WorldWideScience

Sample records for coal conversion products

  1. Investigation of coals and coal conversion products by FT-IR methods

    Energy Technology Data Exchange (ETDEWEB)

    Romanchuk, V.V.; Ismagilov, M.S.; Korobetskii, I.A. [Clean Coal Technology and Certification Center Ltd., Kemerovo (Russian Federation)

    1996-12-31

    The influence of water content on coal pyrolysis was studied by Fourier transform infrared (FT-IR) spectroscopy. Three coals varying in rank were studied. The coal samples were previously dried at 200 C. Pyrolysis was carried out in a nitrogen flow reactor at temperature 450 C. The FT-IR examination showed that the aliphatic structures and hydroxyl functional groups were removed from chars, while aromatic hydrogen content increased during the pyrolysis. Several structural characteristics based on FT-IR data were calculated for coals and their chars. These structural characteristics showed increasing of aromatic hydrogen content during the drying.

  2. Hydrogen transfer in the formation and destruction of retrograde products in coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    McMillen, D.F.; Malhotra, R. [SRI International, Menlo Park, CA (United States)

    2006-06-01

    The conversion of coals to volatiles or liquids during pyrolysis and liquefaction is notoriously limited by the formation of retrograde products. Analysis of literature data for coals with grafted structures and for polymeric coal models demonstrates that the formation of volatile products from these materials does not correlate primarily with the weakness of the original bonding but correlates with the facility for retrogressive reaction. This analysis suggests further that simple recombination of resonance-stabilized radicals does not tend to yield true retrograde products, except in the case of aryloxy radicals. For pure hydrocarbon structural elements, radical addition to aromatic systems appears to be a key class of retrograde reactions, where the key factor is the kinetics of radical or H-atom loss from a cyclohexadienyl intermediate. We have used a mechanistic numerical model with a detailed set of radical reactions and thermochemically based kinetic parameters operating on a limited set of hydrocarbon structures to delineate important factors in mitigating retrograde processes. This showed that, not only the cleavage of critical bonds in the original coal structures but also the net prevention of retrogression may be due to the H-transfer-induced cleavage of strong bonds.

  3. Usage of waste products from thermal recycling of plastics waste in enhanced oil recovery or in-situ coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fink, M.; Fink, J.K. [Montanuniversitaet Leoben (Austria)

    1998-09-01

    In this contribution a thermal method for crude oil mobilization and in-situ liquefaction of coal is discussed, which will finally yield more organic material, as which has been put in from plastics waste originally into the process. The conversion product from thermal treatment is pumped down into exhausted crude oil reservoirs, where the hydrogen can degrade the residual high viscous oil to cause it to become more prone to flow so that it can be recovered. Such a process will envision two goals: 1. more organic raw material (as crude oil) will be recovered than is initially put in as waste product. 2. atmospheric pollutants from the conversion plant will be trapped in the reservoir, which simplifies the construction of the plant. An analogous process may be performed with coal seams. Coal seams with their high porosity and large specific surface are believed to be in particular useful to filter atmospheric pollutants. Depending on the type of coal the mobilization of organic material by this process may be in the background. (orig./SR)

  4. Design of generic coal conversion facilities: Production of oxygenates from synthesis gas---A technology review

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report concentrates on the production of oxygenates from coal via gasification and indirect liquefaction. At the present the majority of oxygenate synthesis programs are at laboratory scale. Exceptions include commercial and demonstration scale plants for methanol and higher alcohols production, and ethers such as MTBE. Research and development work has concentrated on elucidating the fundamental transport and kinetic limitations governing various reactor configurations. But of equal or greater importance has been investigations into the optimal catalyst composition and process conditions for the production of various oxygenates.

  5. Balanced program plan. Volume IV. Coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, C. R.; Reichle, D. E.; Gehrs, C. W.

    1976-05-01

    This document contains a description of the biomedical and environmental research necessary to ensure the timely attainment of coal conversion technologies amenable to man and his environment. The document is divided into three sections. The first deals with the types of processes currently being considered for development; the data currently available on composition of product, process and product streams, and their potential effects; and problems that might arise from transportation and use of products. Section II is concerned with a description of the necessary research in each of the King-Muir categories, while the third section presents the research strategies necessary to assess the potential problems at the conversion plant (site specific) and those problems that might effect the general public and environment as a result of the operation of large-scale coal conversion plants. (auth)

  6. Coal conversion. 1979 technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Individual reports are made on research programs which are being conducted by various organizations and institutions for the commercial development of processes for converting coal into products that substitute for these derived from oil and natural gas. Gasification, liquefaction, and demonstration processes and plants are covered. (DLC)

  7. Optimal thermionic energy conversion with established electrodes for high-temperature topping and process heating. [coal combustion product environments

    Science.gov (United States)

    Morris, J. F.

    1980-01-01

    Applied research-and-technology (ART) work reveals that optimal thermionic energy conversion (TEC) with approximately 1000 K to approximately 1100 K collectors is possible using well established tungsten electrodes. Such TEC with 1800 K emitters could approach 26.6% efficiency at 27.4 W/sq cm with approximately 1000 K collectors and 21.7% at 22.6 W/sq cm with approximately 1100 K collectors. These performances require 1.5 and 1.7 eV collector work functions (not the 1 eV ultimate) with nearly negligible interelectrode losses. Such collectors correspond to tungsten electrode systems in approximately 0.9 to approximately 6 torr cesium pressures with 1600 K to 1900 K emitters. Because higher heat-rejection temperatures for TEC allow greater collector work functions, interelectrode loss reduction becomes an increasingly important target for applications aimed at elevated temperatures. Studies of intragap modifications and new electrodes that will allow better electron emission and collection with lower cesium pressures are among the TEC-ART approaches to reduced interelectrode losses. These solutions will provide very effective TEC to serve directly in coal-combustion products for high-temperature topping and process heating. In turn this will help to use coal and to use it well.

  8. Coal production 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  9. Coal Production 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  10. High conversion of coal to transportation fuels for the future with low HC gas production. Progress report No. 2, January 1--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W.H.; Oblad, A.G.

    1993-04-01

    Experimental coal liquefaction studies conducted in a batch microreactor in my laboratory have demonstrated potential for high conversions Of coal to liquids with low yields of hydrocarbon (HC) gases, hence small consumption of hydrogen in the primary liquefaction step. Ratios of liquids/HC gases as high as 30/1, at liquid yields as high as 82 t of the coal by weight, have been achieved. The principal objective of this work is to examine how nearly we may approach these results in a continuous-flow system, at a size sufficient to evaluate the process concept for production of transportation fuels from coal. A continuous-flow reactor system (1/2 inch inside diameter) is to be designed, constructed and operated. The system is to be computer-operated for process control and data logging, and is to be fully instrumented. The primary liquid products will be characterized by GC, FTIR, and GC/MS, to determine the types and quantities of the principal components produced under conditions of high liquids production with high ratios of liquids/HC gases. From these analyses, together with GC analyses of the HC gases, hydrogen consumption for the conversion to primary liquids will be calculated.

  11. Coal conversion. 1977 technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The status and progress in US DOE's projects in coal gasification, liquefaction, and fluidized-bed combustion are reviewed with financing, flowsheets, history, progress and status of each (57 projects). (LTN)

  12. Materials for coal conversion and utilization

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Fifth Annual Conference on Materials for Coal Conversion and Utilization was held October 7-9, 1980, at the National Bureau of Standards, Gaithersburg, Maryland. Sixty-six papers have been entered individually into ERA and EDB; two had been entered previously from other sources. (LTN)

  13. Molecular catalytic coal liquid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Yang, Shiyong [Univ. of Chicago, IL (United States)

    1995-12-31

    This research, which is relevant to the development of new catalytic systems for the improvement of the quality of coal liquids by the addition of dihydrogen, is divided into two tasks. Task 1 centers on the activation of dihydrogen by molecular basic reagents such as hydroxide ion to convert it into a reactive adduct (OH{center_dot}H{sub 2}){sup {minus}} that can reduce organic molecules. Such species should be robust withstanding severe conditions and chemical poisons. Task 2 is focused on an entirely different approach that exploits molecular catalysts, derived from organometallic compounds that are capable of reducing monocyclic aromatic compounds under very mild conditions. Accomplishments and conclusions are discussed.

  14. Enzymantic Conversion of Coal to Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Richard Troiano

    2011-01-31

    The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time

  15. Coal conversion. 1978 technical report. [US DOE

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    The United States has more energy available in coal than in petroleum, natural gas, oil shale, and tar sands combined. Nationwide energy shortages, together with the availability of abundant coal reserves, make commercial production of synthetic fuels from coal vital to the Nation's total supply of clean energy. In response to this need, the Division of Fossil Fuel Processing - US Department of Energy is conducting a research, development and demonstration program to provide technology that will permit rapid commercialization of processes for converting coal into products that substitute for those derived from oil and natural gas. These substitute fuels include crude oil, fuel oil and distillates; chemical feedstocks; pipeline quality and fuel gas; and other products such as char that may be useful in energy production.

  16. Environmental monitoring handbook for coal conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Salk, M.S.; DeCicco, S.G. (eds.)

    1978-05-01

    The primary objectives of the Department of Energy's (DOE) coal conversion program are to demonstrate the environmental acceptability, technical feasibility, and economic viability of various technologies for gaseous, liquid, and solid fuels from coal. The Environmental Monitoring Handbook for Coal Conversion Facilities will help accomplish the objective of environmental acceptability by guiding the planning and execution of socioeconomic and environmental monitoring programs for demonstration facilities. These programs will provide information adequate to (1) predict, insofar as is possible, the potential impacts of construction and operation of a coal conversion plant, (2) verify the occurrence of these or any other impacts during construction and operation, (3) determine the adequacy of mitigating measures to protect the environment, (4) develop effluent source terms for process discharges, and (5) determine the effectiveness of pollution control equipment. Although useful in a variety of areas, the handbook is intended primarily for contractors who, as industrial partners with DOE, are building coal conversion plants. For the contractor it is a practical guide on (1) the methodology for developing site- and process-specific environmental monitoring programs, (2) state-of-the-art sampling and analytical techniques, and (3) impact analyses.To correspond to the phases of project activity, the subject matter is divided into four stages of monitoring: (1) a reconnaissance or synoptic survey, (2) preconstruction or baseline, (3) construction, and (4) operation, including process monitoring (prepared by Radian Corp., McLean, Va.). For each stage of monitoring, guidelines are given on socioeconomics, aquatic and terrestrial ecology, air quality and meteorology, surface and groundwater quality, geohydrology and soil survey, and surface water hydrology.

  17. Materials for coal conversion and utilization

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1981-01-01

    The Sixth annual conference on materials for coal conversion and utilization was held October 13-15, 1981 at the National Bureau of Standards Gaithersburg, Maryland. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the Gas Research Institute and the National Bureau of Standards. Fifty-eight papers from the proceedings have been entered individually into EDB and ERA; four papers had been entered previously from other sources. (LTN)

  18. Conversion of Coal Mine Gas to LNG

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-05

    This project evolved from a 1995, DOE-NETL competitive solicitation for practical CMM capture and utilization concepts. Appalachian Pacific was one of three companies selected to proceed with the construction and operation of a cost-shared demonstration plant. In the course of trying to proceed with this demonstration plant, AP examined several liquefaction technologies, discussed obtaining rights to coal mine methane with a number of coal companies, explored marketing potential with a wide variety of customers in many sections of the United States, studied in great detail the impact of a carbon credit exchange, and developed a suite of analytical tools with which to evaluate possible project options. In the end, the newness of the product, reluctance on the part of the coal companies to venture away from time tested practices, difficulty with obtaining financing, the failure of a carbon credit market to develop and the emergence of shale derived gas production prevented a demonstration plant from being built.

  19. Conversion of coal mine drainage ochre to water treatment reagent: Production, characterisation and application for P and Zn removal.

    Science.gov (United States)

    Sapsford, Devin; Santonastaso, Marco; Thorn, Peter; Kershaw, Steven

    2015-09-01

    Coal mine drainage ochre is a ferruginous precipitate that forms from mine water in impacted watercourses and during treatment. With thousands of tonnes per annum of such ochre arising from mine water treatment in the UK alone, management of these wastes is a substantive issue. This paper demonstrates that the ochre from both active and passive treatment of coal mine drainage can be transformed into an effective water treatment reagent by simple acid dissolution and that the reagent can be used for the removal of dissolved phosphorous from municipal wastewater and zinc from non-coal mine waters. Ochre is readily soluble in H2SO4 and HCl. Ochre is more soluble in HCl with solubilities of up to 100 g/L in 20% (w/w) HCl and 68 g/L in 10% (w/w) H2SO4. For four of the eight tested ochres solubility decreased in higher concentrations of H2SO4. Ochre compositional data demonstrate that the coal mine ochres tested are relatively free from problematic levels of elements seen by other authors from acid mine drainage-derived ochre. Comparison to British Standards for use of iron-based coagulants in drinking water treatment was used as an indicator of the acceptability of use of the ochre-derived reagents in terms of potentially problematic elements. The ochre-derived reagents were found to meet the 'Grade 3' specification, except for arsenic. Thus, for application in municipal wastewater and mine water treatment additional processing may not be required. There was little observed compositional difference between solutions prepared using H2SO4 or HCl. Ochre-derived reagents showed applicability for the removal of P and Zn with removals of up to 99% and 97% respectively measured for final pH 7-8, likely due to sorption/coprecipitation. Furthermore, the results demonstrate that applying a Fe dose in the form of liquid reagent leads to a better Fe:P and Fe:Zn removal ratio compared to ochre-based sorption media tested in the literature. Copyright © 2015 The Authors. Published by

  20. Advanced Coal Conversion Process Demonstration: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2005-04-01

    The objective of this project was to demonstrate a process for upgrading subbituminous coal by reducing its moisture and sulfur content and increasing its heating value using the Advanced Coal Conversion Process (ACCP) unit. The ACCP unit, with a capacity of 68.3 tons of feed coal per hour (two trains of 34 tons/hr each), was located next to a unit train loading facility at WECo's Rosebud Coal Mine near Colstrip, Montana. Most of the coal processed was Rosebud Mine coal, but several other coals were also tested. The SynCoal® produced was tested both at utilities and at several industrial sites. The demonstration unit was designed to handle about one tenth of the projected throughput of a commercial facility.

  1. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. (Advanced Fuel Research, Inc., East Hartford, CT (United States) Brigham Young Univ., Provo, UT (United States))

    1991-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  2. A comparison of thermal conversion process for several coal tar pitches

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y.; Shui, H.; Yuan, X. [East China Metallurgical Institute, Ma`anshan (China)

    1995-03-01

    The property and constituents of coal tar pitch are of great importance to the production of raw material for needle coke. Structural constituents of five coal tar pitches were determined using {sup 1}H-NMR. Besides, thermal conversion process of these pitches in which primary quinoline in soluble fraction was removed by centrifugal separation method was also investigated. The experimental results show Baogang (I) and Meishan coal tar pitches meet the requirements of raw material for needle coke. The thermal conversion data was correlated with structural parameters. 6 refs.,1 fig., 1 tab.

  3. Survey of industrial coal conversion equipment capabilities: valves

    Energy Technology Data Exchange (ETDEWEB)

    Bush, W. A.; Slade, E. C.

    1978-06-01

    A survey of the industrial capabilities of the valve and valve-actuator industry to supply large, high-pressure stop valves for the future coal conversion industry is presented in this report. Also discussed are development and testing capabilities of valve and valve-actuator manufacturers and anticipated lead times required to manufacture advanced design valves for the most stringent service applications. Results indicate that the valve and valve-actuator industry is capable of manufacturing in quantity equipment of the size and for the pressure and temperature ranges which would be required in the coal conversion industry. Valve manufacturers do not, however, have sufficient product application experience to predict the continuing functional ability of valves used for lock-hopper feeders, slurry feeders, and slag-char letdown service. Developmental and testing efforts to modify existing valve designs or to develop new valve concepts for these applications were estimated to range from 1 to 6 years. A testing facility to simulate actuation of critical valves under service conditions would be beneficial.

  4. Coal liquefaction and gas conversion contractors review conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This volume contains 55 papers presented at the conference. They are divided into the following topical sections: Direct liquefaction; Indirect liquefaction; Gas conversion (methane conversion); and Advanced research liquefaction. Papers in this last section deal mostly with coprocessing of coal with petroleum, plastics, and waste tires, and catalyst studies. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. Coal characterization for conversion processes 1986

    Energy Technology Data Exchange (ETDEWEB)

    Moulijn, J.A.; Kapteijn, F. (eds.)

    1987-01-01

    The First International Rolduc Symposium on Coal Science was held in The Netherlands in 1986. This volume of typescript papers is reprinted from a special issue of Fuel Processing Technology, Volume 15, Numbers 1-3.

  6. 78 FR 20176 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Science.gov (United States)

    2013-04-03

    ... facilities, landfill gas facilities, trash combustion facilities, qualified hydropower facilities, and marine... Internal Revenue Service Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production, and Publication of Inflation Adjustment Factors and Reference Prices for Calendar Year...

  7. Survey of industrial coal conversion equipment capabilities: rotating components

    Energy Technology Data Exchange (ETDEWEB)

    Williams, W. R.; Horton, J. R.; Boudreau, W. F.; Siman-Tov, M.

    1978-04-01

    At the request of the Major Facilities Project Management Division of the Energy Research and Development Administration, Fossil Energy Division, a study was undertaken to determine the capabilities of U.S. industry to supply the rotating equipment needed for future coal conversion facilities. Furthermore, problem areas were to be identified and research and development needs determined for producing advanced designs of the required equipment: Pumps, compressors, hydraulic turbines, and gas expanders. It has been concluded that equipment for essentially all clean-stream applications likely to be encountered in coal conversion facilities is generally available except high-pressure oxygen compressors. These oxygen compressors as well as slurry pumps need to be developed or significantly upgraded. Also, fans and blower for dirty-gas streams need developmental work, as do expanders for high-temperature service. Hydraulic turbines, which were not specified but which might be used for slurry applications in future coal conversion plants, are not available.

  8. 75 FR 18015 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Science.gov (United States)

    2010-04-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Credit for Renewable Electricity Production, Refined Coal Production, and Indian... availability of the credit for renewable electricity production, refined coal production, and Indian coal...

  9. Biological production of ethanol from coal

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H[sub 2], CO[sub 2], CH[sub 4] and sulfur gases, is first produced using traditional gasification techniques. The CO, CO[sub 2] and H[sub 2] are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the wild strain'' produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  10. Fourth annual conference on materials for coal conversion and utilization

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The fourth annual conference on materials for coal conversion and utilization was held October 9 to 11, 1979, at the National Bureau of Standards, Gaithersburg, Maryland. It was sponsored by the National Bureau of Standards, the Electric Power Research Institute, the US Department of Energy, and the Gas Research Institute. The papers have been entered individually into EDB and ERA. (LTN)

  11. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (USA)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (USA))

    1990-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This technology is important to reduce the technical and economic risks inherent in utilizing coal, a feedstock whose variable and often unexpected behavior presents a significant challenge. This program will merge significant advances made at Advanced Fuel Research, Inc. (AFR) in measuring and quantitatively describing the mechanisms in coal conversion behavior, with technology being developed at Brigham Young University (BYU) in comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors. The foundation to describe coal-specific conversion behavior is AFR's Functional Group (FG) and Devolatilization, Vaporization, and Crosslinking (DVC) models, developed under previous and on-going METC sponsored programs. These models have demonstrated the capability to describe the time dependent evolution of individual gas species, and the amount and characteristics of tar and char. The combined FG-DVC model will be integrated with BYU's comprehensive two-dimensional reactor model, PCGC-2, which is currently the most widely used reactor simulation for combustion or gasification. Success in this program will be a major step in improving in predictive capabilities for coal conversion processes including: demonstrated accuracy and reliability and a generalized first principles'' treatment of coals based on readily obtained composition data. The progress during the fifteenth quarterly of the program is presented. 56 refs., 41 figs., 5 tabs.

  12. Low severity coal conversion by ionic hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.; Maioriello, J.; Cheng, J.C.

    1990-08-17

    The work accomplished in this project will be reported in two parts. Part one will focus on the development of catalytic ionic hydrogenation reactions utilizing a transition metal-H{sub 2} complex as the hydride donor and BF{sub 3}:H{sub 2}O as proton donor. This part reports the results of prelimiary work leading to the development of a new catalytic ionic hydrogenation system (MeCN){sub 2}PtCl{sub 2}/H{sub 2}/BF{sub 3}: H{sub 2}O. The results from some of this work have been published and the paper is included as the appendix. The second part focuses on the newly developed catalytic and other well characterized ionic hydrogenation reactions applied to lignites (Beulah-Zap), sub-bitumiuous (Wyodak), and bituminous coals (Pittsburgh {number sign}8). 19 refs., 10 tabs.

  13. Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Gray, D. [Mitre Corp, McLean, VA (United States)] [and others

    1995-12-31

    For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.

  14. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Oleg

    2013-12-31

    Under the cooperative agreement program of DOE and funding from Wyoming State’s Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly relevant to practice. During the Phase I, catalytic direct liquefaction of sub-bituminous Wyoming coals was investigated. The process conditions and catalysts were identified that lead to a significant increase of desirable oil fraction in the products. The Phase II work focused on systematic study of solvothermal depolymerization (STD) and direct liquefaction (DCL) of carbonaceous feedstocks. The effect of the reaction conditions (the nature of solvent, solvent/lignin ratio, temperature, pressure, heating rate, and residence time) on STD was investigated. The effect of a number of various additives (including lignin, model lignin compounds, lignin-derivable chemicals, and inorganic radical initiators), solvents, and catalysts on DCL has been studied. Although a significant progress has been achieved in developing solvothermal depolymerization, the side reactions – formation of considerable amounts of char and gaseous products – as well as other drawbacks do not render aqueous media as the most appropriate choice for commercial implementation of STD for processing coals and lignins. The trends and effects discovered in DCL point at the specific features of liquefaction mechanism that are currently underutilized yet could be exploited to intensify the process. A judicious choice of catalysts, solvents, and additives might enable practical and economically efficient direct conversion of Wyoming coals into liquid fuels.

  15. Advanced coal conversion process demonstration. Progress report, January 1, 1992--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-05-01

    This report contains a description of technical progress made on the Advanced Coal Conversion Process Demonstration Project (ACCP). This project will demonstrate an advanced thermal coal drying process coupled with physical cleaning techniques to upgrade high-moisture, low-rank coals to produce a high-quality, low-sulfur fuel. The coal will be processed through two vibrating fluidized bed reactors that will remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal will be put through a deep-bed stratifier cleaning process effect separation of the pyrite rich ash. The process will enhance low-rank western coals, usually with a moisture content of 25--55%, sulfur content of 0.5--1.5%, and heating value of 5500--9000 Btu/lb by producing a stable, upgraded coal product with a moisture content as low as 1%, sulfur content as low as 0.3%, and heating value up to 12,0 00 Btu/lb. The 45 ton/hr unit will be located adjacent to a unit train loadout facility at Western Energy Company`s Rosebud coal mine near the town of Colstrip in southeastern Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercia; facility. The demonstration drying and cooling equipment is currently commercial size.

  16. Proceedings of the third annual underground coal conversion symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Third Annual Underground Coal Conversion Symposium was held at Fallen Leaf Lake, CA, June 6--9, 1977. It was sponsored by the U.S. Department of Energy and hosted by Lawrence Livermore Laboratory. Forty-one papers have been entered individually into EDB and ERA; ten papers had been entered previously from other sources. The papers cover the in-situ gasification of lignite, subbituminous coal and bituminous coal, in flat lying seams and a steeply dipping beds, at moderate and at greater depths, and describe various technologies of (borehole linking, well spacings, gasifying agents (air, oxygen, steam, hydrogen, including mixtures). Measuring instruments for diagnostic and process control purposes are described. Environmental impacts (ground subsidence and possible groundwater pollution) are the subject of several papers. Finally, mathematical modelling and projected economics of the process are developed. (LTN)

  17. Anaerobic SBR treatment of coal conversion wastewaters: Eighth quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Ketchum, L.H. Jr.

    1987-12-11

    Results are presented for anaerobic biodegradation of constituents of coal conversion wastewater. Biochemical Methane Potential tests were employed. The relative toxicity of each constituent on anaerobic phenol degradation was also tested. Methylated phenols tended to be more inhibitory to phenol degradation than other hydroxylated and nitrogen containing aromatics. Studies of reaction intermediates of degradation are underway. Several intermediates have been identified in the degradation of p-cresol. 1 fig., 2 tabs. (CBS)

  18. Coal conversion processes and their materials requirements. Physical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, J.B.; Voorde, M. van de; Betteridge, W.

    1984-01-01

    The coal conversion processes combustion, gasification and liquefaction are discussed with respect to current industrial developments and material problems in industrial plants due to fouling, corrosion and erosion. The available materials are discussed by means of high temperature corrosion, erosion, ductibility, creep, fatigue and physical properties. Ceramics and refractories which are particularly used as thermal insulation are also discussed by means of corrosion and erosion and mechanical properties.

  19. Proceedings of the 5th underground coal conversion symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    The 5th underground coal conversion symposium was held at Alexandria, Virginia, June 18--21, 1979. Thirty-three papers have been entered individually into EDB and ERA. Seven papers were also abstracted for Energy Abstracts for Policy Analysis. Seven papers had been entered previously from other sources. The symposium was sponsored by the US Department of Energy, Division of Fossil Fuel Extraction. (LTN)

  20. 77 FR 25538 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Science.gov (United States)

    2012-04-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service Credit for Renewable Electricity Production, Refined Coal Production, and Indian... availability of the credit for renewable electricity production. FOR FURTHER INFORMATION CONTACT: Philip...

  1. Production of Hydrogen from Underground Coal Gasification

    Science.gov (United States)

    Upadhye, Ravindra S.

    2008-10-07

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  2. Directory of coal production ownership, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, B.

    1981-10-01

    Ownership patterns in the coal industry are highly complex. Many producers are diversified into other lines of activity. The pattern and extent of this diversification has varied through time. In the past, steel and nonferrous metals companies had major coal industry involvement. This is still true today. However, other types of enterprises have entered the industry de novo or through merger. Those of greatest significance in recent times have involved petroleum and particularly public utility companies. This report attempts to identify, as accurately as possible, production ownership patterns in the coal industry. The audience for this Directory is anyone who is interested in accurately tracing the ownership of coal companies to parent companies, or who is concerned about the structure of ownership in the US coal industry. This audience includes coal industry specialists, coal industry policy analysts, economists, financial analysts, and members of the investment community.

  3. 76 FR 21947 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Science.gov (United States)

    2011-04-19

    ..., small irrigation power facilities, landfill gas facilities, trash combustion facilities, and qualified..., landfill gas facilities, trash combustion facilities, qualified hydropower facilities, marine and... Internal Revenue Service Credit for Renewable Electricity Production, Refined Coal Production, and Indian...

  4. 77 FR 21835 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Science.gov (United States)

    2012-04-11

    ...-loop biomass facilities, small irrigation power facilities, landfill gas facilities, trash combustion... irrigation power facilities, landfill gas facilities, trash combustion facilities, qualified hydropower... Internal Revenue Service Credit for Renewable Electricity Production, Refined Coal Production, and Indian...

  5. 75 FR 16576 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Science.gov (United States)

    2010-04-01

    ..., small irrigation power facilities, landfill gas facilities, trash combustion facilities, and qualified..., landfill gas facilities, trash combustion facilities, qualified hydropower facilities, marine and... Internal Revenue Service Credit for Renewable Electricity Production, Refined Coal Production, and Indian...

  6. An Integrated System for the Treatment of Coal Conversion Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Henry Y. Wang; Keeran R. Srinivasan

    1999-02-25

    Treatment of mixed waste from coal conversion wastewaters involves the degradation of toxic organics and the removal of heavy metals. An integrated and cost-effective treatment scheme that can implement such a process is considered essential to promote continued development and growth of coal conversion processes without any deleterious effects on our ecosystem. We have recently developed a pH-dependent, reversible heavy metal adsorption/desorption process which promises to be a cost-effective alternative to the treatment and disposal options currently in place for these inorganic contaminants. Our work shows that: (1) Polydisperse, industrial-grade surfactants can be used in the development of novel, surfactant-coated smectitic clays containing up to 50% by weight of adsorbed surfactant, (2) Reversible adsorption and resorption of cationic (CU(II) and Cd(II)) and anionic (Cr(VI)) heavy metals from their respective aqueous solutions onto these surfactant-modified smectites can be effected using pH of the medium as a switch, and (3) These surfactant-modified smectites can be repeatedly used (up to 5 times) with only a minimal loss in their adsorption potency and with very little leaching of the adsorbed surfactants.

  7. Fuelling car production with coal

    Energy Technology Data Exchange (ETDEWEB)

    Scholze, U. [FAM Foerderanlagen, Magdeburg (Germany)

    2000-08-01

    FAM Foerderanlagen Magdeburg Group was commissioned by SKO-Energo Fin s.r.o. to supply, erect and commission a complete coaling plant with stockyard for the latter's thermal power station, to be built on the premises of the Skoda works at Mlada Boleslav in the Czech Republic. Coal from rail wagons is unloaded into an underground bunker and is moved from the stockpile with chain and inclined conveyors into a processing building for screening, crushing and blending, using an FAM PHM 1214 MRVD impact hammer. From the processing plant coal is conveyed to the coal bunker of the power plant which has two boilers with circulating atmospheric fluidized beds. The coaling plant is controlled from an independent coaling control room. It achieves low emissions of SO{sub 2}, NOx, Co and dust. 4 figs.

  8. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  9. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-04-23

    This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  10. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  11. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  12. Coal Combustion Products Extension Program

    Energy Technology Data Exchange (ETDEWEB)

    Tarunjit S. Butalia; William E. Wolfe

    2006-01-11

    This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to

  13. Superacid Catalyzed Depolymerization and Conversion of Coals. Final Technical Report. [HF:BF{sub 2}/H{sub 2}

    Science.gov (United States)

    Olah, G.

    1980-01-01

    We were interested in applying superacid catalyzed cleavage-depolymerization and ionic hydrogenation low temperature conversion of coal to liquid hydrocarbon, as well as obtaining information about the reactions involved and the structure of intermediates of the coal liquefaction process. In order to show the feasibility of our proposed research we have carried out preliminary investigation in these areas. Preceding our work there was no practical application of a superacid system to coal liquefaction. We carried out an extensive study of the potential of the HF:BF{sub 3}/H{sub 2} system for coal hydroliquefaction. Under varying conditions of reactant ratio, reaction time and temperature, we were able to obtain over 95% pyridine extractible product by treating coal in HF:BF{sub 3}:H{sub 2} system at approx. 100 degrees C for 4 hours. The coal to acid ratio was 1:5 and FB{sub 3} at 900 psi and H{sub 2} at 500 psi were used. These are extremely encouraging results in that the conditions used are drastically milder than those used in any known process, such as Exxon donor solvent and related processes. The cyclohexane extractibility of the treated coal was as high as 27% and the yield of liquid distillate at 400 degrees C/5 x 10{sup -3}/sup torr/ was approx. 30%. The infrared spectrum of product coal, extracts and distillates were distinctly different from the starting coal and show a significant increase in the amount of saturates. The {sup 1}H NMR spectrum of cyclohexane extract of the treated coal shows essentially all aliphatic photons. The spectra of other treated coal extracts show increased amounts and types of aliphatic protons as well as significant amounts of protons bound to unsaturated sites. This again indicates that the HF-BF{sub 3} system is depolymerizing the coal to small fragments which are soluble in non-polar solvents.

  14. Development of alkali and trace heavy-metal monitors for coal-conversion-process streams

    Energy Technology Data Exchange (ETDEWEB)

    Haas, W.J. Jr.; Eckels, D.E.; Kniseley, R.N.; Fassel, V.A.

    1981-01-01

    The Morgantown Energy Technology Center (METC) is involved in the development of processes and equipment for the production of low-Btu gas from coal and for the fluidized bed combustion of coal. The ultimate objective is the large scale production of electricity using high temperature gas turbines. Such turbines, however, are susceptible to drastically accelerated corrosion and self-destruction when relatively low concentrations of sodium and potassium are present in the driving gas streams. Knowledge and control of the concentrations of those elements, at part per billion levels, are critical to the success of both the gas cleanup procedures that are being investigated and the overall energy conversion processes. This report describes instrumentation and procedures developed for application to the problems outlined above and results that have been obtained. The Ames instruments, which feature an automated, dual channel flame atomic emission spectrometer, perform the sodium and potassium determinations simultaneously repetitively, and automatically every two to three minutes by atomizing and exciting a fraction of the subject gas sample stream in either an oxyhydrogen flame or a nitrous oxide-acetylene flame. The analytical results are printed and can be transmitted simultaneously to a process control center. Work on the development of instruments for sequential and simultaneous on-line determination of many other elements that may impact the economics, process chemistry, and/or environmental acceptability of proposed coal conversion/gas cleanup processes will also be outlined. The latter instruments are based on inductively coupled plasma excitation of the sample streams.

  15. Cancer fear over coal tar products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    Discusses a report by Dutch researchers which suggests that the regular use of coal tar shampoos may significantly increase the risk of cancer due to the high levels of polynuclear aromatic hydrocarbons (PAHs) in the products. The PAH exposure of volunteers using a coal tar anti-dandruff shampoo was studied by measuring the amount of hydroxypyrene, a PAH breakdown product in their urine. Volunteers who had used the shampoo excreted high levels of hydroxypyrene the day after exposure. Excretion by the control group using a non-coal tar anti-dandruff shampoo remained constant. 1 ref., 1 fig.

  16. Coping with productivity challenges in Coal India

    Energy Technology Data Exchange (ETDEWEB)

    Ghose, A.K. [B.E. College, Howrah (India). Dept. of Mining and Geology

    1995-09-01

    Coal India has achieved a credible financial performance recently but there is a need for improved productivity particularly in underground mining. The article discusses the measurement of productivity with the coal industry and gives figures for production and productivity in Coal India Ltd. for 1974 to 1995. productivity in opencast mining has increased from 0.76 in 1974-5 to 4.35 in 1994-5 but in underground mining has remained fairly static, at 0.56 in 1994-5. A parallel is drawn of India`s productivity with that of state-owned key coal mines in China. Longwall mining has not made any impact on underground coal production in India but has made remarkable breakthroughs in China. India needs to introduce improved technology, such as integrating information technology to its systems, but to initiate new management philosophies through Total Quality Management (TQM) and Business Process Engineering (BPR) Equipment availability should be improved, especially in opencast mining. 5 refs., 4 tabs.

  17. Colombian coal production and export ports

    Energy Technology Data Exchange (ETDEWEB)

    Ruiseco, M.C. [Carbones del Caribe SA (Colombia)

    1996-12-31

    The present situation in Colombia regarding producing and shipping coal is summarised. Coal mined in North Cerrejon is shipped form the port of Puerto Bolivar. This port and its infrastructure could be expanded to cope with increased production from North Cerrejon and may be also from Central Cerrejon. Alternatively, a port could be built at Rio Canas in La Guajira. In the Cienaga-Santa Marta area, Drummond`s port, the port of Santa Marta operated by Carboandes, and Prodeco`s port between Santa Marta and Cienaga export coal from the Cesarregion Propuerto. Consultants are assessing the building of another port in an area called Mallorquin at the mouth of the Magdalena River. By the dawn of the 21st century, Colombia should be able to produce over 50 million tons of coal annually, with low ash and sulphur contents suitable to satisfy the world`s environmental regulations.

  18. Coal Bottom Ash for Portland Cement Production

    Directory of Open Access Journals (Sweden)

    Cristina Argiz

    2017-01-01

    Full Text Available Because of industrialization growth, the amount of coal power plant wastes has increased very rapidly. Particularly, the disposal of coal bottom ash (CBA is becoming an increasing concern for many countries because of the increasing volume generated, the costs of operating landfill sites, and its potential hazardous effects. Therefore, new applications of coal bottom ash (CBA have become an interesting alternative to disposal. For instance, it could be used as a Portland cement constituent leading to more sustainable cement production by lowering energy consumption and raw material extracted from quarries. Coal fly and bottom ashes are formed together in the same boiler; however, the size and shape of these ashes are very different, and hence their effect on the chemical composition as well as on the mineralogical phases must be studied. Coal bottom ash was ground. Later, both ashes were compared from a physical, mechanical, and chemical point of view to evaluate the potential use of coal bottom ash as a new Portland cement constituent. Both ashes, produced by the same electrical power plant, generally present similar chemical composition and compressive strength and contribute to the refill of mortar capillary pores with the reaction products leading to a redistribution of the pore size.

  19. PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-08-31

    This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be

  20. Biological production of ethanol from coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H{sub 2}, CO{sub 2}, CH{sub 4} and sulfur gases, is first produced using traditional gasification techniques. The CO, CO{sub 2} and H{sub 2} are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the ``wild strain`` produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  1. A Reduced Reaction Scheme for Volatile Nitrogen Conversion in Coal Combustion

    DEFF Research Database (Denmark)

    Pedersen, Lars Saaby; Glarborg, Peter; Dam-Johansen, Kim

    1998-01-01

    In pulverised coal flames, the most important volatile nitrogen component forming NOx is HCN. To be able to model the nitrogen chemistry in coal flames it is necessary to have an adequate model for HCN oxidation. The present work was concerned with developing a model for HCN/NH3/NO conversion bas...

  2. Measurement and modeling of advanced coal conversion processes. Annual report, October 1990--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. [Advanced Fuel Research, Inc., East Hartford, CT (United States)]|[Brigham Young Univ., Provo, UT (United States)

    1991-12-31

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  3. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  4. Challenges of coal conversion for decarbonized energy in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Sciazko, Marek; Jalosinski, Krzysztof; Majchrzak, Henryk; Michalski, Mieczyslaw; Tymowski, Henryk; Witos, Tadeusz; Wroblewska, Elzbieta

    2010-09-15

    Carbon dioxide is considered to be the main challenge for the coal-based power generation as well as for any other industrial application of coal. Poland's energy sector is primarily based on coal combustion that covers almost 90% of demand. Future development of that sector depends on the restriction on value of carbon dioxide emission or trading allowances. There are two main technological approaches to development of new coal based generation capacity, namely: gasification and pre-combustion capture; supercritical combustion and post-combustion capture. The current situation in development of three this type projects in Poland is presented.

  5. Studies of coupled chemical and catalytic coal conversion methods

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Chatterjee, K.; Cheng, C.; Ettinger, M.; Flores, F.; Jiralerspong, S.; Miyake, M.; Muntean, J.

    1991-12-01

    The objective of this research was to convert coal into a soluble substance under mild conditions. The strategy involved two steps, first to breakdown the macromolecular network of coal, and second to add hydrogen catalytically. We investigated different basic reagents that could, in priciple, break down coal`s structure and alkylation strategies that might enhance its solubility. We examined O- and C-alkylation, the importance of the strength of the base, the character of the added alkyl groups and other reaction parameters. This work provided new information concerning the way in which hydrogen bonding, polarization interactions between aromatic structures and covalent bonding could be disrupted and solubility enhanced. The objective of our research was to explore new organochromium chemistry that might be feasible for the hydrogenation of coal under mild conditions.

  6. Measurement and modeling of advanced coal conversion processes, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

    1993-06-01

    A two dimensional, steady-state model for describing a variety of reactive and nonreactive flows, including pulverized coal combustion and gasification, is presented. The model, referred to as 93-PCGC-2 is applicable to cylindrical, axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using a discrete ordinates method. The particle phase is modeled in a lagrangian framework, such that mean paths of particle groups are followed. A new coal-general devolatilization submodel (FG-DVC) with coal swelling and char reactivity submodels has been added.

  7. Alternative process schemes for coal conversion. Progress report No. 1, October 1, 1978--January 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Sansone, M.J.

    1979-02-01

    On the basis of simple, first approximation calculations, it has been shown that catalytic gasification and hydrogasification are inherently superior to conventional gasification with respect to carbon utilization and thermal efficiency. However, most processes which are directed toward the production of substitute natural gas (SNG) by direct combination of coal with steam at low temperatures (catalytic processes) or with hydrogen (hydrogasification) will require a step for separation of product SNG from a recycle stream. The success or falure of the process could well depend upon the economics of this separation scheme. The energetics for the separation of mixtures of ideal gases has been considered in some detail. Minimum energies for complete separation of representative effluent mixtures have been calculated as well as energies for separation into product and recycle streams. The gas mixtures include binary systems of H/sub 2/ and CH/sub 4/ and ternary mixtures of H/sub 2/, CH/sub 4/, and CO. A brief summary of a number of different real separation schemes has also been included. We have arbitrarily divided these into five categories: liquefaction, absorption, adsorption, chemical, and diffusional methods. These separation methods will be screened and the more promising methods examined in more detail in later reports. Finally, a brief mention of alternative coal conversion processes concludes this report.

  8. Determinants of coal mine labor productivity change. [1950 to 1977

    Energy Technology Data Exchange (ETDEWEB)

    Baker, J. G.; Stevenson, W. L.

    1979-11-01

    Coal mine labor productivity (tons per miner-shift) has been falling yearly since 1970. The decline in labor productivity since 1970 has implications for the coal industry's labor demand, cost of production, and injuries and could hinder the ability of the industry to meet the coal output goals of the National Energy Plan. The purpose of this research study was to identify and measure the causes of labor productivity decline. Concise answers are given to three questions: Why is coal mine labor productivity important. What are the causes of labor productivity decline in deep and surface coal mines. What are the implications of these findings for future coal mine labor productivity. Coal mine labor productivity is important for three reasons: (1) it affects the cost of coal production, (2) it affects coal industry labor demand, and (3) it affects injuries and injury rates in coal mining. Labor productivity is the link between output levels and employment requirements. The period of declining productivity coincides with major changes in the coal industry's environment: (1) change from a largely unregulated industry to a highly regulated industry (the Coal Mine Health and Safety Act of 1969; implementation of many state surface mine reclamation laws, etc.) and (2) change from a declining, marginal profits industry to a growing, profitable industry (increasing coal prices and demand in the 1970s). A major conclusion of the study is that a portion of the high labor productivity of the 1960s was possible because some of the costs of coal mining - worker injuries, black lung disability, and environmental damage - were not being paid for by the coal industry and coal consumers. Once these costs were forced internally on the mine operators by legislation, productivity fell and the cost of production increased.

  9. Studies of coupled chemical and catalytic coal conversion methods

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Chatterjee, K.; Cheng, C.; Ettinger, M.; Flores, F.; Jiralerspong, S.; Miyake, M.; Muntean, J.

    1991-12-01

    The objective of this research was to convert coal into a soluble substance under mild conditions. The strategy involved two steps, first to breakdown the macromolecular network of coal, and second to add hydrogen catalytically. We investigated different basic reagents that could, in priciple, break down coal's structure and alkylation strategies that might enhance its solubility. We examined O- and C-alkylation, the importance of the strength of the base, the character of the added alkyl groups and other reaction parameters. This work provided new information concerning the way in which hydrogen bonding, polarization interactions between aromatic structures and covalent bonding could be disrupted and solubility enhanced. The objective of our research was to explore new organochromium chemistry that might be feasible for the hydrogenation of coal under mild conditions.

  10. Studies of coupled chemical and catalytic coal conversion methods

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.

    1990-01-01

    This report concerns our research on base-catalyzed coal solubilization and a new approach for hydrogen addition. The work on base-catalyzed, chemical solubilization is continuing. this report is focused on the hydrogenation research. Specifically it deals with the use of arene chromium carbonyl complexes as reagents for the addition of dideuterium to coal molecules. In one phase of the work, he has established that the aromatic hydrocarbons in a representative coal liquid can be converted in very good yield to arene chromium carbonyl compounds. In a second phase of the work directly related to our objective of improved methods for catalytic hydrogenation, he has established that the aromatic constituents of the same coal liquid add dideuterium in the presence of added napththalene chromium carbonyl.

  11. Coal liquefaction and gas conversion: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Volume I contains papers presented at the following sessions: AR-Coal Liquefaction; Gas to Liquids; and Direct Liquefaction. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  12. Coal combustion products: trash or treasure?

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T.

    2006-07-15

    Coal combustion by-products can be a valuable resource to various industries. The American Coal Ash Association (ACAA) collects data on production and uses of coal combustion products (CCPs). 122.5 million tons of CCPs were produced in 2004. The article discusses the results of the ACCA's 2004 survey. Fly ash is predominantly used as a substitute for Portland cement; bottom ash for structural fill, embankments and paved road cases. Synthetic gypsum from the FGD process is commonly used in wallboard. Plant owners are only likely to have a buyer for a portion of their CCPs. Although sale of hot water (from Antelope Valley Station) from condensers for use in a fish farm to raise tilapia proved unviable, the Great Plains Synfuels Plant which manufactures natural gas from lignite produces a wide range of products including anhydrous ammonia, phenol, krypton, carbon dioxide (for enhanced oil recovery), tar oils and liquid nitrogen. ACCA's goal is to educate people about CCPs and how to make them into useful products, and market them, in order to reduce waste disposal and enhance revenue. The article lists members of the ACCA. 2 photos., 1 tab.

  13. Geochemical database of feed coal and coal combustion products (CCPs) from five power plants in the United States

    Science.gov (United States)

    Affolter, Ronald H.; Groves, Steve; Betterton, William J.; William, Benzel; Conrad, Kelly L.; Swanson, Sharon M.; Ruppert, Leslie F.; Clough, James G.; Belkin, Harvey E.; Kolker, Allan; Hower, James C.

    2011-01-01

    The principal mission of the U.S. Geological Survey (USGS) Energy Resources Program (ERP) is to (1) understand the processes critical to the formation, accumulation, occurrence, and alteration of geologically based energy resources; (2) conduct scientifically robust assessments of those resources; and (3) study the impacts of energy resource occurrence and (or) their production and use on both the environment and human health. The ERP promotes and supports research resulting in original, geology-based, non-biased energy information products for policy and decision makers, land and resource managers, other Federal and State agencies, the domestic energy industry, foreign governments, non-governmental groups, and academia. Investigations include research on the geology of oil, gas, and coal, and the impacts associated with energy resource occurrence, production, quality, and utilization. The ERP's focus on coal is to support investigations into current issues pertaining to coal production, beneficiation and (or) conversion, and the environmental impact of the coal combustion process and coal combustion products (CCPs). To accomplish these studies, the USGS combines its activities with other organizations to address domestic and international issues that relate to the development and use of energy resources.

  14. Measurement and modeling of advanced coal conversion processes, Volume III

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, M.U.; Hobbs, M.L.; Hamblen, D.G. [and others

    1993-08-01

    A generalized one-dimensional, heterogeneous, steady-state, fixed-bed model for coal gasification and combustion is presented. The model, FBED-1, is a design and analysis tool that can be used to simulate a variety of gasification, devolatilization, and combustion processes. The model considers separate gas and solid temperatures, axially variable solid and gas flow rates, variable bed void fraction, coal drying, devolatilization based on chemical functional group composition, depolymerization, vaporization and crosslinking, oxidation, and gasification of char, and partial equilibrium in the gas phase.

  15. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lili [Pennsylvania State Univ., University Park, PA (United States); Schobert, Harold H. [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    1998-01-01

    The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. For convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.

  16. Characterization of selected Ohio coals to predict their conversion behavior relative to 104 North American Coals. [Factors correlating with liquefaction behavior

    Energy Technology Data Exchange (ETDEWEB)

    Whitacre, T. P.; Hunt, T. J.; Kneller, W. A.

    1982-02-01

    Twenty-six coal samples from Ohio were collected as washed and seam samples, and lithobodies within the seams. Characterization of these samples included determination of % maceral, % anti R/sub max/, LTA, chlorine content and proximate/ultimate and qualitative mineral analyses. These data were compared to data from a similar project by Yarzab, R.F., et al., 1980 completed at Pennsylvania State University using tetralin as the hydrogen donor solvent. The characteristics of these coals were correlated with liquefaction conversion and other data accrued on 104 North American coals by statistical analyses. Utilizing percent carbon, sulfur, volatile matter, reflectance, vitrinite and total reactive macerals, Q-mode cluster analysis demonstrated that Ohio coals are more similar to the coals of the Interior province than to those of the Appalachian province. Linear multiple regression analysis for the 104 North American coals provided a prediction equation for conversion (R = .96). The predicted conversion values for the samples range from 58.8 to 79.6%, with the Lower Kittanning (No. 5) and the Middle Kittanning (No. 6) coal seams showing the highest predicted percent conversion (respectively, 73.4 and 72.2%). The moderately low FSI values for the No. 5 and No. 6 coals (respectively, 2.5 and 3) and their moderately high alkaline earth content (respectively, 0.69 and 0.74%) suggest that these coals possess the best overall properties for conversion. Stepwise regression has indicated that the most important coal characteristics affecting conversion are, in decreasing order of importance: % volatile matter, % vitrinite and % total sulfur. Conversion processes can be expected to produce higher yields with Ohio coals due to the presence of such mineral catalysts as pyrite and kaolinite. It is believed that the presence of these disposable catalysts increases the marketability of Ohio coals.

  17. Anaerobic SBR (Sequencing Batch Reactor) treatment of coal conversion wastewaters: Fifth quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Ketchum, L.H. Jr.

    1986-12-23

    Work continues to develop an operating strategy and a basis of design for Anaerobic Sequencing Batch Reactor (AnSBR) biological treatment of coal conversion wastewaters. The laboratory studies use three different size reactors: 150-mL serum bottles to screen individual coal conversion wastewater constituents; six 2-L AnSBR's to acclimate anaerobic sludges (i.e., organisms) to mixtures of these constituents; and, two automatically operated. 4-L AnSBR to treat a synthetic coal conversion wastewater currently consisting of phenol, plus vitamins and minerals. During this reporting period phenol was degraded after 60 days; catechnol was degraded after 90 days in initial concentration of 1000 mg/L. Aniline and 5 different xylenols were not degraded after 120 days at above conditions; same for three different trimethylphenols.

  18. Utilisation of coal for energy production in fuel cells

    Directory of Open Access Journals (Sweden)

    Dudek Magdalena

    2016-01-01

    Full Text Available In this paper a brief characterization of fuel cell technology and its possible application in sustainable energy development was described. Special attention was paid to direct carbon fuel cell technology. The direct carbon fuel cell is an electrochemical device which directly converts the chemical energy of carbonaceous based fuel into electricity without ‘flame burning’. The electrical efficiency of a DCFC is indeed very high (in practice exceeding 80%, and the product of conversion consists of almost pure CO2, eliminating the most expensive step of sequestration: the separation of carbon from flue gases. In this paper the process of electrochemical oxidation of carbon particles on the surface of oxide electrolytes at 8% mol Y2O3 in ZrO2 (8YSZ as well as cermet anode Ni-8YSZ was analysed. The graphite, carbon black powders were considered as reference solid fuels for coal samples. It was found that the main factors contributing to the electrochemical reactivity of carbon particles is not only the high carbon content in samples but also structural disorder. It was found that structurally disordered carbon-based materials are the most promising solid fuels for direct carbon solid oxide fuel cells. Special impact was placed on the consideration of coal as possible solid fuels for DC-SOFC. Statistical and economic analyses show that in the coming decades, in developing countries such as China, India, and some EU countries, coal-fuelled power plants will maintain their strong position in the power sector due to their reliability and low costs as well as the large reserves of coal and lignite in the world. Coal is mined in politically stable areas, which guarantees its easy and safe purchase and transport. The impact of the physiochemical properties of raw and purified coal on the performance of the DC-SOFC was studied. An analysis of the stability of electrical parameters was performed for a DC-SOFC operating under a load over an extended

  19. Phase equilibria in coal conversion processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chao, K.C.

    1986-10-01

    Fluid-phase equilibrium data have been determined in simulation of coal liquefaction process conditions. Gas-liquid equilibrium and liquid-liquid equilibrium of water-containing mixtures have been the central interest while some water-free mixtures were also investigated. Experimental gas-liquid equilibrum studies were made for: hydrogen + water + m-cresol; hydrogen + water + quinoline; hydrogen + water + n-decane; methane + water + n-hexadecane; carbon dioxide + water + diethylamine; carbon dioxide + 1-hexadecene; carbon dioxide + n-propylcyclohexane; carbon dioxide + n-octadecane; carbon dioxide + phenyloctane; and propane + n-butyraldehyde. Mutual liquid-liquid solubilities have been determined for: water + m-cresol; water + quinoline; water + indoline; water + 1,2,3,4 - tetrahydroquinoline; water + thianaphthene; and water + 9,10 - dihydrophenanthrene. The Cubic Chain-of-Rotators (CCOR) equation of state was modified to extend to strongly polar substances. The modified equation was used to correlate the new fluid phase equilibrium data of water-containing mixtures. The original CCOR equation was used to correlate the vaporization equilibrium data of an Illinois coal liquid and a Wyoming coal liquid described in our previous report AP-3450. 107 refs., 32 figs., 19 tabs.

  20. Novel technique for coal pyrolysis and hydrogenation product analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, L.D.; Boyle, J.

