WorldWideScience

Sample records for coal combustor quarterly

  1. TRW Advanced Slagging Coal Combustor Utility Demonstration. Fourth Quarterly progress report, August 1989--October 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The TRW Advanced Slagging Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O&R) Utility Corporation`s Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/ou desip unit to fire 2.5 sulfur coal. The slogging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Envirommental Standards. TRW-CBU scope of work includes the engineering, design and supply of the slogging combustors, coal and limestone feed systems and a control system for these components. During this report period, the design activities for all systems progressed to permit the release of specifications and requests for proposals. Award of contracts for long-delivery items and major equipment are being placed to meet the revised program schedule.

  2. Development of an advanced high efficiency coal combustor for boiler retrofit. Quarterly report, November 1986--January 1987

    Energy Technology Data Exchange (ETDEWEB)

    Rini, M.J.; LaFlesh, R.C. [Combustion Engineering, Inc., Windsor, CT (United States); Beer, J.M.; Togan, M.A.; Yu, T.U. [Massachusetts Inst. of Tech., Cambridge, MA (United States); McGowan, J.G. [Univ. of Massachusetts, MA (US)

    1987-05-06

    During the quarter from October 1986 to January 1987 the following technical progress was made: (1) Initiated a literature study focusing on optimized burner aerodynamics and design methodologies for high efficiency swirl generation devices, (2) Completed design of Swirler Test Facility (STF) to be used for comparative swirler evaluations, and (3) Initiated facility preparation at MIT for thermal atomization studies and high shear viscosity measurements.

  3. TRW Advanced Slagging Coal Combustor Utility Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The TRW Advanced Slagging Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/ou desip unit to fire 2.5 sulfur coal. The slogging combustor process will provide NO[sub x] and SO[sub x] emissions that meet NSPS and New York State Envirommental Standards. TRW-CBU scope of work includes the engineering, design and supply of the slogging combustors, coal and limestone feed systems and a control system for these components. During this report period, the design activities for all systems progressed to permit the release of specifications and requests for proposals. Award of contracts for long-delivery items and major equipment are being placed to meet the revised program schedule.

  4. Coal desulfurization in a rotary kiln combustor

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  5. Quarterly coal report, July--September 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks. Coke production consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1997 and aggregated quarterly historical data for 1991 through the second quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. 72 tabs.

  6. Quarterly coal report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.

  7. Quarterly coal report, January--March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.

    1998-08-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for January through March 1998 and aggregated quarterly historical data for 1992 through the fourth quarter of 1997. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the United States, historical information has been integrated in this report. 58 tabs.

  8. Quarterly coal report, July--September 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1998 and aggregated quarterly historical data for 1992 through the second quarter of 1998. 58 tabs.

  9. Quarterly coal report, October--December 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1998 and aggregated quarterly historical data for 1992 through the third quarter of 1998. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. 58 tabs.

  10. Quarterly coal report, April--June, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for April through June 1998 and aggregated quarterly historical data for 1992 through the first quarter of 1998. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. 58 tabs.

  11. Analysis of combustion efficiency in CFB coal combustors

    Energy Technology Data Exchange (ETDEWEB)

    Afsin Gungor [Nigde University, Nigde (Turkey). Department of Mechanical Engineering, Faculty of Engineering and Architecture

    2008-06-15

    Fluidized bed technology is well known for its high combustion efficiency and is widely used in coal combustion. In this study, the combustor efficiency has been defined and investigated for CFB coal combustor based on the losses using a dynamic 2D model. The model is shown to agree well with the published data. The effect of operating parameters such as excess air ratio, bed operational velocity, coal particle diameter and combustor load and the effect of design variables such as bed height and bed diameter on the mean bed temperature, the overall CO emission and the combustion efficiency are analyzed for the small-scale of CFBC in the presently developed model. As a result of this analysis, it is observed that the combustion efficiency decreases with increasing excess air value. The combustion efficiency increases with the bed operational velocity. Increasing coal particle size results in higher combustion efficiency values. The coal feed rate has negative effect on the combustion efficiency. The combustor efficiency considerably increases with increasing combustor height and diameter if other parameters are kept unchanged. 46 refs., 16 figs., 6 tabs.

  12. Quarterly coal report, April--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-02

    The Quarterly Coal Report provides comprehensive information about US coal production, exports, imports, receipts, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. This issue presents detailed quarterly data for April 1990 through June 1990, aggregated quarterly historical data for 1982 through the second quarter of 1990, and aggregated annual historical data for 1960 through 1989 and projected data for selected years from 1995 through 2010. To provide a complete picture of coal supply and demand in the United States, historical information and forecasts have been integrated in this report. 7 figs., 37 tabs.

  13. Quarterly coal report, October--December 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities. This report presents detailed quarterly data for october through December 1997 and aggregated quarterly historical data for 1991 through the third quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data, as specified in Section 202 of the energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

  14. Quarterly coal report, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-20

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada.

  15. Quarterly coal report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-23

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1994 and aggregated quarterly historical data for 1986 through the third quarter of 1994. Appendix A displays, from 1986 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  16. Quarterly coal report, January--March 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-24

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1995 and aggregated quarterly historical data for 1987 through the fourth quarter of 1994. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  17. Quarterly coal report, January--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-24

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1994 and aggregated quarterly historical data for 1986 through the fourth quarter of 1993. Appendix A displays, from 1986 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  18. Coal power and combustion. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    ERDA's coal combustion and power program has focused on two major areas: Direct combustion of coal and advanced power systems. Efforts in the area of direct combustion are concentrated on: Development of atmospheric and pressurized systems capable of burning high-sulfur coal of all rank and quality in fluidized-bed combustors; development of advanced technology power systems to generate power more economically than present technology permits while using medium- and high-sulfur coal in an environmentally-acceptable manner; development of the technology enabling coal-oil slurries to be substituted as feedstock for gas or oil-fired combustors; and improvement of the efficiency of present boilers. Compared with conventional coal-fired systems, fluidized-bed combustion systems give higher power generation efficiencies and cleaner exhaust gases, even when burning high-sulfur coals. If the fluidized-bed system is pressurized, additional economies in capital and operating costs may be realized. The benefits from high-pressure combustion are a reduction of furnace size due to decreased gas volume and better sulfur removal. High-pressure combustion, however, requires the development of equipment to clean the hot combustion products to make them suitable for use in power generation turbines. The advanced power systems program is directed toward developing electric power systems capable of operating on coal or coal-derived fuels. These systems involve the use of high temperature gas turbines burning low-Btu gas and turbine systems using inert gases and alkali metal vapors. Some 25 projects in these areas are described, including a brief summary of progress during the quarter. (LTN)

  19. Computer simulation of an advanced combustor for clean coal technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.L.; Lottes, S.A.

    1992-01-01

    Magnetohydrodynamic (MHD) power generation is a clean coal technology because of its higher thermal efficiency and lower pollutant emission. Argonne National Laboratory used a comprehensive integral combustion computer code to aid the development of a TRW's second stage combustor for MHD power generation. The integral combustion code is a computer code for two-phase, two-dimensional, steady state, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for multiple gas species and solid particles of variable sizes. In the MHD second stage combustor, opposed jets of oxidizer are injected into a confined cross-stream coal gas flow laden with seed particles. The performance of the downstream MHD power generation channel depends mainly on the degree and the uniformity of gas ionization, which, in turn, depends on the uniformity of temperature and seed vapor distributions leaving the combustor. The simulation provides in-depth information of flow, combustion, and heat transfer patterns in the combustor, which is used to predict ranges of combustor operating conditions for optimum performance of the MHD system.

  20. Computer simulation of an advanced combustor for clean coal technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.L.; Lottes, S.A.

    1992-09-01

    Magnetohydrodynamic (MHD) power generation is a clean coal technology because of its higher thermal efficiency and lower pollutant emission. Argonne National Laboratory used a comprehensive integral combustion computer code to aid the development of a TRW`s second stage combustor for MHD power generation. The integral combustion code is a computer code for two-phase, two-dimensional, steady state, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for multiple gas species and solid particles of variable sizes. In the MHD second stage combustor, opposed jets of oxidizer are injected into a confined cross-stream coal gas flow laden with seed particles. The performance of the downstream MHD power generation channel depends mainly on the degree and the uniformity of gas ionization, which, in turn, depends on the uniformity of temperature and seed vapor distributions leaving the combustor. The simulation provides in-depth information of flow, combustion, and heat transfer patterns in the combustor, which is used to predict ranges of combustor operating conditions for optimum performance of the MHD system.

  1. MHD coal combustor technology. Final report, phase II

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    The design, performance, and testing of a 20-MW coal combustor for scaleup to 50 MW for use in an MHD generator are described. The design incorporates the following key features: (1) a two-stage combustor with an intermediate slag separator to remove slag at a low temperture, thus minimizing enthalpy losses required for heating and vaporizing the slag; (2) a first-stage pentad (four air streams impinging on one coal stream) injector design with demonstrated efficient mixing, promoting high carbon burnout; (3) a two-section first-stage combustion chamber; the first stage using a thin slag-protected refractory layer and the second section using a thick refractory layer, both to minimize heat losses; (4) a refractory lining in the slag separator to minimize heat losses; (5) a second-stage combustor, which provided both de-swirl of the combustion products exiting from the slag separator and simple mixing of the vitiated secondary air and seed; (6) a dense-phase coal feed system to minimize cold carrier gas entering the first-stage combustors; (7) a dry seed injection system using pulverized K/sub 2/CO/sub 3/ with a 1% amorphous, fumed silicon dioxide additive to enhance flowability, resulting in rapid vaporization and ionization and ensuring maximum performance; and (8) a performance evaluation module (PEM) of rugged design based on an existing, successfully-fired unit. (WHK)

  2. Review of a Proposed Quarterly Coal Publication

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This Review of a Proposed Quartery Coal Publication contains findings and recommendations regarding the content of a new summary Energy Information Administration (EIA) coal and coke publication entitled The Quarterly Coal Review (QCR). It is divided into five sections: results of interviews with selected EIA data users; identification of major functions of the coal and coke industries; analysis of coal and coke data collection activities; evaluation of issues conerning data presentation including recommendations for the content of the proposed QCR; and comparison of the proposed QCR with other EIA publications. Major findings and recommendations are as follows: (1) User interviews indicate a definite need for a compehensive publication that would support analyses and examine economic, supply and demand trends in the coal industry; (2) the organization of the publication should reflect the natural order of activities of the coal and coke industries. Based on an analysis of the industries, these functions are: production, stocks, imports, exports, distribution, and consumption; (3) current EIA coal and coke surveys collect sufficient data to provide a summary of the coal and coke industries on a quarterly basis; (4) coal and coke data should be presented separately. Coke data could be presented as an appendix; (5) three geographic aggregations are recommended in the QCR. These are: US total, coal producing districts, and state; (6) coal consumption data should be consolidated into four major consumer categories: electric utilities, coke plants, other industrial, and residential commercial; (7) several EIA publications could be eliminated by the proposed QCR.

  3. Hydrodynamics in atmospheric fluidized bed coal combustors. Fluodinamica en combustores atmosfericos de carbon en lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Adanez, J.; Abanades, J.C.; Fernandez, I. (Instituto de Carboquimica, Zaragoza (Spain))

    1990-01-01

    The different flow regimes present in an atmospheric fluidized bed coal combustor have been analyzed depending on working conditions (u, {rho}{sub s}, h{sub bed}). The minimum fluidizing velocity u{sub mf} is a basic parameter for these analyses. Also, there is a great discrepancy between the equations proposed by different workers, for calculating u{sub mf} in the usual conditions of operation in combustors of this kind. By this, the experimental u{sub mf} of limestone and partially sulphated lime has been determined at ambient temperature and 850{degree}C. In plots u vs d{sub p}, maps of flow have been constructed recognizing the different regions and flow regimes. Also, the effect of {rho} {sub s} and bed height over these maps of flow has been analyzed. 16 refs., 8 figs., 1 tab.

  4. Modeling of Sulfur Retention in Circulating Fluidized Bed Coal Combustors

    Institute of Scientific and Technical Information of China (English)

    乔锐; 吕俊复; 刘青; 吴学安; 岳光溪

    2001-01-01

    A comprehensive model for predicting the sulfur retention performance in circulating fluidized bedcombustors was developed which involves the different residence times, the wide particle size distribution andthe different forms of sulfur in the coal. In addition, the reductive decomposition of CaSO4 is highlighted. Thesimulation results from the model show that the sulfur contents, the bed temperature, the sorbent particle sizedistribution and the sorbent activity or the maximum conversion rate can significantly influence the sulfuretention performance in circulating fluidized bed (CFB) combustors.``

  5. Quarterly coal report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-18

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended.

  6. Quarterly coal report, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-26

    In the second quarter of 1993, the United States produced 235 million short tons of coal. This brought the total for the first half of 1993 to 477 million short tons, a decrease of 4 percent (21 million short tons) from the amount produced during the first half of 1992. The decrease was due to a 26-million-short-ton decline in production east of the Mississippi River, which was partially offset by a 5-million-short-ton increase in coal production west of the Mississippi River. Compared with the first 6 months of 1992, all States east of the Mississippi River had lower coal production levels, led by West Virginia and Illinois, which produced 9 million short tons and 7 million short tons less coal, respectively. The principal reasons for the drop in coal output for the first 6 months of 1993 compared to a year earlier were: a decrease in demand for US coal in foreign markets, particularly the steam coal markets; a draw-down of electric utility coal stocks to meet the increase in demand for coal-fired electricity generation; and a lower producer/distributor stock build-up. Distribution of US coal in the first half of 1993 was 15 million short tons lower than in the first half of 1992, with 13 million short tons less distributed to overseas markets and 2 million short tons less distributed to domestic markets.

  7. Quarterly coal report, April 1995--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This document provides comprehensive information about U.S. coal production, distribution, imports, exports, prices, and consumption. Coke production, consumption, distribution, imports, and exports are also provided. This report presents compiled data for April thru June, and historical data for 1987 thru the first quarter of 1995.

  8. Quarterly coal report July--September 1996, February 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1996 and aggregated quarterly historical data for 1990 through the second quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. 8 figs., 72 tabs.

  9. Quarterly coal report July--September 1996, February 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1996 and aggregated quarterly historical data for 1990 through the second quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. 8 figs., 72 tabs.

  10. Review of the Proposed Quarterly Coal Review

    Energy Technology Data Exchange (ETDEWEB)

    1981-04-01

    This Review of the Proposed Quarterly Coal Review is the second of two reports and contains the results of our analysis of issues regarding the publication of a new summary publication, the Quarterly Coal Review. The first report on the QCR was submitted to the Office of Energy Data Operations (OEDO) in January 1981 and included results of our analysis and recommendations concerning data availability and content organization. This report concentrates on data presentation and publication format for the proposed QCR. Comprised of two sections, the report addresses chapter and table formats and presents a detailed analysis of chapter content. The first section of this report, Chapter, Table and Graph Formats, consists of findings and recommendations on the ordering, titling, end notes and cosmetics of the tables proposed for the QCR. The next section, Detailed Analysis of Chapter Content, is the result of a more in-depth analysis of chapters in the QCR.

  11. NONEQUILIBRIUM SULFUR CAPTURE & RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bert Zauderer

    2003-04-21

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. The reacted particles impact and melt in the liquid slag layer on the combustor wall by the centrifugal force of the swirling combustion gases. Due to the low solubility of sulfur in slag, it must be rapidly drained from the combustor to limit sulfur gas re-evolution. Prior analyses and laboratory scale data indicated that for Coal Tech's 20 MMBtu/hour, air-cooled, slagging coal combustor slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to validate this sulfur-in-slag model in a group of combustor tests. A total of 36 days of testing on the combustor were completed during the period of performance of this project. This was more that double the 16 test days that were required in the original work statement. The extra tests were made possible by cost saving innovations that were made in the operation of the combustor test facility and in additional investment of Coal Tech resources in the test effort. The original project plan called for two groups of tests. The first group of tests involved the injection of calcium sulfate particles in the form of gypsum or plaster of Paris with the coal into the 20 MMBtu/hour-combustor. The second group of tests consisted of the entire two-step process, in which lime or limestone is co-injected with coal and reacts with the sulfur gas released during combustion to form calcium sulfate particles that impact and dissolve in the slag layer. Since this sulfur capture process has been validated in numerous prior tests in this combustor, the primary effort in the present project was on achieving the high slag flow rates needed to retain the sulfur in the slag.

  12. Fast Ignition and Stable Combustion of Coarse Coal Particles in a Nonslagging Cyclone Combustor

    Institute of Scientific and Technical Information of China (English)

    BiaoZhou; X.L.Wang; 等

    1995-01-01

    A combustion set-up of an innovative nonalagging cyclone combustor called “Spouting-Cyclone Combustor(SCC)”,,with two-stage combustion,organized in orthogonal vortex flows,was established and the experimental studies on the fast ignition and stable combustion of coarse coal particles in this combustor were carried out.The flame temperature versus ignition time and the practical fast ignition the temperature fields in SCC were obtained.These results whow that it is possible to obtain highly efficient and clean combustion of unground coal particles by using this technology.

  13. Coal Combustion Science quarterly progress report, April--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. (ed.); Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    This document provides a quarterly status report of the Coal Combustion Science Program that is being conducted at the Combustion, Research Facility, Sandia National Laboratories, Livermore, California. Coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 56 refs., 25 figs., 13 tabs.

  14. Co-combustion of agricultural residues with coal in a fluidized bed combustor.

    Science.gov (United States)

    Ghani, W A W A K; Alias, A B; Savory, R M; Cliffe, K R

    2009-02-01

    Power generation from biomass is an attractive technology that utilizes agricultural residual waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk and palm kernel) were co-fired with coal in a 0.15m diameter and 2.3m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those for pure coal combustion. Co-combustion of a mixture of biomass with coal in a fluidized bed combustor designed for coal combustion increased combustion efficiency up to 20% depending upon excess air levels. Observed carbon monoxide levels fluctuated between 200 and 900 ppm with the addition of coal. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimal modifications to existing coal-fired boilers.

  15. Quarterly coal report July--September 1995, February 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-16

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for July through September 1995 and aggregated quarterly historical data for 1987 through the second quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  16. Coal liquefaction. Quarterly report, July-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The status of coal liquefaction pilot plants supported by US DOE is reviewed under the following headings: company involved, location, contract, funding, process name, process description, flowsheet, history and progress during the July-September 1979 quarter. Supporting projects such as test facilities, refining and upgrading coal liquids, catalyst development, and gasification of residues from coal gasification plants are discussed similarly. (LTN)

  17. Characterization and supply of coal based fuels. Quarterly report, August 1, 1987--October 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements; Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is discussed.

  18. Cooperative research program in coal liquefaction. Quarterly report, August 1, 1991--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1991-12-31

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  19. Cooperative research program in coal liquefaction. Quarterly report, August 1, 1991--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1991-12-31

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  20. Coal gasification. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association, is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. A number of the processes for converting coal to high Btu and to low Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  1. Two-phase flow in a swirling circulating fluidized bed (SCFB) coal combustor

    Energy Technology Data Exchange (ETDEWEB)

    Ilias, S.; Govind, R. (Cincinnati Univ., OH (USA). Dept. of Chemical and Nuclear Engineering)

    1988-01-01

    Coal combustors are difficult to model accurately due to their inherent complexities of coal devolatization, char combustion and volatile combustion with simultaneous momentum, heat and mass transfer effects. A fluidized bed which takes the advantages of tangential injection of secondary air, termed as Swirling Circulating Fluidized Bed is being developed at the University of Cincinnati. Preliminary experimental studies on coal combustion using the pilot plant and hydrodynamics using a cold model have been conducted. The system has also been simulated. Results of these studies are presented in this paper. Results on three dimensional behavior of the fluid-particle system in the SCFB are presented.

  2. Coal demonstration plants. Quarterly report, July-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The status of two coal liquefaction demonstration plants and of four coal gasification demonstration plants is reviewed under the following headings: company involved, contract number, funding, process name, process description, flowsheet, schedule, history and progress during the July-September quarter, 1979. Supporting projects in coal feeding systems, valves, grinding equipment, instrumentation, process control and water treatment are discussed in a similar way. Conceptual design work on commercial plants for coal to methanol and for a HYGAS high BTU gas plant were continued. (LTN)

  3. Coal combustion science. Quarterly progress report, July--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.; Baxter, L.L.; Davis, K.A.; Hurt, R.H.; Yang, N.Y.C.

    1995-09-01

    This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories, Livermore, California. The information reported is for the period July-September 1994. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project.

  4. Evaluation of the Impact of Chlorine on Mercury Oxidation in a Pilot-Scale Coal Combustor--The Effect of Coal Blending

    Science.gov (United States)

    A study has been undertaken to investigate the effect of blending PRB coal with an Eastern bituminous coal on the speciation of Hg across an SCR catalyst. In this project, a pilot-scale (1.2 MWt) coal combustor equipped with an SCR reactor for NOx control was used for evaluating ...

  5. CO-COMBUSTION OF REFUSE DERIVED FUEL WITH COAL IN A FLUIDISED BED COMBUSTOR

    Directory of Open Access Journals (Sweden)

    W. A. WAN AB KARIM GHANI

    2009-03-01

    Full Text Available Power generation from biomass is an attractive technology which utilizes municipal solid waste-based refused derived fuel. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from refuse derived fuel was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those from pure coal combustion. This study proved that the blending effect had increased the carbon combustion efficiency up to 12% as compared to single MSW-based RDF. Carbon monoxide levels fluctuated between 200-1600 ppm were observed when coal is added. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimum modification of existing coal-fired boilers.

  6. The Mechanisms of Flame Stabilization and Low NOx Emission in an Eccentric Jet Pulverized Coal Combustor

    Institute of Scientific and Technical Information of China (English)

    SunWenchao; SunYezhu; 等

    1992-01-01

    The mechanisms of flame stabilization and low NOx emission features of an accentric jet pulverzed coal combustor were studied through numerical modelling and experimental investigation.The results show that the formation of the unique flowfield structure is closely related to the interaction among combustor configuration.the primary jet and the control Jet.and that certain rules should be follwed in orber to obtain the optimum condition for flame stabilization.The distributions of temperature and concentration of NO,O2,CO and CO2 inside the combustor were experimentally measured.The effects of strustural and operational parameters on combustion and NO formation were studied.It was found that reduction of primary air,suitable use of control jet and reasonable uptilt angle of the primary jet all contributed to the reduction of NOx at the combustor exit.A new hypothesis,that reasonable separation of oxygen and fuel within the fuel-rich zone is beneficial to further reduction of NOx emission,is given,The study showed that good compatibility existed between the capability of flame stabilization and low NOX emission for this type of combustor.

  7. Investigation of swirling flow mixing for application in an MHD pulverized coal combustor using isothermal modeling

    Energy Technology Data Exchange (ETDEWEB)

    Power, W. H.

    1980-05-01

    The purpose of this study was to investigate combustor reactant mixing with swirling oxidizer flow. The combustor configuration that was considered was designed to simulate a 4 lbm/sec mas flow pulverized coal combustor being tested in The University of Tennessee Space Institute MHD Facility. A one-fourth dimensionally scaled combustor model was developed for isothermal flow testing. A comparison was made of cold flow tests using 3 swirler designs with a base case oxidizer injector design of perforated plated which demonstrated acceptable performance in the 4 lbm/sec MHD combustor. The three swirlers that were evaluated were designed to allow a wide range of swirl intensity to be investigated. The design criterion of the swirler was the swirl number which has been related to swirler geometry. The results of the study showed that the swirlers that were tested fell short of the mixing characteristics displayed with the perforated plate base case oxidizer injector. Test data obtained with the cold flow model established that the actual swirl numbers of two of the swirlers were much lower than the design swirl numbers. Recirculation zones were defined for all configurations that were tested, and a comparison of velocity profiles was made for the configurations.

  8. NOx results from two combustors tested on medium BTU coal gas

    Science.gov (United States)

    Sherlock, T. P.; Carl, D. E.; Vermes, G.; Schwab, J.; Notardonato, J. J.

    1982-01-01

    The results of tests of two combustor configurations using coal gas from a 25 ton/day fluidized bed coal gasifier are reported. The trials were run with a ceramic-lined, staged rich/lean burner and an integral, all metal multiannular swirl burner (MASB) using a range of temperatures and pressures representative of industrial turbine inlet conditions. A lean mixture was examined at 104, 197, and 254 Btu/Scf, yielding NO(x) emissions of 5, 20, and 70 ppmv, respectively. The MASB was employed only with a gas rated at 220-270 Btu/Scf, producing 80 ppmv NO(x) at rated engine conditions. The results are concluded to be transferrable to current machines. Further tests on the effects of gas composition, the scaling of combustors to utility size, and the development of improved wall cooling techniques and variable geometry are indicated.

  9. Coal liquefaction. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    Current ERDA work in coal liquefaction is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. Coal liquefaction can now be achieved under more moderate processing conditions and more rapidly than was the case in the 1930's. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquid fuels also have the potential for use as chemical feedstocks. To determine the most efficient means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Nineteen projects under development are described and progress for each in the quarter is detailed briefly. (LTN)

  10. Combustion of coal gas fuels in a staged combustor

    Science.gov (United States)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  11. Coal combustion science quarterly progress report, October--December 1992. Task 1, Coal char combustion [and] Task 2, Fate of mineral matter

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.] [Sandia National Labs., Livermore, CA (United States); Hurt, R.H.; Baxter, L.L. [Sandia National Labs., Albuquerque, NM (United States)

    1993-06-01

    In the Coal Combustion Laboratory (CCL) this quarter, controlled laboratory experiments were carried out to better understand the late stages of coal combustion and its relation to unburned carbon levels in fly ash. Optical in situ measurements were made during char combustion at high carbon conversions and the optical data were related to particle morphologies revealed by optical microscopy on samples extracted under the same conditions. Results of this work are reported in detail below. In the data presented below, we compare the fraction of alkali metal loss to that of the alkaline earth metals as a function of coal rank to draw conclusions about the mechanism of release for the latter. Figure 2.1 illustrates the fractional release of the major alkali and alkaline earth metals (Na, K, Ca, Mg) as a function of coal rank for a series of coals and for several coal blends. All data are derived from combustion experiments in Sandia`s Multifuel Combustor (MFC) and represent the average of three to eight experiments under conditions where the mass loss on a dry, ash-free (daf) basis exceeds 95 %. There are no missing data in the figure. The several coals with no indicated result exhibited no mass loss of the alkali or alkaline earth metals in our experiments. There is a clear rank dependence indicated by the data in Fig. 2.1, reflecting the mode of occurrence of the material in the coal.

  12. Coal gasification. Quarterly report, July-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The status of 18 coal gasification pilot plants or supporting projects supported by US DOE is reviewed under the following headings: company involved, location, contract number, funding, gasification process, history, process description, flowsheet and progress in the July-September 1979 quarter. (LTN)

  13. Coal desulfurization in a rotary kiln combustor. Final report, March 15, 1990--July 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  14. Coal gasification. Quarterly report, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-05-01

    A number of the processes for converting coal to gas supported by US DOE have reached the pilot plant stage. Laboratory research is also continuing in order to develop data for verifying the feasibility of the specific process and for supporting the operation of the plant. Responsibility for designing, constructing, and operating these pilot plants is given. The most successful test to date was completed in the pilot plant of the BI-GAS Process. The HYGAS Process pilot plant continued testing with Illinois bituminous coal to acquire data necessary to optimize the design of a commercial demonstration plant using the HYGAS process. The Synthane Process pilot plant continued studies of Illinois No. 6 coal. Other processes discussed are: Agglomerating Burner Process, Liquid Phase Methanation Process, Molten Salt Gasification Process, Advanced Coal Gasification System, and Lo-Btu Gasification of Coal for Electric Power Generation. Each project is described briefly with funding, history, and progress during the quarter. (LTN)

  15. Coal liquefaction. Quarterly report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    ERDA's program for the conversion of coal to liquid fuels is aimed at improved process configurations for both catalytic and noncatalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids also have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Responsibility for the design, construction, and operation of these facilities is given and progress in the quarter is summarized. Several supporting or complementary projects are described similarly. (LTN)

  16. Quarterly coal report, April 1996--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This report provides information about U.S. coal production, distribution; exports, imports, prices, consumption, and stocks. Data on coke production is also provided. This report presents data for April 1996 thru June 1996.

  17. Coal liquefaction. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The United States has more energy available in coal than in petroleum, natural gas, oil shale, and tar sands combined. Nationwide energy shortages, together with the availability of abundant coal reserves, make commercial production of synthetic fuels from coal vital to the Nation's total supply of clean energy. In response to this need, the Office of Fossil Energy of the Energy Research and Development Administration (ERDA) is conducting a research and development program to provide technology that will permit rapid commercialization of processes for converting coal to synthetic liquid and gaseous fuels and for improved direct combustion of coal. These fuels must be storable and suitable for power generation, transportation, and residential and industrial uses. ERDA's program for the conversion of coal to liquid fuels was begun by two of ERDA's predecessor agencies: Office of Coal Research (OCR) in 1962, and Bureau of Mines, U.S. Department of the Interior, in the 1930's. Current work in coal liquefaction is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. Coal liquefaction can now be achieved under more moderate processing conditions and more rapidly than was the case in the 1930's. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquid fuels also have the potential for use as chemical feedstocks. To determine the most efficient means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Nineteen projects under development are described and progress for each in the quarter is detailed briefly

  18. Coal combustion science. Quarterly progress report, April 1993--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.

    1994-05-01

    This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories. The information reported is for Apr-Jun 1993. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the PETC Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. The objective of the kinetics and mechanisms of pulverized coal char combustion task is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: kinetics of heterogeneous fuel particle populations; char combustion kinetics at high carbon conversion; the role of particle structure and the char formation process in combustion and; unification of the Sandia char combustion data base. This data base on the high temperature reactivities of chars from strategic US coals will permit identification of important fuel-specific trends and development of predictive capabilities for advanced coal combustion systems. The objective of the fate of inorganic material during coal combustion task is the establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of inorganic material during coal combustion as a function of coal type, particle size and temperature, the initial forms and distribution of inorganic species in the unreacted coal, and the local gas temperature and composition. In addition, optical diagnostic capabilities are being developed for in situ, real-time detection of inorganic vapor species and surface species during ash deposition. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  19. Comprehensive Mathematical Model for Coal Combustion in a Circulating Fluidized Bed Combustor

    Institute of Scientific and Technical Information of China (English)

    金晓钟; 吕俊复; 杨海瑞; 刘青; 岳光溪; 冯俊凯

    2001-01-01

    Char combustion is on a special reducing condition in the dense bed of a circulating fluidized bedcombustor. Experimental findings were used to develop a comprehensive mathematical model to simulate thehydrodynamic and combustion processes in a circulating fluidized bed combustor. In the model, gas-solidinteraction was used to account for the mass transfer between the bubble phase and the emulsion phase in thedense bed, which contributes to the reducing atmosphere in the dense bed. A core-annular structure wasassumed in the dilute area rather than a one-dimensional model. The submodels were combined to build thecomprehensive model to analyze the combustion in a circulating fluidized bed combustor and the effect ofoperating parameters on the coal combustion. The model predictions agree well with experimental results.

  20. Coal gasification. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    High-Btu natural gas has a heating value of 950 to 1,000 Btu per standard cubic foot, is composed essentially of methane, and contains virtually no sulfur, carbon monoxide, or free hydrogen. The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. A number of the processes for converting coal to high Btu and to low Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  1. Coal gasification. Quarterly report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association, is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. There are, for example, important differences in reactor configurations and methods of supplying heat for gasification. Moreover, because these processes require high temperatures and some require high pressures, temperature-resistant alloys and new pressure vessels must be developed to obtain reliable performance. A number of the processes for converting coal to high-Btu and to low-Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  2. Combustion characteristics of pulverized coal and air/gas premixed flame in a double swirl combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, M.M. [Ain Shams University, Cairo (Egypt). Faculty of Education

    2009-07-01

    An experimental work was performed to investigate the co-firing of pulverized coal and premixed gas/air streams in a double swirl combustor. The results showed that the NOx emissions are affected by the relative rates of thermal NOx formation and destruction via the pyrolysis of the fuel-N species in high temperature fuel-rich zones. Various burner designs were tested in order to vary the temperature history and the residence time across both coal and gas flames inside the furnace. It was found that by injecting the coal with a gas/air mixture as a combined central jet surrounded by a swirled air stream, a double flame envelope develops with high temperature fuel-rich conditions in between the two reaction zones such that the pyrolysis reactions to N{sub 2} are accelerated. A further reduction in the minimum NOx emissions, as well as in the minimum CO concentrations, was reported for the case where the coal particles are fed with the gas/air mixture in the region between the two swirled air streams. On the other hand, allocating the gas/air mixture around the swirled air-coal combustion zone provides an earlier contact with air and retards the NOx reduction mechanism in such a way that the elevated temperatures around the coal particles allow higher overall NOx emissions. The downstream impingement of opposing air jets was found more efficient than the impinging of particle non-laden premixed flames for effective NOx reduction. In both cases, there is an upstream flow from the stagnation region to the coal primary combustion region, but with the case of air impingement, the hot fuel-rich zone develops earlier. The optimum configuration was found by impinging all jets of air and coal-gas/air mixtures that pronounced minimum NOx and CO concentrations of 310 and 480ppm, respectively.

