbonate. The resulting power plant's efficiency losses have been accounted for. A comparison of different scenarios such as the variation of operating parameters offer an insight in detecting suitable operating conditions that will allow to minimize efficiency penalties. Simulation details are provided along with a technical and an economic analysis.

  18. Impact of a coal fired power plant on 226Ra activity level in sea water

    International Nuclear Information System (INIS)

    Marovic, G.; Sencar, J.

    1999-01-01

    The paper deals with radioactivity contamination originating from a coal fired power plant which, due to its location, may present a remarkable environmental problem. The plant is situated in a bay of the Adriatic close to the densely populated area with highly developed touristic activity. Its operation may cause significant damage to rich marine ecosystem characteristic for this part of the Croatian Adriatic as well as endanger urban and touristic developmental prospects of the area. Investigations of coal used in regular plant operation and of solid incombustible ash and slag showed increased natural radioactivity levels which may cause general environmental contamination of the bay as well as contamination of the marine environment of this part of the Croatian Adriatic

  19. Overview of environmental assessment for China nuclear power industry and coal-fired power industry

    International Nuclear Information System (INIS)

    Zhang Shaodong; Pan Ziqiang; Zhang Yongxing

    1994-01-01

    A quantitative environmental assessment method and the corresponding computer code are introduced. By the consideration of all fuel cycle steps, it given that the public health risk of China nuclear power industry is 5.2 x 10 -1 man/(GW·a) the public health risk is 2.5 man/(GW·a), and the total health risk is 3.0 man/(GW·a). After the health risk calculation for coal mining, transport, burning up and ash disposal, it gives that the public health risk of China coal-fired power industry is 3.6 man/(GW·a), the occupational health risk is 50 man/(GW·a), and the total is 54 man/(GW·). Accordingly, the conclusion that China nuclear power industry is one with high safety and cleanness is derived at the end

  20. [Hazard evaluation modeling of particulate matters emitted by coal-fired boilers and case analysis].

    Science.gov (United States)

    Shi, Yan-Ting; Du, Qian; Gao, Jian-Min; Bian, Xin; Wang, Zhi-Pu; Dong, He-Ming; Han, Qiang; Cao, Yang

    2014-02-01

    In order to evaluate the hazard of PM2.5 emitted by various boilers, in this paper, segmentation of particulate matters with sizes of below 2. 5 microm was performed based on their formation mechanisms and hazard level to human beings and environment. Meanwhile, taking into account the mass concentration, number concentration, enrichment factor of Hg, and content of Hg element in different coal ashes, a comprehensive model aimed at evaluating hazard of PM2.5 emitted by coal-fired boilers was established in this paper. Finally, through utilizing filed experimental data of previous literatures, a case analysis of the evaluation model was conducted, and the concept of hazard reduction coefficient was proposed, which can be used to evaluate the performance of dust removers.

  1. Comprehensive assessment of toxic emissions from coal-fired power plants

    International Nuclear Information System (INIS)

    Brown, T.D.; Schmidt, C.E.; Radziwon, A.S.

    1991-01-01

    The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy (DOE) has two current investigations, initiated before passage of the Clean Air Act Amendment (CAAA), that will determine the air toxic emissions from coal-fired electric utilities. DOE has contracted with Battelle Memorial Institute and Radian corporation to conduct studies focusing on the potential air toxics, both organic and inorganic, associated with different size fractions of fine particulate matter emitted from power plant stacks. Table 2 indicates the selected analytes to be investigated during these studies. PETC is also developing guidance on the monitoring of Hazardous Air Pollutants (HAPS) to be incorporated in the Environmental Monitoring plans for the demonstration projects in its Clean Coal Technology Program

  2. A Pulverized Coal-Fired Boiler Optimized for Oxyfuel Combustion Technology

    Directory of Open Access Journals (Sweden)

    Tomáš Dlouhý

    2012-01-01

    Full Text Available This paper presents the results of a study on modifying a pulverized coal-fired steam boiler in a 250 MWe power plant for oxygen combustion conditions. The entry point of the study is a boiler that was designed for standard air combustion. It has been proven that simply substituting air by oxygen as an oxidizer is not sufficient for maintaining a satisfactory operating mode, not even with flue gas recycling. Boiler design optimization aggregating modifications to the boiler’s dimensions, heating surfaces and recycled flue gas flow rate, and specification of a flue gas recycling extraction point is therefore necessary in order to achieve suitable conditions for oxygen combustion. Attention is given to reducing boiler leakage, to which external pre-combustion coal drying makes a major contribution. The optimization is carried out with regard to an overall power plant conception for which a decrease in efficiency due to CO2 separation is formulated.

  3. Scrubbing system design for CO2 capture in coal-fired power plants

    International Nuclear Information System (INIS)

    Heischkamp, Elizabeth

    2017-01-01

    Within the last decades a continuous tightening of environmental regulations has been observed in several countries around the world. These include restriction of anthropogenic CO 2 emissions, since they are considered responsible for intensifying global warming. Coal-fired power plants represent a good possibility for capturing CO 2 before it is emitted in the atmosphere, thereby contributing to combat global warming. This work focuses on reducing the CO 2 emissions of such a power plant by 90 %. For this purpose a hard coal power plant is retrofitted with a chemical absorption using different solutions of piperazine promoted potassium carbonate. The resulting power plant's efficiency losses have been accounted for. A comparison of different scenarios such as the variation of operating parameters offer an insight in detecting suitable operating conditions that will allow to minimize efficiency penalties. Simulation details are provided along with a technical and an economic analysis.

  4. Advancing dendrochronological studies of fire in the United States

    Science.gov (United States)

    Harley, Grant L.; Baisan, Christopher H.; Brown, Peter M.; Falk, Donald A.; Flatley, William T.; Grissino-Mayer, Henri D.; Hessl, Amy; Heyerdahl, Emily K.; Kaye, Margot W.; Lafon, Charles W.; Margolis, Ellis; Maxwell, R. Stockton; Naito, Adam T.; Platt, William J.; Rother, Monica T.; Saladyga, Thomas; Sherriff, Rosemary L.; Stachowiak, Lauren A.; Stambaugh, Michael C.; Sutherland, Elaine Kennedy; Taylor, Alan H.

    2018-01-01

    Dendroecology is the science that dates tree rings to their exact calendar year of formation to study processes that influence forest ecology (e.g., Speer 2010, Amoroso et al., 2017). Reconstruction of past fire regimes is a core application of dendroecology, linking fire history to population dynamics and climate effects on tree growth and survivorship. Since the early 20th century when dendrochronologists recognized that tree rings retained fire scars (e.g., Figure 1), and hence a record of past fires, they have conducted studies worldwide to reconstruct the historical range and variability of fire regimes (e.g., frequency, severity, seasonality, spatial extent), the influence of fire regimes on forest structure and ecosystem dynamics, and the top-down (e.g., climate) and bottom-up (e.g., fuels, topography) drivers of fire that operate at a range of temporal and spatial scales. As in other scientific fields, continued application of dendrochronological techniques to study fires has shaped new trajectories for the science. Here we highlight some important current directions in the United States (US) and call on our international colleagues to continue the conversation with perspectives from other countries.

  5. Internal fire protection analysis for the United Kingdom EPR design

    Energy Technology Data Exchange (ETDEWEB)

    Laid, Abdallah [Nuclear New Build Generation Company Ltd. (NNB GenCo), Barnwood (United Kingdom). EDF Energy Plc.; Cesbron, Mickael [Service Etudes et Project Thermiques et Nucleaires (SEPTEN), Lyon (France). EDF-SA

    2015-12-15

    In the deterministic design basis analysis of the United Kingdom (UK) EPR based nuclear power plants all postulated initiating events are grouped into two different types, internal faults and internal/external hazards. ''Internal Fires'' is one of the internal hazards analysed at the design stage of the UK EPR. In effect, the main safety objective for fire protection is to ensure that all the required safety functions are performed in the event of an internal fire. To achieve this safety objective, provisions for protection against fire risks are taken to: (i) limit the spread of a fire, protect the safety functions of the facility; (ii) limit the propagation of smoke and dispersion of toxic, radioactive, inflammable, corrosive or explosive materials, and (iii) ensure the achievement of a safe shutdown state, personnel evacuation and all other necessary emergency actions. This paper presents the UK EPR approach on how the above provisions are applied. Such provisions involve implementing means of fire prevention, surveillance, firefighting and limiting fire consequences, appropriate to the risks inherent to the facility. Overall, the design of the UK EPR fire protection systems is based on three types of measures: prevention, containment and control.

  6. Influence of the Sostanj coal-fired thermal power plant on mercury and methyl mercury concentrations in Lake Velenje, Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Kotnik, J.; Horvat, M.; Mandic, V.; Logar, M. [Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2000-10-02

    Lake Velenje is located in one of the most polluted regions in Slovenia, the Salek Valley. The major source of pollution in the valley is the coal-fired thermal power plant in Sostanj (STPP, capacity 775 MW). It has five separate units. All units have electrostatic precipitators for fly ash removal. Unit 4 also has installed a wet flue gas desulfurisation system (FGD system). Total mercury (THg) concentrations were measured in lignite, slag and ash samples from the STPP. In flue gas, different mercury species (THg, MeHg, Hg{sup 2+}, Hg{sup 0}) were determined separately for unit 4 and unit 5 which use different flue gas cleaning technology. Mercury and methyl mercury (MeHg) concentrations were also measured in lake water at different depths, in inflow water, outflow water, rain, snow and lake sediments in order to establish the influence of the power plant on the lake. Most mercury emitted from the power plant is in the elemental form. The ratio between oxidised and elemental Hg depends on the flue gas cleaning technology. Mass balance calculations have been performed for the STPP. The results show that the major sources of mercury in Lake Velenje are wet deposition and lake inflows. Total and MeHg concentrations in the water column are very low and can be compared to other non-contaminated freshwater lakes in the world.

  7. Influence of the Sostanj coal-fired thermal power plant on mercury and methyl mercury concentrations in Lake Velenje, Slovenia

    Science.gov (United States)

    Kotnik; Horvat; Mandic; Logar

    2000-10-02

    Lake Velenje is located in one of the most polluted regions in Slovenia, the Salek Valley. The major source of pollution in the valley is the coal-fired thermal power plant in Sostanj (STPP, capacity 775 MW). It has five separate units. All units have electrostatic precipitators for fly ash removal. Unit 4 also has installed a wet flue gas desulfurisation system (FGD system). Total mercury (THg) concentrations were measured in lignite, slag and ash samples from the STPP. In flue gas, different mercury species (THg, MeHg, Hg2+, Hg0) were determined separately for unit 4 and unit 5 which use different flue gas cleaning technology. Mercury and methyl mercury (MeHg) concentrations were also measured in lake water at different depths, in inflow water, outflow water, rain, snow and lake sediments in order to establish the influence of the power plant on the lake. Most mercury emitted from the power plant is in the elemental form. The ratio between oxidised and elemental Hg depends on the flue gas cleaning technology. Mass balance calculations have been performed for the STPP. The results show that the major sources of mercury in Lake Velenje are wet deposition and lake inflows. Total and MeHg concentrations in the water column are very low and can be compared to other non-contaminated freshwater lakes in the world.