    1993-03-15

    A microjet reactor coupled to a VUV photoionization time-of-flight mass spectrometer has been used to obtain species measurements during high temperature pyrolysis and oxidation of a wide range of hydrocarbon compounds ranging from allene and acetylene to cyclohexane, benzene and toluene. Initial work focused on calibration of the technique, optimization of ion collection and detection and characterization of limitations. Using the optimized technique with 118 nm photoionization, intermediate species profiles were obtained for analysis of the hydrocarbon pyrolysis and oxidation mechanisms. The soft'' ionization, yielding predominantly molecular ions, allowed the study of reaction pathways in these high temperature systems where both sampling and detection challenges are severe. Work has focused on the pyrolysis and oxidative pyrolysis of aliphatic and aromatic hydrocarbon mixtures representative of coal pyrolysis and hydropyrolysis products. The detailed mass spectra obtained during pyrolysis and oxidation of hydrocarbon mixtures is especially important because of the complex nature of the product mixture even at short residence times and low primary reactant conversions. The combustion community has advanced detailed modeling of pyrolysis and oxidation to the C4 hydrocarbon level but in general above that size uncertainties in rate constant and thermodynamic data do not allow us to a priori predict products from mixed hydrocarbon pyrolyses using a detailed chemistry model. For pyrolysis of mixtures of coal-derived liquid fractions with a large range of compound structures and molecular weights in the hundreds of amu the modeling challenge is severe. Lumped models are possible from stable product data.

  1. Hydrothermal conversion of South African coal fly ash into pure phase Zeolite Na-P1

    CSIR Research Space (South Africa)

    Gitari, MW

    2016-08-01

    Full Text Available South African coal combustion power utilities generate huge amounts of coal fly ash that can be beneficiated into zeolitic products. This chapter reports on the optimization of the presynthesis and synthesis conditions for a pure-phase zeolite Na-P1...

  2. The production of high load coal-water mixtures on the base of Kansk-Achinsk Coal Basin

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, Y.; Bruer, G.; Kolesnikova, S. [Research and Design Institute for Problems of Development of Kansk-Achinsk Coal Basin (KATEKNilugol), Krasnoyarsk (Russian Federation)

    1995-12-01

    The results of the {open_quotes}KATEKNIIugol{close_quotes} work on the problems of high load coal-water mixtures are given in this article. General principles of the mixture production, short characteristics of Kansk-Achinsk coals, the experimental results of the coal mixture production on a test-industrial scale, the suspension preparation on the base of coal mixtures, technical-economical indexes of tested coal pipeline variants based on Kansk-Achinsk coals are described.

  3. Superacid Catalyzed Coal Conversion Chemistry. Final Technical Report, September 1, 1983-September 1, 1986

    Science.gov (United States)

    Olah, G. A.

    1986-01-01

    This research project involved the study of a raw comparatively mild coal conversion process. The goal of the project was to study model systems to understand the basic chemistry involved and to provide a possible effective pretreatment of coal which significantly improves liquefaction-depolymerization under mild conditions. The conversion process operates at relatively low temperatures (170 degrees C) and pressures and uses an easily recyclable, stable superacid catalysts (HF-BF{sub 3}). It consequently offers an attractive alternative to currently available processes. From the present studies it appears that the modification of coal structure by electrophilic alkylation and subsequent reaction of alkylated coal with HF-BF{sub 3}-H{sub 2} system under mild conditions considerably improves the extractability of coal in pyridine and cyclohexane. On the other hand, nitration of coal and its subsequent reaction with HF-BF{sub 3}H{sub 2} decreases the pyridine and cyclohexane extractability. Study of model compounds under conditions identical with the superacidic HF/BF{sub 3}/H{sub 2} system provided significant information about the basic chemistry of the involved cleavage-hydrogenation reactions.

  4. Nitrogen conversion under rapid pyrolysis of two types of aquatic biomass and corresponding blends with coal.

    Science.gov (United States)

    Yuan, Shuai; Chen, Xue-li; Li, Wei-feng; Liu, Hai-feng; Wang, Fu-chen

    2011-11-01

    Rapid pyrolysis of two types of aquatic biomass (blue-green algae and water hyacinth), and their blends with two coals (bituminous and anthracite) was carried out in a high-frequency furnace. Nitrogen conversions during rapid pyrolysis of the two biomass and the interactions between the biomass and coals on nitrogen conversions were investigated. Results show that little nitrogen retained in char after the biomass pyrolysis, and NH(3) yields were higher than HCN. During co-pyrolysis of biomass and coal, interactions between biomass and coal decreased char-N yields and increased volatile-N yields, but the total yields of NH(3)+HCN in volatile-N were decreased in which HCN formations were decreased consistently, while NH(3) formations were only decreased in the high-temperature range but promoted in the low-temperature range. Interactions between blue-green algae and coals are stronger than those between water hyacinth and coal, and interactions between biomass and bituminous are stronger than those between biomass and anthracite. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Proceedings of the 2nd symposium on valves for coal conversion and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Maxfield, D.A. (ed.)

    1981-01-01

    The 2nd symposium on valves for coal conversion and utilization was held October 15 to 17, 1980. It was sponsored by the US Department of Energy, Morgantown Energy Technology Center, in cooperation with the Valve Manufacturers Association. Seventeen papers have been entered individually into EDB and ERA. (LTN)

  6. Materials, process, product analysis of coal process technology. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, J. C.; Roig, R. W.; Loridan, A.; Leggett, N. E.; Capell, R. G.; Humpstone, C. C.; Mudry, R. N.; Ayres, E.

    1976-02-01

    The purpose of materials-process-product analysis is a systematic evaluation of alternative manufacturing processes--in this case processes for converting coal into energy and material products that can supplement or replace petroleum-based products. The methodological steps in the analysis include: Definition of functional operations that enter into coal conversion processes, and modeling of alternative, competing methods to accomplish these functions; compilation of all feasible conversion processes that can be assembled from combinations of competing methods for the functional operations; systematic, iterative evaluation of all feasible conversion processes under a variety of economic situations, environmental constraints, and projected technological advances; and aggregative assessments (economic and environmental) of various industrial development scenarios. An integral part of the present project is additional development of the existing computer model to include: A data base for coal-related materials and coal conversion processes; and an algorithmic structure that facilitates the iterative, systematic evaluations in response to exogenously specified variables, such as tax policy, environmental limitations, and changes in process technology and costs. As an analytical tool, the analysis is intended to satisfy the needs of an analyst working at the process selection level, for example, with respect to the allocation of RDandD funds to competing technologies.

  7. A characterization and evaluation of coal liquefaction process streams. The kinetics of coal liquefaction distillation resid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.T.; Calkins, W.H.; Huang, H.; Wang, S.; Campbell, D.

    1998-03-01

    Under subcontract from CONSOL Inc., the University of Delaware studied the mechanism and kinetics of coal liquefaction resid conversion. The program at Delaware was conducted between August 15, 1994, and April 30, 1997. It consisted of two primary tasks. The first task was to develop an empirical test to measure the reactivity toward hydrocracking of coal-derived distillation resids. The second task was to formulate a computer model to represent the structure of the resids and a kinetic and mechanistic model of resid reactivity based on the structural representations. An introduction and Summary of the project authored by CONSOL and a report of the program findings authored by the University of Delaware researchers are presented here.

  8. Enzymatic modification of low conversion starch products

    Energy Technology Data Exchange (ETDEWEB)

    Slominska, L.

    1989-05-01

    Recently produced low conversion starch products (maltodextrins) contain relatively low level of mono- and disaccharides such as glucose and maltose. A study on obtaining starch hydrolyzates containing significant amounts of glucose and maltose without fundamental change of their dextrose equivalent was conducted. The influence of glucogenic and maltogenic amylases (NOVO) on low conversion starch products was investigated by measurement of their sugar composition, viscosity, filterability, iodine absorbance value and turbidity. The results show different properties of novel starch hydrolyzates depending on the enzymes used.

  9. Blending Influence on the Conversion Efficiency of the Cogasification Process of Corn Stover and Coal

    Directory of Open Access Journals (Sweden)

    Anthony Ike Anukam

    2016-01-01

    Full Text Available Characterizations of biomass and coal were undertaken in order to compare their properties and determine the combustion characteristics of both feedstocks. The study was also intended to establish whether the biomass (corn stover used for this study is a suitable feedstock for blending with coal for the purpose of cogasification based on composition and properties. Proximate and ultimate analyses as well as energy value of both samples including their blends were undertaken and results showed that corn stover is a biomass material well suited for blending with coal for the purpose of cogasification, given its high volatile matter content which was measured and found to be 75.3% and its low ash content of 3.3% including its moderate calorific value of 16.1%. The results of the compositional analyses of both pure and blended samples of corn stover and coal were used to conduct computer simulation of the cogasification processes in order to establish the best blend that would result in optimum cogasification efficiency under standard gasifier operating conditions. The final result of the cogasification simulation process indicated that 90% corn stover/10% coal resulted in a maximum efficiency of about 58% because conversion was efficiently achieved at a temperature that is intermediate to that of coal and corn stover independently.

  10. Coal resources, reserves and peak coal production in the United States

    Science.gov (United States)

    Milici, Robert C.; Flores, Romeo M.; Stricker, Gary D.

    2013-01-01

    In spite of its large endowment of coal resources, recent studies have indicated that United States coal production is destined to reach a maximum and begin an irreversible decline sometime during the middle of the current century. However, studies and assessments illustrating coal reserve data essential for making accurate forecasts of United States coal production have not been compiled on a national basis. As a result, there is a great deal of uncertainty in the accuracy of the production forecasts. A very large percentage of the coal mined in the United States comes from a few large-scale mines (mega-mines) in the Powder River Basin of Wyoming and Montana. Reported reserves at these mines do not account for future potential reserves or for future development of technology that may make coal classified currently as resources into reserves in the future. In order to maintain United States coal production at or near current levels for an extended period of time, existing mines will eventually have to increase their recoverable reserves and/or new large-scale mines will have to be opened elsewhere. Accordingly, in order to facilitate energy planning for the United States, this paper suggests that probabilistic assessments of the remaining coal reserves in the country would improve long range forecasts of coal production. As it is in United States coal assessment projects currently being conducted, a major priority of probabilistic assessments would be to identify the numbers and sizes of remaining large blocks of coal capable of supporting large-scale mining operations for extended periods of time and to conduct economic evaluations of those resources.

  11. Life Cycle Assessment of Coal-fired Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Spath, P. L.; Mann, M. K.; Kerr, D. R.

    1999-09-01

    Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (this tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).

  12. Preliminary evaluation of PETC-coal conversion solid and hazardous wastes. Progress report, September 15, 1977--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, R.D.; Shapiro, M.; Chen, C.; Wallach, S.; Sain, S.

    1978-09-30

    This progress report reviews issues and local area practice relative to the disposal of small quantity laboratory solid and chemical wastes from the PETC site. Research efforts to date have been in two major directions, a) solid and hazardous waste problems relative to PETC, and b) solid and hazardous waste problems relative to coal gasification and liquefaction conversion processes. It is intended that bench scale coal conversion processes located at PETC be considered as small but typical models for residuals sample generation. A literature search activity has begun in order to develop a data bank of coal conversion residual characterizations, and identify other centers of hazardous waste handling research expertise.

  13. Conversion of biomass to selected chemical products.

    Science.gov (United States)

    Gallezot, Pierre

    2012-02-21

    This critical review provides a survey illustrated by recent references of different strategies to achieve a sustainable conversion of biomass to bioproducts. Because of the huge number of chemical products that can be potentially manufactured, a selection of starting materials and targeted chemicals has been done. Also, thermochemical conversion processes such as biomass pyrolysis or gasification as well as the synthesis of biofuels were not considered. The synthesis of chemicals by conversion of platform molecules obtained by depolymerisation and fermentation of biopolymers is presently the most widely envisioned approach. Successful catalytic conversion of these building blocks into intermediates, specialties and fine chemicals will be examined. However, the platform molecule value chain is in competition with well-optimised, cost-effective synthesis routes from fossil resources to produce chemicals that have already a market. The literature covering alternative value chains whereby biopolymers are converted in one or few steps to functional materials will be analysed. This approach which does not require the use of isolated, pure chemicals is well adapted to produce high tonnage products, such as paper additives, paints, resins, foams, surfactants, lubricants, and plasticisers. Another objective of the review was to examine critically the green character of conversion processes because using renewables as raw materials does not exempt from abiding by green chemistry principles (368 references).

  14. Survey and conceptual flow sheets for coal conversion plant handling-preparation and ash/slag removal operations

    Energy Technology Data Exchange (ETDEWEB)

    Zapp, F.C.; Thomas, O.W.; Silverman, M.D.; Dyslin, D.A.; Holmes, J.M.

    1980-03-01

    This study was undertaken at the request of the Fossil Fuel Processing Division of the Department of Energy. The report includes a compilation of conceptual flow sheets, including major equipment lists, and the results of an availability survey of potential suppliers of equipment associated with the coal and ash/slag operations that will be required by future large coal conversion plant complexes. Conversion plant flow sheet operations and related equipment requirements were based on two representative bituminous coals - Pittsburgh and Kentucky No. 9 - and on nine coal conversion processes. It appears that almost all coal handling and preparation and ash/slag removal equipment covered by this survey, with the exception of some coal comminution equipment, either is on hand or can readily be fabricated to meet coal conversion plant capacity requirements of up to 50,000 short tons per day. Equipment capable of handling even larger capacities can be developed. This approach appears to be unjustified, however, because in many cases a reasonable or optimum number of trains of equipment must be considered when designing a conversion plant complex. The actual number of trains of equipment selected will be influenced by the total requied capacity of the complex, the minimum on-line capacity that can be tolerated in case of equipment failure, reliability of specific equipment types, and the number of reactors and related feed injection stations needed for the specific conversion process.

  15. PRODUCTION AND SCREENING OF CARBON PRODUCTS PRECURSORS FROM COAL

    Energy Technology Data Exchange (ETDEWEB)

    Caulton L. Irwin

    2001-05-31

    The authors have examined effects of blending a raw coal extract (EXT) with an extracted coal-tar pitch (ECTP). Previous reports were concerned with the addition of 15 wt% EXT, or less, on the physical characteristics of the blend and on the development of optical texture following carbonization. Two additional blends of ECTP and EXT were prepared at the 30 and 50 wt% EXT content using a procedure already described. The characteristics of the blends are presented. The density for these blended materials is not much different than the density for the blends reported earlier. The softening point temperature for the 30 wt% EXT increased to over 200 C while the softening point temperature for the 50 wt% EXT blend was too high to be determined by the Mettler method. Coke yields approximately follow the law of mixtures. The optical texture of the green cokes for the 30 and 50 wt% EXT blends is shown. Though the optical texture of the green cokes was not significantly affected where the level of EXT is 15 wt% or less, larger proportions of EXT exert a marked reduction in anisotropy. The co-processing of coal with petroleum residues or other heavy hydrocarbons at elevated temperature and pressure has received considerable attention in the research community as a means to upgrade simultaneously coal and byproducts. Heavy hydrocarbons can function as sources of hydrogen, as well as performing as a medium for dissolution and dispersion of coal fragments. However, the focus of much of the prior research has been on developing fuels, distillable liquids, or synthetic crudes. Comparatively little effort has been deliberately directed toward the production of heavier, non-distillable materials which could perform as binder and extender pitches, impregnants, or feedstocks for cokes and other carbons.

  16. Survey of industrial coal conversion equipment capabilities: heat recovery and utilization. [53 references

    Energy Technology Data Exchange (ETDEWEB)

    Gambill, W. R.; Reed, W. R.

    1978-07-01

    A scoping survey of the capabilities of industrial heat recovery equipment was conducted to determine their adaptability to proposed coal-conversion complexes. Major categories of heat exchangers included shell-and-tube, periodic-flow and rotary regenerators, heat pipe arrays, direct phase contactors, and steam and organic Rankine cycles for power generation from waste heat. Primary applications encompassed feed-effluent and other process stream interchangers, combustion air preheaters, and heat recovery steam generators (waste heat boiler-superheaters). It is concluded that the single area providing the greatest potential for extending US industrial heat-recovery equipment capabilities as related to coal-conversion processes is a research, development, and testing program to acquire more physical-property and heat-transfer data and more-reliable design correlations.

  17. Critical evaluation of high-temperature gas-cooled reactors applicable to coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Spiewak, I.; Jones, J.E. Jr.; Rittenhouse, P.L.; DeStefano, J.R.; Delene, J.G.

    1975-12-01

    A critical review is presented of the technology and costs of very high-temperature gas-cooled reactors (VHTRs) applicable to nuclear coal conversion. Coal conversion processes suitable for coupling to reactors are described. Vendor concepts of the VHTR are summarized. The materials requirements as a function of process temperature in the range 1400 to 2000/sup 0/F are analyzed. Components, environmental and safety factors, economics and nuclear fuel cycles are reviewed. It is concluded that process heat supply in the range 1400 to 1500/sup 0/F could be developed with a high degree of assurance. Process heat at 1600/sup 0/F would require considerably more materials development. While temperatures up to 2000/sup 0/F appear to be attainable, considerably more research and risk were involved. A demonstration plant would be required as a step in the commercialization of the VHTR.

  18. Functional group analysis of coal and coal products by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perry, D.L.; Grint, A.

    1986-04-01

    In a number of technologies such as polymers and carbon fibres, where there is a similar interest in the nature of organic functional groups and their effect on material performance, the technique of x-ray photoelectron spectroscopy (XPS), also known as electron spectroscopy for chemical analysis (ESCA), has been applied successfully to a wide range of problems. However XPS is a technique which is little used in coal science. Since it has high surface sensitivity and the specific surfaces properties of coals play an important role in a number of coal technologies, e.g. flotation and agglomeration, it is perhaps surprising that XPS is not used more extensively. The reasons for this may lie in some of the discouraging references in the literature. For example early work by Frost et al found no relationship between oxygen concentrations determined by XPS and the bulk analysis of a series of float-sink fractions. More recently Huffmann et al observed that oxidation of bituminous coals for up to 383 days at 50/sup 0/C in air completely destroyed Geiseler fluidity but neither XPS nor DRIFT (Diffuse Reflectance FTIR) spectroscopy could detect any parallel changes in the functional group composition of the coal. This paper describes the application of XPS to coal, coal reactions and coal products. The aim is to present a critical evaluation in the context of other techniques which are applied to coal.

  19. Design of generic coal conversion facilities: Process release---Direct coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The direct liquefaction portion of the PETC generic direct coal liquefaction process development unit (PDU) is being designed to provide maximum operating flexibility. The PDU design will permit catalytic and non-catalytic liquefaction concepts to be investigated at their proof-of-the-concept stages before any larger scale operations are attempted. The principal variations from concept to concept are reactor configurations and types. These include thermal reactor, ebullating bed reactor, slurry phase reactor and fixed bed reactor, as well as different types of catalyst. All of these operating modes are necessary to define and identify the optimum process conditions and configurations for determining improved economical liquefaction technology.

  20. Coal conversion and biomass conversion: Volume 1: Final report on USAID (Agency for International Development)/GOI (Government of India) Alternate Energy Resources and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, A.; Saluja, J.

    1987-06-30

    The United States Agency for International Development (AID), in joint collaboration with the Government of India (GOI), supported a research and development program in Alternate Energy Resources during the period March 1983 to June 1987. The primary emphasis of this program was to develop new and advanced coal and biomass conversion technologies for the efficient utilization of coal and biomass feedstocks in India. This final ''summary'' report is divided into two volumes. This Report, Volume I, covers the program overview and coal projects and Volume II summarizes the accomplishments of the biomass projects. The six projects selected in the area of coal were: Evaluation of the Freeboard Performance in a Fluidized-Bed Combustor; Scale-up of AFBC boilers; Rheology, Stability and Combustion of Coal-Water Slurries; Beneficiation of Fine Coal in Dense Medium Cyclones; Hot Gas Cleanup and Separation; and Cold Gas Cleanup and Separation.

  1. Catalytic Process for the Conversion of Coal-derived Syngas to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    James Spivery; Doug Harrison; John Earle; James Goodwin; David Bruce; Xunhau Mo; Walter Torres; Joe Allison Vis Viswanathan; Rick Sadok; Steve Overbury; Viviana Schwartz

    2011-07-29

    The catalytic conversion of coal-derived syngas to C{sub 2+} alcohols and oxygenates has attracted great attention due to their potential as chemical intermediates and fuel components. This is particularly true of ethanol, which can serve as a transportation fuel blending agent, as well as a hydrogen carrier. A thermodynamic analysis of CO hydrogenation to ethanol that does not allow for byproducts such as methane or methanol shows that the reaction: 2 CO + 4 H{sub 2} {yields} C{sub 2}H{sub 5}OH + H{sub 2}O is thermodynamically favorable at conditions of practical interest (e.g,30 bar, {approx}< 250 C). However, when methane is included in the equilibrium analysis, no ethanol is formed at any conditions even approximating those that would be industrially practical. This means that undesired products (primarily methane and/or CO{sub 2}) must be kinetically limited. This is the job of a catalyst. The mechanism of CO hydrogenation leading to ethanol is complex. The key step is the formation of the initial C-C bond. Catalysts that are selective for EtOH can be divided into four classes: (a) Rh-based catalysts, (b) promoted Cu catalysts, (c) modified Fischer-Tropsch catalysts, or (d) Mo-sulfides and phosphides. This project focuses on Rh- and Cu-based catalysts. The logic was that (a) Rh-based catalysts are clearly the most selective for EtOH (but these catalysts can be costly), and (b) Cu-based catalysts appear to be the most selective of the non-Rh catalysts (and are less costly). In addition, Pd-based catalysts were studied since Pd is known for catalyzing CO hydrogenation to produce methanol, similar to copper. Approach. The overall approach of this project was based on (a) computational catalysis to identify optimum surfaces for the selective conversion of syngas to ethanol; (b) synthesis of surfaces approaching these ideal atomic structures, (c) specialized characterization to determine the extent to which the actual catalyst has these structures, and (d) testing

  2. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses

  3. Energy production, conversion, storage, conservation, and coupling

    CERN Document Server

    Demirel, Yaşar

    2012-01-01

    Understanding the sustainable use of energy in various processes is an integral part of engineering and scientific studies, which rely on a sound knowledge of energy systems. Whilst many institutions now offer degrees in energy-related programs, a comprehensive textbook, which introduces and explains sustainable energy systems and can be used across engineering and scientific fields, has been lacking. Energy: Production, Conversion, Storage, Conservation, and Coupling provides the reader with a practical understanding of these five main topic areas of energy including 130 examples and over 600 practice problems. Each chapter contains a range of supporting figures, tables, thermodynamic diagrams and charts, while the Appendix supplies the reader with all the necessary data including the steam tables. This new textbook presents a clear introduction of basic vocabulary, properties, forms, sources, and balances of energy before advancing to the main topic areas of: • Energy production and conversion in importa...

  4. Coal data base - thesaurus 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The thesaurus contains the vocabulary used to index the Coal Data Base maintained by IEA Coal Research Technical Information Service. The Data Base contains indexed and abstracted references to publicly-available literature covering all aspects of the coal industry. The subject areas covered include: economics and management, reserves and exploration, mining, preparation, transport and handling, coal properties and constitution, processing and conversion, combustion, waste management, environ mental aspects, coal products, and health and safety. The indexing terms are used in the preparation of the annual subject index to Coal Abstracts and should be useful in searching other data bases for material relevant to the coal industry. (Available from IEA Coal Research)

  5. A novel concept for high conversion of coal to liquids. Final report, 1 September 1988--31 August 1992

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W.H.; Shabtai, J.

    1994-04-01

    A batch microreactor was designed and fabricated as a means of investigating maximum yields of liquids obtainable in very short reaction times of the order of a few seconds, and the maximum ratios of liquids/hydrocarbon (HC) gases obtainable under those conditions. A Wyodak sub-bituminous coal, crushed and sieved to {minus}200 mesh particle size, was used in the experiments, with a temperature of 500{degrees}C and a pressure of 1500 psi. The fine coal particles were fed dry to the reactor and heated to reaction temperature in times of one to two seconds. At a time of 3 seconds at reaction temperature, in a single pass a liquid yield of 60% by weight of the coal was obtained, accompanied by a ratio of liquids/(HC) gases of 30/1. When the unreacted solids were recycled to the reactor, and the results combined with those of the first pass, a liquid yield of 82% by weight of the coal was achieved, accompanied by a ratio of liquids/HC gases of 30/1. This ratio represents only about 3 wt percent HC gases, much lower that is produced in current advanced technologies, and represents a large saving in hydrogen consumption. A simulated distillation technique was applied to the liquids. The liquid product contained 86% by weight (of the liquids) total distillables (boiling point below 538{degrees}C), including 70% by weight of low-boiling fractions in the gasoline, kerosene and gas oil range (boiling point up to 325{degrees}C). The liquid product exhibited a H/C ratio of 1.5, which is considerably higher than observed in current advanced technologies for the primary liquids. Several catalysts were investigated. Iron catalysts, specifically ferric chloride hexahydrate and ferric sulfate pentahydrate, each produced these high conversions and high ratios of liquids/HC gases.

  6. Utilization of low rank coal and agricultural by-products

    Energy Technology Data Exchange (ETDEWEB)

    Ekinci, E.; Yardim, M.F.; Petrova, B.; Budinova, T.; Petrov, N. [Istanbul Technical University, Maslak-Istanbul (Turkey). Department of Chemical Engineering

    2007-07-01

    The present investigation deals with alternative utilization processes to convert low rank coal and agricultural by products into solid, liquid and gaseous products for a more efficient exploitation of these materials. Low rank coals and different agricultural by-products were subjected to different thermochemical treatments. The composition and physico-chemical properties of liquid products obtained from agricultural by-products were investigated. The identified compounds are predominantly oxygen derivatives of phenol, dihydroxybenzenes, guaiacol, syringol, vanilin, veratrol, furan and acids. Liquids from low rank coals contain higher quality of aromatic compounds predominantly mono- and bicyclic. The amount of oxygen containing structures is high as well. By thermo-chemical treatment of liquid products from agricultural by-products, low rank coals and their mixtures with H{sub 2}SO{sub 4} carbon adsorbents with very low ash and sulfur content are obtained. Using different activation reagents large scale carbon adsorbents are prepared from agricultural by-products and coals. The results of the investigations open-up possibilities for utilization of low rank coals and agricultural by-products. 18 refs., 5 figs., 7 tabs.

  7. Process for recovering deashing solvent from insoluble coal products

    Energy Technology Data Exchange (ETDEWEB)

    Rado, T.A.

    1982-02-02

    A process for effecting deashing solvent recovery from insoluble coal products and preparing a slurry of the insoluble products. An elevated temperature and pressure stream comprising insoluble coal products and deashing solvent is admixed with a makeup liquid to dilute the stream. The diluted stream is reduced in pressure and introduced into a first treatment vessel containing sufficient slurry to provide a hydrostatic pressure to prevent boiling of the diluted stream upon entry therein. The solvent then is permitted to flash and cool the remainder of the slurry. A portion of the cooled slurry is recycled to provide the makeup liquid and a second portion is introduced into a second treatment vessel to permit diffusion of solvent infused into the insoluble coal products in the slurry. The slurry of insoluble coal products in the second vessel then is introduced into a thickener to concentrate the slurry and provide a feed suitable for a gasifier.

  8. Modelling and simulation of energy conversion in combined gas-steam power plant integrated with coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Zaporowski, B. [Poznan Univ. of Technology (Poland)

    1996-12-31

    The paper presents the modeling and simulation of energy conversion in technological systems of combined gas-steam power plants integrated with coal gasification. The energy analysis of technological systems of gas-steam power plants is connected with energy analysis of various technologies of coal gasification. The base of the performed energy analysis are the elaborate mathematical models of coal gasification process, and of energy processes proceeding in gas and in steam parts of power plants. The mathematical model of coal gasification process for gas-steam power plants allows them to calculate: the composition and physical properties, and energy parameters of gas produced in the process of coal gasification, the consumption and temperature of gasifying medium, and both the chemical and the energy efficiency of coal gasification. The mathematical models of energy conversion processes in the gas generator and in the gas cycle of gas-steam power plants are elaborated on the base of quantum statistical physics, and on the base of phenomenological thermodynamics for the steam cycle of these power plants. The mathematical models were the basis for computer programs for multivariant numerical simulation of energy conversion processes in gas-steam power plants. The results of numerical simulation are shown in the form of tables, presenting the influence of the methods of coal gasification process, and of the structure and of the energy parameters of technological systems of gas-steam power plants on the efficiency of electric energy generation in combined gas-steam power plants integrated with coal gasification.

  9. Validation of the materials-process-product model (coal SNG). [Estimating method for comparing processes, changing assumptions and technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, A.; Bhagat, N.; Friend, L.; Lamontagne, J.; Pouder, R.; Vinjamuri, G.

    1980-03-01

    The use of coal as a source of high Btu gas is currently viewed as one possible means of supplementing dwindling natural gas supplies. While certain coal gasification processes have demonstrated technical feasibility, much uncertainty and inconsistency remains regarding the capital and operating costs of large scale coal conversion facilities; cost estimates may vary by as much as 50%. Studies conducted for the American Gas Association (AGA) and US Energy Research and Development Administration by C.F. Braun and Co. have defined technical specifications and cost guidelines for estimating costs of coal gasification technologies (AGA Guidelines). Based on the AGA Guidelines, Braun has also prepared cost estimates for selected coal gasification processes. Recent efforts by International Research and Technology Inc. (IR and T) have led to development of the Materials-Process-Product Model (MPPM), a comprehensive anaytic tool for evaluation of processes and costs for coal gasification and other coal conversion technologies. This validation of the MPPM presents a comparison of engineering and cost computation methodologies employed in the MPPM to those employed by Braun and comparison of MPPM results to Braun cost estimates. These comparisons indicate that the MPPM has the potential to be a valuable tool for assisting in the evaluation of coal gasification technologies.

  10. Create a Consortium and Develop Premium Carbon Products from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Frank Rusinko; John Andresen; Jennifer E. Hill; Harold H. Schobert; Bruce G. Miller

    2006-01-01

    The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuel industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the

  11. Conversions of low-rank coals by water under hydrogen starvation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Y.; Hashimoto, J.

    1984-02-01

    This work is to study the reactions of coals with water. All the reactions of Yokote peat (C=60.3%) and Wakimoto Seam II lignite (C=62.2%) with water were carried out in a batch-autoclave at 300-400C under hydrogen starvation conditions. Two kinds of catalysts, alumina-supported MoO3 and WO3, were used. WO3 catalyst facilitated the reactions of peat and of lignite with water to give much larger amount of benzene-soluble matter and gaseous product than that of non-catalytic reaction, whereas MoO3 catalyst was practically inert toward the reactions of these coals. Otherwise, the reactions of benzyl ether with water were performed with both the catalysts, respectively, to elucidate the above mentioned experimental results of coals. On MoO3 catalyst were formed dibenzyl and equimolar toluene and benzaldehyde.

  12. Industrial hygiene monitoring needs for the coal conversion and oil shale industries. Study group report

    Energy Technology Data Exchange (ETDEWEB)

    White, Otto; Morris, Samuel; Cessario, Thomas R.; Baier, Edward; Brief, Richard; Corn, Morton; Ettinger, Harry; Fraser, David; Lippman, Morton; Sharkey, Andrew

    1979-11-01

    Conclusions of a study group organized to assess the need for research and development of instrumentation for monitoring occupational exposures in the coal conversion and oil shale industries are reported. Research and development requirements for assessing potentially hazardous exposures are reviewed. Hazardous substances are classified in the following four categories: those which are immediately hazardous to life and health; high risk, but not immediately hazardous; moderate risk and not immediately hazardous; and short-term, nonroutine high hazards. Specific research recommendations are made in the following areas: personal monitors for gases; nitrogen compounds; aerosols; metals; fibers and dust; surface contamination; skin contamination; analytical development; industrial hygiene surveys;research; and, bioassays. (JGB)

  13. Effect of Colombian coal rank and its feeding technology on substitute natural gas production by entrained gasification

    Directory of Open Access Journals (Sweden)

    Juan Fernando Pérez-Bayer

    2016-01-01

    Full Text Available The effect of coal rank (from sub-bituminous to semi-anthracite and type of fuel feeding technology (slurry and dry on the production of substitute natural gas (SNG in entrained flow gasifiers is studied. Ten coals from important Colombian mines were selected. The process is modeled under thermochemical equilibrium using Aspen Plus, and its performance is evaluated in function of output parameters that include SNG heating value, Wobbe index, coal conversion efficiency, cold gas efficiency, process efficiency, global efficiency, and SNG production rate, among others. In descending order, the coal-to-SNG process improves energetically with the use of coals with: higher volatile-matter to fixed-carbon ratio, lower ash content, higher C+H/O ratio, and higher coal heating value. The overall energy efficiency of the slurry-feed technology (S-FT to produce SNG by gasification is 17% higher than the dry-feed technology (D-FT, possibly as a consequence of the higher CH4 concentration in the syngas (around 7 vol. % when the coal is fed as aqueous slurry. As the simulated SNG meets the natural gas (NG quality standards in Colombia, the substitute gaseous fuel could be directly transported through pipelines. Therefore, the coal-to-SNG process is a technically feasible and unconventional alternative for NG production.

  14. Combustion and environmental performance of clean coal end products

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Sakellaropoulos, G. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications]|[Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab]|[Chemical Process Engineering Research Inst., Thessaloniki (Greece). Lab. of Solid Fuels and Environment; Someus, E. [Thermal Desorption Technology Group (Greece); Grammelis, P.; Amarantos, P.S. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications; Palladas, A.; Basinas, P.; Natas, P.; Prokopidou, M.; Diamantopoulou, I.; Sakellaropoulos, G. [Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab

    2006-07-01

    Clean and affordable power production is needed in order to achieve sustainable economic development. This paper focused on clean coal technologies in which coal-fired power plants are used in conjunction with large amounts of renewable energy sources to offer a high level of process safety and long term management of all residual operation streams. Thermal Desorption Recycle-Reduce-Reuse Technology (TDT-3R) was described as being a promising solid fuel pretreatment process for clean energy production up to 300 MWe capacities. TDT-3R is based on low temperature carbonisation fuel pre-treatment principles, which produce cleansed anthracite type fuels from coal and other carbonaceous material such as biomass and organic wastes. The combustion efficiency of such clean coals and the environmental performance of the TDT-3R process were investigated in this study via pilot scale tests of clean fuel production. Tests included flue gas emissions monitoring, raw fuel and product characterisation and thermogravimetric tests, polychlorinated dibenzo-p-dioxins and dibenzo-furans, and heavy metals analyses, and toxicity tests. Raw material included coal and biomass, such as willow, straw and demolition wood. The fuels were heated in a rotary kiln operating at 550 degrees C under slightly vacuum conditions. Clean coals were tested either alone or in conjunction with biomass fuels in a pilot scale combustion facility at Dresden, Germany. The clean coal samples were shown to have higher fixed carbon and ash content and lower volatiles compared to the respective raw coal samples. The major advantage of the TDT-3R process is the production of fuels with much lower pollutants content. Low nitrogen, sulphur, chlorine and heavy metal contents result in produced fuels that have excellent environmental performance, allow boiler operation in higher temperatures and overall better efficiency. Moreover, the use of clean fuels reduces deposition problems in the combustion chamber due to the

  15. Co-gasification of different rank coals with biomass and petroleum coke in a high-pressure reactor for H(2)-rich gas production.

    Science.gov (United States)

    Fermoso, J; Arias, B; Gil, M V; Plaza, M G; Pevida, C; Pis, J J; Rubiera, F

    2010-05-01

    Four coals of different rank were gasified, using a steam/oxygen mixture as gasifying agent, at atmospheric and elevated pressure in a fixed bed reactor fitted with a solids feeding system in continuous mode. Independently of coal rank, an increase in gasification pressure led to a decrease in H(2) + CO production and carbon conversion. Gasification of the different rank coals revealed that the higher the carbon content and reactivity, the greater the hydrogen production. Co-gasification experiments of binary (coal-biomass) and ternary blends (coal-petcoke-biomass) were conducted at high pressure to study possible synergetic effects. Interactions between the blend components were found to modify the gas production. An improvement in hydrogen production and cold gas efficiency was achieved when the coal was gasified with biomass. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Wabash Valley Integrated Gasification Combined Cycle, Coal to Fischer Tropsch Jet Fuel Conversion Study

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jayesh [Lummus Technology Inc., Bloomfield, NJ (United States); Hess, Fernando [Lummus Technology Inc., Bloomfield, NJ (United States); Horzen, Wessel van [Lummus Technology Inc., Bloomfield, NJ (United States); Williams, Daniel [Lummus Technology Inc., Bloomfield, NJ (United States); Peevor, Andy [JM Davy, London (United Kingdom); Dyer, Andy [JM Davy, London (United Kingdom); Frankel, Louis [Canonsburgh, PA (United States)

    2016-06-01

    This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability of implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and

  17. Characterization of extracts of coals and coal-derived products by liquid chromatography using optical activity detection

    Energy Technology Data Exchange (ETDEWEB)

    Bobbitt, D.R.; Aida, T.; Chen, Y.Y.; Reitsma, B.H.; Rougvie, A.; Smith, B.F.; Squires, T.G.; Venier, C.G.; Yeung, E.S.

    1985-01-01

    Extracts from various coals and coal-derived products were studied using liquid chromatography with optical activity detection. The chromatograms show that there are substantial numbers of optically active components in these samples. Since both dextrorotatory and laevorotatory components are present, some mutual cancellation would result if only the bulk optical rotation were measured. The chromatograms are generally rich in structure and contain distinct features which may be good fingerprints for establishing the origins of the coals and monitoring coal processing.

  18. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Andrew Kramer [Gas Technology Inst., Des Plaines, IL (United States)

    2016-09-30

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition region at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.

  19. Sulfur Rich Coal Gasification and Low Impact Methanol Production

    OpenAIRE

    Andrea Bassani; Giula Bozzano; Carlo Pirola; Caterina Frau; Alberto Pettinau; Enrico Maggio; Eliseo Ranzi; Flavio Manenti

    2018-01-01

    In recent times, the methanol was employed in numerous innovative applications and is a key compound widely used as a building block or intermediate for producing synthetic hydrocarbons, solvents, energy storage medium and fuel. It is a source of clean, sustainable energy that can be produced from traditional and renewable sources: natural gas, coal, biomass, landfill gas and power plant or industrial emissions. An innovative methanol production process from coal gasification is proposed in t...

  20. Productivity Improvement in Underground Coal Mines - A Case Study

    Directory of Open Access Journals (Sweden)

    Devi Prasad Mishra

    2013-01-01

    Full Text Available Improvement of productivity has become an important goal for today's coal industry in the race to increase price competitiveness. The challenge now lying ahead for the coal industry is to identify areas of waste, meet the market price and maintain a healthy profit. The only way to achieve this is to reduce production costs by improving productivity, efficiency and the effectiveness of the equipment. This paper aims to identify the various factors and problems affecting the productivity of underground coal mines adopting the bord and pillar method of mining and to propose suitable measures for improving them. The various key factors affecting productivity, namely the cycle of operations, manpower deployment, machine efficiency, material handling and management of manpower are discussed. In addition, the problem of side discharge loader (SDL cable handling resulting in the wastage of precious manpower resources and SDL breakdown have also been identified and resolved in this paper.

  1. Energy conservation in coal conversion. Final report, September 15, 1977--September 1, 1978. Selected case studies and conservation methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Purcupile, J.C.

    1978-09-01

    The purpose of this study is to apply the methodologies developed in the Energy Conservation in Coal Conversion August, 1977 Progress Report - Contract No. EY77S024196 - to an energy efficient, near-term coal conversion process design, and to develop additional, general techniques for studying energy conservation and utilization in coal conversion processes. The process selected for study was the Ralph M. Parsons Company of Pasadena, California ''Oil/Gas Complex, Conceptual Design/Economic Analysis'' as described in R and D Report No. 114 - Interim Report No. 4, published March, 1977, ERDA Contract No. E(49-18)-1975. Thirteen papers representing possible alternative methods of energy conservation or waste heat utilization have been entered individually into EDB and ERA. (LTN)

  2. Production of cenospheres from coal fly ash through vertical thermal flame (VTF) process

    OpenAIRE

    Soh, WM; J. Tan; Heng, JYY; Cheeseman, C

    2016-01-01

    Coal fly ash is a complex mixture of anthropogenic materials produced during the combustion of pulverised coal in coal fired power plants. They pose environmental concerns that lead to air and water pollution. Effort has been done to reduce the production of coal fly ash or to extract potentially valuable products from coal fly ash, such as cenospheres. Cenospheres are light, low density, thin-walled hollow ceramic microsphere with unique properties. Conventional cenosphere production methods...

  3. Proceedings of the symposium on assessing the industrial hygiene monitoring needs for the coal conversion and oil shale industries

    Energy Technology Data Exchange (ETDEWEB)

    White, O. Jr. (ed.)

    1979-03-01

    This work was supported by the United States Department of Energy, Division of Biomedical and Environmental Research, Analysis and Assessment Program, through the Safety and Environmental Protection Division at Brookhaven National Laboratory. The symposium program included presentations centering around the themes: Recognition of Occupational Health Monitoring Requirements for the Coal Conversion and Oil Shale Industries and Status of Dosimetry Technology for Occupational Health Monitoring for the Coal Conversion and Oil Shale Industries. Sixteen papers have been entered individually into EDB and ERA; six had been entered previously from other sources. (LTN)

  4. The economic production of alcohol fuels from coal-derived synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1995-12-31

    The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2); (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)

  5. Advancements in understanding and enhancing biogenic methane production from coals

    Energy Technology Data Exchange (ETDEWEB)

    Budwill, K.; Koziel, S.; Vidmar, J. [Alberta Innovates - Technology Futures (Canada)

    2011-07-01

    Biogenic methane is one of the numerous natural resources found in Western Canada for the production of energy. Research suggests that this natural gas is generated from methanogenic microbial cultures in deep coal beds under anaerobic conditions. However, methanogenesis is an extremely slow process and is not yet fully understood. For the process to be profitable, it needs to be significantly enhanced. The current study proposes the use of organic nitrogen-rich nutrients to enhance the production of methane from microbial cultures in deep coal-beds. First, samples of methanogenic cultures from coal seams were studied in order to identify and make a taxonomic analysis of the diverse species. The bionutrient was then applied to the cultures. Subsequent analysis showed that nutrient feed significantly increased methane production. The study allowed for a better understanding of the methanogenesis process, allowing it to be improved through use of the newly developed biotechnology.

  6. Pyrolysis of Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2006-07-01

    Full Text Available The paper presents a review of relevant literature on coal pyrolysis.Pyrolysis, as a process technology, has received considerable attention from many researchers because it is an important intermediate stage in coal conversion.Reactions parameters as the temperature, pressure, coal particle size, heating rate, soak time, type of reactor, etc. determine the total carbon conversion and the transport of volatiles and therebythe product distribution. Part of the possible environmental pollutants could be removed by optimising the pyrolysis conditions. Therefore, this process will be subsequently interesting for coal utilization in the future

  7. Increasing effectiveness of production and quality of production at the Sibir' coal preparation plant

    Energy Technology Data Exchange (ETDEWEB)

    Liber, L.A.; Kuz' kin, V.M.

    1980-08-01

    The Sibir' plant, built in 1974, prepares over 5.6 Mt of coking coal yearly. New coal preparing schemes and machines characterized by high efficiency (improving quality and increasing yield of coal concentrate) used in the Sibir' plant are described. Introducing an automated system controlling coal preparation in mineral suspension caused a 0.1% increase of coal concentrate yield. Using new machines for conditioning water-coal slurry mixture (AKP-1600) and the SAF-3 system used in flotation and filtration processes reduced ash content of flotation concentrate by 0.1%, moisture content by 0.5% and increased concentrate yield by 0.2%. Removing coal slurry from coal fraction 0 to 13 mm reduced ash content of the concentrate by 0.1% and increased its yield by 0.6%. DU-250 vacuum filters used in the Sibir' plant are 3 times more efficient than the Ukraine-80 filters. Their use reduced moisture content of coal concentrate 2.5% to 3%. One of the ways of increasing efficiency of coal preparation in the Sibir' plant is using alkyl oxides which improve flotation properties of apolar reagents. Using 300 g alkyl oxide per 1 t flotation reagent reduced ash content of the coal concentrate by 0.5% and increased its yield by 1.5% and at the same time increased ash content in the waste product of the flotation process by 4 to 6%. (In Russian)

  8. A Coal-Use Economics Methodology for Navy Bases. Phase II of Engineering Services for Coal Conversion Guidance.

    Science.gov (United States)

    1984-02-01

    and coal-water mixtures are prepared with comercially available processes and equipment. It is feasible to design and construct - facilities at Navy...to the private sector economics described in the Phase I report A user manual for the Phase II computer program has been prepared as a separate...alternative of installing new coal-fired boilers, particularly since competitively priced plentiful eastern coals could be used. 3.2.3 Comercialization

  9. Life-Cycle Analysis of Greenhouse Gas Emissions and Water Consumption – Effects of Coal and Biomass Conversion to Liquid Fuels as Analyzed with the GREET Model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qianfeng [Argonne National Lab. (ANL), Argonne, IL (United States); Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-06-01

    The vast reserves of coal in the U.S. provide a significant incentive for the development of processes for coal conversion to liquid fuels (CTL). Also, CTL using domestic coal can help move the U.S. toward greater energy independence and security. However, current conversion technologies are less economically competitive and generate greater greenhouse gas (GHG) emissions than production of petroleum fuels. Altex Technologies Corporation (Altex, hereinafter) and Pennsylvania State University have developed a hybrid technology to produce jet fuel from a feedstock blend of coal and biomass. Collaborating with Altex, Argonne National Laboratory has expanded and used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model to assess the life-cycle GHG emissions and water consumption of this hybrid technology. Biomass feedstocks include corn stover, switchgrass, and wheat straw. The option of biomass densification (bales to pellets) is also evaluated in this study. The results show that the densification process generates additional GHG emissions as a result of additional biomass process energy demand. This process coproduces a large amount of char, and this study investigates two scenarios to treat char: landfill disposal (Char-LF) and combustion for combined heat and power (CHP). Since the CHP scenarios export excess heat and electricity as coproducts, two coproduct handling methods are used for well-to-wake (WTWa) analysis: displacement (Char-CHP-Disp) and energy allocation (Char-CHP-EnAllo). When the feedstock contains 15 wt% densified wheat straw and 85 wt% lignite coal, WTWa GHG emissions of the coal-and-biomass-to-liquid pathways are 116, 97, and 137 gCO2e per megajoule (MJ) under the Char-LF, Char-CHP-Disp, and Char-CHP-EnAllo scenarios, respectively, as compared to conventional jet fuel production at 84 gCO2e/MJ. WTWa water consumption values are 0.072, -0.046, and 0.044 gal/MJ for Char-LF, Char-CHP-Disp, and Char

  10. CREAT A CONSORTIUM AND DEVELOP PREMIUM CARBON PRODUCTS FROM COAL

    Energy Technology Data Exchange (ETDEWEB)

    John M. Andresen

    2003-08-01

    The Consortium for Premium Carbon Products from Coal, with funding from the U.S. Department of Energy's National Energy Technology Laboratory and matching funds from industry and academic institutions continued to excel in developing innovative technologies to use coal and coal-derived feedstocks to produce premium carbon product. During Budget Period 5, eleven projects were supported and sub-contracted were awarded to seven organizations. The CPCPC held two meetings and one tutorial at various locations during the year. Budget Period 5 was a time of growth for CPCPC in terms of number of proposals and funding requested from members, projects funded and participation during meetings. Although the membership was stable during the first part of Budget Period 5 an increase in new members was registered during the last months of the performance period.

  11. Conceptual study of methanol production system using nuclear heat and coal

    Energy Technology Data Exchange (ETDEWEB)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ogawa, Masuro; Nomura, Shinichi; Yamada, Seiya

    1996-02-01

    Presently a large amount of coal is being consumed for producing electricity and industrial usage. However, global warming by carbon dioxide emission from fossil fuel burning may demand us to reduce the emission rate of carbon dioxide. This paper describes a conceptual study using a nuclear heat from the high temperature gas-cooled reactor that is combined with a coal gasification and a hydrogen production subsystem to produce methanol. As a result, it is clarified that the addition of the hydrogen is necessary as a raw gas for methanol synthesis in order to convert coal to methanol effectively and completely without emitting carbon dioxide and without having residual carbon in the refining process. Consequently, two methanol production systems are proposed to reduce effectively the emission of carbon dioxide because the conversion factor of raw material to methanol exceeds 100 percent, and they are examined and evaluated on several aspects, such as economy, environment, effective usage of coal and nuclear energy, operation flexibility and require technology development. (author).

  12. Anaerobic SBR (sequenching batch reactor) treatment of coal conversion wastewaters: Sixth quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Ketchum, L.H. Jr.

    1987-04-28

    The acclimation studies have been completed in the six 2-L reactors. However, three of these have been continued and are operated with a CCW feed mixed with glucose. The addition of glucose, a readily degradable substrate, increases organisms growth, and promotes cometabolism of more difficult to degrade constituents. Four automatically operated 4-L AnSBR's are being monitored. Two are treating only phenol and two are treating a mixture of coal conversion wastewaters (CCW) constituents. Many serum bottle studies have been completed and are continuing. In addition, several 1.5-L mass cultures have been started to grow large quantities of organism acclimated to a single CCW constituent. These acclimated organisms will be used in future kinetic studies and to seed other reactors.

  13. Symbiotic Nuclear—Coal Systems for Production of Liquid Fuels

    Science.gov (United States)

    Taczanowski, S.

    The notion of safety is not confined to the technological or non-proliferation aspects. It covers also the elements of energy policy: irrational reactions of societies, emotions, egoistic interests of more or less powerful pressure of economical and external political factors. One should be conscious that the country's privilege of being equipped by the Nature with rich resources of oil or gas is not solely economical, but even more a political one. Simultaneously, the gradual depletion of world hydrocarbons that draws behind irrevocable price increase has to be expected within the time scale of exploitation of power plants (now amounted to ~60 years). Therefore consequences of energy policy last much longer than the perspectives the political or economical decision makers are planning and acting within and the public is expecting successes and finally evaluating them. The world oil and gas resources are geopolitically very non-uniformly distributed, in contrast to coal and uranium. Since the level of energy self-sufficiency of the EU is highest for coal, the old idea of synfuels production from coal is recalled. Yet, in view of limits to the CO2 emissions in the EU another method has to be used here than the conventional coal liquefaction just applied in China. Simultaneously, an interesting evolution of energy prices was be observed, namely an increase in that of motor fuels in contrast to that of electricity remaining well stable. This fact suggests that the use of electricity (mainly the off-peak load), generated without emissions of CO2 for production of liquid fuels can prove reasonable. Thus, the essence of the presented idea of coal-nuclear symbiosis lies in the supply of energy in the form of H2, necessary for this process, from a nuclear reactor. Particularly, in the present option H2 is obtained by electrolytic water splitting supplying also O2 as a precious by-product in well mature and commercially available already since decades, Light Water Reactors

  14. World coal production, consumption and trade for year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P. (Coal Chemistry Research Institute, Beijing (China))

    1992-06-01

    By the year 2000, coal production will increase at a slow rate, and because supply is greater than demand, it will be a buyer's market. In general, prices will not rise steeply in the international markets, and Europe and Asia will continue to be the major trading centres. World exports may reach 510 Mt; Australia and the USA will continue to be the major producers. Although China is an important coal producing country, its exports form just 4-5% of global trade volume. 5 figs., 4 tabs.

  15. The 3R anthracite clean coal technology: Economical conversion of brown coal to anthracite type clean coal by low temperature carbonization pre-treatment process

    Directory of Open Access Journals (Sweden)

    Someus Edward

    2006-01-01

    Full Text Available The preventive pre-treatment of low grade solid fuels is safer, faster, better, and less costly vs. the "end-of-the-pipe" post treatment solutions. The "3R" (Recycle-Reduce-Reuse integrated environment control technology provides preventive pre-treatment of low grade solid fuels, such as brown coal and contaminated solid fuels to achieve high grade cleansed fuels with anthracite and coke comparable quality. The goal of the 3R technology is to provide cost efficient and environmentally sustainable solutions by preventive pre-treatment means for extended operations of the solid fuel combustion power plants with capacity up to 300 MWe power capacities. The 3R Anthracite Clean Coal end product and technology may advantageously be integrated to the oxyfuel-oxy-firing, Foster Wheeler anthracite arc-fired utility type boiler and Heat Pipe Reformer technologies in combination with CO2 capture and storage programs. The 3R technology is patented original solution. Advantages. Feedstock flexibility: application of pre-treated multi fuels from wider fuel selection and availability. Improved burning efficiency. Technology flexibility: efficient and advantageous inter-link to proven boiler technologies, such as oxyfuel and arcfired boilers. Near zero pollutants for hazardous-air-pollutants: preventive separation of halogens and heavy metals into small volume streams prior utilization of cleansed fuels. >97% organic sulphur removal achieved by the 3R thermal pre-treatment process. Integrated carbon capture and storage (CCS programs: the introduction of monolitic GHG gas is improving storage safety. The 3R technology offers significant improvements for the GHG CCS conditions. Cost reduction: decrease of overall production costs when all real costs are calculated. Improved safety: application of preventive measures. For pre-treatment a specific purpose designed, developed, and patented pyrolysis technology used, consisting of a horizontally arranged externally

  16. Assessment of materials technology of pressure vessels and piping for coal conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Canonico, D.A.; Cooper, R.H.; Foster, B.E.; McClung, R.W.; Nanstad, R.K.; Robinson, G.C.; Slaughter, G.M.