  3. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

  4. Coal liquefaction. Quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    DOE's program for the conversion of coal to liquid fuels was begun by two of DOE's predecessor agencies: Office of Coal Research (OCR) in 1962, and Bureau of Mines, US Department of the Interior, in the 1930's. Current work is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, especially boiler fuel, distillate fuel oil, and gasoline, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is supporting the development of several conversion processes that are currently in the pilot plant stage. DOE, together with the Electric Power Research Institue, has contracted with fourteen projects are described brieflly: funding, description, status, history, and progress in the current quarter. (LTN)

  5. Coal demonstration plants. Quarterly report, January-March 1979. [US DOE-supported

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Progress in US DOE-supported demonstration plants for the gasification and liquefaction of coal is reported: company, contract number, process description and flowsheet, history and progress in the current quarter. Related projects involve coal feeders, lock hoppers, values, etc. for feeding coal into high pressure systems, coal grinding equipment and measuring and process control instrumentation. (LTN)

  6. Sixteenth Quarterly Report Regulation of Coal Polymer Degradation by Fungi

    Energy Technology Data Exchange (ETDEWEB)

    John A. Bumpus

    1998-07-31

    Three phenomena which concern coal solubilization and depolymerization were studied during this reporting period. Previous investigations have shown that lignin peroxidases mediate the oxidation of soluble coal macromolecule. Because it appears to be a substrate, soluble coal macromolecule is also an inhibitor of veratryl alcohol oxidation, a reaction that is mediated by these enzymes. The mechanism of inhibition is complex in that oxidation (as assayed by decolorization) of soluble coal macromolecule requires the presence of veratryl alcohol and veratryl alcohol oxidation occurs only after a substantial lag period during which the soluble coal macromolecule is oxidized. In a previous quarterly report we proposed a reaction mechanism by which this may occur. During the present reporting period we showed that our proposed reaction mechanism is consistent with classical enzyme kinetic theory describing enzyme activity in the presence of a potent inhibitor (i.e., an inhibitor with a very low KI ). The oxidative decolorization and depolymerization of soluble coal macromolecule was also studied. Because wood rotting fungi produce hydrogen peroxide via a variety of reactions, we studied the effect of hydrogen peroxide on soluble coal macromolecule decolorization and depolymerization. Results showed that substantial decolorization occurred only at hydrogen peroxide concentrations that are clearly non-physiological (i.e., 50 mM or greater). It was noted, however, that when grown on solid lignocellulosic substrates, wood rotting fungi, overtime, cumulatively could produce amounts of hydrogen peroxide that might cause significant oxidative degradation of soluble coal macromolecule. Thirdly, we have shown that during oxalate mediated solubilization of low rank coal, a pH increase is observed. During this reporting period we have shown that the pH of solutions containing only sodium oxalate also undergo an increase in pH, but to a lesser extent than that observed in mixtures

  7. Development of pressurized coal partial combustor; Kaatsu sekitan bubun nenshoro gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. [Center for Coal Utilization, Japan, Tokyo (Japan); Kawamura, K. [Kawasaki Heavy Industries, Ltd., Kobe (Japan); Tanaka, T. [Chubu Electric Power Co. Inc., Nagoya (Japan); Muramatsu, T. [Electric Power Development Co. Ltd., Tokyo (Japan)

    1996-09-01

    The coal partial combustor (CPC) uses a combustion technology with which coal is burned at elevated temperatures and under revolution, the constituents are captured on the furnace wall and removed as molten slag from the furnace. This is a combustion technology to reduce load of ash on subsequent devices. To generate a molten condition, it is necessary to raise the combustion temperature as high as possible (to about 1600 degC in the furnace), but this is effective for a gas turbine composite power generation system. An efficiency of higher than 45% may be expected at the power transmission terminal. As an operation on subsidy from the Agency of Natural Resources and Energy, the normal-pressure CPC technology has already been established, and a research on pressurized CPC is being progressed since fiscal 1991. The research is in progress with a schedule that elemental tests for 7 tons per day production are conducted until fiscal 1995, a 25 tons per day pilot plant will be completed by November 1997, and verification tests for long-term continuous operation will be implemented until 1998. The 7 tons per day elemental tests have identified gasification performance and slag extraction performance using five types of coal having different properties. 7 refs., 10 figs., 4 tabs.

  8. Development of a gas turbine combustor strategy - for low volatile coals

    Energy Technology Data Exchange (ETDEWEB)

    Kelsall, G.J.; Mina, T.I. [Alstom Power Technology Centre, Leicester (United Kingdom)

    2004-11-01

    The objective of this project was to compare the current diffusion flame combustion system design against a lean premix combustion system (based on ALSTOM G30 design) and a catalytic combustion design approach. The G30 based combustion system has been designed as apart of a separate DTI Foresight Challenge project (GR/K77235). The three approaches were compared with regard to ease of application, operability, lowest total emissions and commonality with current ALSTOM combustor design. The overall aim was to provide a recommendation on the way forward for the commercial exploitation of the LCV gas fuel market, particularly for biomass and underground coal applications. To achieve this objective, the project has been divided into a number of activities as follows: 1) hardware design and manufacture; 2) LCV combustion testing; 3) turbulent diffusion combustion methods assessment; 4) catalytic combustion methods assessment; 5) LCV combustion technology review; and 6) project management and reporting. 66 refs., 110 figs., 16 tabs.

  9. Advanced combustor design concepts to control NO{sub x} and air toxics. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Pershing, D.W.; Lighty, J.; Veranth, J. [Utah Univ., Salt Lake City, UT (United States). Coll. of Engineering; Sarofim, A.; Goel, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1995-04-28

    The University of Utah, Massachusetts Institute of Technology (MIT), Reaction Engineering International (REI) and ABB/Combustion Engineering have joined together in this research proposal to develop fundamental understanding regarding the impact of fuel and combustion changes on ignition stability and flame characteristics because these critically affect: NO{sub x} emissions, carbon burnout, and emissions of air toxics; existing laboratory and bench scale facilities are being used to generate critical missing data which will be used to improve the NO{sub x} and carbon burnout submodels in comprehensive combustion simulation tools currently being used by industrial boiler manufacturers. To ensure effective and timely transfer of This technology, a major manufacturer (ABB) and a combustion model supplier (REI) have been included as part of the team from the early conception of the proposal. ABB/Combustion Engineering is providing needed fundamental data on the extent of volatile evolution from commercial coals as well as background information on current design needs in industrial practice. MIT is responsible for the development of an improved char nitrogen oxidation model which will ultimately be incorporated into an enhanced NO{sup x} submodel. Reaction Engineering International is providing the lead engineering staff for the experimental studies and an overall industrial focus for the work based on their use of the combustion simulation tools for a wide variety of industries. The University of Utah is conducting bench scale experimentation to (1) investigate alternative methods for enhancing flame stability to reduce NO{sub x} emissions and (2) characterize air toxic emissions under ultralow NO{sub x} conditions. Accomplishments for this quarter are presented to the solid sampling system and char nitrogen modeling.

  10. Coal demonstration plants. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The objective of DOE's demonstration plant program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Under the DOE program, contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50% from industry and 50% from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Six of these demonstration plant projects are described and progress in the quarter is summarized. Several support and complementary projects are described (fuel feeding system development, performance testing and comparative evaluation, engineering support, coal grinding equipment development and a critical components test facility). (LTN)

  11. Coal demonstration plants. Quarterly report, January--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The Department of Energy's demonstration plant program was started in 1974 by one of the Department of Energy's predecessor agencies, the Office of Coal Research, US Department of the Interior. The objective of the program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Under the DOE program, contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50% from industry and 50% from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Seventeen projects in this program are discussed briefly with identification of the company involved, funding, flow sheets, history and progress during the quarter. (LTN)

  12. Development of a pulsed coal combustor fired with CWM (coal-water mixture): Phase 3, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, M.N.; Durai-Swamy, K.

    1986-11-01

    This report presents the results of an R and D program aimed at developing a new burner technology for coal-water mixture (CWM) fuels to enable the substitution of these new fuels in utility and industrial boilers and process heaters currently firing oil and gas. The application of pulse combustion to CWM fuels is chosen to alleviate many of the physical plant and environmental constraints presently associated with the direct use of these fuels in equipment designed for oil and gas firing. Pulse combustion has been shown to be capable of high-intensity burning of coal for acceptably complete combustion within relatively small equipment volumes. It also has the inherent capability to agglomerate ash particles, thus rendering ash more easily separable from the combustion gas prior to its entrance into the convective section of the boiler or heater, thereby reducing ash buildup and pluggage. Pulse combustion is also well-suited to staged combustion for NO/sub x/ control and has excellent potential for enhanced in-furnace SO/sub 2/ removal due to the enhanced levels of mass transfer brought about by the vigorous flow oscillations. The primary objective of the Phase 2 work was to develop a detailed program for laboratory development and evaluation of the pulse CWM combustor and system design concepts. 112 refs., 40 figs., 94 tabs.

  13. Experimental studies on Gas—Particle Flows and Coal Combustion in New Generation Spouting—Cyclone COmbustor

    Institute of Scientific and Technical Information of China (English)

    D.X.Wang; Z.H.Ma; 等

    1996-01-01

    Besed on previous studies,an improved non-slagging spouting-cyclone combustor with two-stage combustion,organized in perpendicularly vortexing flows,is developed for clean coal combustion applied is small-size industrial furnaces and domestic furnaces.The isothermal model test and the combustion test give some encouraging results.In this study,further improvement of the gemoetrical configuration was made,a visualization method and a LDA system were used to study the gas-particle flow behavior and the temperature and gas composition in combustion experiments were measured by using thermocouples and a COSA-6000-CD Portable Stack Analyzer.Stronger recirculation in the sopouting zone and the strongly swirling efect in the cyclone zone were obtained in the improved combustor.The combustion temperature distribution is uniform.These results indicate that the improved geometrical configuration of the combustor is favorable to the stabilization of coal flame and the intensification of coal combustion.and is provides a basis for the practical application of this technique.

  14. Coal demonstration plants. Quarterly report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    The objective of DOE's demonstration plant program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50% from industry and 50% from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Twenty-two projects involving demonstration plants or support projects for such plants are reviewed, including a summary for each of progress in the quarter. (LTN)

  15. Investigation of operational parameters for an industrial CFB combustor of coal, biomass and sludge

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The combustion of coal and/or biomass (sludge, wood waste, RDF, etc.) in a circulating fluidized bed has been a commercial topper for over 20 years, and references to principles and applications are numerous and widespread although few data are presented concerning the operation of large scale CFB-units. The authors studied the CFB-combustion at UPM-Kymmene (Ayr), a major paper mill relying for its steam production upon the combustion of coal (80-85%), wood bark (5-10%) and wastewater treatment sludge (5-10%). The maximum capacity of the CFB is 58 MWth.A complete diagnostic of the operation was made, and additional tests were performed to assess the operating mode. The plant schematics,relevant dimensions and process data are given. To assess the operation of the UPM-CFB, it is important to review essential design parameters and principles of CFB combustors, which will be discussed in detail to include required data, heat balance and flowrates, operating versus transport velocity, kinetics and conversion (including the possible effect of the Bouduard reaction if carbon is present).Since the residence time in the riser and the cyclone efficiency determine the burnout of circulating fuel-particles, the UPM-CFB was subjected to a stimulus response technique using nickel oxide as tracer. Results illustrate the efficiency of the cyclone separation and the number of recycle loops for particles of a given size. Results will also be used to assess the cyclone operation and efficiency and to comment upon expected and measured carbon conversion.

  16. Low-rank coal research. Quarterly report, January--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

  17. Conversion of Fuel-N to N2O and NOx during Coal Combustion in Combustors of Different Scale

    Institute of Scientific and Technical Information of China (English)

    周昊; 黄燕; 莫桂源; 廖子昱; 岑可法

    2013-01-01

    With focus on investigating the effect of combustor scale on the conversion of fuel-N to NOx and N2O, experiments are carried out in three combustors, including single coal particle combustion test rig, laboratory scale circulating fluidized-bed boiler (CFB) and full scale CFB in this work. For single coal particle combustion, the ma-jority of fuel-N (65%-82%) is released as NOx, while only a little (less than 8%) fuel-N yields N2O. But in labora-tory scale CFB, the conversion of fuel-N to N2O is increases, but the conversion of fuel-N to NOx is quite less than that of single coal particle combustion. This is because much char in CFB can promote the NOx reduction by in-creasing N2O formation. In full scale CFB, both of the conversion of fuel-N to NOx and the conversion of fuel-N to N2O are smaller than laboratory scale CFB.

  18. Coal liquefaction. Quarterly report, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-05-01

    Progress on seventeen projects related to coal liquefaction or the upgrading of coal liquids and supported by US DOE is reported with emphasis on funding, brief process description history and current progress. (LTN)

  19. Energy Information Administration quarterly coal report, October--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-21

    The United States produced just over 1 billion short tons of coal in 1992, 0.4 percent more than in 1991. Most of the 4-million-short-ton increase in coal production occurred west of the Mississippi River, where a record level of 408 million short tons of coal was produced. The amount of coal received by domestic consumers in 1992 totaled 887 million short tons. This was 7 million short tons more than in 1991, primarily due to increased coal demand from electric utilities. The average price of delivered coal to each sector declined by about 2 percent. Coal consumption in 1992 was 893 million short tons, only 1 percent higher than in 1991, due primarily to a 1-percent increase in consumption at electric utility plants. Consumer coal stocks at the end of 1992 were 163 million short tons, a decrease of 3 percent from the level at the end of 1991, and the lowest year-end level since 1989. US coal exports fell 6 percent from the 1991 level to 103 million short tons in 1992. Less coal was exported to markets in Europe, Asia, and South America, but coal exports to Canada increased 4 million short tons.

  20. Study on the economic mining method for the close quarter coal seams with thin rock sheet

    Institute of Scientific and Technical Information of China (English)

    GOU Pan-feng; CHEN Zhao-qiang; YUN Xiao-you

    2001-01-01

    The paper presents the mining method for the close quarter coal seams with thin rock sheet, that is mining the low coal seam, recovering the top coal seam aft er putting down the roof rock of the low coal seam. Practice has proved that in recovering the top coal outside the face width after the rock between seams fall s naturally or is demolished, the technology is simple, easy to operate and doe s not make a great demand for technical equipment. In the process of recovering t he top coal, the low seam support could not be affected seriously, and two seams mining could be coordinated. Compared with the individual mining method, this m ining method can produce a better economic benefit.

  1. Study on the economic mining method for the close quarter coal seams with thin rock sheet

    Institute of Scientific and Technical Information of China (English)

    勾攀峰; 陈兆强; 员小有

    2001-01-01

    The paper presents the mining method for the close quarter coal seams with thin rock sheet, that is mining the low coal seam, recovering the top coal seam after putting down the roof rock of the low coal seam. Practice has proved that in recovering the top coal outside the face width after the rock between seams falls naturally or is demolished, the technology is simple, easy to operate and does not make a great demand for technical equipment. In the process of recovering the top coal, the low seam support could not be affected seriously, and two seams mining could be coordinated. Compared with the individual mining method, this mining method can produce a better economic benefit.

  2. Exploratory research on novel coal liquefaction concept. [Quarterly report], January 1--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Burke, F.P.; Brandes, S.D.; Winschel, R.A. [CONSOL, Inc., Library, PA (United States). Research and Development Dept.; Derbyshire, F.J.; Kimber, G.; Anderson, R.K.; Carter, S.D. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Peluso, M. [LDP Associates, Hamilton Square, NJ (United States)

    1996-05-09

    Work this quarter concentrated on evaluating the effects of low- severity, first stage reaction conditions on coal conversions, exploring the effect of solvent-to-coal ratio on filtration performance, exploring the effects of pretreatment on dispersed catalysts for hydrotreating tests, and the installation and calibration of a simulated distillation instrument. Additional work included continued review of the technical and patent literature and expansion of the annotated bibliography.

  3. Coal gasification. Quarterly report, January-March 1979. [US DOE supported

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Progress in DOE-supported coal gasification pilot plant projects is reported: company, location, contract number, funding, process description, history and progress in the current quarter. Two support projects are discussed: preparation of a technical data book and mathematical modeling of gasification reactors. (LTN)

  4. Low NO sub x heavy fuel combustor concept program. Phase 1A: Combustion technology generation coal gas fuels

    Science.gov (United States)

    Sherlock, T. P.

    1982-01-01

    Combustion tests of two scaled burners using actual coal gas from a 25 ton/day fluidized bed coal gasifier are described. The two combustor configurations studied were a ceramic lined, staged rich/lean burner and an integral, all metal multiannual swirl burner (MASB). The tests were conducted over a range of temperature and pressures representative of current industrial combustion turbine inlet conditions. Tests on the rich lean burner were conducted at three levels of product gas heating values: 104, 197 and 254 btu/scf. Corresponding levels of NOx emissions were 5, 20 and 70 ppmv. Nitrogen was added to the fuel in the form of ammonia, and conversion efficiencies of fuel nitrogen to NOx were on the order of 4 percent to 12 percent, which is somewhat lower than the 14 percent to 18 percent conversion efficiency when src-2 liquid fuel was used. The MASB was tested only on medium btu gas (220 to 270 btu/scf), and produced approximately 80 ppmv NOx at rated engine conditions. Both burners operated similarly on actual coal gas and erbs fuel, and all heating values tested can be successfully burned in current machines.

  5. In Developping a Bench-Scale Circulating Fluidized Bed Combustor to Burn High Ash Brazilian Coal-Dolomites Mixtures

    Science.gov (United States)

    Ramírez Behainne, Jhon Jairo; Hory, Rogério Ishikawa; Goldstein, Leonardo; Bernárdez Pécora, Araí Augusta

    This work considers some of the questions in burning high ash Brazilian coal-dolomite mixtures in a bench-scale circulating fluidized bed combustor (CFBC). Experimental tests were performed with the CE4500 coal from Santa Catarina State, in southern Brazil, with a Sauter mean diameter d p =43 μm. The coal particles were mixed with dolomite particles of d p = 111 μm and this fuel mixture was fed into the circulating fluidized reactor, previously loaded with quartz sand particles of d p =353 μm. This inert material was previously heated by the combustion of liquefied petroleum gas up to the ignition temperature of the fuel mixture. The CFBC unit has a 100mm internal diameter riser, 4.0m high, as well as a 62.8mm internal diameter downcomer. The loop has a cyclone, a sampling valve to collect particles and a 62.8mm internal diameter L-valve to recirculate the particles in the loop. A screw feeder with a rotation control system was used to feed the fuel mixture to the reactor. The operational conditions were monitored by pressure taps and thermocouples installed along the loop. A data acquisition system showed the main operational conditions to control. Experimental tests performed put in evidence the problems found during bed operation, with special attention to the solids feed device, to the L-valve operation, to particle size, solids inventory, fluidized gas velocity, fuel mixture and recirculated solids feeding positions.

  6. Coal-fired high performance power generating system. Quarterly progress report, October 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This report covers work carried out under Task 3, Preliminary R and D, under contract DE-AC22-92PC91155, {open_quotes}Engineering Development of a Coal-Fired High Performance Power Generation System{close_quotes} between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of (1) > 47% thermal efficiency; (2) NO{sub x}, SO{sub x} and particulates {<=}25% NSPS; (3) cost {>=}65% of heat input; (4) all solid wastes benign. In our design consideration, we have tried to render all waste streams benign and if possible convert them to a commercial product. It appears that vitrified slag has commercial values. If the flyash is reinjected through the furnace, along with the dry bottom ash, then the amount of the less valuable solid waste stream (ash) can be minimized. A limitation on this procedure arises if it results in the buildup of toxic metal concentrations in either the slag, the flyash or other APCD components. We have assembled analytical tools to describe the progress of specific toxic metals in our system. The outline of the analytical procedure is presented in the first section of this report. The strengths and corrosion resistance of five candidate refractories have been studied in this quarter. Some of the results are presented and compared for selected preparation conditions (mixing, drying time and drying temperatures). A 100 hour pilot-scale stagging combustor test of the prototype radiant panel is being planned. Several potential refractory brick materials are under review and five will be selected for the first 100 hour test. The design of the prototype panel is presented along with some of the test requirements.

  7. Coal Combustion Science. Quarterly progress report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.; Baxter, L.L.; Davis, K.A.; Hurt, R.H.; Yang, N.Y.C.

    1996-02-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: Task 1--Kinetics and mechanisms of pulverized coal char combustion; and Task 2--deposit growth and property development in coal-fired furnaces. The objective of task 1 is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: (a) kinetics of heterogeneous fuel particle populations; (b) char combustion kinetics at high carbon conversion; (c) the role of particle structure and the char formation process in combustion and; (d) unification of the Sandia char combustion data base. The objectives of Task 2 are to provide a self-consistent database of simultaneously measured, time-resolved, ash deposit properties in well-controlled and well-defined environments and to provide analytical expressions that relate deposit composition and structure to deposit properties of immediate relevance to PETC`s Combustion 2000 program. The task include the development and use of diagnostics to monitor, in situ and in real time, deposit properties, including information on both the structure and composition of the deposits.

  8. Coal gasification. Quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    In DOE's program for the conversion of coal to gaseous fuels both high-and low-Btu gasification processes are being developed. High-Btu gas can be distributed economically to consumers in the same pipeline systems now used to carry natural gas. Low-Btu gas, the cheapest of the gaseous fuels produced from coal, can be used economically only on site, either for electric power generation or by industrial and petrochemical plants. High-Btu natural gas has a heating value of 950 to 1000 Btu per standard cubic foot, is composed essentially of methane, and contains virtually no sulfur, carbon monoxide, or free hydrogen. The conversion of coal to High-Btu gas requires a chemical and physical transformation of solid coal. Coals have widely differing chemical and physical properties, depending on where they are mined, and are difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, DOE, together with the American Gas Association (AGA), is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, each of the processes under development have unique characteristics. A number of the processes for converting coal to high-Btu gas have reached the pilot plant Low-Btu gas, with a heating value of up to 350 Btu per standard cubic foot, is an economical fuel for industrial use as well as for power generation in combined gas-steam turbine power cycles. Because different low-Btu gasification processes are optimum for converting different types of coal, and because of the need to provide commercially acceptable processes at the earliest possible date, DOE is sponsoring the concurrent development of several basic types of gasifiers (fixed-bed, fluidized-bed, and entrained-flow).

  9. Coal gasification. Quarterly report, October-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    DOE's program for the conversion of coal to gaseous fuels was started by two of its predecessor agencies: the Office of Coal Research (OCR) and ERDA. The US Bureau of Mines, Department of Interior, had previously done research in the 1930's. Both high- and low-Btu gasification processes are being developed. High-Btu gas can be distributed economically to consumers in the same pipeline systems now used to carry natural gas. Low-Btu gas, the cheapest of the gaseous fuels produced from coal, can be used economically only on site, either for electric power generation or by industrial and petrochemical plants. The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. Coals have widely differing chemical and physical properties depending on where they are mined, and are difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, DOE, together with the American Gas Association (AGA), is sponsoring the development of several conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, each of the processes under development have unique characteristics. There are, for example, important differences in reactor configurations and methods of supplying heat for gasification. Moreover, because these processes require high temperatures, because some require high pressures, and because all produce corrosive and chemically-active gases, resistant alloys and new pressure vessels must be developed to obtain reliable performance. A number of the processes for converting coal to high-Btu gas have reached the pilot plant stage. Laboratory research is also continuing in order to develop data for verifying the feasibility of each specific process and for supporting the operation of each plant. Responsibility for designing, constructing, and operating these pilot plants is contracted to individual companies. Each process is described briefly.

  10. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, October--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.

    1992-12-31

    Low severity coal liquefaction promoted by cyclic olefins offers a means of liquefying coal at low severity conditions. Lower temperature, 350{degrees}C, and lower hydrogen pressure, 500 psi, have been used to perform liquefaction reactions. The presence of the cyclic olefin, hexahydroanthracene, made a substantial difference in the conversion of Illinois No. 6 coal at these low severity conditions. The Researchperformed this quarter was a parametric evaluation of the effect of different parameters on the coal conversion and product distribution from coal. The effect of the parameters on product distribution from hexahydroanthracene was also determined. The work planned for next quarter includes combining the most effective parametric conditions for the low severity reactions and determining their effect. The second part ofthe research performed this quarter involved performing Fourier transform infrared (FTIR) spectroscopy using cyclic olefins. The objective of this study was to determine the feasibility of using FTIR and a heated cell to determine the reaction pathway that occurs in the hydrogen donation reactions from cyclic olefins. The progress made to date includes evaluating the FTIR spectra of cyclic olefins and their expected reaction products. This work is included in this progress report.

  11. MHD Coal Fired Flow Facility. Quarterly technical progress report, July-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Altstatt, M. C.; Attig, R. C.; Brosnan, D. A.

    1980-11-01

    Significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Energy Conversion Facility (ECF) are described. On Task 1, the first phase of the downstream quench system was completed. On Task 2, all three combustor sections were completed, hydrotested, ASME code stamped, and delivered to UTSI. The nozzle was also delivered. Fabrication of support stands and cooling water manifolds for the combustor and vitiation heater were completed, heat transfer and thermal stress analysis, along with design development, were conducted on the generator and radiant furnace and secondary combustor installation progressed as planned. Under Task 3 an Elemental Analyzer and Atomic Absorption Spectrophotometer/Graphite Furnace were received and installed, sites were prepared for two air monitoring stations, phytoplankton analysis began, and foliage and soil sampling was conducted using all study plots. Some 288 soil samples were combined to make 72 samples which were analyzed. Also, approval was granted to dispose of MHD flyash and slag at the Franklin County landfill. Task 4 effort consisted of completing all component test plans, and establishing the capability of displaying experimental data in graphical format. Under Task 7, a preliminary testing program for critical monitoring of the local current and voltage non-uniformities in the generator electrodes was outlined, electrode metal wear characteristics were documented, boron nitride/refrasil composite interelectrode sealing was improved, and several refractories for downstream MHD applications were evaluated with promising results.

  12. Development program to support industrial coal gasification. Quarterly report 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-15

    The Development Program to Support Industrial Coal Gasification is on schedule. The efforts have centered on collecting background information and data, planning, and getting the experimental program underway. The three principal objectives in Task I-A were accomplished. The technical literature was reviewed, the coals and binders to be employed were selected, and tests and testing equipment to be used in evaluating agglomerates were developed. The entire Erie Mining facility design was reviewed and a large portion of the fluidized-bed coal gasification plant design was completed. Much of the work in Task I will be experimental. Wafer-briquette and roll-briquette screening tests will be performed. In Task II, work on the fluidized-bed gasification plant design will be completed and work on a plant design involving entrained-flow gasifiers will be initiated.

  13. Coal gasification. Quarterly report, July-September 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    To develop the most suitable techniques for gasifying coal, DOE, together with the American Gas Association, is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, each of the processes under development has unique characteristics. There are, for example, important differences in reactor configurations and in methods of supplying heat for gasification. Moreover, because these processes require high temperatures, because some require high pressures, and because all produce corrosive and chemically-active gases, resistant alloys and new pressure vessels must be developed to obtain reliable performance. A number of processes for making high Btu gas and for making low Btu gas are described with the contractor identification, contract, site, funding, and current progress. Projects on mathematical modeling and preparation of a coal conversion systems technical data book are also described. (LTN)

  14. Coal demonstration plants. Quarterly report, July-September 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    The objective of the Department of Energy's demonstration plant program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Under the DOE program, contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50 percent from industry and 50 percent from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Two coal liquefaction and 5 coal gasification projects are described; these are mostly at an advanced design stage. Support projects for fuel feeding systems, values, instrumentation and process control, etc. are also described. (LTN)

  15. Valve development for coal gasification plants. Phase II. Monthly/quarterly technical program report, January--March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bellezza, D.

    1979-04-01

    The eleventh in a series of Quarterly Technical Progress Reports relating to the Valve Development for Coal Gasification Plants Program discusses engineering progress during the period of January to March 1979.

  16. The heterogeneous decomposition reactions of NO and N{sub 2}O in coal chars produced in a fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Boavida, D.; Gulyurtlu, I.; Cabrita, I. [INETI-ITE-DTC, Lisboa (Portugal); Lobo, L.S. [Univ. Nova de Lisboa (Portugal). Dept. Quimica

    1997-12-31

    In the present work, the effects of temperature and type of char on the heterogeneous reduction of both NO and N{sub 2}O on char surfaces were investigated using the TGA technique. The kinetic parameters for the decomposition in both NO and N{sub 2}O on the char surfaces was obtained and correlated with the previous results from the combustion of coals and of the same chars in a laboratorial fludized bed combustor. (orig.)

  17. Coal demonstration plants. Quarterly report, October-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The Department of Energy's demonstration plant program was started in 1974 by one of the Department of Energy's predecessor agencies: the Office of Coal Research, US Department of the Interior. The objective of the program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Under the DOE program, contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operating phases being co-funded, 50% from industry and 50% from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Individual demonstration plant contracts are described briefly.

  18. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 17, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1993-08-01

    Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1993, the following technical progress was made: Completed modeling calculations of coal mineral matter transformations, deposition behavior, and heat transfer impacts of six test fuels; and ran pilot-scale tests of Upper Freeport feed coal, microagglomerate product, and mulled product.

  19. Preliminary evaluation of resinite recovery from Illinois coal. [Quarterly] technical report, September 1--November 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

    1994-12-31

    Resinite is a naturally occurring substance found in coal and derived from original plant resins. It is ubiquitous in North American coals. It makes up one to four percent by volume of most Illinois coals. It has been commercially exploited in the western USA for use in adhesives, varnishes and thermal setting inks. The overall objective of this project is to compare the properties of the resinite contained in Illinois Basin coals to resinite being commercially exploited in the western United States, and to recover the resinite from Illinois coals by microbubble column floatation techniques. The significance of this study is that it has the potential to show the way to recover a valuable chemical, resinite, from coal using only physical processing techniques. The value of the resinite at $1.00/kg or $0.50/lb makes it about fifty times more valuable than steam coal. The removal of resinite from coal does not decrease the value of the remaining coal in any way. The unique aspects are that: (1) it is the first examination of the resinite recovery potential of Illinois coal, (2) it integrates the latest characterization techniques such as density Gradient centrifugation, microspectrofluorometry, and gas chromatography- mass spectrometry, and (3) it uses microbubble column flotation to determine the resinite recovery potential. During this quarter samples were obtained, information from both the databases of both the Illinois State Geological Survey (ISGS) and the Pennsylvania State University (PSU) was obtained and evaluated, and EBCSP samples from the Herrin No. 6, the Springfield No. 5 and the Colchester No. 2 seams were analyzed petrographically and the resinites in these samples were characterized by fluorescence spectral analysis.

  20. Characterization of air toxics from a laboratory coal-fired combustor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-03

    Emissions of hazardous air pollutants from coal combustion were studied in a laboratory-scale combustion facility, with emphasis on fine particles in three size ranges of less than 7.5 {mu}m diameter. Vapors were also measured. Substances under study included organic compounds, anions, elements, and radionuclides. Fly ash was generated by firing a bituminous coal in a combuster for 40 h at each of two coal feed rates. Flue gas was sampled under two conditions. Results for organic compounds, anions, and elements show a dependence on particle size consistent with published power plant data. Accumulation of material onto surface layers was inferred from differences in chemical composition between the plume simulating dilution sampler and hot flue samples. Extracts of organic particulate material were fractionated into different polarity fractions and analyzed by GC/MS. In Phase II, these laboratory results will be compared to emissions from a full-scale power plant burning the same coal.

  1. Coal demonstration plants. Quarterly report, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-05-01

    DOE's demonstration plant program's objective is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Under the DOE program, contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50 percent from industry and 50 percent from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Eighteen projects related to the program are described with emphasis on funding, planning, status, and progress. (LTN)

  2. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly report, April 1--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-12-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). Accomplishments during the quarter are described on the following tasks and subtasks: Development of near-term applications (engineering development and dewatering studies); Engineering development of selective agglomeration (bench-scale testing and process scale-up); PDU and advanced column flotation module (coal selection and procurement and advanced flotation topical report); Selective agglomeration module (module operation and clean coal production with Hiawatha, Taggart, and Indiana 7 coals); Disposition of the PDU; and Project final report. Plans for next quarter are discussed and agglomeration results of the three tested coals are presented.

  3. Coal liquefaction. Quarterly report, January--March 1978. [Brief summary of 15 pilot plant projects supported by US DOE

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is sponsoring the development of several conversion processes currently in the pilot plant stage. Fifteen coal liquefaction projects supported by US DOE are described briefly, with flowsheets, funding, history and progress during the quarter. (LTN)

  4. Appalachian clean coal technology consortium. Technical quarterly progress report, October 1, 1996--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Basim, B.; Luttrell, G.H.; Phillips, D.I. [and others

    1997-01-28

    Novel chemicals that can be used for increasing the efficiency of fine coal dewatering was developed at Virginia Tech. During the past quarter, Reagent A was tested on three different coal samples in laboratory vacuum filtration tests. These included flotation products from Middle Fork plant, Elkview Mining Company, and CONSOL, Inc. The tests conducted with the Middle Fork coal sample (100 mesh x 0) showed that cake moisture can be reduced by more than 10% beyond what can be achieved without using dewatering aid. This improvement was achieved at 1 lb/ton of Reagent A and 0.1 inch cake thickness. At 0.5 inches of cake thickness, the improvement was limited to 8% at the same reagent dosage. The results obtained with the Elkview coal (28 mesh x 0) showed similar advantages in using the novel dewatering aid. Depending on the reagent dosage, cake thickness, drying cycle time and temperature, it was possible to reduce the cake moisture to 12 to 14% rage. In addition to achieving lower cake moisture, the use of Reagent A substantially decreased the cake formation time, indicating that the reagent improves the kinetics of dewatering. The test results obtained with CONSOL coal were not as good as with the other coals tested in the present work, which may be attributed to possible oxidation and/or contamination.