  8. Coal conversion process by the United Power Plants of Westphalia

    Energy Technology Data Exchange (ETDEWEB)

    1974-08-01

    The coal conversion process used by the United Power Plants of Westphalia and its possible applications are described. In this process, the crushed and predried coal is degassed and partly gasified in a gas generator, during which time the sulfur present in the coal is converted into hydrogen sulfide, which together with the carbon dioxide is subsequently washed out and possibly utilized or marketed. The residual coke together with the ashes and tar is then sent to the melting chamber of the steam generator where the ashes are removed. After desulfurization, the purified gas is fed into an external circuit and/or to a gas turbine for electricity generation. The raw gas from the gas generator can be directly used as fuel in a conventional power plant. The calorific value of the purified gas varies from 3200 to 3500 kcal/cu m. The purified gas can be used as reducing agent, heating gas, as raw material for various chemical processes, or be conveyed via pipelines to remote areas for electricity generation. The conversion process has the advantages of increased economy of electricity generation with desulfurization, of additional gas generation, and, in long-term prospects, of the use of the waste heat from high-temperature nuclear reactors for this process.

  9. Analysis of mercury in rock varnish samples in areas impacted by coal-fired power plants

    International Nuclear Information System (INIS)

    Nowinski, Piotr; Hodge, Vernon F.; Gerstenberger, Shawn; Cizdziel, James V.

    2013-01-01

    Rock varnish is a manganese–iron rich coating that forms on rocks, most often in arid climates. To assess its utility as an environmental monitor of mercury contamination, cold vapor atomic absorption spectrometry (CVAAS) was used for analysis. Samples were collected in the fallout patterns of two coal-fired power plants in southern Nevada: the defunct Mohave Power Plant (MPP) and the operating Reid Gardner Power Plant (RGPP). The resultant Hg concentrations in rock varnishes were plotted as a function of the distance from each power plant. The highest concentrations of Hg occurred at locations that suggest the power plants are the main source of pollutants. In addition, past tracer plume studies carried out at MPP show that the highest tracer concentrations coincide with the highest rock varnish Hg concentrations. However, additional samples are required to further demonstrate that power plants are indeed the sources of mercury in varnishes. -- Highlights: •We analyze desert varnish samples collected in the fallout patterns of two coal-fired and analyzed for Hg by CVAA. •The resultant Hg concentrations in the desert varnish samples were plotted as a function of the distance from each power plant. •The highest concentrations of Hg occurred at locations that suggest the power plants are the main source of pollutants. •Data indicate the utility of desert varnish as a passive environmental monitor for Hg atmospheric pollution. -- Cold vapor atomic absorption spectrometry (CVAAS) was used for analysis of mercury in varnished rocks collected in the fallout zones of two coal-fired power plants

  10. Comparative study of computational intelligence approaches for NOx reduction of coal-fired boiler

    International Nuclear Information System (INIS)

    Wei, Zhongbao; Li, Xiaolu; Xu, Lijun; Cheng, Yanting

    2013-01-01

    This paper focuses on NO x emission prediction and operating parameters optimization for coal-fired boilers. Support Vector Regression (SVR) model based on CGA (Conventional Genetic Algorithm) was proposed to model the relationship between the operating parameters and the concentration of NO x emission. Then CGA and two modified algorithms, the Quantum Genetic Algorithm (QGA) and SAGA (Simulated Annealing Genetic Algorithm), were employed to optimize the operating parameters of the coal-fired boiler to reduce NO x emission. The results showed that the proposed SVR model was more accurate than the widely used Artificial Neural Network (ANN) model when employed to predict the concentration of NO x emission. The mean relative error and correlation coefficient calculated by the proposed SVR model were 2.08% and 0.95, respectively. Among the three optimization algorithms implemented in this paper, the SAGA showed superiority to the other two algorithms considering the quality of solution within a given computing time. The SVR plus SAGA method was preferable to predict the concentration of NO x emission and further to optimize the operating parameters to achieve low NO x emission for coal-fired boilers. - Highlights: • The CGA based SVR model is proposed to predict the concentration of NO x emission. • The CGA based SVR model performs better than the widely used ANN model. • CGA and two modified algorithms are compared to optimize the parameters. • The SAGA is preferable for its high quality of solution and low computing time. • The SVR plus SAGA is successfully employed to optimize the operating parameters

  11. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  12. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS; FINAL

    International Nuclear Information System (INIS)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO(sub x) in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO(sub x) emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames-particularly under low NO(sub x) conditions. A CO/H(sub 2)/O(sub 2)/N(sub 2) flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state(sup 13)C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  13. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.

    Science.gov (United States)

    Ancora, Maria Pia; Zhang, Lei; Wang, Shuxiao; Schreifels, Jeremy; Hao, Jiming

    2015-07-01

    Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF+WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments. Copyright © 2015. Published by Elsevier B.V.

  14. Experimental investigation on a 0.35 MWth coal-fired horizontal circulating fluidized bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Aihong; Li, Qinghai; Zhang, Yanguo; Wang, Zhaojun; Dang, Wenda [Tsinghua Univ., Beijing (China); Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    The capacities of industrial coal-fired boilers are normally less than 20-30 MWe. And these coal-fired boilers of low capacity are facing the severe situation of low efficiency and heavy environmental pollution. Hence, an innovative horizontal circulating fluidized bed (HCFB) boiler was developed to enhance heat efficiency and reduce pollutant emission of industrial boilers in China. The chamber in the HCFB boiler consists of primary combustion chamber, secondary combustion chamber and burnout chamber, which were combined horizontally side by side. To verify the conception of horizontal fluidized circulation and to obtain the characteristic data, a 0.35 MWth coal-combustion HCFB boiler was designed and installed to perform some experiments of combustion and mass circulation. In the boiler there were two mass circulating paths, one is inner circulating through the inertia separator and another was external circulating through the cyclone separator. The connection bottom of the secondary chamber and the burnout chamber was designed as an inertia separator, in which separated and collected solid materials were returned to the primary combustion. In fact the secondary separator was a small cyclone separator connecting to the exit of the burnout chamber. Heat efficiency and separating efficiency of the experimental boiler were measured and analyzed. Furthermore, mass and temperature distribution along the chambers height were also investigated. The results showed that the heat efficiency of the bare boiler was 82%. The mass balance based on ash content was measured and analyzed. Separating efficiency of the inertia separator and cyclone separator was 60 and 99.9%, respectively. It showed that the two stage material separation and circulation enhanced coal combustion in the HCFB boiler and help to minimize the height of the furnace.

  15. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    KAUST Repository

    Andersen, Myrrha E.

    2016-10-19

    Pulverized bituminous coal was burned in a 10. W externally heated entrained flow furnace under air-combustion and three oxy-combustion inlet oxygen conditions (28, 32, and 36%). Experiments were designed to produce flames with practically relevant stoichiometric ratios (SR. =1.2-1.4) and constant residence times (2.3. s). Size-classified fly ash samples were collected, and measurements focused on the soot, elemental carbon (EC), and organic carbon (OC) composition of the total and ultrafine (<0.6. μm) fly ash. Results indicate that although the total fly ash carbon, as measured by loss on ignition, was always acceptably low (<2%) with all three oxy-combustion conditions lower than air-combustion, the ultrafine fly ash for both air-fired and oxy-fired combustion conditions consists primarily of carbonaceous material (50-95%). Carbonaceous components on particles <0.6. μm measured by a thermal optical method showed that large fractions (52-93%) consisted of OC rather than EC, as expected. This observation was supported by thermogravimetric analysis indicating that for the air, 28% oxy, and 32% oxy conditions, 14-71% of this material may be OC volatilizing between 100. C and 550. C with the remaining 29-86% being EC/soot. However, for the 36% oxy condition, OC may comprise over 90% of the ultrafine carbon with a much smaller EC/soot contribution. These data were interpreted by considering the effects of oxy-combustion on flame attachment, ignition delay, and soot oxidation of a bituminous coal, and the effects of these processes on OC and EC emissions. Flame aerodynamics and inlet oxidant composition may influence emissions of organic hazardous air pollutants (HAPs) from a bituminous coal. During oxy-coal combustion, judicious control of inlet oxygen concentration and placement may be used to minimize organic HAP and soot emissions.

  16. The Net Climate Impact of Coal-Fired Power Plant Emissions

    Science.gov (United States)

    Shindell, D.; Faluvegi, G.

    2010-01-01

    Coal-fired power plants influence climate via both the emission of long-lived carbon dioxide (CO2) and short-lived ozone and aerosol precursors. Using a climate model, we perform the first study of the spatial and temporal pattern of radiative forcing specifically for coal plant emissions. Without substantial pollution controls, we find that near-term net global mean climate forcing is negative due to the well-known aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. Long-term global mean forcing from stable (constant) emissions is positive regardless of pollution controls. Emissions from coal-fired power plants until 1970, including roughly 1/3 of total anthropogenic CO2 emissions, likely contributed little net global mean climate forcing during that period though they may have induce weak Northern Hemisphere mid-latitude (NHml) cooling. After that time many areas imposed pollution controls or switched to low sulfur coal. Hence forcing due to emissions from 1970 to 2000 and CO2 emitted previously was strongly positive and contributed to rapid global and especially NHml warming. Most recently, new construction in China and India has increased rapidly with minimal application of pollution controls. Continuation of this trend would add negative near-term global mean climate forcing but severely degrade air quality. Conversely, following the Western and Japanese pattern of imposing air quality pollution controls at a later time could accelerate future warming rates, especially at NHmls. More broadly, our results indicate that due to spatial and temporal inhomogeneities in forcing, climate impacts of multi-pollutant emissions can vary strongly from region to region and can include substantial effects on maximum rate-of-change, neither of which are captured by commonly used global metrics. The method we introduce here to estimate

  17. Bio-coal, torrefied lignocellulosic resources – Key properties for its use in co-firing with fossil coal – Their status

    International Nuclear Information System (INIS)

    Agar, D.; Wihersaari, M.

    2012-01-01

    Bio-coal has received generous amounts of media attention because it potentially allows greater biomass co-firing rates and net CO 2 emission reductions in pulverised-coal power plants. However, little scientific research has been published on the feasibility of full-scale commercial production of bio-coal. Despite this, several companies and research organisations worldwide have been developing patented bio-coal technologies. Are the expectations of bio-coal realistic and are they based on accepted scientific data? This paper examines strictly peer-reviewed scientific publications in order to find an answer. The findings to date on three key properties of torrefied biomass are presented and reviewed. These properties are: the mass and energy balance of torrefaction, the friability of the product and the equilibrium moisture content of torrefied biomass. It is these properties that will have a major influence on the feasibility of bio-coal production regardless of reactor technology employed in production. The presented results will be of use in modelling commercial production of bio-coal in terms of economics and green-house gas emission balance. -- Highlights: ► A technical note on torrefaction research results. ► Presents experimental values on three key properties. ► Mass-energy balance, grindability, equilibrium moisture content of torrefied biomass. ► Results useful for modelling bio-coal production schemes.