    1978-08-01

    The current technology of the materials, fabrication, and inspection of pressure vessels and piping for commercial coal conversion systems is reviewed. Comparison is made between the various codes applicable to these conversion systems. Areas of concern, such as material compatibility and fracture toughness, are cited. Recommendations are made that should increase the reliability of these components, the failure of which would result in a major outage of the plant. We believe that to date most of the current studies of various competing processes have emphasized the capital cost aspects to show potential competition with other energy sources but have not adequately examined the influence of design features on both potential maintenance and disruptive failure costs. It appears, for example, that the choice of vessel size (which is dictated by single vs multiple train process designs) has been examined primarily from the standpoint of capital costs. Maintenance, operation, relative part load capability, and relative probability of failure are unanswered questions. The materials having the most favorable mechanical properties and costs, unfortunately, are sensitive to various embrittling phenomena.

  17. Comprehensive model for predicting elemental composition of coal pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Ricahrds, Andrew P. [Brigham Young Univ., Provo, UT (United States); Shutt, Tim [Brigham Young Univ., Provo, UT (United States); Fletcher, Thomas H. [Brigham Young Univ., Provo, UT (United States)

    2017-04-23

    Large-scale coal combustion simulations depend highly on the accuracy and utility of the physical submodels used to describe the various physical behaviors of the system. Coal combustion simulations depend on the particle physics to predict product compositions, temperatures, energy outputs, and other useful information. The focus of this paper is to improve the accuracy of devolatilization submodels, to be used in conjunction with other particle physics models. Many large simulations today rely on inaccurate assumptions about particle compositions, including that the volatiles that are released during pyrolysis are of the same elemental composition as the char particle. Another common assumption is that the char particle can be approximated by pure carbon. These assumptions will lead to inaccuracies in the overall simulation. There are many factors that influence pyrolysis product composition, including parent coal composition, pyrolysis conditions (including particle temperature history and heating rate), and others. All of these factors are incorporated into the correlations to predict the elemental composition of the major pyrolysis products, including coal tar, char, and light gases.

  18. Energy balances in the production and end-use of methanol derived from coal

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-10

    Analysis is performed for three combinations of fuels, specifically: net petroleum gain (petroleum only); net premium fuel gain (natural gas and petroleum); and net energy gain (includes all fuels; does not include free energy from sun). The base case selected for evaluation was that of an energy-efficient coal-to-methanol plant located in Montana/Wyoming and using the Lurgi conversion process. The following variations of the base coal-methanol case are also analyzed: gasoline from coal with methanol as an intermediate step (Mobil-M); and methanol from coal (Texaco gasification process). For each process, computations are made for the product methanol as a replacement for unleaded gasoline in a conventional spark ignition engine and as a chemical feedstock. For the purpose of the energy analysis, computations are made for three situations regarding mileage of methanol/ gasoline compared to that of regular unleaded gasoline: mileage of the two fuels equal, mileage 4 percent better with gasohol, and mileage 4 percent worse with gasohol. The standard methodology described for the base case applies to all of the variations.

  19. Superacid Catalyzed Coal Conversion Chemistry. 1st and 2nd Quarterly Technical Progress Reports, September 1, 1983-March 30, 1984.

    Science.gov (United States)

    Olah, G. A.

    1984-01-01

    In our laboratories we have previously developed a mild coal conversion process. This involves the use of a superacid system consisting of HF and BF{sub 3} in presence of hydrogen and/or a hydrogen donor solvent. In order to understand the chemistry involved in the process of depolymerization of coal by the HF:BF{sub 3}:H{sub 2} system we are carrying out a systematic study of a number of coal model compounds. The model compounds selected for present study have two benzene rings connected with various bridging units such as alkylidene, ether, sulfide etc. From studies so far carried out it appears that high pyridine extractibilities achieved by treating coal at temperature below 100 degrees C results from the cleavage of bridges such as present in bibenzyl, diphenyl methane, dibenzyl ether, dibenzyl sulfide etc. On the other hand the increased cyclohexane extractibility and distillability observed at relatively higher temperatures and hydrogen pressures reflects the hydrogenation and cleavage of the aromatic backbone in coal structure similar to what is seen in the conversion of model compounds such as biphenyl, diphenyl ether, diphenyl sulfide, anthracene, etc.

  20. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for

  1. Sulfur Rich Coal Gasification and Low Impact Methanol Production

    Directory of Open Access Journals (Sweden)

    Andrea Bassani

    2018-03-01

    Full Text Available In recent times, the methanol was employed in numerous innovative applications and is a key compound widely used as a building block or intermediate for producing synthetic hydrocarbons, solvents, energy storage medium and fuel. It is a source of clean, sustainable energy that can be produced from traditional and renewable sources: natural gas, coal, biomass, landfill gas and power plant or industrial emissions. An innovative methanol production process from coal gasification is proposed in this work. A suitable comparison between the traditional coal to methanol process and the novel one is provided and deeply discussed. The most important features, with respect to the traditional ones, are the lower carbon dioxide emissions (about 0.3% and the higher methanol production (about 0.5% without any addition of primary sources. Moreover, it is demonstrated that a coal feed/fuel with a high sulfur content allows higher reductions of carbon dioxide emissions. The key idea is to convert hydrogen sulfide and carbon dioxide into syngas (a mixture of hydrogen and carbon monoxide by means of a regenerative thermal reactor. This is the Acid Gas to Syngas technology, a completely new and effective route of processing acid gases. The main concept is to feed an optimal ratio of hydrogen sulphide and carbon monoxide and to preheat the inlet acid gas before the combustion. The reactor is simulated using a detailed kinetic scheme.

  2. Gas chromatographic study of the volatile products from co-pyrolysis of coal and polyethylene wastes.

    Science.gov (United States)

    Domínguez, A; Blanco, C G; Barriocanal, C; Alvarez, R; Díez, M A

    2001-05-18

    The aim of this study was to determine the volatile products distribution of co-processing of coal with two plastic wastes, low-density polyethylene from agriculture greenhouses and high-density polyethylene from domestic uses, in order to explain the observed decrease in coal fluidity caused by polyethylene waste addition. Polymeric materials, although they are not volatile themselves, may be analysed by gas chromatography through the use of pyrolysis experiments. In this way, a series of pyrolysis tests were performed at 400 and 500 degrees C in a Gray-King oven with each of the two plastic wastes, one high-volatile bituminous coal and blends made up of coal and plastic waste (9:1, w/w, ratio). The pyrolysis temperatures, 400 and 500 degrees C, were selected on the basis of the beginning and the end of the coal plastic stage. The organic products evolved from the oven were collected, dissolved in pyridine and analysed by capillary gas chromatography using a flame ionization detector. The analysis of the primary tars indicated that the amount of n-alkanes is always higher than that of n-alkenes and the formation of the alkenes is favoured by increasing the pyrolysis temperature. However, this effect may be influenced by the size of the hydrocarbon. Thus, the fraction C17-C31 showed a higher increase of n-alkenes/n-alkanes ratio than other fractions. On the other hand, the difference between the experimental and estimated values from tars produced from single components was positive for n-alkanes and n-alkenes, indicating that co-pyrolysis of the two materials enhanced the chemical reactivity during pyrolysis and produced a higher conversion than that from individual components.

  3. Production of hydrogen and coproducts from coal

    Energy Technology Data Exchange (ETDEWEB)

    Hauserman, W.B.

    1992-11-01

    Between the TGA and CPU data, a number of general conclusions have been developed, regarding both selection of catalysts and selection of the most effective and economic approaches to scaled-up process development. (Hauserman, 1992) These conclusions are in an order that is not meant to imply relative importance. (1) Impregnation of Wyodak coal with KOH, at a potassium-to-fixed carbon ratio of around 0.2 or greater, roughly doubles the gasification reaction rate in fluidized beds of limestone. Soluble potassium, in any convenient form, is recommended as a rate-enhancing catalyst, subject to supply costs and efficiency of recovery by leaching. (2) In a fluidized bed of taconite, the reaction rate enhancement by potassium impregnation appears at least as great as in a limestone bed. (3) Reactivity coefficients defined by continuous test results are a different but closely related property and are substantially lower than standard TGA-determined reactivities. (4) The most useful result from the CPU is determination of specific capacities, defined as pounds per hour of fixed carbon converted per volume of reaction vessel. (5) Potassium impregnation clearly enhances reaction rates, but in a practical process will require an efficient leaching step for potassium recovery to be economically viable. (6) Earlier TGA results suggest that a weight ratio of potassium to fixed carbon (FC) of roughly 0.4 will give maximum reactivity enhancement. (7) For these CPU tests, control over the actual degree of potassium impregnation during feed impregnation proved more difficult than expected, apparently leaving a lot of the KOH catalyst free (non-ion exchanged) and subject to segregation during handling and feeding, as well as in the gasifier itself.

  4. Production of hydrogen and coproducts from coal

    Energy Technology Data Exchange (ETDEWEB)

    Hauserman, W.B.

    1992-01-01

    Between the TGA and CPU data, a number of general conclusions have been developed, regarding both selection of catalysts and selection of the most effective and economic approaches to scaled-up process development. (Hauserman, 1992) These conclusions are in an order that is not meant to imply relative importance. (1) Impregnation of Wyodak coal with KOH, at a potassium-to-fixed carbon ratio of around 0.2 or greater, roughly doubles the gasification reaction rate in fluidized beds of limestone. Soluble potassium, in any convenient form, is recommended as a rate-enhancing catalyst, subject to supply costs and efficiency of recovery by leaching. (2) In a fluidized bed of taconite, the reaction rate enhancement by potassium impregnation appears at least as great as in a limestone bed. (3) Reactivity coefficients defined by continuous test results are a different but closely related property and are substantially lower than standard TGA-determined reactivities. (4) The most useful result from the CPU is determination of specific capacities, defined as pounds per hour of fixed carbon converted per volume of reaction vessel. (5) Potassium impregnation clearly enhances reaction rates, but in a practical process will require an efficient leaching step for potassium recovery to be economically viable. (6) Earlier TGA results suggest that a weight ratio of potassium to fixed carbon (FC) of roughly 0.4 will give maximum reactivity enhancement. (7) For these CPU tests, control over the actual degree of potassium impregnation during feed impregnation proved more difficult than expected, apparently leaving a lot of the KOH catalyst free (non-ion exchanged) and subject to segregation during handling and feeding, as well as in the gasifier itself.

  5. CERAMIC MEMBRANES FOR HYDROGEN PRODUCTION FROM COAL

    Energy Technology Data Exchange (ETDEWEB)

    George R. Gavalas

    2004-04-01

    The preparation and performance of membranes for application to hydrogen separation from coal-derived gas is described. The membrane material investigated was dense amorphous silica deposited on a suitable support by chemical vapor deposition (CVD). Two types of support materials were pursued. One type consisted of a two-layer composite, zeolite silicalite/{alpha}-Al{sub 2}O{sub 3}, in the form of tubes approximately 0.7 cm in diameter. The other type was porous glass tubes of diameter below 0.2 cm. The first type of support was prepared starting from {alpha}-Al{sub 2}O{sub 3} tubes of 1{micro}m mean pore diameter and growing by hydrothermal reaction a zeolite silicalite layer inside the pores of the alumina at the OD side. After calcination to remove the organic template used in the hydrothermal reaction, CVD was carried out to deposit the final silica layer. CVD was carried out by alternating exposure of the surface with silicon tetrachloride and water vapor. SEM and N2 adsorption measurements were employed to characterize the membranes at several stages during their preparation. Permeation measurements of several gases yielded H{sub 2}:N{sub 2} ideal selectivity of 150-200 at room temperature declining to 110 at 250 C. The second type of support pursued was porous glass tubes prepared by a novel extrusion technique. A thick suspension of borosilicate glass powder in a polyethersulfone solution was extruded through a spinneret and after gelation the glass-polymer tube was heat treated to obtain a gas-tight glass tube. Leaching of the glass tube in hot water yielded connected pores with diameter on the order of 100 nm. CVD of the final silica layer was not carried out on these tubes on account of their large pore size.

  6. Collaborative Studies for Mercury Characterization in Coal and Coal Combustion Products, Republic of South Africa

    Science.gov (United States)

    Kolker, Allan; Senior, Constance L.; van Alphen, Chris

    2014-12-15

    Mercury (Hg) analyses were obtained for 42 samples of feed coal provided by Eskom, the national electric utility of South Africa, representing all 13 coal-fired power stations operated by Eskom in South Africa. This sampling includes results for three older power stations returned to service starting in the late 2000s. These stations were not sampled in the most recent previous study. Mercury concentrations determined in the present study are similar to or slightly lower than those previously reported, and input Hg for the three stations returned to service is comparable to that for the other 10 power stations. Determination of halogen contents of the 42 feed coals confirms that chlorine contents are generally low, and as such, the extent of Hg self-capture by particulate control devices (PCDs) is rather limited. Eight density separates of a South African Highveld (#4) coal were also provided by Eskom, and these show a strong mineralogical association of Hg (and arsenic) with pyrite. The density separates were used to predict Hg and ash contents of coal products used in South Africa or exported. A suite of 48 paired samples of pulverization-mill feed coal and fly ash collected in a previous (2010) United Nations Environment Programme-sponsored study of emissions from the Duvha and Kendal power stations was obtained for further investigation in the present study. These samples show that in each station, Hg capture varies by boiler unit and confirms that units equipped with fabric filters for air pollution control are much more effective in capturing Hg than those equipped with electrostatic precipitators. Apart from tracking the performance of PCDs individually, changes resulting in improved mercury capture of the Eskom fleet are discussed. These include Hg reduction through coal selection and washing, as well as through optimization of equipment and operational parameters. Operational changes leading to increased mercury capture include increasing mercury

  7. Alkalis in Coal and Coal Cleaning Products / Alkalia W Węglu I Productach Jego Wzbogacania

    Science.gov (United States)

    Bytnar, Krzysztof; Burmistrz, Piotr

    2013-09-01

    In the coking process, the prevailing part of the alkalis contained in the coal charge goes to coke. The content of alkalis in coal (and also in coke) is determined mainly by the content of two elements: sodium and potasium. The presence of these elements in coal is connected with their occurrence in the mineral matter and moisture of coal. In the mineral matter and moisture of the coals used for the coke production determinable the content of sodium is 26.6 up to 62. per cent, whereas that of potassium is 37.1 up to 73.4 per cent of the total content of alkalis. Major carriers of alkalis are clay minerals. Occasionally alkalis are found in micas and feldspars. The fraction of alkalis contained in the moisture of the coal used for the production of coke in the total amount of alkalis contained there is 17.8 up to 62.0 per cent. The presence of sodium and potassium in the coal moisture is strictly connected with the presence of the chloride ions. The analysis of the water drained during process of the water-extracting from the flotoconcentrate showed that the Na to K mass ratio in the coal moisture is 20:1. Increased amount of the alkalis in the coal blends results in increased content of the alkalis in coke. This leads to the increase of the reactivity (CRI index), and to the decrease of strength (CSR index) determined with the Nippon Steel Co. method. W procesie koksowania przeważająca część zawartych we wsadzie węglowym alkaliów przechodzi do koksu. Zawartość alkaliów w węglu, a co za tym idzie i w koksie determinowana jest głównie zawartością dwóch pierwiastków: sodu i potasu. Obecność tych pierwiastków w węglu wiąże się z występowaniem ich w substancji mineralnej i wilgoci węgla. W substancji mineralnej oraz wilgoci węgli stosowanych do produkcji koksu, oznaczona zawartość sodu wynosi od 26.6 do 62.9%, a zawartość potasu od 37.1 do 73.4% alkaliów ogółem. Głównymi nośnikami alkaliów w substancji mineralnej są minera

  8. RESEARCH ON CARBON PRODUCTS FROM COAL USING AN EXTRACTIVE PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo; Chong Chen; Brian Bland; David Fenton

    2002-03-31

    This report presents the results of a one-year effort directed at the exploration of the use of coal as a feedstock for a variety of industrially-relevant carbon products. The work was basically divided into three focus areas. The first area dealt with the acquisition of laboratory equipment to aid in the analysis and characterization of both the raw coal and the coal-derived feedstocks. Improvements were also made on the coal-extraction pilot plant which will now allow larger quantities of feedstock to be produced. Mass and energy balances were also performed on the pilot plant in an attempt to evaluate the scale-up potential of the process. The second focus area dealt with exploring hydrogenation conditions specifically aimed at testing several less-expensive candidate hydrogen-donor solvents. Through a process of filtration and vacuum distillation, viable pitch products were produced and evaluated. Moreover, a recycle solvent was also isolated so that the overall solvent balance in the system could be maintained. The effect of variables such as gas pressure and gas atmosphere were evaluated. The pitch product was analyzed and showed low ash content, reasonable yield, good coking value and a coke with anisotropic optical texture. A unique plot of coke yield vs. pitch softening point was discovered to be independent of reaction conditions or hydrogen-donor solvent. The third area of research centered on the investigation of alternate extraction solvents and processing conditions for the solvent extraction step. A wide variety of solvents, co-solvents and enhancement additives were tested with varying degrees of success. For the extraction of raw coal, the efficacy of the alternate solvents when compared to the benchmark solvent, N-methyl pyrrolidone, was not good. However when the same coal was partially hydrogenated prior to solvent extraction, all solvents showed excellent results even for extractions performed at room temperature. Standard analyses of the

  9. Optical spectra of coal gasification products in the RF plasmatron

    Science.gov (United States)

    Fedorovich, S. D.; Burakov, I. A.; Dudolin, A. A.; Markov, A. A.; Khtoo Naing, Aung; Ulziy, Batsamboo; Kavyrshin, D. I.

    2017-11-01

    The use of solid fuel gasification process is relevant to the regions where there is no opportunity to use natural gas as the main fuel. On the territory of the Russian Federation such regions are largely the Urals, Siberia and the Far East. In order to reduce the harmful effects on the environment solid fuel with high sulfur content, ash content and moisture are subjected to gasification process. One of the major problems of this process is to produce syngas with a low calorific value. For conventional types of gasification (gasification), the value of this quantity ranges 8 - 10 MJ / m3. The use of plasma gasification increases the calorific value of 12 - 16 MJ / m3 which allows the most efficient use of the syngas. The reason for the increase of the value lies in the change of temperature in the reaction zone. A significant rise in temperature in the reaction zone leads to an increase in methane formation reactions constant value, which allows to obtain a final product with a large calorific value. The HFI-plasma torch coal temperature reaches 3000 ° C, and the temperature of coal gasification products can reach 8000 ° C. The aim is to develop methods for determining the composition of the plasma gasification products obtained optical spectra. The Kuznetsky coal used as the starting material. Received and decrypted gasification products optical spectra in a wavelength range from 220 to 1000 nm. Recommendations for the use of the developed method for determining the composition of the plasma gasification products. An analysis of the advantages of using plasma gasification as compared with conventional gasification and coal combustion.

  10. Biological production of ethanol from coal

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Previously studies have shown the importance of both medium composition and concentration and medium pH on ethanol production of Clostridium ljungdahlii in fermenting CO, CO{sub 2} and H{sub 2} in synthesis gas. Four additional batch experiments involving medium composition and concentration were carried out in modified basal medium without yeast extract at pH 4.0. These experiments indicate that basal medium with only small amounts of B-vitamins can yield significant cell growth while yielding ethanol as the major product. Product ratios as high as 11.0 g ethanol per g acetate were obtained with half strength B-vitamins. Further experiments indicates that Ca-pantothenate may be necessary for the growth of C. ljungdahlii and that growth and ethanol production can occur simultaneously.

  11. Biological production of ethanol fom coal

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Research is continuing in an attempt to increase both the ethanol concentration and product ratio using C. ljungdahlii. The purpose of this report is to present data (acetate to ethanol) utilizing a medium prepared especially for C. ljungdahlii. Medium development studies are presented, as well as reactor studies with the new medium in batch reactors. Continuous stirred tank reactor (CSTR) with cell recycle. The use of this new medium has resulted in significant improvements in cell concentration, ethanol concentration and product ratio.

  12. Biological production of ethanol from coal

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Research is continuing in an attempt to increase both the ethanol concentration and product ratio using C. ljungdahlii. The purpose of this report is to present data utilizing a medium prepared especially for C. ljungdahlii. Medium development studies are presented, as well as reactor studies with the new medium in batch reactors. CSTRs and CSTRs with cell recycle. The use of this new medium has resulted in significant improvements in cell concentration, ethanol concentration and product ratio.

  13. Processing low-grade coal to produce high-grade products

    CSIR Research Space (South Africa)

    de Korte, GJ

    2015-07-01

    Full Text Available to produce good quality products and at the same time ensure that coal mining remains economically viable. This requires that more cost-effective coal processing technologies be investigated and implemented....

  14. Monitoring temperatures in coal conversion and combustion processes via ultrasound. [Ultrasonic thermometry proposal

    Energy Technology Data Exchange (ETDEWEB)

    Gopalsami, N.; Raptis, A. C.; Mulcahey, T. P.

    1980-02-01

    A study of the state-of-the-art of instrumentation for monitoring temperatures in coal conversion and combustion systems has been carried out. The instrumentation types studied include Thermocouples, Radiation Pyrometers, and Acoustical Thermometers. The capabilities and limitations of each type are reviewed. The study determined that ultrasonic thermometry has the potential of providing viable instrumentation. Consequently, a feasibility study of the ultrasonic thermometry was undertaken. A mathematical model of a pulse-echo ultrasonic temperature measurement system is developed using linear system theory. The mathematical model lends itself to the adaptation of generalized correlation techniques for the estimation of propagation delays. Computer simulations are made to test the efficacy of the signal processing techniques for noise-free as well as noisy signals. Based on the theoretical study, acoustic techniques to measure temperature in reactors and combustors are feasible. To experimentally verify the technique it is needed (a) to test the available sensor materials at high temperatures under erosive and corrosive conditions and (b) upon the selection of the appropriate sensor material to validate the proposed signal processing technique. The base for the applicability of this technique will be the frequency of operation, which will determine the length of the sensor and the noise background at the frequency of interest. It is, however, believed that the proposed technique will provide reliable estimates under the noise background.

  15. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

    2011-09-30

    The U.S. Department of Energy‘s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE‘s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and

  16. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn [General Electric Global Research, Niskayuna, NY (United States); Subramanian, Ramanathan [General Electric Global Research, Niskayuna, NY (United States); Rizeq, George [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); McDermott, John [General Electric Global Research, Niskayuna, NY (United States); Eiteneer, Boris [General Electric Global Research, Niskayuna, NY (United States); Ladd, David [General Electric Global Research, Niskayuna, NY (United States); Vazquez, Arturo [General Electric Global Research, Niskayuna, NY (United States); Anderson, Denise [General Electric Global Research, Niskayuna, NY (United States); Bates, Noel [General Electric Global Research, Niskayuna, NY (United States)

    2011-12-11

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE's bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation

  17. Report of National Research Institute for Pollution and Resources for fiscal 1979. Research on conversion of coal to petroleum, research on coal liquefaction, high pressure liquid phase hydrogenation of coal by continuous test equipment, and manufacture of coal chemicals; 1979 nendo sekitan no yuka no kenkyu / sekitan no ekika no kenkyu / renzoku shiken sochi ni yoru sekitan no koatsu ekiso suisoka bunkai / coal chemicals no seizo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    Research was conducted on conversion of coal to petroleum for the purpose of securing substitute liquid fuel. Recovery of hydrogen from the waste gas from the conversion process was explained, as were the conversion results from various coals produced in Japan. In coal liquefaction researches with the aim of manufacturing artificial petroleum, a report was made on each of the researches, i.e., the experiment results of coal liquefaction using various catalysts, manufacture of hydrogen by water gas reaction, catalytic action against coal paste, action of mixed oil and pressure against coal paste, result of hydrogen adding test for coal paste using an intermediate scale device, test result of secondary hydrogen addition for coal liquefied oil, and the test result of continuous secondary hydrogen addition for the liquefied oil. In the manufacture of fuel oil by hydro-cracking of coal or tar, a report was made on high pressure liquid phase hydrogenation of coal using a continuous testing device. Aromatic chemicals useful as chemical materials are supposed to be obtained by cutting inter-polymerized-unit bonding to make low molecules from the chemical structure of coal, removing surrounding radicals and simplifying it. A report was also made on the experiment of manufacturing coal chemicals by combination of high pressure liquid phase hydrogenation and hydro-dealkylation. (NEDO)

  18. Conversion to organic wine production: exploring the economic performance impacts

    OpenAIRE

    Nisén, Pia

    2014-01-01

    This study focuses on understanding the relationship between organic wine production and economic performance. The aim of this study is to clarify, what are the economic impacts that result from the conversion of wine production from conventional to organic. This is an interesting topic to be explored in more detail because despite the increasing demand of organic wine and share of vineyard area used for organic winemaking, the economic consequences of the conversion are still somewhat unclea...

  19. Production of humic substances through coal-solubilizing bacteria

    Directory of Open Access Journals (Sweden)

    Nelson Valero

    2014-09-01

    Full Text Available In this paper, the production of humic substances (HS through the bacterial solubilization of low rank coal (LRC was evaluated. The evaluation was carried out by 19 bacterial strains isolated in microenvironments with high contents of coal wastes. The biotransformed LRC and the HS produced were quantified in vitro in a liquid growth medium. The humic acids (HA obtained from the most active bacterial strain were characterized via elemental composition (C, H, N, O, IR analyses, and the E4/E6 ratio; they were then compared with the HA extracted chemically using NaOH. There was LRC biotransformation ranged from 25 to 37%, and HS production ranged from 127 to 3100 mg.L-1. More activity was detected in the isolated strains of Bacillus mycoides, Microbacterium sp, Acinetobacter sp, and Enterobacter aerogenes. The HA produced by B. mycoides had an IR spectrum and an E4/E6 ratio similar to those of the HA extracted with NAOH, but their elemental composition and their degree of aromatic condensation was different. Results suggest that these bacteria can be used to exploit the LRC resulting from coal mining activities and thus produce HS in order to improve the content of humified organic matter in soils.

  20. Production of carbon molecular sieves from illinois coals. An assessment

    Science.gov (United States)

    Lizzio, Anthony A.; Rostam-Abadi, Massoud

    1991-01-01

    Chars were produced from an Illinois No. 2 bituminous coal under various pyrolysis and activation conditions and tested for their molecular sieve properties. The amount of N2 compared to the amount of CO2 adsorbed by each char was used as a preliminary indicator of its molecular sieve properties. This relatively simple, but apparently useful test was confirmed by successfully characterizing the well-known molecular sieve properties of a commercial zeolite and molecular sieve carbon. In addition, coal chars having relatively high surface areas (800-1800 m2/g) were produced and tested for their molecular sieving capabilities. These carbon materials, which have high adsorption capacities and relatively narrow pore size distributions, should be ideal candidates for the commercial production of CMS.

  1. Coal: resources, reserves and production - Panorama 2008; Charbon: ressources, reserves et production - Panorama 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    For the French, whose last coal mine closed in 2004, the 'comeback' of coal as a political issue may seem a bit surprising. Even if coal is still used in domestic industry and to produce electricity, it is many years since it was used as the primary energy source for electricity production. This situation, specific to France and certain European countries, is not at all typical of the world situation: in the face of surging energy demand, coal - whose reserves have been estimated by the World Energy Council to cover 145 years of consumption at the current rate - seems to be an energy of the future and an alternative to oil, natural gas and nuclear power for the production of electricity.

  2. Adsorption-induced coal swelling and stress: Implications for methane production and acid gas sequestration into coal seams

    Science.gov (United States)

    Cui, Xiaojun; Bustin, R. Marc; Chikatamarla, Laxmi

    2007-10-01

    reduction in permeability, and hence sequestration of H2S in deep coals will be likely impractical. Furthermore, high stresses resulting from sorption of acid gases will potentially cause the coal to yield, fracture or slip, and produce fine particles, which further affect permeability and thus methane production and acid gas sequestration.

  3. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO

  4. Novel technique for coal pyrolysis and hydrogenation product analysis. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, L.D.; Boyle, J.

    1993-03-15

    A microjet reactor coupled to a VUV photoionization time-of-flight mass spectrometer has been used to obtain species measurements during high temperature pyrolysis and oxidation of a wide range of hydrocarbon compounds ranging from allene and acetylene to cyclohexane, benzene and toluene. Initial work focused on calibration of the technique, optimization of ion collection and detection and characterization of limitations. Using the optimized technique with 118 nm photoionization, intermediate species profiles were obtained for analysis of the hydrocarbon pyrolysis and oxidation mechanisms. The ``soft`` ionization, yielding predominantly molecular ions, allowed the study of reaction pathways in these high temperature systems where both sampling and detection challenges are severe. Work has focused on the pyrolysis and oxidative pyrolysis of aliphatic and aromatic hydrocarbon mixtures representative of coal pyrolysis and hydropyrolysis products. The detailed mass spectra obtained during pyrolysis and oxidation of hydrocarbon mixtures is especially important because of the complex nature of the product mixture even at short residence times and low primary reactant conversions. The combustion community has advanced detailed modeling of pyrolysis and oxidation to the C4 hydrocarbon level but in general above that size uncertainties in rate constant and thermodynamic data do not allow us to a priori predict products from mixed hydrocarbon pyrolyses using a detailed chemistry model. For pyrolysis of mixtures of coal-derived liquid fractions with a large range of compound structures and molecular weights in the hundreds of amu the modeling challenge is severe. Lumped models are possible from stable product data.

  5. Coal and Climate Change. Will Coal Depart or Dominate Global Power Production During the 21st Century?

    Energy Technology Data Exchange (ETDEWEB)

    Van der Zwaan, B. [Harvard University, John F. Kennedy School of Government, Cambridge, MA (United States)

    2004-11-11

    At present, coal power production is the most polluting energy resource in terms of sulphur dioxide, nitrous oxide and particulate matter emissions, and, as a result, involves the largest external environmental costs among the currently available electricity generation alternatives. Coal is also the most carbon-intensive fossil fuel and its present large-scale combustion practices constitute among the prime impediments to implementing effective climate change control regimes. This article analyses the question whether coal must depart or may still dominate power production during the 21st century, in view of the challenges implied by regional pollution reduction and global warming mitigation. Four main reasons are described why, paradoxically, coal is likely to continue to have a high and perhaps even increasing share in global electricity generation this century: (I) its large resource base; (II) the improving efficiency and competitiveness of conventional and innovative coal technologies; (III) the employability of new coal technologies in conjunction with carbon capture and storage systems; (IV) the improving economics of these advanced clean coal technologies.

  6. Characteristics of American coals in relation to their conversion into clean-energy fuels. Final report. [1150 samples of US coals

    Energy Technology Data Exchange (ETDEWEB)

    Spackman, W.; Davis, A.; Walker, P.L.; Lovell, H.L.; Vastola, F.J.; Given, P.H.; Suhr, N.H.; Jenkins, R.G.

    1982-06-01

    To further characterize the Nation's coals, the Penn State Coal Sample Bank and Data Base were expanded to include a total of 1150 coal samples. The Sample Bank includes full-seam channel samples as well as samples of lithotypes, seam benches, and sub-seam sections. To the extent feasible and appropriate basic compositional data were generated for each sample and validated and computerized. These data include: proximate analysis, ultimate analysis, sulfur forms analysis, calorific value, maceral analysis, vitrinite reflectance analysis, ash fusion analysis, free-swelling index determination, Gray-King coke type determination, Hardgrove grindability determination, Vicker's microhardness determination, major and minor element analysis, trace element analysis, and mineral species analysis. During the contract period more than 5000 samples were prepared and distributed. A theoretical and experimental study of the pyrolysis of coal has been completed. The reactivity of chars, produced from all ranks of American coals, has been studied with regard to reactivity to air, CO/sub 2/, H/sub 2/ and steam. Another area research has concerned the catalytic effect of minerals and various cations on the gasification processes. Combustion of chars, low volatile fuels, coal-oil-water-air emulsions and other subjects of research are reported here. The products of this research can be found in 23 DOE Technical Research Reports and 49 published papers. As another mechanism of technology transfer, the results have been conveyed via more than 70 papers presented at a variety of scientific meetings. References to all of these are contained in this report.

  7. Inorganic constituents in coal

    Energy Technology Data Exchange (ETDEWEB)

    A. Radenovic [University of Zagreb, Sisak (Croatia). Faculty of Metallurgy

    2006-07-01

    Coal contains not only organic matter but also small amounts of inorganic constituents. More than one hundred different minerals and virtually every element in the periodic table have been found in coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates), minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the order of w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprised in coal. The fractions of trace elements usually decrease when the rank of coal increases. Fractions of the inorganic elements are different, depending on the coal bed and basin. A variety of analytical methods and techniques can be used to determine the mass fractions, mode of occurrence, and distribution of organic constituents in coal. There are many different instrumental methods for analysis of coal and coal products but atomic absorption spectroscopy (AAS) is the one most commonly used. Fraction and mode of occurrence are one of the main factors that have influence on transformation and separation of inorganic constituents during coal conversion. Coal, as an important world energy source and component for non-fuels usage, will be continuously and widely used in the future due to its relatively abundant reserves. However, there is a conflict between the requirements for increased use of coal on the one hand and less pollution on the other. It's known that the environmental impacts, due to either coal mining or coal usage, can be: air, water and land pollution. Although, minor components, inorganic constituents can exert a significant influence on the economic value, utilization, and environmental impact of the coal.

  8. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  9. The influence of particle size distribution on dose conversion factors for radon progeny in the underground excavations of hard coal mine.

    Science.gov (United States)

    Skubacz, Krystian; Wojtecki, Łukasz; Urban, Paweł

    2016-10-01

    In Polish underground mines, hazards caused by enhanced natural radioactivity occur. The sources of radiation exposure are short-lived radon decay products, mine waters containing radium 226Ra and 228Ra and the radioactive sediments that can precipitate out of these waters. For miners, the greatest exposure is usually due to short-lived radon decay products. The risk assessment is based on the measurement of the total potential alpha energy concentration (PAEC) and the evaluation of the related dose by using the dose conversion factor as recommended by relevant legal requirements. This paper presents the results of measurements of particle size distributions of ambient aerosols in an underground hard coal mine, the assessment of the radioactive particle size distribution of the short-lived radon decay products and the corresponding values of dose conversion factors. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometers to about 20 μm. The study therefore included practically the whole class of respirable particles. The results showed that the high concentration of ultrafine and fine aerosols measured can significantly affect the value of the dose conversion factors, and consequently the corresponding committed effective dose, to which the miners can be exposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. In Situ Catalytic Pyrolysis of Low-Rank Coal for the Conversion of Heavy Oils into Light Oils

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem Amin

    2017-01-01

    Full Text Available Lighter tars are largely useful in chemical industries but their quantity is quite little. Catalytic cracking is applied to improve the yield of light tars during pyrolysis. Consequently, in situ upgrading technique through a MoS2 catalyst has been explored in this research work. MoS2 catalyst is useful for the conversion of high energy cost into low energy cost. The variations in coal pyrolysis tar without and with catalyst were determined. Meanwhile, the obtained tar was analyzed using simulated distillation gas chromatograph and Elemental Analyzer. Consequently, the catalyst reduced the pitch contents and increased the fraction of light tar from 50 to 60 wt.% in coal pyrolysis tar. MoS2 catalyst increased the liquid yield from 18 to 33 (wt.%, db and decreased gas yield from 27 to 12 (wt.%, db compared to coal without catalyst. Moreover, it increased H content and hydrogen-to-carbon ratio by 7.9 and 3.3%, respectively, and reduced the contents of nitrogen, sulphur, and oxygen elements by 8.1%, 15.2%, and 23.9%, respectively, in their produced tars compared to coal without catalyst.

  11. Enhanced coal bed methane production and sequestration of CO2 in unmineable coal

    Energy Technology Data Exchange (ETDEWEB)

    Locke, James [CONSOL Energy Inc., South Park, PA (United States); Winschel, Richard [CONSOL Energy Inc., South Park, PA (United States)

    2005-03-01

    The Marshall County Project was undertaken by CONSOL Energy Inc. (CONSOL) with partial funding from the U. S. Department of Energy’s (DOE) Carbon Storage Program (CSP). The project, initiated in October 2001, was conducted to evaluate opportunities for carbon dioxide CO2 sequestration in an unmineable coal seam in the Northern Appalachian Basin with simultaneous enhanced coal bed methane recovery. This report details the final results from the project that established a pilot test in Marshall County, West Virginia, USA, where a series of coal bed methane (CBM) production wells were developed in an unmineable coal seam (Upper Freeport (UF)) and the overlying mineable Pittsburgh (PIT) seam. The initial wells were drilled beginning in 2003, using slant-hole drilling procedures with a single production leg, in a down-dip orientation that provided limited success. Improved well design, implemented in the remaining wells, allowed for greater CBM production. The nearly-square-shaped project area was bounded by the perimeter production wells in the UF and PIT seams encompassing an area of 206 acres. Two CBM wells were drilled into the UF at the center of the project site, and these were later converted to serve as CO2 injection wells through which, 20,000 short tons of CO2 were planned to be injected at a maximum rate of 27 tons per day. A CO2 injection system comprised of a 50-ton liquid CO2 storage tank, a cryogenic pump, and vaporization system was installed in the center of the site and, after obtaining a Class II underground injection permit (UIC) permit from the West Virginia Department of Environmental Protection (WVDEP), CO2 injection, through the two center wells, into the UF was initiated in September 2009. Numerous complications limited CO2 injection continuity, but CO2 was injected until breakthrough was encountered in September 2013, at which point the project had achieved an injection total of 4,968 tons of CO2. During the injection and post

  12. Methane and carbon dioxide emissions from selected U.S. coal production regions and coal-fired power plants

    Science.gov (United States)

    Peischl, J.; Ryerson, T. B.; Trainer, M.

    2016-12-01

    Coal and natural gas each fueled 33% of the total electric power generated in the United States in 2015. Combined-cycle natural-gas-fired power plants emit less than half of the carbon dioxide per unit power produced than do coal-fired power plants. However, methane emissions prior to combustion as fuel must also be accounted for in order to determine the total greenhouse gas footprint of a fuel type choice. While many studies over the past few years have focused on methane emissions associated with natural gas production and its use, relatively few studies have focused on methane emissions associated with coal production and its use in coal-fired power plants. We present airborne methane data from two studies to quantify emissions from coal production regions in Alabama and Wyoming. We additionally quantify carbon dioxide and methane emissions from several coal-fired power plants. Our top-down emission estimates are then compared to the EPA greenhouse gas inventory when possible.

  13. Recent advances in the use of synchrotron radiation for the analysis of coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    Two major coal combustion problems are the formation and build-up of slag deposits on heat transfer surfaces and the production and control of toxic species in coal combustion emissions. The use of synchrotron radiation for the analysis of coal combustion products can play a role in the better understanding of both these phenomena. An understanding of the chemical composition of such slags under boiler operating conditions and as a function of the mineral composition of various coals is one ultimate goal of this program. The principal constituents in the ash of many coals are the oxides of Si, Al, Fe, Ca, K, S, and Na. The analytical method required must be able to determine the functional forms of all these elements both in coal and in coal ash at elevated temperatures. One unique way of conducting these analyses is by x-ray spectroscopy.

  14. Sulfidation of 310 stainless steel at sulfur potentials encountered in coal conversion systems

    Science.gov (United States)

    Rao, D. B.; Nelson, H. G.

    1976-01-01

    The sulfidation of SAE 310 stainless steel was carried out in gas mixtures of hydrogen and hydrogen sulfide over a range of sulfur potentials anticipated in advanced coal gasification processes. The kinetics, composition, and morphology of sulfide scale formation were studied at a fixed temperature of 1,065 K over a range of sulfur potentials from .00015 Nm to the -2nd power to 900 Nm to the -2nd power. At all sulfur potentials investigated, the sulfide scales were found to be multilayered. The relative thickness of the individual layers as well as the composition was found to depend on the sulfur potential. The reaction was found to obey the parabolic rate law after an initial transient period. Considerably longer transient periods were found to be due to unsteady state conditions resulting from compositional variations in the spinel layer. The sulfur pressure dependence on the parabolic rate constant was found to best fit the equation K sub p equals const. (P sub S2) to the 1/nth power, where n equals 3.7. The growth of the outer layers was found to be primarily due to the diffusion of metal ions, iron being the predominant species. The inner layer growth was due to the dissociation of the primary product at the alloy scale interface and depended on the activity of chromium.

  15. Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-31

    The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

  16. The characteristics of American coals in relation to their conversion into clean-energy fuels

    Science.gov (United States)

    Spackman, W.; Davis, A.; Walker, P. L.; Lovell, H. L.; Vastola, F. J.; Given, P. H.; Suhr, N. H.; Jenkins, R. G.

    1982-06-01

    The Sample Bank for characterization of coal includes full seam channel samples as well as samples of lithotypes, seam benches, and subseam sections. The data include: proximate analysis, ultimate analysis, sulfur froms analysis, calorific value, maceral analysis, vitrinite reflectance analysis, ash fusion analysis, free-swelling index determination, Gray-King coke type determination, Hardgrove grindability determination, Vicker's microhardness determination, major and minor element analysis, trace element analysis, and mineral species analysis. The pyrolysis of coal was studied the reactivity of chars, produced from all ranks of American coals, was studied for reactivity to air, CO2, H2 and steam. The catalytic effect of minerals and various cations on the gasification processes was examined. Combustion of chars, low volatile fuels, coal-oil-water-air emulsions and other subjects of research are reported.

  17. Studies of coupled chemical and catalytic coal conversion methods. Tenth quarterly report, January--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.

    1990-12-31

    This report concerns our research on base-catalyzed coal solubilization and a new approach for hydrogen addition. The work on base-catalyzed, chemical solubilization is continuing. this report is focused on the hydrogenation research. Specifically it deals with the use of arene chromium carbonyl complexes as reagents for the addition of dideuterium to coal molecules. In one phase of the work, he has established that the aromatic hydrocarbons in a representative coal liquid can be converted in very good yield to arene chromium carbonyl compounds. In a second phase of the work directly related to our objective of improved methods for catalytic hydrogenation, he has established that the aromatic constituents of the same coal liquid add dideuterium in the presence of added napththalene chromium carbonyl.

  18. Exploratory study of coal-conversion chemistry. Quarterly report No. 3, November 19, 1981-February 18, 1982. [Dihydronaphthalene, 1,2'-dinaphthylmethane, methoxynaphthalene diphenyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.S.; McMillen, D.F.; Ogier, W.C.; Bunnell, R.; Hum, G.P.

    1982-03-01

    Work in Task A has provided additional data on the rate and mechanisms of radical-induced cleavage of strong C-C and C-0 bonds in coal structures. This work has shown that even resonance-stabilized radicals, which form relatively weak C-C bonds, can displace other resonance-stabilized radicals from methylene-bridged coal structures. Kinetic studies reveal that either the self-disproportionation of 1,2-dihydronaphthalene is much faster than previously reported or that the 1,2-dihydronaphthalene-tetralin disproportionation is much less important as a radical initiation process than thermochemical estimates had suggested. 1,2'-Dinaphthylmethane undergoes radical-induced CH/sub 2/-Ar bond scission ten times faster than diphenyl ether. This factor is shown to be consistent with the thermochemistry of displacement by tetralyl radical. In Task B we studied CO/H/sub 2/O conversion of a second, high volatile bituminous coal, PSOC-233. We found that, as with PSOC-026, the initial pH did affect the conversion rate, increasing with higher pH. We also conducted experiments with several oxygen-containing model compounds in CO/D/sub 2/O at 400/sup 0/C for 20 min. We had shown earlier in preliminary control experiments that simple aromatics, such as toluene, did not incorporate deuterium under these conditions. This quarter we found that anisole (Ph-O-CH/sub 3/) was converted to several products, with benzene as the most prominent. About 60% of the anisole was recovered in several experiments with mass balances at about 85%. There was a net incorporation of deuterium in the product benzene. The corresponding conversion in tetralin under the same conditions was two orders of magnitude slower and yielded phenol as the major product. We conclude that in the aqueous medium a chain process can occur that yields phenyl radical, which can then receive protium from a starting anisole or deuterium from the mineral medium.

  19. Coal devolatilization and char conversion under suspension fired conditions in O2/N2 and O2/CO2 atmospheres

    DEFF Research Database (Denmark)

    Jensen, Anker Degn; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    have been carried out in an electrically heated entrained flow reactor that is designed to simulate the conditions in a suspension fired boiler. Coal devolatilized in N2 and CO2 atmospheres provided similar results regarding char morphology, char N2-BET surface area and volatile yield. This strongly...... indicates that a shift from air to oxy-fuel combustion does not influence the devolatilization process significantly. Char combustion experiments yielded similar char conversion profiles when N2 was replaced with CO2 under conditions where combustion was primarily controlled by chemical kinetics. When char...

  20. Elusive prize: enormous coal gas potential awaits production technology breakthrough

    Energy Technology Data Exchange (ETDEWEB)

    Collison, M.

    2002-01-07

    The expanded gas pipeline grid has excess capacity, and gas resources are declining. There is increasing interest in development of Canada's resources of coalbed methane (CBM). The chairman of the Canadian Coalbed Methane Forum estimates that Canada has more than 3,000 trillion ft{sup 3} of gas awaiting suitable technology. PanCanadian and MGV Energy conducted a CBM exploration and pilot study on the Palliser spread in southern Alberta. Results from 23 of 75 wells are encouraging. The study is being accelerated and expanded to include an additional 50 wells elsewhere in Alberta. Some scientists anticipate commercial CBM production within two years. Problems facing developers include the large land holdings necessary for economic CBM production and the disposal of coal formation water. It is anticipated that U.S. technology will be modified and used. The potential for CBM development at Pictou in Nova Scotia and in British Columbia in the foothills is considered. 3 figs.

  1. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Prof. Harold H. Schobert; Dr. M. Mercedes Maroto-Valer; Ms. Zhe Lu

    2002-09-27

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, this report evaluates and compares several routes for the production of activated carbons from unburned carbon in fly ash, including physical and chemical activation methods. During the present reporting period (June 30, 2001-June 29, 2002), additional characterization work was conducted under Task 1 ''Procurement and characterization of CCBPs''. The suite collected includes samples from pulverized utility boilers, a utility cyclone unit equipped with a beneficiation technology, a stoker, and a fluidized bed combustor. Proximate, ultimate, and petrographic analyses of the fly ash samples previously collected were measured. Furthermore, the surface areas of the samples assembled were characterized by N{sub 2} adsorption isotherms at 77 K. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt%), while volatile matter contents of the samples varied between 0.45 to 24.8 wt%. The ultimate analyses of all the fly ash samples showed that they contained primarily carbon, while the hydrogen contents of all the samples were very low. In addition, during the current reporting period, also Task 2 ''Development of activated carbons'' and Task 3 ''Characterization of activated carbons'' were continued.

  2. Stimulation of commercial coal seam methane production aimed at improving mining technology

    Science.gov (United States)

    Shubina, E. A.; Lukyanov, V. G.

    2016-09-01

    The relevance of the current research is due to the urgent need to revise the existing normative bases and procedures involved in intensive development of coal-methane deposits and commercial production of coal seam methane. The article presents the analysis of data on coal production volume and amount of methane emitted into the atmosphere in Kuzbass. There is a need to develop the exploration techniques that would allow implementing pre-mining gas drainage of coal seams and provide the companies with the guidance on coal seam methane drainage in very gassy coal mines. Commercial production of methane should become an integral part of economy and energy balance of the Russian Federation, which, in its turn, would enhance environmental protection due to reducing methane emissions, the largest source of greenhouse effect.

  3. A review of conversion processes for bioethanol production with a focus on syngas fermentation

    Directory of Open Access Journals (Sweden)

    Mamatha Devarapalli

    2015-09-01

    Full Text Available Bioethanol production from corn is a well-established technology. However, emphasis on exploring non-food based feedstocks is intensified due to dispute over utilization of food based feedstocks to generate bioethanol. Chemical and biological conversion technologies for non-food based biomass feedstocks to biofuels have been developed. First generation bioethanol was produced from sugar based feedstocks such as corn and sugar cane. Availability of alternative feedstocks such as lignocellulosic and algal biomass and technology advancement led to the development of complex biological conversion processes, such as separate hydrolysis and fermentation (SHF, simultaneous saccharification and fermentation (SSF, simultaneous saccharification and co-fermentation (SSCF, consolidated bioprocessing (CBP, and syngas fermentation. SHF, SSF, SSCF, and CBP are direct fermentation processes in which biomass feedstocks are pretreated, hydrolyzed and then fermented into ethanol. Conversely, ethanol from syngas fermentation is an indirect fermentation that utilizes gaseous substrates (mixture of CO, CO2 and H2 made from industrial flue gases or gasification of biomass, coal or municipal solid waste. This review article provides an overview of the various biological processes for ethanol production from sugar, lignocellulosic, and algal biomass. This paper also provides a detailed insight on process development, bioreactor design, and advances and future directions in syngas fermentation.

  4. Production of carbon molecular sieves from Illinois coal

    Science.gov (United States)

    Lizzio, A.A.; Rostam-Abadi, M.

    1993-01-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for application in the separation of gas molecules that vary in size and shape. A study is in progress at the Illinois State Geological Survey to determine whether Illinois basin coals are suitable feedstocks for the production of CMS and to evaluate their potential application in gas separation processes of commercial importance. Chars were prepared from Illinois coal in a fixed-bed reactor under a wide range of heat treatment and activation conditions. The effects of various coal/char pretreatments, including coal demineralization, preoxidation, char activation, and carbon deposition, on the molecular sieve properties of the chars were also investigated. Chars with commercially significant BET surface areas of 1500 m2/g were produced by chemical activation using potassium hydroxide as the activant. These high-surface-area (HSA) chars had more than twice the adsorption capacity of commercial carbon and zeolite molecular sieves. The kinetics of adsorption of various gases, e.g., N2, O2, CO2, CH4, CO and H2, on these chars at 25??C was measured. The O2/N2 molecular sieve properties of one char prepared without chemical activation were similar to those of a commercial CMS. On the other hand, the O2/N2 selectivity of the HSA char was comparable to that of a commercial activated carbon, i.e., essentially unity. Carbon deposition, using methane as the cracking gas, increased the O2/N2 selectivity of the HSA char, but significantly decreased its adsorption capacity. Several chars showed good potential for efficient CO2/CH4 separation; both a relatively high CO2 adsorption capacity and CO2/CH4 selectivity were achieved. The micropore size distribution of selected chars was estimated by equilibrium adsorption of carbon dioxide, n-butane and iso-butane at O??C. The extent of adsorption of each gas corresponded to the effective surface area contained in pores with diameters greater than 3

  5. Geological evaluation on productibility of coal seam gas; Coal seam gas no chishitsugakuteki shigen hyoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K. [University of Shizuoka, Shizuoka (Japan). Faculty of Education

    1996-09-01

    Coal seam gas is also called coal bed methane gas, indicating the gas existing in coal beds. The gas is distinguished from the oil field based gas, and also called non-conventional type gas. Its confirmed reserve is estimated to be 24 trillion m {sup 3}, with the trend of its development seen worldwide as utilization of unused resource. For the necessity of cultivating relevant technologies in Japan, this paper considers processes of production, movement, stockpiling, and accumulation of the gas. Its productibility is controlled by thickness of a coal bed, degree of coalification, gas content, permeability, groundwater flow, and deposition structure. Gas generation potential is evaluated by existing conditions of coal and degree of coalification, and methane production by biological origin and thermal origin. Economically viable methane gas is mainly of the latter origin. Evaluating gas reserve potential requires identification of the whole mechanism of adsorption, accumulation and movement of methane gas. The gas is expected of effect on environmental aspects in addition to availability as utilization of unused energy. 5 figs.

  6. Liquid column fractionation: a method of solvent fractionation of coal liquefaction and petroleum products

    Energy Technology Data Exchange (ETDEWEB)

    Burke, F.P.; Winschel, R.A.; Wooton, D.L.

    1979-07-01

    A method is described for the solvent fractionation of coal liquefaction and petroleum products which is both reproducible and considerably more rapid than many conventional solvent fractionation techniques. This method involves sequential elution of a sample injected onto an inert liquid chromatographic column. Applications of this method to coal liquefaction and petroleum products are given.

  7. Solid waste management of coal conversion residuals from a commercial-size facility: environmental engineering aspects. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bern, J.; Neufeld, R. D.; Shapiro, M. A.