  5. MHD Coal-Fired Flow Facility. Quarterly technical progress report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Altstatt, M. C.; Attig, R. C.; Baucum, W. E.

    1980-07-31

    Significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Energy Conversion Facility (ECF), formerly the Research and Development Laboratory, are reported. CFFF Bid Package construction is now virtually complete. The remaining construction effort is being conducted by UTSI. On the quench system, another Task 1 effort, the cyclone was erected on schedule. On Tasks 2 through 6, vitiation heater and nozzle fabrication were completed, an investigation of a fish kill (in no way attributable to CFFF operations) in Woods Reservoir was conducted, major preparation for ambient air quality monitoring was made, a broadband data acquisition system for enabling broadband data to be correlated with all general performance data was selected, a Coriolis effect coal flow meter was installed at the CFFF. On Task 7, an analytical model of the coal flow combustor configuration was prepared, MHD generator testing which, in part, involved continued materials evaluation and the heat transfer characteristics of capped and uncapped electrodes was conducted, agglomerator utilization was studied, and development of a laser velocimeter system was nearly completed.

  6. Study of a 30 MW bubbling fluidized bed combustor based on co-firing biomass and coal

    Indian Academy of Sciences (India)

    Hemant Kumar; S K Mohapatra; Ravi Inder Singh

    2015-06-01

    Today’s power generation sources are largely dependent on fossil fuels due to which the future sustainable development has become a challenge. A significant amount of the pollutant emissions such as carbon dioxide, carbon monoxide and nitrogen oxide from the power sector is related to the use of fossil fuels for power generation. As the demand for electricity is growing rapidly, emissions of carbon dioxide and other pollutants from this sector can be expected to increase unless other alternatives are made available. Among the energy sources that can substitute fossil fuels, biomass fuels appear as one of the options with a high worldwide potential. In the Punjab region of India, Fluidized-bed combustion technology is being used for converting biomass into thermal energy and power generation in various small scale units. The investigation of biomass-based plant through experimental activities and numerical simulation is the scope of this study. The investigations were done at Captive Power Plant (CPP), Ambuja Cement Limited, a project of Holcim, District Ropar, India. During experimental investigations, the study of bed temperatures and steam temperatures at different zones has been done for coal fired and biomass fired combustors with 30% share. No clear effects of co-firing on boiler performance are observed. However, the operational behavior of the boiler in terms of bed temperature and stack emissions shows a different trend. During simulation, the contours of temperature have been obtained for both the boilers and the trends are found in agreement with real process.

  7. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, April--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States)

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  8. Development of an advanced high efficiency coal combustor for boiler retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Rini, M.J.; LaFlesh, R.C. (Combustion Engineering, Inc., Windsor, CT (United States)); Beer, J.M.; Togan, M.A.; Yu, T.U. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); McGowan, J.G. (Univ. of Massachusetts, MA (United States))

    1987-05-06

    During the quarter from October 1986 to January 1987 the following technical progress was made: (1) Initiated a literature study focusing on optimized burner aerodynamics and design methodologies for high efficiency swirl generation devices, (2) Completed design of Swirler Test Facility (STF) to be used for comparative swirler evaluations, and (3) Initiated facility preparation at MIT for thermal atomization studies and high shear viscosity measurements.

  9. Coal demonstration plants. Quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    The objective of the US DOE demonstration program is to demonstrate and verify second-generation technologies and validate the economic, environmental and productive capacity of a near commercial-size plant by integrating and operating a modular unit using commercial size equipment. These facilities are the final stage in the RD and D process aimed at accelerating and reducing the risks of industrial process implementation. Under the DOE program, contracts for the design, construction, and operation of the demonstration plants are awarded through competitive procedures and are cost shared with the industrial partner. The conceptual design phase is funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded between industry and the government. The government share of the cost involved for a demonstration plant depends on the plant size, location, and the desirability and risk of the process to be demonstrated. The various plants and programs are discussed: Description and status, funding, history, flowsheet and progress during the current quarter. (LTN)

  10. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2017; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. 1. Vierteljahr 2017

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-06-14

    The paper reports on the coal mining in the Federal Republic of Germany in the 1st quarter of 2017. Statistical data are presented for mining, exports and imports of hard coal and lignite and for employees.

  11. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2016; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. 1. Vierteljahr 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-06

    The paper reports on the coal mining in the Federal Republic of Germany in the 1st quarter of 2016. Statistical data are presented for mining, exports and imports of hard coal and lignite and for employees.

  12. Temperature, velocity and species profile measurements for reburning in a pulverized, entrained flow, coal combustor

    Energy Technology Data Exchange (ETDEWEB)

    Tree, D.R.

    1999-03-01

    Nitrogen oxide emissions from pulverized coal combustion have been and will continue to be a regulated pollutant for electric utility boilers burning pulverized coal. Full scale combustion models can help in the design of new boilers and boiler retrofits which meet emissions standards, but these models require validation before they can be used with confidence. The objective of this work was to obtain detailed combustion measurements of pulverized coal flames which implement two NO reduction strategies, namely reburning and advanced reburning, to provide data for model validation. The data were also compared to an existing comprehensive pulverized coal combustion model with a reduced mechanism for NO reduction under reburning and advanced reburning conditions. The data were obtained in a 0.2 MW, cylindrical, down-fired, variable swirl, pulverized coal reactor. The reactor had a diameter of 0.76 m and a length of 2.4 m with access ports along the axial length. A Wyodak, sub-bituminous coal was used in all of the measurements. The burner had a centrally located primary fuel and air tube surrounded by heated and variably swirled secondary air. Species of NO, NO{sub x}, CO, CO{sub 2} and O{sub 2} were measured continuously. Aqueous sampling was used to measure HCN and NH{sub 3} at specific reactor locations. Samples were drawn from the reactor using water quenched suction probes. Velocity measurements were obtained using two component laser doppler anemometry in back-scatter mode. Temperature measurements were obtained using a shielded suction pyrometer. A series of six or more radial measurements at six or more axial locations within the reactor provided a map of species, temperature, and velocity measurements. In total, seven reactor maps were obtained. Three maps were obtained at baseline conditions of 0, 0.5 and 1.5 swirl and 10% excess air. Two maps were obtained under reburning conditions of 0.78 stoichiometric ratio and 1.5 swirl and 0.9 stoichiometric ratio and

  13. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 8, January--March 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1991-07-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the third quarter of 1991, the following technical progress was made: Calculated the kinetic characteristics of chars from the combustion of spherical oil agglomeration beneficiated products; continued drop tube devolatilization tests of the spherical oil agglomeration beneficiated products; continued analyses of the data and samples from the CE pilot-scale tests of nine fuels; and started writing a summary topical report to include all results on the nine fuels tested.

  14. PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-02-08

    For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char--for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumented and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests.

  15. Development & testing of industrial scale, coal fired combustion system, phase 3. Eighth quarterly technical progress report, 1 October, 1993--31 December, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.

    1994-01-31

    The primary objective of the present Phase 3 effort is to perform the final testing at a 20 MMBtu/hr commercial scale of an air cooled, slagging coal combustor for application to industrial steam boilers and power plants. The focus of the test effort will be on combustor durability, automatic control of the combustor`s operation, and optimum environmental control of emissions inside the combustor. In connection with the latter, the goal is to achieve 0.4 lb/MMBtu of SO{sub 2} emissions, 0.2 lb/MMBtu of NO{sub x} emissions, and 0.02 lb particulates/MMBtu. Meeting the particulate goal will require the use of a baghouse or electrostatic precipitator to augment the nominal slag retention in the combustor. The NO{sub x} emission goal will require a modest improvement over maximum reduction achieved to date in the combustor to a level of 0.26 lb/MMBtu. To reach the SO{sub 2} emissions goal may require a combination of sorbent injection inside the combustor and sorbent injection inside the boiler, especially in high (>3.5%) sulfur coals. Prior to the initiation of the project, SO{sub 2} levels as low as 0.6 lb/MMBtu, equal to 81% reduction in 2% sulfur coals, were measured with boiler injection of calcium hydrate. The final objective is to define suitable commercial power or steam generating systems to which the use of the air cooled combustor offers significant technical and economic benefits. In implementing this objective both simple steam generation and combined gas turbine-steam generation systems will be considered.

  16. Plasma assisted NO{sub x} reduction in existing coal combustors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yao, S.C.; Russell, T.

    1991-12-31

    The feasibility of NO{sub x} reduction using plasma injection has been investigated. Both numerical and experimental methods were used in the development of this new NO{sub x}reduction technique. The numerical analysis was used to investigate various flow mechanisms in order to provide fundamental support in the development of this new NO{sub x} control technique. The calculations using this approach can give the information of the particle trajectories and distributions which are important for the design of the in-flame plasma injection configuration. The group model also established the necessary ground for further complete modeling of the whole process including the chemical kinetics. Numerical calculations were also performed for a turbulent gas flow field with variable properties. The results provided fundamental understanding of mixing effects encountered in the experiments at Pittsburgh Energy and Technology Center. A small scale experiment facility was designed and constructed at the heterogeneous combustion laboratory at Carnegie Mellon University. A series of tests were conducted in this setup to investigate the potential of the ammonia plasma injection for NO{sub x} reduction and parametric effects of this process. The experimental results are very promising. About 86% NO{sub x} reduction was achieved using ammonia radicals produced by argon plasma within the present test range. The total percentage of NO{sub x} reduction increases when ammonia flowrate, argon flow rate and initial NO concentration increase and when plasma power and the amount of excess air in the combustor decrease. A combined transport and reaction model was postulated for understanding the mechanism of NO{sub x} reduction using the plasma injection.

  17. Molecular biological enhancement of coal biodesulfurization. Quarterly technical report, September 1, 1993--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II [Institute of Gas Technology, Chicago, IL (United States)

    1993-12-31

    IGT has developed a microbial culture of Rhodococcus rhodochrous, designated as IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum without significantly sacrificing the calorific value of the fuel. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strains of microorganisms that possess higher levels of desulfurization activity and therefore will permit more favorable biodesulfurization process conditions: faster rates, more complete removal, and smaller reactor size. strain improvement is the single most important aspect to the development of a practical coal biodesulfurization process and accordingly is the focus of research in this project. During this quarter the promoter probe vectors that were constructed last quarter were found to be unstable in E. coli. Fragments of R. rhodochrous IGTS8 chromosomal DNA were cloned into pRCAT3 and pRCM1 (previously described in final ICCI report 1993). Many derivatives of pRCM1 and pRCAT3 receiving inserts that regulated the expression of chloramphenicol resistance in Rhodococcus rhodochrous IGTS8 proved to be unstable in E. coli frequently yielding plasmids containing deletions. Stable inserts have been observed ranging from 100 bp to 2.0 kb that regulated expression in Rhodococcus rhodochrous IGTS8. Subtractive hybridization studies continue, several candidates have been isolated and are being confirmed for inducible promoters. Primer extension analysis of the Rhodococcus rhodochrous IGTS8 16S RNA promoter region was initiated this quarter.

  18. Environmental impact assessment and selenium transformation in coal mine spoils. Seventh quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Atalay, A.; Koll, K.J.

    1991-06-01

    This quarterly report addresses the continued field investigation of a selected coal mining site in Oklahoma. Table 1 (appendix) portrays all the data (field measurements) taken at the Henryetta experimental site. An analysis of this data would be useful in providing information for potential Se migration from a coal mining site and the distribution of Se in a soil profile of land reclaimed to its pristine state. Also addressed is the methodology developed (1) for SeO{sub 4}{sup 2{minus}} and SeO{sub 3}{sup 2{minus}} adsorption on selected soils, (2) leachate migration through a cell column using soil samples from the Henryetta reclamation site, and (3) chemical transformation of SeO{sub 4}{sup 2{minus}} under harsh chemical and conditions.

  19. 40 CFR 60.53b - Standards for municipal waste combustor operating practices.

    Science.gov (United States)

    2010-07-01

    ... Modular excess air 50 4 Refuse-derived fuel stoker 150 24 Bubbling fluidized bed combustor 100 4 Circulating fluidized bed combustor 100 4 Pulverized coal/refuse-derived fuel mixed fuel-fired combustor 150...

  20. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 15, October--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1993-03-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1992, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; re-analyzed the samples from the pilot-scale ash deposition tests of the first nine feed coals and BCFs using a modified CCSEM technique; updated the topical summary report; and prepared for upcoming tests of new BCFs being produced.

  1. Advanced physical coal cleaning to comply with potential air toxic regulations. [Quarterly] technical report, September 1--November 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Paul, B.C.; Wang, D. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mining Engineering

    1994-12-31

    This research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Trace elements considered in this project will include mercury, selenium, cadmium, and chlorine. Work in the first quarter has focused on trace element analysis procedures and sample acquisition. Several experts in the field of trace element analysis of coal have been consulted and these procedures are presently being evaluated.

  2. Hydrodynamics of a fluidized bed co-combustor for tobacco waste and coal.

    Science.gov (United States)

    Zhang, Kai; Yu, Bangting; Chang, Jian; Wu, Guiying; Wang, Tengda; Wen, Dongsheng

    2012-09-01

    The fluidization characteristics of binary mixtures containing tobacco stem (TS) and cation exchange resin (a substitute for coal) were studied in a rectangular bed with the cross-section area of 0.3 × 0.025 m(2). The presence of herbaceous biomass particles and their unique properties such as low density and high aspect ratio resulted in different fluidization behaviors. Three fluidization velocities, i.e. initial, minimum and full fluidization velocities, were observed as the TS mass fraction increased from 7% to 20%, and four hydrodynamic stages were experienced, including the static, segregation, transition and mixing stages, with increasing operational gas velocities. The results suggest that the operational gas velocity should be in the range of 2.0-5.0 times of the minimum fluidization velocity of the binary mixtures, and less than 7% TS mass fraction should be used in an existing bubbling fluidized bed. Higher TS fraction inclusion requires the introduction of central jet gas to improve the mixing effect.

  3. Controlling mercury and selenium emissions from coal-fired combustors using a novel regenerable natural product

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, R.J.; Marmaro, R.W.; Roberts, D.L. [ADA Technologies, Inc., Englewood, CO (United States)

    1995-11-01

    This program successfully demonstrated the key components that are needed for a practical, regenerable sorption process for removing and recovering mercury from flue gas streams: (1) a proprietary natural product removed mercuric chloride from synthetic flue gas, (2) several new noble metal sorbents were shown to capture elemental gas-phase mercury from synthetic coal combustion flue gas, and (3) both the natural product and the noble metal sorbents could be regenerated in the laboratory (chemical method for the natural product, thermal method for noble metal sorbents). Several sorbents were tested for their ability to collect selenium oxide during the program. These tests, however, were not definitive due to inconclusive analytical results. If follow-on testing is funded, the ability of the proposed sorbents to collect selenium and other metals will be evaluated during the field testing phase of the program. A preliminary economic analysis indicates that the cost of the process appears to be substantially less than the cost of the state-of-the-art method, namely injection of activated carbon, and it also appears to cost less than using noble metal sorbents alone.

  4. Solvent refined coal (SRC) process. Quarterly technical progress report, January 1980-March 1980. [In process streams

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This report summarizes the progress of the Solvent Refined Coal (SRC) project at the SRC Pilot Plant in Fort Lewis, Wahsington, and the Process Development Unit (P-99) in Harmarville, Pennsylvania. After the remaining runs of the slurry preheater survey test program were completed January 14, the Fort Lewis Pilot Plant was shut down to inspect Slurry Preheater B and to insulate the coil for future testing at higher rates of heat flux. Radiographic inspection of the coil showed that the welds at the pressure taps and the immersion thermowells did not meet design specifications. Slurry Preheater A was used during the first 12 days of February while weld repairs and modifications to Slurry Preheater B were completed. Two attempts to complete a material balance run on Powhatan No. 6 Mine coal were attempted but neither was successful. Slurry Preheater B was in service the remainder of the quarter. The start of a series of runs at higher heat flux was delayed because of plugging in both the slurry and the hydrogen flow metering systems. Three baseline runs and three slurry runs of the high heat flux program were completed before the plant was shut down March 12 for repair of the Inert Gas Unit. Attempts to complete a fourth slurry run at high heat flux were unsuccessful because of problems with the coal feed handling and the vortex mix systems. Process Development Unit (P-99) completed three of the four runs designed to study the effect of dissolver L/D ratio. The fourth was under way at the end of the period. SRC yield correlations have been developed that include coal properties as independent variables. A preliminary ranking of coals according to their reactivity in PDU P-99 has been made. Techniques for studying coking phenomenona are now in place.

  5. Refining and end use study of coal liquids. Quarterly report, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Bechtel, with South west research Institute, Amoco Oil R&D, and the M. W. Kellogg Co. as subcontractors, initiated a study on November 1, 1993, for the US Department of Energy`s Pittsburgh Energy Technology Center to determine the most cost effective and suitable combination of existing petroleum refinery processes needed to make specification transportation fuels or blending stocks, from direct and indirect coal liquefaction product liquids. A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An integral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. To enhance management of the study, the work has been divided into two parts, the Basic Program and Option 1. The objectives of the Basic Program are to: characterize the coal liquids; develop an optimized refinery configuration for processing indirect and direct coal liquids; and develop a LP refinery model with Process Industry Modeling System software. The objective of Option 1 are to: confirm the validity of the optimization work of the Basic Program; produce large quantities of liquid transportation fuel blending stocks; conduct engine emission tests; and determine the value and the processing costs of the coal liquids. The major effort conducted during the fourth quarter of 1995 were in the areas of: IL catalytic cracking--microactivity tests were conducted on various wax blends; IL wax hydrocracking--a pilot plant run was conducted on a wax/petroleum blend; and DL2 characterization and fractionation.

  6. Systems studies of coal coal conversion processes using a reference simulator. Quarterly report, July 1, 1978--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, G.V.; Sood, M.K.; Soni, Y.; Overturf, B.W.; Buchanan, P.; Weide, W. Jr.; Wilkinson, C.R.; Boo, J.

    1978-11-01

    The plant capital cost estimation package has been largely implemented. Testing and documentation is projected to be completed by the end of the next quarter. Additions consisting of the physical properties package of entropy estimation capabilities and of automatic selection of the steam table routines when appropriate were made. Significant progress has been made in developing equipment modules for the pyrolysis vapor recovery, heat recovery, bulk methanation, and H/sub 2/ plant sections. These modules include an ejector model, an electrostatic precipitator model, an alternate three phase column routine, a multiphase heat exchanger design routine, as well as a steam reformer furnace design program. Case studies have been carried out on the heat recovery section. Integrated simulations of the methanation, vapor recovery, and H/sub 2/ plant sections are in various stages of assembly. The hierarchical calculation strategy which is to allow execution of over-all flowsheet simulations in terms of a linked sequence of process section simulations has been demonstrated successfully. An available ethylene oxide/glycol process simulation model was used as a test case. Execution time reductions to 1/3 of the direct simulation time could be shown. Work is in progress in generalizing the interfacing and applying the strategy to portions of the modified COED flowsheet. Successful linkage of the combined pryolysis, gasifier, lift-tube, and combustor models was achieved. These models include detailed kinetics, heat transfer calculations as well as particle balance calculations which allow both particle shrinkage at constant density and reduction of particle density at constant size. Several case studies were run and more are projected.

  7. Emissions of SO2,NO and N2O in a circulating fluidized bed combustor during co-firing coal and biomass

    Institute of Scientific and Technical Information of China (English)

    XIE Jian-jun; YANG Xue-min; ZHANG Lei; DING Tong-li; SONG Wen-li; LIN Wei-gang

    2007-01-01

    This paper presents the experimental investigations of the emissions of SO2, NO and N2O in a bench scale circulating fluidized bed combustor for coal combustion and co-firing coal and biomass. The thermal capacity of the combustor is 30 kW. The setup is electrically heated during startup. The influence of the excess air, the degree of the air staging, the biomass share and the feeding position of the fuels on the emissions of SO2, NO and N2O are studied. The results show that an increase in the biomass shares results in an increase of the CO concentration in the flue gas, probably due to the high volatile content of the biomass. In co-firing, the emission of SO2 increased with the increasing biomass share slightly however, non-linear increase relationship between SO2 emission and fuel sulfur content is observed. Air staging decreases the NO emission significantly without raising the SO2 level. Though change the fuel feeding position from riser to downer results in a decrease in the NO emission level, no obvious change is observed for the SO2 level. Taking the coal feeding position R as a reference, the relative NO emission can significantly decrease during co-firing coal and biomass when feeding fuel at position D and keeping the first stage stoichiometry greater than 0.95. The possible mechanisms of the sulfur and nitrogen chemistry at these conditions are discussed and the ways of simultaneous reduction of SO2, NO and N2O are proposed.

  8. Emissions of SO2, NO and N2O in a circulating fluidized bed combustor during co-firing coal and biomass.

    Science.gov (United States)

    Xie, Jian-jun; Yang, Xue-min; Zhang, Lei; Ding, Tong-li; Song, Wen-li; Lin, Wei-gang

    2007-01-01

    This paper presents the experimental investigations of the emissions of SO2, NO and N20 in a bench scale circulating fluidized bed combustor for coal combustion and co-firing coal and biomass. The thermal capacity of the combustor is 30 kW. The setup is electrically heated during startup. The influence of the excess air, the degree of the air staging, the biomass share and the feeding position of the fuels on the emissions of SO2, NO and N2O were studied. The results showed that an increase in the biomass shares resulted in an increase of the CO concentration in the flue gas, probably due to the high volatile content of the biomass. In co-firing, the emission of SO2 increased with increasing biomass share slightly, however, non-linear increase relationship between SO2 emission and fuel sulfur content was observed. Air staging significantly decreased the NO emission without raising the SO2 level. Although the change of the fuel feeding position from riser to downer resulted in a decrease in the NO emission level, no obvious change was observed for the SO2 level. Taking the coal feeding position R as a reference, the relative NO emission could significantly decrease during co-firing coal and biomass when feeding fuel at position D and keeping the first stage stoichiometry greater than 0.95. The possible mechanisms of the sulfur and nitrogen chemistry at these conditions were discussed and the ways of simultaneous reduction of SO2, NO and N20 were proposed.

  9. Hindered diffusion of coal liquids. Quarterly report No. 10, December 18, 1994--March 17, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Webster, I.A. [UNOCAL Corp., Los Angeles, CA (United States)

    1995-09-01

    The design of industrial catalysts requires that the diffusivity of the reacting species within the catalyst be accurately known. Nowhere is this more important than in the area of coal liquefaction and upgrading of coal liquids. In this area one is faced with the task of processing a number of heavy oils, containing metals and other contaminants, in a variety of process dependent solvents. It is important, therefore, on the basis of predicting catalyst activity, selectivity, and optimizing reactor performance, that the diffusivities of these oil species be accurately known. Throughout the experimental runs we will utilize a high pressure, high temperature diffusion of cell system. This diffusion system has been tested through the measurement of the diffusivity of a number of model coal liquids. The following were accomplished this quarter: During this quarter, we have initiated a series of transport investigations under high temperature (360{degrees}) high pressure (500 psi, H{sub 2}) reactive conditions. We have also continued our studies of formation and precipitation of fractal molecular aggregates in porous media. Small-angle scattering as well as precipitation data are analyzed to delineate the structure of the molecular colloidal aggregates that are formed, when a fluid is injected into the pore space of a porous medium to react with, or displace the in-place fluid. The results suggest that these colloidal structures are diffusion-limited particle and cluster aggregates. This is the first conclusive evidence for fractality of such molecular aggregates, which has important implications for their stability and molecular weight distribution, as well as modelling their flow and precipitation in a porous medium.

  10. Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. Quarterly report, January 1, 1992--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    A study of the high-temperature soaking started in this quarter, following the installation of reactors in the previous quarter. Two high-volatile bituminous coals and three coal liquids, which were identified in the previous report, were used. A cross-linked, three-dimensional macromolecular model has been widely accepted f or the structure of coal, but there is no direct evidence to prove this model. The conventional coal structure model has been recently re-examined by this investigator because of the importance of relatively strong intra- and intermolecular interactions in bituminous coals. It was reasonable to deduce that significant portions were physically associated after a study of multistep extractions, associative equilibria, the irreversibility and the dependence of coal concentration on solvent swelling, and consideration of the monophase concept. Physical dissociation which may be significant above 300{degree}C should be utilized for the treatment before liquefaction. The high-temperature soaking in a recycle oil was proposed to dissociate coal complexes.

  11. Molecular biological enhancement of coal biodesulfurization. [Quarterly] technical report, December 1, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II [Institute of Gas Technology, Chicago, IL (United States)

    1994-06-01

    IGT has developed a microbial culture of Rhodococcus rhodochrous, IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strain`s of microorganisms that possess higher levels of desulfurization activity and therefore wall permit more favorable biodesulfurization process conditions: faster rates, mare complete removal, and smaller reactor size. Strain improvement is the single most important aspect to the development of a practical coal biodesulfurization process and accordingly is the focus of research in this project. Several possible strong promoters have been isolated and are in the process of being analyzed. When these promoters have been characterized for inducibility, strength, transcriptional start sites and other physical properties, they will be placed in front of the desulfurization genes and expression will be monitored. Improved promoter probe vectors have been constructed, allowing a conclusive screen of all putative Rhodococcus promoters. With the improved methodologies in the handling of Rhodococcus RNA, we have begun to gauge promoter expression using Northern blots. During this quarter we have constructed and successfully used a promoter probe vector using the {beta}-galactosidane gene from E. coli. A chromosomal promoter library was constructed upstream from the {beta}-galactosidase gene. Over 200 colonies were isolated that yielded {beta}-galactosidase activity.

  12. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, January 1--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-08-01

    This is the tenth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Process oils from Wilsonville Run 262 were analyzed to provide information on process performance. Run 262 was operated from July 10 through September 30, 1991, in the thermal/catalytic Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) configuration with ash recycle. The feed coal was Black Thunder Mine subbituminous coal. The high/low temperature sequence was used. Each reactor was operated at 50% of the available reactor volume. The interstage separator was in use throughout the run. The second-stage reactor was charged with aged Criterion 324 catalyst (Ni/Mo on 1/16 inch alumina extrudate support). Slurry catalysts and sulfiding agent were fed to the first-stage reactor. Molyvan L is an organometallic compound which contains 8.1% Mo, and is commercially available as an oil-soluble lubricant additive. It was used in Run 262 as a dispersed hydrogenation catalyst precursor, primarily to alleviate deposition problems which plagued past runs with Black Thunder coal. One test was made with little supported catalyst in the second stage. The role of phenolic groups in donor solvent properties was examined. In this study, four samples from direct liquefaction process oils were subjected to O-methylation of the phenolic groups, followed by chemical analysis and solvent quality testing.

  13. Permeability changes in coal resulting from gas desorption. Tenth quarterly report, January 1, 1992--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Johnson, P.M.

    1992-12-31

    Research continued on the study of coal permeability and gas desorption. This quarter, most of the effort involved identifying problems with the microbalance and then getting it repaired. Measurement of the amount of gas adsorbed with the microbalance involved corrections for the buoyancy change with pressure and several experiments with helium were made to determine this correction.

  14. Valve development for coal gasification plants. Phase II (Draft). Quarterly technical program report, October--December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bellezza, D.

    1979-01-01

    This is the tenth in a series of Quarterly Technical Progress Reports relating to the Valve Development for Coal Gasification Plants Program. This document discusses engineering progress during the period of October to December 1978. Work performed is discussed briefly. (LTN)

  15. Materials technology for coal-conversion processes. Sixteenth quarterly report, October--December 1978

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, W A

    1978-01-01

    Refractories for slag containment, nondestructive evaluation methods, corrosion, erosion, and component failures were studied. Analysis of coal slags reveal ferritic contents of 18 to 61%, suggesting a partial pressure of 0/sub 2/ in the slagging zone of approx. 10/sup -2/ to 10/sup -4/ Pa. A second field test of the high-temperature ultrasonic erosion-monitoring system was completed. Ultrasonic inspecton of the HYGAS cyclone separator shows a reduced erosive-wear rate at 5000 h in the stellite region. The acoustic leak-detection system for valves was field tested using a 150-mm-dia. valve with a range of pressures from 0.34 to 4.05 MPa. Results suggest a linear relation between detected rms levels and leak rates. Studies on acoustic emissions from refractory concrete continued with further development of a real-time data acquisition system. Corrosion studies were conducted on Incoloy 800, Type 310 stainless steel, Inconel 671 and U.S. Steel Alloy 18-18-2 (as-received, thermally aged, and preexposed for 3.6 Ms to multicomponent gas mixtures). Results suggest a decrease in ultimate tensile strength and flow stress after preexposure. Examination of commercial iron- and nickel-base alloys after 100-h exposures in atmospheric-pressure fluidized-bed combustors suggests that the addition of 0.3 mole % CaCl/sub 2/ to the fluidized bed has no effect on the corrosion behavior of these materials; however, 0.5 mole % NaCl increased the corrosion rate of all materials. Failure-analysis activities included (1) the design and assembly of thermowells (Haynes Alloy 188 and slurry-coated Type 310 stainless steel) and (2) examination of components from the Synthane boiler explosion, the IGT Steam--Iron Pilot Plant, the HYGAS Ash Agglomerating Gasifier, and the Westinghouse Coal Gasification PDU.

  16. Cooperative research program in coal liquefaction. Quarterly report, November 1, 1991--January 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1992-06-01

    Research continues on coal liquefaction in the following areas: (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  17. Advanced physical coal cleaning to comply with potential air toxic regulations. Quarterly report, 1 March 1995--31 May 1995

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Paul, B.C.; Mohanty, M.K.; Wang, D.

    1995-12-31

    Studies have indicated that the potentially hazardous trace elements found in coal have a strong affinity for coal pyrite. Thus, by maximizing the rejection of pyrite, one can minimize the trace element content of a given coal while also reducing sulfur emissions. The pyrite in most Illinois Basin coals, however, is finely disseminated within the coal matrix. Therefore, to remove the pyrite using physical coal cleaning techniques, the pyrite must be liberated by grinding the coal to ultrafine particle sizes. Fortunately, the coals being fed to pulverized coal boilers (PCB) are already ground to a very fine size, i.e., 70% passing 200 mesh. Therefore, this research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Work in this quarter has focused on the processing of a run-of-mine coal sample collected from Amax Coal Company`s Delta Coal mine using column flotation and an enhanced gravity separator as separate units and in circuitry arrangements. The {minus}60 mesh run-of-mine sample having an ash content of about 22% was cleaned to 6% while achieving a very high energy recovery of about 87% and a sulfur rejection value of 53% in a single stage column flotation operation. Enhanced gravity treatment is believed to be providing excellent total sulfur rejection values, although with inferior ash rejection for the {minus}400 mesh size fraction. The circuitry arrangement with the Falcon concentrator as the primary cleaner followed by the Packed-Column resulted in an excellent ash rejection performance, which out performed the release analysis. Trace element analyses of the samples collected from these tests will be conducted during the next report period.

  18. Coal-Based Oxy-Fuel System Evaluation and Combustor Development; Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, Rebecca

    2013-03-31

    Clean Energy Systems, Inc. (CES) partnered with the U.S. Department of Energy’s National Energy Technology Laboratory in 2005 to study and develop a competing technology for use in future fossil-fueled power generation facilities that could operate with near zero emissions. CES’s background in oxy-fuel (O-F) rocket technology lead to the award of Cooperative Agreement DE-FC26-05NT42645, “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” where CES was to first evaluate the potential of these O-F power cycles, then develop the detailed design of a commercial-scale O-F combustor for use in these clean burning fossil-fueled plants. Throughout the studies, CES found that in order to operate at competitive cycle efficiencies a high-temperature intermediate pressure turbine was required. This led to an extension of the Agreement for, “Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications” where CES was to also develop an intermediate-pressure O-F turbine (OFT) that could be deployed in O-F industrial plants that capture and sequester >99% of produced CO2, at competitive cycle efficiencies using diverse fuels. The following report details CES’ activities from October 2005 through March 2013, to evaluate O-F power cycles, develop and validate detailed designs of O-F combustors (main and reheat), and to design, manufacture, and test a commercial-scale OFT, under the three-phase Cooperative Agreement.

  19. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, April 1--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Lancet, M.S.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1992-11-01

    This is the eleventh Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: (1) The results of a study designed to determine the effects of the conditions employed at the Wilsonville slurry preheater vessel on coal conversion is described. (2) Stable carbon isotope ratios were determined and used to source the carbon of three product samples from Period 49 of UOP bench-scale coprocessing Run 37. The results from this coprocessing run agree with the general trends observed in other coprocessing runs that we have studied. (3) Microautoclave tests and chemical analyses were performed to ``calibrate`` the reactivity of the standard coal used for determining donor solvent quality of process oils in this contract. (4) Several aspects of Wilsonville Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) resid conversion kinetics were investigated; results are presented. Error limits associated with calculations of deactivation rate constants previously reported for Runs 258 and 261 are revised and discussed. A new procedure is described that relates the conversions of 850{degrees}F{sup +} , 1050{degrees}F{sup +}, and 850 {times} 1050{degrees}F material. Resid conversions and kinetic constants previously reported for Run 260 were incorrect; corrected data and discussion are found in Appendix I of this report.

  20. Molecular catalytic coal liquid conversion. Quarterly progress report, [January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Cheng, C.; Ettinger, M.