  18. Operating room fire prevention: creating an electrosurgical unit fire safety device.

    Science.gov (United States)

    Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J

    2014-08-01

    To reduce the incidence of surgical fires. Operating room fires represent a potentially life-threatening hazard and are triggered by the electrosurgical unit (ESU) pencil. Carbon dioxide is a fire suppressant and is a routinely used medical gas. We hypothesize that a shroud of protective carbon dioxide covering the tip of the ESU pencil displaces oxygen, thereby preventing fire ignition. Using 3-dimensional modeling techniques, a polymer sleeve was created and attached to an ESU pencil. This sleeve was connected to a carbon dioxide source and directed the gas through multiple precisely angled ports, generating a cone of fire-suppressive carbon dioxide surrounding the active pencil tip. This device was evaluated in a flammability test chamber containing 21%, 50%, and 100% oxygen with sustained ESU activation. The sleeve was tested with and without carbon dioxide (control) until a fuel was ignited or 30 seconds elapsed. Time to ignition was measured by high-speed videography. Fires were ignited with each control trial (15/15 trials). The control group median ± SD ignition time in 21% oxygen was 3.0 ± 2.4 seconds, in 50% oxygen was 0.1 ± 1.8 seconds, and in 100% oxygen was 0.03 ± 0.1 seconds. No fire was observed when the fire safety device was used in all concentrations of oxygen (0/15 trials; P fire ignition was 76% to 100%. A sleeve creating a cone of protective carbon dioxide gas enshrouding the sparks from an ESU pencil effectively prevents fire in a high-flammability model. Clinical application of this device may reduce the incidence of operating room fires.

  19. Construction program for a large superconducting MHD magnet system at the coal-fired flow facility

    International Nuclear Information System (INIS)

    Wang, S.T.; Genens, L.; Gonczy, J.; Ludwig, H.; Lieberg, M.; Kraft, E.; Gacek, D.; Huang, Y.C.; Chen, C.J.

    1980-01-01

    The Argonne National Laboratory has designed and is constructing a 6 T large aperture superconducting MHD magnet for use in the Coal-Fired Flow Facility (CFFF) at the University of Tennessee Space Institute (UTSI) at Tullahoma, Tennessee. The magnet system consists of the superconducting magnet, a magnet power supply, an integrated instrumentation for operation, control and protection, and a complete cryogenic facility including a CTI Model 2800 helium refrigerator/liquefier with two compressors, helium gas handling system and a 7500 liter liquid helium dewar. The complete system will be tested at Argonne, IL in 1981. The magnet design is reviewed, and the coil fabrication programs are described in detail

  20. Radiological consequences of atmospheric releases from coal-fired power plants

    International Nuclear Information System (INIS)

    Tveten, U.

    1985-06-01

    The report deals with the individual and collective doses resulting from radioactive materials contained in the stack releases of coal-fired power plants. A critical analysis of relevant calculations in literature is given. The different reports analyzed show a very wide range in calculated doses. To a great extent these differences may be explained by the wide range in the assumptions adopted. There is also disagreement on what exposure pathways are the most important, and what nuclides contribute most to calculated doses. A most probable value of 0.5 mrem/year for the maximum individual effective dose equivalent commitment, is indicated in the report

  1. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Bradley R. [Univ. of Utah, Salt Lake City, UT (United States); Fry, Andrew R. [Univ. of Utah, Salt Lake City, UT (United States); Senior, Constance L. [Univ. of Utah, Salt Lake City, UT (United States); Shim, Hong Shig [Univ. of Utah, Salt Lake City, UT (United States); Otten, Brydger Van [Univ. of Utah, Salt Lake City, UT (United States); Wendt, Jost [Univ. of Utah, Salt Lake City, UT (United States); Shaddix, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tree, Dale [Brigham Young Univ., Provo, UT (United States)

    2010-06-01

    This report summarizes Year 2 results of a research program designed to use multi-scale experimental studies and fundamental theoretical models to characterize and predict the impacts of retrofit of existing coal-fired utility boilers for oxy-combustion. Year 2 focused extensively on obtaining experimental data from the bench-scale, lab-scale and pilot-scale reactors. These data will be used to refine and validate submodels to be implemented in CFD simulations of full-scale boiler retrofits. Program tasks are on schedule for Year 3 completion. Both Year 2 milestones were completed on schedule and within budget.

  2. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Steven; Browers, Bruce; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-31

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, a Technical and Economic Feasibility Study was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment developed a process flow diagram, major equipment list, heat balances for the SCPC power plant, capital cost estimate, operating cost estimate, levelized cost of electricity, cost of CO2 capture ($/ton) and three sensitivity cases for the CACHYS™ process.

  3. Environment protection by coupling of a municipal waste incinerator to an existing coal fire steam boiler

    Energy Technology Data Exchange (ETDEWEB)

    Ionel, I.; Stanescu, P.D.O.; Gruescu, C.; Savu, A.; Ungureanu, C. [University of Politehnic Timisoara, Timisoara (Romania)

    2006-12-15

    The paper offers an analysis of the potential coupling of a municipal waste incinerator in Romania, to an existing coal fired steam boiler. Considering the retention of heavy metals as well as HCl from the waste flue gases before entering the boiler, the simulation analysis of the boiler, under the situation that the gases from the scrubber are introduced, are presented As general conclusion one notes that it is possible to apply the concept even if the analysed case is of less importance, but more potential application are viewed for larger industrial application, for new concepts of modern power plants, to meet EU environmental regulations, especially for CO{sub 2} reduction.

  4. Conceptual designs of pressurized fluidized bed and pulverized coal fired power plants

    International Nuclear Information System (INIS)

    Doss, H.S.; Bezella, W.A.; Hamm, J.R.; Pietruszkiewicz, J.

    1984-01-01

    This paper presents the major technical and economic characteristics of steam and air-cooled pressurized fluidized bed (PFB) power plant concepts, along with the characteristics of a pulverized coal fired power plant equipped with an adipic acid enhanced wet-limestone flue gas desulfurization system. Conceptual designs for the three plants were prepared to satisfy a set of common groundrules developed for the study. Grassroots plants, located on a generic plant site were assumed. The designs incorporate technologies projected to be commercial in the 1990 time frame. Power outputs, heat rates, and costs are presented

  5. Preliminary project definition for long duration. Tests of coal fired MHD generators

    International Nuclear Information System (INIS)

    Van der Laken, R.A.

    1992-01-01

    In its final report the Faraday Working Group recommended the CEC amongst others to explore the possibility of a long duration test of a 'state-of-the-art', MHD-generator in order to remove uncertainties concerning the lifetime and availability of such a generator design. The duration of the test should be several thousands of hours, considerably more than the duration tests carried out until now. The scope of the present study is to prepare a project definition document for a long duration test of a coal fired, state-of-the-art MHD-generator

  6. Economic assessment of coal-fired and nuclear power generation in the year 2000 -Equal health hazard risk basis-

    International Nuclear Information System (INIS)

    Seong, Ki Bong; Lee, Byong Whi

    1989-01-01

    On the basis of equal health hazard risk, economic assessment of nuclear was compared with that of coal for the expansion planning of electric power generation in the year 2000. In comparing health risks, the risk of coal was roughly ten times higher than that of nuclear according to various previous risk assessments of energy system. The zero risk condition can never be achievable. Therefore, only excess relative health risk of coal over nuclear was considered as social cost. The social cost of health risk was estimated by calculation of mortality and morbidity costs. Mortality cost was $250,000 and morbidity cost was $90,000 in the year 2000.(1986US$) Through Cost/Benefit Analysis, the optimal emission standards of coal-fired power generation were predicted. These were obtained at the point of least social cost for power generation. In the year 2000, the optimal emission standard of SO x was analyzed as 165ppm for coal-fired power plants in Korea. From this assessment, economic comparison of nuclear and coal in the year 2000 showed that nuclear would be more economical than coal, whereas uncertainty of future power generation cost of nuclear would be larger than that of coal. (Author)

  7. Novel Nanocrystalline Intermetallic Coatings for Metal Alloys in Coal-fired Environments

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang; H. Y. Sohn

    2009-08-31

    Intermetallic coatings (iron aluminide and nickel aluminide) were prepared by a novel reaction process. In the process, the aluminide coating is formed by an in-situ reaction between the aluminum powder fed through a plasma transferred arc (PTA) torch and the metal substrate (steel or Ni-base alloy). Subjected to the high temperature within an argon plasma zone, aluminum powder and the surface of the substrate melt and react to form the aluminide coatings. The prepared coatings were found to be aluminide phases that are porosity-free and metallurgically bonded to the substrate. The coatings also exhibit excellent high-temperature corrosion resistance under the conditions which simulate the steam-side and fire-side environments in coal-fired boilers. It is expected that the principle demonstrated in this process can be applied to the preparation of other intermetallic and alloy coatings.

  8. Computational fluid dynamics (CFD) modelling of coal/biomass co-firing in pulverised fuel boilers

    Energy Technology Data Exchange (ETDEWEB)

    Moghtaderi, B.; Meesri, C. [University of Newcastle, Callaghan, NSW (Australia). CRC for Coal in Sustainable Development, Dept. of Chemical Engineering

    2002-07-01

    The present study is concerned with computational fluid dynamics (CFD) modelling of coal/biomass blends co-fired under conditions pertinent to pulverised fuel (PF) boilers. The attention is particularly focused on the near burner zone to examine the impact of biomass on the flame geometry and temperature. The predictions are obtained by numerical solution of the conservation equations for the gas and particle phases. The gas phase is solved in the Eulerian domain using steady-state time-averaged Navier-Stokes equations while the solution of the particle phase is obtained from a series of Lagrangian particle tracking equations. Turbulence is modelled using the {kappa}-{epsilon} and Reynolds Stress models. The comparison between the predictions and experimental measurement reported in the literature resulted in a good agreement. Other influences of biomass co-firing are observed for fuel devolatilisation and burnout. 19 refs., 6 figs.

  9. 46 CFR 161.002-10 - Automatic fire detecting system control unit.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Automatic fire detecting system control unit. 161.002-10...-10 Automatic fire detecting system control unit. (a) General. The fire detecting system control unit... and the battery to be charged. (h) Automatic fire detecting system, battery charging and control—(1...

  10. Technico-economic evaluation of abatement systems applying to air pollution resulting from coal-fired power plants

    International Nuclear Information System (INIS)

    Mounier, Marc.

    1981-09-01

    The aim of this study is to contribute to the analysis of the health care policies which could be considered in coal-fired power plants, in the comparative framework of the radiation protection in nuclear power plants. After a recall of the typical parameters of the air pollution due to the normal operation of a coal-fired power plant, we develop a heuristic model which allows, after having quantified the releases, to determine the theoretical health effects associated to a one-year operation of the power plant. The comparison of the various protection policies has been done with the help of a cost-effectiveness analysis. An examination of the results shows that the policy presently implemented forms a part of the cost-effective options. Nevertheless, it can be seen that the marginal protection cost is higher in nuclear power plants than in coal-fired power plants [fr

  11. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix D. Assessment of NO/sub x/ control technology for coal fired utility boilers. [Low-excess-air, staged combustion, flu gas recirculation and burner design

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    An NOx control technology assessment study was conducted to examine the effectiveness of low-excess-air firing, staged combustion, flue gas recirculation, and current burner/boiler designs as applied to coal-fired utility boilers. Significant variations in NOx emissions exist with boiler type, firing method, and coal type, but a relative comparison of emissions control performance, cost, and operational considerations is presented for each method. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion modification technique. Staged combustion and low-excess-air operation were identified as the most cost-effective methods for existing units. Close control of local air/fuel ratios and rigorous combustion equipment maintenance are essential to the success of both methods. Flue gas recirculation is relatively ineffective and has the added concern of tube erosion. More research is needed to resolve potential corrosion concerns with low-NOx operating modes. Low-NOx burners in conjunction with a compartmentalized windbox are capable of meeting a 0.6-lb/million Btu emission level on new units. Advanced burner designs are being developed to meet research emission goals of approximately 0.25 lb/MBtu.