    1980-11-30

    Major residuals generated by the conversion process and its auxiliary operations include: (a) coal preparation wastes; (b) gasifier ash; (c) liquefaction solids-char; (d) tail gas or flue gas desulfurization sludge; (e) boiler flyash and bottom ash; (f) raw water treatment sludge, and; (g) biosludges from process wastewater treatment. Recovered sulfur may also require disposal management. Potential environmental and health impacts from each of the residues are described on the basis of characterization of the waste in the perspective of water quality degradation. Coal gasification and liquefaction systems are described in great detail with respect to their associated residuals. Management options are listed with the conclusion that land disposal of the major residual streams is the only viable choice. On-site versus off-site disposal is analyzed with the selection of on-site operations to reduce political, social and institutional pressures, and to optimize the costs of the system. Mechanisms for prevention of leachate generation are described, and various disposal site designs are outlined. It is concluded that co-disposal feasibility of some waste streams must be established in order to make the most preferred solid waste management system feasible. Capacity requirements for the disposal operation were calculated for a 50,000 bbl/day coal liquefaction plant or 250 million SCF/day gasification operation.

  8. Petrographic, mineralogical, and chemical characterization of certain Alaskan coals and washability products. Final report, July 11, 1978-October 11, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Rao, P.D.; Wolff, E.N.

    1981-05-01

    Petrological, mineralogical and chemical characterization provides basic information needed for proper utilization of coals. Since many of these coals are likely to be beneficiated to reduce ash, the influence of coal washing on the characteristics of the washed product is important. Twenty samples of Alaskan coal seams were used for this study. The coals studied ranged in rank from lignite to high volatile A bituminous with vitrinite/ulminite reflectance ranging from 0.25 to 1.04. Fifteen raw coals were characterized for proximate and ultimate analysis reflectance rank, petrology, composition of mineral matter, major oxides and trace elements in coal ash. Washability products of three coals from Nenana, Beluga and Matanuska coal fields were used for characterization of petrology, mineral matter and ash composition. Petrological analysis of raw coals and float-sink products showed that humodetrinite was highest in top seam in a stratigraphic sequence

  9. RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS

    Energy Technology Data Exchange (ETDEWEB)

    Gregory J. McCarthy; Dean G. Grier

    2001-01-01

    Prior to the initiation of this study, understanding of the long-term behavior of environmentally-exposed Coal Combustion By-Products (CCBs) was lacking in (among others) two primary areas addressed in this work. First, no method had been successfully applied to achieve full quantitative analysis of the partitioning of chemical constituents into reactive or passive crystalline or noncrystalline compounds. Rather, only semi-quantitative methods were available, with large associated errors. Second, our understanding of the long-term behavior of various CCBs in contact with the natural environment was based on a relatively limited set of study materials. This study addressed these areas with two objectives, producing (1) a set of protocols for fully quantitative phase analysis using the Rietveld Quantitative X-ray Diffraction (RQXRD) method and (2) greater understanding of the hydrologic and geochemical nature of the long-term behavior of disposed and utilized CCBs. The RQXRD technique was initially tested using (1) mixtures of National Institute of Standards and Technology (NIST) crystalline standards, and (2) mixtures of synthetic reagents simulating various CCBs, to determine accuracy and precision of the method, and to determine the most favorable protocols to follow in order to efficiently quantify multi-phase mixtures. Four sets of borehole samples of disposed or utilized CCBs were retrieved and analyzed by RQXRD according to the protocols developed under the first objective. The first set of samples, from a Class F ash settling pond in Kentucky disposed for up to 20 years, showed little mineralogical alteration, as expected. The second set of samples, from an embankment in Indiana containing a mixture of chain-grate (stoker) furnace ash and fluidized bed combustion (FBC) residues, showed formation of the mineral thaumasite, as observed in previously studied exposed FBC materials. Two high-calcium CCBs studied, including a dry-process flue gas desulfurization

  10. Effects of coal properties on the production rate of combustion solid residue

    Energy Technology Data Exchange (ETDEWEB)

    Durgun, D. [Catalagzi Thermal Plant, Catalagzi, Zonguldak (Turkey); Genc, A. [Department of Environmental Engineering, Zonguldak Karaelmas University, 67100 Zonguldak (Turkey)

    2009-11-15

    The production rates of furnace bottom ash in a pulverized coal-fired power plant were monitored for a two-year period and its variations with respect to coal properties were analyzed. The power plant was originally designed to fire the coal sludge generated from a washing process; however, the coal sludge and its mixture with low-rank bituminous coal have been started to be used as the main fuel with time. The results of the hardgrove grindability measurements have shown that the grinding properties of sludge or its mixtures could not be predicted based on proximate analysis (moisture, ash, carbon and volatile contents); it could only be determined by experiments. The production rate of bottom ash in this particular power plant remained relatively insensitive to the high ash and moisture contents and could be estimated almost only by knowing the calorific value of the source coal. The evaluated dependency was linear. (author)

  11. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system.

    Science.gov (United States)

    Ohtomo, Yoko; Ijiri, Akira; Ikegawa, Yojiro; Tsutsumi, Masazumi; Imachi, Hiroyuki; Uramoto, Go-Ichiro; Hoshino, Tatsuhiko; Morono, Yuki; Sakai, Sanae; Saito, Yumi; Tanikawa, Wataru; Hirose, Takehiro; Inagaki, Fumio

    2013-01-01

    Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in-situ pressure (0-100 MPa) and temperature (0-70°C) conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 ml/min, respectively) were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ(13)Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to acetate.

  12. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    Directory of Open Access Journals (Sweden)

    Yoko eOhtomo

    2013-12-01

    Full Text Available Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in situ pressure (0–100 MPa and temperature (0–70°C conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 mL/min, respectively were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ13Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to

  13. Catalytic coal liquefaction with treated solvent and SRC recycle

    Science.gov (United States)

    Garg, Diwakar; Givens, Edwin N.; Schweighardt, Frank K.

    1986-01-01

    A process for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal.

  14. Coal conversion rate in 1t/d PSU liquefaction reactor; 1t/d PSU ekika hannoto ni okeru sekitan tenka sokudo no kento

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)

    1996-10-28

    To investigate the coal liquefaction characteristics, coal slurry samples were taken from the outlets of the reactors and slurry preheater of NEDOL process 1 t/d process supporting unit (PSU), and were analyzed. Tanito Harum coal was used for liquefaction, and the slurry was prepared with recycle solvent. Liquefaction was performed using synthetic iron sulfide catalyst at reaction temperatures, 450 and 465{degree}C. Solubility of various solid samples was examined against n-hexane, toluene, and tetrahydrofuran (THF). When considering the decrease of IMO (THF-insoluble and ash) as a characteristic of coal conversion reaction, around 20% at the outlet of the slurry preheater, around 70% within the first reactor, and several percents within the successive second and third reactors were converted against supplied coal. Increase of reaction temperature led to the increase of evaporation of oil fraction, which resulted in the decrease of actual slurry flow rate and in the increase of residence time. Thus, the conversion of coal was accelerated by the synergetic effect of temperature and time. Reaction rate constant of the coal liquefaction was around 2{times}10{sup -1} [min{sup -1}], which increased slightly with increasing the reaction temperature from 450 to 465{degree}C. 3 refs., 5 figs., 1 tab.

  15. The possibilites of coal seam underground excavation in Republic of Macedonia with high productive excavation methods

    OpenAIRE

    Despodov, Zoran; Doneva, Nikolinka; Mijalkovski, Stojance

    2008-01-01

    The paper presents mining and geology properties of coal deposits in R.Macedonia predetermined for underground exploitation. Also it will be shown the way of coal seams preparation and development for underground excavation with longwall mining methods. Based on mining and geology properties of coal and it’s caloric value it will be observed the possibilities for application on the longwall mining which is among excavation methods with highest production and capacity applied in the contemp...

  16. Using ultrafine particles from a coal washing plant in metallurgical coke production

    OpenAIRE

    Gutierrez Bernal, Jesús Manuel; Mora Pulido, William Fernando; Rodríguez Varela, Luís Ignacio; Ramírez, Javier; Díaz Velásquez, José de Jesús

    2011-01-01

    Blending ultrafine particles from a coal washing plant was studied for coke production by briquetting using 6%w coal tar as binder. The ultrafine coal particles were characterised and a pilot coking test was made in a Koppers’ furnace. Coke quality was evaluated by proximate analysis, stability (micum 10 and micum 40), coke reactivity index (CRI) with CO2 and the coke’s mechanical strength after reaction with carbon dioxide (CSR index). Briquetting results showed that was possible to obtain c...

  17. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  18. The Development of Environmentally Friendly Technologies of Using Coals and Products of Their Enrichment in the Form of Coal Water Slurries

    Science.gov (United States)

    Murko, Vasily; Hamalainen, Veniamin

    2017-11-01

    The article presents the current state of the technology for production and combustion of fuel coal water slurries in Russia and foreign countries. Experimental and industrial facilities show the technological and economic efficiency of using this technology for disposal of wastes resulting after coal processing and enrichment. The feasibility studies of use of the technology at large Kuzbass thermal power stations are presented. The possibility of solving a serious environmental problem of reducing storage of the most toxic waste of coal enrichment in the location areas of coal washing plants and coal mining enterprises is demonstrated.

  19. Thermal processing of Khoot coal and characterization of obtained solid and liquid products

    Directory of Open Access Journals (Sweden)

    S Batbileg

    2014-12-01

    Full Text Available On 21st January 2015, the abstract of this paper was replaced with the correct abstract.The coal of Khoot deposit have been investigated and determined the technical characteristics, elemental and petrographical maceral compositions. On the basis of proximate, ultimate, petrographic and IR analysis results have been confirmed that the Khoot coal is a sub-bituminous coal. The hard residue after pyrolysis have been activated by heated water steam and determined the iodine and methylene blue adsorption of initial coal and activated carbon samples from pyrolysis hard residue. The porosity structure of initial coal, activated carbon of pyrolysis hard residue and hard residue after thermolysis (thermal dissolution have been determined by SEM analysis. The liquid tar product of thermolysis of Khoot coal was investigated by FTIR, 13C and 1H NMR spectrometric analysis. The results of thermolysis of Khoot coal in tetralin with constant mass ratio between coal and tetralin (1:1.8 at 450°C show that 60.8% of liquid product can be obtained after thermolysis of the coal organic mass.DOI: http://doi.dx.org/10.5564/mjc.v15i0.326 Mongolian Journal of Chemistry 15 (41, 2014, p66-72

  20. PRODUCTION OF FOAMS, FIBERS AND PITCHES USING A COAL EXTRACTION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Chong Chen; Elliot B. Kennel; Liviu Magean; Pete G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-06-20

    This Department of Energy National Energy Technology Laboratory sponsored project developed processes for converting coal feedstocks to carbon products, including coal-derived pitch, coke foams and fibers based on solvent extraction processes. A key technology is the use of hydrogenation accomplished at elevated temperatures and pressures to obtain a synthetic coal pitch. Hydrogenation, or partial direct liquefaction of coal, is used to modify the properties of raw coal such that a molten synthetic pitch can be obtained. The amount of hydrogen required to produce a synthetic pitch is about an order of magnitude less than the amount required to produce synthetic crude oil. Hence the conditions for synthetic pitch production consume very little hydrogen and can be accomplished at substantially lower pressure. In the molten state, hot filtration or centrifugation can be used to separate dissolved coal chemicals from mineral matter and insolubles (inertinite), resulting in the production of a purified hydrocarbon pitch. Alternatively, if hydrogenation is not used, aromatic hydrocarbon liquids appropriate for use as precursors to carbon products can obtained by dissolving coal in a solvent. As in the case for partial direct liquefaction pitches, undissolved coal is removed via hot filtration or centrifugation. Excess solvent is boiled off and recovered. The resultant solid material, referred to as Solvent Extracted Carbon Ore or SECO, has been used successfully to produce artificial graphite and carbon foam.

  1. Coal-bed methane water: effects on soil properties and camelina productivity

    Science.gov (United States)

    Every year the production of coal-bed natural gas in the Powder River Basin results in the discharge of large amounts of coal-bed methane water (CBMW) in Wyoming; however, no sustainable disposal methods for CBMW are currently available. A greenhouse study was conducted to evaluate the potential to ...

  2. Cooperative research program in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. (ed.)

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  3. Coal gasification power generation, and product market study. Topical report, March 1, 1995--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sheesley, D.; King, S.B.

    1998-12-31

    This Western Research Institute (WRI) project was part of a WRI Energy Resource Utilization Program to stimulate pilot-scale improved technologies projects to add value to coal resources in the Rocky Mountain region. The intent of this program is to assess the application potential of emerging technologies to western resources. The focus of this project is on a coal resource near the Wyoming/Colorado border, in Colorado. Energy Fuels Corporation/Kerr Coal Company operates a coal mine in Jackson County, Colorado. The coal produces 10,500 Btu/lb and has very low sulfur and ash contents. Kerr Coal Company is seeking advanced technology for alternate uses for this coal. This project was to have included a significant cost-share from the Kerr Coal Company ownership for a market survey of potential products and technical alternatives to be studied in the Rocky Mountain Region. The Energy Fuels Corporation/Kerr Coal Company and WRI originally proposed this work on a cost reimbursable basis. The total cost of the project was priced at $117,035. The Kerr Coal Company had scheduled at least $60,000.00 to be spent on market research for the project that never developed because of product market changes for the company. WRI and Kerr explored potential markets and new technologies for this resource. The first phase of this project as a preliminary study had studied fuel and nonfuel technical alternatives. Through related projects conducted at WRI, resource utilization was studied to find high-value materials that can be targeted for fuel and nonfuel use and eventually include other low-sulfur coals in the Rocky Mountain region. The six-month project work was spread over about a three-year period to observe, measure, and confirm over time-any trends in technology development that would lead to economic benefits in northern Colorado and southern Wyoming from coal gasification and power generation.

  4. An Integrated Biomass Production and Conversion Process for Sustainable Bioenergy

    Directory of Open Access Journals (Sweden)

    Weidong Huang

    2015-01-01

    Full Text Available There is not enough land for the current bioenergy production process because of its low annual yield per unit land. In the present paper, an integrated biomass production and conversion process for sustainable bioenergy is proposed and analyzed. The wastes from the biomass conversion process, including waste water, gas and solid are treated or utilized by the biomass production process in the integrated process. Analysis of the integrated process including the production of water hyacinth and digestion for methane in a tropical area demonstrates several major advantages of the integrated process. (1 The net annual yield of methane per unit land can reach 29.0 and 55.6 km3/h for the present and future (2040 respectively, which are mainly due to the high yield of water hyacinth, high biomethane yield and low energy input. The land demand for the proposed process accounts for about 1% of the world’s land to meet the current global automobile fuels or electricity consumption; (2 A closed cycle of nutrients provides the fertilizer for biomass production and waste treatment, and thus reduces the energy input; (3 The proposed process can be applied in agriculturally marginal land, which will not compete with food production. Therefore, it may be a good alternative energy technology for the future.

  5. How Multi-Tasking Job Designs Affect Productivity: Evidence from Australian Coal Mining Industry

    OpenAIRE

    Shingo Takahashi

    2011-01-01

    The author studies how the Australian coal mining industry adopted multitasking job designs by eliminating two types of task demarcations: (a) the demarcation between production and maintenance stream tasks and (b) the demarcation within the production stream. Using an original data set of Australian open-cut coal mines covering the period 1985-2005, he estimates the effect of multi-tasking on productivity and explains its effects. Results indicate that the elimination of between-demarcation ...

  6. Manufacturing optimization of the technological unit for crushing the dressing coal products

    Energy Technology Data Exchange (ETDEWEB)

    Kalinowski, K.

    1984-01-01

    The optimization of coal preparation is discussed. Run-of-mine coal fed to a screen is separated into 2 classes: to 80 mm and above 80 mm. Coal slurry is separated from the size fraction below 80 mm using a clarifier. After slurry separation, the coal is prepared by jigging (three-product preparation). Two separating densities are used: 1.4 and 1.8 t/m/sup 3/. By-product supplied by jigging is crushed and is prepared in another jig system. Optimization of by-product crushing and secondary jigging is discussed. A procedure for selecting the optimum crushing size and the optimum separation density is analyzed. The procedure is based on simulation methods using models developed by the US Bureau of Mines and by S. Cierpisz and A. Tatarkiewicz. The optimum crushing size of coal and the optimum separation density for 8 coal types from one coal mine are determined. The aim is to increase yields of coal concentrate with ash content below the permissible level. 3 references.

  7. High-temperature corrosion and applications of nickel and iron aluminides in coal-conversion power systems

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. [Argonne National Lab., IL (United States); Tortorelli, P.F. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Nickel and iron aluminide intermetallics are being developed for use as structural materials and/or as cladding for conventional engineering alloys. In addition to strength advantages, these materials exhibit excellent resistance to corrosion in single- and multioxidant environments at elevated temperatures by the formation of slow-growing, adherent alumina scales. Corrosion resistance in a given environment is strongly dependent on the composition of the alloy and on the nature of the corrosive species prevalent in the service environment. This paper presents a comprehensive review of the current status of the corrosion performance of these intermetallics in oxidizing, sulfidizing, and multicomponent gas environments of typical coal-conversion systems. Mechanisms of scale development/breakdown, performance envelopes for long-term usage of these materials, approaches to modifying the surfaces of engineering alloys by cladding or coating them with intermetallics, and in-service experience with these materials are emphasized.

  8. Thermochemical conversion of animal by-products and rendering products.

    Science.gov (United States)

    Leon, Milagros; Garcia, Angela Nuria; Marcilla, Antonio; Martinez-Castellanos, Isabel; Navarro, Rosa; Catala, Lucía

    2018-03-01

    This paper presents a preliminary study of the characterization of real waste from slaughterhouses as well as their rendering products (protein and fat) through different pyrolytic techniques: thermogravimetric analysis (TG), analytical pyrolysis in a pyroprobe equipment and hydrothermal liquefaction process (HTL). The experiments have allowed a deeper knowledge about the thermal behavior of these wastes under different conditions: slow pyrolysis up to 800°C (TG), flash pyrolysis at 500°C and room pressure (pyroprobe) and slow pyrolysis at 290°C and 110-130bar (HTL batch reactor). Experiments with each one of the materials (real waste, PAP and fat) as well as some mixtures have been performed. Gas chromatography and mass spectrometry techniques were used to identify the pyrolytic products obtained. The results indicate that fatty acids and fatty esters are the major group obtained in the pyrolysis of fat samples, followed by aliphatic hydrocarbons. In the case of PAP pyrolysis, heterocyclic aromatic compounds, which includes typical products coming from protein degradation, is the major group obtained. Oxygenated aliphatics are also obtained in high amounts. In the case of the HTL experiments, significant glycerine amounts were detected in the aqueous phase. The yield of biocrude obtained under HTL conditions is about 30%, with a high proportion of nitrogenated compounds (amides, pyrrole and pyridine derivatives). Generation of amides is much higher under HTL conditions than in the analytical pyrolysis runs while the proportion of acids is reduced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Materials technology for coal-conversion processes. Nineteenth report, July-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Analysis of refractories exposed to slag attack during the last 500-h test run shows that complex spinels formed at the slag-refractory interfaces of the chrome-spinel, alumina-chromia, and alumina refractories. Silicon carbide refractories reacted with iron oxides and produced a low-melting ferrosilicon alloy and CO or CO/sub 2/ gas. A high-temperature ultrasonic erosion scanner was installed and field tested at the Solvent Refined Coal (SRC) coal-liquefaction plant. Automatic data acquisition was accomplished through direct coupling to the SRC on-site computer. The scanner has detected erosive wear in the SRC erosion-corrosion test loop. Successful field performance of the erosion scanner was also demonstrated at the Morgantown Energy Technology Center gasifier. The scanner collected data on erosive-wear rate throughout a 400-h run. Corrosion studies continued, with emphasis on Fe-Ni-Cr alloys. Experimental results show that alloy chemistry has only a minor influence on the type and morphology of scales. Further, these results suggest that as exposure time increases, a greater oxygen partial pressure is required for breakaway corrosion. Synergistic erosion-corrosion studies conducted in a simulated coal-gasification atmosphere at 815/sup 0/C, with 150-..mu..m Al/sub 2/O/sub 3/ at 22 m/s as erodant, show that Incoloy 800 was the most corrosion-resistant alloy tested and 1015 carbon steel the least resistant. These results duplicate those of a previous test under the same conditions. Failure analysis activities are described.

  10. Preliminary flashing multiphase flow analysis with application to letdown valves in coal-conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Ott, L. J.; Khan, A. A.

    1982-09-01

    As part of the Oak Ridge National Laboratory's technical support to large coal liquefaction projects, attempts have been made to (1) develop the methodology for characterizing and predicting multicomponent, multiphase, non-Newtonian flow behavior within letdown valves and devices, and (2) analyze the fluid flow in the entire letdown region of the process. An engineering model that can be used in the analysis of multicomponent, multiphase, flashing, flowing systems has been developed. A preliminary version of a user-oriented computer code for this model has been developed and is fully described.

  11. HTGR-INTEGRATED COAL TO LIQUIDS PRODUCTION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Anastasia M Gandrik; Rick A Wood

    2010-10-01

    As part of the DOE’s Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to “shift” the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700°C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: • 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal

  12. Cost-effectiveness of in-situ coal conversion with connected CO{sub 2} storage; Wirtschaftlichkeit der in-situ Kohlenumwandlung mit angegliederter CO{sub 2}-Speicherung

    Energy Technology Data Exchange (ETDEWEB)

    Kempka, Thomas [Zentrum fuer CO2-Speicherung des Helmholtz-Zentrums Potsdam - Deutsches GeoForschungsZentrum (GFZ), Potsdam (Germany); Nakaten, Natalie [RWTH Aachen (Germany); Schlueter, Ralph [DMT GmbH und Co. KG, Essen (Germany). Geschaeftsfeld Exploration und Geosurvey; Azzam, Rafig [RWTH Aachen (Germany). Lehrstuhl fuer Ingenieurgeologie und Hydrogeologie

    2009-05-28

    Worldwide coal reserves with a supply potential of several hundred years can secure future energy supplies. Because of deep-lying thin seams or faulty geological conditions coal production in Germany is subject to increased cost pressure, so that the present dependence on imports for primary energy sources will continue to increase. Underground gasification (UG) can offer an economical and effective approach to deposit development and utilisation. The planned complete process is based on the development of the coal deposit with the aid of directional boreholes into seams and subsequent in-situ conversion of the coal into a synthesis gas. This synthesis gas is conveyed to the surface via a production borehole and converted into electricity in a gas and steam turbine process (GaS). Reduction of the CO2 emissions of the complete process is realised by CO2 separation connected to the power station and subsequent storage (CCS) in the already converted seams. An electricity generation cost model taking into account all relevant parameters from the partial processes was developed in this study for analysis of the cost-effectiveness of the coupled process (UG - GaS-CCS). Furthermore, the competitiveness of the UG-GaS-CCS process was compared with other energy generating technologies suitable for the base load supply in Europe. (orig.)

  13. Boron availability to plants from coal combustion by-products

    Energy Technology Data Exchange (ETDEWEB)

    Kukier, U.; Sumner, M.E. [University of Georgia, Athens, GA (United States). Dept. of Crop and Soil Sciences

    1996-02-01

    Agronomic use of coal combustion by-products is often associated with boron (B) excess in amended soils and subsequently in plants. A greenhouse study with corn ({ital Zea mays L.}) as test plant was conducted to determine safe application rates of five fly ashes and one flue gas desulfurization gypsum (FDG). All by-products increased soil and corn tissue B concentration, in some cases above toxicity levels which are 5 mg hot water soluble B (hwsB)kg{sup -1} soil and 100 mg B kg{sup -1} in corn tissue. Acceptable application rates varied from 4 to 100 Mg ha{sup -1} for different by-products. Leaching and weathering of a high B fly ash under ponding conditions decreased its B content and that of corn grown in fly ash amended soil, while leaching of the same fly ash under laboratory conditions increased fly ash B availability to corn in comparison to the fresh fly ash. Hot water soluble B in fly ash or FDG amended soil correlated very well with corn tissue B. Hot water soluble B in fly ash amended soil could be predicted based on soil pH and B solubility in ash at different pH values but not so in the case of FDG. Another greenhouse study was conducted to compare the influence of FDG and Ca(OH{sub 2}) on B concentration in spinach ({ital Spinacia oleracea L.}) leaves grown in soil amended with the high B fly ash. The Ca(OH){sub 2} significantly decreased tissue B content, while FDG did not affect B uptake from fly ash amended soil. 41 refs., 6 figs., 5 tabs.

  14. Thermochemical Equilibrium Model of Synthetic Natural Gas Production from Coal Gasification Using Aspen Plus

    Directory of Open Access Journals (Sweden)

    Rolando Barrera

    2014-01-01

    Full Text Available The production of synthetic or substitute natural gas (SNG from coal is a process of interest in Colombia where the reserves-to-production ratio (R/P for natural gas is expected to be between 7 and 10 years, while the R/P for coal is forecasted to be around 90 years. In this work, the process to produce SNG by means of coal-entrained flow gasifiers is modeled under thermochemical equilibrium with the Gibbs free energy approach. The model was developed using a complete and comprehensive Aspen Plus model. Two typical technologies used in entrained flow gasifiers such as coal dry and coal slurry are modeled and simulated. Emphasis is put on interactions between the fuel feeding technology and selected energy output parameters of coal-SNG process, that is, energy efficiencies, power, and SNG quality. It was found that coal rank does not significantly affect energy indicators such as cold gas, process, and global efficiencies. However, feeding technology clearly has an effect on the process due to the gasifying agent. Simulations results are compared against available technical data with good accuracy. Thus, the proposed model is considered as a versatile and useful computational tool to study and optimize the coal to SNG process.

  15. Coal in a sustainable society: stage I - LCA of steel and electricity production in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Nunn, J.A.; Wibberley, L.J.; Scaife, P.H. [BHP Centre for Metallurgy and Resource Processing, Newcastle, NSW (Australia)

    2001-07-01

    The Australian Coal Industry has committed to the investigation of strategic options for sustainable development. This paper summarises Stage 1 of the study, a life cycle analysis for steel and electricity production in Australia. The study shows that coal-based steel making can compete favourably with the new gas-based technologies in greenhouse gas emissions (GGEs). Although the GGEs from coal-based electricity production is higher than for gas and for renewable energy, the study has shown that the emerging clean coal technologies and synergies with renewable energy can give a marked improvement - both now and into the future. The present LCA study will continue as part of a broad research program, Coal in a Sustainable Society, supported by the coal industry and others. The findings and outcomes of this work will form the basis of a concerted awareness and education program by the coal industry in working with government and the broader community. This will further provide a platform to launch the investigative and technology transfer work of the proposed CRC for Coal in Sustainable Development. 4 refs., 2 figs.

  16. Materials technology for coal-conversion processes. Eighteenth quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, W. A.

    1979-11-01

    A 500-h test run, exposing 11 water-cooled refractories to basic slag (B/A = 1.5), was completed. High chromia content and high density again appeared to be significant factors contributing to the corrosion resistance of refractories used for slag containment. A literature review on high-temperature ultrasonic coupling was completed and suggested that studies on long-term (months to years) pressure-coupling stability are needed. Flow-induced acoustic-energy studies (relevant to acoustic leak detection) suggested that a 20% coal-water slurry flowing through an orifice under pressure produces acoustic-energy excitation mainly at frequencies < 65 kHz, and that a better correlation between acoustic rms levels and flow rate is obtained as the differential pressure is increased. Corrosion studies of Type 310 stainless steel at 1000/sup 0/C with various P/sub O2/ and P/sub S2/ suggested that titanium addition increases the corrosion rate relative to that of commercially available steels. Fluid-bed corrosion studies showed that at temperatures of 800-1000 K addition of salt has no effect on the corrosion behavior of any material examined. Failure analyses were performed on a cyclone nozzle from the Westinghouse Waltz-Mill combined cycle coal-gasification plant and an external cyclone from the Morgantown Energy Technology Center Stirred-bed Gasifier.

  17. Prospects for production of synthetic liquid fuel from low-grade coal

    Science.gov (United States)

    Shevyrev, Sergei; Bogomolov, Aleksandr; Alekssev, Maksim

    2015-01-01

    In the paper, we compare the energy costs of steam and steam-oxygen gasification technologies for production of synthetic liquid fuel. Results of mathematic simulation and experimental studies on gasification of low-grade coal are presented.

  18. Economic tools for realization of methane production project on Kuzbass coal deposits

    Science.gov (United States)

    Sharf, I.; Sokolova, M.; Kochetkova, O.; Dmitrieva, N.

    2016-09-01

    Environmental issues and, above all, issues related to the release of greenhouse gases into the atmosphere, such as coal bed methane, actualize the challenge of searching a variety of options for its disposal. The difference in the macroeconomic, industrial, geological and infrastructural features determine the need to choose the most cost-effective option for using of methane emitted from the coal deposits. Various economic ways to improve the profitability of production are viewed on the basis of the analysis of methane production project from Kuzbass coal deposits, Kemerovo region, Russia.

  19. Demonstration of the Viability and Evaluation of Production Costs for Biomass-Infused Coal Briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Kamshad, Kourosh [Coaltek Incorporated, Tucker, GA (United States)

    2014-04-01

    This project was split into four main areas, first to identify the best combination of coal and biomass, second, create and test lab quantity of preferred combinations, Third, create a sizeable quantity for larger scale handling and consuming analysis and fourth, to provide analysis for a commercial scale production capacity. Samples of coal and biomass were collected. Five coals, representing the three major coal ranks, were collected including one bituminous, two sub-bituminous, and two lignite samples. In addition, three square bales (~50 lbs/bale) each of corn Stover and switch grass were collected with one bale of each sample processed through a hammer mill to approximately -5 mesh. A third sample of sawdust was collected once experimentation began at the University of Kentucky. Multiple combinations of coal and biomass; coal, biomass, with biomass binder, were tested until a formulation was identified that could meet the requirement criteria. Based on the results of the binderless briquetting evaluations, the CS/Sub-bit combinations was selected for extended evaluation at a 10% biomass addition rate while the WS/Bitum combination was selected for extended evaluation at a 30% biomass-addition rate. With the final results of the selection process complete, the CoalTek continuous production pilot plant in Tucker GA was outfitted with the specialized blending equipment and two 1/4 ton production runs of biomass and binder subbituminous coal briquettes were completed. These briquettes were later used for a calorific test burn at the University of North Dakota. The first formulation included subbituminous coal, corn stover and a corn starch binder the second formulation included subbituminous coal, wheat stover and corn starch binder.

  20. Utilization of coal mine methane for methanol and SCP production. Topical report, May 5, 1995--March 4, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resources (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.

  1. Conversion of waste polystyrene through catalytic degradation into valuable products

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jasmin; Jan, Muhammad Rasul; Adnan [University of Peshawar, Peshawar (Pakistan)

    2014-08-15

    Waste expanded polystyrene (EPS) represents a source of valuable chemical products like styrene and other aromatics. The catalytic degradation was carried out in a batch reactor with a mixture of polystyrene (PS) and catalyst at 450 .deg. C for 30 min in case of Mg and at 400 .deg. C for 2 h both for MgO and MgCO{sub 3} catalysts. At optimum degradation conditions, EPS was degraded into 82.20±3.80 wt%, 91.60±0.20 wt% and 81.80±0.53 wt% liquid with Mg, MgO and MgCO{sub 3} catalysts, respectively. The liquid products obtained were separated into different fractions by fractional distillation. The liquid fractions obtained with three catalysts were compared, and characterized using GC-MS. Maximum conversion of EPS into styrene monomer (66.6 wt%) was achieved with Mg catalyst, and an increase in selectivity of compounds was also observed. The major fraction at 145 .deg. C showed the properties of styrene monomer. The results showed that among the catalysts used, Mg was found to be the most effective catalyst for selective conversion into styrene monomer as value added product.

  2. Coal Conversion at Picatinny Arsenal and Forts Campbell, Bragg, and Gordon: A Feasibility Study

    Science.gov (United States)

    1993-12-01

    S19369.16478871.142601S4.11160392.I 0.1 f IM U•OUIVA3I[,M ON NW293; IN 10"*0 DOLLARS; IN COOTANT NI’ Y92 DOLLARS llrn ZCALATION RAM FUCK MIST HNDBSOOK 135...SAVINGS STOKER CwS MI-COAL FILE PREFIX: FP04 PMCP- 100 L AVE MON. LOAD: 33 M CHP 4 250L FUEL NG.FS2 AGE 1973 L-(KU STEAM/HR) M=(MBTUMR) ASS Tubh 34 Cod...1,528,022 130,647,864 9.062 110% 1,680,824 130,800,666 9.073 120% 1,833,626 130,953,469 9.083 ass O&M labor cost variation ==s Change PV O&M Labor Life

  3. Geochemical study of products associated with spontaneous oxidation of coal in the Cerro Pelado Formation, Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.; Marquez, G.; Alejandre, F.J.; Del Rio, J.J.; Hurtado, A. [University of Seville, Seville (Spain)

    2009-03-15

    The aim of this research work is a geochemical, mineralogical, and textural characterization of spontaneously smouldered coal-derived products in northwestern Venezuela (Cerro Pelado Formation, some 10 km from Pedregal city). Several solid samples were collected from this formation, six of unweathering coal, another six of resulting unmelted rocks forming on a surface coal bed, and the last four of mineralizations found accumulating around gas vents. The fresh coal and the unmelted material were analysed by scanning electron microscopy, X-ray diffraction, and proximate techniques. Products such as magnetite and chabazite-K were identified in the alteration rocks. Likewise, both materials were also studied in order to determine the mobilization of 17 elements into the environment; such elements were analysed through inductively coupled plasma atomic emission spectroscopy on extracts obtained by a sequential extraction method. The studied elements are classified as highly mobile (Na, Ni,...), nearly immobile (Ti, P) and partially mobile (Mg, Fe, K, ...). In regards to mineralizations around fumaroles associated with smoldering coal seams, Fourier-transform infrared spectroscopy and X-ray diffraction analyses have revealed the presence of salammoniac, mascagnite and other solid combustion compounds formed by reaction of gas emitted from coal oxidation, in addition to previously non-reported sulfur-rich by-products associated with gas fissures, particularly ammonium thiosulfate. Relatively high concentrations of several aromatic compounds were detected in the gas collected at the studied coal outcrop, as well as aliphatic hydrocarbons including ethane, propane, butanes, among others.

  4. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

  5. Maximizing the resources by managing the risks among oil, gas and coal production

    Energy Technology Data Exchange (ETDEWEB)

    Nofti, Bakhtiar; Imantyoko, Agung; Adnan, Alkifli [Pertamina EP (Indonesia)

    2011-07-01

    Indonesia's fossil fuel reserves are quite large, in line with its high fossil energy consumption. Production of oil and gas usually takes place in different areas from those where coal is mined, but there is some overlap. The government's intention is to produce energy from all fossil fuels to sustain economic stability. This is a complex task because oil and gas and coal mining are two distinct sectors. There are various issues involved, such as mining zone restrictions, funding and health and safety. This paper presents the idea of maximizing resources by managing risks among oil, gas and coal production. Tapian is one the great success stories of how the government successfully undertook the exploration and production of oil, gas and coal simultaneously while managing and coordinating all the risks involved. The study demonstrates that it is possible to overlap land mines in a harmonious way and that the problems involved can be mitigated.

  6. The Utilization of Bottom Ash Coal for Briquette Products by Adding Teak Leaves Charcoal, Coconut Shell Charcoal, and Rice Husk Charcoal

    National Research Council Canada - National Science Library

    Syafrudin, Syafrudin; Zaman, Badrus; Indriyani, Indriyani; Erga, A. Stevie; Natalia, H. Bunga

    2015-01-01

    .... This coal ash is a by-product of coal combustion. This coal ash contains bottom ash. Through this observation, the bottom ash can be processed to be charcoal if added by teak leaves, coconut shell, and rice husk...

  7. Estimating long-term world coal production with logit and probit transforms

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, David [Division of Engineering and Applied Science, California Institute of Technology, Pasadena (United States)

    2011-01-01

    An estimate for world coal production in the long run would be helpful for developing policies for alternative energy sources and for climate change. This production has often been estimated from reserves that are calculated from measurements of coal seams. We show that where the estimates based on reserves can be tested in mature coal regions, they have been too high, and that more accurate estimates can be made by curve fits to the production history. These curve fits indicate that total world production, including past and future production, will be 680 Gt. The historical range for these fits made on an annual basis from 1995 to 2009 is 653 Gt to 749 Gt, 14% in percentage terms. The curve fits also indicate that 90% of the total production will have taken place by 2070. This gives the time scale for considering alternatives. This estimate for total production is somewhat less than the current reserves plus cumulative production, 1163 Gt, and very much less than the amount of coal that the UN Intergovernmental Panel on Climate Change, or IPCC, assumes is available for its scenarios. The maximum cumulative coal production through 2100 in an IPCC scenario is 3500 Gt. (author)

  8. Future coal production outlooks in the IPCC Emission Scenarios: Are they plausible?

    Energy Technology Data Exchange (ETDEWEB)

    Hoeoek, Mikael

    2010-10-15

    Anthropogenic climate change caused by CO{sub 2} emissions is strongly and fundamentally linked to the future energy production. The Special Report on Emission Scenarios (SRES) from 2000 contains 40 scenarios for future fossil fuel production and is used by the IPCC to assess future climate change. Coal, with its 26% share of world energy, is a major source of greenhouse gas emissions and commonly seen as a key contributor to anthropogenic climate change. SRES contains a wide array of different coal production outlooks, ranging from a complete coal phase-out by 2100 to a roughly tenfold increase from present world production levels. Scenarios with high levels of global warming also have high expectations on future fossil fuel production. The assumptions on resource availability are in SRES based on Rogner's assessment of world hydrocarbon resources from 1997, where it is stated that 'the sheer size of the fossil resource base makes fossil sources an energy supply option for many centuries to come'. Regarding the future coal production it is simply assumed to be dependent on economics, accessibility, and environmental acceptance. It is also generally assumed that coal is abundant, and will thus take a dominating part in the future energy system. Depletion, geographical location and geological parameters are not given much influence in the scenario storylines. This study quantifies what the coal production projection in SRES would imply in reality. SRES is riddled with future production projections that would put unreasonable expectation on just a few countries or regions. Is it reasonable to expect that China, among the world's largest coal reserve and resource holder and producer, would increase their production by a factor of 8 over the next 90 years, as implied by certain scenarios? Can massive increases in global coal output really be justified from historical trends or will reality rule out some production outlooks as implausible? The

  9. Glycerol and bioglycerol conversion in supercritical water for hydrogen production.

    Science.gov (United States)

    Yu-Wu, Q M; Weiss-Hortala, E; Barna, R; Boucard, H; Bulza, S

    2012-01-01

    Catalytic transesterification of vegetable oils leads to biodiesel and an alkaline feed (bioglycerol and organic residues, such as esters, alcohols. . .). The conversion ofbioglycerol into valuable organic molecules represents a sustainable industrial process leading to the valorization of a renewable organic resource. The physicochemical properties in the supercritical domain (T > 374 degrees C, P > 22.1 MPa) transform water into a solvent for organics and a reactant favouring radical reactions. In this context, the conversion ofbioglycerol in supercritical water (SCW) into platform molecules and/or high energetic gases (hydrogen, hydrocarbons) could represent an interesting valorization process. The reported research results concern the conversion of bioglycerol compared to pure glycerol. The experiments have been done in batch autoclaves (5 ml and 500 ml stirred). Solutions of pure (5 or 10 wt%) and crude (3.5 wt%) glycerol have been processed with or without catalyst (K2CO3 1.5 wt%) in the range of 450-600 degrees C. The molecular formula of bioglycerol was determined as C4.3H9.7O1.8Na0.1Si0.08. Glycerol was partially decomposed in the batch systems during the heating (42% before reaching 420 degrees C) and some intermediates (propanediol, ethylene glycol . . .) were quantified, leading to a proposition of a reaction pathway. Acrolein, a valuable platform molecule, was mainly produced in the absence of catalyst. No solid phase was recovered after SCW conversion of pure and bioglycerol in batch reactors. The optimal parameters for gasification were 600 degrees C, 25 MPa for bioglycerol and 525 degrees C, 25 MPa, for pure glycerol. In these operating conditions, 1 kg of pure or bioglycerol leads to 15 and, respectively, 10 mol of hydrogen. Supercritical water gasification of crude glycerol favoured the generation of light hydrocarbons, while pure glycerol promoted H2 production. SCW conversion of glycerol (pure and crude) allows to obtain simultaneously energetic

  10. ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Gary L. Cairns

    2002-10-01

    The availability of clean, affordable energy is essential for the prosperity and security of the United States and the world in the 21st century. Carbon dioxide (CO{sub 2}) emissions to the atmosphere are an inherent part of energy-related activities, such as electricity generation, transportation, and building systems. These energy-related activities are responsible for roughly 85% of the U.S. greenhouse gas emissions, and 95% of these emissions are dominated by CO{sub 2}. Over the last few decades, an increased concentration of CO{sub 2} in the earth's atmosphere has been observed. Many scientists believe greenhouse gases, particularly CO{sub 2}, trap heat in the earth's atmosphere. Carbon sequestration technology offers an approach to redirect CO{sub 2} emissions into sinks (e.g., geologic formations, oceans, soils, and vegetation) and potentially stabilize future atmospheric CO{sub 2} levels. Coal seams are attractive CO{sub 2} sequestration sinks, due to their abundance and proximity to electricity-generation facilities. The recovery of marketable coal bed methane (CBM) provides a value-added stream, reducing the cost to sequester CO{sub 2} gas. Much research is needed to evaluate this technology in terms of CO{sub 2} storage capacity, sequestration stability, commercial feasibility and overall economics. CONSOL Energy, with support from the U.S. DOE, is conducting a seven-year program to construct and operate a coal bed sequestration site composed of a series of horizontally drilled wells that originate at the surface and extend through overlying coal seams in the subsurface. Once completed, the wells will be used to initially drain CBM from both the upper (mineable) and lower (unmineable) coal seams. After sufficient depletion of the reservoir, centrally located wells in the lower coal seam will be converted from CBM drainage wells to CO{sub 2} injection ports. CO{sub 2} will be measured and injected into the lower unmineable coal seam while CBM

  11. Simulation of Synthesis Gas Production from Steam Oxygen Gasification of Colombian Coal Using Aspen Plus®

    Directory of Open Access Journals (Sweden)

    Jorge E. Preciado

    2012-11-01

    Full Text Available A steady state simulation of syngas production from a Steam Oxygen Gasification process using commercial technologies was performed using Aspen Plus®. For the simulation, the average proximate and ultimate compositions of bituminous coal obtained from the Colombian Andean region were employed. The simulation was applied to conduct sensitivity analyses in the O2 to coal mass ratio, coal slurry concentration, WGS operating temperature and WGS steam to dry gas molar ratio (SDG over the key parameters: syngas molar composition, overall CO conversion in the WGS reactors, H2 rich-syngas lower heating value (LHV and thermal efficiency. The achieved information allows the selection of critical operating conditions leading to improve system efficiency and environmental performance. The results indicate that the oxygen to carbon ratio is a key variable as it affects significantly both the LHV and thermal efficiency. Nevertheless, the process becomes almost insensitive to SDG values higher than 2. Finally, a thermal efficiency of 62.6% can be reached. This result corresponds to a slurry solid concentration of 0.65, a WGS process SDG of 0.59, and a LTS reactor operating temperature of 473 K. With these fixed variables, a syngas with H2 molar composition of 92.2% and LHV of 12 MJ Nm−3 was attained.

  12. Conversion of coal-fired bottom ash to fuel and construction materials.

    Science.gov (United States)

    Koca, Huseyin; Aksoy, Derya Oz; Ucar, Reyhan; Koca, Sabiha

    2017-07-01

    In this study, solid wastes taken from Seyitomer coal-fired power plant bottom ashes were subjected to experimental research to obtain a carbon-rich fraction. The possible recycling opportunities of remaining inorganic fraction in the cement and concrete industry was also investigated. Flotation technique was used to separate unburned carbon from inorganic bottom ashes. Collector type, collector, dispersant and frother amounts, and pulp density are the most important variables in the flotation technique. A number of flotation collectors were tested in the experiments including new era flotation reactives. Optimum collector, dispersant and frother dosages as well as optimum pulp density were also determined. After experimental work, an inorganic fraction was obtained, which included 5.41% unburned carbon with 81.56% weight yield. These properties meets the industrial specifications for the cement and concrete industry. The carbon content of the concentrate fraction, obtained in the same experiment, was enhanced to 49.82%. This fraction accounts for 18.44% of the total amount and can be mixed to the power plant fuel. Therefore total amount of the solid waste can possibly be recycled according to experimental results.

  13. Preparation and evaluation of coal extracts as precursors for carbon and graphite products

    Energy Technology Data Exchange (ETDEWEB)

    Zondlo, J.W.; Stiller, A.W.; Stansberry, P.G. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1996-08-01

    A coal extraction process coupled with coal hydrotreatment has been shown capable of producing suitable precursors for a variety of commercially important carbon and graphite products. The N-methylpyrolidone (NMP) extracts of hydrotreated coals have been analytically and chemically characterized and shown to have properties acceptable for use as binder and impregnation pitch. Mesophase formation studies have demonstrated their capability for producing both needle and anode grade coke as well as precursors for mesophase pitch fibers. A graphite artifact has been produced using a coal extract as a binder and coke derived from the extract as a filler. Further evaluation of the extract materials is being carried out by industrial members of the Carbon Products Consortium.

  14. Properties of carbonisation products obtained from impregnated coal

    Czech Academy of Sciences Publication Activity Database

    Plevová, Eva; Šugárková, Věra; Kaloč, M.; Vaculíková, Lenka

    -, - (2008), s. 52-61. ISBN 978-80-248-1939-6 Grant - others:GA CŘ(CZ) GA105/00/1698 Institutional research plan: CEZ:AV0Z30860518 Keywords : chlorides * impregnation * coal Subject RIV: CC - Organic Chemistry

  15. Characterization of the intermediate product of coal solubilization by Penicillin simplicissimum

    Energy Technology Data Exchange (ETDEWEB)

    Achi, O.K. [Federal Polytechnic, Idah (Nigeria). Dept. of Science and Technology

    1994-12-01

    Penicillium simplicissimum has previously been shown to solubilize pre-oxidized alkali-extracted sub-bituminous coal. The product of solubilization, a soluble acid-precipitable coal polymer, was isolated and characterized. The effects of oxidation pretreatments on the ability to solubilize coal were also examined. The intermediate product, which comprised 30% of the original coal, was readily recovered from the growth medium by acid precipitation and possibly consisted of a heterogeneous mixture of high molecular weight compounds of approximately 2.7 x 10{sup 4} molecular weight. Further characterization by elemental analyses revealed that the bioproduct was enriched in inorganic materials, oxygen, nitrogen but lower in carbon, hydrogen and sulphur when compared with the original coal. A 14% loss of carbon atoms occurred during the biodegradation. The product had a featureless visible light spectrum and a shoulder in the ultraviolet range at 290 nm. Infrared analyses showed a decrease in aromatic carbons, methylenic bonds and etheric oxygen. Experimental results suggested that solubilization changes appear to be largely oxidative and may involve cleavage of intermonomeric linkages in coal.

  16. Co-pyrolysis of low rank coals and biomass: Product distributions

    Energy Technology Data Exchange (ETDEWEB)

    Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.

    2013-10-01

    Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

  17. Coal liquefaction process streams characterization and evaluation: FT-IR methods for characterization of coal liquefaction products

    Energy Technology Data Exchange (ETDEWEB)

    Serio, M.A.; Teng, H.; Bassilakis, R.; Solomon, P.R. (Advanced Fuel Research, Inc., East Hartford, CT (United States))

    1992-04-01

    This study was designed to demonstrate the use of two FTIR techniques for the analysis of direct coal liquefaction process-derived materials. The two methods were quantitative FTIR analysis and themogravimetric (TG) analysis with FTIR analysis of evolved products (TG-FTIR). The quantitative FTIR analyses of both whole resids and THF-soluble resids provided quantitation of total hydrogen, aliphatic and aromatic hydrogen, total carbon, total oxygen, hydroxyl and etheric oxygen, and ash contents. The FTIR results were usually in agreement with values derived by other, more conventional methods. However, the accuracies of specific measurements, in comparisons with results from conventional methods, ranged from good to poor. The TG-FTIR method provided approximate analyses of coals and resids. The data provided included the time dependent evolution profiles of the volatile species and the elemental composition of the char. Reproducible data of gaseous species and pyrolysis tar yields for whole resid samples larger than 10 mg were obtainable. The yields and evolution profiles of certain volatiles (tar, CO, and methane) provided structural information on the samples. There were some experimental and interpretational difficulties associated with both techniques. Optimization of the curve-resolving routine for coal-liquefaction samples would improve the quantitative FTIR accuracy. Aerosol formation limited the full application of the TG-FTIR technique with the THF-soluble resid samples. At this time, further development of these analytical methods as process development tools will be required before their use for that purpose can be recommended. The use of FTIR as an on-line analytical technique for coal liquefaction process streams requires demonstration before it can be recommended; however, such a demonstration may be warranted.

  18. Photoelectrochemical based direct conversion systems for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Kocha, S.; Peterson, M.; Arent, D. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-10-01

    Photon driven, direct conversion systems consist of a light absorber and a water splitting catalyst as a monolithic system; water is split directly upon illumination. This one-step process eliminates the need to generate electricity externally and subsequently feed it to an electrolyzer. These configurations require only the piping necessary for transport of hydrogen to an external storage system or gas pipeline. This work is focused on multiphoton photoelectrochemical devices for production of hydrogen directly using sunlight and water. Two types of multijunction cells, one consisting of a-Si triple junctions and the other GaInP{sub 2}/GaAs homojunctions, were studied for the photoelectrochemical decomposition of water into hydrogen and oxygen from an aqueous electrolyte solution. To catalyze the water decomposition process, the illuminated surface of the device was modified either by addition of platinum colloids or by coating with ruthenium dioxide. These colloids have been characterized by gel electrophoresis.

  19. Leaching of coal combustion products: Field and laboratory studies

    Science.gov (United States)

    Cheng, Chin-Min

    This study combines field monitoring and laboratory experiments to investigate the environmental impacts associated with the re-use of coal combustion by-products (CCPs). The monitoring data obtained from two full-scale CCP applications (i.e., re-use of fixated flue gas desulfurization (FGD) material as a low permeability liner for a swine manure pond and portland cement concrete pavements containing CCPs) allowed environmental impacts to be evaluated under real or simulated in-service conditions. A complimentary laboratory leaching study elucidated fundamental physical and chemical mechanisms that determine the leaching kinetics of inorganic contaminants from CCPs. In the first field study, water quality impacts associated with the re-use of FGD material as a low permeability liner for a swine manure pond were examined by monitoring the water quality of water samples collected from the pond surface water and a sump collection system beneath the liner over a period of 5 years. Water samples collected from the sump and pond surface water met all Ohio non-toxic criteria, and in fact, generally met all national primary and secondary drinking water standards. Furthermore it was found that hazardous (i.e., As, B, Cr, Cu, and Zn) and agricultural pollutants (i.e., phosphate and ammonia) were effectively retained by the FGD liner system. The retention might be due to both sorption and precipitation. In the second field study, the release of metals and metalloids from full-scale portland cement concrete pavements containing CCPs was evaluated by laboratory leaching tests and accelerated loading of full-scale pavement sections under controlled loading and environmental conditions. Three types of portland-cement-concrete driving surfaces were tested, including a control section (i.e., ordinary portland cement (OPC) concrete) containing no fly ash and two sections in which fly ash was substituted for a fraction of the cement; i.e., 30% fly ash (FA30) and 50% fly ash (FA50

  20. Systems studies of coal-conversion processes using a reference simulator. Final report, March 12, 1976-August 12, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, G.V.; Sood, M.K.; Soni, Y.; Overturf, B.W.; Wiede, W.; Clark, S.; Buchanan, P.

    1979-12-01

    Methodology and general purpose software were developed which do allow computer-aided design and analysis of large scale coal conversion processes. The LINBAL package for larger scale balance calculations was demonstrated to be quick and efficient in solving problems involving over 100 streams, 20 species, and 80 or more flowsheet units. The LSP simulation package embodies constraint handling, recycle calculation, and information management features which are an advance of the state of the art. The two level strategy available in LSP was demonstrated on a reasonable sized simulation and shown to result in a 1/3 reduction of CPU time over conventional calculation strategies. The Physical Properties Package was used in all of the simulation models developed under this project and proved to be satisfactory within the limits of the thermodynamic correlations and estimation methods which are encoded. Although the package is largely conventional in overall design, it does employ features which make it convenient to use both within LSP and on a stand-along basis. The PCOST package represents a new approach to the design of this type of program. The program has proved to be simple to use, robust, and accurate within the limitations of the literature cost correlations that it contains. In summary, the project has accomplished its primary objectives. However, time and fiscal limitation did not permit the completion of an adequate slate of case studies.