    1993-03-31

    Last quarter, substantial progress has been made in the two general tasks advanced in our research proposal. The first task consists of the development of molecular homogeneous catalysts that can be used in the hydrogenation of coal liquids and in coal conversion processes. The second task concerns the activation of dihydrogen by basic catalysts in homogeneous reaction systems. With regards to the first task, we have prepared two organometallic rhodium (1) catalysts. These are the dimer of dichloropentamethylcyclopentadienylrhodium, [RhCl{sub 2}(C{sub 5}Me{sub 5})], and the dimer of chloro(1,5-hexadiene)rhodium We have subsequently investigated the hydrogenation of various aromatic organic compounds using these organometallic reagents as catalysts. Results showed that both catalysts effected the hydrogenation of the aromatic portions of a wide range of organic compounds, including aromatic hydrocarbons and aromatic compounds containing the ether group, alkyl groups, amino and carbonyl groups. However, both compounds were totally ineffective in catalyzing the hydrogenation of sulfur-containing aromatic organic compounds. Nevertheless, both rhodium catalysts successfully catalyzed the hydrogenation of naphthalene even in the presence of the coal liquids. With regards to base-activated hydrogenation of organic compounds, we have found that hydroxide and alkoxide bases are capable of activating,dihydrogen, thereby leading to the hydrogenation of phenyl-substituted alkenes. More specifically, tetrabutylammonium hydroxide, potassium tert-butoxide and potassium phenoxide were successfully used to activate dihydrogen and induce the hydrogenation of trans-stilbene. Potassium tert-butoxide was found to be slightly more effective than the other two bases in accomplishing this chemistry.

  1. Valve development for coal gasification plants: Phase I to Phase II transition. Quarterly technical program report, May--July 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bellezza, D.

    1978-08-01

    This is the eighth in a series of Quarterly Technical Progress Reports relating to the Valve Development for Coal Gasification Plants Program. This document discusses engineering progress during the period of May to July 1978. The work described herein represents a continuation of the Phase I seat development effort for the Task III valve and the continuation of design engineering effort, necessary to prepare detail manufacturing drawings for use in the production of prototype valves during Phase II of this program. Work performed during this quarter consists of: valve design, thermal and stress analysis of valves, design detailing and specifications, quality assurance planning and various tests as outlined.

  2. Great Plains Coal Gasification Project: Quarterly technical progress report, April-June 1988 (Fourth fiscal quarter, 1987-1988)

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-29

    This progress report describes the operation of the Great Plains Gasification Plant, including lignite coal production, SNG production, gas quality, by-products, and certain problems encountered. (LTN)

  3. Development and testing of industrial scale, coal fired combustion system, Phase 3. Eighteenth quarterly technical progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.

    1996-08-18

    In the second quarter of calendar year 1996, 16 days of combust- boiler tests were performed, including 2 days of tests on a parallel DOE sponsored project on sulfur retention in a slagging combustor. Between tests, modifications and improvements that were indicated by these tests were implemented. This brings the total number of test days to the end of June in the task 5 effort to 28, increased to 36 as of the date of this Report, 8/18/96. This compares with a total of 63 test days needed to complete the task 5 test effort. It is important to note that the only major modification to the Williamsport combustor has been the addition of a new downstream section, which lengthens the combustor and improves the combustor-boiler interface. The original combustor section, which includes the fuel, air, and cooling water delivery systems remained basically unchanged. Only the refractory liner was completely replaced, a task which occurs on an annual basis in all commercial slagging utility combustors. Therefore, this combustor has been operated since 1988 without replacement. The tests in the present reporting period are of major significance in that beginning with the first test on March 31st, for the first time slagging opening conditions were achieved in the upgraded combustor. The first results showed that the present 20 MMBtu/hr combustor design is far superior to the previous one tested since 1988 in Williamsport, PA. The most important change is that over 95% of the slag was drained from the slag tap in the combustor. This compares with an range of one-third to one-half in Williamsport. In the latter, the balance of the slag flowed out of the exit nozzle into the boiler floor. In addition, the overall system performance, including the combustor, boiler, and stack equipment, ranged from good to excellent. Those areas requiring improvement were of a nature that could be corrected with some work. but in no case were the problems encountered of a barrier type.

  4. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-09-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. The paper describes activities carried out this quarter. 11 refs., 21 figs., 17 tabs.

  5. Advanced physical coal cleaning to comply with potential air toxic regulations. Quarterly report, 1 December 1994--28 February 1995

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Paul, B.C.; Wang, D.

    1995-12-31

    Studies have indicated that the potentially hazardous trace elements found in coal have a strong affinity for coal pyrite. Thus, by maximizing the rejection of pyrite, one can minimize the trace element content of a given coal while also reducing sulfur emissions. The pyrite in most Illinois Basin coals, however, is finely disseminated within the coal matrix. Therefore, to remove the pyrite using physical coal cleaning techniques, the pyrite must be liberated by grinding the coal to ultrafine particle sizes. Fortunately, the coals being fed to pulverized coal boilers (PCB) are already ground to a very fine size, i.e., 70% passing 200 mesh. Therefore, this research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Work in this quarter has focused on the processing of a PCB feed sample collected from Central Illinois Power`s Newton Power Station using column flotation and an enhanced gravity separator as separate units and in a circuitry arrangement. The PCB feed sample having a low ash content of about 12% was further cleaned to 6% while achieving a very high energy recovery of about 90% in a single stage column flotation operation. Enhanced gravity treatment is believed to be providing excellent total sulfur rejection values, although with inferior ash rejection for the {minus}400 mesh size fraction. The circuitry arrangement with the Falcon concentrator as the primary cleaner followed by the Microcel column resulted in an excellent ash rejection performance, which out performed the release analysis. Trace element analyses of the samples collected from these tests will be conducted during the next report period.

  6. Coal Combustion Science quarterly progress report, January--March 1993. Task 1, Coal char combustion: Task 2,, Fate of mineral matter

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.; Hurt, R.H.; Baxter, L.L.

    1994-02-01

    The objective of this work is to obtain insights into the mechanisms of combustion, fragmentation, and final burnout, and to use the insights to aid in the interpretation of the quantitative data generated in Subtasks 1 and 2. The initial image sequences for Illinois No. 6 coal confirm the presence of an early near-extinction process (discussed in previous reports) and the asymptotic nature of the carbon burnout process. The technique also provided important new insights into the processes of particle fragmentation and reagglomeration at high burnout. During this quarter, chemical fractionation tests on coals pulverized to different sizes were completed. These data will help us to asses the accuracy of the fuels characterizations for the purpose of interpreting inorganic release during coal devolatilization. Chemical fractionation tests on mineral species are proceeding for the same purposes, but these are not yet completed.

  7. Computational Modeling and Experimental Studies on NO(x) Reduction Under Pulveerized Coal Combustion Conditions. Quarterly technical progress report, July 1 - September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kumpaty, S.K.; Subramanian, K.; Darboe, A.; Kumpati, S.K.

    1997-12-31

    Several experiments were conducted during this quarter to study the NO{sub x} reduction effectiveness of lignite coal, activated carbon and catalytic sites such as calcium sulfide and calcium carbide. While some of the coals/chemicals could be fed easily, some needed the mixing with silica gel to result in a uniform flow through the feeder. Several trial runs were performed to ensure proper feeding of the material before conducting the actual experiment to record NO{sub x} reduction. The experimental approach has been the same as presented in the past two quarterly reports with the coal reburning experiments. Partial reduction is achieved through methane addition for SR2=0.95 conditions and then coal or the catalyst is introduced to see if there is further reduction. Presented below are the results of the experiments conducted during this quarter.

  8. Exploratory study of coal-conversion chemistry. Quarterly report No. 9, March 20, 1980-June 19, 1980. [Hydroxydiphenylmethane, diphenylether, diphenymethane

    Energy Technology Data Exchange (ETDEWEB)

    McMillen, Donald F.; Ogier, Walter C.

    1980-11-19

    This report describes work accomplished under two tasks: Task A, Mechanism of Cleavage of Key Bond Types Present in Coals, and Task B, Catalysis of Conversion in CO-H/sub 2/O Systems. Under Task A, the very effective catalysis of carbon-carbon bond cleavage by iron oxides in hydroxydiphenylmethane structures has been further characterized. An electron-transfer mechanism offers the most likely explanation of the observations that (1) alumina and silica-alumina surfaces are less active catalysts than Fe/sub 3/O/sub 4/, (2) meta-hydroxydiphenylmethane is almost as subject to catalysis as para-hydroxydiphenylmethane, (3) diphenyl ether is less subject to Fe/sub 3/O/sub 4/ catalysis than diphenylmethane, and (4) ortho-methoxydiphenylmethane exhibits the same susceptibility to Fe/sub 3/O/sub 4/ catalysis as ortho-hydroxydiphenylmethane. Under Task B, this quarter we have completed the survey of possible metal catalysts present in the Hastelloy C autoclave. We have found that coal conversion in CO-H/sub 2/O systems is effective when metal oxides such as MoO/sub 4//sup =/, Cr/sub 2/O/sub 7//sup =/, and MnO/sub 4//sup -/ are used as catalysts, but there is less or no coal conversion with FeCl/sub 3/ or Ni(CH/sub 3/COO)/sub 2/. While studying the fate of the catalyst after the reaction, we have isolated formate in the water-soluble fraction. This important information could help us in studying the role of formate in coal conversion. During this quarter, we have also studied the influence of reaction time and fresh CO on coal conversion in the presence of a catalyst. A striking result of 67% of benzene-soluble materials was obtained with an equivalent of 6000 ppM of Cr as sodium dichromate.

  9. Characterization of open-cycle coal-fired MHD generators. 14th/15th quarterly technical progress report, February 1-July 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wormhoudt, J.; Yousefian, V.; Weinberg, M.; Kolb, C.; Martinez-Sanchez, M.; Cheng, W.; Bien, F.; Dvore, D.; Unkel, W.; Stewart, G.

    1980-09-01

    The successful design of full-scale, open-cycle, coal-fired MHD generators for baseload electrical production requires a detailed understanding of the plasma chemical and plasma dynamic characteristics of anticipated combustor and channel fluids. Progress in efforts to model the efficiency of an open-cycle, coal-fired MHD channel based on the characterization of the channel flow as well as laboratory experiments to validate the modeling effort as detailed. In addition, studies related to understanding arcing phenomena in the vicinity of an anode are reported.

  10. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, G.P. [ed.

    1994-07-01

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  11. Rheology of coal-water slurries prepared by the HP roll mill grinding of coal. Quarterly technical progress report number 11, March 1--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.

    1995-06-01

    The objective of this research is the development of improved technology for the preparation of coal-water slurries that have potential for replacing fuel oil in direct combustion. Detailed investigations of the effect of solids content and chemical additives on the rheology of coal-water slurries, prepared with fines produced by the ball milling of Pittsburgh No. 8 coal, were conducted during the first phase of the research program. These experiments were to provide a baseline against which the rheological behavior of slurries prepared with fines produced by high-pressure roll milling or hybrid high-pressure, roll mill/ball mill grinding could be compared. The viscosity of slurries with high solids content is strongly influenced by the packing density of the feed material. The packing density can be significantly altered by mixing distributions of different median sizes, and to an extent by modifying the grinding environment. The research during this quarter was, therefore, directed towards: (1) establishing the relationship between the packing characteristic of fines and the viscosity of slurries prepared with the fines; (2) investigation of the effect of mixing distribution on the rheology; and (3) study of the effect of grinding environment in the ball mill on the rheology of coal-water slurries.

  12. Regulation of coal polymer degradation by fungi. Eighth quarterly report, [January--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, R.L. [Notre Dame Univ., IN (United States). Dept. of Civil Engineering and Geological Sciences; Bumpus, J.A. [University of Northern Iowa, Cedar Falls, IA (United States). Dept. of Chemistry

    1996-07-28

    Progress is reported on solubilization of low-rank coal by enzyme activity derived from Trametes versicolor or P. chrysosporium. Specifically during the reporting period efforts were directed towards the determining the effect of pH on solubilization of leonardite, the role of laccase in low coal solubilization and metabolism, the decolorization of soluble coal macromolecule by P. chrysosprium and T. versicolor in solid agar gel, and the solubilization of low rank coal in slurry cultures and solid phase reactors.

  13. Selective solvent absorption in coal conversion. Quarterly report, July 1, 1991--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.; Lapucha, A.; Lazarov, L.; Amui, J.

    1992-04-01

    The objectives of this project are: (1) to determine the importance of the presence of added hydrogen donor compounds within the coal in the first stage of direct liquefaction processes; and (2) to determine the composition of the solvent absorbed by and present within the coal in the first stage of direct coal liquefaction.

  14. Development and testing of a high efficiency advanced coal combustor: Phase 3 industrial boiler retrofit. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Patel, R.L.; Thornock, D.E.; Miller, B.G.; Scaroni, A.W.; McGowan, J.G.

    1998-03-01

    Economics and/or political intervention may one day dictate the conversion from oil or natural gas to coal in boilers that were originally designed to burn oil or gas. In recognition of this future possibility the US Department of Energy, Federal Energy Technical Center (DOE-FETC) supported a program led by ABB Power Plant Laboratories with support from the Energy and Fuels Research Center of Penn State University with the goal of demonstrating the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronized coal. In support of the overall goal the following specific objectives were targeted: develop a coal handling/preparation system that can meet the technical and operational requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; maintain boiler thermal performance in accordance with specifications when burning oil or natural gas; maintain NOx emissions at or below 0.6 lb NO{sub 2} per million Btu; achieve combustion efficiencies of 98% or higher; and determine economic payback periods as a function of key variables.

  15. Regulation of coal polymer degradation by fungi. Eighth quarterly report, [April--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, R.L. [Notre Dame Univ., IN (United States). Dept. of Civil Engineering and Geological Sciences; Bumpus, J.A. [University of Northern Iowa, Cedar Falls, IA (United States). Dept. of Chemistry

    1996-07-28

    This project addresses the solubilization of low-rank coal (leonardite) by lignin degrading fungi. During this reporting period efforts were focused on determining the effect of pH on coal solubilization by oxalate ion and other biologically important compounds that might function as metal chelators, on the role of laccase in coal solubilization and metabolism, on decolorization of soluble coal macromolecule by Phanerochaete chrysosporium and T. versicolor in solid agar media, and on solubilization of coal in slurry cultures and solid phase reactors.

  16. Effect of freeboard extension on co-combustion of coal and olive cake in a fluidized bed combustor.

    Science.gov (United States)

    Akpulat, Onur; Varol, Murat; Atimtay, Aysel T

    2010-08-01

    In this study, flue gas emissions and combustion efficiencies during combustion and co-combustion of olive cake and coal were investigated in a bubbling fluidized bed. Temperature distributions along the combustion column and flue gas concentrations of O(2), CO, SO(2) and NO(x) were measured during combustion experiments. Two sets of experiments were performed to examine the effect of fuel composition, excess air ratio and freeboard extension on flue gas emissions and combustion efficiency. The results of the experiments showed that coal combustion occurs at lower parts of the combustion column whereas olive cake combustion takes place more in the freeboard region. As olive cake percentage in the fuel mixture increased, CO emissions increased, SO(2) and NO(x) emissions decreased. Additionally, flue gas emissions could be lowered with the freeboard extension while burning biomass or biomass/coal mixtures. Noticeable decrease in CO emissions and slight increase in combustion efficiencies were observed with a column height of 1900 mm instead of 900 mm.

  17. Supercritical fluid reactions for coal processing. Quarterly progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, C.A.

    1996-11-01

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which resemble the organic nitrogen containing components of coal, we propose to develop a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal denitrogenation. The tautomeric equilibrium of a Schiff base was chosen as the model system and was investigated in supercritical ethane and cosolvent modified supercritical ethane.

  18. Supercritical fluid reactions for coal processing. Quarterly report, January 1, 1996--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, C.A.

    1996-10-01

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which resemble the organic nitrogen containing components of coal, we propose to develop a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal denitrogenation. The tautomeric equilibrium of a Schiff base was chosen as the model system and was investigated in supercritical ethane and cosolvent modified supercritical ethane.

  19. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, October 1--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  20. Regulation of coal polymer degradation by fungi. Quarterly report, 31 July 1997--30 September 1997

    Energy Technology Data Exchange (ETDEWEB)

    1997-12-31

    During this reporting period the authors continued their investigations of how low rank coals are degraded by wood rotting fungi. Previous investigations showed that ligninolytic cultures of P. chrysosporium could decolorize soluble low rank coal macromolecule. The authors continue to investigate this phenomenon. Consistent with earlier observations they conclude that soluble coal macromolecule is decolorized in ligninolytic cultures of P. chrysosporium. To determine if this fungus can depolymerize coal macromolecule, samples were analyzed by GPC-HPLC. These analyses suggested that when coal macromolecules were incubated with ligninolytic cultures of P. chrysosporium a slight decrease in the average peak molecular weight of this mixture had occurred. During this reporting period they also discovered that changes in buffer composition can alter the peak retention times of coal macromolecules during GPC-HPLC probably by causing dissociation and reassociation of individual macromolecules. In other experiments it has been shown that lignin peroxidases that are secreted by ligninolytic cultures of P. chrysosporium are responsible, at least in part, for decolorization of coal macromolecules. Taken together, these studies show that the lignin degrading system of P. chrysosporium is able to enzymatically attack macromolecules solubilized from low rank coal. The ability of nonacclimated bacteria from sewage sludge to used leonardite and soluble coal macromolecule as a substrate for methanogenesis was also investigated. To date, the bacterial consortium studied was unable to use these substrates for this purpose.

  1. Regulation of coal polymer degradation by fungi. Fifth quarterly report, July 1995--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, R.L.

    1995-10-24

    This research program investigates the solubilization and depolymerization of coal polymer degradation by Fungi. We investigate the hypothesis that solubilization and depolymerization are distinctive events.

  2. Coal surface control for advanced physical fine coal cleaning technologies: Quarterly report, September 19, 1988--January 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B. I.; Chiang, S. -H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Streeter, R.; Gray, R.; Venkatadri, R.; Cheng, Y. S.; Chiarelli, P.

    1989-01-01

    The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration to achieve 90% pyrite sulfur rejection while operating at a Btu recovery greater than 90% based on run-of-mine coal. The surface control is meant to encompass storage, grinding environments and media, surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: project planning, method for analysis of samples, development of standard beneficiation test, grinding studies, modification of particle surface, and exploratory R D and support. Progress in each task of the project is presented in this report. 14 refs., 12 figs., 14 tabs.

  3. Clocked combustor can array

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Wook; McMahan, Kevin Weston; Srinivasan, Shiva Kumar

    2017-01-17

    The present application provides a clocked combustor can array for coherence reduction in a gas turbine engine. The clocked combustor can array may include a number of combustor cans positioned in a circumferential array. A first set of the combustor cans may have a first orientation and a second set of the combustor cans may have a second orientation.

  4. Clocked combustor can array

    Science.gov (United States)

    Kim, Won-Wook; McMahan, Kevin Weston; Srinivasan, Shiva Kumar

    2017-01-17

    The present application provides a clocked combustor can array for coherence reduction in a gas turbine engine. The clocked combustor can array may include a number of combustor cans positioned in a circumferential array. A first set of the combustor cans may have a first orientation and a second set of the combustor cans may have a second orientation.

  5. Combustion and emissions characterization of pelletized coal fuels. [Quarterly] technical report, March 1--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, S. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes

    1993-09-01

    Pelletization of coal offers a means of utilizing coal fines which otherwise would be difficult to use. Other advantages of coal pelletization include: (a) utilization of low grade fuels such as preparation plant waste, (b) impregnation of pellets with calcium carbonate or calcium hydroxide sorbent for efficient sulfur removal, and (c) utilization of coal fines of low quality in combination with different types of binders. The objective of this project is to investigate the carbon conversion efficiency and SO{sub 2} and NO{sub x} emissions from combusting pelletized coal fuels made from preparation plant waste streams using both limestone and calcium hydroxide as sorbent and cornstarch and gasification tar as binders. The combustion performance of these pelletized fuels is compared with equivalent data from a reference run-of-mine coal. Six different samples of coal pellets have been secured from ISGS researchers. Combustion and emissions characterization of these pellets in the laboratory scale 4-inch diameter circulating fluidized bed have been performed on some of the pellet samples. The pellets burn readily, and provide good bed temperature control. Preliminary results show good carbon conversion efficiencies. Oxides of nitrogen emissions are quite low and sulfur dioxide emissions are as good as or lower than those from a representative run-of-mine coal.

  6. Dewatering studies of fine clean coal. [Quarterly] technical report, December 1, 1991--February 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, B.K. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research

    1992-08-01

    Physical cleaning of ultra-fine coal using an advanced froth flotation techniques provides a low ash product, however, due to high surface area of particles the amount of water associated with clean coal is high. Economic removal of water from the froth will be important for commercial applicability of advanced froth flotation processes. The main objective of the present research program is to study and understand the dewatering characteristics of ultra-fine clean coal and to develop process parameters to effectively reduce the moisture to less than 20 percent in the clean coal product. The research approach under investigation utilizes synergistic effects of metal ions and surfactant to lower the moisture of clean coal using a conventional vacuum dewatering technique. The studies have identified a combination of metal ion and surfactant found to be effective in providing a 22 percent moisture filter cake.

  7. CFBC evaluation of fuels processed from Illinois coals. Technical report, March 1, 1992--May 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, S. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes

    1992-10-01

    The combustion and emissions properties of (a) flotation slurry fuel beneficiated from coal fines at various stages of the cleaning process and (b) coal-sorbent pellets made from the flotation concentrate of the same beneficiation process using corn starch as binder is being investigated in a 4-inch internal diameter circulating fluidized bed combustor (CFBC). Combustion data such as SO{sub 2}, NO{sub x} emissions, combustion efficiency and ash mineral matter analyses from these fuels are compared with similar parameters from a reference coal burnt in the same fluidized bed combustor. In the last quarter, the CFBC was brought on line and tests were performed on standard coal No. 3 from the Illinois Basin Coal Sample Program (IBCSP). During this quarter, it was decided, that a more meaningful comparison could be obtained if, instead of using the IBCSP No. 3 coal as a standard, the run-of-mine Illinois No. 5 coal from the Kerr-McGee Galatia plant could be used as the reference coal for purposes of comparing the combustion and emissions performance, since the slurry and pellet fuels mentioned in (a) and (b) above were processed from fines recovered form this same Illinois No. 5 seam coal. Accordingly, run-of-the mine Illinois No. 5 coal from the Galatia plant were obtained, riffled and sieved to {minus}14+18 size for the combustion tests. Preliminary combustion tests have been made in the CFBC with this new coal. In preparation for the slurry tests, the moisture content of the beneficiated slurry samples was determined. Proximate and ultimate analyses of all the coal samples were performed. Using a Leeds and Northrup Model 7995-10 Microtrek particle size analyzer, the size distributions of the coal in the three slurry samples were determined. The mineral matter content of the coal in the three slurry samples and the Illinois No. 5 seam coal were investigated using energy dispersive x-ray analysis.

  8. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, March 30, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.T. Jr.; Neufeld, R.D.; Blachere, J.R. [and others

    1998-04-01

    Progress is described on the use of by-products form clean coal technologies for the treatment of hazardous wastes. During the third quarter of Phase 2, work continued on evaluating Phase 1 samples (including evaluation of a seventh waste), conducting scholarly work, preparing for field work, preparing and delivering presentations, and making additional outside contacts.

  9. Advanced direct coal liquefaction concepts. Quarterly report, January 1, 1994--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Berger, D.J.; Parker, R.J.; Simpson, P.L. [Canadian Energy Development, Inc., Edmonton, AB (Canada)

    1994-07-01

    A detailed evaluation of the bench unit data on Black Thunder feedstocks was completed. The results show that in a once-through operation using counterflow, reactor technology coal conversions in excess of 90% could be obtained, giving distillable oil yields in the range 60--65 wt % on MAF coal. The remaining non-distillable oil fraction which represents 20--25 wt % on MAF coal is a source of additional distillable oil in further processing, for example, bottoms recycle operation. C{sub 1}-C{sub 3} gas yields were generally in the order of 6--8 wt %. In autoclave studies, Illinois No. 6 coal was found to be much less reactive than Black Thunder coal, and did not respond well to solubilization with carbon monoxide/steam. Process severity was, therefore, increased for bench unit operations on Illinois No. 6 coal, and work has concentrated on the use of hydrogen rather than carbon monoxide for solubilization. Preliminary coking studies on the resid from bench unit runs on Black Thunder coal were also carried out. Distillable liquid yields of 55--60 wt % were obtained. The technical and economic study to be carried out by Kilborn Engineering Company has been initiated.

  10. Chemistry and structure of coal derived asphaltenes and preasphaltenes. Quarterly progress report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T. F.

    1980-01-01

    It is the objective of this project to isolate the asphaltene and preasphaltene fractions from coal liquids from a number of liquefaction processes. These processes consist of in general: catalytic hydrogenation, staged pyrolysis and solvent refining. These asphaltene fractions may be further separated by both gradient elution through column chromatography, and molecular size distribution through gel permeation chromatography. Those coal-derived asphaltene and preasphaltene fractions will be investigated by various chemical and physical methods for characterization of their structures. After the parameters are obtained, these parameters will be correlated with the refining and conversion variables which control a given type of liquefaction process. The effects of asphaltene in catalysis, ash or metal removal, desulfurization and denitrification will also be correlated. It is anticipated that understanding the role of asphaltenes in liquefaction processes will enable engineers to both improve existing processes, and to make recommendations for operational changes in planned liquefaction units in the United States. The objective of Phase 1 was to complete the isolation and separation of coal liquid fractions and to initiate their characterization. The objective of Phase 2 is to continue the characterization of coal asphaltenes and other coal liquid fractions by use of physical and instrumental methods. The structural parameters obtained will be used to postulate hypothetical average structures for coal liquid fractions. The objective of Phase 3 is to concentrate on the characterization of the preasphaltene (benzene insoluble fraction) of coal liquid fraction by the available physical and chemical methods to obtain a number of structural parameters.

  11. Coal materials handling: classifier evaluation. Quarterly progress report, October-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.S.C.

    1980-01-01

    The desire and need to reduce energy requirements is, of course, the first and foremost reason for seeking a better understanding of the role of classification in closed circuit coal grinding. A better understanding of classifiers typically used in conjunction with coal grinding circuits would result in the ability to better utilize energies expended in coal grinding. In addition, the ability to better control the product size distribution is of major importance to many new processes being introduced to our energy conscious economy. Such processes include coal-oil mixture production, the production of coal-water slurries of pipelines, coal gasification and the production of solvent refined coal. All of these processes call for the use of pumpable and high concentrate slurries. In all cases the particle size distribution has a direct effect on the pumpability and percent by weight solids concentration that is reasonably attainable. Recognizing the need for a better technical understanding of classifiers used in coal grinding, the United States Department of Energy and the Kennedy Van Saun Corporation conceived the present project to evaluate various classifiers currently being used in air swept coal grinding systems. The classifiers under consideration include a twin cone classifier, an expansion chamber type (vari-mesh) classifier and a new centrifugal classifier recently introduced by Hukki. The objectives of this evaluation are to compare the classifiers with respect to their effect on closed circuit grinding system performance and to provide data that will allow a preliminary evaluation of classifier design with respect to separation on the basis of sulfur and ash content.

  12. Geochemistry of a reclaimed coal slurry impoundment. [Quarterly] technical report, September 1, 1993--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dreher, G.B.; Roy, W.R.; Steele, J.D.; Heidari, M.

    1993-12-31

    The highly alkaline residue from the fluidized-bed combustion (FBC) of coal may be an environmentally acceptable material for use in neutralizing acid produced by the oxidation of pyrite in coal slurry solids (CSS). Previous research indicated that FBC residues in mixtures with pyrite-rich CSS neutralized the acid produced by or attenuated the oxidation of pyrite in CSS. In the present research we intend to collect cores of unconsolidated material and sample pore gases from a reclaimed coal slurry impoundment. The data gathered will provide background information necessary for the development of a predictive computer model of the generation and migration of acid in a reclaimed coal slurry impoundment. A conceptual model for the oxidation of pyrite at near-neutral conditions is being developed. This report includes our first approximation of the model. The model is subject to change.

  13. Liquid chromatographic analysis of coal surface properties. Quarterly progress report, July--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, K.C.

    1992-12-15

    Experiments on equilibrium adsorption of various alcohols on 60--200 mesh Illinois No. 6 coal (DECS-2; Randolph county) were performed during the July--September period. The alcohols include ethanol, methanol, isobutanol, t-butanol, 1-heptanol, 1-octanol, 1-hexadecanol, 4-methyl-2-pentanol, and 2-methyl-l-pentanol. Amounts of equilibrium adsorption of alcohols (ALCO) on 60--200 mesh Illinois No. 6 coal are 1 - 230 {times} 10{sup {minus}6} mg-ALCO/g-coal, whereas equilibrium concentrations of alcohols are 3--40 ppM. Relations between equilibrium loadings of alcohols on the coal and equilibrium concentrations of alcohols in aqueous solutions are shown to be linear.

  14. Flash hydropyrolysis of coal. Quarterly report No. 9, April 1-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-10-01

    Both the North Dakota lignite and New Mexico sub-bituminous coal have been hydrogasified in the Flash Hydropyrolysis unit with yields ranging up to about 85 to 90% conversion of the available carbon at 2500 psi and 875 to 900/sup 0/C. The lignite appears to be less reactive at lower pressure than the sub-bituminous coal, producing an average of 40% gaseous yield at 1000 psi and 900/sup 0/C while the sub-bituminous produced over 50%. The reactivity of both coals is dependent on the hydrogen partial pressure but does not appear to be affected by H/sub 2//coal feed ratio. When the H/sub 2//coal ratio was reduced to 0.05 and sub-bituminous coal was run at 2500 psi and 875/sup 0/C, a high methane concentration of 57% was achieved. However, the yield or conversion of carbon to gas was limited to 30% which may be attributed to the reduction in hydrogen partial pressure during the run. Further work is being planned to obtain additional data at the lower pressure and H/sub 2//coal feed ratios. Illinois No. 6 coal, a caking bituminous, has been successfully run in the experimental equipment both treated with calcium and untreated. A reaction model, previously developed, has been modified and is being fitted to all the lignite data to produce one consistent set of pre-exponential factors and activation energies for the reaction rate equations. The experimental equipment is being modified to allow varying feed composition and especially introduction of steam into the feed gas.

  15. Desulfurization of coal: enhanced selectivity using phase transfer catalysts. Quarterly report, March 1 - May 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, S.R.; Hippo, E.J. [Southern Illinois Univ., Carbondale, IL (United States)

    1996-12-31

    Due to environmental problems related to the combustion of high sulfur Illinois coal, there continues to be interest in the development in viable pre-combustion desulfurization processes. Recent studies by the authors have obtained very good sulfur removals but the reagents that are used are too expensive. Use of cheaper reagents leads to a loss of desired coal properties. This study investigated the application phase transfer catalysts to the selective oxidation of sulfur in coal using air and oxygen as oxidants. The phase transfer catalyst is expected to function as a selectivity moderator by permitting the use of milder reaction conditions that otherwise necessary. This would enhance the sulfur selectivity and help retain the heating value of the coal. The use of certain coal combustion wastes for desulfurization, and the application of cerium (IV) catalyzed air oxidation for selective sulfur oxidation are also being studied. If successful, this project could lead to the rapid development of a commercially viable desulfurization process. This would significantly improve the marketability of Illinois coal.

  16. Innovative Clean Coal Technology (ICCT). Technical progress report, first quarter, 1993, January 1993--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 NM capacity) near Pensacola, Florida. The project will be funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  17. Biological upgrading of coal liquids. Quarterly report, October--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Culture screening and performance studies were performed with a variety of cultures in removing nitrogen compounds from coal liquid. Two cultures were shown to be effective in removing 17 and 26 percent of the nitrogen in coal liquid as determined by elemental analysis. Experiments will continue in an effort to find additional cultures and isolates able to degrade nitrogen, as well as oxygen and sulfur as heteroatom compounds, from coal liquids. A biological process for upgrading of coal liquids would offer significant advantages, such as operation at ordinary temperature and pressure with better energy efficiency. Of greater importance is the fact that microorganisms do not require an external supply of hydrogen for heteroatom removal, obtaining required hydrogen from water. Furthermore, the biocatalysts are continuously regenerated by growth on the heteroatom compounds. Ring structures are degraded as the heteroatoms are removed. The heteroatoms are in an inocuous form, such as NH{sub 3}, SO{sub 4}{sup 2{minus}} CO{sub 2} and H{sub 2}O. Therefore, there is significant potential for the development of an economical biological process for upgrading of coal liquids.

  18. Healy clean coal project. Quarterly technical progress report No. 16-19, October 1, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    This Quarterly Technical Progress Report is required under U.S. Department of Energy (DOE) Cooperative Agreement, Section XV, {open_quotes}Reporting Requirements{close_quotes} and Attachment C, {open_quotes}Federal Assistance Reporting Checklist{close_quotes}. It covers the period of October 1, 1994 through September 30, 1995. The primary objective of the HCCP is to conduct a cost-sharing project that will demonstrate a new power plant design which features innovative integration of an advanced combustor and heat recovery system coupled with both high and low temperature emission control processes. The parties anticipate that if the demonstration project is successful, the technology could become commercialized in the near term and will be capable of (1) achieving significant reductions in the emissions of sulfur dioxide and the oxides of nitrogen from existing facilities to minimize environmental impacts such as transboundary and interstate pollution and/or (2) providing for future energy needs in an environmentally acceptable manner. The primary equipment elements comprising this new power plant design includes entrained combustion systems coupled with a boiler which will produce low NOx levels, function as a limestone calciner and first stage SO{sub 2} remover in addition to its heat recovery function; a single spray dryer absorber vessel for second stage sulfur removal; a baghouse for third stage sulfur and particulate removal; and a lime activation system which recovers unused reagent from particulate collected in the baghouse. The emission levels Of SO{sub 2}, NOx, and particulate to be demonstrated are expected to be better than the federal New Source Performance Standards (NSPS).