  12. Mathematical optimization techniques for managing selective catalytic reduction for a fleet of coal-fired power plants

    Science.gov (United States)

    Alanis Pena, Antonio Alejandro

    Major commercial electricity generation is done by burning fossil fuels out of which coal-fired power plants produce a substantial quantity of electricity worldwide. The United States has large reserves of coal, and it is cheaply available, making it a good choice for the generation of electricity on a large scale. However, one major problem associated with using coal for combustion is that it produces a group of pollutants known as nitrogen oxides (NO x). NOx are strong oxidizers and contribute to ozone formation and respiratory illness. The Environmental Protection Agency (EPA) regulates the quantity of NOx emitted to the atmosphere in the United States. One technique coal-fired power plants use to reduce NOx emissions is Selective Catalytic Reduction (SCR). SCR uses layers of catalyst that need to be added or changed to maintain the required performance. Power plants do add or change catalyst layers during temporary shutdowns, but it is expensive. However, many companies do not have only one power plant, but instead they can have a fleet of coal-fired power plants. A fleet of power plants can use EPA cap and trade programs to have an outlet NOx emission below the allowances for the fleet. For that reason, the main aim of this research is to develop an SCR management mathematical optimization methods that, with a given set of scheduled outages for a fleet of power plants, minimizes the total cost of the entire fleet of power plants and also maintain outlet NO x below the desired target for the entire fleet. We use a multi commodity network flow problem (MCFP) that creates edges that represent all the SCR catalyst layers for each plant. This MCFP is relaxed because it does not consider average daily NOx constraint, and it is solved by a binary integer program. After that, we add the average daily NOx constraint to the model with a schedule elimination constraint (MCFPwSEC). The MCFPwSEC eliminates, one by one, the solutions that do not satisfy the average daily

  13. The radiation protection units of the Austrian fire brigades

    International Nuclear Information System (INIS)

    Aspek, W.; Schoenhacker, S.

    2009-01-01

    Since the 1960s, Austrian fire brigades have been involved in radiation protection. With the preparations for the NPP Zwentendorf and the building of the research reactor in Seibersdorf, the first radiation protection units of the fire brigade were founded. 45 years later: The NPP Zwentendorf never saw its start-up, the use of nuclear energy for the production of electricity is prohibited by a constitutional law, and the research reactor is being decommissioned. What's left are the radiation protection units of the fire brigades. The contribution gives an overview of similarities and differences of the radiation protection units in the nine federal states of Austria, with a special focus on equipment, training and organisation. Nation-wide guidelines and regulations for the tactics of first responders at radiological emergencies are presented and a couple of incidents will be analysed. (orig.)

  14. Cost comparison between base-load coal-fired and nuclear plants in the midterm future (1985--2015)

    International Nuclear Information System (INIS)

    Phung, D.L.

    1976-09-01

    The purpose of this study is to examine the relative costs of the coal and nuclear modes of electricity generation in the period between 1985 and 2015. These two modes of power generation are likely to be the mainstay source of electric power in the United States for that time period. A thorough understanding of their competitiveness not only is important in utility companies' decisions to go one route or the other but also is important to the government and the public when answers must be found for difficult questions, such as economic and environmental implications of a massive societal leaning toward one or the other option. In this study, the primary and secondary factors that affect the cost comparison of coal-fired and nuclear plant options for the midterm future have been separated and arranged so that they can be examined systematically. Estimated inflation of the economy and net fuel cost increases are internalized in the determination of life-cycle levelized cost of electricity in several plausible scenarios. Baseline data for capital and operating costs at beginning-of-life are determined by the tax rate, the expected rate of inflation at the time of capitalization, the net rate of fuel cost increases, and future eventualities of inflation. Other factors such as plant life spans, capacity factors, changes in baseline capital, and fuel cost are considered in sensitivity studies

  15. Pilot-Scale Demonstration of ALTA for NOx Control in Pulverized Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Fry; Devin Davis; Marc Cremer; Bradley Adams

    2008-04-30

    This report describes computational fluid dynamics (CFD) modeling and pilot-scale testing conducted to demonstrate the ability of the Advanced Layered Technology Approach (ALTA) to reduce NO{sub x} emissions in a pulverized coal (PC) boiler. Testing specifically focused on characterizing NO{sub x} behavior with deep burner staging combined with Rich Reagent Injection (RRI). Tests were performed in a 4 MBtu/hr pilot-scale furnace at the University of Utah. Reaction Engineering International (REI) led the project team which included the University of Utah and Combustion Components Associates (CCA). Deep burner staging and RRI, combined with selective non-catalytic reduction (SNCR), make up the Advanced Layered Technology Approach (ALTA) for NO{sub x} reduction. The application of ALTA in a PC environment requires homogenization and rapid reaction of post-burner combustion gases and has not been successfully demonstrated in the past. Operation of the existing low-NO{sub x} burner and design and operation of an application specific ALTA burner was guided by CFD modeling conducted by REI. Parametric pilot-scale testing proved the chemistry of RRI in a PC environment with a NOx reduction of 79% at long residence times and high baseline NOx rate. At representative particle residence times, typical operation of the dual-register low-NO{sub x} burner provided an environment that was unsuitable for NO{sub x} reduction by RRI, showing no NOx reduction. With RRI, the ALTA burner was able to produce NO{sub x} emissions 20% lower than the low-NO{sub x} burner, 76 ppmv vs. 94 ppmv, at a burner stoichiometric ratio (BSR) of 0.7 and a normalized stoichiometric ratio (NSR) of 2.0. CFD modeling was used to investigate the application of RRI for NO{sub x} control on a 180 MW{sub e} wall-fired, PC boiler. A NO{sub x} reduction of 37% from baseline (normal operation) was predicted using ALTA burners with RRI to produce a NO{sub x} emission rate of 0.185 lb/MBtu at the horizontal nose of

  16. Externally-fired combined cycle: An effective coal fueled technology for repowering and new generation

    Energy Technology Data Exchange (ETDEWEB)

    Stoddard, L.E.; Bary, M.R. [Black and Veatch, Kansas City, MO (United States); Gray, K.M. [Pennsylvania Electric Co., Johnstown, PA (United States); LaHaye, P.G. [Hague International, South Portland, ME (United States)

    1995-06-01

    The Externally-Fired Combined Cycle (EFCC) is an attractive emerging technology for powering high efficiency combined gas and steam turbine cycles with coal or other ash bearing fuels. In the EFCC, the heat input to a gas turbine is supplied indirectly through a ceramic air heater. The air heater, along with an atmospheric coal combustor and ancillary equipment, replaces the conventional gas turbine combustor. A steam generator located downstream from the ceramic air heater and steam turbine cycle, along with an exhaust cleanup system, completes the combined cycle. A key element of the EFCC Development Program, the 25 MMBtu/h heat-input Kennebunk Test Facility (KTF), has recently begun operation. The KTF has been operating with natural gas and will begin operating with coal in early 1995. The US Department of Energy selected an EFCC repowering of the Pennsylvania Electric Company`s Warren Station for funding under the Clean Coal Technology Program Round V. The project focuses on repowering an existing 48 MW (gross) steam turbine with an EFCC power island incorporating a 30 MW gas turbine, for a gross power output of 78 MW and a net output of 72 MW. The net plant heat rate will be decreased by approximately 30% to below 9,700 Btu/kWh. Use of a dry scrubber and fabric filter will reduce sulfur dioxide (SO{sub 2}) and particulate emissions to levels under those required by the Clean Air Act Amendments (CAAA) of 1990. Nitrogen oxides (NO{sub x}) emissions are controlled by the use of staged combustion. The demonstration project is currently in the engineering phase, with startup scheduled for 1997. This paper discusses the background of the EFCC, the KTF, the Warren Station EFCC Clean Coal Technology Demonstration Project, the commercial plant concept, and the market potential for the EFCC.

  17. An artificial intelligence treatment of devolatilization for pulverized coal and biomass in co-fired flames

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, T.; Awais, M.M.; Lockwood, F.C. [Lahore University of Management & Science, Lahore (Pakistan)

    2003-02-01

    In most of the existing predictive procedures for devolatilization, combustion and emissions are modeled by a single-step, global chemical reaction, with the yield of volatile matter presumed to experience mixing-controlled combustion. Several more detailed multi-step coal devolatilization models have recently emerged. A common shortcoming of these models is that they require a large set of input data, involving kinetic parameters, gas precursor compositions, and additional parameters describing the coal's polymeric structure. The input data must be generated from an extensive series of experimental measurements for each coal of interest. Very significant computational expense and application restricted to coals, which have already been studied, are implied. All of these problems are exacerbated when coal blending or co-firing with renewable solid fuels, such as forest and agricultural waste, and sewage sludge, is considered. In this paper, a new approach based on neural networks is proposed; it is capable of handling a range of solid fuels. The model considers heating rate, fuel atomic ratios, and the temperature of the fuel particles to predict the volatiles released by the particles. The 'learning' properties of the model implicitly facilitate all the physical conditions, of devolatilization experiments, which were used during its training and validation phases. The neural-network model was implemented into an existing 3D CFD combustion code. The predictions for high- and low-NOx burners demonstrate improved prediction of in-flame data for reduced computational effort, one-fifth of that with the standard single-global-reaction devolatilization model. Its devolatilization predictions have also been compared with a detailed devolatilization model (FLASHCHAIN) and were found to be comparable.

  18. Co-firing coal and hospital waste in a circulating fluidized bed boiler

    International Nuclear Information System (INIS)

    Coulthard, E.J.; Korenberg, J.; Oswald, K.D.

    1991-01-01

    The Department of Energy - Morgantown Energy Technology Center and the Pennsylvania Energy Development Authority are co-funding a project which will demonstrate the reduction of infectious hospital waste to an environmentally safe disposable ash by cofiring the waste with coal in a circulating fluidized bed (CFB). The main objective of this paper is increased utilization of coal but the project also provides a solution to a problem which has grown rapidly and become very visible in recent years (e.g., hospital waste washed up on beaches). The application of CFB boilers in hospitals introduces an economical clean coal technology into a size range and market dominated by gas and oil combustion systems. The use of CFB represents the utilization of state-of-the-art technology for burning coal in an environmentally benign manner. SO 2 , NO x , CO and particulate emissions lower than the latest New Source Performance Standards have proven to be achievable in CFB combustion systems. By processing the infectious waste in a steam generation system which operates continuously, the problem of creating excessive gaseous emissions during repeated start-ups (as is the case with current incinerator technology) is avoided. The operating conditions with respect to residence time, temperature and turbulence that are inherent to a CFB combustion system, provide an excellent environment for complete combustion and destruction of potentially hazardous solid and gaseous emissions (e.g., dioxins). The limestone, which is injected into the combustion system to reduce SO 2 emissions, will also react with chlorine. Thus chlorine compound emissions and the corrosive nature of the flue gas are reduced. The work efforts to date indicate that infectious waste thermal processing in a coal-fired CFB is a technically and economically viable on-site disposal option

  19. Detection and control of fires and heatings in shallow, abandoned coal mines

    International Nuclear Information System (INIS)

    Sullivan, P.