  1. Thin-layer chromatography with UV-scanning detection for quantitative analysis of coal-derived products

    Energy Technology Data Exchange (ETDEWEB)

    Vela, J.; Cebolla, V.L.; Membrado, L.; Ferrando, A.C. [University of Zaragoza, Zaragoza (Spain). Dept. of Analytical Chemistry

    1998-07-01

    Quantitative analysis of hydrocarbon groups (HGTA) is important in the characterization of products derived from coal conversion. The heaviest products are usually analyzed by thin-layer chromatography with flame-ionization detection (TLC-FID). TLC with ultraviolet (UV) scanning densitometry was investigated as an alternative to TLC-FID for the rapid determination of aromatic, polar, and noneluted compounds in coal-derived products. The results obtained show that TLC-UV is adequate in terms of speed, repeatability, and quantitative analysis, and furnishes results similar to those obtained by TLC-FID. Preparative TLC enables isolation of fractions suitable for preparative purposes and is less time-consuming (hours rather than days) than LC methods. Rapid calibration of TLC-UV is possible by use of fractions isolated by preparative TLC (derived from the actual fossil fuels to be analyzed) as external standards. A method of fast internal calibration has been tested for hydrocarbon group-type analysis. Direct acquisition of UV spectra from the separated peaks can be used to determine whether this method of calibration is applicable to the sample.

  2. COAL DERIVED MATRIX PITCHES FOR CARBON-CARBON COMPOSITE MANUFACTURE/PRODUCTION OF FIBERS AND COMPOSITES FROM COAL-BASED PRECURSORS

    Energy Technology Data Exchange (ETDEWEB)

    Peter G. Stansberry; John W. Zondlo

    2001-07-01

    The Consortium for premium Carbon Products from Coal, with funding from the US Department of Energy, National Energy Technology Laboratory continue with the development of innovative technologies that will allow coal or coal-derived feedstocks to be used in the production of value-added carbon materials. In addition to supporting eleven independent projects during budget period 3, three meetings were held at two separate locations for the membership. The first was held at Nemacolin Woodlands Resort on May 15-16, 2000. This was followed by two meetings at Penn State, a tutorial on August 11, 2000 and a technical progress meeting on October 26-27.

  3. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Dady B. Dadyburjor; Mark E. Heavner; Manoj Katakdaunde; Liviu Magean; J. Joshua Maybury; Alfred H. Stiller; Joseph M. Stoffa; John W. Zondlo

    2006-08-01

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, and porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, hydrotreatment of solvent was completed in preparation for pitch fabrication for graphite electrodes. Coal digestion has lagged but is expected to be complete by next quarter. Studies are reported on coal dissolution, pitch production, foam synthesis using physical blowing agents, and alternate coking techniques.

  4. Laboratory Scale Coal And Biomass To Drop-In Fuels (CBDF) Production And Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth [Altex Technologies Corporation, Sunnyvale, CA (United States); Imam, Tahmina [Altex Technologies Corporation, Sunnyvale, CA (United States); Chevanan, Nehru [Altex Technologies Corporation, Sunnyvale, CA (United States); Namazian, Mehdi [Altex Technologies Corporation, Sunnyvale, CA (United States); Wang, Xiaoxing [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    2016-06-29

    This Final Technical Report describes the work and accomplishments of the project entitled, “Laboratory Scale Coal and Biomass to Drop-In Fuels (CBDF) Production and Assessment.” The main objective of the project was to fabricate and test a lab-scale liquid-fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of 2 liters per day. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. The system was designed, fabricated, tested, and assessed for economic and environmental feasibility relative to competing technologies.

  5. Benefits of coal cleaning upon the performance of coal-water slurries

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, R.A.; Walia, D.S.

    1983-01-01

    A description of the benefits of coal preparation was presented. These included the reduction of ash and sulfur oxide forming components, production of consistent quality fuel, increasing of heat value, and production of multigrade fuels. A comparison was made of commercial United Coal Company (UCC) and super-clean UCC coal on the basis of ash content, particulate emission upon combustion, furnace ash deposit, and carbon conversion efficiency. The ash content was 8% for the commercial and 2% for the super-clean coals.

  6. Separating liquid and solid products of liquefaction of coal or like carbonaceous materials

    Science.gov (United States)

    Malek, John M.

    1979-06-26

    Slurryform products of coal liquefaction are treated with caustic soda in presence of H.sub.2 O in an inline static mixer and then the treated product is separated into a solids fraction and liquid fractions, including liquid hydrocarbons, by gravity settling preferably effected in a multiplate settling separator with a plurality of settling spacings.

  7. Petrochemicals from oil, natural gas, coal and biomass: production costs in 2030–2050

    NARCIS (Netherlands)

    Ren, T.; Daniëls, B.; Patel, M.K.|info:eu-repo/dai/nl/18988097X; Blok, K.|info:eu-repo/dai/nl/07170275X

    2009-01-01

    Methane, coal and biomass are being considered as alternatives to crude oil for the production of basic petrochemicals, such as light olefins. This paper is a study on the production costs of 24 process routes utilizing these primary energy sources. A wide range of projected energy prices in

  8. 75 FR 39735 - Mandatory Reporting of Greenhouse Gases From Magnesium Production, Underground Coal Mines...

    Science.gov (United States)

    2010-07-12

    ... Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases From Magnesium Production... PROTECTION AGENCY 40 CFR Part 98 RIN 2060-AQ03 Mandatory Reporting of Greenhouse Gases From Magnesium... monitoring and reporting of greenhouse gas emissions from magnesium production, underground coal mines...

  9. Establishment of the carbon label mechanism of coal chemical products based oncarbon footprint

    Directory of Open Access Journals (Sweden)

    Wu Bishan

    Full Text Available ABSTRACT After redefining the carbon footprint and carbon label, the paper analyzesthe significance of the carbon labels under the background of the low carbon economy development, and establishes the concept of model of the carbon labels mechanism to chemical products. At the same time, the paper quantitatively studies carbon label data sourceof three kinds of coal chemical industry power products, which are fromhaving not CCS technologies of supercritical boiler of coal, using CCS technologies of supercritical boiler of coal and adopting CCS and IGCC technologies to power generation in CCI. Based on the three kinds of differences, the paper puts forward of establishing the carbon labels mechanism of chemical products under the low carbon consumption.

  10. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to

  11. Possibility of applying mechanized coal mining in the mine 'Soko', with the comparative advantages of production results and impact

    Directory of Open Access Journals (Sweden)

    Denić Miodrag

    2014-01-01

    Full Text Available Mining method applied in the RMU 'Soko', is repeatedly technologically modified and reached the maximum limit in terms of productivity, level of job performance and safety at work. And all the other methods, which are in the technological process of obtaining coal rely on the technology of drilling-blasting works, in terms of the mine 'Soko', can not allow mass production of coal, regarding natural and technical-technological conditions prevailing in Sokobanja coal basin. Therefore, this paper proposes a possible solution which would enable a significant increase in annual production by appling mechanized coal mining system.

  12. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  13. Optimization of hydrogen and syngas production from PKS gasification by using coal bottom ash.

    Science.gov (United States)

    Shahbaz, Muhammad; Yusup, Suzana; Inayat, Abrar; Patrick, David Onoja; Pratama, Angga; Ammar, Muhamamd

    2017-10-01

    Catalytic steam gasification of palm kernel shell is investigated to optimize operating parameters for hydrogen and syngas production using TGA-MS setup. RSM is used for experimental design and evaluating the effect of temperature, particle size, CaO/biomass ratio, and coal bottom ash wt% on hydrogen and syngas. Hydrogen production appears highly sensitive to all factors, especially temperature and coal bottom ash wt%. In case of syngas, the order of parametric influence is: CaO/biomass>coal bottom ash wt%>temperature>particle size. The significant catalytic effect of coal bottom ash is due to the presence of Fe 2 O 3 , MgO, Al 2 O 3 , and CaO. A temperature of 692°C, coal bottom ash wt% of 0.07, CaO/biomass of 1.42, and particle size of 0.75mm are the optimum conditions for augmented yield of hydrogen and syngas. The production of hydrogen and syngas is 1.5% higher in the pilot scale gasifier as compared to TGA-MS setup. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Microbial solubilization of coal

    Science.gov (United States)

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  15. Microbial Conversion of Waste Glycerol from Biodiesel Production into Value-Added Products

    Directory of Open Access Journals (Sweden)

    Hong Liu

    2013-09-01

    Full Text Available Biodiesel has gained a significant amount of attention over the past decade as an environmentally friendly fuel that is capable of being utilized by a conventional diesel engine. However, the biodiesel production process generates glycerol-containing waste streams which have become a disposal issue for biodiesel plants and generated a surplus of glycerol. A value-added opportunity is needed in order to compensate for disposal-associated costs. Microbial conversions from glycerol to valuable chemicals performed by various bacteria, yeast, fungi, and microalgae are discussed in this review paper, as well as the possibility of extending these conversions to microbial electrochemical technologies.

  16. Coal-mine production history from 1984 through 1995 in the Colorado Plateau coal assessment study area (cpmphg)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is a point coverage containing 12 years (1984 through 1995) of coal mining history in the Colorado Plateau coal assessment study area. This layer was derived...

  17. Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaolei [Arizona Public Service Company, Pheonix, AZ (United States); Rink, Nancy [Arizona Public Service Company, Pheonix, AZ (United States)

    2011-04-30

    This report presents the results of the research and development conducted on an Advanced Hydrogasification Process (AHP) conceived and developed by Arizona Public Service Company (APS) under U.S. Department of Energy (DOE) contract: DE-FC26-06NT42759 for Substitute Natural Gas (SNG) production from western coal. A double-wall (i.e., a hydrogasification contained within a pressure shell) down-flow hydrogasification reactor was designed, engineered, constructed, commissioned and operated by APS, Phoenix, AZ. The reactor is ASME-certified under Section VIII with a rating of 1150 pounds per square inch gage (psig) maximum allowable working pressure at 1950 degrees Fahrenheit (°F). The reaction zone had a 1.75 inch inner diameter and 13 feet length. The initial testing of a sub-bituminous coal demonstrated ~ 50% carbon conversion and ~10% methane yield in the product gas under 1625°F, 1000 psig pressure, with a 11 seconds (s) residence time, and 0.4 hydrogen-to-coal mass ratio. Liquid by-products mainly contained Benzene, Toluene, Xylene (BTX) and tar. Char collected from the bottom of the reactor had 9000-British thermal units per pound (Btu/lb) heating value. A three-dimensional (3D) computational fluid dynamic model simulation of the hydrodynamics around the reactor head was utilized to design the nozzles for injecting the hydrogen into the gasifier to optimize gas-solid mixing to achieve improved carbon conversion. The report also presents the evaluation of using algae for carbon dioxide (CO2) management and biofuel production. Nannochloropsis, Selenastrum and Scenedesmus were determined to be the best algae strains for the project purpose and were studied in an outdoor system which included a 6-meter (6M) radius cultivator with a total surface area of 113 square meters (m2) and a total culture volume between 10,000 to 15,000 liters (L); a CO2 on-demand feeding system; an on-line data collection system for temperature, p

  18. Production and screening of carbon products precursors from coal. Quarterly progress report, July 1, 1996--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Zondlo, J.; Stiller, A.

    1996-10-25

    This quarterly report covers activities during the period from July 1, 1996 through September 30, 1996 on the development of carbon products precursor materials from coal. The first year of the project ended in February, 1996; however, the WVU research effort continued through August 14, 1997 on a no-cost extension of the original contract. PETC chose to exercise the option for continuation of the projects and $100,000 became available on August 9, 1996. The objective for year two is to focus on development of those carbon products from coal-based solvent extract precursors which have the greatest possibility for commercial success.

  19. Children's Understanding and Production of Verbal Irony in Family Conversations

    Science.gov (United States)

    Recchia, Holly E.; Howe, Nina; Ross, Hildy S.; Alexander, Stephanie

    2010-01-01

    This study examined how children use and understand various forms of irony (sarcasm, hyperbole, understatement, and rhetorical questions) in the context of naturalistic positive and negative family conversations in the home. Instances of ironic language in conversations between mothers, fathers, and their two children (M[subscript ages] = 6.33 and…

  20. Delayed fungal evolution did not cause the Paleozoic peak in coal production.

    Science.gov (United States)

    Nelsen, Matthew P; DiMichele, William A; Peters, Shanan E; Boyce, C Kevin

    2016-03-01

    Organic carbon burial plays a critical role in Earth systems, influencing atmospheric O2 and CO2 concentrations and, thereby, climate. The Carboniferous Period of the Paleozoic is so named for massive, widespread coal deposits. A widely accepted explanation for this peak in coal production is a temporal lag between the evolution of abundant lignin production in woody plants and the subsequent evolution of lignin-degrading Agaricomycetes fungi, resulting in a period when vast amounts of lignin-rich plant material accumulated. Here, we reject this evolutionary lag hypothesis, based on assessment of phylogenomic, geochemical, paleontological, and stratigraphic evidence. Lignin-degrading Agaricomycetes may have been present before the Carboniferous, and lignin degradation was likely never restricted to them and their class II peroxidases, because lignin modification is known to occur via other enzymatic mechanisms in other fungal and bacterial lineages. Furthermore, a large proportion of Carboniferous coal horizons are dominated by unlignified lycopsid periderm with equivalent coal accumulation rates continuing through several transitions between floral dominance by lignin-poor lycopsids and lignin-rich tree ferns and seed plants. Thus, biochemical composition had little relevance to coal accumulation. Throughout the fossil record, evidence of decay is pervasive in all organic matter exposed subaerially during deposition, and high coal accumulation rates have continued to the present wherever environmental conditions permit. Rather than a consequence of a temporal decoupling of evolutionary innovations between fungi and plants, Paleozoic coal abundance was likely the result of a unique combination of everwet tropical conditions and extensive depositional systems during the assembly of Pangea.

  1. Design manual for management of solid by-products from advanced coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    Developing coal conversion technologies face major obstacles in byproduct management. This project has developed several management strategies based on field trials of small-scale landfills in an earlier phase of the project, as well as on published/unpublished sources detailing regulatory issues, current industry practice, and reuse opportunities. Field testing, which forms the basis for several of the disposal alternatives presented in this design manual, was limited to byproducts from Ca-based dry SO{sub 2} control technologies, circulating fluidized bed combustion ash, and bubbling bed fluidized bed combustion ash. Data on byproducts from other advanced coal technologies and on reuse opportunities are drawn from other sources (citations following Chapter 3). Field results from the 5 test cases examined under this project, together with results from other ongoing research, provide a basis for predictive modeling of long-term performance of some advanced coal byproducts on exposure to ambient environment. This manual is intended to provide a reference database and development plan for designing, permitting, and operating facilities where advanced coal technology byproducts are managed.

  2. Alternative process schemes for coal conversion. Progress report No. 2, February 1-April 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Sansone, M.J.

    1979-05-01

    The importance of gas separation methods to the economics of hydrogasification and catalytic gasification processes has been emphasized. This importance is due to the fact that these processes require large amounts of recycled hydrogen or hydrogen and carbon monoxide from which the product methane must be removed via some economical method. For example, the Exxon catalytic gasification process utilizes a cryogenic distillation to achieve the separation of CH/sub 4/ from H/sub 2/ and CO. In this report, the energetics of a cryogenic separation process for hydrogen-methane mixtures are calculated and compared with the energy requirements for the separation of H/sub 2//CH/sub 4/ and H/sub 2//CO/CH/sub 4/ mixtures using a gas hydrate separation scheme. It must be stated at the outset that the success of the proposed hydrate process depends upon the kinetics of hydrate formation for which we have no data. Nevertheless, it is still worthwhile to examine such a process within a thermodynamic framework to determine if such a scheme is at least energetically, if not kinetically, feasible.

  3. Survey of industrial coal conversion equipment capabilities: high-temperature, high-pressure gas purification

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J. P.; Edwards, M. S.

    1978-06-01

    In order to ensure optimum operating efficiencies for combined-cycle electric generating systems, it is necessary to provide gas treatment equipment capable of operating at high temperatures (>1000/sup 0/F) and high pressure (>10 atmospheres absolute). This equipment, when assembled in a process train, will be required to condition the inlet stream to a gas turbine to suitable levels of gas purity (removal of particulate matter, sulfur, nitrogen, and alkali metal compounds) so that it will be compatible with both environmental and machine constraints. In this work, a survey of the available and developmental equipment for the removal of particulate matter and sulfur compounds has been conducted. In addition, an analysis has been performed to evaluate the performance of a number of alternative process configurations in light of overall system needs. Results from this study indicate that commercially available, reliable, and economically competitive hot-gas cleanup equipment capable of conditioning raw product gas to the levels required for high-temperatue turbine operation will not be available for some time.

  4. Preliminary experimental studies of waste coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Su, S.; Jin, Y.G.; Yu, X.X.; Worrall, R. [CSIRO, Brisbane, QLD (Australia). Advanced Coal Technology

    2013-07-01

    Coal mining is one of Australia's most important industries. It was estimated that coal washery rejects from black coal mining was approximately 1.82 billion tonnes from 1960 to 2009 in Australia, and is projected to produce another one billion tonnes by 2018 at the current production rate. To ensure sustainability of the Australian coal industry, we have explored a new potential pathway to create value from the coal waste through production of liquid fuels or power generation using produced syngas from waste coal gasification. Consequently, environmental and community impacts of the solid waste could be minimized. However, the development of an effective waste coal gasification process is a key to the new pathway. An Australian mine site with a large reserve of waste coal was selected for the study, where raw waste coal samples including coarse rejects and tailings were collected. After investigating the initial raw waste coal samples, float/sink testing was conducted to achieve a desired ash target for laboratory-scale steam gasification testing and performance evaluation. The preliminary gasification test results show that carbon conversions of waste coal gradually increase as the reaction proceeds, which indicates that waste coal can be gasified by a steam gasification process. However, the carbon conversion rates are relatively low, only reaching to 20-30%. Furthermore, the reactivity of waste coal samples with a variety of ash contents under N{sub 2}/air atmosphere have been studied by a home-made thermogravimetric analysis (TGA) apparatus that can make the sample reach the reaction temperature instantly.

  5. Life cycle assessment of opencast coal mine production: a case study in Yimin mining area in China.

    Science.gov (United States)

    Zhang, Li; Wang, Jinman; Feng, Yu

    2018-01-06

    China has the largest coal production in the world due to abundant resource requirements for economic development. In recent years, the proportion of opencast coal mine production has increased significantly in China. Opencast coal mining can lead to a large number of environmental problems, including air pollution, water pollution, and solid waste occupation. The previous studies on the environmental impacts of opencast coal mine production were focused on a single production process. Moreover, mined land reclamation was an important process in opencast coal mine production; however, it was rarely considered in previous research. Therefore, this study attempted to perform a whole environmental impact analysis including land reclamation stage using life cycle assessment (LCA) method. The Yimin opencast coal mine was selected to conduct a case study. The production of 100 tons of coal was used as the functional unit to evaluate the environmental risks in the stages of stripping, mining, transportation, processing, and reclamation. A total of six environmental impact categories, i.e., resource consumption, acidification, global warming, solid waste, eutrophication, and dust, were selected to conduct this assessment. The contribution rates of different categories of environmental impacts were significantly different, and different stages exhibited different consumption and emissions that gave rise to different environmental effects. Dust was the most serious environmental impact category, and its contribution rate was 36.81%, followed by global warming and acidification with contribution rates of 29.43% and 22.58%, respectively. Both dust and global warming were mainly affected in mining stage in Yimin opencast coal mine based on comprehensive analysis of environmental impact. Some economic and feasible measures should be used to mitigate the environmental impacts of opencast coal mine production, such as water spraying, clean transportation, increasing processing

  6. Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

  7. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  8. Planar chromatography for the hydrocarbon group type analysis of petroleum middle distillates and coal-derived products

    Energy Technology Data Exchange (ETDEWEB)

    Matt, Muriel; Gruber, Rene [Laboratoire de thermodynamique et d' analyses chimiques, Universite de Metz, Ile du Saulcy, UFR SciFA, 57045 cedex 1 Metz (France); Galvez, Eva; Cebolla, Vicente; Membrado, Luis; Vela, Jesus [Instituto de Carboquimica, CSIC, Miguel Luesma Castan 4, 50015 Zaragoza (Spain)

    2002-06-20

    Different methodologies, based on planar chromatography/detection with densitometry, have been used to analyse compound classes (also known as hydrocarbon group type (HGT)) in samples coming from petroleum and coal conversion. The main problem encountered to analyse these samples is the choice of standard: because of the high variability of the signal that is dependent of molecular structure, one pure hydrocarbon does not reflect the response of a mixture. However, a step based on thin layer chromatography at preparative scale has allowed the fractionation of sample to obtain its derived standards. After this, alkanes have been quantified by fluorescence in presence of berberine sulfate and aromatic compounds have been detected by UV after separation by high performance thin layer chromatography (HPTLC) at analytical scale.The feasibility of the planar chromatography has been tested. The quantitative results obtained for different samples are in agreement with those provided using well-established techniques in the petrochemical industry and the coal-derived product (CDP) analysis.

  9. Prospects for production of synthetic liquid fuel from low-grade coal

    Directory of Open Access Journals (Sweden)

    Shevyrev Sergei

    2015-01-01

    Full Text Available In the paper, we compare the energy costs of steam and steam-oxygen gasification technologies for production of synthetic liquid fuel. Results of mathematic simulation and experimental studies on gasification of low-grade coal are presented.

  10. Externalities of biomass based electricity production compared to power generation from coal in the Netherlands

    NARCIS (Netherlands)

    Faaij, A.; Meuleman, B.

    1997-01-01

    Externalities of electricity production from biomass and coal are investigated and compared for the Dutch context. Effects on economic activity and employment are investigated with help of Input/Output and multiplier tables. Valuations of damage from emissions to air are based on generic data from

  11. Improved extraction procedures for coal products based on the Soxtec apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Membrado Giner, L.; Vela Rodrigo, J.; Ferrando Navarro, A.C.; Cebolla Burillo, V.L. [Instituto de Carboquimica, Zaragoza (Spain). Dept. de Procesos Quimicos

    1996-07-01

    Soxtec, a medium-cost extraction apparatus, was tested against classical Soxhlet extraction applied to coal and coal-derived products. An optimization study of Soxtec operating conditions for our samples led to a reduction of 90% in the total extraction time needed by Soxhlet, with a comparable repeatability of results and similar extraction yields. As Soxtec and Soxhlet share a common set of general operating conditions, product composition is very similar, and most of the differences can be explained in terms of the increased efficiency of Soxtec, probably due to a better mass transfer. A multistep extraction procedure was also studied. Keeping most of the advantages of single-step Soxtec extraction, it also solves some of its problems (mainly the possibility of saturation) and provides some kinetic data to assess the completeness of the extraction. The enhanced speed of Soxtec also makes it possible to carry out sequential extraction of coal-derived products. Although this work was devoted to coal-derived products, these procedures should be applicable to other kinds of samples as well. 22 refs., 7 figs., 6 tabs.

  12. Occupational and traning requirements for expanded coal production (as of October 1980). [Forecasting to 1995

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    This study was initiated because of the anticipated rapid growth in trained personnel requirements in bituminous coal mining, and because the industry had already experienced significant problems in recruiting skilled manpower in the course of its employment expansion during the 1970's. Employment in bituminous coal mining is projected to nearly double, from 234,000 in 1977 to 456,000 in 1995, as the net result of a projected threefold increase in coal output to nearly 2.0 billion in 1995 and of an expected significant improvement in overall productivity. A large proportion of current coal mining employees are in occupations which require significant amounts of training for effective work performance. Employment growth to 1955 will be most rapid in those occupations requiring the greatest training or educational preparation. The new training infrastructure which has emerged to meet these needs includes both internal, company-operated training programs and those offered by various external providers. Among the latter are: Vocational schools, community colleges, and university extension departments; public agencies, such as MSHA and state mining departments; coal industry trade associations; and vendors or training consultant groups. The Conference Board survey of coal industry training programs, conducted in late 1979, was designed to provide comprehensive data on the scope of the coal industry's own training activities and on related training issues, based on a mail questionnaire survey addressed to all companies producing 300,000 or more tons per year. The training programs are described with emphasis on time changes, regional effects and implications for a coordinated plan.

  13. Production and utilisation of a new pulverised fuel on bituminous coal/sewage sludge basis

    Energy Technology Data Exchange (ETDEWEB)

    Probst, H.H.; Wehland, P. [Bruno Fechner GmbH & Co. KG, Bottrop (Germany)

    1998-12-31

    Several solid fuels such as lignite, hard coal, sewage sludges and petrol coke were characterised by proximate and ultimate analyses, heavy metal content, calorific value etc. Thermogravimetric combustion profiles of five fuels were recorded to evaluate and compare the chemical reaction rates and behaviour. Combustion experiments on single fuels (coal and sewage sludge) and their blends were performed in a semi-technical high temperature drop tube furnace at DMT. The hard coal Middelburg, the Indonesian hard coal Kaltim Prima, the Colombian hard coal El Cerrejon, the sewage sludges Stadtwerke Dusseldorf and Emschergenossenschaft and their blends were tested with regard to their application in rotary kiln PF burners in the asphalt producing industry. The experiments varied reaction time and oxygen partial pressure. A fuel blend consisting of hard coals Kaltim Prima, Spitsbergen and El Cerrejon, respectively and sewage sludge Stadtwerke Dusseldorf (KPC/Dusseldorf 3:1) turned out to be suitable for industrial scale tests in an asphalt production plant competing with the standard fuel lignite fine dust Rheinbraun and pure sewage sludge Stadtwerke Dusseldorf. After a burner adaption phase to the novel fuels burner operation was stable. Heat introduction into the rotary kiln was best for the El Cerrejon/Dusseldorf (3:1) fuel blend. During operation with this blend all legal emission standards were met, whereas emission problems arose with sewage sludge Stadtwerke Dusseldorf. A fuel blend consisting of a high volatile hard coal and sewage sludge is an attractive substitute fuel for the expensive standard fuel lignite fine dust. 1 ref., 15 figs., 5 tabs.

  14. Production of hydrogen and separation of cycle gases for the liquefaction of coal

    Energy Technology Data Exchange (ETDEWEB)

    Becker, H.; Brauer, O.; Heucke, C.; Lohmueller, R.; Ranke, G.

    1984-03-01

    As with the IG-Farbenindustrie coal-hydrogenation process of the forties, low-temperature processes are now again being considered in industrial-scale coal liquefaction processes. Hydrogen can be generated by gasification of heavy residues and by steam reforming of the ethane fraction. Alternatives to the separation of cycle gas into hydrogen and product gases are butane or methane scrubbing processes and low-temperature condensation at high and medium pressures. These processes additionally use a number of absorption and adsorption stages for gas purification. They have proved successful on an industrial scale and they satisfy the legal requirements of environmental protection.

  15. Material and Energy Flow Analysis (Mefa of the Unconventional Method of Electricity Production Based on Underground Coal Gasification

    Directory of Open Access Journals (Sweden)

    Krystyna Czaplicka-Kolarz

    2014-01-01

    Originality/value: This is the first approach which contains a whole chain of electricity production from Underground Coal Gasification, including stages of gas cleaning, electricity production and the additional capture of carbon dioxide.

  16. Microwave-induced co-processing of coal and biomass

    OpenAIRE

    Yan, Jie-Feng

    2015-01-01

    Pyrolysis is an attractive alternative for the conversion of solid fuels to valuable chemicals and bio-fuels. In order to obtain more H2 and syngas from pyrolysis of coal and biomass, microwave has been adopted to enhance the co-pyrolysis of coal and biomass, which has been investigated systematically in this study. Firstly, conventional pyrolysis of coal and biomass was carried out using a vertical tube furnace. Characterizations of pyrolytic gas, liquid and solid products were conducted...

  17. Conversion to Organic Dairy Production in the Netherlands: Opportunities and Constraints

    Science.gov (United States)

    Smit, Arnoud A. H.; Driessen, Peter P. J.; Glasbergen, Pieter

    2009-01-01

    Organic agriculture is perceived as being more sustainable than conventional agriculture. However, while there is a growing interest in, and market for, organic products, large-scale conversion to organic agriculture is not taking place. Even though conversion from conventional to organic dairy production is not especially difficult in theory,…

  18. CFD Analysis of Coal and Heavy Oil Gasification for Syngas Production

    DEFF Research Database (Denmark)

    Sreedharan, Vikram

    2012-01-01

    This work deals with the gasification of coal and heavy oil for syngas production using Computational Fluid Dynamics (CFD). Gasification which includes complex physical and chemical processes such as turbulence, multiphase flow, heat and mass transfer and chemical reactions has been modeled using...... phases. Gasification consists of the processes of passive heating, devolatilization, volatiles oxidation, char gasification and gas phase reactions. Attention is given here to the chemical kinetics of the gasification processes. The coal gasification model has been validated for entrained-flow gasifiers...... dioxide is overestimated. The deviation is fairly small, particularly for the improved chemical kinetics scheme. The heavy oil gasification model has been validated for a pilot-scale entrained-flow gasifier operating under different oxygen ratios. A gasification model similar to that developed for coal...

  19. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Partnership, Billings, MT (United States)

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stages are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.

  20. High-sulfur coal research at the SIUC (Southern Illinois University at Carbondale) Coal Technology Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-01-01

    Research on high-sulfur coal which is taking place at the Coal Technology Laboratory at Southern Illinois University at Carbondale is divided into four general categories: coal science, coal preparation, coal conversion, and coal utilization. The work in these four areas covers a broad spectrum of high-sulfur coal research from the very fundamental aspects of the coal, through its physical beneficiation and possible conversion, to its ultimate utilization and overall economic modeling. Individual projects are processed separately for the databases.

  1. Volatiles production from the coking of coal; Sekitan no netsubunkai ni okeru kihatsubun seisei

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Y.; Saito, H.; Inaba, A. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    In order to simplify the coke manufacturing process, a coke production mechanism in coal pyrolysis was discussed. Australian bituminous coal which can produce good coke was used for the discussion. At a temperature raising rate of 50{degree}C per minute, coal weight loss increases monotonously. However, in the case of 3{degree}C, the weight loss reaches a peak at a maximum ultimate temperature of about 550{degree}C. The reaction mechanism varies with the temperature raising rates, and in the case of 50{degree}C per minute, volatiles other than CO2 and propane increased. Weight loss of coal at 3{degree}C per minute was caused mainly by methane production at 550{degree}C or lower. When the temperature is raised to 600{degree}C, tar and CO2 increased, and so did the weight loss. Anisotropy was discerned in almost of all coke particles at 450{degree}C, and the anisotropy became remarkable with increase in the maximum ultimate temperature. Coke and volatiles were produced continuously at a temperature raising rate of 50{degree}C per minute, and at 3{degree}C per minute, the production of the coke and volatiles progressed stepwise as the temperature has risen. 7 refs., 6 figs.

  2. Technical data. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project, Converse County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    This volume includes a description of the railway to transport the coal; possible unbalance in the electrical power supply is considered in detail, as well as communications, signalling, etc. The railway will also be used to transport ashes and sludges for waste disposal. Coal fines in the coal supply will be burned to generate power. A very brief description of the coal gasification plant and its components is accompanied by a printout of the dates final engineering is to be completed. Permit applications are listed and socio-economic factors are discussed. The financing plan is discussed in some detail: basically, a loan guarantee from the Synthetic Fuels Corporation; equity provided by investment tax credit, deferred taxes, AFUDC and the sponsors; price support; and gas purchase agreement (this whole section includes several legal details.). (LTN)

  3. Possibilities of production of smokeless fuel via carbonization of Czech coals

    Energy Technology Data Exchange (ETDEWEB)

    Buchtele, J.; Straka, P. [Inst. of Rock Structure and Mechanics, Prague (Czechoslovakia)

    1995-12-01

    It was consumed 48 -51 % of hard coal (total output 28 - 30 Mt/year) in a long period for the production of coke. It appears to be anomaly in comparison with other coke producers in Europe and in the world, it was predeterminated by {open_quotes}steel conception{close_quotes} of state`s economics. The production of coke reached 10-11 Mt/year in former Czechoslovakia in the period 1970-1990. A considerable quantity 1.2 - 1.7 Mt/year of produced coke was utilized for heating. In comparison, 7-5.4 Mt coke/year was it in Poland for the heating. Al coke production is realized on the basis of Czech hard coals mined in the southern part of Upper Silesian Coal District. The coke production is operated in multi-chamber system with full recovery of chemical products (gas, raw tar, raw benzene, amonium etc.). The future trend of smokeless fuel production in Czech Republic makes for to the non-recovery coke oven, it means to two-product processes (coke + reduction gas, coke + electricity and so on). Jewell--Thompson coke oven (hard coal) and Salem oven (ignites) represent nonrecovery nowadays. The possibility of it`s application in Czech Republic are discussed. Jumbo coking reactor system (European project No. 500 to the Eureka programme) produces primarily metallurgical coke. The strong Clean Air Act suspends the production of smokeless fuel in multi-chamber system also in Czech Republic for the future period 2010-2020.

  4. D-malate production by permeabilized Pseudomonas pseudoalcaligenes; optimization of conversion and biocatalyst productivity.

    Science.gov (United States)

    Michielsen, M J; Frielink, C; Wijffels, R H; Tramper, J; Beeftink, H H

    2000-04-14

    For the development of a continuous process for the production of solid D-malate from a Ca-maleate suspension by permeabilized Pseudomonas pseudoalcaligenes, it is important to understand the effect of appropriate process parameters on the stability and activity of the biocatalyst. Previously, we quantified the effect of product (D-malate2 -) concentration on both the first-order biocatalyst inactivation rate and on the biocatalytic conversion rate. The effects of the remaining process parameters (ionic strength, and substrate and Ca2 + concentration) on biocatalyst activity are reported here. At (common) ionic strengths below 2 M, biocatalyst activity was unaffected. At high substrate concentrations, inhibition occurred. Ca2+ concentration did not affect biocatalyst activity. The kinetic parameters (both for conversion and inactivation) were determined as a function of temperature by fitting the complete kinetic model, featuring substrate inhibition, competitive product inhibition and first-order irreversible biocatalyst inactivation, at different temperatures simultaneously through three extended data sets of substrate concentration versus time. Temperature affected both the conversion and inactivation parameters. The final model was used to calculate the substrate and biocatalyst costs per mmol of product in a continuous system with biocatalyst replenishment and biocatalyst recycling. Despite the effect of temperature on each kinetic parameter separately, the overall effect of temperature on the costs was found to be negligible (between 293 and 308 K). Within pertinent ranges, the sum of the substrate and biocatalyst costs per mmol of product was calculated to decrease with the influent substrate concentration and the residence time. The sum of the costs showed a minimum as a function of the influent biocatalyst concentration.

  5. Will coal depart or will it continue to dominate global power production during the 21st century?

    Energy Technology Data Exchange (ETDEWEB)

    Zwaan, Bob van der

    2005-07-01

    This article considers whether coal must depart or whether it may still dominate power production during the 21st century, in view of the challenges implied by regional pollution reduction and global warming mitigation. Four main reasons are given for why, paradoxically, coal is likely to continue to have a high, and perhaps even increasing, share in global electricity generation this century: namely, (1) its large resource base; (2) the improving efficiency and competitivity of conventional and innovative coal technologies; (3) the employability of new coal technologies in conjunction with carbon capture and storage systems; (4) the improving economics of these advanced clean coal technologies. Governments, however, will need to provide the incentives required to stimulate the deployment of clean coal technologies. (Author)

  6. Will coal depart or will it continue to dominate global power production during the 21st century?

    Energy Technology Data Exchange (ETDEWEB)

    van der Zwaan, B. [ECN, Amsterdam (Netherlands). Policy Studies Dept.

    2005-07-01

    This article considers whether coal must depart or whether it may still dominate power production during the 21st century, in view of the challenges implied by regional pollution reduction and global warming mitigation. Four main reasons are given for why, paradoxically, coal is likely to continue to have a high, and perhaps even increasing, share in global electricity generation this century: namely, (1) its large resource base; (2) the improving efficiency and competitivity of conventional and innovative coal technologies; (3) the employability of new coal technologies in conjunction with carbon capture and storage systems; (4) the improving economics of these advanced clean coal technologies. Governments, however, will need to provide the incentives required to stimulate the deployment of clean coal technologies.

  7. Effect of coal matrix swelling on enhanced coalbed methane production. A field and laboratory study. Geologica Ultraiectina (315)

    NARCIS (Netherlands)

    van Bergen, F.

    2009-01-01

    Carbon capture and storage (CCS) is considered a key technology to reduce worldwide emissions of carbon dioxide (CO2). One CCS option is to inject CO2 into subsurface coal beds. When combined with simultaneous, enhanced, production of methane naturally present in the coal, this process is referred

  8. Coal in a sustainable society: Stage 1: Life cycle analysis of steel and electricity production in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Nunn, J.; Wibberley, L.; Scaife, P. [BHP Centre for Metallurgy and Resource Processing, Newcastle, NSW (Australia)

    2000-10-01

    Sustainable development is a key issue in the future of the coal industry. The first stage of a project aimed at understanding and supporting coal's role in a sustainable society is discussed. In this stage, the impacts of steel and electricity production in Australia is considered using life cycle analysis. 2 refs., 2 figs.

  9. Mulled coal: A beneficiated coal form for use as a fuel or fuel intermediate

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    Energy International is developing a technology that will create a staged formulation with the first coal form (Mulled Coal) that can be stored, transported, and pumped. Just prior to combustion, the Mulled Coal (MC) would be modified to provide the properties needed for proper atomization. This concept is an alternative to the expensive and energy intensive thermal drying processing of fine coal wet cakes. The material is suitable for both direct feed use in conventional and fluid bed combustors as well as on-site conversion to combustible slurries. By maintaining the coal form relatively close to the feed wet cake, only minor processing with low additive levels and low energy blending needed at the point of production. Its conversion to slurry or other use-feed form is made near the time of use and thus the requirements for stability, climatic control, and other storage, transport, and handling requirements are much less severe.

  10. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Steven Markovich

    2010-06-30

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

  11. Chemical conversion of energetic materials to higher value products

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, A.R.; Sanner, R.D.; Pagoria, P.F.

    1996-05-01

    The objective of this program is to develop novel, innovative solutions for the disposal of surplus explosives resulting from the demilitarization of nuclear and conventional munitions. Studies related to the conversion of TNT and Explosive D to potentially useful materials are described.

  12. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

  13. Moving Bed Gasification of Low Rank Alaska Coal

    Directory of Open Access Journals (Sweden)

    Mandar Kulkarni

    2012-01-01

    Full Text Available This paper presents process simulation of moving bed gasifier using low rank, subbituminous Usibelli coal from Alaska. All the processes occurring in a moving bed gasifier, drying, devolatilization, gasification, and combustion, are included in this model. The model, developed in Aspen Plus, is used to predict the effect of various operating parameters including pressure, oxygen to coal, and steam to coal ratio on the product gas composition. The results obtained from the simulation were compared with experimental data in the literature. The predicted composition of the product gas was in general agreement with the established results. Carbon conversion increased with increasing oxygen-coal ratio and decreased with increasing steam-coal ratio. Steam to coal ratio and oxygen to coal ratios impacted produced syngas composition, while pressure did not have a large impact on the product syngas composition. A nonslagging moving bed gasifier would have to be limited to an oxygen-coal ratio of 0.26 to operate below the ash softening temperature. Slagging moving bed gasifiers, not limited by operating temperature, could achieve carbon conversion efficiency of 99.5% at oxygen-coal ratio of 0.33. The model is useful for predicting performance of the Usibelli coal in a moving bed gasifier using different operating parameters.

  14. Chemical Fixation of CO2 in Coal Combustion Products and Recycling through Biosystems

    Energy Technology Data Exchange (ETDEWEB)

    C. Henry Copeland; Paul Pier; Samantha Whitehead; David Behel

    2001-09-30

    This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented.

  15. Geochemical study of products associated with spontaneous oxidation of coal in the Cerro Pelado Formation, Venezuela

    Science.gov (United States)

    Martínez, M.; Márquez, G.; Alejandre, F. J.; Del Río, J. J.; Hurtado, A.

    2009-02-01

    The aim of this research work is a geochemical, mineralogical, and textural characterization of spontaneously smouldered coal-derived products in northwestern Venezuela (Cerro Pelado Formation, some 10 km from Pedregal city). Several solid samples were collected from this formation, six of unweathering coal, an other six of resulting unmelted rocks forming on a surface coal bed, and the last four of mineralizations found accumulating around gas vents. The fresh coal and the unmelted material were analysed by scanning electron microscopy, X-ray diffraction, and proximate techniques. Products such as magnetite and chabazite-K were identified in the alteration rocks. Likewise, both materials were also studied in order to determine the mobilization of 17 elements into the environment; such elements were analysed through inductively coupled plasma atomic emission spectroscopy on extracts obtained by a sequential extraction method: each sample was firstly extracted with MilliQ water and then the resultant residue was washed. This and the subsequently resulting residues are extracted according to the mentioned procedure by using, respectively, ammonium acetate, chlorhydric acid, peroxide and chlorhydric acid, nitric acid and fluorhydric acid, and nitric acid. The studied elements are classified as highly mobile (Na, Ni, ...), nearly immobile (Ti, P) and partially mobile (Mg, Fe, K, ...). In regards to mineralizations around fumaroles associated with smoldering coal seams, Fourier-transform infrared spectroscopy and X-ray diffraction analyses have revealed the presence of salammoniac, mascagnite and other solid combustion compounds formed by reaction of gas emitted from coal oxidation, in addition to previously non-reported sulfur-rich by-products associated with gas fissures, particularly ammonium thiosulfate, a phase first obtained only synthetically in the laboratory. Another objective of the research was to collect and analyse gases escaping from surficial vents

  16. Comparative Evaluation of Phase 1 Results from the Energy Conversion Alternatives Study (ECAS). [coal utilization for electric power plants feasibility analysis

    Science.gov (United States)

    1976-01-01

    Ten advanced energy conversion systems for central-station, based-load electric power generation using coal and coal-derived fuels which were studied by NASA are presented. Various contractors were selected by competitive bidding to study these systems. A comparative evaluation is provided of the contractor results on both a system-by-system and an overall basis. Ground rules specified by NASA, such as coal specifications, fuel costs, labor costs, method of cost comparison, escalation and interest during construction, fixed charges, emission standards, and environmental conditions, are presented. Each system discussion includes the potential advantages of the system, the scope of each contractor's analysis, typical schematics of systems, comparison of cost of electricity and efficiency for each contractor, identification and reconciliation of differences, identification of future improvements, and discussion of outside comments. Considerations common to all systems, such as materials and furnaces, are also discussed. Results of selected in-house analyses are presented, in addition to contractor data. The results for all systems are then compared.

  17. ADVANCED MULTI-PRODUCT COAL UTILIZATION BY-PRODUCT PROCESSING PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Robert Jewell; Thomas Robl; John Groppo

    2005-03-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. The ash produced by the plant was found to be highly variable as the plant consumes high and low sulfur bituminous coal, in Units 1 and 2 and a mixture of subbituminous and bituminous coal in Units 3 and 4. The ash produced reflected this consisting of an iron-rich ({approx}24%, Fe{sub 2}O{sub 3}), aluminum rich ({approx}29% Al{sub 2}O{sub 3}) and high calcium (6%-7%, CaO) ash, respectively. The LOI of the ash typically was in the range of 5.5% to 6.5%, but individual samples ranged from 1% to almost 9%. The lower pond at Ghent is a substantial body, covering more than 100 acres, with a volume that exceeds 200 million cubic feet. The sedimentation, stratigraphy and resource assessment of the in place ash was investigated with vibracoring and three-dimensional, computer-modeling techniques. Thirteen cores to depths reaching nearly 40 feet, were retrieved, logged in the field and transported to the lab for a series of analyses for particle size, loss on ignition, petrography, x-ray diffraction, and x-ray fluorescence. Collected data were processed using ArcViewGIS, Rockware, and Microsoft Excel to create three-dimensional, layered iso-grade maps, as well as stratigraphic columns and profiles, and reserve estimations. The ash in the pond was projected to exceed 7 million tons and contain over 1.5 million tons of coarse carbon, and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. The size, quality and consistency of the ponded material suggests that it is the better feedstock for the beneficiation plant.

  18. Prevention of trace and major element leaching from coal combustion products by hydrothermally-treated coal ash

    Energy Technology Data Exchange (ETDEWEB)

    Adnadjevic, B.; Popovic, A.; Mikasinovic, B. [University of Belgrade, Belgrade (Serbia). Dept. of Chemistry

    2009-07-01

    The most important structural components of coal ash obtained by coal combustion in 'Nikola Tesla A' power plant located near Belgrade (Serbia) are amorphous alumosilicate, alpha-quartz, and mullite. The phase composition of coal ash can be altered to obtain zeolite type NaA that crystallizes in a narrow crystallization field (SiO{sub 2}/Al{sub 2}O{sub 3}; Na{sub 2}O/SiO{sub 2}; H{sub 2}O/Na{sub 2}O ratios). Basic properties (crystallization degree, chemical composition, the energy of activation) of obtained zeolites were established. Coal ash extracts treated with obtained ion-exchange material showed that zeolites obtained from coal ash were able to reduce the amounts of iron, chromium, nickel, zinc, copper, lead, and manganese in ash extracts, thus proving its potential in preventing pollution from dump effluent waters.

  19. The Service for the Customers of Coal Products in the Context of the Conception of Relationship Marketing

    Directory of Open Access Journals (Sweden)

    Trushkina Nataliia V.

    2017-04-01

    Full Text Available The article is aimed at developing approaches to the service for various groups of customers of coal products in the context of the conception of relationship marketing. Content of the term of «service of the customers of coal products» has been clarified. An analysis of the dynamics of volume and structure of coal consumption in Ukraine was carried out. It has been proven that in organizing the marketing processes in terms of coal enterprise activities, it is appropriate to apply the conception of relationship marketing, essence of which is formation of a partnership based on a customer-oriented approach to the service for customers of coal products. A feature of this approach, unlike the existing ones, is the allocation of different groups of consumers of coal products, taking into consideration the volume of their annual demand and the specifics identified. It has been suggested that a systemic, process, and functional approaches to the organization of processes of service for the consumers of coal products be used in a single complex through the implementation of management functions.

  20. Phase behavior of coal fluids: Data for correlation development

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, R.L. Jr.

    1990-02-06

    The effective design and operation of processes for conversion of coal to fluid fuels requires accurate knowledge of the phase behavior of the fluid mixtures encountered in the conversion process. Multiple phases are present in essentially all stages of feed preparation, conversion reactions and product separation; thus, knowledge of the behavior of these multiple phases is important in each step. The overall objective of the author's work is to develop accurate predictive methods for representation of vapor-liquid equilibria in systems encountered in coal conversion processes. 59 refs., 6 figs., 7 tabs.

  1. Non-Coal Mineral Production Mines in Iowa, 2000

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Registered noncoal mineral production sites within the State of Iowa, current to the year 2000. This shape file contains polygons representing the permitted...

  2. Catalytic coal conversion support: use of laser flash-pyrolysis for structural analysis. Progress report, April 15, 1979-September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Verzino, Jr, W J; Rofer-DePoorter, C K; Hermes, R E

    1982-03-01

    Untreated Fruitland subbituminous coal and Fruitland coal treated with several gasification catalysts were pyrolyzed with both Nd-glass and CO/sub 2/ lasers (1.06-..mu..m and 10.6-..mu..m wavelengths, respectively) to give both gaseous and intermediate-molecular weight products, which were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The catalysts used were AlCl/sub 3/, K/sub 2/H/sub 2/Sb/sub 2/O/sub 7/, CoCl/sub 2/, PbCl/sub 2/, Pb(NO/sub 3/)/sub 2/, Na/sub 2/Pb(OH)/sub 6/, Na/sub 2/MoO/sub 4/, NiCl/sub 2/, K/sub 2/CO/sub 3/, KHCO/sub 3/, Na/sub 2/CO/sub 3/, NaHCO/sub 3/, Na/sub 2/Ti/sub 3/O/sub 7/, NaVO/sub 3/, ZnCl/sub 2/, and NaZn(OH)/sub 3/. Gaseous products were analyzed from the Nd-glass laser pyrolysis; of the various catalysts, ZnCl/sub 2/ was found to affect N/sub 2/ production during pyrolysis most significantly. Intermediate products were analyzed from the CO/sub 2/ laser pyrolysis; product distribution was found to depend upon particle size (and consequent thermal history in pyrolysis) as well as on catalyst and heat treatment. Pyrolysis products could not be correlated in a statistically reliable way with coal or char structure. A supercritical extraction method with a Soxhlet extractor inside a pressure vessel was developed for liquid CO/sub 2/ as extractant. Gases evolved during processing of the coal-catalyst mixtures were analyzed by GC for several of the catalysts.

  3. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-04-13

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. A process has been developed which results in high quality binder pitch suitable for use in graphite electrodes or carbon anodes. A detailed description of the protocol is given by Clendenin. Briefly, aromatic heavy oils are hydro-treated under mild conditions in order to increase their ability to dissolve coal. An example of an aromatic heavy oil is Koppers Carbon Black Base (CBB) oil. CBB oil has been found to be an effective solvent and acceptably low cost (i.e., significantly below the market price for binder pitch, or about $280 per ton at the time of this writing). It is also possible to use solvents derived from hydrotreated coal and avoid reliance on coke oven recovery products completely if so desired.

  4. Analysis of waste coal from the enterprises of Kemerovo region as raw materials for production of ceramic materials

    Science.gov (United States)

    Stolboushkin, A. Yu; Akst, D. V.; Fomina, O. A.; Ivanov, A. I.; Syromyasov, V. A.

    2017-09-01

    The analysis of waste coal from mining enterprises of Kemerovo region as raw materials for production of building ceramics is given. The results of studies of material, chemical and mineralogical compositions of waste coal from Abashevskaya processing plant (Novokuznetsk) are presented. It was established that the chemical composition of waste coal refers to aluminosilicate raw materials with a high content of alumina and coloring oxides, the residual carbon content in the wastes is 12-25 %. According to the granulometric composition the waste coal is basically a sandy-dusty fraction with a small amount of clay particles (1-3 %). Additional grinding of coal waste and the introduction of a clay additive in an amount of up to 30 % are recommended. The results of the study of the mineral composition of waste coal are presented. Clay minerals are represented in the descending order by hydromuscovite, montmorillonite and kaolinite, minerals-impurities consist of quartz, feldspar fine-dispersed carbonates. The results of the investigation of ceramic-technological properties of waste coal, which belong to the group of moderately plastic low-melting raw materials, are given. As a result of a comprehensive study it was been established that with chemical, granulometric and mineralogical compositions waste coal with the reduced residual carbon can be used in the production of ceramic bricks.

  5. Potential terrestrial fate and effects on soil biota of a coal liquefaction product spill

    Energy Technology Data Exchange (ETDEWEB)

    Strayer, R.F.; Edwards, N.T.; Walton, B.T.; Charles-Shannon, V.

    1983-01-01

    Contaminated soil samples collected from the site of a coal liquefaction product spill were used to study potential fates and effects of this synthetic fuel. Simulated weathering in the laboratory caused significant changes in residual oil composition. Soil column leachates contained high phenol levels that decreased exponentially over time. Toxicity tests demonstrated that the oil-contaminated soil was phytotoxic and caused embryotoxic and teratogenic effects on eggs of the cricket Acheta domesticus.

  6. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-08-11

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the facility modifications for continuous hydrotreating, as well as developing improved protocols for producing synthetic pitches.

  7. Estimating benthic secondary production from aquatic insect emergence in streams affected by mountaintop removal coal mining, West Virginia USA

    Science.gov (United States)

    Mountaintop removal and valley fill (MTR/VF) coal mining recountours the Appalachian landscape, buries headwater stream channels, and degrades downstream water quality. The goal of this study was to compare benthic community production estimates, based on seasonal insect emergen...

  8. Measurement and modeling of advanced coal conversion processes, Volume I, Part 2. Final report, September 1986--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

    1995-09-01

    This report describes work pertaining to the development of models for coal gasification and combustion processes. This volume, volume 1, part 2, contains research progress in the areas of large particle oxidation at high temperatures, large particle, thick-bed submodels, sulfur oxide/nitrogen oxides submodels, and comprehensive model development and evaluation.

  9. Composition of benzene fraction separated from alkaline hydrolysis product of bituminized non-weathered Shurabsk brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Gartsman, B.B.; Rumyantseva, Z.A.; Perednikova, Z.M.

    1987-01-01

    Componental composition is studied of benzene fraction obtained from hydrolysis of non-weathered bituminized Shurabsk brown coal. Benzene fraction was hydrolized with 3% methanol solution KOH and extracted with various polarity solvents. Chromato-mass spectral analysis indicates that benzene fraction of alkaline hydrolysis products contains about 2/3 neutral substances (aliphatic hydrocarbons, aromatic acid anhydrides, dibutylphthalates) and 1/3 benzene-, oxybenzene-carboxylic and aliphatic acids. Weathering brings about oxidation of aliphatic unsaturated and seemingly some saturated hydrocarbons forming organic coal mass as well as accumulation of benzene- and oxybenzene-carboxylic acids in alkaline hydrolysis of coal products. 10 refs.