  19. Molten Salt Coal Gasification Process Development Unit. Phase 2. Quarterly technical progress report No. 2, October-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Slater, M. H.

    1981-01-20

    This represents the second quarterly progress report on Phase 2 of the Molten Salt Coal Gasification Process Development Unit (PDU) Program. Phase 1 of this program started in March 1976 and included the design, construction, and initial operation of the PDU. On June 25, 1980, Phase 2 of the program was initiated. It covers a 1-year operations program utilizing the existing PDU and is planned to include five runs with a targeted total operating time of 9 weeks. During this report period, Run 6, the initial run of the Phase 2 program was completed. The gasification system was operated for a total of 95 h at pressures up to 10 atm. Average product gas HHV values of 100 Btu/scf were recorded during 10-atm operation, while gasifying coal at a rate of 1100 lb/h. The run was terminated when the melt overflow system plugged after 60 continuous hours of overflow. Following this run, melt withdrawal system revisions were made, basically by changing the orifice materials from Monofrax to an 80 Cobalt-20 Chromium alloy. By the end of the report period, the PDU was being prepared for Run 7.

  20. Hindered diffusion of coal liquids. Quarterly report No. 3, March 18, 1993--June 17, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Webster, I.A. [Unocal Corp., Los Angeles, CA (United States)

    1993-11-01

    The design of industrial catalysts requires that the diffusivity of the reacting species within the catalyst be accurately known. Nowhere is this more important than in the area of coal liquefaction and upgrading of coal liquids. In this area one is faced with the task of processing a number of heavy oils, containing metals and other contaminants, in a variety of process dependent solvents. It is important, therefore, on the basis of predicting catalyst activity, selectivity, and optimizing reactor performance, that the diffusivities of these oil species be accurately known. It is the purpose of this project to provide a correct concept of coal asphaltenes by careful and detailed investigations of asphaltene transport through porous systems under realistic process temperature and pressure conditions. The experimental studies will be coupled with detailed, in-depth statistical and molecular dynamics models intended to provide a fundamental understanding of the overall transport mechanisms.

  1. Hydrogen bonding in asphaltenes and coal. Quarterly Report for July 1, 1978 - September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Li, N.C.; Tewari, K.C.

    1978-09-29

    Two coal liquid products derived from the same Kentucky hvAb coal have been separated into toluene-insoluble, asphaltene, and pentane-soluble heavy oil fractions. Viscosity and calorimetric studies are reported of the interaction between heavy oil and asphaltene(A) and its acid/neutral(AA) and base(BA) components in solvent benzene. The increase in viscosity and molar enthalpy of interaction, {Delta}H{sup 0}, in the order BA>A>AA, correlate well with the proton magnetic resonance downfield chemical shift of the OH signal of o-phenylphenol, as a function of added asphaltene (A, AA, BA) concentration in solvent CS{sub 2}· The results suggest that when asphaltene .and heavy oil are present together, hydrogen-bonding involving largely phenolic OH, is one of the mechanisms by which asphaltene-heavy oil interactions are achieved and, in part, is responsible for the viscosity increase of coal liquids.

  2. A characterization and evaluation of coal liquefaction process streams. Quarterly report, January 1--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Heunisch, G.W.; Winschel, R.A.

    1998-08-01

    Described in this report are the following activities: CONSOL characterized process stream samples from HTI Run ALC-2, in which Black Thunder Mine coal was liquefied using four combinations of dispersed catalyst precursors. Oil assays were completed on the HTI Run PB-05 product blend. Fractional distillation of the net product oil of HTI Run POC-1 was completed. CONSOL completed an evaluation of the potential for producing alkylphenyl ethers from coal liquefaction phenols. At the request of DOE, various coal liquid samples and relevant characterization data were supplied to the University of West Virginia and the Federal Energy Technology Center. The University of Delaware is conducting resid reactivity tests and is completing the resid reaction computer model. The University of Delaware was instructed on the form in which the computer model is to be delivered to CONSOL.

  3. Hindered diffusion of coal liquids. Quarterly report No. 12, June 18, 1995--September 17, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Webster, I.A. [Unocal Corp., Los Angeles, CA (United States)

    1995-12-31

    The design of industrial catalysts requires that the diffusivity of the reacting species within the catalyst be accurately known. Nowhere is this more important than in the area of coal liquefaction and upgrading of coal liquids. In this area one is faced with the task of processing a number of heavy oils, containing metals and other contaminants, in a variety of process dependent solvents. It is important, therefore, on the basis of predicting catalyst activity, selectivity, and optimizing reactor performance, that the diffusivities of these oil species be accurately known. It is the purpose of the project described here to provide such a correct concept of coal asphaltenes by careful and detailed investigations of asphaltene transport through porous systems under realistic process temperature and pressure conditions. The experimental studies will be coupled with detailed, in-depth statistical and molecular dynamics models intended to provide a fundamental understanding of the overall transport mechanisms.

  4. Molecular biological enhancement of coal biodesulfurization. Ninth quarterly technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, J.H.; Zupancic, T.J.; Baker, B.; Palmer, D.T.; Fry, I.J.; Tranuero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N. [Battelle, Columbus, OH (United States); Chakravanty, L.; Tuovinen, O.H. [Ohio State Univ., Columbus, OH (United States)

    1991-09-13

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotropic bacterium; conduct a batch-mode optimization/analysis of scale-up variables.

  5. Molecular biological enhancement of coal desulfurization. Eleventh quarterly technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, J.H.; Zupancic, T.J.; Kittle, J.D. Jr.; Baker, B.; Palmer, D.T.; Traunero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N. [Battelle, Columbus, OH (United States); Chakravarty, L.; Tuovinen, O.H. [Ohio State Univ., Columbus, OH (United States)

    1991-03-13

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of the organism; transfer this pathway into a fast-growing chemolithotrophic bacterium; conduct a batch-mode optimization/analysis of scale-up variables.

  6. Molecular biological enhancement of coal biodesulfurization. Tenth quarterly technical progress report, [September--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, J.H.; Zupancic, T.J.; Kittle, J.D.; Baker, B.; Palmer, D.T.; Fry, I.J.; Traunero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N. [Battelle, Columbus, OH (United States); Chakravanty, L.; Tuovinen, O.H. [Ohio State Univ., Columbus, OH (United States)

    1991-12-13

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The specific technical objectives of the project are to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotrophic bacterium; and conduct a batch-mode optimization/analysis of scale-up variables.

  7. Molecular biological enhancement of coal biodesulfurization. Fourth quarterly technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, J.H.; Fry, I.; Wyza, R.E.; Palmer, D.T.; Zupancic, T.J.; Conkle, H.N.

    1990-06-14

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotropic bacterium; conduct a batch-mode optimization/analysis of scale-up variables.

  8. Micropore diffusion in coal chars under reactive conditions: Quarterly technical progress report, 15 September 1986-15 December 1986

    Energy Technology Data Exchange (ETDEWEB)

    Calo, J.M.

    1986-01-01

    This project is concerned with the development of a new technique for measuring the rates of diffusion of gases on the microporous structure of coal chars. Mass transport in pores of molecular dimensions is known to be an activated, relatively slow process. The gasification of coal chars may be transport-limited. To correlate and predict gasification reactivity, it is quite important to know over what range of conditions such limitations may control. The initial transient behavior of a gaseous species exposed to such chars primarily reflects the transport resistance offered by the micropores. When this process is conducted using a well-defined perturbation in a mixed reactor, the diffusion step can often be separated from the subsequent reaction steps, so that measurements can be conducted under actual gasification conditions. We will apply this technique to a few well-characterized coal/carbon chars. Micropore diffusion times in these samples will be determined for various gaseous species relevant to the gasification environments. The primary variables will be temperature and degree of conversion (i.e., burn-off). Measurements will be examined with respect to changes occurring in the pore structure of the chars. In this first quarterly technical progress report, the background and objectives of the study and the requisite experimental preparations to begin the micropore diffusion studies are presented. In particular, during the reporting period: the graduate assistant on this project conducted a literature review of the general area of micropore diffusion and began to acquire the necessary background for the experimental study; the inception of a pore model was undertaken involving micropore diffusion; and the Autoclave Engineers 3'' Berty catalytic reactor has been refurbished and modified for the study. 59 refs., 2 figs.

  9. Hindered diffusion of coal liquids. Quarterly report No. 6, December 18, 1993--March 17, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. [Univ. of Southern California, Los Angeles (United States); Webster, I.A. [UNOCAL Corp., Los Angeles, CA (United States)

    1994-08-01

    Throughout the experimental runs described herein, the authors utilized a high pressure, high temperature diffusion cell system. This diffusion system has been tested through the measurement of the diffusivity of a number of model coal liquids. The project is of both empirical and theoretical nature and is divided into a number of tasks which are reviewed here.

  10. Electrostatic beneficiation of coal. Quarterly technical progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, M.K.; Lindquist, D.; Tennal, K.B.

    1996-07-01

    Progress reports are presented for the following: modification to the electrostatic separator; review of DOE specifications for minimum beneficiation and calculations of grinding requirements based on washability; two-pass beneficiation; analysis of different sieve fractions; measurement of charge to mass ratio as a function of height of deposition; and charging of coal against different materials.

  11. Effects of coal combustion and gasification upon lung structure and function. Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, Dr., David E.

    1980-12-12

    The effects on lungs of emissions from fluidized-bed combustion and coal gasification on man are being studied by inhalation experiments and intratracheal administration of fly ash to hamsters. The hamsters are sacrificed at 1, 3, 6, 9 and 30 days and the lungs examined by methods which are described. (LTN)

  12. Hydrothermal pretreatment of coal. Quarterly report No. 1, September 21--December 15, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.S.

    1989-12-21

    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of ``OH`` seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  13. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 14, January--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-04-30

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by June 1997. During Quarter 14 (January--March 1996), parametric testing of the 30-inch Microcel{trademark} flotation column at the Lady Dunn Plant continued under Subtask 3.2. Subtask 3. 3 testing, investigating a novel Hydrophobic Dewatering process (HD), continued this quarter with parametric testing of the batch dewatering unit. Coal product moistures of 3 to 12 percent were achieved, with higher percent solids slurry feeds resulting in lower product moistures. For a given percent solids feed, the product moisture decreased with increasing butane to dry coal ratios. Stirring time, stirring rate, and settling time were all found to have little effect on the final moisture content. Continuing Subtask 6.4 work, investigating coal-water-fuel slurry formulation for coals cleaned by selective agglomeration, indicated that pH adjustment to 10 resulted in marginally better (lower viscosity) slurries for one of the two coals tested. Subtask 6.5 agglomeration bench-scale testing results indicate that the new Taggart coal requires a grind with a d{sub 80} of approximately 33 microns to achieve the 1 lb ash/MBtu product quality specification. Also under Subtask 6.5, reductions in the various trace element concentrations accomplished during selective agglomeration were determined. Work was essentially completed on the detailed design of the PDU selective agglomeration module under Task 7 with the issuing of a draft report.

  14. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report No. 4, October 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-20

    The objectives of this project are to demonstrate that: The Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality at a convincing rate of production in a commercial coal preparation plant. The wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation. A wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. During this fourth quarter of the contract period, activities were underway under Tasks 2 and 3. Sufficient characterization of the bench-scale testing and pilot-plant testing results enabled the design and procurement activities to move forward. On that basis, activities in the areas of design and procurement that had been initiated during the previous quarter were conducted and completed.

  15. Molecular biological enhancement of coal biodesulfurization. Eleventh quarterly technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, J.H.; Zupancic, T.J.; Kittle, J.D. Jr.; Baker, B.; Palmer, D.T.; Traunero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N. [Battelle, Columbus, OH (United States); Chakravarty, L.; Tuovinen, O.H. [Ohio State Univ., Columbus, OH (United States)

    1992-03-13

    The objective of this project is to produce one or more microorganisms capable of the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: (1) clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; (2) return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; (3) transfer this pathway into a fast-growing chemolithotrophic bacterium; (4) conduct a batch-mode optimization/analysis of scale-up variables. By letter of September 3, 1991, from the Project Manager at Department of Energy, Pittsburgh Energy Technology Center, these objectives of this project were redirected toward finding and developing suitable vectors for Thiobacillus strains. All work on bacterial strains from Lehigh University was terminated since they did not contain desulfurization traits represented by the ``4S`` pathway.

  16. Enzymatic desulfurization of coal. Second quarterly report, October 1--December 15, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Marquis, J.K. [Boston Univ., MA (United States). School of Medicine; Kitchell, J.P. [Holometrix, Inc., Cambridge, MA (United States)

    1988-12-15

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of ``model`` organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix.

  17. Biological upgrading of coal liquids. First quarterly report, January 1, 1992--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The purpose of this report is to present the results of culture selection studies for the removal of heteroatom compounds from coal liquids. A variety of pure cultures have been selected based upon a comprehensive literature review. In addition, cultures are being isolated from natural sources. Synthetic heteroatom compounds are presently being utilized in the degradation studies until the Environmental Assessment Questionnaire is approved. (VC)

  18. Hindered diffusion of coal liquids. Quarterly report number 11, March 18--June 17, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Webster, I.A. [UNOCAL Corp., Los Angeles, CA (United States)

    1995-12-31

    The design of industrial catalysts requires that the diffusivity of the reacting species within the catalyst be accurately known. Nowhere is this more important than in the area of coal liquefaction and upgrading of coal liquids. In this area one is faced with the task of processing a number of heavy oils, containing metals and other contaminants, in a variety of process dependent solvents. It is important, therefore, on the basis of predicting catalyst activity, selectivity, and optimizing reactor performance, that the diffusivities of these oil species be accurately known. Contrary to laboratory reactors, where most of the studies of asphaltene`s chemical structure have taken place, most industrial reactors are continuous systems. The state of the asphaltene molecule therefore does not only depend on the temperature, pressure and polarity of the solvent but also on the reactor`s residence time. It is, therefore, very important to have a correct concept of the asphaltene`s structure and through careful experimentation, one can then decide whether such a concept has any practical implications at realistic upgrading conditions. It is the purpose of the project described here to provide such a correct concept of coal asphaltenes by careful and detailed investigations of asphaltenes transport through porous systems under realistic process temperature and pressure conditions. The experimental studies will be coupled with detailed, in-depth statistical and molecular dynamics models intended to provide a fundamental understanding of the overall transport mechanisms. 60 refs.

  19. Hindered diffusion of coal liquids. Quarterly report No. 4, June 18, 1993--September 17, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Webster, I.A. [Unocal Corp., Los Angeles, CA (United States)

    1993-12-31

    The design of industrial catalysts requires that the diffusivity of the reacting species within the catalyst be accurately known. Nowhere is this more important than in the area of coal liquefaction and upgrading of coal liquids. In this area one is faced with the task of processing a number of heavy oils, containing metals and other contaminants, in a variety of process dependent solvents. It is important, therefore, on the basis of predicting catalyst activity, selectivity, and optimizing reactor performance, that the diffusivities of these oil species by accurately known. It is the purpose of this project to provide a correct concept of coal asphaltenes by careful and detailed investigations of asphaltene transport through porous systems under realistic process temperature and pressure conditions. The experimental studies will be coupled with detailed, in-depth statistical and molecular dynamics models intended to provide a fundamental understanding of the overall transport mechanisms. The project is of both experimental and theoretical nature and is divided into a number of tasks. Experimental tasks cover measuring asphaltene diffusivity in: model catalysts under realistic temperature and pressure conditions; sol-gel ceramic membranes; and model and real membranes under reactive conditions. Theoretical tasks include: study of hindered transport in a single pore; transport and reaction in networks of interconnected pores; Monte Carlo and molecular dynamics simulations; dilute simulations; low density diffusion with adsorption desorption; role of intramolecular, intermolecular and surface forces-accounting for aggregation and delamination phenomena; and molecular dynamics simulations.

  20. Novel microorganism for selective separation of coal from ash and pyrite; First quarterly technical progress report, September 1, 1993--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Misra, M.; Smith, R.W.; Raichur, A.M.

    1993-12-31

    This report summarizes the progress made during the first quarter of the research project entitled ``A Novel Microorganism for Selective Separation of Coal from Ash and Pyrite,`` DOE Grant No. DE-FG22-93PC93215. The objective of this project is to study the effectiveness of a novel hydrophobic microorganism, Mycobacterium phlei (M. phlei), for the selective flocculation of coal from pyrite and ash-forming minerals. During the reporting period, three different coal samples: Illinois No. 6 coal, Kentucky No. 9 coal and Pittsburgh No. 8 coal, were collected to be used in the investigation. The microorganism, M. phlei, was obtained as freeze-dried cultures and the growth characteristics of the bacteria were studied. Scanning electron microphotographs revealed that M. phlei cells are coccal in shape and are approximately 1 {mu}m in diameter. Electrokinetic measurements showed that the Illinois No. 6 and Pittsburgh No. 8 coal samples had an isoelectric point (IEP) around pH 6 whereas M. phlei had an IEP around pH 1.5. Electrokinetic measurements of the ruptured microorganisms exhibited an increase in IEP. The increase in IEP of the ruputured cells was due to the release of fatty acids and polar groups from the cell membrane.

  1. Valve development for coal gasification plants: Phase I. Quarterly technical program report, January--April 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bellezza, D.

    1978-08-01

    This document discusses engineering and development progress during the period of January to April 1978. The work performed during this quarter consisted of: Successful development testing of seat and visor materials for Task I, II, and IV valve applications; continued seat and visor development for Task III valve application; successful development testing of bearing systems; completion of Phase I Conceptual Design and Functional Analysis effort; completion of the Phase I Summary Review report; improvements to the Hot Test fixture for use in further seat and visor development tests for Task III valve application.

  2. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 12, July--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-10-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction and operation of a 2-t/hr process development unit. The project began in October, 1992, and is scheduled for completion by June, 1997. During Quarter 12 (July--September 1995), work continued on the Subtask 3.2 in-plant testing of the Microcel{trademark} flotation column at Lady Dunn. Under Subtask 4.4, additional toxic trace element analysis of column flotation samples finalized the data set. Data analysis indicates that reasonably good mass balances were achieved for most elements. The final Subtask 6.3 Selective Agglomeration Process Optimization topical report was issued this quarter. Preliminary Subtask 6.4 work investigating coal-water-fuel slurry formulation indicated that selective agglomeration products formulate slurries with lower viscosities than advanced flotation products. Work continued on Subtask 6.5 agglomeration bench-scale testing. Results indicate that a 2 lb ash/MBtu product could be produced at a 100-mesh topsize with the Elkhorn No. 3 coal. The detailed design of the 2 t/hr selective agglomeration module neared completion this quarter with the completion of additional revisions of both the process flow, and the process piping and instrument diagrams. Construction of the 2 t/hr PDU and advanced flotation module was completed this quarter and startup and shakedown testing began.

  3. Numerical investigation of recirculation in the UTSI MHD combustor

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, R.J.; Lee, J.J.; Giel, T.V. Jr.

    1983-09-01

    Numerical studies were carried out to investigate the gross structure of flow in cylindrical combustors. The combustor configurations studied are variations of a working design used at the University of Tennessee Space Institute to burn pulverized coal at temperatures in excess of 3000K for generation of a plasma feeding a magnetohydrodynamic channel. The numerical studies were conducted for an isothermal fluid; the main objective of the calculations was to study the effect of the oxidant injection pattern on the gross structure of recirculating flows within the combustor. The calculations illustrate the basic features of the flow in combustors of this type and suggest implications for the injection of coal and oxidizer in this type of combustor.

  4. Pelletizing/reslurrying as a means of distributing and firing clean coal. Final quarterly technical progress report No. 7, January 1, 1992-- March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Conkle, H.N.

    1992-06-09

    Work in this quarter focused on completing (1) the final batch of pilot-scale disk pellets, (2) storage, handling, and transportation evaluation, (3) pellet reslurrying and atomization studies, and (4) cost estimation for pellet and slurry production. Disk pelletization of Elkhorn coal was completed this quarter. Pellets were approximately 1/2- to 3/4-in. in diameter. Pellets, after thermal curing were strong and durable and exceeded the pellet acceptance criteria. Storage and handling tests indicate a strong, durable pellet can be prepared from all coals, and these pellets (with the appropriate binder) can withstand outdoor, exposed storage for at least 4 weeks. Pellets in unexposed storage show no deterioration in pellet properties. Real and simulated transportation tests indicate truck transportation should generate less than 5 percent fines during transport. Continuous reslurrying testing and subsequent atomization evaluation were performed this quarter in association with University of Alabama and Jim Walter Resources. Four different slurries of approximately 55-percent-solids with viscosities below 500 cP (at 100 sec{sup {minus}1}) were prepared. Both continuous pellet-to-slurry production and atomization testing was successfully demonstrated. Finally, an in depth evaluation of the cost to prepare pellets, transport, handle, store, and convert the pellet into Coal Water Fuel (CWF) slurries was completed. Cost of the pellet-CWF option are compared with the cost to directly convert clean coal filter cake into slurry and transport, handle and store it at the user site. Findings indicate that in many circumstances, the pellet-CWF option would be the preferred choice. The decision depends on the plant size and transportation distance, and to a lesser degree on the pelletization technique and the coal selected.

  5. Hydrogen bonding in asphaltenes and coal liquids. Quarterly report, August 1, 1980-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Li, N.C.; Jones, L.; Yaggi, N.F.

    1980-01-01

    A coal-derived liquid (SRC-II) and its fractions have been characterized by 600 MHz /sup 1/H NMR spectrometer. Saturate fraction, being 8.1% by weight of unfractionated coal-liquid, is mainly composed of n-alkanes of high carbon numbers and the content of cycloalkanes is negligible. Aromatic fraction (49.0%) contains a considerable amount of partially hydrogenated polynuclear compounds. Double resonance techniques have been used for chemical shift identification of ..beta..-CH/sub 2/ and ..cap alpha..-CH/sub 2/ protons attached to aromatic ring structures. The decoupled signals may be used for quantitative analysis of donor hydrogens, which are known to be effective in hydrogen-transfer phenomenon in coal-liquefaction processes. The aromatic fraction contains larger amounts of CH/sub 3/ group attached to condensed aromatic ring structures, which appear as singlets in the region of 2.4 to 2.7 ppM, whereas in acidic fractions almost all benzylic CH/sub 3/ groups are attached to mono-aromatic ring structure (chemical-shift range of 2.2 to 2.3 ppM). The relatively strong acidic fraction, Acid-II (15.0%), can be recovered from anion-exchange resin by the elution with CO/sub 2/ saturated methanol after the elution with benzene. Acid-II is substantially composed of alkyl substituted mono-aromatic phenols and 75% of the fraction boil in the narrow boiling-point range of 461 to 516 K (370 to 470 F).

  6. Hindered diffusion of coal liquids. Quarterly report No. 1, September 18, 1992--December 17, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Webster, I.A. [Unocal Corp., Los Angeles, CA (United States)

    1992-12-31

    The molecules comprising coal liquids can range from less than 10 to several hundred {angstrom} in diameter. Their size is, therefore, comparable to the average pore size of most hydroprocessing catalysts. Thus, during processing, transport of these molecules into the catalyst occurs mainly by ``configurational`` or ``hindered diffusion,`` which is the result of two phenomena occurring in the pores; the distribution of solute molecules in the pores is affected by the pores and the solute molecules experience an increased hydrodynamic drag. The field of hindered diffusion has been reviewed by Deen [16]. The earliest studies in the filed were by Renkin et al. [17].

  7. Hindered diffusion of coal liquids. Quarterly report No. 5, September 18, 1993--December 17, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Webster, I.A. [UNOCAL Corp., Los Angeles, CA (United States)

    1994-05-01

    The design of industrial catalysts requires that the diffusivity of the reacting species within the catalyst be accurately known. Nowhere is this more important than in the area of coal liquefaction and upgrading of coal liquids. In this area one is faced with the task of processing a number of heavy oils, containing metals and other contaminants, in a variety of process dependent solvents. It is important, therefore, on the basis of predicting catalyst activity, selectivity, and optimizing reactor performance, that the diffusivities of these oil species be accurately known. In this report, the authors report the publication of model studies of the diffusivity of Lennard-Jones particles in porous systems with dimensionality between two and three. Such a modeled system includes pillared clays. They also published a paper which addresses the sorption and aggregation of asphaltene particles with porous media such as catalysts. The paper presents new experimental data for the amount of asphalt precipitation formed with various solvents. The experimental results are compared to model calculations.

  8. Flash hydropyrolysis of coal. Quarterly report No. 6, April 1--June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    Thirty experimental runs were conducted between pressures of 500 and 2500 psig and temperatures of 850/sup 0/ and 900/sup 0/C for the purpose of studying the production of gaseous hydrocarbons from lignite. Yields as high as 90% conversion of the available carbon to methane and ethane have been observed at 2500 psig and 875/sup 0/C, with only 1.5% of the carbon appearing as CO and the remainder as char. It was observed that significant decomposition of the gaseous hydrocarbon products occurred as the coal residence time in the reactor increased from the maximum yields at 2.4 sec to 7 seconds. Hydrogen pressure was shown to have a significant effect on the production of the gaseous hydrocarbons at 875 to 900/sup 0/C, the yield increasing linearly at a rate of 18% in absolute conversion of the available carbon for each 500 psi increase in pressure. Coal hydrogenation data from several laboratories was examined and the conclusions from this study are reported. The experimental limits of reactor operation have been changed to study primarily the formation of gaseous hydrocarbons.

  9. Combustion and emissions characterization of pelletized coal fuels. Technical report, December 1, 1992--February 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, S. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes

    1993-05-01

    The aim of this project is to demonstrate that sorbent-containing coal pellets made from low grade coal or coal wastes are viable clean burning fuels, and to compare their performance with that of standard run-of-mine coal. Fuels to be investigated are: (a) carbonated pellets containing calcium hydroxide sorbent, (b) coal fines-limestone pellets with cornstarch as binder, (c) pellets made from preparation plant recovered coal containing limestone sorbent and gasification tar as binder, and (d) a standard run-of-mine Illinois seam coal. The fuels will be tested in a laboratory scale 411 diameter circulating fluidized bed combustor. Progress this quarter has centered on the development of a hydraulic press based pellet mill capable of the high compaction pressures necessary to produce the gasification tar containing pellets outlined in (c) above. Limited quantities of the pellets have been made, and the process is being fine tuned before proceeding into the production mode. Tests show that the moisture content of the coal is an important parameter that needs to be fixed within narrow limits for a given coal and binder combination to produce acceptable pellets. Combustion tests with these pellet fuels and the standard coal are scheduled for the next quarter.

  10. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Quarterly technical progress report, July--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chunshan; Schmidt, E.; Schobert, H.H.

    1996-01-01

    Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting polycyclic aromatic units and the reactions of various oxygen functional groups. Here in this quarterly, we report on the hydrocracking of 4-(l-naphthylmethyl)bibenzyl in the presence of iron (Fe) catalysts and sulfur and residual wall catalytic effect. Catalytic hydrocracking of 4-(1-naphthylmethyl)bibenzyl (NMBB) predominantly yielded naphthalene and 4-methylbibenzyl. Various iron compounds were examined as catalyst precursors. Sulfur addition to most catalyst precursors led to substantially higher catalyst activity and higher conversion. NMBB was also treated with sulfur in the absence of iron compounds, in concentrations of 1.2-3.4 wt%, corresponding to the conditions present in reactions with added iron compounds. Increasing sulfur concentrations led to higher NMBB conversions. Furthermore, sulfur had a permanent effect on the reactor walls. A black sulfide layer formed on the surface which could not be removed mechanically. The supposed non-catalytic reactions done in the same reactor but after experiments with added sulfur showed higher conversions than comparable experiments done in new reactors. This wall catalytic effect can be reduced by treating the sulfided reactors with hydrochloric acid. The results of this work demonstrate the significant effect of sulfur addition and sulfur-induced residual wall effects on carbon-carbon bond cleavage and hydrogenation of aromatics.

  11. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 2, January 1995--March 1995

    Energy Technology Data Exchange (ETDEWEB)

    Groppo, J.G.; Parekh, B.K.

    1995-05-05

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 to March 31, 1995.

  12. Direct coal liquefaction baseline design and system analysis. Quarterly report, January--March 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The primary objective of the study is to develop a computer model for a base line direct coal liquefaction design based on two stage direct coupled catalytic reactors. This primary objective is to be accomplished by completing the following: a base line design based on previous DOE/PETC results from Wilsonville pilot plant and other engineering evaluations; a cost estimate and economic analysis; a computer model incorporating the above two steps over a wide range of capacities and selected process alternatives; a comprehensive training program for DOE/PETC Staff to understand and use the computer model; a thorough documentation of all underlying assumptions for baseline economics; and a user manual and training material which will facilitate updating of the model in the future.

  13. Direct coal liquefaction baseline design and system analysis. Quarterly report, May--August 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The primary objective of the study is to develop a computer model for a base line direct coal liquefaction design based on two stage direct coupled catalytic reactors. This primary objective is to be accomplished by completing the following: a base line design based on previous DOE/PETC results from Wilsonville pilot plant and other engineering evaluations; a cost estimate and economic analysis; a computer model incorporating the above two steps over a wide range of capacities and selected process alternatives; a comprehensive training program for DOE/PETC Staff to understand and use the computer model; a thorough documentation of all underlying assumptions for baseline economics; and a user manual and training material which will facilitate updating of the model in the future.

  14. AFBC co-firing of coal and hospital waste. Quarterly report, February - April, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, J.M.

    1996-12-31

    The project objective is to design, construct, install provide operator training and start-up a circulating fluidized bed combustion system at the Lebanon Pennsylvania Veteran`s Affairs Medical Center. This unit will co-fire coal and hospital waste providing lower cost steam for heating and possibly cooling (absorption chiller) and operation of a steam turbine-generator for limited power generation while providing efficient destruction of both general and infectious hospital waste. The steam generated is as follows: steam = 20,000 lb/hr; temperature = 353 F (saturated); pressure = 125 psig; and steam quality = {approximately}98.5%. During this reporting period: structural corrections have been made to make the facility meet the required building costs; and refractory bakeout was successfully completed during April 23-25, 1996 over a 54 -hour period. Operating permits will be obtained after construction has been completed.

  15. Engineering development of coal-fired high-performance power systems. Fourth quarterly report, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal fired, combined cycle plant with indirect heating of gas turbine air. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). It is a pulverized fuel fired boiler/air heater where steam and gas turbine air are indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and then a pilot plant with integrated pyrolyzer and char combustion systems will be tested. In this report, progress in the pyrolyzer pilot plant preparation is reported. The results of laboratory and bench scale testing of representative char are also reported. Preliminary results of combustion modeling of the char combustion system are included. There are also discussions of the auxiliary systems that are planned for the char combustion system pilot plant and the status of the integrated system pilot plant.

  16. Utilization of lightweight materials made from coal gasification slags. Quarterly report, March 1995--May 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Integrated-gasification combined-cycle (IGCC) technology is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, this process generates large amounts of solid waste, consisting of vitrified ash (slag) along with some unconverted carbon, which is disposed of as solid waste. In previous projects, Praxis investigated the utilization of {open_quotes}as-generated{close_quotes} slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for {open_quotes}as-generated{close_quotes} slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag could be made into a lightweight material by controlled heating in a kiln at temperatures between 1400 and 1700{degrees}F. These results indicated the potential for using such materials as substitutes for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project, funded by DOE`s Morgantown Energy Technology Center (METC), are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications.

  17. Hindered diffusion of coal liquids. Quarterly report No. 2, December 18, 1992--March 17, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Webster, I.A. [Unocal Corp., Los Angeles, CA (United States)

    1993-06-01

    Throughout the experimental runs we utilize a high pressure, high temperature diffusion cell system. This diffusion system has been tested through the measurement of the diffusivity of a number of model coal liquids. The heart of the experimental system is a high pressure autoclave, which in its interior can accommodate one or several ceramic membranes. One side of these membranes is exposed to the contents of the autoclave, while the other side, through an independent flow system, is exposed to flowing pure solvent. The pressure in the interior and exterior of the membranes can be independently adjusted and controlled. This is also true with the flow rate of the solvent in the interior of the membrane. The diffusion experiments are initiated by placing the coal liquid solution (model liquids or asphaltenes) in the autoclave space exterior of the membrane, pressurizing the exterior and interior membrane volumes and initiating the flow of the solvent. One has the option of running the experiment in a batch (exterior)-continuous (interior) or batch-batch mode. The option also exists for loading catalyst in the exterior volume either in a pellet or slurry form or using metal impregnated membranes for simultaneously studying transport and reaction. Model membrane preparation and characterization will be carried out both at USC at the UNOCAL Science and Technology Division, of UNOCAL Corporation (USTD). UNOCAL, in addition, will contribute technician and machine time on apparatuses, such as Auger and XPS, preparative GPC, SEC, XRF, SEC/ICP, Low Angle Light Scattering Photometer, Electron Microscope, Atomic Adsorption, Porosimeters and BET. The project is of both experimental and theoretical nature and is divided into a number of tasks, a brief description of which.