    1991-01-01

    Heatings and fires in shallow, abandoned coal mines create an environmentally undesirable hazard in the Witbank area in South Africa, as well as locations in Europe and North America. A research program was set up in South Africa to detect and control the occurrence and extent of subsurface heatings and fires. Prior to any remedial action being taken to control or extinguish a heating or fire, it is essential to evaluate underground conditions in order to determine the most effective control method. Normally, such workings cannot physically be entered due to poor ground conditions and the presence of heat and toxic gases. Two novel detection methods have been developed by the Chamber of Mines Research Organization (COMRO) for the purpose of identifying the nature and extent of such heatings remotely, via surface boreholes. Temperature monitoring allows for the detection of heating intensity and location. To determine areas of uncontrolled air infiltration into the workings, tracer gas technology is used. In addition, a method for controlling a fire which has been successfully used in South Africa is described

  20. A new proposed approach for future large-scale de-carbonization coal-fired power plants

    International Nuclear Information System (INIS)

    Xu, Gang; Liang, Feifei; Wu, Ying; Yang, Yongping; Zhang, Kai; Liu, Wenyi

    2015-01-01

    The post-combustion CO 2 capture technology provides a feasible and promising method for large-scale CO 2 capture in coal-fired power plants. However, the large-scale CO 2 capture in conventionally designed coal-fired power plants is confronted with various problems, such as the selection of the steam extraction point and steam parameter mismatch. To resolve these problems, an improved design idea for the future coal-fired power plant with large-scale de-carbonization is proposed. A main characteristic of the proposed design is the adoption of a back-pressure steam turbine, which extracts the suitable steam for CO 2 capture and ensures the stability of the integrated system. A new let-down steam turbine generator is introduced to retrieve the surplus energy from the exhaust steam of the back-pressure steam turbine when CO 2 capture is cut off. Results show that the net plant efficiency of the improved design is 2.56% points higher than that of the conventional one when CO 2 capture ratio reaches 80%. Meanwhile, the net plant efficiency of the improved design maintains the same level to that of the conventional design when CO 2 capture is cut off. Finally, the match between the extracted steam and the heat demand of the reboiler is significantly increased, which solves the steam parameter mismatch problem. The techno-economic analysis indicates that the proposed design is a cost-effective approach for the large-scale CO 2 capture in coal-fired power plants. - Highlights: • Problems caused by CO 2 capture in the power plant are deeply analyzed. • An improved design idea for coal-fired power plants with CO 2 capture is proposed. • Thermodynamic, exergy and techno-economic analyses are quantitatively conducted. • Energy-saving effects are found in the proposed coal-fired power plant design idea

  1. Exergy evaluation of a typical 330 MW solar-hybrid coal-fired power plant in China

    International Nuclear Information System (INIS)

    Peng, Shuo; Wang, Zhaoguo; Hong, Hui; Xu, Da; Jin, Hongguang

    2014-01-01

    Highlights: • Exergy analysis of solar-hybrid coal-fired power plant has been processed. • EUD method is utilized to obtain detailed information on the exergy destruction in each process. • Off-design thermodynamic performances are discussed to identify the advantages. • Exergy destruction of several parts under varying solar radiation is examined. - Abstract: This study discusses the thermodynamic performance of a solar-hybrid coal-fired power plant that uses solar heat with temperature lower than 300 °C to replace the extracted steam from a steam turbine to heat the feed water. Through this process, the steam that was to be extracted can efficiently expand in the steam turbine to generate electricity. The flow rate of steam returning to the turbine retains only a small part of the main stream, allowing the steam turbine to run close to design conditions for all DNI. A solar-only thermal power plant without storage is also discussed to illustrate the advantages of a solar-hybrid coal-fired power plant. The off-design performances of both plants are compared based on the energy-utilization diagram method. The exergy destruction of the solar-hybrid coal-fired power plant is found to be lower than that of the solar-only thermal power plant. The comparison of two plants, which may provide detailed information on internal phenomena, highlights several advantages of the solar-hybrid coal-fired power plant in terms of off-design operation: lower exergy destruction in the solar feed water heater and steam turbine and higher exergy and solar-to-electricity efficiency. Preliminary technological economic performances of both plants are compared. The results obtained in this study indicate that a solar-hybrid coal-fired power plant could achieve better off-design performance and economic performance than a solar-only thermal power plant

  2. Electricity generation of Maritsa-Iztok coal-fired power plant in Bulgaria and its complex impact on the environment

    International Nuclear Information System (INIS)

    Mitrikov, M.; Antonov, A.; Hristov, Hr.

    2001-01-01

    Soil, water and vegetable samples from the region of Maritsa-Iztok Coal-Fired Power Plants (CFPP) in Bulgaria have been studied using a large variety of methods for analysis: γ- and neutron activation analysis, γ-spectrometry, radiometry, mass- spectrometry, physicochemical analysis, soil sciences study. Detailed information about the concentration of ecologically important elements in the chain coal bottom ash, fly ashes environment (soil, water, air, vegetation) has been obtained, allowing to estimate the present ecological state of the region. (author)

  3. Assessment of direct radiological risk and indirect associated toxic risks originated by Coal-Fired Power Plants

    OpenAIRE

    Dinis, M. L.; Fiúza, António; Góis, Joaquim; Carvalho, José Soeiro de; Meira Castro, A C

    2011-01-01

    Over the past few decades there has been some discussion concerning the increase of the natural background radiation originated by coal-fired power plants, due to the uranium and thorium content present in combustion ashes. The radioactive decay products of uranium and thorium, such as radium, radon, polonium, bismuth and lead, are also released in addition to a significant amount of 40K. Since the measurement of radioactive elements released by the gaseous emissions of coal power plants i...

  4. Reaching an agreement to build a new coal-fired power plant near a national park by mitigating potential environmental impacts

    International Nuclear Information System (INIS)

    Miller, R.L.; Ruppel, T.C.; Evans, E.W.; Heintz, S.J.

    1994-01-01

    This paper presents an interesting example of compromise through comprehensive environmental analysis and intensive negotiation to build a coal-fired power plant near an environmentally sensitive area. In December 1993, the US Department of Energy (DOE) completed the final environmental impact statement (EIS) for the Healy clean Coal Project (HCCP), a proposed demonstration project that would be cost- shared by DOE and the Alaska Industrial Development and Export Authority (AIDEA). The HCCP would be built adjacent to the existing coal-fired Golden Valley Electric Association, Inc. (GVEA) Unit No. 1 in Healy, Alaska, about 4 miles north of Denali National Park and Preserve (DNPP). In response to US Department of the Interior (DOI) concerns about potential air quality related impacts on DNPP, DOE facilitated negotiations among DOE, AIDEA, and GVEA which overcame a ''stalemate'' situation. A Memorandum of Agreement was signed by all four parties, enabling DOI to withdraw its objections. The cornerstone of the Agreement is the planned retrofit of Unit No. 1 to reduce emissions of sulfur dioxide and oxides of nitrogen. If the demonstration technologies operate as expected, combined emissions from the Healy site would increase by only about 8% but electrical generation would triple. The Agreement is a ''win/win'' outcome: DOE can demonstrate the new technologies, AIDEA can build a new power plant for GVEA to operate, and DOE can safeguard the pristine environment DNPP

  5. United States position paper on sodium fires, design and testing

    International Nuclear Information System (INIS)

    Hilliard, R.K.; Johnson, R.P.

    1983-01-01

    The first Specialists' Meeting on sodium fire technology sponsored by the International Working Group on Fast Reactors (IWGFR) was held in Richland, Washington in 1972. The group concluded that the state-of-technology at that time was inadequate to support the growing LMFBR industry. During the second IWGFR Specialists' Meeting on sodium fires, held in Cadarache, France in 1978, a large quantity of technical information was exchanged and areas were identified where additional work was needed. Advances in several important areas of sodium fire technology have been made in the United States since that time, including improved computer codes, design of a sodium fire protection system for the CRBRP, measurement of water release from heated concrete, and testing and modeling of the sodium-concrete reaction. Research in the U.S. related to sodium fire technology is performed chiefly at the Energy Systems Group of Rockwell International (including Atomics International), the Hanford Engineering Development Laboratory (HEDL), and the Sandia National Laboratories (SNL). The work at the first two laboratories is sponsored by the U.S. Department of Energy, while that at the latter is sponsored by the U.S. Nuclear Regulatory Commission. Various aspects of sodium fire related work is also performed at several other laboratories. The current status of sodium fire technology in the U.S. is summarized in this report

  6. Hinkley Point 'C' power station public enquiry: proof of evidence on coal fired power station sites

    Energy Technology Data Exchange (ETDEWEB)

    Fothergill, S.; Witt, S.

    1988-11-01

    The Coalfield Communities Campaign (CCC) has argued that if a new base-load power station is required it should be coal-fired rather than nuclear, and that it should use UK coal. Proposals for new power stations at both Hinkley Point and at Fawley have encountered very considerable local and regional opposition, and this is increasingly likely to be the case at many other sites especially in Southern England. In contrast the CCC has sought to demonstrate that its member authorities would generally welcome the development of new coal-fired capacity on appropriate sites within their areas. In particular, this proof establishes that there is a prima facie case for considering three sites - Thorpe Marsh, Hams Hall and Uskmouth - as potential locations for a new large coal-fired power station as an alternative to Hinkley Point C. The relevant local authorities have expressed their willingness to co-operate in more detailed planning or technical investigations to secure a coal-fired power station on these sites. The CCC considers this to be a major and unprecedented offer to the CEGB and its successor bodies, which could greatly speed the development of new power staion capacity and be of considerable economic and social benefit to coalfield communities.

  7. The cluster analysis based on non-teacher artificial neural network for the danger prediction of coal spontaneous fire

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.; Wang, J. [China University of Mining and Technology (China)

    1999-04-01

    This paper focuses on the problem of predicting the danger level of spontaneous fire in coal mines. Firstly, the inadequacy of the present artificial neural networks prediction model is analysed. Then a new cluster model based on non-teacher neural network is constructed according to the danger judgement standards given by experts. On this basis, by adopting the error square sum criterion and its algorithm, the corresponding prediction software is developed and applied in two working faces of Chaili Coal Mine. The forecasting result is importantly significant for the prevention of spontaneous fire. 4 refs., 1 fig., 1 tab.