  10. The potential of coal combustion products as soft soil improvement materials

    Energy Technology Data Exchange (ETDEWEB)

    Awad, A.A.A. [WorsleyParsons Canada, Calgary, AB (Canada); Harahap, I.S. [Univ. Teknology Petronas, Tronoh (Malaysia)

    2010-07-01

    Buildings and embankment constructions are increasingly being built on soft soils, especially in south-east Asia countries. Such soils are subject to large volume changes, have low shear strength and relatively high moisture contents. Soil improvement techniques are therefore needed to address these issues. Stone columns and surface vibratory compaction are commonly used, but they are costly. The use of coal combustion products as a substitute for aggregates in concrete has been proposed as an innovative, efficient, less costly and more environmentally friendly soil improvement technique. This paper reported on a pilot study that was conducted at the University of Technology Petronas in Malaysia to investigate the potential of some coal combustion products, such as pulverized fly ash (PFA) and bottom ash (BA) as soil stabilization materials for soft soils. Specifically, the paper discussed the potential of coal combustion products, namely PFA and BA on the California Bearing Ratio (CBR). The paper discussed soft soils in Malaysia as well as the soil improvement technique. Testing and results were also presented. It was concluded that fly ash seems to be more effective in improving the CBR as compared to bottom ash. 15 refs., 2 tabs., 3 figs.

  11. Thermodynamic study of brown-coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Vonka, P.; Holub, R.; Schoengut, S.; Schoengut, J.

    1988-04-01

    Describes a method for calculating and assessing results of partial adiabatic oxidation of brown coal from the North Bohemian brown-coal field, which may in future act as a source of raw material for production of energy and synthesis gas. Calculations assume idealized fluid and burner generators and reaction parameters were selected to cover a range of operational values (these parameters include pressure, temperature, gasification ratio, water content, ash content and degree of coal conversion). After describing mathematics involved, concludes that thermodynamic analysis shows burner generator to have some advantages over fluid generator for production of synthesis gas, and vice versa for production of energy gas. However, final conclusions must await experimental evidence with regard to degree of conversion and composition of gas mixture; also, validity of this assessment is limited by the fact that no account was taken of the possibility of using reaction heat for production of steam or of any energy consumption involved. 10 refs.

  12. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Robl; John Groppo

    2009-06-30

    The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. These potential products are primarily concentrated in the lower end of the pond adjacent to the outlet. A representative bulk sample was excavated for conducting laboratory-scale process testing while a composite 150 ton sample was also excavated for demonstration-scale testing at the Ghent site. A mobile demonstration plant with a design feed rate of 2.5 tph was constructed and hauled to the Ghent site to evaluate unit processes (i.e. primary classification, froth flotation, spiral concentration, secondary classification, etc.) on a continuous basis to determine appropriate scale-up data. Unit processes were configured into four different flowsheets and operated at a feed rate of 2.5 tph to verify continuous operating performance and generate bulk (1 to 2 tons) products for product testing. Cementitious products were evaluated for performance in mortar and concrete as well as cement manufacture process addition. All relevant data from the four flowsheets was compiled to compare product yields and quality while preliminary flowsheet designs were generated to determine throughputs, equipment size specifications and capital cost summaries. A detailed market study was completed to evaluate the potential markets for cementitious products. Results of the study revealed that the Ghent local fly ash market is currently oversupplied by more than 500,000 tpy and distant markets (i

  13. Advanced bioreactor systems for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub X} and NO{sub X} from coal combustion gases

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, P.T.; Kaufman, E.N.

    1996-06-01

    The purpose of this research program is the development and demonstration of a new generation of gaseous substrate based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from combustion flue gas. This R&D program is a joint effort between the staff of the Bioprocessing Research and Development Center (BRDC) of ORNL and the staff of Bioengineering Resources, Inc. (BRI) under a Cooperative Research and Development Agreement (CRADA). The Federal Coordinating Council for Science, Engineering, and Technology report entitled {open_quotes}Biotechnology for the 21st Century{close_quotes} and the recent Energy Policy Act of 1992 emphasizes research, development, and demonstration of the conversion of coal to gaseous and liquid fuels and the control of sulfur and nitrogen oxides in effluent streams. This R&D program presents an innovative approach to the use of bioprocessing concepts that will have utility in both of these identified areas.

  14. Use of overburden rocks from open-pit coal mines and waste coals of Western Siberia for ceramic brick production with a defect-free structure

    Science.gov (United States)

    Stolboushkin, A. Yu; Ivanov, A. I.; Storozhenko, G. I.; Syromyasov, V. A.; Akst, D. V.

    2017-09-01

    The rational technology for the production of ceramic bricks with a defect-free structure from coal mining and processing wastes was developed. The results of comparison of physical and mechanical properties and the structure of ceramic bricks manufactured from overburden rocks and waste coal with traditional for semi-dry pressing mass preparation and according to the developed method are given. It was established that a homogeneous, defect-free brick texture obtained from overburden rocks of open-pit mines and waste coal improves the quality of ceramic wall materials produced by the method of compression molding by more than 1.5 times compared to the brick with a traditional mass preparation.

  15. Micro-structural characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials.

    Science.gov (United States)

    Liu, Xiaoming; Zhang, Na; Yao, Yuan; Sun, Henghu; Feng, Huan

    2013-11-15

    In this research, the micro-structural characterization of the hydration products of red mud-coal gangue based cementitious materials has been investigated through SEM-EDS, (27)Al MAS NMR and (29)Si MAS NMR techniques, in which the used red mud was derived from the bauxite calcination method. The results show that the red mud-coal gangue based cementitious materials mainly form fibrous C-A-S-H gel, needle-shaped/rod-like AFt in the early hydration period. With increasing of the hydration period, densification of the pastes were promoted resulting in the development of strength. EDS analysis shows that with the Ca/Si of red mud-coal gangue based cementitious materials increases, the average Ca/Si and Ca/(Si+Al) atomic ratio of C-A-S-H gel increases, while the average Al/Si atomic ratio of C-A-S-H gel decreases. MAS NMR analysis reveals that Al in the hydration products of red mud-coal gangue based cementitious materials exists in the forms of Al(IV) and Al(VI), but mainly in the form of Al(VI). Increasing the Ca/Si ratio of raw material promotes the conversion of [AlO4] to [AlO6] and inhibits the combination between [AlO4] and [SiO4] to form C-A-S-H gel. Meanwhile, the polymerization degree of [SiO4] in the hydration products declines. Published by Elsevier B.V.

  16. Coal Bed Methane Production in the Münsterland Basin, Germany - Past and Future

    Science.gov (United States)

    Mösle, B.; Kukla, P.; Stollhofen, H.; Preuße, A.

    2009-04-01

    Growing demands on energy and high energy prices have lead to a re-evaluation of the coal bed methane (CBM) potential in Germany. For research reasons the Technical University of Aachen is holding a concession area in NW Germany, located in the Münsterland Basin. This concession covers an area of about 3460 km2. The southern part of the concession area involves one of the most developed, densely populated mining districts in Western Europe, the Ruhr Area. The Upper Carboniferous coal measures there are covered by northward thickening Cretaceous strata which not only limits the coal mining activity to the south of the basin but also represents a challenge to CBM production technology. This is currently restricted to a depth of about 1200 m. Mine gas has been successfully produced in the Ruhr Area for decades. With the successive closure of coal mines, gas production rates will decrease and consequently production of CBM will become more important. The Münsterland Basin contains a large portion of known Carboniferous coals in western Germany and the production of mine gas proofs that there is a significant resource of natural gas in place. Estimates of the amount of gas in place are at about 3 Trillion m3 in Germany's mining districts of which 2 Trillion m3 are expected to occur in the Ruhr Area alone. First exploration efforts on CBM were made by a consortium of Ruhrgas AG and Conoco-Phillips Inc. in the 1990s. Because of low production rates, relatively high exploration and production costs, and the low gas prices at that time this project was stopped. The present study investigates the reservoir quality and geometry in order to better estimate the potential gas content for a general economic benefit assessment. The structural inventory of the study area comprises NE-SW trending folds and thrusts which are crossed obliquely by faults. Potential gas accumulations may be found in anticlinal structures paired with thrusts. However, these gas accumulations will add

  17. Copyrolysis of Biomass and Coal: A Review of Effects of Copyrolysis Parameters, Product Properties, and Synergistic Mechanisms.

    Science.gov (United States)

    Quan, Cui; Gao, Ningbo

    2016-01-01

    Concerns in the last few decades regarding the environmental and socioeconomic impacts of the dependence on fossil fuels have resulted in calls for more renewable and alternative energy sources. This has led to recent interest in copyrolysis of biomass and coal. Numerous reviews have been found related to individual pyrolysis of coal and biomass. This review deals mainly with the copyrolysis of coal and biomass and then compares their results with those obtained using coal and biomass pyrolysis in detail. It is controversial whether there are synergistic or additive behaviours when coal and biomass are blended during copyrolysis. In this review, the effects of reaction parameters such as feedstock types, blending ratio, heating rate, temperature, and reactor types on the occurrence of synergy are discussed. Also, the main properties of the copyrolytic products are pointed out. Some possible synergistic mechanisms are also suggested. Additionally, several outlooks based on studies in the literature are also presented in this paper.

  18. Copyrolysis of Biomass and Coal: A Review of Effects of Copyrolysis Parameters, Product Properties, and Synergistic Mechanisms

    Directory of Open Access Journals (Sweden)

    Cui Quan

    2016-01-01

    Full Text Available Concerns in the last few decades regarding the environmental and socioeconomic impacts of the dependence on fossil fuels have resulted in calls for more renewable and alternative energy sources. This has led to recent interest in copyrolysis of biomass and coal. Numerous reviews have been found related to individual pyrolysis of coal and biomass. This review deals mainly with the copyrolysis of coal and biomass and then compares their results with those obtained using coal and biomass pyrolysis in detail. It is controversial whether there are synergistic or additive behaviours when coal and biomass are blended during copyrolysis. In this review, the effects of reaction parameters such as feedstock types, blending ratio, heating rate, temperature, and reactor types on the occurrence of synergy are discussed. Also, the main properties of the copyrolytic products are pointed out. Some possible synergistic mechanisms are also suggested. Additionally, several outlooks based on studies in the literature are also presented in this paper.

  19. Copyrolysis of Biomass and Coal: A Review of Effects of Copyrolysis Parameters, Product Properties, and Synergistic Mechanisms

    Science.gov (United States)

    2016-01-01

    Concerns in the last few decades regarding the environmental and socioeconomic impacts of the dependence on fossil fuels have resulted in calls for more renewable and alternative energy sources. This has led to recent interest in copyrolysis of biomass and coal. Numerous reviews have been found related to individual pyrolysis of coal and biomass. This review deals mainly with the copyrolysis of coal and biomass and then compares their results with those obtained using coal and biomass pyrolysis in detail. It is controversial whether there are synergistic or additive behaviours when coal and biomass are blended during copyrolysis. In this review, the effects of reaction parameters such as feedstock types, blending ratio, heating rate, temperature, and reactor types on the occurrence of synergy are discussed. Also, the main properties of the copyrolytic products are pointed out. Some possible synergistic mechanisms are also suggested. Additionally, several outlooks based on studies in the literature are also presented in this paper. PMID:27722171

  20. CHEMICAL TRAPPING OF A PRIMARY QUANTUM CONVERSION PRODUCT INPHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Corker, Gerald A.; Klein, Melvin P.; Calvin, Melvin.

    1966-09-09

    The capacity of photosynthetic organisms to exhibit photo-induced electron paramagnetic resonance (EPR) signals has been known for over ten years. Subcellular units of photosynthetic materials, the quantasomes and the chromatophores, are capable of Hill Reaction activity, and also of exhibiting the light-induced EPR signals. This, coupled with the rapid rise and decay kinetics of these signals, suggests but does not prove that the unpaired electrons are involved in the initial electron transfer processes in the primary quantum conversion act. The identification of the species giving rise to these signals and their connection with processes of primary quantum conversion remains elusive even though such varied approaches as mutant strains, special growth conditions, extreme physical conditions, special metabolic inhibitors, etc. have been applied to this problem. In this communication the authors wish to report another method being used in an attempt to identify the species responsible for the unpaired electrons. Hoffman prepared a water soluble, stable free radical, di-tertiary-butylnitroxide (hereafter called DTBN), which is a 'vigorous free radical scavenger'. It shows a sharp, well resolved, symmetrical, three-line paramagnetic resonance spectrum that is relatively insensitive to the molecular environment. The chemistry of di-tertiary butylnitroxide has not been studied extensively. However, four distinct types of interaction can be envisioned for this molecule. It could undergo a one-electron reduction to form a hydroxylamine which can be reduced subsequently to the amine; an oxidative degradation to 2-methyl-2-nitrosopropane and isobutylene; or a coupling with another radical forming either an oxygen substituted hydroxylamine or a tri-substituted amine oxide.

  1. PPLICATION OF COAL MINING WASTE IN THE PRODUCTION OF STRUCTURAL CERAMICS USING AN ECOLOGICALLY FRIENDLY AND RESOURCE SAVING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Vaysman Yakov Iosifovich

    2016-03-01

    Full Text Available The article states that the use of spoil heaps (coal mining waste in the production of structural ceramics is expedient. It shows the reduction of negative ecological effects during the life cycle when coal mining waste is used in the initial blend for the production of structural ceramics. It shows that the development of the recommendations for the use of coal mining waste in the production of structural ceramics is an urgent issue as far as the use of coal mining waste in the production of structural ceramics can lead both to the achievement of resource saving and positive ecological effect and to the undesirable decrease of the basic physical and mechanical properties of the final products when the structure of the mix is inappropriate. In order to develop these recommendations the authors have examined the microstructure, mineral composition and physical and mechanical properties of structural ceramics produced with the use of coal mining waste, which effect the consumer properties of the target material. As a result of the research the authors have made the conclusions about the nature and degree of impact of coal mining waste quantity on the physical and mechanical properties of construction ceramics. The comparison of the data received during the measurement of the basic physical and mechanical properties of construction ceramics with the results of the research of microstructure, elemental and mineral composition of the samples has shown their correlation.

  2. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. [Quarterly] technical progress report, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Huang, L.; Saini, A.K.; Schobert, H.H.; Hatcher, P.G.

    1993-07-01

    In this quarter, progress has been made in the following two aspects: (1) effects of drying and mild oxidation on conversion and product distribution during non-catalytic and catalytic liquefaction of a Montana subbituminous coal (DECS-9); and (2) effects of solvent and catalyst on conversion and structural changes of a Texas subbituminous coal (DECS-1). Influence of drying and mild oxidation on catalytic and non-catalytic liquefaction (at 350C for 30 min with 6.9 MPa (cold) H{sub 2} was studied using Wyodak subbituminous coal. For non-catalytic runs, fresh raw coal gave higher conversion and higher oil yield than both the vacuum- and air-dried coals, regardless of the solvent. Compared to the vacuum-dried coal, the coal dried in air in 100C for 2 h gave a better conversion in the presence of either a hydrogen donor tetralin or a non-donor 1-methylnaphthalene (1-MN) solvent. Catalytic runs were performed using in-situ generated molybdenum sulfide catalyst from ammonium tetrathiomolybdate (ATTM) precursor impregnated on either raw coal or predried coal samples. The solvent-free runs using ATTM loaded on the raw coal gave higher conversion and higher oil yield than loading ATTM on vacuum- or air-dried coal. In the presence of either tetralin or 1-MN, however, the runs using ATTM loaded on air-dried coal afford better conversions and oil yields as compared to the runs using vacuum-dried coal. Upon drying coal in air at 150C for 20 h, the conversion significantly decreased to a lower value than that of the vacuum-dried coal in the non-catalytic runs, and the same trend was observed in the runs of the dried coals loaded with ATTM. Physical, chemical, and surface chemical aspects of effects of drying and oxidation and the role of water are also discussed in the report.

  3. CONVERSION PRODUCT STRUCTURE AS TOOL TO INCREASE YIELD PROCESSING ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    A. I. Khorev

    2014-01-01

    Full Text Available The authors' analysis of the performance of organizations, processing raw materials of agricultural origin, in particular, dealing with meat processing, identified the need to develop tools to increase their profitability. Unlike common approaches to assessing the profitability of the processing organizations, taking into account only the interests of the organization's leadership and buyers of products, the authors proposed and implemented a concept based on the interests of participants in the triune balance business activities: owners of capital, management organizations and consumers. As one of the tools for improving the yield of processing organizations are invited to transform their product mix of economic evaluations of profitability of each product line positions. Russian researchers income from product sales are traditionally measured by indicators such as net income, income from sales, profit margins and profitability level - in terms of return on sales. The disadvantage of using these indicators, according to the authors, is their lack of objectivity in the evaluation of the effectiveness of investment business owners. In this work was used unconventional and non-proliferation in the Russian practice, the rate of economic value added (EVA, a built - in system of profitability assortment positions. As indicators, the production of a particular product line units proposed and used two quantitative indicators - EVA level per unit of production and profitability of production (for EVA, as well as a quality parameter - the level of demand. Developed by the evaluation program transformation product structure represented as a matrix management capabilities, allowing to achieve a balance of interests of the triune main participants in business activity.

  4. UTILIZATION OF LOW NOx COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    J.Y. Hwang; X. Huang; M.G. McKimpson; R.E. Tieder; A.M. Hein; J.M. Gillis; D.C. Popko; K.L. Paxton; Z. Li; X. Liu; X. Song; R.I. Kramer

    1998-12-01

    Low NO{sub x} combustion practices are critical for reducing NO{sub x} emissions from power plants. These low NO{sub x} combustion practices, however, generate high residual carbon contents in the fly ash produced. These high carbon contents threaten utilization of this combustion by-product. This research has successfully developed a separation technology to render fly ash into useful, quality-controlled materials. This technology offers great flexibility and has been shown to be applicable to all of the fly ashes tested (more than 10). The separated materials can be utilized in traditional fly ash applications, such as cement and concrete, as well as in nontraditional applications such as plastic fillers, metal matrix composites, refractories, and carbon adsorbents. Technologies to use beneficiated fly ash in these applications are being successfully developed. In the future, we will continue to refine the separation and utilization technologies to expand the utilization of fly ash. The disposal of more than 31 million tons of fly ash per year is an important environmental issue. With continued development, it will be possible to increase economic, energy and environmental benefits by re-directing more of this fly ash into useful materials.

  5. Formate Formation and Formate Conversion in Biological Fuels Production

    Directory of Open Access Journals (Sweden)

    Bryan R. Crable

    2011-01-01

    Full Text Available Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. Formate is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO2 in an NADH- or ferredoxin-dependent manner. Formate is consumed through oxidation to CO2 and H2 or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of formate and discuss potential applications for biofuels production.

  6. Cooperative research program in coal liquefaction. Quarterly report, August 1, 1991--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1991-12-31

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  7. Utilisation potential of products of microbial coal liquefaction. Final report; Verwertungspotential der Produkte der mikrobiellen Kohleverfluessigung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Koepsel, R.; Schmiers, H.; Grosse, S.; Weber, A.

    2002-07-01

    Ever since the discovery in the 1980s that microorganisms are capable of converting coal into soluble products research groups all over the world have been exploring the bioconversion of coal. It was at an advance stage of the present integrated project, which initially only involved microbiology research groups, that the need for a chemical working group with knowledge and experience in the area of coal chemistry and structural analysis of coal was recognised. The task of the chemical working group was to provide knowledge on the chemical nature of bioconversion products and the chemical processes of coal bioconversion. This involved identifying structural changes occurring in the feed coal as well as in its constituent humic acids and macromolecular matrix as a result of the activity of coal degrading microorganisms. [German] Nachdem Anfang der achtziger Jahre entdeckt wurde, dass sich Kohlen durch Mikroorganismen in loesliche Produkte ueberfuehren lassen, agieren weltweit Forschergruppen auf dem Gebiet der Biokonversion von Kohle. In einem fortgeschrittenen Bearbeitungsstadium des Verbundprojektes, an dem zunaechst nur mikrobiologische Arbeitsgruppen beteiligt waren, wurde die Notwendigkeit erkannt, eine chemische Arbeitsgruppe mit Kenntnissen und Erfahrungen auf den Gebieten der Kohlechemie und der Strukturanalytik von Kohlen zu integrieren. Aufgabenstellung der chemischen Arbeitsgruppe war und ist es, Erkenntnisse ueber die chemische Natur der Biokonversionsprodukte und die chemischen Ablaeufe der mikrobiellen Kohlekonversion bereitstellen. Die Aufgabenstellung umfasst die Aufklaerung der strukturellen Veraenderung der Einsatzkohle sowie ihrer Komponenten Huminsaeuren und makromolekulare Matrix durch die Einwirkung kohleabbauender Mikroorganismen. (orig.)

  8. Structural parameters of perhydrous Indian coals

    Energy Technology Data Exchange (ETDEWEB)

    Khare, P.; Baruah, B.P. [CSIR, Jorhat (India). North East Institute of Science & Technology

    2010-07-01

    Higher hydrogen content of perhydrous coals exhibits a different composition and physicochemical properties in comparison with normal coals. In the present investigation, a structural study of perhydrous coals and coke was done using FTIR and HPLC data. These coals have high volatile matter with high-calorific values and low-moisture content. The structural study suggests that the major structural units of these coals are simple phenols with para-alkyl substituted derivatives. They have high alkyl substitution groups and low aromatic compounds. The structural studies reveal that these coals contain high amounts of low-molecular weight PAH compounds with 1-2 ring structures. These 1-2 ring structures have high H/C ratios as compared to large ring polyaromatic hydrocarbons (PAHs). It may also be one of the reasons for high H/C ratios in these coals. The alkyl groups contribute significantly to their high volatile matter (VM) contents. The presence of alcoholic groups found in pyrolytic products may also be due to the conversion of catechol-like structures to those of cresols. Coal properties, such as moisture, VM, H/C ratio, and CV, do not correlate with the rank as normally classified. A definite relationship has been found between the characteristics of these coals, char/cokes, and aromatic characters (f{sub a}, H{sub ar}).

  9. Application of the SELECS methodology to evaluate socioeconomic and environmental impacts of commercial-scale coal liquefaction plants at six potential sites in Kentucky. Final report from the study on development of environmental guidelines for the selection of sites for fossil energy conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Northrop, G. M.; D' Ambra, C. A.

    1980-11-01

    Environmental and socioeconomic impacts likely to occur during the operational phase of two coal liquefaction processes have been evaluated with SELECS (Site Evaluation for Energy Conversion Systems) for each of six potential sites in Kentucky for commercial scale facilities capable of processing about 26,000 tons of coal per stream day. The processes considered in this evaluation are SRC-I, a direct liquefaction route with solid boiler fuel as the principal product, and Coal-to-Methanol-to-Gasoline, an indirect liquefaction route with transportation fuel as the primary product. For comparative purposes, the impacts of a 2-gigawatt coal-fired steam-electric power plant (with coal requirements comparable to the liquefaction facilities) and an automobile parts manufacturing plant (with employment requirements of 849, comparable to the liquefaction facilities) have also been evaluated at each site. At each site, impacts have been evaluated for one or two nearby cities or towns and four to six counties where significant impacts might be expected. The SELECS methodology affords a well-organized and efficient approach to collecting and assessing a large volume of data needed to comprehensively determine the potential socioeconomic and environmental impacts resulting from the implementation of commercial scale synfuel and other energy conversion facilities. This study has also shown that SELECS is equally applicable to determine the impacts of other facilities, such as automobile parts manufacturing. In brief, the SELECS methodology serves the purpose of objectively screening sites in order to choose one at which adverse impacts will be least, and/or to determine what aspect of a proposed facility might be modified to lessen impacts at a specific site.

  10. Water Quality and Geochemical Modeling of Water at an Abandoned Coal Mine Reclaimed With Coal Combustion By-Products

    Science.gov (United States)

    Haefner, Ralph J.

    2002-01-01

    An abandoned coal mine in eastern Ohio was reclaimed with 125 tons per acre of pressurized fluidized bed combustion (PFBC) by-product. Water quality at the site (known as the Fleming site) was monitored for 7 years after reclamation; samples included water from soil-suction lysimeters (interstitial water), wells, and spring sites established downgradient of the application area. This report presents a summary of data collected at the Fleming site during the period September 1994 through June 2001. Additionally, results of geochemical modeling are included in this report to evaluate the potential fate of elements derived from the PFBC by-product. Chemical analyses of samples of interstitial waters within the PFBC by-product application area indicated elevated levels of pH and specific conductance and elevated concentrations of boron, calcium, chloride, fluoride, magnesium, potassium, strontium, and sulfate compared to water samples collected in a control area where traditional reclamation methods were used. Magnesium-to-calcium (Mg:Ca) mole ratios and sulfur-isotope ratios were used to trace the PFBC by-product leachate and showed that little, if any, leachate reached ground water. Concentrations of most constituents in interstitial waters in the application-area decreased during the seven sampling rounds and approached background concentrations observed in the control area; however, median pH in the application area remained above 6, indicating that some acid-neutralizing capacity was still present. Although notable changes in water quality were observed in interstitial waters during the study period, quality of ground water and spring water remained poor. Water from the Fleming site was not potable, given exceedances of primary and secondary Maximum Contaminant Levels (MCLs) for inorganic constituents in drinking water set by the U.S. Environmental Protection Agency. Only fluoride and sulfate, which were found in higher concentrations in application

  11. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot Kennel; Chong Chen; Dady Dadyburjor; Mark Heavner; Manoj Katakdaunde; Liviu Magean; James Mayberry; Alfred Stiller; Joseph Stoffa; Christopher Yurchick; John Zondlo

    2009-12-31

    This NETL sponsored effort seeks to develop continuous technologies for the production of carbon products, which may be thought of as the heavier products currently produced from refining of crude petroleum and coal tars obtained from metallurgical grade coke ovens. This effort took binder grade pitch, produced from liquefaction of West Virginia bituminous grade coal, all the way to commercial demonstration in a state of the art arc furnace. Other products, such as crude oil, anode grade coke and metallurgical grade coke were demonstrated successfully at the bench scale. The technology developed herein diverged from the previous state of the art in direct liquefaction (also referred to as the Bergius process), in two major respects. First, direct liquefaction was accomplished with less than a percent of hydrogen per unit mass of product, or about 3 pound per barrel or less. By contrast, other variants of the Bergius process require the use of 15 pounds or more of hydrogen per barrel, resulting in an inherent materials cost. Second, the conventional Bergius process requires high pressure, in the range of 1500 psig to 3000 psig. The WVU process variant has been carried out at pressures below 400 psig, a significant difference. Thanks mainly to DOE sponsorship, the WVU process has been licensed to a Canadian Company, Quantex Energy Inc, with a commercial demonstration unit plant scheduled to be erected in 2011.

  12. Hydrogen-Rich Gas Production by Cogasification of Coal and Biomass in an Intermittent Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Li-Qun Wang

    2013-01-01

    Full Text Available This paper presents the experimental results of cogasification of coal and biomass in an intermittent fluidized bed reactor, aiming to investigate the influences of operation parameters such as gasification temperature (T, steam to biomass mass ratio (SBMR, and biomass to coal mass ratio (BCMR on hydrogen-rich (H2-rich gas production. The results show that H2-rich gas free of N2 dilution is produced and the H2 yield is in the range of 18.25~68.13 g/kg. The increases of T, SBMR, and BCMR are all favorable for promoting the H2 production. Higher temperature contributes to higher CO and H2 contents, as well as H2 yield. The BCMR has a weak influence on gas composition, but the yield and content of H2 increase with BCMR, reaching a peak at the BCMR of 4. The H2 content and yield in the product gas increase with SBMR, whilst the content of CO increases first and then decreases correspondingly. At a typical case, the relative linear sensitivity coefficients of H2 production efficiency to T, SBMR, and BCMR were calculated. The results reveal that the order of the influence of the operation parameters on H2 production efficiency is T > SBMR > BCMR.

  13. Chemical Compositional Analysis of Catalytic Hydroconversion Products of Heishan Coal Liquefaction Residue

    Directory of Open Access Journals (Sweden)

    Xiaoming Yue

    2017-01-01

    Full Text Available Liquefaction residue of Heishan bituminous coal (HLR was subject to two hydroconversion reactions under 5 MPa initial pressure of hydrogen at 300°C for 3 h, without catalyst and with acid supported catalyst (ASC, respectively. The reaction products were analyzed with gas chromatography/mass spectrometer (GC/MS. The results show that 222 organic compounds were detected totally in the products and they can be divided into alkanes, aromatic hydrocarbons (AHCs, phenols, ketones, ethers, and other species (OSs. The yield of hydroconversion over the ASC is much higher than that without catalyst. The most abundant products are aromatic hydrocarbons in the reaction products from both catalytic and noncatalytic reactions of HLR. The yield of aromatic hydrocarbons in the reaction product from hydroconversion with the ACS is considerably higher than that from hydroconversion without a catalyst.

  14. Impact on TRMM Products of Conversion to Linux

    Science.gov (United States)

    Stocker, Erich Franz; Kwiatkowski, John

    2008-01-01

    In June 2008, TRMM data processing will be assumed by the Precipitation Processing System (PPS). This change will also mean a change in the hardware production environment from an SGI 32 bit IRIX processing environment to a Linux (Beowulf) 64 bit processing environment. This change of platform and operating system addressing (32 to 64) has some influence on data values in the TRMM data products. This paper will describe the transition architecture and scheduling. It will also provide an analysis of what the nature of the product differences will be. It will demonstrate that the differences are not scientifically significant and are generally not visible. However, they are not always identical with those which the SGI would produce.

  15. Conversion of productions in OPS5 to their equivalent English

    Energy Technology Data Exchange (ETDEWEB)

    Wertheimer, S.J.; Baird, B.B.; Gove, N.B.

    1987-10-01

    A computer program has been written to provide English language versions of reactor analysis logic in OPS5. The present version, written in Prolog (a computer language designed for logic and language parsing), produces an English narrative translation of an individual OPS5 production rule. The translation is in two steps and involves an intermediate format consisting of Prolog-readable data statements. Translation to other languages or to other forms of English would not, therefore, require changing the first step. Samples are shown for OPS5 production rules related to the High Flux Isotope Reactor Intelligent Advisor Project. The Prolog programs also are shown. 2 refs.

  16. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Gary Harmond; Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial

  17. Biochemical conversion of sugar to novel renewable products and materials

    Science.gov (United States)

    Dextrans and related glucan polysaccharides are synthesized from sucrose by enzymes, called glucansucrases, which are produced by lactic acid bacteria. These water-soluble glucans have been studied for many years and are used in numerous commercial applications and products. A small number of Leucon...

  18. Catalytic Conversion of Lignin for the Production of Aromatics

    NARCIS (Netherlands)

    Jongerius, A.L.

    2013-01-01

    With the depletion of fossil fuels and increasing environmental awareness, there is much interest in the use of biomass as a more sustainable alternative feedstock for the production of renewable fuels and chemicals. Non-edible lignocellulosic biomass is the major and most sustainable source of

  19. Formate Formation and Formate Conversion in Biological Fuels Production

    NARCIS (Netherlands)

    Crable, B.R.; Plugge, C.M.; McInerney, M.J.; Stams, A.J.M.

    2011-01-01

    Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the

  20. Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals-Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Raymond Hobbs

    2007-05-31

    The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial work the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of

  1. Zero emission coal

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, H.; Lackner, K.

    2000-08-01

    We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

  2. Bituminous coal production in the Appalachian basin: past, present, and future: Chapter D.3 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Milici, Robert C.; Polyak, Désirée E.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Although small quantities of coal first were produced from the Appalachian basin in the early 1700s, the first production statistics of significance were gathered during the census of 1830 (Eavenson, 1942). Since then, about 35 billion short tons of bituminous coal have been produced from the Appalachian basin from an original potential coal reserve (PCR(o)) estimated to range from about 60 to 90 billion short tons. The term “reserve” refers to economically producible coal, and a “potential coal reserve” (PCR(n)) is an estimate of the amount of coal economically recoverable in a region (State, coal field) over a defined time period (n = number of years) and under a range of economic, societal, and technological conditions. Thus, the current cumulative production plus the PCR(n) equals an estimated cumulative production (ECP(n)). The maps in this report (oversized figures 1, 2, 3, and 4) were produced from a digital database of historical and current coal production records by county. Sources of the original data include various State geological surveys, the U.S. Geological Survey, the former U.S. Bureau of Mines, and the U.S. Department of Energy’s Energy Information Administration. This report is part of the U.S. Geological Survey’s National Coal Resource Assessment Project.

  3. Recent advances in the chemical conversion of energetic materials to higher value products

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, A. R., LLNL

    1998-04-30

    The objective of this program is to develop novel R3 (Resource Recovery and Recycling) alternatives to the open burning/open denotation (OB/OD) of surplus energetic materials higher value products potentially provides environmentally sound and cost- effective alternatives to OB/OD. Our recent studies on the conversion of surplus energetic materials (high explosives, propellants). The use of energetic materials as chemical feedstocks for higher value products potentially provides environmentally sound and cost-effective alternatives to OB/OD. Our recent studies on the conversion of surplus energetic materials to higher value products will be described.

  4. Distribution of Clay Minerals in Light Coal Fractions and the Thermal Reaction Products of These Clay Minerals during Combustion in a Drop Tube Furnace

    Directory of Open Access Journals (Sweden)

    Sida Tian

    2016-06-01

    Full Text Available To estimate the contribution of clay minerals in light coal fractions to ash deposition in furnaces, we investigated their distribution and thermal reaction products. The light fractions of two Chinese coals were prepared using a 1.5 g·cm−3 ZnCl2 solution as a density separation medium and were burned in a drop-tube furnace (DTF. The mineral matter in each of the light coal fractions was compared to that of the relevant raw coal. The DTF ash from light coal fractions was analysed using hydrochloric acid separation. The acid-soluble aluminium fractions of DTF ash samples were used to determine changes in the amorphous aluminosilicate products with increasing combustion temperature. The results show that the clay mineral contents in the mineral matter of both light coal fractions were higher than those in the respective raw coals. For the coal with a high ash melting point, clay minerals in the light coal fraction thermally transformed more dehydroxylation products compared with those in the raw coal, possibly contributing to solid-state reactions of ash particles. For the coal with a low ash melting point, clay minerals in the light coal fraction produced more easily-slagging material compared with those in the raw coal, playing an important role in the occurrence of slagging. Additionally, ferrous oxide often produces low-melting substances in coal ash. Due to the similarities of zinc oxide and ferrous oxide in silicate reactions, we also investigated the interactions of clay minerals in light coal fractions with zinc oxide introduced by a zinc chloride solution. The extraneous zinc oxide could react, to a small extent, with clay minerals in the coal during DTF combustion.

  5. Photoelectrochemical based direct conversion systems for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Khaselev, O.; Bansal, A.; Kocha, S.; Turner, J.A. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    With an eye towards developing a photoelectrochemical system for hydrogen production using sunlight as the only energy input, two types of systems were studied, both involving multijunction devices. One set of cells consisted of a-Si triple junctions and the other a GaInP{sub 2}/GaAs tandem cell combination. Additional investigations were carried out on semiconductor surface modifications to move semiconductor band edges to more favorable energetic positions.

  6. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Quentin C. Berg; Stephen P. Carpenter; Dady Dadyburjor; Jason C. Hissam; Manoj Katakdaunde; Liviu Magean; Abha Saddawi; Alfred H. Stiller; John W. Zondlo

    2006-03-07

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of carbon electrodes for Direct Carbon Fuel Cells (DCFC), and on carbon foam composites used in ballistic armor, as well as the hydrotreatment of solvents used in the basic solvent extraction process. A major goal is the production of 1500 pounds of binder pitch, corresponding to about 3000 pounds of hydrotreated solvent.

  7. Effect of pyrolysis conditions on reactivity of clean coals produced from poor quality coals

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Natas, P.; Basinas, P.; Sakellaropoulos, G.P. [Institute for Solid Fuels Technology and Applications, Ptolemais (Greece)

    2005-07-01

    A preventive fuels pre-treatment technique, based on low temperature carbonization has been tested. Clean coals were produced from two Greek poor quality coals (Ptolemais and Megalopolis) and an Australian coal sample, in a lab-scale fixed bed reactor, under helium atmosphere and ambient pressure. The effects of carbonisation temperature (200-900{sup o}C) and residence time (5-120 min) on the properties of the obtained chars were investigated. Special attention was paid to the polluting compounds (S,N,Hg and Cl) removal. To account for possible mineral matter effects, mainly on sulphur removal, tests were also performed with demineralised coal. The reactivity under combustion conditions of the chars produced was also investigated. It was observed that low temperature carbonisation could contribute to clean coal production by effectively removing the major part of the existing polluting compounds in the coals. Thus, depending on coal type, nitrogen, mercury and chlorine conversion continuously increase with temperature, while sulphur removal seems to reach a plateau above 500-600{sup o}C. Furthermore, the prolongation of carbonisation time above 20 min does not affect the elements conversion of the pollutants. Therefore carbonization at 500-600{sup o}C for about 20 min could be considered sufficient for clean coal production for poor quality coals. The reactivity of the prepared clean coals was evaluated by performing non-isothermal combustion tests in a TA Q600 thermobalance at ambient pressure and 20{sup o}C/min heating rate. At increased pyrolysis temperatures higher initial combustion temperatures were observed, due to the volatile reduction in char production stage. Mineral matter removal leads to increased char reactivity by increasing both the initial combustion temperature and the combustion rate. 13 refs., 18 figs., 1 tab.

  8. Mulled coal: A beneficiated coal form for use as a fuel or fuel intermediate. Phase 1 feasibility studies: Final

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    Energy International is developing a technology that will create a staged formulation with the first coal form (Mulled Coal) that can be stored, transported, and pumped. Just prior to combustion, the Mulled Coal (MC) would be modified to provide the properties needed for proper atomization. This concept is an alternative to the expensive and energy intensive thermal drying processing of fine coal wet cakes. The material is suitable for both direct feed use in conventional and fluid bed combustors as well as on-site conversion to combustible slurries. By maintaining the coal form relatively close to the feed wet cake, only minor processing with low additive levels and low energy blending needed at the point of production. Its conversion to slurry or other use-feed form is made near the time of use and thus the requirements for stability, climatic control, and other storage, transport, and handling requirements are much less severe.

  9. Underground coal gasification: An overview of groundwater contamination hazards and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    Camp, David W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-13

    Underground coal gasification is the in situ conversion of coal into an energy-rich product gas. It takes place deep underground, using chemical reactions to consume the coal and grow a cavity. Gas wells, drilled into the coal seam, inject reactant air, oxygen, and/or steam to sustain the reactions. Production wells then extract the product gas. Careful analysis and understanding of likely failure modes will help prevent and minimize impacts. This document provides a general description of the relevant processes, potential failure modes, and practical mitigation strategies. It can guide critical review of project design and operations.

  10. Conversion of hazardous plastic wastes into useful chemical products.

    Science.gov (United States)

    Siddiqui, Mohammad Nahid

    2009-08-15

    Azoisobutylnitrile (AIBN) initiator was used in the treatment of most widely used domestic plastics in lieu of catalysts. The pyrolysis of low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), poly-ethylene terephthalate (PET) and polystyrene (PS) plastics with azoisobutylnitrile was carried out individually under nitrogen atmosphere. A series of single (plastic/AIBN) and binary (mixed plastics/AIBN) reactions were carried out in a 25-cm(3) micro-autoclave reactor. The optimum conditions selected for this study were: 5% AIBN by weight of total plastics, 60 min, 650 psi and 420 degrees C. It was found that HDPE, LDPE, PP underwent to a maximum cracking and produced highest amounts of liquid and gaseous products. Pyrolysis of PET and PS plastics with AIBN afforded comparatively significant amount of insoluble organic materials. In other reactions, fixed ratios of mixed plastics were pyrolyzed with AIBN that afforded excellent yields of liquid hydrocarbons. This result shows a very significant increase in the liquid portions of the products on using AIBN in the pyrolysis of plastics. The use of AIBN in the pyrolysis of plastics is seems to be feasible and an environmental friendly alternative to catalytic process for maximizing the liquid fuels or chemical feed stocks in higher amounts.

  11. Photobiological production of hydrogen: a solar energy conversion option

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.; Lien, S.; Seibert, M.

    1979-01-01

    This literature survey of photobiological hydrogen production covers the period from its discovery in relatively pure cultures during the early 1930s to the present. The focus is hydrogen production by phototrophic organisms (and their components) which occurs at the expense of light energy and electron-donating substrates. The survey covers the major contributions in the area; however, in many cases, space has limited the degree of detail provided. Among the topics included is a brief historical overview of hydrogen metabolism in photosynthetic bacteria, eucaryotic algae, and cyanobacteria (blue--green algae). The primary enzyme systems, including hydrogenase and nitrogenase, are discussed along with the manner in which they are coupled to electron transport and the primary photochemistry of photosynthesis. A number of in vivo and in vitro photobiological hydrogen evolving schemes including photosynthetic bacterial, green algal, cyanobacterial, two-stage, and cell-free systems are examined in some detail. The remainder of the review discusses specific technical problem areas that currently limit the yield and duration of many of the systems and research that might lead to progress in these specific areas. The final section outlines, in broadest terms, future research directions necessary to develop practical photobiological hydrogen-producing systems. Both whole cell (near- to mid-term) and cell-free (long-term) systems should be emphasized. Photosynthetic bacteria currently show the most promise for near-term applied systems.

  12. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Lynch

    2004-01-07

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now

  13. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are

  14. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Albert Tsang

    2003-10-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Two project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction

  15. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini; Wiles Elder

    1999-04-05

    This eleventh quarterly report describes work done during the eleventh three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to two outside contacts.

  16. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-12

    This twelfth quarterly report describes work done during the twelfth three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  17. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  18. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-11

    This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

  19. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  20. The effect of work accidents on the efficiency of production in the coal sector

    Directory of Open Access Journals (Sweden)

    Yaşar Kasap

    2011-05-01

    Full Text Available In comparison with other sectors, mining is one of the sectors with the highest rates of work accidents. Such accidents negatively affect a country’s economy by wasting domestic resources and causing losses of both labour force and working days. What distinguishes mining from other branches of industry is that its working environments change continually and the working conditions are particularly harsh. Because of the practice of labour-intensive underground production methods, which leads to an increase in risk factors in terms of work accidents, and the fact that coal is a leading resource in meeting the ever-increasing demand for energy, this study investigated how work accidents affected the efficiency of production in the Turkish Hard Coal Enterprise (TTK between 1987 and 2006. Using data envelopment analysis, the overall sources of technical inefficiency in the years examined were determined. The results from this analysis revealed that the overall technical efficiency was as low as 69.7%, particularly as a result of the disaster in 1992; work accidents therefore had a negative effect on production efficiency. The greatest degree of pure technical inefficiency was found to have occurred in the period between 1992 and 2000, when the highest number of work accidents were noted, whilst the greatest degree of scale inefficiency was found to have occurred between 1987 and 1993. Because TTK has a prominent position among institutions and attaches great importance to workers’ health and safety, an increase was noted in efficiency scores after 1993.

  1. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; R. Michael Bergen; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; W. Morgan Summers; John W. Zondlo

    2006-05-12

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, coking and composite fabrication continued using coal-derived samples. These samples were tested in direct carbon fuel cells. Methodology was refined for determining the aromatic character of hydro treated liquid, based on Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR). Tests at GrafTech International showed that binder pitches produced using the WVU solvent extraction protocol can result in acceptable graphite electrodes for use in arc furnaces. These tests were made at the pilot scale.

  2. AO13. High energy, low methane syngas from low-rank coals for coal-to-liquids production

    Energy Technology Data Exchange (ETDEWEB)

    Lucero, Andrew [Southern Research Institute, Durham, NC (United States); Goyal, Amit [Southern Research Institute, Durham, NC (United States); McCabe, Kevin [Southern Research Institute, Durham, NC (United States); Gangwal, Santosh [Southern Research Institute, Durham, NC (United States)

    2015-06-30

    An experimental program was undertaken to develop and demonstrate novel steam reforming catalysts for converting tars, C2+ hydrocarbons, and methane under high temperature and sulfur environments at lab scale. Several catalysts were developed and synthesized along with some catalysts based on recipes found in the literature. Of these, two had good resistance at 90 ppm H2S with one almost not affected at all. Higher concentrations of H2S did affect methane conversion across the catalyst, but performance was fairly stable for up to 200 hours. Based on the results of the experimental program, a techno-economic analysis was developed for IGCC and CTL applications and compared to DOE reference cases to examine the effects of the new technology. In the IGCC cases, the reformer/POX system produces nearly the same amount of electricity for nearly the same cost, however, the reformers/POX case sequesters a higher percentage of the carbon when compared to IGCC alone. For the CTL case the economics of the new process were nearly identical to the CTL case, but due to improved yields, the greenhouse gas emissions for a given production of fuels was approximately 50% less than the baseline case.

  3. Electrocatalytic oxidation of coal on Ti-supported metal oxides coupled with liquid catalysts for H{sub 2} production

    Energy Technology Data Exchange (ETDEWEB)

    Yin Renhe, E-mail: yinrh@staff.shu.edu.c [Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444 (China); Zhao Yonggang, E-mail: zhaoyonggang8210@163.co [Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444 (China); Lu Shiyin; Wang Haomin; Cao Weimin [Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444 (China); Fan Qinbai, E-mail: fan@gastechnology.or [Gas Technology Institute, 1700 S. Mt. Prospect Rd., Des Plaines, IL 60018 (United States)

    2009-12-15

    Electrocatalytic oxidation of coal on Ti-supported metal/metal oxides coupled with liquid catalysts is systematically investigated as a method of producing hydrogen at the cathode. The composition of the liquid catalyst was varied to determine its effect on the coal electrolysis. A spectrum of byproducts from the coal oxidation at the anode was analyzed. The Ti-supported metal oxide electrodes were prepared by thermal decomposition and characterized by scanning electron microscopy (SEM). X-ray diffraction results show that the composition of the electrodes was Ti/Pt, Ti/RuO{sub 2}, Ti/IrO{sub 2} and Ti/IrO{sub 2}-RuO{sub 2}. Coal oxidation tests on these electrodes indicate that Ti/IrO{sub 2} has the best electrocatalytic activity. Polarization curves reveal that redox catalysts, such as Fe{sup 3+}, K{sub 3}Fe(CN){sub 6}, KBr and V{sub 2}O{sub 5}, bridge the coal particles and the solid electrode surface, thus increasing the rates of coal oxidation. The dynamic transition of Fe{sup 3+}/Fe{sup 2+} is proven by a KMnO{sub 4} titration experiment, and the possible catalytic mechanism is discussed. Product analysis shows that pure H{sub 2} is generated at the cathode and that CO{sub 2} is the main product at the anode.

  4. Electrocatalytic oxidation of coal on Ti-supported metal oxides coupled with liquid catalysts for H{sub 2} production

    Energy Technology Data Exchange (ETDEWEB)

    Yin, R.H.; Zhao, Y.G.; Lu, S.Y.; Wang, H.M.; Cao, W.M.; Fan, Q.B. [Shanghai University, Shanghai (China). Dept. of Chemistry

    2009-12-15

    Electrocatalytic oxidation of coal on Ti-supported metal/metal oxides coupled with liquid catalysts is systematically investigated as a method of producing hydrogen at the cathode. The composition of the liquid catalyst was varied to determine its effect on the coal electrolysis. A spectrum of byproducts from the coal oxidation at the anode was analyzed. The Ti-supported metal oxide electrodes were prepared by thermal decomposition and characterized by scanning electron microscopy (SEM). X-ray diffraction results show that the composition of the electrodes was Ti/Pt, Ti/RuO{sub 2}, Ti/IrO{sub 2} and Ti/IrO{sub 2}-RuO{sub 2}. Coal oxidation tests on these electrodes indicate that Ti/IrO{sub 2} has the best electrocatalytic activity. Polarization curves reveal that redox catalysts, such as Fe{sup 3+}, K{sub 3}Fe(CN){sup 6}, KBr and V2O5, bridge the coal particles and the solid electrode surface, thus increasing the rates of coal oxidation. The dynamic transition of Fe{sup 3+}/Fe{sup 2+} is proven by a KMnO{sub 4} titration experiment, and the possible catalytic mechanism is discussed. Product analysis shows that pure H{sub 2} is generated at the cathode and that CO{sub 2} is the main product at the anode.

  5. Modelling temperature-dependent heat production over decades in High Arctic coal waste rock piles

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.

    2011-01-01

    Subsurface heat production from oxidation of pyrite is an important process that may increase subsurface temperatures within coal waste rock piles and increase the release of acid mine drainage, AMD. Waste rock piles in the Arctic are especially vulnerable to changes in subsurface temperatures...... as the release of AMD normally is limited by permafrost. Here we show that temperatures within a 20 year old heat-producing waste rock pile in Svalbard (78°N) can be modelled by the one-dimensional heat and water flow model (CoupModel) with a new temperature-dependent heat-production module that includes both...... biological and chemical oxidation processes and heat source depletion over time. Inputs to the model are meteorological measurements, physical properties of the waste rock material and measured subsurface heat-production rates. Measured mean annual subsurface temperatures within the waste rock pile are up...

  6. The effect of restructuring on US coal mining labor productivity, 1980-1995

    Energy Technology Data Exchange (ETDEWEB)

    Kuby, M.; Xie, Z. [Arizona State University, Tempe, AZ (USA). Dept. of Geology

    2001-11-01

    From 1980 to 1995, labor productivity in US coal mining almost tripled due to heightened competition, improved labor relations, scale economies, technological change, chronic oversupply, and industry restructuring that halved the number of mines. This paper uses EIA-7A data to analyze the hypothesis that productivity growth may have been caused by closure of small inefficient mines rather than improvement of existing mines, which if true could signal slower future growth. The hypothesis is evaluated using descriptive statistics and histograms of productivity over time, and by analyzing productivity for subsets of mines based on their longevity - including a subset of continuously operating mines unchanged by mine closures. Both methods strongly indicate that productivity growth has not just been the result of attrition of low-productivity mines or an artifact of the shift of production to high-productivity western surface mines. Rather, the evidence shows that in most regions and for most mining methods, both continually existing and new mines have improved steadily. Other factors are discussed, but continued productivity improvement is expected.

  7. Nondestructive inspection of thin plasma-sprayed ceramic and cermet protective coatings for coal conversion and utilization equipment

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G.W.; Cook, K.V.; Davis, E.V.; Dodd, C.V.; Foster, B.E.; Mason, W.J.; McClung, R.W.; Simpson, W.A. Jr.; Snyder, S.D.

    1978-04-01

    Results of a project to develop nondestructive inspection techniques for ceramic and cermet wear- and process-resistant coatings used in coal system compounds are described. The general inspection problem has been analyzed and the difficulties peculiar to plasma-sprayed coatings are discussed. Physical properties, especially porosity, and the nominal 0.25 mm thickness make the inspection of these coatings difficult. The literature has been reviewed for inspection methods and technology adaptable to coating inspection. Several inspection methods have been evaluated for feasibility by laboratory experiments. The basic coating defect conditions considered are cracks or holes, variations in thickness, lamellar separations, and inhomogeneities. Assessment of current technology indicates that a few nondestructive methods can be applied directly to the inspection of coatings with very little development; in most cases, however, considerable development is required.

  8. Environmental impact of coal mining and coal seam gas production on surface water quality in the Sydney basin, Australia.

    Science.gov (United States)

    Ali, A; Strezov, V; Davies, P; Wright, I

    2017-08-01

    The extraction of coal and coal seam gas (CSG) will generate produced water that, if not adequately treated, will pollute surface and groundwater systems. In Australia, the discharge of produced water from coal mining and related activities is regulated by the state environment agency through a pollution licence. This licence sets the discharge limits for a range of analytes to protect the environment into which the produced water is discharged. This study reports on the impact of produced water from coal mine activities located within or discharging into high conservation environments, such as National Parks, in the outer region of Sydney, Australia. The water samples upstream and downstream from the discharge points from six mines were taken, and 110 parameters were tested. The results were assessed against a water quality index (WQI) which accounts for pH, turbidity, dissolved oxygen, biochemical oxygen demand, total dissolved solids, total phosphorus, nitrate nitrogen and E .coli. The water quality assessment based on the trace metal contents against various national maximum admissible concentration (MAC) and their corresponding environmental impacts was also included in the study which also established a base value of water quality for further study. The study revealed that impacted water downstream of the mine discharge points contained higher metal content than the upstream reference locations. In many cases, the downstream water was above the Australia and New Zealand Environment Conservation Council and international water quality guidelines for freshwater stream. The major outliers to the guidelines were aluminium (Al), iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn). The WQI of surface water at and downstream of the discharge point was lower when compared to upstream or reference conditions in the majority of cases. Toxicology indices of metals present in industrial discharges were used as an additional tool to assess water quality, and the newly

  9. Agricultural conversion reduces biospheric vegetation productivity in the absence of external inputs

    Science.gov (United States)

    Smith, W. K.; Cleveland, C. C.; Reed, S.; Running, S. W.