  18. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, January 1--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1993-12-01

    Process oil samples from HRI Catalytic Two-Stage Liquefaction (CTSL) Bench Unit Run CC-16 (227-76) were analyzed to provide information on process performance. Run CC-16 was operated in December 1992 with Burning Star 2 Mine (Illinois 6 seam) coal to test and validate Akzo EXP-AO-60 Ni/Mo catalyst (1/16 in. extrudate). Results were compared with those of four previous HRI CTSL bench unit runs made with Ni/Mo catalysts. Major conclusions from this work are summarized. (1) Akzo EXP-AO-60 gave process oil characteristics in Run CC-16 similar to those of other Ni/Mo catalysts tested in Runs I-13, I-16, I-17, and I-18 (by our analytical and empirical test methods). No distinct performance advantage for any of the catalysts emerges from the process oil characteristics and plant performance. Thus, for commercial coal liquefaction, a number of equivalent catalysts are available from competitive commercial sources. The similarity of run performance and process oil characteristics indicates consistent performance of HRI`s bench unit operations over a period of several years; (2) Dominant effects on process oil properties in Run CC-16 were catalyst age and higher temperature operation in Periods 10--13 (Condition 2). Properties affected were the aromaticities and phenolic -OH concentrations of most streams and the asphaltene and preasphaltene concentrations of the pressure-filter liquid (PFL) 850{degrees}F{sup +} resid. The trends reflect decreasing hydrogenation and defunctionalization of the process streams with increasing catalyst age. Operation at higher temperature conditions seems to have partially offset the effects of catalyst age.

  19. Molecular catalytic coal liquid conversion. Quarterly progress report, [April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Cheng, C.; Ettinger, M.

    1993-06-30

    This phase of the project essentially consists of preparing organometallic reagents which are known or have been reported to act as homogeneous hydrogenation catalysts of aromatic hydrocarbons and studying their properties as homogeneous hydrogenation catalysts under various conditions with the ultimate objective of using these compounds to catalyze the conversion of coal liquids. With regards to this task, we have prepared two rhodium (I) catalysts. These are the dimer of dichloropentamethylcyclopentadienylrhodium, [RhCl{sub 2}(C{sub 5}Me{sub 5})], and the dimer of chloro(1,5-hexadiene) rhodium. The dimer of dichloropentamethylcyclopentadienylrhodium was prepared by stirring rhodium (III) chloride hydrate with hexamethyldewarbenzene at 65{degrees}C. It was reported to hydrogenate arenes and various substituted arenas such as aryl ethers, esters and ketones at 50{degrees} and 50 atm of dihydrogen. The dimer of chloro (1,5-hexadiene) rhodium was prepared by reacting rhodium (III) chloride hydrate with 1,5-hexadiene at 50{degrees}C for six days in water. Our second task is to investigate the chemistry of base-catalyzed hydrogenation of organic compounds with the ultimate objective of applying the chemistry behind this novel concept to the catalytic conversion of coal liquids. It is not generally known that bases such as the hydroxide ion are capable of activating dihydrogen to form ``solvated hydride`` or hydride-like species which can effect hydrogenation reactions under the appropriate conditions. Research during the first half of this century has amply demonstrated the feasibility of this concept. More recently, Klingler, Krause and Rathke studied the role of this kind of chemistry in the water-gas shift reaction. So far, only Walling and Bollyky have been the only investigators to have applied dihydrogen activation by bases to the hydrogenation of organic compounds.

  20. Characterization of open-cycle coal-fired MHD generators. Quarterly technical summary report No. 6, October 1--December 31, 1977. [PACKAGE code

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, C.E.; Yousefian, V.; Wormhoudt, J.; Haimes, R.; Martinez-Sanchez, M.; Kerrebrock, J.L.

    1978-01-30

    Research has included theoretical modeling of important plasma chemical effects such as: conductivity reductions due to condensed slag/electron interactions; conductivity and generator efficiency reductions due to the formation of slag-related negative ion species; and the loss of alkali seed due to chemical combination with condensed slag. A summary of the major conclusions in each of these areas is presented. A major output of the modeling effort has been the development of an MHD plasma chemistry core flow model. This model has been formulated into a computer program designated the PACKAGE code (Plasma Analysis, Chemical Kinetics, And Generator Efficiency). The PACKAGE code is designed to calculate the effect of coal rank, ash percentage, ash composition, air preheat temperatures, equivalence ratio, and various generator channel parameters on the overall efficiency of open-cycle, coal-fired MHD generators. A complete description of the PACKAGE code and a preliminary version of the PACKAGE user's manual are included. A laboratory measurements program involving direct, mass spectrometric sampling of the positive and negative ions formed in a one atmosphere coal combustion plasma was also completed during the contract's initial phase. The relative ion concentrations formed in a plasma due to the methane augmented combustion of pulverized Montana Rosebud coal with potassium carbonate seed and preheated air are summarized. Positive ions measured include K/sup +/, KO/sup +/, Na/sup +/, Rb/sup +/, Cs/sup +/, and CsO/sup +/, while negative ions identified include PO/sub 3//sup -/, PO/sub 2//sup -/, BO/sub 2//sup -/, OH/sup -/, SH/sup -/, and probably HCrO/sub 3/, HMoO/sub 4//sup -/, and HWO/sub 3//sup -/. Comparison of the measurements with PACKAGE code predictions are presented. Preliminary design considerations for a mass spectrometric sampling probe capable of characterizing coal combustion plasmas from full scale combustors and flow trains are presented

  1. Molecular biological enhancement of coal biodesulfurization: Second quarter report, January--April 1989

    Energy Technology Data Exchange (ETDEWEB)

    Bielaga, B.; Kilbane, J. J.

    1989-04-01

    The work planned for this quarter included the isolation of pure bacterial cultures capable of desulfurizing organic substrates and the genetic study of those cultures through the isolation and analysis of mutations. All aspects of the project are proceeding well and are either on or ahead of schedule. Two pure cultures of bacteria, that are each capable of utilizing dibenzothiophene (DBT) as their sole source of sulfur, were isolated from the mixed culture IGTS7. These cultures have been identified as Rhodococcus rhodochrous and Bacillus sphaericus species and have been designated IGTS8 and IGTS9, respectively. The examination of all of these cultures confirmed the identities of IGTS8 and IGTS9 as Rhodococcus rhodochrous and Bacillus sphaericus, respectively, and revealed that IGTS8 and IGTS9 are apparently unique in their ability to utilize organically-bound sulfur. The metabolites of DBT produced by IGTS8 were analyzed by gas chromatography/mass spectroscopy. Genetic studies of IGTS8 have begun. Mutants resistant to high levels of three different antibiotics, and combinations of antibiotics have been obtained. Resistance to antibiotics is a selectable genetic trait that will help to unequivocally identify this particular strain of bacteria and will be used in future genetic experiments. Chemical mutagenesis and ultra violet light mutagenesis procedures are being optimized. 2 figs., 8 tabs.

  2. Cooperative research program in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. (ed.)

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  3. Cooperative research program in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. (ed.)

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  4. Exxon catalytic coal-gasification process development program. Quarterly technical progress report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Euker, Jr, C. A.

    1980-03-01

    Work continued on the catalyst recovery screening studies to evaluate the economic impacts of alternative processing approaches and solid-liquid separation techniques. Equipment specifications have been completed for two cases with countercurrent water washing using rotary-drum filters for the solid-liquid separations. Material and energy balances have been completed for an alternative methane recovery process configuration using low pressure stripping which requires 26% less horsepower than the Study Design system. A study has been initiated to identify trace components which might be present in the CCG gas loop and to assess their potential impacts on the CCG process. This information will be used to assist in planning an appropriate series of analyses for the PDU gasifier effluent. A study has been initiated to evaluate the use of a small conventional steam reformer operating in parallel with a preheat furnace for heat input to the catalytic gasifier which avoids the potential problem of carbon laydown. Preliminary replies from ten manufacturers are being evaluated as part of a study to determine the types and performance of coal crushing equipment appropriate for commercial CCG plants. A material and energy balance computer model for the CCG reactor system has been completed. The new model will provide accurate, consistent and cost-efficient material and energy balances for the extensive laboratory guidance and process definition studies planned under the current program. Other activities are described briefly.

  5. Syngas combustor for fluidized bed applications

    Energy Technology Data Exchange (ETDEWEB)

    Brushwood, J.

    1999-07-01

    The Siemens Westinghouse Multi-Annular Swirl Burner (MASB) is a rich-quench-lean gas turbine combustor for use primarily on synthetic fuel gases made by gasifying solid fuels (coal or biomass). These fuels contain high amounts of fuel bound nitrogen, primarily as ammonia, which are converted to molecular nitrogen rather than to nitrogen oxides in the rich zone of this combustor. The combustor can operate in many modes. In second-generation pressurized fluidized bed combustion (PFBC) applications, the fuel gas is burned in a hot, depleted oxygen air stream generated in a fluid bed coal combustor. In 1-1/2 generation PFBC applications, natural gas is burned in this vitiated air stream. In an integrated gasification combined cycle (IGCC) application, the synthetic fuel gas is burned in turbine compressor air. In this paper, the MASB technology is described. Recent results of tests at the University of Tennessee Space Institute (UTSI) for these various operation modes on a full scale basket are summarized. The start-up and simple cycle operating experience on propane at the Wilsonville Power Systems Development Facility (PSDF) are also described. In addition, the design issues related to the integration of the MASB in the City of Lakeland PCFB Clean Coal Demonstration Project is summarized.

  6. Key contributions in MHD power generation. Quarterly report, 1 June 1979-31 August 1979

    Energy Technology Data Exchange (ETDEWEB)

    Louis, J F

    1979-11-01

    Activities during the third quarter of the contract period are reported in detail. The tasks reported on include: (1) investigation of electrical behavior in the vicinity of electrode and insulating walls; (2) studies of critical performance issues in the development of combustion disk generators; (3) development and testing of electrode modules, including studies of insulator properties; and (4) determination of coal combustion kinetics and ash behavior relevant to two-stage MHD combustors, and investigation of the mixing and flow aerodynamics of a high swirl geometry second stage.

  7. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 17, August 1, 1992--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The construction of the DOE POC at the OCDO facility continued through this entire quarter. By the end of the quarter approximately 90% of all of the construction had been completed. All equipment has beeninstalled, checked for mechanical and installation and operated from a local pushbutton. During this quarter a review of items to be completed for start-up was compiled. This information was then presented to the construction subcontractors and agreement was concluded that all items will be completed and operational for processing coal by February 1, 1993. There are still several items that were not on site for installation during this quarter. These items are the flocculant controls supplied by Westec Engineering, Inc., and the discharge valve for the hyperbaric filter supplied by KHD. Neither of these items will prevent start-up. The flocculants can be manually controlled and provisions are all ready provided to bypass the hyperbaric filter to the Sharpels high-G centrifuge. Both of these items are scheduled for delivery in mid-January.

  8. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, November 1994--February 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This second quarterly report describes work during the second three months of the University of Pittsburgh`s (Pitt`s) project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with Pitt on this project are Dravo Lime Company (DLC), Mill Service, Inc. (MSI) and the Center for Hazardous Materials Research (CHMR). The report describes the activities of the project team during the reporting period. The principal work has focussed upon the acquisition of by-product samples and their initial analysis. Other efforts during the second quarter have been directed toward identifying the first hazardous waste samples and preparing for their treatment and analysis. Relatively little data has yet been collected. Major presentation of technical details and data will appear for the first time in the third quarterly report. The activity on the project during the second quarter of Phase One, as presented in the following sections, has fallen into seven areas: (1) Acquiring by-products, (2) Analyzing by-products, (3) Identifying, analyzing and treating suitable hazardous wastes, (4) Carrying out the quality assurance/quality control program, (5) Developing background, and (6) Initiating public relations

  9. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, April 1983-June 1983

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, Jr., G. A.

    1983-01-01

    Progress reports are presented for the following tasks: (1) gasification wastewater treatment and reuse; (2) fine coal cleaning; (3) coal-water slurry preparation; (4) low-rank coal liquefaction; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization; (8) combustion research and ash fowling; (9) fluidized-bed combustion of low-rank coals; (10) ash and slag characterization; (11) organic structure of coal; (12) distribution of inorganics in low-rank coals; (13) physical properties and moisture of low-rank coals; (14) supercritical solvent extraction; and (15) pyrolysis and devolatilization.

  10. Effects of surface chemistry on the porous structure of coal. Quarterly technical progress report, October 1996--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.A.; Hatcher, P.G.; Radovic, L.R.

    1997-01-01

    Selective presaturation and saturation transfer {sup 129}Xe NMR experiments were performed on a high volatile C bituminous coal and an anthracite. The experiments detect the movement of xenon atoms among different regions of the internal surface, and to the external surface of the coal particles. The results indicate that adsorbed xenon atoms can move to the external surface of the bituminous coal significantly faster than in the anthracite. The results are interpreted in terms of the porous structure of the coals.

  11. Low emissions combustor development for an industrial gas turbine to utilize LCV fuel gas

    Energy Technology Data Exchange (ETDEWEB)

    Kelsall, G.J.; Smith, M.A. (British Coal Corp., Glos (United Kingdom). Coal Research Establishment); Cannon, M.F. (European Gas Turbines Ltd., Lincoln (United Kingdom). Aero and Technology Products)

    1994-07-01

    Advanced coal-based power generation systems such as the British Coal Topping Cycle offer the potential for high-efficiency electricity generation with minimum environmental impact. An important component of the Topping cycle program is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at a turbine inlet temperature of 1,260 C (2,300 F), with minimum pollutant emissions, is a key R and D issue. A phased combustor development program is underway burning low calorific value fuel gas (3.6--4.1 MJ/m[sup 3]) with low emissions, particularly NO[sub x] derived from fuel-bound nitrogen. The first phase of the combustor development program has now been completed using a generic tubo-annular, prototype combustor design. Tests were carried out at combustor loading and Mach numbers considerably greater than the initial design values. Combustor performance at these conditions was encouraging. The second phase of the program is currently in progress. This will assess, initially, an improved variant of the prototype combustor operating at conditions selected to represent a particular medium sized industrial gas turbine. This combustor will also be capable of operating using natural gas as an auxiliary fuel, to suite the start-up procedure for the Topping Cycle. The paper presents the Phase 1 test program results for the prototype combustor. Design of the modified combustor for Phase 2 of the development program is discussed, together with preliminary combustor performance results.

  12. Experimental investigation and mathematical modelling of the combustion of brown coal, refuse and mixed fuels in a circulating fluidized bed combustor; Experimentelle Untersuchung und mathematische Modellierung der Verbrennung von Braunkohle, Abfallstoffen und Mischbrennstoffen in einer zirkulierenden Wirbelschichtfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, W.; Brunne, T.; Hiller, A. [Technische Univ. Dresden (Germany). Inst. fuer Energietechnik; Albrecht, J. [Lurgi Umwelt GmbH, Frankfurt am Main (Germany); Quang, N. [Polytechnic Inst., Danang (Viet Nam)

    1998-09-01

    Extensive experiments on combustion of biological materials and residues in fluidized bed combustors and dust combustors have been carried out at the Department of Power Plant Engineering of Dresden University since the early nineties. Particular interest was taken in mixing brown coal with sewage sludge, sugar pulp and waste wood. The experiments were supplemented by modelling in a research project funded jointly by the BMBF and Messrs. Lurgi since early 1997. A combustion cell model designed by Siegen University is being modified for the new mixed fuels, and preliminary investigations were carried out on a batch reactor while the modelling work was continued. (orig.) [Deutsch] An dem Lehrstuhl fuer Kraftwerkstechnik der TU Dresden werden seit Anfang der 90-iger Jahre umfangreiche experimentelle Untersuchungen zur Verbrennung von Bio- und Reststoffen in Wirbelschicht- und Staubfeuerungen durchgefuehrt. Dabei war vor allem die Zufeuerung dieser Stoffe in Waermeerzeugeranlagen auf Braunkohlenbasis von besonderem Interesse. Experimentell konnte nachgewiesen werden, dass sowohl Biobrennstoffe als auch Abfaelle in zirkulierenden Wirbelschichtfeuerungen umweltschonend zur Waermeerzeugung eingesetzt werden koennen. Als Beispiel wird das an Hand von Braunkohle-Klaerschlammgemischen sowie Bagasse- und Holz-Braunkohlegemischen gezeigt. Neben den experimentellen Untersuchungen bietet die Modellierung der Verbrennungsvorgaenge ein geeignetes Mittel um Voraussagen zu anderen Mischungsanteilen sowie anderen geometrischen Abmessungen machen zu koennen. Seit Anfang 1997 wird dazu ein vom BMBF und der Firma Lurgi gefoerdertes Forschungsvorhaben bearbeitet. Ein von der Universitaet Gesamthochschule Siegen fuer die Braunkohleverbrennung konzipiertes Zellenmodell wird auf die neuen Brennstoffgemische erweitert. Da grundsaetzlich andere Stoffzusammensetzungen vorliegen, wurden an einem Batch-Reaktor Voruntersuchungen zum Pyrolyseverhalten der Brennstoffe durchgefuehrt. Erste

  13. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report No. 7, April 1993--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States); Gutterman, C.

    1994-09-01

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases. This effect is also demonstrated by improved catalyst precursor impregnation with increased contact temperature. Laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent.

  14. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

  15. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Speight, J.G.

    1992-12-31

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  16. Hard to Have Warm Spring with Flower Blooming for Coal Market at First Quarter of 2012%2012年一季度煤炭市场难现春暖花开

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The paper reviewed the operation conditions of Chinese coal market in 2011 and summarized the supply and demand features of the coal market in 2011. The paper had an analysis on the operation conditions of the coal market at first quarter of 2012 and had a prediction on the operation tendency of the steam coal market at first quarter of 2012.%文章回顾了2011年我国煤炭市场运行情况,总结了2011年煤炭市场供需特点,对2012年1月份煤炭市场运行情况进行了重点分析,并对2012年一季度动力煤运行趋势做了预测。

  17. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, July--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States)

    1992-12-31

    The experimental study of coal swelling ratios have been determined with a wide variety of solvents. Only marginal levels of coal swelling were observed for the hydrocarbon solvents, but high levels were found with solvents having heteroatom functionality. Blends were superior to pure solvents. The activity of various catalyst precursors for pyrene hydrogenation and coal conversion was measured. Higher coal conversions were observed for the S0{sub 2}-treated coal than the raw coal, regardless of catalyst type. Coal conversions were highest for Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively. Bottoms processing consists of a combination of the ASCOT process coupling solvent deasphalting with delayed coking. Initial results indicate that a blend of butane and pentane used near the critical temperature of butane is the best solvent blend for producing a yield/temperature relationship of proper sensitivity and yet retaining an asphalt phase of reasonable viscosity. The literature concerning coal swelling, both alone and in combination with coal liquefaction, and the use of dispersed or unsupported catalysts in coal liquefaction has been updated.

  18. Effects of Immersed Surfaces on the Combustor Efficiency of Small-Scale Fluidized Beds

    OpenAIRE

    Nurdil Eskin; Afsin Gungor

    2005-01-01

    In this study, effects of the different types of heat exchanger surfaces on the second law efficiency of a small-scale circulating fluidized bed (CFB) combustor are analyzed and the results are compared with the bubbling fluidized bed coal combustor effectiveness values. Using a previously developed simulation program, combustor efficiency and entropy generation values are obtained at different operation velocities at different height and volume ratios of the immersed surfaces, both for circu...

  19. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 1, September 21, 1989--December 20, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    In this project we well evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated. (VC)

  20. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, May 1995--August 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This fourth quarterly report describes work done during the fourth three-month period of the University of Pittsburgh`s project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quote} Participating with the university on this project are Dravo Lime Company, Mill Service, Inc., and the Center for Hazardous Materials Research. This report describes the activities of the project team during the reporting period. The principal work has focussed upon the production of six sets of samples with high water content for solidification testing and the mixing of five dry samples for solidification testing by the Proctor method. Twenty-eight day compressive strengths are reported for five of the six sets of samples with high water content. The report also discusses completion of the format of the database and the inclusion in it of all data collected to date. Special reports presented during the quarter include the Continuation Application, a News Release, and modification to the Test Plan. Work is progressing on the NEPA report and the Topical Report. The activity on the project during the fourth quarter of Phase one, as presented in the following sections, has fallen into six major areas: (1) Completion of by-product evaluations, (2) Completion of analyses of six wastes, (3) Initiation of eleven solidification tests, (4) Continued extraction and extract analysis of solidified samples, (5) Development of the database, and (6) Production of reports.

  1. Large scale solubilization of coal and bioconversion to utilizable energy. Quarterly report, October 1--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, N.C.

    1996-12-22

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the author plans to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. He also plans to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  2. Large scale solubilization of coal and bioconversion to utilizable energy. Fifth quarterly technical report, January 1, 1995--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, N.C.

    1995-12-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  3. Coal combustion science: Task 1, Coal char combustion: Task 2, Fate of mineral matter. Quarterly progress report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.; Hurt, R.H.; Davis, K.A.; Baxter, L.L.

    1994-07-01

    Progress reports are presented for the following tasks: (1) kinetics and mechanisms of pulverized coal char combustion and (2) fate of inorganic material during coal combustion. The objective of Task 1 is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. In Sandia`s Coal Combustion Laboratory (CCL), optical techniques are used to obtain high-resolution images of individual burning coal char particles and to measure, in situ, their temperatures, sizes, and velocities. Detailed models of combustion transport processes are then used to determine kinetic parameters describing the combustion behavior as a function of coal type and combustion environment. Partially reacted char particles are also sampled and characterized with advanced materials diagnostics to understand the critical physical and chemical transformations that influence reaction rates and burnout times. The ultimate goal of the task is the establishment of a data base of the high temperature reactivities of chars from strategic US coals, from which important trends may be identified and predictive capabilities developed. The overall objectives for task 2 are: (1) to complete experimental and theoretical investigation of ash release mechanisms; (2) to complete experimental work on char fragmentation; (3) to establish the extent of coal (as opposed to char) fragmentation as a function of coal type and particle size; (4) to develop diagnostic capabilities for in situ, real-time, qualitative indications of surface species composition during ash deposition, with work continuing into FY94; (5) to develop diagnostic capabilities for in situ, real-time qualitative detection of inorganic vapor concentrations; and (6) to conduct a literature survey on the current state of understanding of ash deposition, with work continuing into FY94.

  4. Effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor.

    Science.gov (United States)

    Varol, Murat; Atimtay, Aysel T

    2015-12-01

    This study aimed to investigate the effect of biomass-sulfur interaction on ash composition and agglomeration for the co-combustion of high-sulfur lignite coals and olive cake in a circulating fluidized bed combustor. The tests included co-combustion of 50-50% by wt. mixtures of Bursa-Orhaneli lignite+olive cake and Denizli-Kale lignite+olive cake, with and without limestone addition. Ash samples were subjected to XRF, XRD and SEM/EDS analyses. While MgO was high in the bottom ash for Bursa-Orhaneli lignite and olive cake mixture, Al2O3 was high for Denizli-Kale lignite and olive cake mixture. Due to high Al2O3 content, Muscovite was the dominant phase in the bottom ash of Denizli Kale. CaO in the bottom ash has increased for both fuel mixtures due to limestone addition. K was in Arcanite phase in the co-combustion test of Bursa/Orhaneli lignite and olive cake, however, it mostly appeared in Potassium Calcium Sulfate phase with limestone addition.

  5. Variable volume combustor

    Energy Technology Data Exchange (ETDEWEB)

    Ostebee, Heath Michael; Ziminsky, Willy Steve; Johnson, Thomas Edward; Keener, Christopher Paul

    2017-01-17

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a linear actuator so as to maneuver the micro-mixer fuel nozzles axially along the liner.

  6. Grimethorpe experimental pressurized fluidized-bed combustor: in future energy concepts

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, D.B.

    1979-01-01

    The experimental pressurized fluidized bed combustor project at Grimethorpe, UK, is described. The design of the combustor, which is a pressure vessel containing a furnace, which contains the fluidized bed is discussed. Details of the process, the steam water circuit, the fuel system and method of feeding coal, ash removal during the process, the water treatment plant and plant control are given.

  7. Gas turbine combustor

    Science.gov (United States)

    Burd, Steven W. (Inventor); Cheung, Albert K. (Inventor); Dempsey, Dae K. (Inventor); Hoke, James B. (Inventor); Kramer, Stephen K. (Inventor); Ols, John T. (Inventor); Smith, Reid Dyer Curtis (Inventor); Sowa, William A. (Inventor)

    2011-01-01

    A gas turbine engine has a combustor module including an annular combustor having a liner assembly that defines an annular combustion chamber having a length, L. The liner assembly includes a radially inner liner, a radially outer liner that circumscribes the inner liner, and a bulkhead, having a height, H1, which extends between the respective forward ends of the inner liner and the outer liner. The combustor has an exit height, H3, at the respective aft ends of the inner liner and the outer liner interior. The annular combustor has a ratio H1/H3 having a value less than or equal to 1.7. The annular combustor may also have a ration L/H3 having a value less than or equal to 6.0.

  8. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Third quarterly technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. Baseline, AOFA, LNB, and LNB plus AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO{sub x} emission levels to be approximately 0.65 lb/MBtu with fly ash LOI values of approximately 8 percent. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. For comparison, the long-term full-load, baseline NO{sub x} emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing in the LNB+AOFA configuration indicate that at full-load, NO{sub x} emissions and fly ash LOI are near 0.40 lb/MBtu and 8 percent, respectively. However, it is believed that a substantial portion of the incremental change in NO{sub x} emissions between the LNB and LNB+AOFA configurations is the result of additional burner tuning and other operational adjustments and is not the result of the AOFA system. During this quarter, LNB+AOFA testing was concluded. Testing performed during this quarter included long-term and verification testing in the LNB+AOFA configuration.

  9. A fine coal circuitry study using column flotation and gravity separation. Quarterly report, 1 March 1995--31 May 1995

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q. [Southern Illinois Univ., Carbondale, IL (United States); Reed, S. [Kerr-McGee Coal Corp., Oklahoma City, OK (United States)

    1995-12-31

    Column flotation provides excellent recovery of ultrafine coal while producing low ash content concentrates. However, column flotation is not efficient for treating fine coal containing significant amounts of mixed-phase particles. Fortunately, enhanced gravity separation has proved to have the ability to treat the mixed-phased particles more effectively. A disadvantage of gravity separation is that ultrafine clay particles are not easily rejected. Thus, a combination of these two technologies may provide a circuit that maximizes both the ash and sulfur rejection that can be achieved by physical coal cleaning while maintaining a high energy recovery. This project is studying the potential of using different combinations of gravity separators, i.e., a Floatex hydrosizer and a Falcon Concentrator, and a proven flotation column, which will be selected based on previous studies by the principle investigator. During this reporting period, an extensive separation performance comparison between a pilot-scale Floatex Density Separator (18{times}18-inch) and an existing spiral circuit has been conducted at Kerf-McGee Coal Preparation plan for the treatment of nominally {minus}16 mesh coal. The results indicate that the Floatex is a more efficient separation device (E{sub p}=0.12) than a conventional coal spiral (E{sub p}=0.18) for Illinois seam coals. In addition, the treatment of {minus}100 mesh Illinois No. 5 fine coal from the same plant using Falcon concentrator, column flotation (Packed-Column) and their different combinations was also evaluated. For a single operation, both Falcon concentrator and column flotation can produce a clean coal product with 90% combustible recovery and 5% ash content. In the case of the combined circuit, column flotation followed by the Falcon achieved a higher combustible recovery value (about 75%) than that obtained by the individual units while maintaining an ash content less than 3%.

  10. Gasification in pulverized coal flames. Second quarterly progress report, October--December 1975. [Contains literature survey on vortex gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Lenzer, R. C.; George, P. E.; Laurendeau, N. M.

    1976-01-01

    This project is concerned with the production of power and synthesis gases from pulverized coal via suspension gasification. A literature review concerning the vortex type gasifier has been completed and a survey concerning the confined jet gasifier is underway. Preliminary design of the vortex gasifier is nearing completion. Test cell and coal handling facilities are in the final stages of design and coal handling equipment has been received. A mass spectrometer has been ordered and a preliminary survey of high-temperature probes is complete.

  11. Pulse Combustor Design, A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2003-07-31

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Pulse Combustor Design Qualification Test, as described in a Report to Congress (U.S. Department of Energy 1992). Pulse combustion is a method intended to increase the heat-transfer rate in a fired heater. The desire to demonstrate the use of pulse combustion as a source of heat for the gasification of coal, thus avoiding the need for an oxygen plant, prompted ThermoChem, Inc. (TCI), to submit a proposal for this project. In October 1992, TCI entered into a cooperative agreement with DOE to conduct this project. In 1998, the project was restructured and scaled down, and in September 1998, a new cooperative agreement was signed. The site of the revised project was TCI's facilities in Baltimore, Maryland. The original purpose of this CCT project was to demonstrate a unit that would employ ten identical 253-resonance tube combustors in a coal gasification unit. The objective of the scaled-down project was to test a single 253-resonance-tube combustor in a fluidized sand bed, with gasification being studied in a process development unit (PDU). DOE provided 50 percent of the total project funding of $8.6 million. The design for the demonstration unit was completed in February 1999, and construction was completed in November 2000. Operations were conducted in March 2001.

  12. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 9, October 1, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C. [AMAX Research and Development Center, Golden, CO (United States)

    1995-01-25

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 ton lots of each of three project coals, by each process. The project began in October, 1992 and is scheduled for completion by March, 1997. During Quarter 9 (October--December, 1995), parametric and optimization testing was completed for the Taggart, Sunnyside, and Indiana VII coal using a 12-inch Microcel{trademark} flotation column. The detailed design of the 2-t/hr PDU grinding, flotation, and dewatering circuits neared completion with the specification of the major pieces of capital equipment to be purchased for these areas. Selective agglomeration test work investigated the properties of various industrial grades of heptane for use during bench- and PDU-scale testing. It was decided to use a hydrotreated grade of commercial heptane due to its low cost and low concentration of aromatic compounds. The final Subtask 6.4 CWF Formulation Studies Test Plan was issued. A draft version of the Subtask 6.5 Preliminary Design and Test Plan Report was also issued, discussing the progress made in the design of the bench-scale selective agglomeration unit. PDU construction work moved forward through the issuing of 26 request for quotations and 21 award packages for capital equipment.

  13. TOXIC SUBSTANCES FROM COAL COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    A KOLKER; AF SAROFIM; CL SENIOR; FE HUGGINS; GP HUFFMAN; I OLMEZ; J LIGHTY; JOL WENDT; JOSEPH J HELBLE; MR AMES; N YAP; R FINKELMAN; T PANAGIOTOU; W SEAMES

    1998-12-08

    carried out during August at the Advanced Photon Source (APS), the new synchrotron facility at Argonne National Laboratory, Chicago, IL. Further analysis of small-scale combustion experiments conducted at PSI in Phase I was completed this quarter. The results of these experiments for the first time suggest almost complete vaporization of certain trace elements (Se, Zn) from coal combustion in the flame zone, in accordance with theoretical equilibrium predictions. Other elements (As, Sb, Cr) appeared considerably less volatile and may react with constituents in the bulk ash at combustion temperatures. The combustion section of the University of Arizona's Downflow Combustor was completely rebuilt. The University of Utah worked on setting up EPA Method 26A to give the capability to measure chlorine in flue gas. The chlorine kinetic calculations performed as part of the Phase I program were found to have an error in the initial conditions. Therefore, the calculations were re-done this quarter with the correct starting conditions. Development of a quasi-empirical emissions model based on reported emissions of particulate matter from field measurements was continued this quarter. As a first step in developing the ToPEM, we developed a sub-model that calculates the evaporation of major elements (Na, K, Fe, Si, Al, Ca and Mg) from both inherent and extraneous minerals of coal. During this quarter, this sub-model was included into EMAF, which formed the ToPEM. Experimental data from the Phase I program were used to test and modify the sub-model and the ToPEM.

  14. A novel coal feeder for production of low sulfur fuel. Quarterly technical progress report, December 1, 1989--April 1, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Keener, T.C.; Khang, S.J.; Yu, X.L.

    1990-12-31

    A novel coal feeding system is currently undergoing testing and evaluation at the University of Cincinnati. The system consists primarily of an auger feed tube which is used to both convey and provide desulfurization of a high sulfur coal feedstock. The coal is conveyed at temperatures ranging from 350 to 550 {degrees}C and under normal atmospheric pressure. Under these mild processing conditions, the coal partially pyrolizes and emits sulfur in the form of hydrogen sulfide while maintaining a relatively high heating value in the char product. The evolved gases are evacuated from the reactor (the feed tube) to another absorbing bed where H{sub 2}S reacts with the sorbent, usually lime or limestone. The resultant sorbent utilization is substantially higher than the values found in current dry scrubbing system and the produced low-sulfur char may then be used in a conventional steam boiler.

  15. Coal log pipeline research at the University of Missouri. [Quarterly report No. 6, November 26, 1991--February 25, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.

    1992-03-01

    Project tasks: Perform the necessary testing and development to demonstrate that the amount of binder in coal logs can be reduced to 8% or lower to produce logs with adequate strength to eliminate breakage during pipeline transportation, under conditions experienced in long distance pipeline systems. Prior to conducting any testing and demonstration, grantee shall perform an information search and make full determination of all previous attempts to extrude or briquette coal, upon which the testing and demonstration shall be based. Perform the necessary development to demonstrate a small model of the most promising injection system for coal-logs, and test the logs produced from Task 1. Conduct economic analysis of coal-log pipeline, based upon the work to date. Refine and complete the economic model. Prepare a final report for DOE.