  8. Combustion aerosols from co-firing of coal and solid recovered fuel in a 400 mw pf-fired power plant

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Wu, Hao; Jappe Frandsen, Flemming

    2010-01-01

    In this work, combustion aerosols (i.e. fine particles fired power plant was sampled with a low-pressure impactor, and analysed by transmission and scanning electron microscopy. The power plant was operated at both dedicated coal combustion conditions...... and under conditions with cofiring of up to 10% (thermal basis) of solid recovered fuel (SRF). The SRFs were characterized by high contents of Cl, Ca, Na and trace metals, while the coal had relatively higher S, Al, Fe and K content. The mass-based particle size distribution of the aerosols was found...... to be bi-modal, with an ultrafine (vaporization) mode centered around 0.1 μm, and a coarser (finefragmentation) mode above 2 μm. Co-firing of SRF tended to increase the formation of ultrafine particles as compared with dedicated coal combustion, while the coarse mode tended to decrease. The increased...

  9. Field test corrosion experiments in Denmark with biomass fuels Part II Co-firing of straw and coal

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, OH

    2002-01-01

    undertaken where coal has been co-fired with 10% straw and 20% straw (% energy basis) for up to approx. 3000 hours. Two types of exposure were undertaken to investigate corrosion: a) the exposure of metal rings on water/air cooled probes, and b) the exposure of a range of materials built into the existing...... and potassium sulphate. These components give rise to varying degrees of accelerated corrosion. This paper concerns co-firing of straw with coal to reduce the corrosion rate from straw to an acceptable level. A field investigation at Midtkraft Studstrup suspension-fired power plant in Denmark has been...... for 100% straw-firing. The corrosion products and course of corrosion for the various steel types were investigated using light optical and scanning electron microscopy. Catastrophic corrosion due to potassium chloride was not observed. Instead a more modest corrosion rate due to potassium sulphate rich...

  10. Leaching characteristics of trace elements in desulfurization gypsum from a coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.K.; Zhuo, Y.Q.; Zhu, Z.W.; Chen, C.H. [Tsinghua Univ., Beijing (China). Inst. of Thermal Engineering

    2013-07-01

    The contents and leaching characteristics of Cr, Cd, As, Pb and Se in FGD gypsum from a 200 MW coal-fired power plant were investigated in this study. Experimental results revealed that: the leaching characteristics of As and Se were similar, both leaching rates were not obviously affected by pH but increased with increase of the liquid-solid ratio. Pb and Cr had similar leaching characteristics, their leaching rates were closely related with the pH of leaching solution and increased with the lowering of pH and both increased with the increasing of solid-liquid ratio. Along with the increase of the liquid-solid ratio, the leaching gradually achieved balance, and the balanced liquid-solid ratio was bigger when pH of leaching solution was lower. Cd content of leaching solution was below detect limit, and thus failed to get its leaching characteristics. The order of trace element content in leaching solution is Pb < Cr < As < Se, and the order of leaching rates is Cr < As < Pb < Se. BCR extraction procedure revealed that trace elements in FGD gypsum were mainly existed as available fraction and migration ability was stronger than that of trace elements in fly ash from coal-fired power plants.

  11. On the economics of nuclear and coal-fired electric generation

    International Nuclear Information System (INIS)

    Pouris, A.

    1987-01-01

    This article addresses the relative merit of nuclear versus coal-fired electricity generation for plants beginning base-load service in South Africa after the year 2000. Emphasis is placed on the economic merits of the two technologies, and environmental and social implications are taken into account only in so far as legislation, security, and other considerations affect the economics of the technologies. It is assumed that nuclear and coal-fired generating plants wil represent the most cost-effective and feasible options for base-load service in the foreseeable future. Socio-political consideration and lack of indigenous oil production forbid the use of oil for the production of electricity, independently of economic merits. Similarly, the absence of local research on alternative renewable technologies, their stage of development abroad and their current economics limit the possibility of their extensive use in the time horizon under examination. The measure of economic merit used in the study is the 'levelized busbar cost' over the lifetime of the station

  12. Natural radionuclides in soil profiles surrounding the largest coal-fired power plant in Serbia

    Directory of Open Access Journals (Sweden)

    Tanić Milan N.

    2016-01-01

    Full Text Available This study evaluates the influence of the largest Serbian coal-fired power plant on radionuclide concentrations in soil profiles up to 50 cm in depth. Thirty soil profiles were sampled from the plant surroundings (up to 10 km distance and analyzed using standard methods for soil physicochemical properties and gamma ray spectrometry for specific activities of natural radionuclides (40K, 226Ra and 232Th. Spatial and vertical distribution of radionuclides was determined and analyzed to show the relations between the specific activities in the soil and soil properties and the most influential factors of natural radionuclide variability were identified. The radiological indices for surface soil were calculated and radiological risk assessment was performed. The measured specific activities were similar to values of background levels for Serbia. The sampling depth did not show any significant influence on specific activities of natural radionuclides. The strongest predictor of specific activities of the investigated radionuclides was soil granulometry. All parameters of radiological risk assessment were below the recommended values and adopted limits. It appears that the coal-fired power plant does not have a significant impact on the spatial and vertical distribution of natural radionuclides in the area of interest, but technologically enhanced natural radioactivity as a consequence of the plant operations was identified within the first 1.5 km from the power plant. [Projekat Ministarstva nauke Republike Srbije br. III43009 i br. III41005

  13. Online Monitoring System of Air Distribution in Pulverized Coal-Fired Boiler Based on Numerical Modeling

    Science.gov (United States)

    Żymełka, Piotr; Nabagło, Daniel; Janda, Tomasz; Madejski, Paweł

    2017-12-01

    Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA) nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS) data.

  14. Lichens as biomonitors around a coal-fired power station in Israel

    International Nuclear Information System (INIS)

    Garty, Jacob; Tomer, Sharon; Levin, Tal; Ehr, Haya

    2003-01-01

    In the present study epiphytic lichens were applied as biomonitors of air pollution to determine the environmental impact of a coal-fired power station. Thalli of the lichen Ramalina lacera (With.) J.R. Laund. growing on carob twigs (Ceratonia siliqua L.) were collected with their substrate in July 2000 in a relatively unpolluted forest near HaZorea, Ramoth Menashe, ortheast Israel, and transplanted to 10 biomonitoring sites in the vicinity of the coal-fired power station Oroth Rabin near the town of Hadera. The lichens were retrieved in January 2001. We examined the following parameters of lichen vitality: (a) potential quantum yield of photosynthesis expressed as fluorescence ratio F v /F m , (b) stress-ethylene production, and (c) electric conductivity expressing integrity of cell membranes. Following an exposure of 7 months, the lichens were retrieved and physiological parameters and data of elemental content were analyzed comparatively. Electric conductivity values correlated positively with B, Fe, Mg, Mn, Na, Pb, S, Sn, nd Ti content. Concentrations of stress-ethylene correlated positively with l, Ba, Pb, S, and V content and negatively with Cu and Sn. F v /F m ratios correlated negatively with S content. Some of the heavy metals reached lower levels than those reported in the relevant literature despite a wind regime that should have blown pollutants toward the biomonitoring sites

  15. Ash fouling monitoring and key variables analysis for coal fired power plant boiler

    Directory of Open Access Journals (Sweden)

    Shi Yuanhao

    2015-01-01

    Full Text Available Ash deposition on heat transfer surfaces is still a significant problem in coal-fired power plant utility boilers. The effective ways to deal with this problem are accurate on-line monitoring of ash fouling and soot-blowing. In this paper, an online ash fouling monitoring model based on dynamic mass and energy balance method is developed and key variables analysis technique is introduced to study the internal behavior of soot-blowing system. In this process, artificial neural networks (ANN are used to optimize the boiler soot-blowing model and mean impact values method is utilized to determine a set of key variables. The validity of the models has been illustrated in a real case-study boiler, a 300MW Chinese power station. The results on same real plant data show that both models have good prediction accuracy, while the ANN model II has less input parameters. This work will be the basis of a future development in order to control and optimize the soot-blowing of the coal-fired power plant utility boilers.

  16. Online Monitoring System of Air Distribution in Pulverized Coal-Fired Boiler Based on Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Żymełka Piotr

    2017-12-01

    Full Text Available Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS data.

  17. Engineering development of coal-fired high performance power systems, Phase II and III

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-04-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input, all solid wastes benign, and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  18. Non-greenhouse gas emissions from coal-fired power plants in China

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-04-15

    Within the Twelth Five-Year Plan, the Chinese Government has made addressing air quality problems a key environmental priority, with an intention to accelerate the development of systems, institutions and a technical knowledge base for sustained improvement. A major focus is on the coal power sector for which standards have been introduced that require the installation of modern, very high efficiency SO2, NOx and particulates emissions control systems. Nine key regions, which are facing very significant air quality challenges, are the three major economic zones around the cities of Beijing, Shanghai (Yangtze River Delta) and Guangzhou (Pearl River Delta), together with six areas around the cities of Shenyang, Changsha, Wuhan, Chengdu Chongqing, the Shandong peninsula, and the coastal area west of the Taiwan strait. These regions comprise the population and economic centres of the country, accounting for 64% of national GDP, 43% of total energy use, and 39% of the population. In these locations, all existing and new coal-fired power plants will have to achieve particulate, SO2 and NOx emissions limits of 20, 50 and 100 mg/m3 respectively, with new plants expected to meet the standards from 1 January 2012 and existing plants by 1 July 2014. At the same time, there will be an increasing emphasis on limiting any new coal-fired power plants in these regions. For the rest of the country, the standards are not quite so strict and the SO2 limits for existing plants are less severe than for new plants. The new pollutant that will be regulated on coal-fired power plants is mercury and its compounds, for which the limit has been set at a level that represents a core control. This means that providing the power plant operator meets the new particulate, SO2 and NOx standards then the mercury standard should be met without the need to introduce an additional capture device, although the emissions level will have to be measured on a regular basis. From a global perspective, this

  19. Underground Coal-Fires in Xinjiang, China: A Continued Effort in Applying Geophysics to Solve a Local Problem and to Mitigate a Global Hazard

    Science.gov (United States)

    Wuttke, M. W.; Halisch, M.; Tanner, D. C.; Cai, Z. Y.; Zeng, Q.; Wang, C.