    2013-12-01

    Increasing global population, energy demand, and standard of living has driven humanity to co-opt a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. Here, we explored the impact of global-scale agricultural production on a basic resource fundamental to life on Earth: global terrestrial vegetation growth (net primary production; NPP). First, we compared current rates of agricultural NPP - derived from crop-specific agricultural statistics - with rates of natural NPP - derived from satellite measurements. Next, we disaggregated our results by climate zone, conversion type, crop type, management intensity, and region to identify where agricultural conversion has driven significant degradation of biospheric NPP. At the global-scale, our data indicate that agricultural conversion has resulted in a ~7% reduction in biospheric NPP (ΔNPP), although the impact varied widely at the pixel level. Positive ΔNPP values, signifying an increase in NPP due to agricultural conversion, occurred only in areas receiving significant external water and nutrient inputs (i.e., intensively managed areas). Conversely, negative ΔNPP values, signifying a reduction in NPP due to agricultural conversion, occurred over ~90% of agricultural lands globally, with the largest reductions in areas formerly occupied by tropical forests and savannas (71% and 66% reductions in NPP, respectively). Without new global-scale policies that explicitly consider changes in NPP due to land cover conversion, future demand-driven increases in agricultural output - likely dependent on some level of expansion into natural ecosystems - could continue to drive net declines in biospheric NPP, with potential detrimental consequences for global carbon storage. A spatially explicit estimate of the effect of agricultural land cover conversion on natural primary production for 20 staple crops. ΔNPP was estimated independently for a) irrigated, b) high input, c) low

  10. CHARACTERIZATION OF COAL COMBUSTION BY-PRODUCTS FOR THE RE-EVOLUTION OF MERCURY INTO ECOSYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Withum; J.E. Locke; S.C. Tseng

    2005-03-01

    There is concern that mercury (Hg) in coal combustion by-products might be emitted into the environment during processing to other products or after the disposal/landfill of these by-products. This perception may limit the opportunities to use coal combustion by-products in recycle/reuse applications and may result in additional, costly disposal regulations. In this program, CONSOL conducted a comprehensive sampling and analytical program to include ash, flue gas desulfurization (FGD) sludge, and coal combustion by-products. This work is necessary to help identify potential problems and solutions important to energy production from fossil fuels. The program objective was to evaluate the potential for mercury emissions by leaching or volatilization, to determine if mercury enters the water surrounding an active FGD disposal site and an active fly ash slurry impoundment site, and to provide data that will allow a scientific assessment of the issue. Toxicity Characteristic Leaching Procedure (TCLP) test results showed that mercury did not leach from coal, bottom ash, fly ash, spray dryer/fabric filter ash or forced oxidation gypsum (FOG) in amounts leading to concentrations greater than the detection limit of the TCLP method (1.0 ng/mL). Mercury was detected at very low concentrations in acidic leachates from all of the fixated and more than half of the unfixated FGD sludge samples, and one of the synthetic aggregate samples. Mercury was not detected in leachates from any sample when deionized water (DI water) was the leaching solution. Mercury did not leach from electrostatic precipitator (ESP) fly ash samples collected during activated carbon injection for mercury control in amounts greater than the detection limit of the TCLP method (1.0 ng/mL). Volatilization tests could not detect mercury loss from fly ash, spray dryer/fabric filter ash, unfixated FGD sludge, or forced oxidation gypsum; the mercury concentration of these samples all increased, possibly due to

  11. CHANGE OF PARADIGM IN UNDERGROUND HARD COAL MINING THROUGH EXTRACTION AND CAPITALIZATION OF METHANE FOR ENERGY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Valeriu PLESEA

    2014-05-01

    Full Text Available Besides oil and gas, coal is the most important fossil fuel for energy production. Of the energy mixture of our country, the internal production gas share is 80% of the required annual consumption, of about 14 billion cubic meters, the rest of 20% being insured by importing, by the Russian company Gazprom. The share of coal in the National Power System (NPS is of 24% and is one of the most profitable energy production sources, taking into account the continuous increase of gas price and its dependence on external suppliers. Taking into account the infestation of the atmosphere and global warming as effect of important release of greenhouse gas and carbon dioxide as a result of coal burning for energy production in thermal power plants, there is required to identify new solutions for keeping the environment clean. Such a solution is presented in the study and analysis shown in the paper and is the extraction and capitalization of methane from the coal deposits and the underground spaces remaining free after mine closures. Underground methane extraction is considered even more opportune because, during coal exploitation, large quantities of such combustible gas are released and exhausted into the atmosphere by the degasification and ventilation stations from the surface, representing and important pollution factor for the environment, as greenhouse gas with high global warming potential (high GWP of about 21 times higher than carbon dioxide.

  12. Application of a validated gasification model to determine the impact of coal particle grinding size on carbon conversion

    KAUST Repository

    Kumar, Mayank

    2013-06-01

    In this paper, we describe the implementation of a comprehensive, previously validated multiscale model of entrained flow gasification to examine the impact of particle size on the gasification process in two different gasifier designs; the MHI and the GE gasifier. We show that the impact of the particle size depends on whether the char conversion process is kinetically limited or boundary layer diffusion-limited. Fine grinding helps accelerate char conversion under diffusion-control conditions, whereas the impact is not as noticeable under kinetic-control operation. The availability of particular gasification agents, namely O2 in the earlier sections of the gasifier or CO2 and H2O in the latter sections, as well as the temperature, are shown to have an impact on the relative importance of kinetics versus diffusion limitation. © 2013 Elsevier Ltd. All rights reserved.

  13. Techno-Economic Comparison of Onshore and Offshore Underground Coal Gasification End-Product Competitiveness

    Directory of Open Access Journals (Sweden)

    Natalie Christine Nakaten

    2017-10-01

    Full Text Available Underground Coal Gasification (UCG enables the utilisation of coal reserves that are currently not economically exploitable due to complex geological boundary conditions. Hereby, UCG produces a high-calorific synthesis gas that can be used for generation of electricity, fuels and chemical feedstock. The present study aims to identify economically competitive, site-specific end-use options for onshore and offshore produced UCG synthesis gas, taking into account the capture and storage (CCS and/or utilisation (CCU of resulting CO 2 . Modelling results show that boundary conditions that favour electricity, methanol and ammonia production expose low costs for air separation, high synthesis gas calorific values and H 2 /N 2 shares as well as low CO 2 portions of max. 10%. Hereby, a gasification agent ratio of more than 30% oxygen by volume is not favourable from economic and environmental viewpoints. Compared to the costs of an offshore platform with its technical equipment, offshore drilling costs are negligible. Thus, uncertainties related to parameters influenced by drilling costs are also negligible. In summary, techno-economic process modelling results reveal that scenarios with high CO 2 emissions are the most cost-intensive ones, offshore UCG-CCS/CCU costs are twice as high as the onshore ones, and yet all investigated scenarios except from offshore ammonia production are competitive on the European market.

  14. Characterization and modes of occurrence of elements in feed coal and coal combustion products from a power plant utilizing low-sulfur coal from the Powder River Basin, Wyoming

    Science.gov (United States)

    Brownfield, Michael E.; Cathcart, James D.; Affolter, Ronald H.; Brownfield, Isabelle K.; Rice, Cynthia A.; O'Connor, Joseph T.; Zielinski, Robert A.; Bullock, John H.; Hower, James C.; Meeker, Gregory P.

    2005-01-01

    The U.S. Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana utility company to determine the physical and chemical properties of feed coal and coal combustion products from a coal-fired power plant. The Indiana power plant utilizes a low-sulfur (0.23 to 0.47 weight percent S) and lowash (4.9 to 6.3 weight percent ash) subbituminous coal from the Wyodak-Anderson coal zone in the Tongue River Member of the Paleocene Fort Union Formation, Powder River Basin, Wyoming. Based on scanning electron microscope and X-ray diffraction analyses of feed coal samples, two mineral suites were identified: (1) a primary or detrital suite consisting of quartz (including beta-form grains), biotite, feldspar, and minor zircon; and (2) a secondary authigenic mineral suite containing alumino-phosphates (crandallite and gorceixite), kaolinite, carbonates (calcite and dolomite), quartz, anatase, barite, and pyrite. The primary mineral suite is interpreted, in part, to be of volcanic origin, whereas the authigenic mineral suite is interpreted, in part, to be the result of the alteration of the volcanic minerals. The mineral suites have contributed to the higher amounts of barium, calcium, magnesium, phosphorus, sodium, strontium, and titanium in the Powder River Basin feed coals in comparison to eastern coals. X-ray diffraction analysis indicates that (1) fly ash is mostly aluminate glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals; and (2) bottom ash is predominantly quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite, and spinel group minerals. Microprobe and scanning electron microscope analyses of fly ash samples revealed quartz, zircon, and monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, wollastonite, and periclase. The abundant calcium and

  15. Energy balance of biofuel production from biological conversion of crude glycerol.

    Science.gov (United States)

    Zhang, Xiaolei; Yan, Song; Tyagi, Rajeshwar D; Surampalli, Rao Y; Valéro, Jose R

    2016-04-01

    Crude glycerol, a by-product of biodiesel production, has gained significant attention as a carbon source for biofuel production. This study evaluated the energy balance of biodiesel, hydrogen, biogas, and ethanol production from 3.48 million L of crude glycerol (80% w/v). The conversion efficiency (energy output divided by energy invested) was 1.16, 0.22, 0.27, and 0.40 for the production of biodiesel, hydrogen, biogas, and ethanol respectively. It was found that the use of crude glycerol for biodiesel production was an energy gain process, with a positive energy balance and conversion efficiency of greater than 1. The energy balance revealed a net energy gain of 5226 GJ per 1 million kg biodiesel produced. Production of hydrogen, biogas and ethanol from crude glycerol were energy loss processes. Therefore, the conversion of crude glycerol to lipids and subsequently to biodiesel is suggested to be a better option compared to hydrogen, biogas, or ethanol production with respect to energy balance. Copyright © 2016. Published by Elsevier Ltd.

  16. Thermochemical Equilibrium Model of Synthetic Natural Gas Production from Coal Gasification Using Aspen Plus

    National Research Council Canada - National Science Library

    Barrera, Rolando; Salazar, Carlos; Pérez, Juan F

    2014-01-01

    .... The model was developed using a complete and comprehensive Aspen Plus model. Two typical technologies used in entrained flow gasifiers such as coal dry and coal slurry are modeled and simulated...

  17. Leaching behavior of coal combustion products and the environmental implication in road construction.

    Science.gov (United States)

    2011-04-01

    Leaching of trace elements may raise environmental concerns when using coal fly ash in road construction. US EPA is in the process : of creating the first national rule on coal ash management, including beneficial use. Meanwhile, driven by the tighte...

  18. A Closed Network Queue Model of Underground Coal Mining Production, Failure, and Repair

    Science.gov (United States)

    Lohman, G. M.

    1978-01-01

    Underground coal mining system production, failures, and repair cycles were mathematically modeled as a closed network of two queues in series. The model was designed to better understand the technological constraints on availability of current underground mining systems, and to develop guidelines for estimating the availability of advanced mining systems and their associated needs for spares as well as production and maintenance personnel. It was found that: mine performance is theoretically limited by the maintainability ratio, significant gains in availability appear possible by means of small improvements in the time between failures the number of crews and sections should be properly balanced for any given maintainability ratio, and main haulage systems closest to the mine mouth require the most attention to reliability.

  19. Development of sustainable CO2 conversion processes for the methanol production

    DEFF Research Database (Denmark)

    Roh, Kosan; Nguyen, Tuan B.H.; Suriyapraphadilok, Uthaiporn

    2015-01-01

    Utilization of CO2 feedstock through CO2 conversion for producing valuable chemicals as an alternative to sequestration of the captured CO2 is attracting increasing attention in recent studies. Indeed, the methanol production process via thermochemical CO2 conversion reactions is considered a prime...... considered. The two methanol plants are developed using Aspen Plus®, the commercial process simulator. The net CO2 flows and methanol production costs are evaluated using ECON® and compared with those of the conventional methanol plant, which uses two-stage reforming. It is verified that the combined...... reforming process has to be integrated with the existing conventional methanol plant to obtain a reduced CO2 emission as well as lowered production costs. On the other hand, the CO2 hydrogenation based methanol plant could achieve a reduction of net CO2 emission at a reasonable production cost only...

  20. Small-Scale Coal-Biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, Santosh K. [Southern Research Institute, Durham, NC (United States); McCabe, Kevin [Southern Research Institute, Durham, NC (United States)

    2015-04-30

    The research project advanced coal-to-liquids (CTL) and coal-biomass to liquids (CBTL) processes by testing and validating Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to convert gasifier syngas predominantly to gasoline, jet fuel and diesel range hydrocarbon liquids, thereby eliminating expensive wax upgrading operations The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream testing/demonstration. Southern Research designed, installed and commissioned a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport integrated gasifier (TRIGTM). The test-rig was designed to receive up to 5 lb/h raw syngas augmented with bottled syngas to adjust the H2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of 2 to 4 L/day. It employed a 2-inch diameter boiling water jacketed fixed-bed heat-exchange FT reactor incorporating Chevron’s catalyst in Intramicron’s high thermal conductivity micro-fibrous entrapped catalyst (MFEC) packing to efficiently remove heat produced by the highly exothermic FT reaction.

  1. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

  2. Structured catalyst bed and method for conversion of feed materials to chemical products and liquid fuels

    Science.gov (United States)

    Wang, Yong , Liu; Wei, [Richland, WA

    2012-01-24

    The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C.sub.5-C.sub.18. The reactor controls readsorption of olefins leading to desired products with a preselected chain length distribution and enhanced overall reaction rate. And, liquid product analysis shows readsorption of olefins is reduced, achieving a narrower FT product distribution.

  3. Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Conocophillips

    2007-09-30

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine

  4. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLGIES (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Albert C. Tsang

    2004-03-26

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy in July 2003. The project has completed Phase I, and is currently in Phase II of development. The two project phases include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations; and (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The Phase I of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase II is supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The WREL integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical

  5. The ADESORB Process for Economical Production of Sorbents for Mercury Removal from Coal Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Robin Stewart

    2008-03-12

    The DOE's National Energy Technology Laboratory (NETL) currently manages the largest research program in the country for controlling coal-based mercury emissions. NETL has shown through various field test programs that the determination of cost-effective mercury control strategies is complex and highly coal- and plant-specific. However, one particular technology has the potential for widespread application: the injection of activated carbon upstream of either an electrostatic precipitator (ESP) or a fabric filter baghouse. This technology has potential application to the control of mercury emissions on all coal-fired power plants, even those with wet and dry scrubbers. This is a low capital cost technology in which the largest cost element is the cost of sorbents. Therefore, the obvious solutions for reducing the costs of mercury control must focus on either reducing the amount of sorbent needed or decreasing the cost of sorbent production. NETL has researched the economics and performance of novel sorbents and determined that there are alternatives to the commercial standard (NORIT DARCO{reg_sign} Hg) and that this is an area where significant technical improvements can still be made. In addition, a key barrier to the application of sorbent injection technology to the power industry is the availability of activated carbon production. Currently, about 450 million pounds ($250 million per year) of activated carbon is produced and used in the U.S. each year - primarily for purification of drinking water, food, and beverages. If activated carbon technology were to be applied to all 1,100 power plants, EPA and DOE estimate that it would require an additional $1-$2 billion per year, which would require increasing current capacity by a factor of two to eight. A new facility to produce activated carbon would cost approximately $250 million, would increase current U.S. production by nearly 25%, and could take four to five years to build. This means that there could be

  6. Achieving a production goal of 1 million B/D of coal liquids by 1990. [Impediments and constraints

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Charles; LaRosa, Dr., P. J.; Coles, E. T.; Fein, H. L.; Petros, J. J.; Iyer, R. S.; Merritt, R. T.

    1980-03-01

    Under this contract, Bechtel analyzed the resource requirements and reviewed major obstacles to the daily production of several million barrels of synthetic coal liquids. Further, the study sought to identify the industry infrastructure needed to support the commercial readiness of the coal liquefaction process. A selected list of critical resource items and their domestic/international availability was developed and examined, and the impact of their supply on the various synthetic coal liquids programs was evaluated. The study approach was to develop representative, or generic, direct and indirect coal liquefaction conceptual designs from available technology and costs data. The generic processes were to employ technology that would be considered commercial by the mid- or late-1980s. The size of the generic construction mobilization was considered reasonable at the outset of the program. The product slate was directed toward unrefined liquid fuels rather than diesel oil or gasoline. The generic processes were to use a wide range of coals to permit siting in most coal-producing regions across the country. Because of the dearth of conceptual design data in the literature, Bechtel developed generic plant designs by using in-house design expertise. Bechtel assumed that because it is first generation technology, the indirect process will be used at the outset of the liquids program, and the direct process will be introduced two to four years later as a second generation technology. The products of either of these processes will be limited to boiler fuels and/or other liquid products which require further upgrading. Cost estimates were developed from equipment lists, as well as material and labor estimates, which enabled the determination of an order-of-magnitude cost estimate and target plant construction schedule for both processes.

  7. Optimized Production of Coal Fly Ash Derived Synthetic Zeolites for Mercury Removal from Wastewater

    Science.gov (United States)

    Tauanov, Z.; Shah, D.; Itskos, G.; Inglezakis, V.

    2017-09-01

    Coal fly ash (CFA) derived synthetic zeolites have become popular with recent advances and its ever-expanding range of applications, particularly as an adsorbent for water and gas purification and as a binder or additive in the construction industry and agriculture. Among these applications, perpetual interest has been in utilization of CFA derived synthetic zeolites for removal of heavy metals from wastewater. We herein focus on utilization of locally available CFA for efficient adsorption of mercury from wastewater. To this end, experimental conditions were investigated so that to produce synthetic zeolites from Kazakhstani CFAs with conversion into zeolite up to 78%, which has remarkably high magnetite content. In particular, the effect of synthesis reaction temperature, reaction time, and loading of adsorbent were systematically investigated and optimized. All produced synthetic zeolites and the respective CFAs were characterized using XRD, XRF, PSA and porosimetric instruments to obtain microstructural and mineralogical data. Furthermore, the synthesized zeolites were studied for the removal of mercury from aqueous solutions. A comparison of removal eficiency and its relationship to the physical and chemical properties of the synthetic zeolites were analyzed and interpreted.

  8. Production of High-Hydrogen Content Coal-Derived Liquids [Part 1 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal

  9. Production of High-Hydrogen Content Coal-Derived Liquids [Part 2 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal

  10. Production of High-Hydrogen Content Coal-Derived Liquids [Part 3 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal

  11. Synthetic liquid fuels development: assessment of critical factors. Volume III. Coal resource depletion

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, E.M.; Yabroff, I.W.; Kroll, C.A.; White, R.K.; Walton, B.L.; Ivory, M.E.; Fullen, R.E.; Weisbecker, L.W.; Hays, R.L.

    1977-01-01

    While US coal resources are known to be vast, their rate of depletion in a future based predominantly on coal has not been examined analytically heretofore. The Coal Depletion Model inventories the coal resource on a regional basis and calculates the cost of coal extraction by three technologies - strip and underground mining and in-situ combustion. A plausible coal demand scenario extending from 1975 to the year 2050 is used as a basis in applying the model. In the year 2050, plants in operation include 285 syncrude plants, each producing 100,000 B/D; 312 SNG plants, each producing 250 million SCF/D and 722 coal-fired electric power plants, each of 1000 MW capacity. In addition, there is 890 million tons per year of industrial coal consumption. Such a high level of coal use would deplete US coal resources much more rapidly than most people appreciate. Of course, the actual amount of US coal is unknown, and if the coal in the hypothetical reliability category is included, depletion is delayed. Coal in this category, however, has not been mapped; it is only presumed to exist on the basis of geological theory. The coal resource depletion model shows that unilateral imposition of a severance tax by a state tends to shift production to other coal producing regions. Boom and bust cycles are both delayed and reduced in their magnitude. When several states simultaneously impose severance taxes, the effect of each is weakened.Key policy issues that emerge from this analysis concern the need to reduce the uncertainty of the magnitude and geographic distribution of the US coal resource and the need to stimulate interaction among the parties at interest to work out equitable and acceptable coal conversion plant location strategies capable of coping with the challenges of a high-coal future.

  12. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly progress report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., (United States); Gutterman, C. [FWDC (United States); Chander, S. [Pennsylvania State Univ. (United States)

    1993-12-31

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The primary coal of this program, Black Thunder subbituminous coal, can be effectively beneficiated to about 3.5 wt % ash using aqueous sulfurous acid pretreatment. This treated coal can be further beneficiated to about 2 wt % ash using commercially available procedures. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated subbituminous coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent. The study of bottoms processing consists of combining the ASCOT process which consists of coupling solvent deasphalting with delayed coking to maximize the production of coal-derived liquids while rejecting solids within the coke drum. The asphalt production phase has been completed; representative product has been evaluated. The solvent system for the deasphalting process has been established. Two ASCOT tests produced overall liquid yields (63.3 wt % and 61.5 wt %) that exceeded the combined liquid yields from the vacuum tower and ROSE process.

  13. Catalytic conversion of biomass to fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garten, R. L.; Ushiba, K. K.; Cooper, M.; Mahawili, I.

    1978-01-01

    This report presents an assessment and perspective concerning the application of catalytic technologies to the thermochemical conversion of biomass resources to fuels. The major objectives of the study are: to provide a systematic assessment of the role of catalysis in the direct thermochemical conversion of biomass into gaseous and liquid fuels; to establish the relationship between potential biomass conversion processes and catalytic processes currently under development in other areas, with particular emphasis on coal conversion processes; and to identify promising catalytic systems which could be utilized to reduce the overall costs of fuels production from biomass materials. The report is divided into five major parts which address the above objectives. In Part III the physical and chemical properties of biomass and coal are compared, and the implications for catalytic conversion processes are discussed. With respect to chemical properties, biomass is shown to have significant advantages over coal in catalytic conversion processes because of its uniformly high H/C ratio and low concentrations of potential catalyst poisons. The physical properties of biomass can vary widely, however, and preprocessing by grinding is difficult and costly. Conversion technologies that require little preprocessing and accept a wide range of feed geometries, densities, and particle sizes appear desirable. Part IV provides a comprehensive review of existing and emerging thermochemical conversion technologies for biomass and coal. The underlying science and technology for gasification and liquefaction processes are presented.

  14. Statistical analysis of the electric energy production from photovoltaic conversion using mobile and fixed constructions

    Science.gov (United States)

    Bugała, Artur; Bednarek, Karol; Kasprzyk, Leszek; Tomczewski, Andrzej

    2017-10-01

    The paper presents the most representative - from the three-year measurement time period - characteristics of daily and monthly electricity production from a photovoltaic conversion using modules installed in a fixed and 2-axis tracking construction. Results are presented for selected summer, autumn, spring and winter days. Analyzed measuring stand is located on the roof of the Faculty of Electrical Engineering Poznan University of Technology building. The basic parameters of the statistical analysis like mean value, standard deviation, skewness, kurtosis, median, range, or coefficient of variation were used. It was found that the asymmetry factor can be useful in the analysis of the daily electricity production from a photovoltaic conversion. In order to determine the repeatability of monthly electricity production, occurring between the summer, and summer and winter months, a non-parametric Mann-Whitney U test was used as a statistical solution. In order to analyze the repeatability of daily peak hours, describing the largest value of the hourly electricity production, a non-parametric Kruskal-Wallis test was applied as an extension of the Mann-Whitney U test. Based on the analysis of the electric energy distribution from a prepared monitoring system it was found that traditional forecasting methods of the electricity production from a photovoltaic conversion, like multiple regression models, should not be the preferred methods of the analysis.

  15. Abstracts of the first ORNL workshop on polycyclic aromatic hydrocarbons: characterization and measurement with a view toward personnel protection. [PAH from coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Gammage, R.B. (comp.)

    1976-11-01

    This report contains the abstracts of papers presented at a workshop on polycyclic aromatic hydrocarbons (PAH) such as those produced by coal conversion technologies. Their often carcinogenic nature imposes the obligation of providing adequate protection and measurement devices for workers and for the general public. The primary questions are as follows: What should be measured. Where and how should it be measured. What are the maximum permissible concentrations. This workshop and future workshops are intended to bring these problems into better focus and to help establish a consensus on what needs to be done in order to provide a dosimetry effort that will ensure the adequate protection of personnel. There were 32 attendees of this one-day meeting. The papers and discussions included current industrial hygiene practices, the development of government agency guidelines for worker protection, and a wide range of analytical techniques for PAH detection, some of which are still in the research stage and are unproven. The workshop was held at ORNL on February 26, 1976.

  16. Coal data: A reference

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  17. Key Tasks of Science in Improving Effectiveness of Hard Coal Production in Poland

    Science.gov (United States)

    Dubiński, Józef; Prusek, Stanisław; Turek, Marian

    2017-09-01

    The article presents an array of specific issues regarding the employed technology and operational efficiency of mining activities, which could and should become the subject of conducted scientific research. Given the circumstances of strong market competition and increasing requirements concerning environmental conditions, both in terms of conducted mining activities and produced coal quality parameters, it is imperative to develop and implement innovative solutions regarding the employed production technology, the safety of work conducted under the conditions of increasing natural hazards, as well as the mining enterprise management systems that enable its effective functioning. The article content pertains to the last group of issues in the most detailed way, particularly in terms of the possibility for rational conducted operation cost reduction.

  18. Comprehensive Technical Support for High-Quality Anthracite Production: A Case Study in the Xinqiao Coal Mine, Yongxia Mining Area, China

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-12-01

    Full Text Available The effective production of high-quality anthracite has attracted increasing global attention. Based on the coal occurrence in Yongxia Mining Area and mining conditions of a coalface in Xinqiao Coal Mine, we proposed a systematic study on the technical support for the production of high-quality anthracite. Six key steps were explored, including coal falling at the coalface, transport, underground bunker storage, main shaft hoisting, coal preparation on the ground, and railway wagon loading. The study resulted in optimized running parameters for the shearers, and the rotating patterns of the shearer drums was altered (one-way cutting was employed. Mining height and roof supporting intensity were reduced. Besides, loose presplitting millisecond blasting and mechanized mining were applied to upgrade the coal quantity and the lump coal production rate. Additionally, the coalface end transloading, coalface crush, transport systems, underground storage, and main shaft skip unloading processes were improved, and fragmentation-prevention techniques were used in the washing and railway wagon loading processes. As a result, the lump coal production rate was maintained at a high level and fragmentation was significantly reduced. Because of using the parameters and techniques determined in this research, high-quality coal production and increased profits were achieved. The research results could provide theoretical guidance and methodology for other anthracite production bases.

  19. Integrated Synthesis of Zeolites Using Coal Fly Ash: Element Distribution in the Products, Washing Waters and Effluent

    OpenAIRE

    Ferrarini,Suzana F.; Cardoso,Ariela M.; Paprocki, Alexandre; Pires,Marçal

    2016-01-01

    Coal fly ash has been proposed as an alternative raw material for zeolite synthesis, however, the mobilization of toxic elements of this material into zeolite products, washing water and effluent is rarely addressed. In this study, Brazilian coal fly ash was used in the integrated synthesis (two steps) of zeolites Na-P1 and 4A and the distribution of approximately 40 major, minor and trace elements was investigated in all the input and output flows involved in the process. The mobilization of...

  20. Raw-materials mixtures from waste of the coal industry for production of ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Galpern, E.I. [Scientific-Manufacturing Enterprise ``Ceramics``, Donetsk (Ukraine); Pashchenko, L.V. [Inst. of Physical, Organic and Coal Chemistry of NASU, Donetsk (Ukraine)

    1998-09-01

    The liquidation of waste dumps on the surface of mining enterprises and realization of measures by environment protection of air and aquatic basins are connected to the complex processing of mining mass. The main directions of utilization of mining rocks and coal wastes realized in Ukraine industry are: - filling of mines worked-out area by grouting solutions; - ceramic brick, porous filling materials and binding materials production; - road-making, construction of hydrostructures and industrial objects; - output of concrete items predominantly for using in mining conditions. The peculiarity of wastes using in above-mentioned fields is the possibility of their mass application in quantities commensurable with valumes of their yields. The experience of enterprises work which process mining rocks into building materials by burning method (ceramic brick, porous aggregates of concretes as aggloporite, expanded clay aggregate) has shown that unconstant and, as the rule, exceeding norms content of carbon and sulphur in the rock results to deterioration of products quality and technological factors of production. Unstability of carbon content in raw material makes the burning process hardly operated. Obtained products having residual carbon in the view of coke residue are often characterized by lower physical-mechanical characteristics. (orig./SR)

  1. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-06-23

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. There are a number of parameters which are important for the production of acceptable cokes, including purity, structure, density, electrical resistivity, thermal conductivity etc. From the standpoint of a manufacturer of graphite electrodes such as GrafTech, one of the most important parameters is coefficient of thermal expansion (CTE). Because GrafTech material is usually fully graphitized (i.e., heat treated at 3100 C), very high purity is automatically achieved. The degree of graphitization controls properties such as CTE, electrical resistivity, thermal conductivity, and density. Thus it is usually possible to correlate these properties using a single parameter. CTE has proven to be a useful index for the quality of coke. Pure graphite actually has a slightly negative coefficient of thermal expansion, whereas more disordered carbon has a positive coefficient.

  2. Cultivation of a native alga for biomass and biofuel accumulation in coal bed methane production water

    Science.gov (United States)

    Hodgskiss, Logan H.; Nagy, Justin; Barnhart, Elliott P.; Cunningham, Alfred B.; Fields, Matthew W.

    2016-01-01

    Coal bed methane (CBM) production has resulted in thousands of ponds in the Powder River Basin of low-quality water in a water-challenged region. A green alga isolate, PW95, was isolated from a CBM production pond, and analysis of a partial ribosomal gene sequence indicated the isolate belongs to the Chlorococcaceae family. Different combinations of macro- and micronutrients were evaluated for PW95 growth in CBM water compared to a defined medium. A small level of growth was observed in unamended CBM water (0.15 g/l), and biomass increased (2-fold) in amended CBM water or defined growth medium. The highest growth rate was observed in CBM water amended with both N and P, and the unamended CBM water displayed the lowest growth rate. The highest lipid content (27%) was observed in CBM water with nitrate, and a significant level of lipid accumulation was not observed in the defined growth medium. Growth analysis indicated that nitrate deprivation coincided with lipid accumulation in CBM production water, and lipid accumulation did not increase with additional phosphorus limitation. The presented results show that CBM production wastewater can be minimally amended and used for the cultivation of a native, lipid-accumulating alga.

  3. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 4

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In

  4. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Bruce; Winton, Shea

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to

  5. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 3

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to

  6. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 5

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In

  7. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Bruce; Winton, Shea

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to

  8. Mercury and Air Toxic Element Impacts of Coal Combustion By-Product Disposal and Utilizaton

    Energy Technology Data Exchange (ETDEWEB)

    David Hassett; Loreal Heebink; Debra Pflughoeft-Hassett; Tera Buckley; Erick Zacher; Mei Xin; Mae Sexauer Gustin; Rob Jung

    2007-03-31

    The University of North Dakota Energy & Environmental Research Center (EERC) conducted a multiyear study to evaluate the impact of mercury and other air toxic elements (ATEs) on the management of coal combustion by-products (CCBs). The ATEs evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Samples of fly ash and flue gas desulfurization (FGD) materials were collected preferentially from full-scale coal-fired power plants operating both without and with mercury control technologies in place. In some cases, samples from pilot- and bench-scale emission control tests were included in the laboratory studies. Several sets of 'paired' baseline and test fly ash and FGD materials collected during full-scale mercury emission control tests were also included in laboratory evaluations. Samples from mercury emission control tests all contained activated carbon (AC) and some also incorporated a sorbent-enhancing agent (EA). Laboratory release experiments focused on measuring releases of mercury under conditions designed to simulate CCB exposure to water, ambient-temperature air, elevated temperatures, and microbes in both wet and dry conditions. Results of laboratory evaluations indicated that: (1) Mercury and sometimes selenium are collected with AC used for mercury emission control and, therefore, present at higher concentrations than samples collected without mercury emission controls present. (2) Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. (3) The presence of carbon either from added AC or from unburned coal can result in mercury

  9. Highly dispersed catalysts for coal liquefaction. Phase 1 final report, August 23--November 22, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hirschon, A.S.; Wilson, R.B. [SRI International, Menlo Park, CA (United States); Ghaly, O. [Bechtel Corp., San Francisco, CA (United States)

    1995-03-22

    The ultimate goal of this project is to develop novel processes for making the conversion of coal into distillable liquids competitive to that of petroleum products in the range of $25/bbl. The objectives of Phase 1 were to determine the utility of new precursors to highly dispersed catalysts for use of syngas atmospheres in coal liquefaction, and to estimate the effect of such implementation on the cost of the final product. The project is divided into three technical tasks. Tasks 1 and 2 are the analyses and liquefaction experiments, respectively, and Task 3 deals with the economic effects of using these methods during coal liquefaction. Results are presented on the following: Analytical Support--screening tests and second-stage conversions; Laboratory-Scale Operations--catalysts, coal conversion in synthetic solvents, Black Thunder screening studies, and two-stage liquefaction experiments; and Technical and economic Assessment--commercial liquefaction plant description, liquefaction plant cost; and economic analysis.

  10. Controlling mercury and selenium emissions from coal-fired combustors using a novel regenerable natural product

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, R.J.; Marmaro, R.W.; Roberts, D.L. [ADA Technologies, Inc., Englewood, CO (United States)

    1995-11-01

    This program successfully demonstrated the key components that are needed for a practical, regenerable sorption process for removing and recovering mercury from flue gas streams: (1) a proprietary natural product removed mercuric chloride from synthetic flue gas, (2) several new noble metal sorbents were shown to capture elemental gas-phase mercury from synthetic coal combustion flue gas, and (3) both the natural product and the noble metal sorbents could be regenerated in the laboratory (chemical method for the natural product, thermal method for noble metal sorbents). Several sorbents were tested for their ability to collect selenium oxide during the program. These tests, however, were not definitive due to inconclusive analytical results. If follow-on testing is funded, the ability of the proposed sorbents to collect selenium and other metals will be evaluated during the field testing phase of the program. A preliminary economic analysis indicates that the cost of the process appears to be substantially less than the cost of the state-of-the-art method, namely injection of activated carbon, and it also appears to cost less than using noble metal sorbents alone.

  11. A review of conversion processes for bioethanol production with a focus on syngas fermentation

    OpenAIRE

    Mamatha Devarapalli; Atiyeh, Hasan K.

    2015-01-01

    Bioethanol production from corn is a well-established technology. However, emphasis on exploring non-food based feedstocks is intensified due to dispute over utilization of food based feedstocks to generate bioethanol. Chemical and biological conversion technologies for non-food based biomass feedstocks to biofuels have been developed. First generation bioethanol was produced from sugar based feedstocks such as corn and sugar cane. Availability of alternative feedstocks such as lignocellulosi...

  12. Method for conversion of carbohydrate polymers to value-added chemical products

    Science.gov (United States)

    Zhang, Zongchao C [Norwood, NJ; Brown, Heather M [Kennewick, WA; Su, Yu [Richland, WA

    2012-02-07

    Methods are described for conversion of carbohydrate polymers in ionic liquids, including cellulose, that yield value-added chemicals including, e.g., glucose and 5-hydroxylmethylfurfural (HMF) at temperatures below 120.degree. C. Catalyst compositions that include various mixed metal halides are described that are selective for specified products with yields, e.g., of up to about 56% in a single step process.

  13. The directory of United States coal & technology export resources. Profiles of domestic US corporations, associations and public entities, nationwide, which offer products or services suitable for export, relating to coal and its utilization

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directory and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.

  14. Integration of methanol production into a U.S. coal-to-SNG complex

    Energy Technology Data Exchange (ETDEWEB)

    Howard, E.C. [Dakota Gasification Co., Beulah, ND (United States)

    1995-12-31

    The concept for the Great Plains synfuels plant utilizing North Dakota lignite and Lake Sakakawea reservoir water, surfaced in the early 1970`s when there was a national commitment to energy independence. Construction of Great Plains was completed in 1984. Dakota Gasification Company produces primarily synthetic natural gas (SNG) from lignite coal using a unique combination of technologies. This product is marketed to four companies utilizing firm contracts through the year 2009. In addition to the primary product, SNG, several byproducts are produced in the form of sulfur, anhydrous ammonia, liquid nitrogen, phenols, cresylic acid, naphtha, and krypton/xenon. Construction projects presently underway will greatly increase the anhydrous ammonia available and will also provide ammonium sulfate fertilizer. To insure the long-term financial success of the gasification plant, DGC is actively pursuing new byproduct development such as tar oil derivatives, CO{sub 2}, and the subject product of this conference--methanol. DGC presently produces 1.7 MMGPY of methanol from a small unit of Lurgi design. The product, although not AA Grade, is satisfactory for the Rectisol operation and most importantly, relatively inexpensive to produce. The unit employs a single reactor and requires no further reforming other than that provided through the gasification process. DGC has been advised by Lurgi that a similar design could be utilized to develop a world scale methanol plant. Or, alternatively a conventional oxygen blown reformer could easily be incorporated as well. The paper discusses the advantages of methanol production and DGC`s plans. Flowsheets are presented for the current processing scheme and methanol production.

  15. Characterization of liquid products obtained from co-cracking of petroleum vacuum residue with coal and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahmaruzzaman, M.; Sharma, D.K. [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2008-01-15

    Co-processing of the petroleum vacuum residue (XVR) with coal and biomass (a Calotropis procera) has been performed in batch reactor under isothermal conditions at atmospheric pressure. The liquids obtained by co-processing have been characterized by Fourier transform infrared spectroscopy, {sup 1}H nuclear magnetic resonance (NMR), {sup 13}C NMR, gel permeation chromatography (GPC) and inductively coupled argon plasma (ICAP) analyses. FT-IR analysis showed that the liquid products derived from co-cracking of XVR + SC contained a few phenols, indicating that the higher hydrogen content of the XVR acted as a hydrogenation medium for the coal product in the co-cracking of the mixture. NMR analysis indicated that aromatic carbon contents decreased (about 10.8%) in the liquid products obtained from the co-cracking of XVR + SC compared to their theoretical average. GPC analysis showed that liquid products derived from co-cracking of XVR + SC are much more similar (having the almost same molecular weight distribution as XVR) to the liquid products from XVR than to the liquid products from coal, reflecting synergy in the co-cracking reaction. However, the liquid products derived from co-cracking of XVR + CL showed the liquids are comparatively more viscous than that of XVR indicating that there is a definite interaction when they are co-cracked together. It is also interesting that the liquid products obtained from co-cracking with coal and biomass contained less than 1 ppm of Ni and V, respectively. The detailed results obtained are being reported. (author)

  16. Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity

    Science.gov (United States)

    Smith, W. Kolby; Cleveland, Cory C.; Reed, Sasha C.; Running, Steven W.

    2014-01-01

    Driven by global population and standard of living increases, humanity co-opts a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. In this study, we explored the impact of agriculture on a resource fundamental to life on Earth: terrestrial vegetation growth (net primary production; NPP). We demonstrate that agricultural conversion has reduced terrestrial NPP by ~7.0%. Increases in NPP due to agricultural conversion were observed only in areas receiving external inputs (i.e., irrigation and/or fertilization). NPP reductions were found for ~88% of agricultural lands, with the largest reductions observed in areas formerly occupied by tropical forests and savannas (~71% and ~66% reductions, respectively). Without policies that explicitly consider the impact of agricultural conversion on primary production, future demand-driven increases in agricultural output will likely continue to drive net declines in global terrestrial productivity, with potential detrimental consequences for net ecosystem carbon storage and subsequent climate warming.

  17. Not appropriate dinner table conversation? Talking to children about meat production.

    Science.gov (United States)

    Bray, Heather J; Zambrano, Sofia C; Chur-Hansen, Anna; Ankeny, Rachel A

    2016-05-01

    Although Australians on average consume large quantities of meat, their attitudes to farm animal welfare are poorly understood. We know little about how farm animal production is discussed in Australian households or how children learn about the origins of meat. This study consisted of an online survey completed by 225 primary carers throughout Australia recruited through social media. Findings include that conversations about the origin of meat were generally stimulated by meal preparation within the home rather than visits to agricultural shows or similar activities. Parents preferred to initiate conversations with children about meat production before they were 5 years of age. Urban parents were more likely than rural parents to reveal that they were conflicted about eating meat and would be more empathetic to children who chose to stop eating meat. Rural parents were more likely than urban parents to feel that children should eat what they are given and that talking about meat is not a major issue. Both groups felt that it was important that children should know where their food comes from. The findings of this study suggest that parental attitudes to meat production and consumption influence conversations about meat origins with children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Sustainable development with clean coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  19. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Michael T. Klein; William H. Calkins; Jasna Tomic

    2000-10-04

    To provide a better understanding of the roles of a solid catalyst and the solvent in Direct Coal Liquefaction, a small reactor was equipped with a porous-walled basket which was permeable to the solvent but was not permeable to the coal or solid catalyst. With this equipment and a high volatile bituminous coal it was found that direct contact between the catalyst in the basket and the coal outside the basket is not required for catalyzed coal liquefaction. The character of the solvent in this system makes a significant difference in the conversion of the coal, the better solvents being strong donor solvents. Because of the extensive use of thermogravimetric analysis in this laboratory, it was noted that the peak temperature for volatiles evolution from coal was a reliable measure of coal rank. Because of this observation, a variety of coals of a range of ranks was investigated. It was shown in this work that measuring the peak temperature for volatiles evolution was a quite precise indicator of rank and correlated closely with the rank value obtained by measuring vitrinite reflectance, a more difficult measurement to make. This prompted the desire to know the composition of the volatile material evolved as a function of coal rank. This was then measured by coupling a TGA to a mass spectrometer using laser activation and photoionization detection TG-PI-MS. The predominant species in volatiles of low rank coal turned out to be phenols with some alkenes. As the rank increases, the relative amounts of alkene and aromatic hydrocarbons increases and the oxygenated species decrease. It was shown that these volatiles were actually pyrolytic products and not volatilization products of the coal. Solvent extraction experiments coupled with Thermogravimetric-photoionization-mass spectrometry (TG-PI-MS) indicated that the low boiling and more extractable material are essentially similar in chemical types to the non-extractable portions but apparently higher molecular weight

  20. Use of clean coal technology by-products as agricultural liming techniques

    Energy Technology Data Exchange (ETDEWEB)

    Stehouwer, R.C.; Sutton, P.; Dick, W.A. [Ohio Agricultural Research and Development Center, Wooster, OH (United States). Dept. of Agronomy

    1995-03-01

    Dry flue gas desulfurization (FGD) by-products are mixtures of coal fly-ash, anhydrite (CaCO{sub 4}), and unspent lime- or limestone-based sorbent. Dry FGD by-products frequently have neutralizing values greater than 50% CaCO{sub 3} equivalency and thus have potential for neutralizing acidic soils. Owing to the presence of soluble salts and various trace elements, however, soil application of dry FGD by-products may have adverse effects on plant growth and soil quality. The use of a dry FGD by-product as a limestone substitute was investigated in a field study on three acidic agricultural soils (pH 4.6, 4.8, and 5.8) in eastern Ohio. The by-product (60% CaCO{sub 3} equivalency) was applied in September, 1992, at rates of 0, 0.5, 1.0, and 2.0 times the lime requirement of the soils, and alfalfa (Medicago sativa L.) and corn (Zea mays L.) were planted. Soils were sampled immediately after FGD application and three more times every six months thereafter. Samples were analyzed for pH and water soluble concentrations of 28 elements. Soil pH was increased by all FGD rates in the zone of incorporation (0--10 cm), with the highest rates giving a pH slightly above 7. Within one year pH increases could be detected at depths up to 30 cm. Calcium, Mg, and S increased, and Al, Mn, and Fe decreased with increasing dry FGD application rates. No trace element concentrations were changed by dry FGD application except B which was increased in the zone of incorporation. Dry FGD increased alfalfa yield on all three soils, and had no effect on corn yield. No detrimental effects on soil quality were observed.

  1. Anti-corrosion paint and varnish coatings employing wastes from coke and coal chemicals production

    Energy Technology Data Exchange (ETDEWEB)

    L.B. Pavlovich; N.M. Alekseeva; V.P. Dolgopolov; A.A. Popov [West Siberian Metallurgical Combine, Siberia (Russian Federation)

    2004-06-01

    The various shops of the West Siberian Metallurgical Combine operate 392 gas-cleaning units, and the combine annually spends 1.5 million rubles a year on major repairs to this equipment. The need to increase the service life of the air ducts is obvious. At the same time, the production of phthalic anhydride (PA) from commercial grades of naphthalene made at coke and coal chemicals plants also yields large quantities of waste products formed in oxidation reactions - still residues from the distillation of PA. These residues are currently used in coking charges. It is important that a way be found to recycle wastes from the production of phthalic anhydride, which is the main raw material used to make corrosion-resistant paints and lacquers. The goal of the research was to use PA production wastes to help develop promising new environmentally clean materials to protect metal from corrosion. The Combine has developed and mastered the production of two types of powdered polymer-based paint: quick-drying epoxide paint PEFAN-501; decorative epoxide-polyester paint NOVOLAN-1605. A section to make these paints has been set up and equipped with three units that apply the paints in an electrostatic field. The Combine has also developed a technology for using PA still residues to obtain an alkyl-epoxide primer for protecting gas pipes from corrosion. Experimental batches of the primer have been successfully tested on a section of gas pipe connected to the car dumper in the crushing-sorting plant operated by the sinter-lime department.

  2. The evaluation of a coal-derived liquid as a feedstock for the production of high-density aviation turbine fuel

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, K.P.; Hunter, D.E.

    1989-08-01

    The conversion of coal-derived liquids to transportation fuels has been the subject of many studies sponsored by the US Department of Energy and the US Department of Defense. For the most part, these studies evaluated conventional petroleum processes for the production of specification-grade fuels. Recently, however, the interest of these two departments expanded to include the evaluation of alternate fossil fuels as a feedstock for the production of high-density aviation turbine fuel. In this study, we evaluated five processes for their ability to produce intermediates from a coal-derived liquid for the production of high-density turbine fuel. These processes include acid-base extraction to reduce the heteroatom content of the middle distillate and the atmospheric and vacuum gas oils, solvent dewaxing to reduce the paraffin (alkane) content of the atmospheric and vacuum gas oils, Attapulgus clay treatment to reduce the heteroatom content of the middle distillate, coking to reduce the distillate range of the vacuum gas oil, and hydrogenation to remove heteroatoms and to saturate aromatic rings in the middle distillate and atmospheric gas oil. The chemical and physical properties that the US Air Force considers critical for the development of high-denisty aviation turbine fuel are specific gravity and net heat of combustion. The target minimum values for these properties are a specific gravity of at least 0.85 and a net heat of combustion of at least 130,000 Btu/gal. In addition, the minimum hydrogen content is 13.0 wt %, the maximum freeze point is {minus}53{degrees}F ({minus}47{degrees}C), the maximum amount of aromatics is about 25 to 30 vol %, and the maximum amount of paraffins is 10 vol %. 13 refs., 20 tabs.

  3. Mathematical Modelling of Coal Gasification Processes

    Science.gov (United States)

    Sundararajan, T.; Raghavan, V.; Ajilkumar, A.; Vijay Kumar, K.

    2017-07-01

    Coal is by far the most commonly employed fuel for electrical power generation around the world. While combustion could be the route for coal utilization for high grade coals, gasification becomes the preferred process for low grade coals having higher composition of volatiles or ash. Indian coals suffer from high ash content-nearly 50% by weight in some cases. Instead of transporting such high ash coals, it is more energy efficient to gasify the coal and transport the product syngas. Integrated Gasification Combined Cycle (IGCC) plants and Underground Gasification of coal have become attractive technologies for the best utilization of high ash coals. Gasification could be achieved in fixed beds, fluidized beds and entrained beds; faster rates of gasification are possible in fluidized beds and entrained flow systems, because of the small particle sizes and higher gas velocities. The media employed for gasification could involve air/oxygen and steam. Use of oxygen will yield relatively higher calorific value syngas because of the absence of nitrogen. Sequestration of the carbon dioxide after the combustion of the syngas is also easier, if oxygen is used for gasification. Addition of steam can increase hydrogen yield in the syngas and thereby increase the calorific value also. Gasification in the presence of suitable catalysts can increase the composition of methane in the product gas. Several competing heterogenous and homogenous reactions occur during coal major heterogenous reaction pathways, while interactions between carbon monoxide, oxygen, hydrogen, water vapour, methane and carbon dioxide result in several simultaneous gas-phase (homogenous) reactions. The overall product composition of the coal gasification process depends on the input reactant composition, particle size and type of gasifier, and pressure and temperature of the gasifier. The use of catalysts can also selectively change the product composition. At IIT Madras, over the last one decade, both

  4. Integrated Utilization of Sewage Sludge and Coal Gangue for Cement Clinker Products: Promoting Tricalcium Silicate Formation and Trace Elements Immobilization

    Science.gov (United States)

    Yang, Zhenzhou; Zhang, Yingyi; Liu, Lili; Seetharaman, Seshadri; Wang, Xidong; Zhang, Zuotai

    2016-01-01

    The present study firstly proposed a method of integrated utilization of sewage sludge (SS) and coal gangue (CG), two waste products, for cement clinker products with the aim of heat recovery and environment protection. The results demonstrated that the incremental amounts of SS and CG addition was favorable for the formation of tricalcium silicate (C3S) during the calcinations, but excess amount of SS addition could cause the impediment effect on C3S formation. Furthermore, it was also observed that the C3S polymorphs showed the transition from rhombohedral to monoclinic structure as SS addition was increased to 15 wt %. During the calcinations, most of trace elements could be immobilized especially Zn and cannot be easily leached out. Given the encouraging results in the present study, the co-process of sewage sludge and coal gangue in the cement kiln can be expected with a higher quality of cement products and minimum pollution to the environment. PMID:28773400

  5. Induction of mitotic gene conversion by browning reaction products and its modulation by naturally occurring agents.

    Science.gov (United States)

    Rosin, M P; Stich, H F; Powrie, W D; Wu, C H

    1982-05-01

    Mitotic gene conversion in the D7 strain of Saccharomyces cerevisiae was significantly enhanced by exposure to non-enzymatic browning reaction products. These products were formed during the heating of sugar (caramelization reaction) or sugar-amino acid mixtures (Maillard reaction) at temperatures normally used during the cooking of food. Several modulating factors of this convertogenic activity were identified. These factors included two main groups: (1) trace metals which are widely distributed in the environment; and (2) several cellular enzymatic systems. The convertogenic activities of a heated glucose-lysine mixture and a commercial caramel powder were completely suppresses when yeast were concurrently exposed to these products and to either FeIII or CuII. Equimolar concentrations of MnII or sodium selenite had no effect on the convertogenic activity of the products of either model system. Horse-radish peroxidase, beef liver catalase and rat liver S9 preparations each decreased the frequency of gene conversion induced by the caramel powder and the heated glucose-lysine products. This modulating activity of the enzymes was lost if they were heat-inactivated. These studies indicate the presence of a variety of protective mechanisms which can modify genotoxic components in complex food mixtures.

  6. Interspecific differences in egg production affect egg trace element concentrations after a coal fly ash spill.

    Science.gov (United States)

    Van Dyke, James U; Beck, Michelle L; Jackson, Brian P; Hopkins, William A

    2013-12-03

    In oviparous vertebrates, trace elements transfer from mother to offspring during egg production. For animals that produce eggs slowly, like turtles, the trace element concentration of each egg reflects an integration of dietary and stored accumulation over the duration of vitellogenesis. Because turtles also produce eggs synchronously, all eggs within a clutch should exhibit uniform trace element concentrations. In contrast, for animals that produce eggs in sequence and primarily from current dietary resources, like many birds, the trace element concentrations of eggs should be less uniform within a clutch, and likely reflect short-term changes in dietary exposure. We tested the hypothesis that stinkpot turtle (Sternotherus odoratus) clutches exhibit lower variability and higher repeatability in barium, selenium, strontium, and thallium concentrations than those of tree swallows (Tachycineta bicolor) from a site impacted by a recent coal ash spill. All four trace elements exhibited significantly lower variability and significantly higher repeatability in stinkpot clutches than in swallow clutches. Mean trace element concentrations of stinkpot eggs were also significantly higher than those of swallow eggs although both species feed primarily on aquatic invertebrates. Variability in swallow egg trace element concentrations was partially due to significant laying order effects. Our results support the hypothesis that interspecific variation in the source of resources and in the synchronicity and rate of egg production can lead to interspecific differences in the variability of egg trace element concentrations.