  16. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 2, December 21, 1989--March 20, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  17. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 8, June 21, 1991--September 20, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will also be investigated.

  18. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 7, March 21, 1991--June 20, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  19. Novel carbons from Illinois coal for natural gas storage. Quarterly report, 1 December 1994--28 February 1995

    Energy Technology Data Exchange (ETDEWEB)

    Rostam-Abadi, M.; Sun, Jian; Lizzio, A.A. [Illinois State Geological Survey, Urbana, IL (United States); Fatemi, M. [Sperry Univac, St. Paul, MN (United States)

    1995-12-31

    The goal of this project is to develop a technology for producing microengineered adsorbent carbons from Illinois coal and to evaluate the potential application of these novel materials for storing natural gas for use in emerging low pressure, natural gas vehicles (NGV). The focus of the project is to design and engineer adsorbents that meet or exceed the performance and cost targets established for low-pressure natural gas storage materials. Potentially, about two million tons of adsorbent could be consumed in natural gas vehicles by year 2000. If successful, the results obtained in this project could lead to the use of Illinois coal in a sowing and profitable market that could exceed 6 million tons per year. During this reporting period, a series of experiments were made to evaluate the effect of coal pre-oxidation, coal pyrolysis, and char activation on the surface area development and methane adsorption capacity of activated carbons/chars made from IBC-102. The optimum production conditions were determined to be: coal oxidation in air at 225C, oxicoal (oxidized coal); devolatilization in nitrogen at 400C; and char gasification in 50% steam in nitrogen at 850C. Nitrogen BET surface areas of the carbon products ranged from 800--1100 m{sup 2}/g. Methane adsorption capacity of several Illinois coal derived chars and a 883 m{sup 2}/g commercial activated carbon were measured using a pressurized thermogaravimetric analyzer at pressures up to 500 psig. Methane adsorption capacity (g/g) of the chars were comparable to that of the commercial activated carbon manufactured by Calgon Carbon. It was determined that the pre-oxidation is a key processing step for producing activated char/carbon with high surface area and high methane adsorption capacity. The results to date are encouraging and warrant further research and development in tailored activated char from Illinois coal for natural gas storage.

  20. Coal log pipeline research at the University of Missouri. 4th Quarterly report, October 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.

    1994-05-01

    This paper is a progress report on a research project aimed at the development of coal log technology. Efforts have been directed at the development of technology for the fabrication of stable coal logs, as well as the energy efficient transport of these logs, in particular by pipelines. Work has been directed at new types of binders, new fabrication presses, the application of polymers to reduce transport losses, and modeling efforts.

  1. Permeability changes in coal resulting from gas desorption. Second quarterly report, November 15, 1989--February 15, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Tsay, F.

    1990-12-31

    Measurement of sorption capacity of coals by microbalance in a high pressure environment requires that corrections be made for the buoyancy of the gas that is displaced by the solid coal. As the pressure increases, the gas density increases, requiring that a correction factor be applied to the weight of the sample as measured by microbalance. A brief report summarizing this correction is attached as Appendix A.

  2. Large scale solubilization of coal and bioconversion to utilizable energy. Quarterly report, October 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, N.C.

    1995-12-31

    The ability of Neurospora to solubilize and bioconvert coal was investigated. The coal solubilizing activity (CSA) was fractionated to isolate the enzyme responsible for this activity. The enzyme was purified in order to obtain the amino acid sequence. From that sequence potential oligonucleotide probes were synthesized and used to screen genomic library of Neurospora. The gene so identified was isolated. CSA appears to be an phenol oxidase or is tyrosinase.

  3. In-plant testing of a novel coal cleaning circuit using advanced technologies, Quarterly report, March 1 - May 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q. [Southern Illinois Univ., Carbondale, IL (United States); Reed, S.; Mohanty, M.K. [Kerr-McGee Coal Corp., Oklahoma City, OK (United States)

    1996-12-31

    Research conducted at Southern Illinois University at Carbondale over the past two years has identified highly efficient methods for treating fine coal (i.e., -28 mesh). In this study, a circuit comprised of the three advanced fine coal cleaning technologies is being tested in an operating preparation plant to evaluate circuit performance and to compare the performance with the current technologies used to treat -16 mesh fine coal. The circuit integrated a Floatex hydrosizer, a Falcon concentrator and a Jameson froth flotation cell. The Floatex hydrosizer is being used as a primary cleaner for the nominally -16 mesh Illinois No. 5 fine coal circuit feed. The overflow of the Floatex is screened at 48 mesh using a Sizetec vibratory screen to produce a clean coal product from the screen overflow. The screen overflow is further treated by the Falcon and Jameson Cell. During this reporting period, tests were initiated on the fine coal circuit installed at the Kerr-McGee Galatia preparation plant. The circuit was found to reduce both the ash content and the pyritic sulfur content. Additional in-plant circuitry tests are ongoing.

  4. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 12, June 21, 1992--September 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-12-31

    In this project we intend to study a novel process concept, i.e.,the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we wig evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  5. High temperature ceramic membrane reactors for coal liquid upgrading. Quarter report No. 9, September 21, 1991--December 20, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-07-01

    In this project we intend to study a novel process concept, i.e, the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  6. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report number 12, July 1--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    Both plug-flow microreactor systems at WVU are now functioning. Screening runs on these systems were started using carbide and nitride catalysts first, to avoid any question of contamination of the system with sulfur. The carbide and nitride catalysts are characterized by high activity but low selectivity towards alcohols. The Chevrel-phase catalysts tested have much lower activities but may be more selective to alcohols. Catalyst synthesis procedures are attempting to offset this tendency, and also to characterize and prepare sulfide catalyst by other approaches. At UCC and P, test runs on the reactor system have commenced. Higher alcohols up to butanol were observed and identified at high temperatures. Modeling studies have concentrated on the catalytic membrane reactor. The topical report, originally submitted last quarter, was revised after some errors were found. This report includes the design and economics for the seven cases discussed in previous quarterly reports. In the topical report, it is shown that a judicious choice of coal:natural gas feed ratio to the alcohol synthesis process allows the Shell Gasifier to be nearly competitive with natural gas priced at of $3.00/MMBtu. The advantage of the Shell Gasifier over the Texaco Gasifier is that the former produces a syngas with a lower H{sub 2}:CO ratio. When the feed to the process is coal only, there is no difference in the projected economics that would favor one gasifier over the other. The potential of co-generation of electric power with high alcohol fuel additives has been investigated. Preliminary results have revealed that a once-through alcohol synthesis process with minimal gas clean-up may provide an attractive alternative to current designs given the prevailing economic status of IGCC units.

  7. Innovative Clean Coal Technology (ICCT). Technical progress report, second & third quarters, 1993, April 1993--June 1993, July 1993--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by constructing and operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  8. The Magnetohydrodynamics Coal-Fired Flow Facility

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    Progress continued at MHD coal-fired flow facility. UTSI reports on progress in developing the technology for the steam bottoming portion of the MHD Steam Combined Cycle Power Plant. No Proof-of-Concept (POC) testing was conducted during the quarter but data analyses are reported from the test conducted during the prior quarter. Major results include corrosion data from the first 500 hours of testing on candidate tube materials in the superheater test module (SHTM). Solids mass balance data, electrostatic precipitator (ESP) and baghouse (BH) performance data, diagnostic systems and environmental data results from previous POC tests are included. The major activities this quarter were in facility modifications required to complete the scheduled POC test program. Activities reported include the installation of an automatic ash/seed removal system on the SHTM, the BH, and ESP hoppers. Also, a higher pressure compressor (350 psi) is being installed to provide additional blowing pressure to remove solids deposits on the convective heat transfer tubes in the high temperature zone where the deposits are molten. These activities are scheduled to be completed and ready for the next test, which is scheduled for late May 1990. Also, experiments on drying western coal are reported. The recommended system for modifying the CFFF coal system to permit processing of western coal is described. Finally, a new effort to test portions of the TRW combustor during tests in the CFFF is described. The status of system analyses being conducted under subcontract by the Westinghouse Electric Corporation is also described. 2 refs., 18 figs., 3 tabs.

  9. Underground gasification for steeply dipping coal beds: Phase III. Quarterly progress report, April 1-June 30, 1981. [Rawlins Test 2

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    Preparations are being made for the August start-up of Rawlins Test 2. Site construction activities began May 4 with the mobilization of the construction subcontractor. The drilling program was completed this quarter with the installation of instrumentation wells. The Experimental Basis Document, PGA Operating Manual, and DAS Operating Manual have also been completed.

  10. Superacid Catalyzed Coal Conversion Chemistry. 1st and 2nd Quarterly Technical Progress Reports, September 1, 1983-March 30, 1984.

    Science.gov (United States)

    Olah, G. A.

    1984-01-01

    In our laboratories we have previously developed a mild coal conversion process. This involves the use of a superacid system consisting of HF and BF{sub 3} in presence of hydrogen and/or a hydrogen donor solvent. In order to understand the chemistry involved in the process of depolymerization of coal by the HF:BF{sub 3}:H{sub 2} system we are carrying out a systematic study of a number of coal model compounds. The model compounds selected for present study have two benzene rings connected with various bridging units such as alkylidene, ether, sulfide etc. From studies so far carried out it appears that high pyridine extractibilities achieved by treating coal at temperature below 100 degrees C results from the cleavage of bridges such as present in bibenzyl, diphenyl methane, dibenzyl ether, dibenzyl sulfide etc. On the other hand the increased cyclohexane extractibility and distillability observed at relatively higher temperatures and hydrogen pressures reflects the hydrogenation and cleavage of the aromatic backbone in coal structure similar to what is seen in the conversion of model compounds such as biphenyl, diphenyl ether, diphenyl sulfide, anthracene, etc.

  11. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 11, March 21, 1992--June 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-12-31

    Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. Having the inherent capability for combining reaction and separation in a single step, they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, such as these typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. This project will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. Development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  12. Systems studies of coal conversion processes using a reference simulator. Quarterly progress report, June 13--September 12, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, G.V.; Woods, J.M.

    1976-09-27

    This project has two principal objectives. The first is to construct a modular computer simulation/design package for coal conversion systems. The second is to use this package to study in a programmatic fashion an array of coal conversion flowsheet alternatives. The computerized package is to be based on bench- and large-scale pilot plant data developed by other organizations under ERDA contracts. It is to have sufficient flexibility to permit the user to incorporate process alternatives and engineering design modifications and is to have the capability for detailed cost estimation and economic evaluation. The Illinois Coal Gasification Group Demonstration Plant based on COED and COGAS development work is the first conversion process to be investigated with the simulation package. Other variations to this flowsheet, which retain the COGAS and COED primary conversion sections will be investigated, as well as several alternatives involving other primary conversion technologies currently under development for ERDA.

  13. Systems studies of coal conversion processes using a reference simulator. Quarterly report, July 1, 1977--September 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, G.V.; Sood, M.K.; Raghavan, S.; Overturf, B.W.; Fazzoni, G.F.; Ford, J.R.

    1977-11-01

    The objectives of this study are to develop a conceptual flowsheet of a coal conversion plant which will process Illinois No. 6 coal and will employ the basic processing sequence proposed by the Illinois Coal Gasification Group. The conceptual flowsheet differs from the ICGG proposal in that proprietary or otherwise ill-defined processing steps are replaced with units whose operating data is adequately reported in the open literature and for which satisfactory design models can be formulated. The purpose for formulating this flowsheet is to define a base case conceptual process which will be modelled using both the steady state process simulation package being developed for DOE/FE under our current contract as well as the dynamic simulation library being developed by Lehigh University under a separate contract. Key elements in the process are described.

  14. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-25

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

  15. Evaluation of hyperbaric filtration for fine coal dewatering. Fourth quarterly technical progress report: June 1, 1993--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, B.K. [Univ. of Kentucky, Lexington, KY (United States); Hogg, R. [Pennsylvania State Univ., University Park, PA (United States); Fonseca, A. [CONSOL Inc., Library, PA (United States)

    1993-12-31

    The main objectives of the project are to investigate the fundamental aspects of particle-liquid interaction in fine coal dewatering, to conduct laboratory and pilot plant studies on the applicability of hyperbaric filter systems and to develop process conditions for dewatering of fine clean coal to less than 20 percent moisture. The program consist of three phases, Model Development, Laboratory Studies, and Field Testing. The Pennsylvania State University is leading efforts in Phase 1, the University of Kentucky in Phase 2, and Consol Inc. in Phase 3 of the program. All three organizations are involved in all the three phases of the program. The Pennsylvania State University is developing a theoretical model for hyperbaric filtration systems, whereas the University of Kentucky is conducting experimental studies to investigate fundamental aspects of particle-liquid interaction and application of high pressure filter in fine coal dewatering. The optimum filtration conditions identified in phase 1 and 2 will be tested in a Consol Inc. coal preparation plant using an Andritz Ruthner portable hyperbaric filtration unit.

  16. Low-rank coal research annual report, July 1, 1989--June 30, 1990 including quarterly report, April--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    Research programs in the following areas are presented: control technology and coal preparation; advance research and technology development; combustion; liquefaction; and gasification. Sixteen projects are included. Selected items have been processed separately for inclusion in the Energy Science and Technology Database.

  17. Graphic values for some organic constitutents of beneficiated coal samples. [Quarterly] report, December 1, 1991--February 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kohlenberger, L.B. [Illinois State Geological Survey, Champaign, IL (United States)

    1992-08-01

    Graphic techniques exist which can accurately predict values for calorific value, organic sulfur, and possibly other constituents of the organic portion of beneficiated coal sample fractions. These techniques also permit a determination of coal rank to be made without the use of the approximations required in the standard procedure. Fractions of IBC-101 with varying ash contents were produced by froth flotation. The various fractions were analyzed by the coal analysis laboratory and the particular data type was plotted in each case vs. the individual ash content of each fraction, using Lotus 123 and Freelace software packages. Such plots for calorific value and organic sulfur have, so far, been made. These curves and the information they contain are discussed in this report. A comparison of the graphic mineral matter value with the usual one calculated from the Parr approximation has been made. Eventually, the data may lead to an effective way to estimate inorganic carbon, hydrogen, nitrogen, and other organic constitents of coal. All data will be made available to researchers.

  18. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 10, December 21, 1991--March 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-07-01

    In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL`s contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

  19. Large scale solubilization of coal and bioconversion to utilizable energy. Quarterly report, July 1, 1996--September 30 1996

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, N.C.

    1996-12-31

    A purification of the Neurospora protein with coal solubilization activity (CSA) using DEAE cellulose chromatography is described. The protein is heavily glycosylated suggesting that it is different than tyrosinase or common phenol oxidases even though it resembles these proteins in enzyme activity and molecular weight.

  20. Systems studies of coal conversion processes using a reference simulator. Quarterly report, December 12, 1976--March 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, G.V.; Woods, J.M.; Kayihan, F.; Sood, M.

    1977-04-01

    Progress is reported in the development of a modular computer simulation/design package for coal conversion systems based on bench-scale and large pilot plant data. The initial work is based on COGAS and COED process results. The package should be useful for evaluating various flowsheet alternatives. (LTN)

  1. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, First quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  2. A fine coal circuitry study using column flotation and gravity separation. Quarterly report, 1 December 1994--28 February 1995

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q. [Southern Illinois Univ., Carbondale, IL (United States); Reed, S. [Kerr-McGee Coal Corp., Oklahoma City, OK (United States)

    1995-12-31

    Column flotation provides excellent recovery of ultrafine coal while producing low ash content concentrates. However, column flotation is not efficient for treating fine coal containing significant amounts of mixed-phase particles. Fortunately, enhanced gravity separation has proved to have the ability to treat the mixed-phased particles more effectively. A disadvantage of gravity separation is that ultrafine clay particles are not easily rejected. Thus, a combination of these two technologies may provide a circuit that maximizes both the ash and sulfur rejection that can be achieved by physical coal cleaning while maintaining a high energy recovery. This project is studying the potential of using different combinations of gravity separators, i.e., a Floatex hydrosizer and a Falcon Concentrator, and a proven flotation column, which will be selected based on previous studies by the principle investigator. During this reporting period, an in-plant Box-Behnken test program of the Floatex hydrosizer has been conducted at Kerr-McGee`s Galatia preparation plant. The results have shown that the Floatex hydrosizer can be successfully used to reject most of coarser ({plus}100 mesh) pyrite and mineral matter in the coal stream to the plant. With a single operation, ash rejection of 63% and total sulfur rejection of 43% have been achieved while maintaining a combustible recovery as high as 90.5%. A long term duration test under the optimum operating conditions determined from Box-Behnken test results has also been conducted. The feed samples for the following enhanced gravity - column flotation studies, which will be carried out in the next reporting period, have been collected.

  3. Studies in coal liquefaction with application to the SRC and related processes. Quarterly report, May-July 1983

    Energy Technology Data Exchange (ETDEWEB)

    Tarrer, A. R.; Guin, J. A.; Curtis, C. W.

    1984-03-01

    This report examines liquid-phase adsorption as a possible method of studying the interactions between coal liquids and hydrotreating catalysts. The duel purposes of this work are to develop a method to determine specific surface areas of porous catalysts and to examine how compounds commonly found in coal liquids are adsorbed on hydrotreating catalysts. The liquid-phase adsorption studies were performed at room temperature in tubing bomb reactors. Adsorption isotherms obtained from these experiments were assumed to follow Langmuir-type behavior. Compounds used in these studies included PNA compounds, a basic nitrogen containing compound, and an acidic oxygen containing compound. Various commercial grade catalysts as well as presulfided CoMo/Al/sub 2/O/sub 3/ and presulfided iron oxide were used as adsorbents. Experiments have shown that quinoline, a basic nitrogen containing compound, appears to be an excellent compound for surface area determination via liquid-phase adsorption. Adsorption of compounds such as pyrene, a PNA compound, and phenol, an acidic oxygen containing compound, may be used to determine the relative areas of different types of sites on catalyst surfaces. The sensitivity of this liquid-phase adsorption technique was evaluated by adsorbing different solutes on various catalyst surfaces. This technique shows that the adsorptivity of different coal liquids is a distinct function of the individual properties of the adsorbate as well as the properties of adsorbent used. Comparison of the adsorption properties of these coal liquids on various adsorbents may give insights as to how they adsorb on hydrotreating catalysts, how they compete for the active catalyst sites, and what types of sites the adsorbed molecules occupy. 29 references, 37 figures, 41 tables.

  4. A comparison study of column flotation technologies for cleaning Illinois coal. [Quarterly] technical report, December 1, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Paul, B.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mining Engineering

    1994-06-01

    The objectives of this research project are to optimize the performance of six commercially available column technologies for the treatment of Illinois Basin coal fines and to compare their performance on the basis of the recovery-grade curve and column throughput capacity. A statistically-designed, experimental program will be conducted to optimize the critical operating performance values of each flotation column. During the previous reporting period, construction and installation of the six flotation columns were completed. The flotation feed sample that will be used for the tests in this investigation was collected from a coal preparation plant treating the Illinois No. 5 seam coal. During this reporting period, the flotation feed sample was characterized on a size-by-size basis for its ash, total sulfur, and BTU content. A release analysis was also conducted to obtain the best possible recovery versus product grade curve that can be achieved by a froth flotation process for the treatment of the Illinois No. 5 flotation feed sample. Experiments were initiated on the Jameson Cell. The preliminary results indicate that the Jameson Cell achieves a separation performance that is close to the release data. The experimental program on the Jameson Cell and the other flotation technologies will be performed during the next reporting period.

  5. Production of carbon molecular sieves from Illinois coal. [Quarterly] technical report, March 1, 1993--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Lizzio, A.A.; Rostam-Abadi, M. [Illinois State Geological Survey, Champaign, IL (United States)

    1993-09-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recover processes. The overall objective of this project is to determine whether Illinois Basin coals are suitable feedstocks for the production of CMS and to evaluate the potential application of these products in commercial gas separation processes. In Phase I of this project, gram quantities of char were prepared from Illinois coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. Chars having surface areas of 1500--2100 m{sup 2}/g were produced by chemical activation using potassium hydroxide (KOH) as the activant. These high surface area chars had more than twice the adsorption capacity of commercial molecular sieves. The kinetics of adsorption of various gases, e.g., N{sub 2}, O{sub 2}, CO{sub 2}, CH{sub 4}, CO and H{sub 2}, on these chars at 25{degrees}C was determined. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4} and CH{sub 4}/H{sub 2} separation; both a high adsorption capacity and selectivity were achieved. The full potential of these materials in commercial gas separations has yet to be realized. In Phase II of this project, larger quantities of char are being prepared from Illinois coal in a batch fluidized-bed reactor and in a continuous rotary tube kiln.

  6. Drum-type steel-ball coal grinders for a direct-injection black-coal-dust combustor. Planning, performance and operation experience at the heating power plant Herne III

    Energy Technology Data Exchange (ETDEWEB)

    Heitmueller, W.; Strauss, K.; Thelen, F.

    1987-01-01

    The authors report on the retrofitting of the combustion system of the 300 MW unit of the Herne heating power plant which was necessitated by the application of large quantities of low-volatile coal. They review the new design concept and its resulting requirements, the switching regime of the grinding and firing system, the design mode of operation, construction and positioning of the drum-type steel-ball coal grinder, and discuss in detail the design configurations of and initial operating results gained with grinder neck, sifter, sifter characteristics, ground materials recirculation, liner of grinding drume, hydrostatic slide bearing, grinder drive and findings for a further development of this type of ball grinder. (HAG).

  7. Chemistry and catalysis of coal liquefaction catalytic and thermal upgrading of coal liquid and hydrogenation of CO to produce fuels. Quarterly progress report, July-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W.H.

    1981-02-01

    Studies on the basic properties of supported sulfide catalysts showed that different supports have a profound influence on catalytic activities of CoMo catalysts. The three functions of hydrodesulfurization, hydrogenation and cracking were differently affected depending on the support used and the manner of preparation of the catalyst. Also, incorporation of additives to the support showed that the different catalytic functions can be selectively affected. A systematic study concerned with catalytic cracking of coal-derived liquids, viz., an SRC-II middle-heavy distillate and four hydrotreated SRC-II products was carried out in the range of 375 to 500/sup 0/C (LHSV, 0.2 to 3.9 h/sup -1/). Hydrotreatment, even to a limited extent, results in a remarkable improvement in the yield of gasoline-range products from the SRC-II distillate. This improvement is ascribed to: (a) hydrogenolysis reactions leading to lower molecular weight feedstock components and (b) limited hydrogenation of aromatic rings leading to polycyclic feed components with sufficient concentration of hydroaromatic rings needed for effective cracking. The results with model compounds and the data on hydrogen consumption during hydrotreatment of SRC-II liquids indicate that for tricyclic, tetracyclic, and pentacyclic coal-liquid components the optimal concentration of hydroaromatic rings for effective subsequent cracking is at least two rings per molecule.

  8. Development of a new method for improving load turndown in fluidized bed combustors: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.

    1988-12-01

    The objective of this research was to investigate a new concept in fluidized bed design that improves load turndown capability. This improvement is accomplished by independently controlling heat transfer and combustion in the combustor. The design consists of two fluidized beds, one central and one annular. The central bed serves as the combustion bed. The annular bed is fluidized separately from the combustion bed and its level of fluidization determine the overall heat transfer rate from the combustion bed to the surrounding water jacket. Early theoretical considerations suggested a load turndown exceeding ten was possible for this design. This research consisted of three major phases: development of a computational model to predict heat transfer in the two-bed combustor, heat transfer measurements in hot-and-cold flow models of the combustor, and combustion tests in an optimally designed combustor. The computation model was useful in selecting the design of the combustor. Annular bed width and particle sizes were chosen with the aid of the model. The heat transfer tests were performed to determine if the existing correlations for fluidized bed heat transfer coefficients were sufficiently accurate for high aspect ratio fluidized beds (such as the annular bed in the combustor). Combustion tests were performed in an optimally designed combustor. Three fuel forms were used: double screened, crushed coal, coal-water-limestone mixtures (CWLM), and coal-limestone briquettes. 18 refs., 30 figs., 8 tabs.

  9. Coal combustion aerothermochemistry research. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Witte, A.B.; Gat, N.; Denison, M.R.; Cohen, L.M.

    1980-12-15

    On the basis of extensive aerothermochemistry analyses, laboratory investigations, and combustor tests, significant headway has been made toward improving the understanding of combustion phenomena and scaling of high swirl pulverized coal combustors. A special attempt has been made to address the gap between scientific data available on combustion and hardware design and scaling needs. Both experimental and theoretical investigations were conducted to improve the predictive capability of combustor scaling laws. The scaling laws derived apply to volume and wall burning of pulverized coal in a slagging high-swirl combustor. They incorporate the findings of this investigation as follows: laser pyrolysis of coal at 10/sup 6/ K/sec and 2500K; effect of coal particle shape on aerodynamic drag and combustion; effect of swirl on heat transfer; coal burnout and slag capture for 20 MW/sub T/ combustor tests for fine and coarse coals; burning particle trajectories and slag capture; particle size and aerodynamic size; volatilization extent and burnout fraction; and preheat level. As a result of this work, the following has been gained: an increased understanding of basic burning mechanisms in high-swirl combustors and an improved model for predicting combustor performance which is intended to impact hardware design and scaling in the near term.

  10. Coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1995--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. This includes new installations and those existing installations that were originally designed for oil or gas firing. The data generated by these projects must be sufficient for private-sector decisions on the feasibility of using coal as the fuel of choice. This work should also provide incentives for the private sector to continue and expand the development, demonstration, and application of these combustion systems. Vortec Corporation`s Coal-Fired Combustion System for Industrial Process Heating Applications is being developed under contract DE-AC22-91PC91161 as part of this DOE development program. The current contract represents the third phase of a three-phase development program. Phase I of the program addressed the technical and economic feasibility of the process, and was initiated in 1987 and completed 1989. Phase II was initiated in 1989 and completed in 1990. During Phase II of the development, design improvements were made to critical components and the test program addressed the performance of the process using several different feedstocks. Phase III of the program was initiated September 1991 and is scheduled for completion in 1994. The Phase III research effort is being focused on the development of a process heater system to be used for producing value-added vitrified glass products from boiler/incinerator ashes and selected industrial wastes.

  11. Heteroatom speciation in coal liquefaction via FTIR coupled with liquid chromatography. Quarterly progress report, October 1-December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.T.

    1984-05-01

    The objectives of the research are (1) evaluate the potential of FT-IR for qualitative functional group detection in chromatographic fractions of highly polar materials, (2) develop separation techniques with the aid of FT-IR detection for concentration of oxygen, nitrogen and sulfur functionalities in synfuels, (3) describe and quantify the various heteroatom functionalities in selected solvent refined coal fractions, (4) place speciation techniques on-line with chromatographic separations, (5) compare quantitative speciation information obtained from LC-FTIR with established fluorine tagging techniques regarding model compounds and synfuels. 23 figures, 5 tables.

  12. The Instituto de Investigaciones Electricas fluidized bed combustor; El combustor de lecho fluidizado del Instituto de Investigaciones Electricas

    Energy Technology Data Exchange (ETDEWEB)

    Milan Foressi, Julio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    After synthesizing the most important aspects of the combustion technology in fluidized bed, the experimental combustor developed at the Instituto de Investigaciones Electricas (IIE) is described, as well as the test results of the experiences carried out with coal from Rio Escondido, Coahuila. [Espanol] Tras sintetizar los aspectos mas importantes de la tecnologia de combustion en lecho fluidizado, se describe el combustor experimental desarrollado en el Instituto de Investigaciones Electricas (IIE), asi como los resultados de las experiencias realizadas con carbon proveniente de Rio Escondido, Coahuila.

  13. Engineering support services for the DOE/GRI coal gasification research program. Quarterly technical progress report, January-March 1982

    Energy Technology Data Exchange (ETDEWEB)

    Bostwick, L.E.; Ethridge, T.R.; Starr, D.W.; Koneru, P.B.; Hubbard, D.A.; Shah, K.V.; Smith, M.R.; Ward, W.E.; Wong, E.W.

    1982-05-01

    Kellogg continued to actively monitor operations at BI-GAS, Westinghouse and IGT (for peat gasification). Pilot plant/PDU test runs which were monitored and reported included BI-GAS Tests G-18, G-18A and G-18B; Westinghouse PDU Test TP-032-1 and CFSF Test TP-M003; and Peatgas Pilot Plant Test No. 5. Kellogg also monitored winterization/maintenance activities at BI-GAS and Westinghouse and precommissioning of the IGT Wet Carbonization PDU. The final report on the Hygas Data Base Evaluation was issued, while final revisions were completed for the reports concerning PDU data base evaluations of Peatgas and single-stage peat gasification. Efforts toward completion of the brochure describing the DOE/GRI Joint Program proceeded. Normal MPC activities continued. Several technical progress reports were issued during this quarter.

  14. Development of alternative fuels from coal-derived syngas. Quarterly status report No. 6, January 1--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.M.

    1992-05-19

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products` laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively ``benign`` system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE`s program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  15. Studies in coal liquefaction with application to the SRC and related processes. Quarterly report, May-July 1981

    Energy Technology Data Exchange (ETDEWEB)

    Guin, J. A.; Curtis, C. W.; Tarrer, A. R.

    1981-01-01

    This report discusses a kinetic investigation of the Fe-S-H/sub 2/ system conducted as an outgrowth of current research in the SRC-I (solvent refined coal) process to better understand the effects of naturally occurring iron sulfides in coal hydrogenation and hydrodesulfurization. A total of twelve closed system reactions were carried out in which 48 to 60 mesh pyrite, in the presence of hydrogen gas, underwent transformation to 1C hexagonal pyrrhotite. Reaction temperatures were 350/sup 0/C and 400/sup 0/C with four sample runs at temperature. Initial pressure of hydrogen gas was 1250 psig (8617 KPa). A comparison of the results for each reaction series was evaluated with time and temperature as variables. The transformation rate of pyrite to pyrrhotite was found to increase over the range of reaction temperatures with the 400/sup 0/C samples showing the greatest amount of transformation per unit time. For the 375/sup 0/C and 400/sup 0/C runs pyrrhotite formation decreased after approximately 15 minutes of reaction time due to (1) reduced availability of pyrite, and (2) resistance to diffusion in the topochemical product layer.

  16. Combustor liner construction

    Science.gov (United States)

    Craig, H. M.; Wagner, W. B.; Strock, W. J. (Inventor)

    1983-01-01

    A combustor liner is fabricated from a plurality of individual segments each containing counter/parallel Finwall material and are arranged circumferentially and axially to define the combustion zone. Each segment is supported by a hook and ring construction to an opened lattice frame with sufficient tolerance between the hook and ring to permit thermal expansion with a minimum of induced stresses.

  17. Catalytic combustor for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mercea, J.; Grecu, E.; Fodor, T.; Kreibik, S.

    1982-01-01

    The performance of catalytic combustors for hydrogen using platinum-supported catalysts is described. Catalytic plates of different sizes were constructed using fibrous and ceramic supports. The temperature distribution as well as the reaction efficiency as a function of the fuel input rate was determined, and a comparison between the performances of different plates is discussed.

  18. Integrated production/use of ultra low-ash coal, premium liquids and clean char. [Quarterly] technical report, March 1, 1993--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, C.W.; Carlson, S.L. [Illinois State Geological Survey, Champaign, IL (United States); Fatemi, M. [Amoco Research Center, Naperville, IL (United States); Snoeyink, V.L.; Feizoulof, C.A. [Illinois Univ., Urbana, IL (United States); Klavetter, E. [Sandia National Labs., Albuquerque, NM (United States)

    1993-09-01

    Tests this quarter showed the adsorption efficiency of an oxidized activated ChemCoal{trademark} (OACC) char for removing volatile organic compounds (VOCs) from spiked water is higher than for unoxidized activated char (ACC). OACC destroyed (or reacted with) a higher percentage of VOCs when loaded char was heated quickly to 850{degrees}C. This was expected based on the OACC`s superiority as an elimination catalyst. Aromatic VOCs appeared to be adsorbed on the chars more readily than the chlorinated ones but the multichlorinated VOCs appeared to be adsorbed more strongly. The performance of two oxidized carbons (OST3-9 and OACC chars) for the removal of the VOCs from two industrial waste waters spiked with VOCs appeared similar. The more active catalyst, OST3-9 appeared more effective than OACC in destroying the adsorbed materials. A series of carbons having differing levels of oxygen on the surface was prepared by desorbing oxygen from the surface placed there by nitric acid oxidation. Tests revealed that the capacity to adsorb 2-nitrophenol increased as the outgassing temperature was increased. This indicates that PNP adsorption is increased as surface oxygen is removed from the carbon.

  19. Coal log pipeline research at the University of Missouri. 1st Quarterly report for 1995, January 1, 1995--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.

    1995-08-01

    Work continued on the study of coal log pipeline research. Individual projects described include fast compaction of coal logs; effect of cooling on coal log quality; coal log capping; effectiveness of adding fiber to enhance coal log quality; fabrication using hydrophobic binders; cost estimation of different lubricants; automatic control of coal log pipeline system; CLP design; coal log train transport; economics of coal log pipeline; legal aspects; heating, cooling, and drying of logs; vacuum systems to enhance production; design; and effect of piston modification on capping.

  20. Continuous coal processing method

    Science.gov (United States)

    Ryason, P. R.

    1980-06-01

    A coal pump is provided in which solid coal is heated in the barrel of an extruder under pressure to a temperature at which the coal assumes plastic properties. The coal is continuously extruded, without static zones, using, for example, screw extrusion preferably without venting through a reduced diameter die to form a dispersed spray. As a result, the dispersed coal may be continuously injected into vessels or combustors at any pressure up to the maximum pressure developed in the extrusion device. The coal may be premixed with other materials such as desulfurization aids or reducible metal ores so that reactions occur, during or after conversion to its plastic state. Alternatively, the coal may be processed and caused to react after extrusion, through the die, with, for example, liquid oxidizers, whereby a coal reactor is provided.