    2012-04-01

    Spontaneous uncontrolled coal seam fires are a well known phenomenon that causes severe environmental problems and severe impact on natural coal reserves. Coal fires are a worldwide phenomenon, but in particular in Xinjiang, that covers 17.3 % of Chinas area and hosts approx 42 % of its coal resources. In Xinjiang since more than 50 years a rigorous strategy for fire fighting on local and regional scale is persued. The Xinjiang Coalfield Fire Fighting Bureau (FFB) has developed technologies and methods to deal with any known fire. Many fires have been extinguished already, but the problem is still there if not even growing. This problem is not only a problem for China due to the loss of valuable energy resources, but it is also a worldwide threat because of the generation of substantial amounts of greenhouse gases. Through the FFB, China is struggling to overcome this, but the activities could be much enhanced by the continuation of the already successful conjoint operations. The last ten years have seen two successful cooperative projects between China and Germany on the field of coal-fire fighting, namely the German Technical Cooperation Project on Coal Fire in Xinjiang and the Sino-German Coal Fire Research Initiative funded by the corresponding ministeries of both countries. A persistent task in the fire fighting is the identification and supervision of areas with higher risks for the ignition of coal fires, the exploration of already ignited fire zones to extinguish the fires and the monitoring of extinguished fires to detect as early as possible process that may foster re-ignition. This can be achieved by modeling both the structures and the processes that are involved. This has also been a promising part of the past cooperation projects, yet to be transformed into a standard application of fire fighting procedures. In this contribution we describe the plans for a new conjoint project between China and Germany where on the basis of field investigations and

  20. Potential nanotechnology applications for reducing freshwater consumption at coal fired power plants : an early view.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D. (Environmental Science Division)

    2010-09-17

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the overall research effort of the Existing Plants Research Program by evaluating water issues that could impact power plants. A growing challenge to the economic production of electricity from coal-fired power plants is the demand for freshwater, particularly in light of the projected trends for increasing demands and decreasing supplies of freshwater. Nanotechnology uses the unique chemical, physical, and biological properties that are associated with materials at the nanoscale to create and use materials, devices, and systems with new functions and properties. It is possible that nanotechnology may open the door to a variety of potentially interesting ways to reduce freshwater consumption at power plants. This report provides an overview of how applications of nanotechnology could potentially help reduce freshwater use at coal-fired power plants. It was developed by (1) identifying areas within a coal-fired power plant's operations where freshwater use occurs and could possibly be reduced, (2) conducting a literature review to identify potential applications of nanotechnology for facilitating such reductions, and (3) collecting additional information on potential applications from researchers and companies to clarify or expand on information obtained from the literature. Opportunities, areas, and processes for reducing freshwater use in coal-fired power plants considered in this report include the use of nontraditional waters in process and cooling water systems, carbon capture alternatives, more efficient processes for removing sulfur dioxide and nitrogen oxides, coolants that have higher thermal conductivities than water alone, energy storage options, and a variety of plant inefficiencies, which

  1. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bradley Adams; Andrew Fry; Constance Senior; Hong Shim; Huafeng Wang; Jost Wendt; Christopher Shaddix

    2009-06-30

    This report summarizes Year 1 results of a research program designed to use multi-scale experimental studies and fundamental theoretical models to characterize and predict the impacts of retrofit of existing coal-fired utility boilers for oxy-combustion. Through the course of Year 1 activities, great progress was made toward understanding the issues associated with oxy-combustion retrofit of coal-fired boilers. All four Year 1 milestones and objectives have been, or will be, completed on schedule and within budget. Progress in the four milestone areas may be summarized as follows: • University of Utah has performed size segregated ash composition measurements in the Oxy-Fuel Combustor (OFC). These experiments indicate that oxy-combustion retrofit may impact ash aerosol mineral matter composition. Both flame temperature and flue gas composition have been observed to influence the concentration of calcium, magnesium and iron in the fine particulate. This could in turn impact boiler fouling and slagging. • Sandia National Labs has shown that char oxidation rate is dependent on particle size (for sizes between 60 and 100 microns) by performing fundamental simulations of reacting char particles. These predictions will be verified by making time-resolved optical measurements of char particle temperature, velocity and size in bench-scale experiments before the end of Year 1. • REI and Siemens have completed the design of an oxy-research burner that will be mounted on University of Utah’s pilot-scale furnace, the L1500. This burner will accommodate a wide range of O2, FGR and mixing strategies under conditions relevant for utility boiler operation. Through CFD modeling of the different burner designs, it was determined that the key factor influencing flame stabilization location is particle heat-up rate. The new oxy-research burner and associated equipment is scheduled for delivery before the end of Year 1. • REI has completed a literature survey of slagging and

  2. Determination of radioactive trace elements in ashes and fly-ashes from Brazilian coal-fired power plants

    International Nuclear Information System (INIS)

    Bellido, L.F.; de Castro Arezzo, B.

    1984-01-01

    The aim of this work was to apply a epithermal neutron activation technique to determine the uranium and thorium content in coal ashes and fly ashes from Brazilian coal-fired thermoelectric plants and to evaluate the contribution of these elements and their descendents to the environmental radioactivity. Brazil has adopted as short term policy the use of alcohol and coal as alternative sources of energy. With regard to coal, large deposits of this mineral are found in southern states but the serious problem of its utilization is the risk of environmental contamination which can reach dangerous levels because the industrial plants burn several million tons per year. Uranium and thorium contents, determined experimentally, are extrapolated for annual coal consumption and their amounts and the activity of the radium isotopes descendents released to the atmosphere are calculated. The significance of these values and problems in environmental pollution are discussed

  3. Evaluation of AFBC co-firing of coal and hospital wastes

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    The purpose of this program is to expand the use of coal by utilizing CFB (circulating fluidized bed) technology to provide an environmentally safe method for disposing of waste materials. Hospitals are currently experiencing a waste management crisis. In many instances, they are no longer permitted to burn pathological and infectious wastes in incinerators. Older hospital incinerators are not capable of maintaining the stable temperatures and residence times necessary in order to completely destroy toxic substances before release into the atmosphere. In addition, the number of available landfills which can safely handle these substances is decreasing each year. The purpose of this project is to conduct necessary research investigating whether the combustion of the hospital wastes in a coal-fired circulating fluidized bed boiler will effectively destroy dioxins and other hazardous substances before release into the atmosphere. If this is proven feasible, in light of the quantity of hospital wastes generated each year, it would create a new market for coal -- possibly 50 million tons/year.

  4. Health and environmental effects of coal-fired electric power plants

    International Nuclear Information System (INIS)

    Morris, S.C.; Hamilton, L.D.

    1984-05-01

    This paper describes health and environmental impacts of coal-fired electric power plants. Effects on man, agriculture, and natural ecosystems are considered. These effects may result from direct impacts or exposures via air, water, and food chains. The paper is organized by geographical extent of effect. Occupational health impacts and local environmental effects such as noise and solid waste leachate are treated first. Then, regional effects of air pollution, including acid rain, are analyzed. Finally, potential global impacts are examined. Occupational health concerns considered include exposure to noise, dust, asbestos, mercury, and combustion products, and resulting injury and disease. Local effects considered include noise; air and water emissions of coal storage piles, solid waste operations, and cooling systems. Air pollution, once an acute local problem, is now a regional concern. Acute and chronic direct health effects are considered. Special attention is given to potential effects of radionuclides in coal and of acid rain. Finally, potential global impacts associated with carbon dioxide emissions are considered. 88 references, 9 tables

  5. Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Radisav Vidic; Joseph Flora; Eric Borguet

    2008-12-31

    The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

  6. Isotopic Tracing of Thallium Contamination in Soils Affected by Emissions from Coal-Fired Power Plants.

    Science.gov (United States)

    Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin; Trubač, Jakub; Ettler, Vojtěch; Teper, Leslaw; Cabala, Jerzy; Rohovec, Jan; Zádorová, Tereza; Penížek, Vít; Pavlů, Lenka; Holubík, Ondřej; Němeček, Karel; Houška, Jakub; Drábek, Ondřej; Ash, Christopher

    2016-09-20

    Here, for the first time, we report the thallium (Tl) isotope record in moderately contaminated soils with contrasting land management (forest and meadow soils), which have been affected by emissions from coal-fired power plants. Our findings clearly demonstrate that Tl of anthropogenic (high-temperature) origin with light isotope composition was deposited onto the studied soils, where heavier Tl (ε(205)Tl ∼ -1) naturally occurs. The results show a positive linear relationship (R(2) = 0.71) between 1/Tl and the isotope record, as determined for all the soils and bedrocks, also indicative of binary Tl mixing between two dominant reservoirs. We also identified significant Tl isotope variations within the products from coal combustion and thermo-desorption experiments with local Tl-rich coal pyrite. Bottom ash exhibited the heaviest Tl isotope composition (ε(205)Tl ∼ 0), followed by fly ash (ε(205)Tl between -2.5 and -2.8) and volatile Tl fractions (ε(205)Tl between -6.2 and -10.3), suggesting partial Tl isotope fractionations. Despite the evident role of soil processes in the isotope redistributions, we demonstrate that Tl contamination can be traced in soils and propose that the isotope data represent a possible tool to aid our understanding of postdepositional Tl dynamics in surface environments for the future.

  7. URBAN WOOD/COAL CO-FIRING IN THE BELLEFIELD BOILERPLANT

    International Nuclear Information System (INIS)

    James T. Cobb, Jr.; Gene E. Geiger; William W. Elder III

    2001-01-01

    During the second quarter, important preparatory work was continued so that the experimental activities can begin toward the end of the third quarter or early in the fourth quarter. The Environmental Questionnaire was submitted to the U.S. DOE National Energy Technology Laboratory (NETL), after thorough review by the Bellefield Boiler Plant (BBP). Letters were submitted to the Allegheny County Health Department (ACHD) and the Pennsylvania Department of Environmental Protection (PADEP) to seek R and D variances for permits at the BBP, the J. A. Rutter Company (JARC), and Emery Tree Service (ETS) for their portion of the project. Memoranda of understanding were executed by the University of Pittsburgh (University) with the BBP, JARC and ETS. Construction wood was collected from Thompson Properties. Discussions were held with the BBP and Energy Systems Associates (ESA), the BBP's engineering consultant. Presentations describing the University of Pittsburgh Wood/Coal Co-Firing Program were provided to the American Chemical Society (ACS), the Federal Energy Management Program (FEMP), the Upgraded Coal Interest Group (UCIG) of the Electric Power Research Institute (EPRI), the Engineering Center for Environment and Energy (ECEE) of the University of Pittsburgh, the Pittsburgh Coal Conference (PCC), the Pennsylvania Ethanol Workshop, BioEnergy 2000 and the Kick-Off Meeting of the Biomass Cofiring Opportunities Solicitation Projects

  8. Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process

    International Nuclear Information System (INIS)

    Xu Gang; Yang Yongping; Lu Shiyuan; Li Le; Song Xiaona

    2011-01-01

    In China, coal-fired power plants are the main supplier of electricity, as well as the largest consumer of coal and water resources and the biggest emitter of SO x , NO x , and greenhouse gases (GHGs). Therefore, it is important to establish a scientific, reasonable, and feasible comprehensive evaluation system for coal-fired power plants to guide them in achieving multi-optimisation of their thermal, environmental, and economic performance. This paper proposes a novel comprehensive evaluation method, which is based on a combination of the grey relational analysis (GRA) and the analytic hierarchy process (AHP), to assess the multi-objective performance of power plants. Unlike the traditional evaluation method that uses coal consumption as a basic indicator, the proposed evaluation method also takes water consumption and pollutant emissions as indicators. On the basis of the proposed evaluation method, a case study on typical 600 MW coal-fired power plants is carried out to determine the relevancy rules among factors including the coal consumption, water consumption, pollutant, and GHG emissions of power plants. This research offers new ideas and methods for the comprehensive performance evaluation of complex energy utilisation systems, and is beneficial to the synthesised consideration of resources, economy, and environment factors in system optimising and policy making. - Research highlights: → We proposed a comprehensive evaluation method for coal-fired power plants. → The method is based on the grey relational analysis (GRA). → The method also introduces the idea of the analytic hierarchy process (AHP). → The method can assess thermal, economic and environmental performance. → The method can play an active role in guiding power plants' improvements.