  7. Production of Indigenous and Enriched Khyber Pakhtunkhwa Coal Briquettes: Combustion and Disintegration Strength Analysis

    Directory of Open Access Journals (Sweden)

    Unsia Habib

    2013-06-01

    Full Text Available Khyber Pakhtun Khwa province of Pakistan has considerable amounts of low ranked coal. However, due to the absence of any centrally administered power generation system there is a need to explore indigenous methods for effectively using this valuable energy resource. In the present study an indigenous coal briquetting technology has been developed and evaluated in terms of combustion characteristics such as moisture content, volatile matter, ash, fixed carbon and calorific value of the resulting coal briquette and disintegration strength using polyvinyl acetate (PVA in combination with calcium carbonate (sample no 3 with highest disintegration strength value of 2059N. Comparison of test samples with the commercially available coal briquettes revealed improved combustion characteristics for the PVA bonded (sample no 1 and 5 coal briquettes having higher fixed carbon content and calorific value, lower ash contents as well as lower initial ignition time.

  8. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products.

    Science.gov (United States)

    Lange, Lene

    2017-01-01

    Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme treatment. Such processes reflect inherent characteristics of the fungal way of life, namely, that fungi as heterotrophic organisms must break down complex carbon structures of organic materials to satisfy their need for carbon and nitrogen for growth and reproduction. This chapter describes major steps in the conversion of plant biomass to value-added products. These products provide a basis for substituting fossil-derived fuels, chemicals, and materials, as well as unlocking the biomass potential of the agricultural harvest to yield more food and feed. This article focuses on the mycological basis for the fungal contribution to biorefinery processes, which are instrumental for improved resource efficiency and central to the new bioeconomy. Which types of processes, inherent to fungal physiology and activities in nature, are exploited in the new industrial processes? Which families of the fungal kingdom and which types of fungal habitats and ecological specializations are hot spots for fungal biomass conversion? How can the best fungal enzymes be found and optimized for industrial use? How can they be produced most efficiently-in fungal expression hosts? How have industrial biotechnology and biomass conversion research contributed to mycology and environmental research? Future perspectives and approaches are listed, highlighting the importance of fungi in development of the bioeconomy.

  9. Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Fan; Wang, Pin; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-01-01

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize ‘‘food versus fuel’’ concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  10. Conversion of the biodiesel by-product glycerol by the non-conventional yeast Pachysolen tannophilus

    DEFF Research Database (Denmark)

    Liu, Xiaoying

    of further studiesfor conversion of glycerol to ethanol. In chapter 3, ph ysiology studies in lab scale fermentation of the ethanol production process with P. tannophilus were investigated on glycerol. The effect of aeration, pH and nitrogen source was studied for improving the ethanol production and yield...... for glycerol fermentation. Two candidates Pachia pastoris and Pachysolen tannophilus were shown to be capable of producing ethanol with glycerol as the sole carbon source. After growth comparison on glycerol and tests for extracellular metabolites in agitated flasks, P. tannophilus was selected as the object...... production process. Since the volume of the glycerol by-product has exceeded the current market need, biodiesel producers are looking for new methods for sustainable glycerol management and improving the competitiveness of the biodiesel industries. The EU Commission funded GLYFINERY project is one initiative...

  11. Acid drainage from coal mining: Effect on paddy soil and productivity of rice.

    Science.gov (United States)

    Choudhury, Burhan U; Malang, Akbar; Webster, Richard; Mohapatra, Kamal P; Verma, Bibhash C; Kumar, Manoj; Das, Anup; Islam, Mokidul; Hazarika, Samarendra

    2017-04-01

    Overburden and acid drainage from coal mining is transforming productive agricultural lands to unproductive wasteland in some parts of Northeast India. We have investigated the adverse effects of acid mine drainage on the soil of rice paddy and productivity by comparing them with non-mined land and abandoned paddy fields of Jaintia Hills in Northeast India. Pot experiments with a local rice cultivar (Myngoi) as test crop evaluated biological productivity of the contaminated soil. Contamination from overburden and acid mine drainage acidified the soil by 0.5 pH units, increased the exchangeable Al3+ content 2-fold and its saturation on clay complexes by 53%. Available sulfur and extractable heavy metals, namely Fe, Mn and Cu increased several-fold in excess of critical limits, while the availability of phosphorus, potassium and zinc contents diminished by 32-62%. The grain yield of rice was 62% less from fields contaminated with acid mine drainage than from fields that have not suffered. Similarly, the amounts of vegetation, i.e. shoots and roots, in pots filled with soil from fields that received acid mine drainage were 59-68% less than from uncontaminated land (average shoot weight: 7.9±2.12gpot-1; average root weight: 3.40±1.15gpot-1). Paddy fields recovered some of their productivity 4years after mining ceased. Step-wise multiple regression analysis affirmed that shoot weight in the pots and grain yield in field were significantly (p<0.01) and positively influenced by the soil's pH and its contents of K, N and Zn, while concentration of S in excess of threshold limits in contaminated soil significantly (p<0.01) reduced the weight of shoots in the pots and grain yield in the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production

    Science.gov (United States)

    Khadir, N.; Khodja, K.; Belasri, A.

    2017-09-01

    In the present paper, we carried out a theoretical study of dielectric barrier discharge (DBD) filled with pure methane gas. The homogeneous discharge model used in this work includes a plasma chemistry unit, an electrical circuit, and the Boltzmann equation. The model was applied to the case of a sinusoidal voltage at a period frequency of 50 kHz and under a gas pressure of 600 Torr. We investigated the temporal variation of electrical and kinetic discharge parameters such as plasma and dielectric voltages, the discharge current density, electric field, deposited power density, and the species concentration. We also checked the physical model validity by comparing its results with experimental work. According to the results discussed herein, the dielectric capacitance is the parameter that has the greatest effect on the methane conversion and H2/CH4 ratio. This work enriches the knowledge for the improvement of DBD for CH4 conversion and hydrogen production.

  13. Program THEK energy production units of average power and using thermal conversion of solar radiation

    Science.gov (United States)

    1978-01-01

    General studies undertaken by the C.N.R.S. in the field of solar power plants have generated the problem of building energy production units in the medium range of electrical power, in the order of 100 kW. Among the possible solutions, the principle of the use of distributed heliothermal converters has been selected as being, with the current status of things, the most advantageous solution. This principle consists of obtaining the conversion of concentrated radiation into heat by using a series of heliothermal conversion modules scattered over the ground; the produced heat is collected by a heat-carrying fluid circulating inside a thermal loop leading to a device for both regulation and storage.

  14. CHEMICAL FIXATION OF CO2 IN COAL COMBUSTION PRODUCTS AND RECYCLING THROUGH BIOSYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    C. Henry Copeland; Paul Pier; Samantha Whitehead; Paul Enlow; Richard Strickland; David Behel

    2003-12-15

    This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented. Algal growth can be limited by several factors, including the level of bicarbonate available for photosynthesis, the pH of the growth solution, nutrient levels, and the size of the cell population, which determines the available space for additional growth. In order to supply additional CO2 to increase photosynthesis and algal biomass production, fly ash reactor has been demonstrated to increase the available CO2 in solution above the limits that are achievable with dissolved gas alone. The amount of dissolved CO2 can be used to control pH for optimum growth. Periodic harvesting of algae can be used to maintain algae in the exponential, rapid growth phase. An 800 liter scale up demonstrated that larger scale production is possible. The larger experiment demonstrated that indirect addition of CO2 is feasible and produces significantly less stress on the algal system. With better harvesting methods, nutrient management, and carbon dioxide management, an annual biomass harvest of about 9,000 metric tons per square kilometer (36 MT per acre) appears to be feasible. To sequester carbon, the algal biomass needs to be placed in a permanent location. If drying is undesirable, the biomass will eventually begin to aerobically decompose. It was demonstrated that algal biomass is a suitable feed to an anaerobic digester to produce methane

  15. Shape-selective catalysis for synthesis of high-value chemicals from aromatics in coal liquids

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chunshan; Schobert, H.H. [Pennsylvania State Univ., University Park, PA (United States)

    1996-12-31

    Liquids derived from coals contain numerous aromatic compounds. Many of the one- to four-ring aromatic and polar compounds can be converted into valuable chemicals. Economic analysis of the viability of liquefaction (and related conversion processes) may well produce a different result if some of the aromatics and phenolics are used for making high-value chemicals and some of the liquids for making high-quality fuels such as thermally stable aviation fuels. To make effective use of aromatics in coal liquids, we are studying shape-selective catalytic conversion of multi-ring compounds. The products of such reactions are intermediates for making value-added chemicals, monomers of advanced polymer materials, or components of advanced jet fuels. Two broad strategic approaches can be used for making chemicals and materials from coals. The first is the indirect approach: conversion of coals to liquids, followed by transformation of compounds in the liquids into value-added products. The second is direct conversion of coals to materials and chemicals. Both approaches are being explored in this laboratory. In this paper, we will give an account of our recent work on (1) shape-selective catalysis which demonstrates that high-value chemicals can be obtained from aromatic compounds by catalytic conversion over certain zeolites; and (2) catalytic graphitization of anthracites, which reveals that using some metal compounds promotes graphitization at lower temperatures and may lead to a more efficient process for making graphites from coals.

  16. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    John Groppo; Thomas Robl

    2006-09-30

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station.

  17. University coal research/historically black colleges and universities and other minority institutions contractors review meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    A variety of papers/posters were presented on topics concerning power generation, including solid oxide fuel cells, hydrogen production, mercury as a combustion product, carbon dioxide separation from flue gas. A total of 31 presentations in slide/overview/viewgraph form and with a separate abstract are available online (one in abstract form only) and 24 poster papers (text). In addition 41 abstracts only are available. Papers of particular interest include: Hydrogen production from hydrogen sulfide in IGCC power plants; Oxidation of mercury in products of coal combustion; Computer aided design of advanced turbine aerofoil alloys for industrial gas turbines in coal fired environments; Developing engineered fuel using flyash and biomass; Conversion of hydrogen sulfide in coal gases to elemental sulfur with monolithic catalysts; Intelligent control via wireless sensor networks for advanced coal combustion systems; and Investment of fly ash and activated carbon obtained from pulverized coal boilers (poster).

  18. Phase behavior of coal fluids: Data for correlation development. Report for the period October 15, 1989--January 15, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, R.L. Jr.

    1990-02-06

    The effective design and operation of processes for conversion of coal to fluid fuels requires accurate knowledge of the phase behavior of the fluid mixtures encountered in the conversion process. Multiple phases are present in essentially all stages of feed preparation, conversion reactions and product separation; thus, knowledge of the behavior of these multiple phases is important in each step. The overall objective of the author`s work is to develop accurate predictive methods for representation of vapor-liquid equilibria in systems encountered in coal conversion processes. 59 refs., 6 figs., 7 tabs.

  19. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    John Groppo; Thomas Robl; Robert Rathbone

    2006-06-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station. The secondary classification testing was concluded using a continuous demonstration-scale lamella classifier that was operated at a feed rate of 0.3 to 1.5 tons/hr. Feed to the secondary classifier was generated by operating the primary classifier at the conditions shown to be effective previously. Samples were taken while the secondary classifier was operated under a variety of conditions in order to determine the range of conditions where the unit could be efficiently operated. Secondary classification was effective for producing an ultra-fine ash (UFA) product. Inclined lamella plates provided an effective settling surface for coarser ash particles and plate spacing was shown to be an important variable. Results showed that the closer the plate spacing, the finer the size distribution of the UFA product. Flotation of the secondary classifier feed provided a lower LOI UFA product (2.5% LOI vs. 4.5% LOI) and a dispersant dosage of 2 to 2.5 g/kg was adequate to provide UFA grade (3.8 to 4.4 {micro}m) and recovery (53 to 68% 5{micro}m recovery). The UFA yield without flotation was {approx}33% and lower ({approx}20%) with flotation. Demonstration plant product evaluations showed that water requirements in mortar were reduced and 100% of control strength was achieved in 28 days for the coarser products followed by further strength gain of up to 130% in 56 days. The highest strengths of 110% of control in 7 days and 140% in 56 days were achieved with the finer products. Mortar air requirements for processed products were essentially the same as those for standard mortar, suggesting that the unburned carbon remaining does not have

  20. Water effects of the use of western coal for electrical production

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, E.A.

    1980-02-01

    Water may be a constraint on the expanded development of coal resources in the semi-arid western United States. Water allocation in the West has been determined by the appropriative rights doctrine which allows perpetual use of water sources by those who first claim it for beneficial purposes. This has had the effect of placing a dominative interest in water allocation in one economic sector: agriculture. New water sources are available to coal producers but political and economic problems must be overcome. Water is required by every phase of coal development. Mines use water for dust control and land reclamation. Coal slurry pipelines would use water as a transport medium. Steam electric power plants use water for cooling, cleaning, and in the boiler. Coal gasification plants would use water for cooling, cleaning, and as a material input. In addition to these direct uses of water by coal development, the people who build and operate the development demand water for domestic and recreational purposes. The quantity of water required for a given element of a coal development is site specific and dependent on many factors. The available literature cites a range of estimates of the amount of water required for each type of development. The width of this range seems related to the stage of development of the particular technology. Estimates of water requirements for various schemes to provide an average electrical load of 9 GWe to a load center 1000 miles from western mines are shown in Table 5.

  1. Conversion of the lignite-fired power stations of the upper Austrian power station company to bituminous coal-firing; Umruestung der Braunkohle-Kraftwerke der Oberoesterreichischen Kraftwerke AG auf Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Guttenbrunner, M.; Madlsperger, G [Oberoesterreichische Kraftwerke AG (OKA), Linz (Austria). Abt. Kraftwerkserrichtung; Pfeffer, S. [Oberoesterreichische Kraftwerke AG (OKA), St. Pantaleon (Austria). Kraftwerk Riedersbach; Steiner, H. [Oberoesterreichische Kraftwerke AG (OKA), Timelkam (Austria). Kraftwerk Timelkam

    1998-08-01

    The Upper Austrian Power Station Company operates coal-fired power stations at the Riedersbach and Timelkam sites. Because the adjacent supply sources of the original main fules of lignite had been shut down for economic reasons, the necessity to convert to bituminous coal-firing resulted. This paper quotes characteristic data for the lignite and bituminous coal used in the Upper Austrian Power Stations. It describes the conversion measures taken at each individual Upper Austrian coalfired power station, in which special arrangements and burner designs are represented. The reduction in fuel costs through the utilisation of bituminous coal available at world market prices was advantageous. (orig.) [Deutsch] Die Oberoesterreichischen Kraftwerke betreiben an den Standorten Riedersbach und Timelkam kohlebefeuerte Kraftwerke. Weil die nahe gelegenen Foerderstaetten des urspruenglichen Hauptbrennstoffes Braunkohle aus Wirtschaftlichkeitsgruenden eingestellt wurden, ergab sich die Notwendigkeit des Umbaues auf Steinkohlefeuerung. Charakteristische Daten der in den OKA-Kohlekraftwerken eingesetzten Braun- und Steinkohle werden angegeben. Die Umbaumassnahmen jedes einzelnen OKA-Kohlekraftwerkes werden erlaeutert, wobei insbesondere Dispositionen und Brennerausfuehrungen dargestellt werden. Vorteilhaft war die Reduktion der Brennstoffkosten durch den Einsatz der zu Weltmarktpreisen erhaeltlichen Steinkohle. (orig.)

  2. Big coal book 2002. 3rd. ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The book provides a wide collection of information for the international coal market. An introductory review of the coal market in 2001 and insight into 2002 is followed by a chapter giving statistics (of exports, imports, coal production, consumption and freight rates). Chapter 3 reviews issues facing coal producers and gives a company listing of major coal producers throughout the world. This format is followed for coal consumers, coal traders, coal ports, and the coal transportation sector. Company listings are also given for ship owners, shipbrokers, rail companies, barge companies and petcoke producers. Detailed coal specifications are given for both producers and consumers and there is a complete set of indexes.

  3. Landslide remediation on Ohio State Route 83 using clean coal combustion by-products

    Energy Technology Data Exchange (ETDEWEB)

    Payette, R. [Ohio Dept. of Transportation, Jacksontown, OH (United States). District 5; Chen, X.Y.; Wolfe, W. [Ohio State Univ., Columbus, OH (United States); Beeghly, J. [Dravo Lime Co., Pittsburgh, PA (United States)

    1995-12-31

    In the present work, a flue gas desulfurization (FGD) by-product was used to reconstruct the failed portion of a highway embankment. The construction process and the stability of the repaired embankment are examined. State Route 83 in Cumberland, Ohio has been damaged by a slow moving slide which has forced the Ohio Department of Transportation to repair the roadway several times. In the most recent repair FGD by-products obtained from American Electric Power`s Tidd PFBC plant were used to construct a wall through the failure plane to prevent further slippage. In order to evaluate the utility of using coal combustion by-products in this type of highway project the site was divided into three test sections. In the first repair section, natural soil removed form the slide area was recompacted and replaced according to standard ODOT construction practices. In the second section the natural soil was field mixed with the Tidd PFBC ash in approximately equal proportions. The third section was all Tidd ash. The three test sections were capped by a layer of compacted Tidd ash or crushed stone to provide a wearing surface to allow ODOT to open the roadway before applying a permanent asphalt surface. Measurement of slope movement as well as water levels and quality have begun at the site in order to evaluate long term project performance. The completion of this project should lead to increased acceptance of FGD materials in construction projects. Monetary savings will be realized in avoiding some of the disposal costs for the waste, as well as in the reduced reliance on alternative engineering materials.

  4. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    John Groppo; Thomas Robl

    2005-06-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. Filter media candidates were evaluated for dewatering the ultrafine ash (UFA) product. Media candidates were selected based on manufacturer recommendations and evaluated using standard batch filtration techniques. A final media was selected; 901F, a multifilament polypropylene. While this media would provide adequate solids capture and cake moisture, the use of flocculants would be necessary to enable adequate filter throughput. Several flocculant chemistries were also evaluated and it was determined that polyethylene oxide (PEO) at a dosage of 5 ppm (slurry basis) would be the most suitable in terms of both settling rate and clarity. PEO was evaluated on a continuous vacuum filter using 901F media. The optimum cycle time was found to be 1.25 minutes which provided a 305% moisture cake, 85% solids capture with a throughput of 115 lbs dry solids per hour and a dry cake rate of 25 lb/ft2/hr. Increasing cycle time not did not reduce cake moisture or increase throughput. A mobile demonstration unit has been designed and constructed for field demonstration. The continuous test unit will be operated at the Ghent site and will evaluate three processing configurations while producing sufficient products to facilitate thorough product testing. The test unit incorporates all of the unit processes that will be used in the commercial design and is self sufficient with respect to water, electricity and processing capabilities.

  5. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Robl; John Groppo

    2005-09-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. A mobile demonstration unit has been designed and constructed for field demonstration. The demonstration unit was hauled to the test site on trailers that were place on a test pad located adjacent to the ash pond and re-assembled. The continuous test unit will be operated at the Ghent site and will evaluate three processing configurations while producing sufficient products to facilitate thorough product testing. The test unit incorporates all of the unit processes that will be used in the commercial design and is self sufficient with respect to water, electricity and processing capabilities. Representative feed ash for the operation of the filed testing unit was excavated from a location within the lower ash pond determined from coring activities. Approximately 150 tons of ash was excavated and pre-screened to remove +3/8 inch material that could cause plugging problems during operation of the demonstration unit.

  6. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    John Groppo; Thomas Robl

    2006-06-30

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utility's 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station. The secondary classification testing was concluded using a continuous demonstration-scale lamella classifier that was operated at a feed rate of 0.3 to 1.5 tons/hr. Feed to the secondary classifier was generated by operating the primary classifier at the conditions shown to be effective previously. Samples were taken while the secondary classifier was operated under a variety of conditions in order to determine the range of conditions where the unit could be efficiently operated. A Topical Report was prepared and included all of the pertinent processing data generated during Budget Period 1 of the project as well as results of beneficiated ash product evaluations in mortar and concrete, schematic plant designs with mass and water balances for the four flowsheets tested with equipment lists, capital and installation costs, expected product outputs and equipment justifications. A proposal for continuation of the project to Budget Period 2 was also prepared and submitted, with the exception of a Letter of Commitment from Cemex. The proposal is currently under internal review with Cemex and a decision is expected by the end of September, 2006.

  7. Technologies for coal based hydrogen and electricity co-production power plants with CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, C.G.; Tzimas, E.; Peteves, S.D.

    2009-07-01

    Integrated Gasification Combined Cycle (IGCC) plants allow the combination of the production of hydrogen and electricity because coal gasification process produces a syngas that can be used for the production of both commodities. A hydrogen and electricity power plant has been denominated as HYPOGEN. This report starts by reviewing the basics of the coal gasification process and continues by trying to map all the technological options currently available in the market as well as possible future trends that can be included in a HYPOGEN system. Besides, it offers an overview of the operating conditions and outputs of each process in order to provide the modeller with a useful information tool enabling an easier analysis of compatibilities and implementation of the model. 119 refs., 53 figs., 38 tabs.

  8. THE INFLUENCE OF SPARE PARTS EXPENSES ON PRODUCTION COSTS WITH THE PREPARATION OF THE JIU VALLEY COAL

    Directory of Open Access Journals (Sweden)

    GIANINA BARSAN DUDUIALA

    2012-05-01

    Full Text Available The activity of supply and that of exploitation of the spare parts from the composition of the equipments that realize the preparation of the Jiu Valley coal influence its production costs. In this respect, this paper deals with, during some periods of time, initially determined, the specific costs of the spare parts for the sieves, pumps and pipes, equipments, and also auxiliary equipments that are part of the endowment of the Exploitation of the Jiu Valley coal preparation. The results got can be used to rank and determine the causes which determine the high expenses of some spare parts categories as well as the possibility to reduce the production costs within E.P.C.V.J.

  9. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  10. Speciation and Attenuation of Arsenic and Selenium at Coal Combustion By-Product Management Facilities

    Energy Technology Data Exchange (ETDEWEB)

    K. Ladwig

    2005-12-31

    The overall objective of this project was to evaluate the impact of key constituents captured from power plant air streams (principally arsenic and selenium) on the disposal and utilization of coal combustion products (CCPs). Specific objectives of the project were: (1) to develop a comprehensive database of field leachate concentrations at a wide range of CCP management sites, including speciation of arsenic and selenium, and low-detection limit analyses for mercury; (2) to perform detailed evaluations of the release and attenuation of arsenic species at three CCP sites; and (3) to perform detailed evaluations of the release and attenuation of selenium species at three CCP sites. Each of these objectives was accomplished using a combination of field sampling and laboratory analysis and experimentation. All of the methods used and results obtained are contained in this report. For ease of use, the report is subdivided into three parts. Volume 1 contains methods and results for the field leachate characterization. Volume 2 contains methods and results for arsenic adsorption. Volume 3 contains methods and results for selenium adsorption.

  11. Development of Continuous Solvent Extraction Processes For Coal Derived Carbon Products

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Dady B. Dadyburjor; Gregory W. Hackett; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; Robert C. Svensson; John W. Zondlo

    2006-09-30

    In this reporting period, tonnage quantities of coal extract were produced but solid separation was not accomplished in a timely manner. It became clear that the originally selected filtration process would not be effective enough for a serious commercial process. Accordingly, centrifugation was investigated as a superior means for removing solids from the extract. Results show acceptable performance. Petrographic analysis of filtered solids was carried out by R and D Carbon Petrography under the auspices of Koppers and consultant Ken Krupinski. The general conclusion is that the material appears to be amenable to centrifugation. Filtered solids shows a substantial pitch component as well as some mesophase, resulting in increased viscosity. This is likely a contributing reason for the difficulty in filtering the material. Cost estimates were made for the hydotreatment and digestion reactors that would be needed for a 20,000 ton per year demonstration plants, with the aid of ChemTech Inc. The estimates show that the costs of scaling up the existing tank reactors are acceptable. However, a strong recommendation was made to consider pipe reactors, which are thought to be more cost effective and potentially higher performance in large scale systems. The alternate feedstocks for coke and carbon products were used to fabricate carbon electrodes as described in the last quarterly report. Gregory Hackett successfully defended his MS Thesis on the use of these electrodes in Direct Carbon Fuel Cell (DCFC), which is excerpted in Section 2.4 of this quarterly report.

  12. Production costs of auto gasoline and DHD feed from bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    1942-11-04

    This report consists of three tables. The first table shows data concerning the 700 atm liquid phase and a production capacity of 146,000 tons/yr of gasoline and middle oil. The cost is shown in Reichsmarks per ton of gasoline and middle oil for individual areas such as: 1.73 tons of hydrogenation coal, with 10% water and 4% ash as being 40 RM, 1900 m/sup 3/ H/sub 2/ being 83.50 RM, catalysts and chemicals being 2.40 RM, power being 32.0 RM, and wages, materials, operating materials and laboratory costs as being 19.6 RM. The total of all areas listed was 211.60 RM/ton of gasoline and middle oil. The second table is for the 300 atm vapor phase showing RM/ton of auto gasoline and RM/ton 170/sup 0/-endpoint gasoline based on the gasoline being free of C/sub 4/. This is given for liquid phase gasoline and middle oil, hydrogen, liquid petroleum gasoline credit, hydrogenation gas credit, catalyst and chemicals, power, wages, repairs, fire protection and taxes, amortization, general, 3% interest, and 5% interest. The same information given in the second chart is also given in the third chart except it was for a 700 atm vapor phase operation. The 300 atm-process seemed to have slightly higher cost than the 700 atm process, partly because of using more hydrogen and more expensive catalyst. 3 tables

  13. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Teissie, J.; Bourgogne, D. de; Bautin, F. [TotalFinaElf, La Defense, 92 - Courbevoie (France)

    2001-12-15

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  14. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Jackura; John Groppo; Thomas Robl

    2006-12-31

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes an investigation of the secondary classification characteristics of the ash feedstock excavated from the lower ash pond at Ghent Station. The market study for the products of the processing plant (Subtask 1.6), conducted by Cemex, is reported herein. The study incorporated simplifying assumptions and focused only on pozzolan and ultra fine fly ash (UFFA). It found that the market for pozzolan in the Ghent area was oversupplied, with resultant poor pricing structure. Reachable export markets for the Ghent pozzolan market were mostly locally served with the exception of Florida. It was concluded that a beneficiated material for that market may be at a long term disadvantage. The market for the UFFA was more complex as this material would compete with other beneficiated ash and potential metakaolin and silica fume as well. The study concluded that this market represented about 100,000 tons of sales per year and, although lucrative, represented a widely dispersed niche market.

  15. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    Science.gov (United States)

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  16. Interactive design of farm conversion : linking agricultural research and farmer learning for sustainable small scale horticulture production in Colombia

    NARCIS (Netherlands)

    Lee, R.A.

    2002-01-01

    Key words: interactive conversion design / vegetable production / small farms / sustainable farming / Colombia / learning processes / facilitation / agricultural research methods

  17. Comparing marine primary production estimates through different methods and development of conversion equations

    Directory of Open Access Journals (Sweden)

    Aurore eRegaudie-De-Gioux

    2014-07-01

    Full Text Available Numerous studies have compared the rates of primary production using various techniques at specific locations and times. However, these comparisons are local and cannot be used to compare or scale rates of primary production using different methods across ocean basins or seasonal time scales. Here, we quantify the range in rates of primary production derived using different techniques and provide equations that allow conversions of estimates between different methods. We do so on the basis of a compilation of data on volumetric estimates of primary production rates concurrently estimated with at least two different methods. We observed that the comparison of estimates of marine phytoplankton primary production derived from different methods reveals very large variations between methods. The highest primary production estimates are derived using the 18O method, which may provide the best and more generally applicable estimate of gross primary production. The regression equations presented in this work provide the best available approach to convert data across methods and therefore integrate and synthesize available and future data derived using different methods.

  18. Leaching behavior of coal combustion products and the environmental implication in road construction : project progress report.

    Science.gov (United States)

    2009-01-01

    The use of coal fly ash in road base and sub-base applications can provide better properties and performance, and is superior to it being otherwise disposed and becoming a possible environmental liability. Understanding the metal leaching behavior fo...

  19. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Rabovitser

    2009-06-30

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures

  20. Hydrogen production by water splitting with biomass and coal; Wasserstoffgewinnung durch Wasserspaltung mit Biomasse und Kohle

    Energy Technology Data Exchange (ETDEWEB)

    Schmieder, H.; Henrich, E.; Dinjus, E.

    2000-11-01

    This study shall contribute to recognise the chemical and engineering research and development need for the future energy supply which besides the improvement of the energy efficiency will increasingly use renewable energies. As an introduction to the complex topic a summarised opinion of competent international experts about the development of energy requirements and its supply in the current century is put in front. An important role can be derived from this for the biomass. The use of the solar power accumulated in the biomass for water splitting to produce the low-emission fuel hydrogen could play a significant role to substitute oil and natural gas. Besides this, the coal which has today the largest foreseeable reserves of the fossil fuels probably will have to make an important contribution. Dominant for the use of coal is the efficiency improvement of the transformation processes and the reduction of the emissions / immissions, as well for electricity production as for synthetic fuel production. This aim should most likely be achieved by gasification and for the electricity production in connection with gas turbines (combined cycle) or also hydrogen fuel cells. The principles of the gasification for the different carbonaceous educts - from biomass up to anthracite - are the same. The differences in reactivity and in accompanying substances require both a better understanding of the chemical - physical fundamentals and technological progress, to guarantee the required high process efficiency and the restrictive purity specifications of gas turbines or fuel cells. The state of the art for the hydrogen production also with a view to the use of renewable energies is presented and discussed in detail. The process developments for the gasification of biomass are surprisingly little progressed in comparison with the expensive electrolysis using renewable electricity (photo voltaic, wind). After describing of R and D projects which build up on the principles of

  1. Coal-mine spoil banks offer good potential for timber and wildlife production

    Science.gov (United States)

    Grant Davis; Walter H. Davidson

    1968-01-01

    More than 300,000 acres have been strip-mined for coal in the Anthracite and Bituminous Regions of Pennsylvania—most of this since World War II. And an additional 10,000 to 15,000 acres are strip-mined each year. Since 1945 coal operators have been required to revegetate the areas disturbed by mining. Although the primary purpose of revegetation is to provide permanent...

  2. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Robl; John Groppo

    2007-03-31

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. Phase 1 was completed successfully, but the project did not continue on to Phase 2 due to withdrawal of CEMEX from the project. Attempts at replacing CEMEX were not successful. Problematic to the continuation of the project was its location in the Ohio Valley which is oversupplied and has low prices for fly ash and the change in CEMEX priorities due to merger and acquisitions. Thus, CAER concurred with the DOE to conclude the project at the end of Budget Period 1, March 31, 2007.

  3. The Impact of the Quality of Coal Mine Stockpile Soils on Sustainable Vegetation Growth and Productivity

    Directory of Open Access Journals (Sweden)

    Nicky M Mushia

    2016-06-01

    Full Text Available Stockpiled soils are excavated from the ground during mining activities, and piled on the surface of the soil for rehabilitation purposes. These soils are often characterized by low organic matter (SOM content, low fertility, and poor physical, chemical, and biological properties, limiting their capability for sustainable vegetation growth. The aim of the study was to evaluate the impact of stockpile soils of differing depth and quality on vegetation growth and productivity. Soils were collected at three different depths (surface, mid, and deep as well as mixed (equal proportion of surface, mid and deep from two stockpiles (named Stockpile 1: aged 10 and Stockpile 2: 20 years at the coal mine near Witbank in the Mpumalanga province of South Africa. Soils were amended with different organic and inorganic fertilizer. A 2 × 4 × 5 factorial experiment in a completely randomized blocked design with four replications was established under greenhouse conditions. A grass species (Digiteria eriantha was planted in the pots with unamended and amended soils under greenhouse conditions at 26–28 °C during the day and 16.5–18.5 °C at night. Mean values of plant height, plant cover, total fresh biomass (roots, stems and leaves, and total dry biomass were found to be higher in Stockpile 1 than in Stockpile 2 soils. Plants grown on soils with no amendments had lower mean values for major plant parameters studied. Soil amended with poultry manure and lime was found to have higher growth rate compared with soils with other soil amendments. Mixed soils had better vegetation growth than soil from other depths. Stockpiled soils in the study area cannot support vegetation growth without being amended, as evidenced by low grass growth and productivity in this study.

  4. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  5. Coal desulfurization by aqueous chlorination

    Science.gov (United States)

    Kalvinskas, J. J.; Vasilakos, N.; Corcoran, W. H.; Grohmann, K.; Rohatgi, N. K. (Inventor)

    1982-01-01

    A method of desulfurizing coal is described in which chlorine gas is bubbled through an aqueous slurry of coal at low temperature below 130 degrees C., and at ambient pressure. Chlorinolysis converts both inorganic and organic sulfur components of coal into water soluble compounds which enter the aqueous suspending media. The media is separated after chlorinolysis and the coal dechlorinated at a temperature of from 300 C to 500 C to form a non-caking, low-sulfur coal product.

  6. Hydrotreating of coal-derived liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lott, S.E.; Stohl, F.V.; Diegert, K.V. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1995-12-31

    To develop a database relating hydrotreating parameters to feed and product quality by experimentally evaluating options for hydrotreating whole coal liquids, distillate cuts of coal liquids, petroleum, and blends of coal liquids with petroleum.

  7. A Study on the gas productivity by using Experimental Results of Stress-induced Permeability Change in Coal Seam

    Science.gov (United States)

    Kang, I. O.; Kim, K. H.; Han, J. M.; Lee, S. M.

    2016-12-01

    Methane Production from coal has become one of the more interesting practices in recent years to produce hydrocarbons. In the United States in 2005, it is estimated that 11% of all gas produced is from coalbed. The permeability is a measure of the capability of a porous medium to transmit fluid thought a network of microscopic channels. The permeability in coal is a direct function of the cleat volume. Since the volume of cleat changes with effect on the effective stress and sorption characteristics for production duration, the permeability also produces the alteration. Thus, to definitely estimate the gas production ability of the coal, it is essential that we especially understand changing aspects of permeability for production duration. Many researchers suggested the empirical equation to describe the effect of matrix shrinkage and effective stress. However, the past research associated with permeability change in coal focused on experimental results at a certain temperature.In this study, we have investigated the change of the sorption-induced permeability in pressure change with depth, an experimental approach considering temperature influence at the certain depth may be followed. Based on the received core from CBM field, we conducted the experiment both sorption and permeability according to the various pressure and temperatures.Firstly, experiment of the CH4 sorption was performed in the temperature ranged from 59℉ to 113℉ in the pressure ranges from 14.7 psia to 1,299 psia. Ot was found that CH3 isotherms display a normal Langmuir-type behavior from experiment ranges. In order to understand the effect of adsorption of CH4 in the change of sorption-induced permeability, we measured the permeability at the various pressures. When the pressure was increased by 100 psia, the results showed that the permeability alteration rate was 9.7% in reduction. Meanwhile, the permeability change rate was higher for a better affinity gas at lower temperature. Based on

  8. Conversational agents for academically productive talk: a comparison of directed and undirected agent interventions

    DEFF Research Database (Denmark)

    Tegos, Stergios; Demetriadis, Stavros N.; Papadopoulos, Pantelis M.

    2016-01-01

    to and benefit from such flexible agents in order to fine-tune the design of automated APT intervention modes and, thus, enhance agent pedagogical efficacy. Building on this line of research, this work explores the impact of a configurable APT agent that prompts peers to build on prior knowledge and logically......Conversational agents that draw on the framework of academically productive talk (APT) have been lately shown to be effective in helping learners sustain productive forms of peer dialogue in diverse learning settings. Yet, literature suggests that more research is required on how learners respond...... connect their contributions to important domain concepts discussed in class. A total of 96 computer science students engaged in a dialogue-based activity in the context of a Human-Computer Interaction (HCI) university course. During the activity, students worked online in dyads to accomplish a learning...

  9. NREL Advancements in Methane Conversion Lead to Cleaner Air, Useful Products

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    Researchers at NREL leveraged the recent on-site development of gas fermentation capabilities and novel genetic tools to directly convert methane to lactic acid using an engineered methanotrophic bacterium. The results provide proof-of-concept data for a gas-to-liquids bioprocess that concurrently produces fuels and chemicals from methane. NREL researchers developed genetic tools to express heterologous genes in methanotrophic organisms, which have historically been difficult to genetically engineer. Using these tools, researchers demonstrated microbial conversion of methane to lactate, a high-volume biochemical precursor predominantly utilized for the production of bioplastics. Methane biocatalysis offers a means to concurrently liquefy and upgrade natural gas and renewable biogas, enabling their utilization in conventional transportation and industrial manufacturing infrastructure. Producing chemicals and fuels from methane expands the suite of products currently generated from biorefineries, municipalities, and agricultural operations, with the potential to increase revenue and significantly reduce greenhouse gas emissions.

  10. Conversational agents for academically productive talk: a comparison of directed and undirected agent interventions

    DEFF Research Database (Denmark)

    Tegos, Stergios; Demetriadis, Stavros N.; Papadopoulos, Pantelis M.

    2016-01-01

    Conversational agents that draw on the framework of academically productive talk (APT) have been lately shown to be effective in helping learners sustain productive forms of peer dialogue in diverse learning settings. Yet, literature suggests that more research is required on how learners respond...... instead of the dyad (D treatment). The results suggest that although both agent intervention methods can improve students’ learning outcomes and dyad in-task performance, the directed one is more effective than the undirected one in enhancing individual domain knowledge acquisition and explicit reasoning....... Furthermore, findings show that the positive effect of the agent on dyad performance is mediated by the frequency of students’ contributions displaying explicit reasoning, while most students perceive agent involvement favorably....

  11. Organizational Capability Deployment Analysis for Technology Conversion into Processes, Products and Services

    Directory of Open Access Journals (Sweden)

    Tomoe Daniela Hamanaka Gusberti

    2013-12-01

    Full Text Available This article discusses Organizational Capabilities as the basic components of business models that emerged under the New Product Development Process and Technological Management. In the context of the new Technology Based Companies Development, it adopts a qualitative research in order to identify, analyze and underpin the organizational capability deployment in a process of technology conversion into product and service. The analysis was carried out considering concepts from literature review, in a technology based enterprise started by an academic spin-off company. The analysis enabled the elicitation of a Business Model and the discussion of their components, and correspondent evolution hypothesis. The paper provides an example of capability deployment accordingly the established theory illustrated by a case study. The study not just enumerate the needed partners, resources, customer channels, it enabled the description of their connection, representing the logic behind the decision made to develop the conceptual model. This detailed representation of the model allows better addressed discussions.

  12. Production of carbon molecular sieves from Illinois coal. [Quarterly] technical report, March 1, 1993--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Lizzio, A.A.; Rostam-Abadi, M. [Illinois State Geological Survey, Champaign, IL (United States)

    1993-09-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recover processes. The overall objective of this project is to determine whether Illinois Basin coals are suitable feedstocks for the production of CMS and to evaluate the potential application of these products in commercial gas separation processes. In Phase I of this project, gram quantities of char were prepared from Illinois coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. Chars having surface areas of 1500--2100 m{sup 2}/g were produced by chemical activation using potassium hydroxide (KOH) as the activant. These high surface area chars had more than twice the adsorption capacity of commercial molecular sieves. The kinetics of adsorption of various gases, e.g., N{sub 2}, O{sub 2}, CO{sub 2}, CH{sub 4}, CO and H{sub 2}, on these chars at 25{degrees}C was determined. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4} and CH{sub 4}/H{sub 2} separation; both a high adsorption capacity and selectivity were achieved. The full potential of these materials in commercial gas separations has yet to be realized. In Phase II of this project, larger quantities of char are being prepared from Illinois coal in a batch fluidized-bed reactor and in a continuous rotary tube kiln.

  13. Removal of pollutants from poor quality coals by pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    George E. Skodras; Panagiotis Natas; Panagiotis P. Basinas; George P. Sakellaropoulos [Institute for Solid Fuels Technology and Applications, Ptolemais (Greece)

    2006-07-01

    With the aim of meeting the recently adopted strict environmental standards, and the need of affordable in cost clean power production, a preventive fuels pre-treatment technique based on low temperature carbonization has been tested. Clean coals were produced from two poor quality Greek coals (Ptolemais and Megalopolis) and an Australian coal sample, in a lab-scale fixed bed reactor under helium atmosphere and ambient pressure. The effect of carbonization temperature (200-900{sup o}C) and residence time (5-120 minutes) on the properties of the chars, obtained after pyrolysis, was investigated. Special attention was paid to the removal of pollutants such as S, N, Hg and Cl. To account for possible mineral matter effects, mainly on sulphur removal, tests were also performed with demineralized coal. Reactivity variation of produced clean coals was evaluated by performing non-isothermal combustion tests in a TA Q600 thermogravimetric analyser. Results showed that the low temperature carbonization technique might contribute to clean coal production by effectively removing the major part of the existing polluting compounds contained in coal. Therefore, depending on coal type, nitrogen, mercury and chlorine abatement continuously increases with temperature, while sulphur removal seems to reach a plateau above 500-600{sup o}C. Moreover, the prolongation of carbonization time above 20 minutes does not affect the elemental conversion of the pollutants and carbonization at 500-600{sup o}C for about 20 minutes may be considered sufficient for clean coal production from poor quality coals. 12 refs., 17 figs., 1 tab.

  14. Environmental life cycle assessment of methanol and electricity co-production system based on coal gasification technology.

    Science.gov (United States)

    Śliwińska, Anna; Burchart-Korol, Dorota; Smoliński, Adam

    2017-01-01

    This paper presents a life cycle assessment (LCA) of greenhouse gas emissions generated through methanol and electricity co-production system based on coal gasification technology. The analysis focuses on polygeneration technologies from which two products are produced, and thus, issues related to an allocation procedure for LCA are addressed in this paper. In the LCA, two methods were used: a 'system expansion' method based on two approaches, the 'avoided burdens approach' and 'direct system enlargement' methods and an 'allocation' method involving proportional partitioning based on physical relationships in a technological process. Cause-effect relationships in the analysed production process were identified, allowing for the identification of allocation factors. The 'system expansion' method involved expanding the analysis to include five additional variants of electricity production technologies in Poland (alternative technologies). This method revealed environmental consequences of implementation for the analysed technologies. It was found that the LCA of polygeneration technologies based on the 'system expansion' method generated a more complete source of information on environmental consequences than the 'allocation' method. The analysis shows that alternative technologies chosen for generating LCA results are crucial. Life cycle assessment was performed for the analysed, reference and variant alternative technologies. Comparative analysis was performed between the analysed technologies of methanol and electricity co-production from coal gasification as well as a reference technology of methanol production from the natural gas reforming process. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Productivity and Cost of Integrated Harvesting of Wood Chips and Sawlogs in Stand Conversion Operations

    Directory of Open Access Journals (Sweden)

    Hunter Harrill

    2012-01-01

    Full Text Available This study evaluated the operational performance and cost of an integrated harvesting system that harvested sawlogs and biomass (i.e., energy wood chips in stand conversion clearcut operations. Douglas-fir (Pseudotsuga menziesii trees were processed into sawlogs while whole trees of tanoak (Lithocarpus densiflorus, and sub-merchantable materials (small-diameter trees, tops and limbs were fed directly into a chipper to produce biomass for energy production. A standard time study method was used to determine productivity and costs. Over 26 working days, the integrated system produced 1,316 bone-dry metric tonnes (BDTs of sawlogs, and 5,415.89 BDT of chips, with an average moisture content of 43.2%. Using the joint products allocation costing method, the costs of the integrated system were $29.87/BDT for biomass and $4.26/BDT for sawlogs. Chipping utilization was as low as 41%, directly affecting production and cost of chipping operation. Single-lane, dirt, spur roads were the most costly road type to transport whole trees to a centralized processing site: transportation costs for biomass and sawlogs were increased by $0.08/BDT and $0.02/BDT, respectively, for every 50 meter increase in traveling distance. Diesel fuel price could raise total system cost for each product by $0.78/BDT and $0.08/BDT for each $0.10/liter increase.

  16. A conversion coefficient from dose-area products to effective doses for patients in intraoral radiography

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kenji; Yosue, Takashi [Nippon Dental Univ., Tokyo (Japan); Sakaino, Rie; Harata, Yasuo [Showa Univ., Tokyo (Japan). School of Dentistry

    2002-06-01

    A conversion coefficient from dose-area products to effective doses was proposed as a practical estimator of patient health detriments from intraoral radiography. According to the tissue-dose data reported by Gibbs et al. (Dentomaxillofac. Radiol., 1987 and 1988) and the tissue weighting factors recommended in ICRP Publication 60, the effective doses and the dose-area products were calculated at 70, 80, and 90 kV for E-speed films employed at each of seven geometries using bisecting angle, paralleling, and bitewing techniques with round or rectangular collimated beams. The focus-skin distances were 20 cm for the short cone and 40 cm for the long cone, respectively. From a total of 90 sets of exposure factors in intraoral radiographic examinations for adults, the effective doses were in the range of 0.38 {mu}Sv to 8.0 {mu}Sv, and the corresponding dose-area products were 0.58 cGy{center_dot}cm{sup 2} and 7.6 cGy{center_dot}cm{sup 2}. The obtained linear regression coefficient to convert the dose-area product to the effective dose was 0.97 {mu}Sv/cGy{center_dot}cm{sup 2}. We conclude that effective doses can be estimated from the dose-area products if an uncertainty of a factor of two is acceptable in intraoral radiography. (author)

  17. AISI/DOE Technology Roadmap Program: A Technology of Low Coal Rate and High Productivity of RHF Ironmaking

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Kao Lu

    2002-09-15

    An economical and environment-friendly ironmaking process based on heating the chemiexecy self-sufficient green balls of iron ore and coal in a hearth furnace is being developed with financial support from AISI members and DOE. DRI, which is hot (1400 C), dense (3.2 g/cm) and of high degree of metallization (95%), has been produced in laboratory and in a pilot plant in Genoa, Italy. Products of such quality have been made from American and Brazilian ores, BOF sludge, EAF dust/BOF sludge mixtures and millscale. The removal of zinc and lead from green balls by this process is essentially complete. In comparison with typical blast furnace operation, the new technology with a melter would have a lower total coal rate by 200kg.THM. The elimination of cokemaking and high temperature agglomeration steps, and a simpler gas handling system would lead to lower capital and operating costs. In comparison with commercial RHF practice it is different in atmosphere (fully oxidized at 1600 to 1650 C), in bed height (120 mm instead of 20-25 mm) and in pellet composition (much less coal but of higher VM). The combined effect leads to three times higher furnace productivity, lower coal consumption and superior DRI quality. The risk of re-oxidation (slag formation) and dusty operation are practiexecy eliminated. The process is stable, tolerant and independent of the size, shape and movement of the hearth. However, materials handling (e.g., discharge of hot DRI) and the exact energy savings have to be established in a larger furnace, straight or rotary, and in a continuous mode of operation.

  18. Coal fly ash as raw material for the manufacture of geopolymer-based products.

    Science.gov (United States)

    Andini, S; Cioffi, R; Colangelo, F; Grieco, T; Montagnaro, F; Santoro, L

    2008-01-01

    In this work coal fly ash has been employed for the synthesis of geopolymers. Two different systems with silica/alumina ratios stoichiometric for the formation of polysialatesiloxo (PSS, SiO2/Al2O3=4) and polysialatedisiloxo (PSDS, SiO2/Al2O3=6) have been prepared. The alkali metal hydroxide (NaOH or KOH) necessary to start polycondensation has been added in the right amount as concentrated aqueous solution to each of the two systems. The concentration of each alkali metal solution has been adjusted in order to have the right liquid volume to ensure constant workability. The systems have been cured at four different temperatures (25, 40, 60, and 85 degrees C) for several different times depending on the temperature (16-672 h at 25 degrees C; 72-336 h at 40 degrees C; 16-120 h at 60 degrees C and 1-6h at 85 degrees C). The products obtained in the different experimental conditions have been submitted to the quantitative determination of the extent of polycondensation through mass increase and loss on ignition, as well as to qualitative characterization by means of FT-IR spectroscopy. Furthermore, physico-structural and mechanical characterization has been carried out through microscopic observations and the determination of unconfined compressive strength, elasticity modulus, apparent density, porosity and specific surface area. The results have indicated that the systems under investigation are suited for the manufacture of pre-formed building blocks at room temperature.

  19. Coal fly ash as raw material for the manufacture of geopolymer-based products

    Energy Technology Data Exchange (ETDEWEB)

    Andini, S.; Cioffi, R.; Colangelo, F.; Grieco, T.; Montagnaro, F.; Santoro, L. [University of Naples Federico II, Naples (Italy)

    2008-07-01

    In this work coal fly ash has been employed for the synthesis of geopolymers. Two different systems with silica/alumina ratios stoichiometric for the formation of polysialatesiloxo (PSS, SiO{sub 2}/Al{sub 2}O{sub 3} = 4) and polysialatedisiloxo (PSDS, SiO{sub 2}/Al{sub 2}O{sub 3} = 6) have been prepared. The alkali metal hydroxide (NaOH or KOH) necessary to start polycondensation has been added in the right amount as concentrated aqueous solution to each of the two systems. The concentration of each alkali metal solution has been adjusted in order to have the right liquid volume to ensure constant workability. The systems have been cured at four different temperatures (25, 40, 60, and 85{sup o}C for several different times depending on the temperature (16-672 h at 25{sup o}C; 72-336 h at 40{sup o}C 16-120 h at 60{sup o} C and 1-6 h at 85{sup o}C). The products obtained in the different experimental conditions have been submitted to the quantitative determination of the extent of polycondensation through mass increase and loss on ignition, as well as to qualitative characterization by means of FT-IR spectroscopy. Furthermore, physico-structural and mechanical characterization has been carried out through microscopic observations and the determination of unconfined compressive strength, elasticity modulus, apparent density, porosity and specific surface area. The results have indicated that the systems under investigation are suited for the manufacture of pre-formed building blocks at room temperature.

  20. Thermoelectric power plant conversion from fuel oil to coal with integration of a CO{sub 2} capture plant. Part 1; Conversion de una central termoelectrica de combustoleo a carbon con integracion de una planta de captura de CO{sub 2}. Parte 1

    Energy Technology Data Exchange (ETDEWEB)

    Huante Perez, Liborio; Rodriguez Martinez, J. Hugo; Arriola Medellin, Alejandro M. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2010-11-15

    The major features in the design of power plant conversion from fuel oil to coal, considering the new technical characteristics of fuel and his transportation to plant, equipment required to comply with Mexican environmental standards and additional requirements of auxiliaries are described. In addition, changes needed on power plant design were considered according to integrates CO{sub 2} capture plant alternatives. [Spanish] En este articulo se describen las caracteristicas principales en el diseno de la conversion de Centrales de combustoleo a carbon, considerando el nuevo combustible y su transporte hasta la central, los equipos requeridos para cumplir con las normas ambientales y los requerimientos adicionales de los servicios auxiliares. Adicionalmente, se lleva a cabo el analisis de los cambios requeridos en el diseno de la conversion considerando diferentes opciones para la integracion de una planta de captura de CO{sub 2}, la cual debera entregar este subproducto para su compresion y envio a su destino final para su almacenamiento.

  1. Coal sector profile

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  2. Coal-fired open-cycle liquid-metal magnetohydrodynamic topping cycle for retrofit of steam power plants. [Two-phase working fluid composed of coal combustion products and liquid copper

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, E. S.; Herman, H.; Petrick, M.; Boom, R. W.; Carlson, L.; Cohen, D.; Dubey, G.; Grammel, S. J.; Schreiner, F.; Snyder, B. K.; Zinneman, T.

    1980-12-01

    The application of the new, coal-fired open-cycle liquid-metal MHD (OC-LMMHD) energy-conversion system to the retrofit of an existing, oil- or gas-fired conventional steam power plant is evaluated. The criteria used to evaluate the retrofit are the new plant efficiency and the cost benefit relative to other options, i.e., continuing to burn oil, a conventional retrofit to burn coal (if possible), and an over-the-fence gasifier for boilers that cannot burn coal directly. The OC-LMMHD cycle and the existing steam plant used in the study are discussed, and a detailed description of the retrofit plant is presented. The latter includes plant drawings, description of the coupling of the OC-LMMHD topping cycle and the steam boiler, drawings and descriptions of the major components in the retrofit plant, and costs. The unique capability of the OC-LMMHD cycle to control the pollutants normally associated with burning coal is discussed. The net plant output powers and efficiencies are calculated, with allowances for the required auxiliary powers and component inefficiencies, and a plant lifetime economic analysis performed by an architect/engineer. The efficiency and cost results are compared with the values for the other options.

  3. Production of gas from coal seams in the Upper Silesian Coal Basin in Poland in the post-injection period of an ECBM pilot site

    NARCIS (Netherlands)

    Bergen, F. van; Krzystolik, P.; Wageningen, N. van; Pagnier, H.; Jura, B.; Skiba, J.; Winthaegen, P.; Kobiela, Z.

    2009-01-01

    A pilot site for CO2 storage in coal seams was set-up in the Upper Silesian Coal Basin in Poland in the scope of the RECOPOL project, funded by the European Commission. About 760 tons CO2 were injected into the reservoir from August 2004 to June 2005. Breakthrough of the injected CO2 was