  9. Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process

    Energy Technology Data Exchange (ETDEWEB)

    Xu Gang, E-mail: xg2008@ncepu.edu.c [Key Lab of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206 (China); Yang Yongping, E-mail: yyp@ncepu.edu.c [Key Lab of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206 (China); Lu Shiyuan; Li Le [Key Lab of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206 (China); Song Xiaona [Electromechanical Practice Center, Beijing Information Science and Technology University, Beijing (China)

    2011-05-15

    In China, coal-fired power plants are the main supplier of electricity, as well as the largest consumer of coal and water resources and the biggest emitter of SO{sub x}, NO{sub x}, and greenhouse gases (GHGs). Therefore, it is important to establish a scientific, reasonable, and feasible comprehensive evaluation system for coal-fired power plants to guide them in achieving multi-optimisation of their thermal, environmental, and economic performance. This paper proposes a novel comprehensive evaluation method, which is based on a combination of the grey relational analysis (GRA) and the analytic hierarchy process (AHP), to assess the multi-objective performance of power plants. Unlike the traditional evaluation method that uses coal consumption as a basic indicator, the proposed evaluation method also takes water consumption and pollutant emissions as indicators. On the basis of the proposed evaluation method, a case study on typical 600 MW coal-fired power plants is carried out to determine the relevancy rules among factors including the coal consumption, water consumption, pollutant, and GHG emissions of power plants. This research offers new ideas and methods for the comprehensive performance evaluation of complex energy utilisation systems, and is beneficial to the synthesised consideration of resources, economy, and environment factors in system optimising and policy making. - Research highlights: {yields} We proposed a comprehensive evaluation method for coal-fired power plants. {yields} The method is based on the grey relational analysis (GRA). {yields} The method also introduces the idea of the analytic hierarchy process (AHP). {yields} The method can assess thermal, economic and environmental performance. {yields} The method can play an active role in guiding power plants' improvements.

  10. Monetization of External Costs Using Lifecycle Analysis—A Comparative Case Study of Coal-Fired and Biomass Power Plants in Northeast China

    Directory of Open Access Journals (Sweden)

    Lingling Wang

    2015-02-01

    Full Text Available In this study, the structures of external costs are built in line with coal-fired and biomass power plant life cycle activities in Northeast China. The external cost of coal-fired and biomass power plants was compared, using the lifecycle approach. In addition, the external costs of a biomass power plant are calculated for each stage for comparison with those of a coal-fired power plant. The results highlight that the external costs of a coal-fired plant are 0.072 US $/kWh, which are much higher than that of a biomass power plant, 0.00012 US$/kWh. The external cost of coal-fired power generation is as much as 90% of the current price of electricity generated by coal, while the external cost of a biomass power plant is 1/1000 of the current price of electricity generated by biomass. In addition, for a biomass power plant, the external cost associated with SO2, NOX, and PM2.5 are particularly lower than those of a coal-fired power plant. The prospect of establishing precise estimations for external cost mechanisms and sustainable energy policies is discussed to show a possible direction for future energy schemes in China. The paper has significant value for supporting the biomass power industry and taxing or regulating coal-fired power industry to optimize the energy structure in China.

  11. Review of the coal-fired, over-supercritical and ultra-supercritical steam power plants

    Science.gov (United States)

    Tumanovskii, A. G.; Shvarts, A. L.; Somova, E. V.; Verbovetskii, E. Kh.; Avrutskii, G. D.; Ermakova, S. V.; Kalugin, R. N.; Lazarev, M. V.

    2017-02-01

    The article presents a review of developments of modern high-capacity coal-fired over-supercritical (OSC) and ultra-supercritical (USC) steam power plants and their implementation. The basic engineering solutions are reported that ensure the reliability, economic performance, and low atmospheric pollution levels. The net efficiency of the power plants is increased by optimizing the heat balance, improving the primary and auxiliary equipment, and, which is the main thing, by increasing the throttle conditions. As a result of the enhanced efficiency, emissions of hazardous substances into the atmosphere, including carbon dioxide, the "greenhouse" gas, are reduced. To date, the exhaust steam conditions in the world power industry are p 0 ≈ 30 MPa and t 0 = 610/620°C. The efficiency of such power plants reaches 47%. The OSC plants are being operated in Germany, Denmark, Japan, China, and Korea; pilot plants are being developed in Russia. Currently, a project of a power plant for the ultra-supercritical steam conditions p 0 ≈ 35 MPa and t 0 = 700/720°C with efficiency of approximately 50% is being studied in the EU within the framework of the Thermie AD700 program, project AD 700PF. Investigations in this field have also been launched in the United States, Japan, and China. Engineering solutions are also being sought in Russia by the All-Russia Thermal Engineering Research Institute (VTI) and the Moscow Power Engineering Institute. The stated steam parameter level necessitates application of new materials, namely, nickel-base alloys. Taking into consideration high costs of nickel-base alloys and the absence in Russia of technologies for their production and manufacture of products from these materials for steam-turbine power plants, the development of power plants for steam parameters of 32 MPa and 650/650°C should be considered to be the first stage in creating the USC plants as, to achieve the above parameters, no expensive alloys are require. To develop and

  12. Efficient air pollution regulation of coal-fired power in China

    Science.gov (United States)

    Feng, Therese

    This dissertation evaluates monetary external costs of electricity generation in the People's Republic of China and implications for efficient pollution control policy. It presents an integrated assessment of environmental damages of air emissions of a representative new coal-fired plant in urban areas of north and south China. The simulation evaluates the nature and magnitude of damages in China, transboundary effects in Japan and Korea, and global greenhouse gas warming impacts. The valuation is used to identify efficient abatement policy for Chinese plants over time; evaluate benefits of differentiated policies; and consider the importance of dynamic policy. Potential annual damages of operating a 600-MW power plant without controls in China today would be 43-45 million (U.S. 1995). Annual local damages of 37-40 million far exceed transboundary or greenhouse gas damages (1.4 million and $4.6 million respectively). The largest component of damages is the risk of human mortality and chronic morbidity from long-term exposure to fine particles. Efficient pollution control minimizes the sum of abatement costs and residual unabated damages. Because monetary damages reflect sufferers' willingness to pay to avoid environmental risks, the choice of efficient controls is fundamentally tied to societal values and preferences. The optimal path for Chinese abatement moves from modest dispersion measures at present to combined dispersion and emission controls approaching those of current-day United States, by 2050. The inclusion of transboundary and greenhouse damages does not substantively alter local policies. Welfare benefits are gained by differentiating abatement policy by pollutant, meteorological parameters, and by population density. An analysis of optimal one-time investment in abatement for a plant in a growing economy suggests that some investment is optimal at all incomes but no single level of abatement is suitable for all economies. Forward-looking policy

  13. One coal miner's perspective on the present United States coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.E. [Murray Energy Corp., Pepper Pike, OH (United States)

    2002-07-01

    The President and CEO of the Murray Energy Corporation presented his observations on and concerns about the coal and energy industries in the USA, as a coal miner and an energy trader. He outlines the coal mining operations of the Murray Energy Corporation. He offers critical comments about, for example, some unscrupulous energy trading activities, the future of Powder River Basin coal (which he believes may be curtailed by the introduction of clean coal technologies), the lack of expertise in coal mining, the need to revise the law concerning coal company bankruptcies, the need for the government to provide a means to secure bonds, the need to liberalize black lung disease benefits, and the factors deterring improvement of the performance of the eastern coal industry. He criticises current policy and puts forward some recommendations.

  14. Formulation, Pretreatment, and Densification Options to Improve Biomass Specifications for Co-Firing High Percentages with Coal

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; J Richard Hess; Richard D. Boardman; Shahab Sokhansanj; Christopher T. Wright; Tyler L. Westover

    2012-06-01

    There is a growing interest internationally to use more biomass for power generation, given the potential for significant environmental benefits and long-term fuel sustainability. However, the use of biomass alone for power generation is subject to serious challenges, such as feedstock supply reliability, quality, and stability, as well as comparative cost, except in situations in which biomass is locally sourced. In most countries, only a limited biomass supply infrastructure exists. Alternatively, co-firing biomass alongwith coal offers several advantages; these include reducing challenges related to biomass quality, buffering the system against insufficient feedstock quantity, and mitigating the costs of adapting existing coal power plants to feed biomass exclusively. There are some technical constraints, such as low heating values, low bulk density, and grindability or size-reduction challenges, as well as higher moisture, volatiles, and ash content, which limit the co-firing ratios in direct and indirect co-firing. To achieve successful co-firing of biomass with coal, biomass feedstock specifications must be established to direct pretreatment options in order to modify biomass materials into a format that is more compatible with coal co-firing. The impacts on particle transport systems, flame stability, pollutant formation, and boiler-tube fouling/corrosion must also be minimized by setting feedstock specifications, which may include developing new feedstock composition by formulation or blending. Some of the issues, like feeding, co-milling, and fouling, can be overcome by pretreatment methods including washing/leaching, steam explosion, hydrothermal carbonization, and torrefaction, and densification methods such as pelletizing and briquetting. Integrating formulation, pretreatment, and densification will help to overcome issues related to physical and chemical composition, storage, and logistics to successfully co-fire higher percentages of biomass ( > 40

  15. Synchronization of motor unit firings: an epiphenomenon of firing rate characteristics not common inputs.

    Science.gov (United States)

    Kline, Joshua C; De Luca, Carlo J

    2016-01-01

    Synchronous motor unit firing instances have been attributed to anatomical inputs shared by motoneurons. Yet, there is a lack of empirical evidence confirming the notion that common inputs elicit synchronization under voluntary conditions. We tested this notion by measuring synchronization between motor unit action potential trains (MUAPTs) as their firing rates progressed within a contraction from a relatively low force level to a higher one. On average, the degree of synchronization decreased as the force increased. The common input notion provides no empirically supported explanation for the observed synchronization behavior. Therefore, we investigated a more probable explanation for synchronization. Our data set of 17,546 paired MUAPTs revealed that the degree of synchronization varies as a function of two characteristics of the motor unit firing rate: the similarity and the slope as a function of force. Both are measures of the excitation of the motoneurons. As the force generated by the muscle increases, the firing rate slope decreases, and the synchronization correspondingly decreases. Different muscles have motor units with different firing rate characteristics and display different amounts of synchronization. Although this association is not proof of causality, it consistently explains our observations and strongly suggests further investigation. So viewed, synchronization is likely an epiphenomenon, subject to countless unknown neural interactions. As such, synchronous firing instances may not be the product of a specific design and may not serve a specific physiological purpose. Our explanation for synchronization has the advantage of being supported by empirical evidence, whereas the common input does not. Copyright © 2016 the American Physiological Society.

  16. Description of the operation and radiological impact of a spanish coastal coal-fired power station

    International Nuclear Information System (INIS)

    Corbacho, Jose A.; Baeza, Antonio; Robles, Beatriz; Mora, Juan C.; Cancio, David

    2008-01-01

    The 'Litoral' Coal-Fired Power Plant (LCFPP) is situated in the town of Carboneras (Almeria) in southern Spain. Its nominal output power is 1589 M We. The fuel used is imported sub-bituminous coal supplied by collier vessels, and unloaded in a port annexed to the plant. The climate of the area is semi-arid mediterranean, with particularly low rainfall. The plant's radiological impact was studied considering various exposure pathways for the workers and the general public. In particular, inhalati