  1. Slag characterization and removal using pulse detonation for coal gasification. Quarterly research report, July 1--September 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Huque, Z.; Mei, D.; Biney, P.O.; Zhou, J.; Ali, M.R.

    1996-10-25

    Boiler slagging and fouling as a result of inorganic impurities in combustion gases being deposited on heat transfer tubes have caused severe problems in coal-fired power plant operation. These problems are fuel, system design, and operating condition dependent. Conventional slag and ash removal methods include the use of in situ blowing or jet-type devices such as air or steam soot blowers and water lances. Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. The detonation wave technique based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. These detonation waves have been demonstrated experimentally to have exceptionally high shearing capability important to the task of removing slag and fouling deposits. Several tests have been performed with single shot detonation wave at University of Texas at Arlington to remove the slag deposit. To hold the slag deposit samples at the exit of detonation tube, two types of fixture was designed and fabricated. They are axial arrangement and triangular arrangement. The slag deposits from the utility boilers have been used to prepare the slag samples for the test. The experimental results show that the single shot detonation wave is capable of removing the entire slag (types of slag deposited on economizer, and air-heater, i.e., relatively softer slags) and 30% of the reheater slag (which is harder) even at a distance of 6 in. from the exit of a detonation engine tube. Wave strength and slag orientation also have different effects on the chipping off of the slag. The annual report discusses about the results obtained in effectively removing the slag.

  2. Chemistry and structure of coal-derived asphaltenes, Phase III. Quarterly progress report, April--June 1978

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T. F.

    1978-01-01

    Solubility parameters may be calculated for coal liquid derived products by use of a semi-empirical relationship between solubility parameter and refractive index. Thermal treatment of Synthoil coal liquid oil + resin solvent fraction at 235 to 300/sup 0/C resulted in the transformation of oil and resin into asphaltene. Further support of structural characterizations was obtained by use of a combined x-ray and NMR structural characterization procedure which relies on the important x-ray structural parameter L/sub a/ (average layer diameter of the aromatic sheet). L/sub a/ values of approx. = 8 to 10 A for asphaltenes, approx. = 13.4 to 14 A for carbenes, and approx. = 14 to 16.5 A for carboids were obtained by the x-ray procedure. These data were used to calculate C/sub Au/ (aromatic carbons per structural unit) and N (number of structural units per molecule) values. For asphaltenes the results agree with those previously deduced from NMR and other techniques. The C/sub Au/ values are generally close to 14 which is the number of aromatic carbons present in a 3-ring kata-system such as anthracene or phenanthrene. The number of structural units per molecule is close to two for all the asphaltenes. Additional data were used to improve the correlation equation between weight percent OH, determined by the silylation method, and the absorbance of the monomeric OH infrared stretching band at 3600 cm/sup -1/ for asphaltenes. A similar correlation between weight percent NH, from elemental analysis of asphaltene samples containing essentially all nitrogen as pyrrolic N-H, and the infrared absorbance of the N-H stretching band at 3470 cm/sup -1/ was developed for asphaltenes.

  3. Coupled generator and combustor performance calculations for potential early commercial MHD power plants

    Science.gov (United States)

    Dellinger, T. C.; Hnat, J. G.; Marston, C. H.

    1979-01-01

    A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system concept, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F, indirectly fired air heater, no oxygen enrichment, Illinois no. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 4 kV/m. Results indicate that optimum net MHD generator power is generally compressor-power-limited rather than electric-stress-limited, with optimum net power a relatively weak function of operating pressure.

  4. Micropore diffusion in coal chars under reactive conditions: Quarterly technical progress report, 15 March 1987-15 June 1987

    Energy Technology Data Exchange (ETDEWEB)

    Calo, J.M.; Perkins, M.T.; Lilly, W.D.

    1987-01-01

    In this third quarterly technical progress report, we present some initial data obtained with the ''gradientless'' reactor, and explore the effects of dispersion in the reactor sampling line. In particular: the gas sampling system and the solenoid valve network have been assembled and interfaced between the 3'' Berty catalytic reactor and the mass spectrometer beam system; initial purging experiments were conducted with this system, focusing on the convoluting effects of the sampling line on time constant measurements; it was shown and concluded that for the projected operating regime, the sampling line configuration without the in-line filter should not introduce any appreciable error in the measurements; and an analysis of the dispersion effects to be expected in the sampling line has defined the useful flow rate ranges for the current system and the means by which to extend the dynamic range; e.g., by increasing the length of the small bore diameter tubing. 21 refs., 11 figs.

  5. Systems studies of coal conversion processes using a reference simulator. Quarterly report, October 1, 1978--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, G.V.; Sood, M.K.; Soni, Y.; Overturf, B.W.; Buchanan, P.; Wiede, W. Jr.; Wilkinson, C.R.; Boo, J.

    1979-02-01

    Work was completed on the coding and testing of the plant cost estimation package PCOST. Significant effort was expended in adapting the ORNL PRP evaluation program to make it compatible with PCOST. Continuing efforts include completion of the user's manual and rechecking of the cost data base entries. Continued miscellaneous revisions and additions arising from user suggestions were made to the S4 and PPROPS packages. The two phase flash routine was modified to more efficiently accommodate single components. The three phase flash routine was revised to include generation of sharper initial estimates and phase stability tests. A versatile process utilities section model was implemented and tested. This program will perform the balance calculations, will select turbine design conditions, and will determine required auxiliary boiler loads for a plant steam system containing multiple steam pressure levels. Integrated simulations of the hydrogen and vapor recovery sections have been assembled and design case studies are in progress. The integrated simulation of the hydrotreating, acid gas removal, and hydrogen plant sections is being prepared for combined execution using the hierchiacal strategy tested in the previous quarter. Alternate numerical methods are being tested for accommodating the severe stiffness which has been encountered in the differential equations of the lift tube model.

  6. Systems studies of coal conversion processes using a reference simulator. Quarterly report, April 1--June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, G.V.; Sood, M.K.; Raghavan, S.; Soni, Y.; Overturf, B.W.; Ford, J.R.; Buchanan, P.; Weide, W. Jr.; Wilkinson, C.R.; Boo, J.

    1978-08-01

    In this reporting period work has been completed on the simulation model of the hydrotreating process section. This model successfully tested the integrated operation of the Simulation System including the physical properties subsystems and involving pseudo-components and solids stream flows. The hydrotreating reactor model was modified to include improved temperature profile predictions. The plant capital cost estimation subsystem has been redesigned to allow use as a stand alone package. The revised package will include a redesigned cost data bank, equipment costing programs, factored plant and auxiliary equipment programs as well as a profitability analysis routine. Implementation of the revised economics package is expected to be completed during the third quarter of 1978. The physical properties package has been updated by the addition of routines for the accurate estimation of the thermodynamic properties of steam. A steady state model of the methanation section has been assembled. Scrubber, multi-phase separator, and turbine models have been developed for the vapor recovery and heat recovery process sections. Work is in progress on a detailed model of the char lift leg and the steam reformer. progress has been delayed but work is continuing on the hierarchical process calculation system outlined in Fe--2275-7.

  7. Low emissions combustor test facility

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, D.J.; Hadley, M.S.; Norton, T.S.

    1993-12-01

    The Morgantown Energy Technology Center (METC) is in the process of constructing a low emissions combustor test and research (LECTR) facility designed to support the development of low emissions gas turbine combustion systems fired on natural gas and coal derived gaseous fuels containing fuel bound nitrogen. The LECTR facility is a major test station located within METC`s new combustion facility. The heart of this test station is a 60 centimeter (24 inch) diameter, refractory lined pressure vessel made up of a series of flanged modules. The facility design offers the flexibility to test a variety of low emissions combustion concepts at pressures up to 3 MPa (30 atm). Upon completion of fabrication and shake-down testing in January of 1994, the facility will be available for use by industrial and university partners through Cooperative Research and Development Agreements (CRADAs) or through other cooperative arrangements. This paper is intended to describe the LECTR facility and associated operating parameter ranges and to inform interested parties of the facility availability.

  8. Stabilization and/or regeneration of spent sorbents from coal gasification. [Quarterly] technical report, March 1, 1992--May 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R. [Institute of Gas Technology, Chicago, IL (United States)

    1992-10-01

    The objective of this investigation is to determine the effects of SO{sub 2} partial pressure and reaction temperature on the conversion of sulfide containing solid wastes from coal gasifiers to stable and environmentally acceptable calcium sulfate, while preventing the release of sulfur dioxide through undesirable side reactions during the stabilization step. An additional objective of this program is to investigate the use of the Spent Sorbent Regeneration Process (SSRP) to regenerate spent limestone, from a fluidized-bed gasifier with in-bed sulfur capture, for recycling to the gasifier. To achieve these objectives, selected samples of partially sulfided sorbents will be reacted with oxygen at a variety of operating conditions under sufficient S0{sub 2} partial pressure to prevent release of sulfur from the solids during stabilization that reduces the overall sorbent utilization. Partially sulfided limestone will also be regenerated with water using the SSRP to produce calcium hydroxide and release sulfur as H{sub 2}S. The regenerated sorbent will be dewatered, dried and pelletized. The reactivity of the regenerated sorbent toward H{sub 2}S will also be determined.

  9. Stabilization and/or regeneration of spent sorbents from coal gasification. [Quarterly] technical report, December 1, 1991--February 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R.

    1992-08-01

    The objective of this investigation is to determine the effects of SO, partial pressure and reaction temperature on the conversion of sulfide containing solid wastes from coal gasifiers to stable and environmentally acceptable calcium-sulfate, while preventing the release of sulfur dioxide through undesirable side reactions during the stabilization step. An additional objective of this program is to investigate the use of the Spent Sorbent Regeneration Process (SSRP) to regenerate spent limestone, from a fluidized-bed gasifier with in-bed sulfur capture, for recycling to the gasifier. To achieve these objectives, selected samples of partially sulfided sorbents will be reacted with oxygen at a variety of operating conditions under sufficient S0{sub 2} partial pressure to prevent release of sulfur from the solids during stabilization that reduces the overall sorbent utilization. Partially sulfided limestone will also be regenerated with water to produce calcium hydroxide and release sulfur as H{sub 2}S. The regenerated sorbent will be dewatered, dried and pelletized. The reactivity of the regenerated sorbent toward H{sub 2}S will also be determined.

  10. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, July-September 1983

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.A. Jr.

    1983-01-01

    Two long gasification tests were accomplished (66 and 72 hours of slagging operation) this quarter, and the balance of the wastewater needed for the second cooling tower (CT) test (approx. 11,000 gallons) was generated. Eleven thousand gallons of slagging fixed-bed gasifier (SFBG) wastewater were solvent extracted and ammonia stripped (AS) to nominal levels of 160 mg/1 phenol and 600 mg/1 NH/sub 3/. This wastewater is being further treated by activated sludge (AS) and granular activated carbon (GAC) processing to prepare a high quality makeup for the second CT test. Phenol mass balances indicated that > 90 pct of the phenol was stripped from the tower, indicating that previous assumptions of high levels of biodegradation were erroneous. Over 80 pct of the ammonia and about 25 pct of the methanol were also stripped. Data collected during steady state operation of the bench-scale rotating biological contractor indicate complete removal of phenolics and alcohols, and 94 pct removal of BOD. Nitrification also occurred in this unit, with over 30 pct removal of ammonia. Problems due to individual bacteria, present in the biotreated wastewater, passing through the multi-media filter and thus decreasing the carbon adsorption efficiency of the GAC system, have resulted in lower treatment rates than originally anticipated. As a result, to achieve the desired treatment, the contact time of the wastewater with the carbon in the granular activated carbon system has been increased. Since this has decreased the treatment rate, a larger carbon adsorption system has been designed and is presently being constructed.

  11. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  12. Refractory experience in circulating fluidized bed combustors, Task 7

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  13. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 3, July--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluate the economic and technical feasibility of the concept, and prepare an R & D plan to develop the concept further. Foster Wheeler Development Corporation is leading a team ofcompanies involved in this effort. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degrees}F in furnaces fired with cool-derived fuels and then directly heated in a natural-gas-fired combustor up to about 2400{degrees}F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuelgas is a relatively clean fuel, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need tobe a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown.

  14. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  15. POC-scale testing of oil agglomeration techniques and equipment for fine coal processing. Quarterly report, July 1--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Ignasiak, B.; Pawlak, W.; Szymocha, K.

    1997-12-31

    This report covers the technical progress achieved from July 1, 1997 to September 30, 1997 on the POC-Scale Testing Agglomeration Techniques and Equipment for Fine Coal Processing project. Experimental procedures and test data for recovery of fine coal from coal fines streams generated at a commercial coal preparation plant are described. Two coal fines streams, namely Sieve Bend Effluent and Cyclone Overflow were investigated. The test results showed that ash was reduced by more than 50% at combustible matter recovery levels exceeding 95%.

  16. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Quarterly technical report: March 1, 1993 to May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.; Ilias, S. [North Carolina A and T State Univ., Greensboro, NC (United States). Dept. of Chemical Engineering

    1993-11-01

    The viscosity of coal derived liquids is an important property that is required for the design of the coal liquefaction processes, as well as for understanding the flow characteristics of coal liquids. Coal liquids are complex undefined mixtures and boil over a wide range of temperatures. One method of characterizing coal liquids is to treat coal liquids as a continuous distribution of molecular weights. Upon review of the literature for viscosity correlations, the authors quickly concluded that there is no accurate method available that may be successfully applied to coal liquids. They generally believe that correlations based on molecular structure of materials are superior to those that use solely the characterization parameters such as refractive index, critical properties, density, boiling points etc. A few correlations in the literature do consider molecular structures in viscosity determinations. Using important features in these correlations, they set out to develop a new viscosity correlation that would apply to model coal aromatic compounds, their mixtures and finally to coal derived liquids themselves. The correlation for pure compounds and mixtures has been developed and is discussed below. Attempts are now being made to apply this to coal derived liquids.

  17. Mechanisms of pyrite oxidation to non-slagging species. Quarterly report, April 1, 1995--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Akan-Etuk, A.E.J.; Mitchell, R.E.

    1995-12-01

    This document is the fourth quarterly status report on a project that is conducted at the High Temperature Gasdynamics Laboratory at Stanford University, Stanford, California and is concerned with enhancing the transformation of iron pyrite to non-slagging species during staged, low-NO{sub x} pulverized coal (P.C.) combustion. The research project is intended to advance PETC`s efforts to improve our technical understanding of the high-temperature chemical and physical processes involved in the utilization of coal. The work focuses on the mechanistic description and rate quantification of the effects of fuel properties and combustion environment on the oxidation of iron pyrite to form the non-slagging species magnetite. The knowledge gained from this work is intended to be incorporated into numerical codes that can be used to formulate anti-slagging strategies involving minimal disturbance of coal combustor performance. This project is to be performed over the three-year period from September 1994 to August 1997. The project aims to identify the mechanisms of pyrite combustion and to quantify their effects, in order to formulate a general rate expression for the combustion of pyrite that accounts for coal properties as well as furnace conditions.

  18. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 16, July 1, 1992--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  19. Large scale solubilization of coal and bioconversion to utilizable energy. Seventh quarterly technical progress report, April 1, 1995--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, N.C.

    1995-12-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  20. Large scale solubilization of coal and bioconversion to utilizable energy. Eighth quarterly technical progress report, July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, N.C.

    1996-02-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  1. Organosulphur compounds in coals as determined by reaction with Raney nickel and microscale pyrolysis techniques. Quarterly report, January 1, 1995--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Philp, R.P.; Stalker, L.

    1995-09-01

    This report briefly descibes a method for cleaving organosulfur compounds from coal, kerogens and asphaltenes. The technique utilized nickel chloride and sodium borohydride. Experiments were performed on Illinois No. 6 coal. The method was also used in a deuterium labelling technique for investigating sulfur bonds.

  2. Advanced development of fine coal desulfurization and recovery technology. Quarterly technical progress report, October 1, 1976--December 31, 1976. [53 references

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, R.W.; Wheelock, T.D.

    1977-02-01

    The improvement and technical development of promising methods for desulfurizing and recovering fine coal underway includes froth flotation, selective oil agglomeration, pelletization, and a chemical desulfurization process which involves leaching fine coal with a hot dilute solution of sodium carbonate containing dissolved oxygen under pressure. A preliminary assessment of the state of the art and review of the technical literature has been made. Equipment and apparatus have been assembled for small-scale laboratory experiments in froth flotation, oil agglomeration and chemical desulfurization. Preliminary froth flotation tests have been carried out on an Iowa coal to establish baseline data. Quite unexpectedly these tests indicated that aluminum nitrate may be an activator for coal because it served to increase the recovery of coal. Several potential flotation depressants for pyrite have been screened by measurement at the zeta potential and floatability of pyrite or coal in aqueous suspensions containing the potential depressants. The following reagents show some promise as pyrite depressants: ferric chloride, sodium cyanide, ammonium thiocyanate, and the disodium salt of ethylenediaminetetraacetic acid. Preliminary plans have been prepared for a continuous flow bench-scale system to demonstrate the process. This system will include equipment for grinding and pretreating the coal as well as equipment for demonstrating froth flotation, selective oil agglomeration and pelletization. An investigation of coal microstructure as it relates to coal beneficiation methods has also been initiated. The distribution of various forms of pyrite by size and crystal structure has been determined for two cannel samples of coal through application of scanning electron microscope techniques.

  3. (Coal utilization in India)

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, R.P.

    1991-01-15

    Under the Phase II, Alternative Energy Resources Development (AERD) project of the United States Agency for International Development (USAID) and the Government of India (GOI), five collaborative coal projects have been initiated in the areas of: (1) NO{sub x}/SO{sub x} control from coal-fired power plants, (2) slagging combustor development for high-ash Indian coals, (3) characterization of Indian coals for combustion and gasification, (4) diagnostic studies for prediction of power plant life expectancy, and (5) environmental and natural resource analysis of coal cycle. The Pittsburgh Energy Technology Center (PETC) has the implementation responsibility for these projects. The Indian collaborative institutions identified for these projects are the Bharat Heavy Electricals Ltd. (BHEL), Trichy, (Projects 1--4), and the Tata Energy Research Institute (TERI) for Project 5. The Oak Ridge National Laboratory (ORNL) is providing cross-cut technical coordination and support for these five projects.

  4. Characteristics of American coals in relation to their conversion into clean energy fuels. Quarterly technical progress report, July--September 1975

    Energy Technology Data Exchange (ETDEWEB)

    Spackman, W.; Davis, A.; Walker, P. L.; Lovell, H. L.; Essenhigh, R. H.; Vastola, F. J.; Given, P. H.

    1975-12-01

    Twenty-one coal samples have been collected and characterized. Sixty coals have been provided to other agencies at their request. The capability of controlling coal characteristics during preparation is being developed: large variations in volatile content occur within a given raw coal but, by controlling the preparation, a uniform product with the devised specifications can be produced. Studies have begun on the suitability of various coals and cokes for use in pressurized fixed bed gasifiers. Preliminary studies are being carried out on the feasibility of applying small angle x-ray scattering to the characterization of coal chars. Reactivity profiles and parameters for chars in air are markedly dependent upon the gaseous flow system used, indicating that char reactivity is determined by partial pressure of the reacting gas. Reactivities have been maximized by keeping the heat treatment temperature as low as possible, and allowing no soak time. The minerals kaolinite, dolomite, siderite, calcite, and pyrite are found not to be catalysts for the char-air reaction at 550/sup 0/C. The addition of coal to an oil-water-air emulsion considerably increases the heat flux from the flame to the water tubes during combustion. (auth)

  5. Installation of a stoker-coal preparation plant in Krakow, Poland. Quarterly technical progress report No. 3, November--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Rozelle, P.

    1996-01-01

    This report describes the progress made during this reporting period of a two year project to demonstrate that the air pollution from a traveling grate stoker being used to heat water at a central heating plant in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost effective and hence be adopted by the other central heating plants in Krakow and indeed, throughout Eastern European cities where coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators, for the execution of this effort. The washability data from a 20mm x 0.5mm size fraction of raw coal from the Nikwa Modrejow Mine were evaluated. The data show that the ash content of this coal can be reduced from 34.0 percent to 9.0 percent by washing in a heavy-media cyclone at 1.725 sp.gr.; the actual yield of clean coal would be 63.1 percent. This product would meet compliance limitations of 500 a of SO{sub 2}/GJ. An evaluation of the predicted results that can be expected when washing five different candidate Polish coals shows that compliance products containing less than 640 a SO{sub 2}/GJ and 10 percent ash at attractive yields can be produced by washing the raw coals in a heavy-media cyclone. Discussions with financial institutions regarding the cost of producing a quality stoker coal in Poland and for identifying sources of private capital to help cost share the project continued. The search for markets for utilizing surplus production from the new plant continued.

  6. Micro-mixer/combustor

    KAUST Repository

    Badra, Jihad Ahmad

    2014-09-18

    A micro-mixer/combustor to mix fuel and oxidant streams into combustible mixtures where flames resulting from combustion of the mixture can be sustained inside its combustion chamber is provided. The present design is particularly suitable for diffusion flames. In various aspects the present design mixes the fuel and oxidant streams prior to entering a combustion chamber. The combustion chamber is designed to prevent excess pressure to build up within the combustion chamber, which build up can cause instabilities in the flame. A restriction in the inlet to the combustion chamber from the mixing chamber forces the incoming streams to converge while introducing minor pressure drop. In one or more aspects, heat from combustion products exhausted from the combustion chamber may be used to provide heat to at least one of fuel passing through the fuel inlet channel, oxidant passing through the oxidant inlet channel, the mixing chamber, or the combustion chamber. In one or more aspects, an ignition strip may be positioned in the combustion chamber to sustain a flame without preheating.

  7. Novel microorganism for selective separation of coal from ash and pyrite. Sixth quarterly technical progress report, January 1, 1995--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Misra, M.; Smith, R.W.; Raichur, A.M.

    1995-08-01

    The objective of this research project is to study the effectiveness of a novel hydrophobic microorganism, Mycobacterium phlei (M. phlei), for the selective flocculation of coal from pyrite and ash forming minerals. During the reporting period, the flocculation efficiencies of Illinois No. 6 and KY No. 9 coal in the presence of whole and ruptured cells of M. phlei were studied. The effect of synthetic flocculants were also studied for comparison at selected pH values. Results showed that the whole cells of M. phlei can flocculate coal very effectively and rapidly for both the coal samples. However, with ruptured cells of M. phlei the flocculation efficiency is significantly less which can be attributed to the loss of extracellular surfactants during rupturing. Separation of flocs using column flotation was studied for both the coal samples in the acidic pH range. Results indicated that excellent rejection of pyritic sulfur and ash could be obtained with a high combustible recovery. DLVO calculations were performed for all the minerals used in this study to calculate the interaction energies in the presence of whole cells and ruptured cells of M. phlei. A minimum in interaction energy is observed between coal and whole cells of M. phlei at pH 4 which is probably responsible for the higher adhesion and flocculation efficiencies at the pH. However, with ruptured cells the interaction energy increases thus decreasing the amount of M. phlei cells adhering to the surface.

  8. Combustion characterization of coal fines recovered from the handling plant. Quarterly technical progress report no. 3, April 1, 1995--June 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Houshang, M.; Samudrala, S.R.; Mohannad, O. [and others

    1995-07-01

    The main goal of this research project is to evaluate the combustion characteristics of the slurry fuels prepared from the recovered coal fines and plant coal fines. A specific study will include the combustion behavior, flame stability, ash behavior and emissions of SO{sub x}, NO{sub x} and particulate in a well insulated laboratory scale furnace in which the residence time and temperature history of the burning particles are similar to that of utility boiler furnace at 750,000 Btu/hr input and 20% excess air. The slurry fuel will be prepared at 60% solid to match the generic slurry properties, i.e., viscosity less than 500 cp, 100% of particles passing through 100 mesh and 80-90% of solid particles passing through 200 mesh. The coal blend is prepared using a mix of 15% effluent recovered coal and 85% plant fines. Combustion characteristics of the slurry fuels is determined at three different firing rates 750K, 625K, 500K Btu/hr. Finally a comparison of the results is made to determine the advantages of coal water slurry fuel over the plant coal blended form.

  9. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Suuberg; Eric Eddings; Larry Baxter

    2002-01-31

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates.

  10. Methanol tailgas combustor control method

    Science.gov (United States)

    Hart-Predmore, David J.; Pettit, William H.

    2002-01-01

    A method for controlling the power and temperature and fuel source of a combustor in a fuel cell apparatus to supply heat to a fuel processor where the combustor has dual fuel inlet streams including a first fuel stream, and a second fuel stream of anode effluent from the fuel cell and reformate from the fuel processor. In all operating modes, an enthalpy balance is determined by regulating the amount of the first and/or second fuel streams and the quantity of the first air flow stream to support fuel processor power requirements.

  11. The economical production of alcohol fuels from coal-derived synthesis gas. Sixth quarterly technical progress report, January 1, 1993--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    Preliminary economic investigations have focused on cost reduction measures in the production of syngas from coal. A spread sheet model has been developed which can determine the cost of syngas production based upon the cost of equipment and raw materials and the market value of energy and by-products. In comparison to natural gas derived syngas, coal derived syngas is much more expensive, suggesting a questionable economic status of coal derived alcohol fuels. While it is possible that use of less expensive coal or significant integration of alcohol production and electricity production may reduce the cost of coal derived syngas, it is unlikely to be less costly to produce than syngas from natural gas. Fuels evaluation is being conducted in three parts. First, standard ASTM tests are being used to analyze the blend characteristics of higher alcohols. Second, the performance characteristics of higher alcohols are being evaluated in a single-cylinder research engine. Third, the emissions characteristics of higher alcohols are being investigated. The equipment is still under construction and the measurement techniques are still being developed. Of particular interest is n-butanol, since the MoS{sub 2} catalyst produces only linear higher alcohols. There is almost no information on the combustion and emission characteristics of n-butanol, hence the importance of gathering this information in this research.

  12. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Quarterly technical report, December 1, 1992--February 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.; Ilias, S.

    1993-12-31

    Very little data is available on the thermodynamic properties of coal model compounds in liquid phase at high pressures. The authors present preliminary compilations of available data. It is anticipated that they will require vapor pressure and saturated liquid density data for coal model compounds in their high pressure liquid equation of state development. These data sets have also been compiled and are presented. They have at this time completed a review of techniques for high pressure density measurements. Some thought is being given to the possibility of building an apparatus to carry out density measurements for selected model compounds. Finally, they reproduce the Thomson et al equation and describe their preliminary procedure to test this equation with available high pressure thermodynamic data. They acknowledge the possibility that a number of modifications of the Thomson equation will be necessary before a reasonably accurate liquid state equation of state for coal model compound emerges.

  13. Organosulphur compounds in coals as determined by reaction with Raney nickel and microscale pyrolysis techniques. Quarterly report, 1 July 1995--31 October 1995

    Energy Technology Data Exchange (ETDEWEB)

    Stalker, L.; Philp, R.P.

    1995-12-31

    As well as studying coal samples from Oklahoma and Missouri States, we have now completed the preliminary part of a study of a well known high organosulphur containing coal, Illinois No. 6. As a number of other research groups have used Illinois No. 6 for study, we thought it wise to also analyse this coal for comparison of our method with existing data reported in the literature. To date, analyses of the aliphatic fractions of the free maltene components and the aliphatic hydrocarbons isolated following desulphurization of the free maltene polar fraction, asphaltenes and pre-extracted coal matrix have been performed in duplicate. So far, most of these samples have been analysed by GC and subsequently quantified using n-C{sub 24}D{sub 50}. As Figures 1 and 2 show, the duplicates for the desulphurized products (e.g. Figure 2a and 2b of desulphurized asphaltenes) while showing broad similarities, do not appear to be identical. This is emphasized by differences in the yields of n-alkanes generated, quantified in Table 1. Abundance of corresponding n-alkanes are often quite variable for duplicate analyses, which have been normalized to the quantity of original starting material. While inhomogeneity of sampling can easily explain the variation in abundance of products generated for the asphaltenes and coal matrix, the same cannot be said for the free polar compounds, which dissolve easily in the methanol/tetrahydrofuran solvent system used in the desulphurization process. It would therefore appear that desulphurization experiments should be performed at the very least, in duplicate to gain a clear impression of the distribution and abundance of aliphatic products cleaved from organosulphur compounds. The GC analysis also appears to show that there are different organosulphur compound precursors trapped in the different fractions of the coals.

  14. Characteristics of American coals in relation to their conversion into clean energy fuels. Quarterly technical progress report, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    Spackman, W.; Davis, A.; Walker, P. L.; Lovell, H. L.; Essenhigh, R. H.; Vastola, F. J.; Given, P. H.; Suhr, N. H.

    1978-03-01

    The Penn State/DOE Coal Sample Bank has been expanded. A total of 54 characterized coal samples and 232 selected printouts of coal data were provided upon request to the coal research community. Work has been conducted using nitrogen as a pyrolysis medium at 808/sup 0/C and seven size grades of the Texas Darco lignite (PSOC-412) as starting material. This work was intended to extend previous work on the effects of particle size on pyrolysis. A study is being made into the effects of low temperature oxidation on the agglomerating properties of caking coals. The effect of preoxidation in air of a highly caking coal at different temperatures on weight loss during pyrolysis up to 1000/sup 0/C and reactivity of resultant chars to air at 475/sup 0/C has been investigated. Preoxidation has essentially no effect on weight loss during pyrolysis below 450/sup 0/C. At higher temperatures, however, preoxidation results in a decrease in weight loss. Preoxidation markedly enhances subsequent char reactivity. Differential scanning calorimetry and thermogravimetric analysis have been used to study the interaction between oxygen and an unactivated Saran carbon. In the range 125-227/sup 0/C, chemisorption of oxygen, though the predominant process, is associated with a gasification reaction. The rate of the latter reaction is much higher than extrapolated from the Arrhenius plot in the temperature range 450-550/sup 0/C. In the temperature range 450-850/sup 0/C, gasification kinetics have been studied by the TGA technique. Plots of burn-off versus reaction time are linear over the 15-65% burn-off range. The Arrhenius plots consist of three distinct straight lines of different slopes, indicating that the gasification reaction occurs in three different zones.

  15. Large scale solubilization of coal and bioconversion to utilizable energy. Eleventh quarterly technical progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, N.C.

    1996-10-01

    Neurospora has the capability to solubilize coal and the protein fraction accounting for this ability has been isolated. During this period the cola solubilizing activity (CSA) was fractionated and partially sequenced. The activity has been determined to be a tyrosinase and/or a phenol oxidase. The amino acid sequence of the protein was used to prepare oligonucleotides to identify the clone carrying Neurospora CSA. It is intended to clone the Neurospora gene into yeast, since yeast cannot solubilize coal, to further characterize the CSA.

  16. Quarterly technical progress report for the period ending June 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    The Magnetohydrodynamics Program (Component Development and Integration Facility) in Butte, Montana, continued its site preparation for the TRW first-stage combustor installation. In the area of flue gas cleanup, our in-house research program is continuing its investigation into the causes of sorbent attrition in PETC's fluidized-bed copper oxide process for simultaneous SO/sub 2//NO/sub x/ removal. Interwoven with these tests is a series of spray dryer/electrostatic precipitator tests that are being conducted with the cooperation of Wheelabrator-Frye, Inc. This test series was completed this quarter, and the data show that when using a Kentucky coal, Wheelabrator-Frye's electrostatic precipitator provides excellent particulate control efficiency while using a spray dryer for sulfur dioxide removal. A unique project at Carnegie-Mellon University is looking at the concept of integrated environmental control for coal-fired power plants making use of precombustion, combustion, and postcombustion control, including systems for the simultaneous removal of more than one pollutant. The objective of this research is to develop a computer model and assessment for integrated environmental control systems that utilize conventional or advanced systems. The Liquid Phase Methanol Project Development Unit in LaPorte, Texas, was restarted after a successful shakedown run was completed. PETC has recently begun an in-house research project aimed at exploring the basic chemistry of liquefying coal in the presence of water under supercritical conditions. In the Alternative Fuels Technology Program, the Gulf Research and Development Company has completed the preliminary testing phase of its erosion test loop. Their results indicate that when pumping a coal-water slurry fuel through a flow loop, the erosion rate increases as velocity increases, suggesting a well-defined relationship between these two parameters.

  17. Quarterly technical progress report for the period ending June 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    The Magnetohydrodynamics Program (Component Development and Integration Facility) in Butte, Montana, continued its site preparation for the TRW first-stage combustor installation. In the area of flue gas cleanup, our in-house research program is continuing its investigation into the causes of sorbent attrition in PETC's fluidized-bed copper oxide process for simultaneous SO/sub 2//NO/sub x/ removal. Interwoven with these tests is a series of spray dryer/electrostatic precipitator tests that are being conducted with the cooperation of Wheelabrator-Frye, Inc. This test series was completed this quarter, and the data show that when using a Kentucky coal, Wheelabrator-Frye's electrostatic precipitator provides excellent particulate control efficiency while using a spray dryer for sulfur dioxide removal. A unique project at Carnegie-Mellon University is looking at the concept of integrated environmental control for coal-fired power plants making use of precombustion, combustion, and postcombustion control, including systems for the simultaneous removal of more than one pollutant. The objective of this research is to develop a computer model and assessment for integrated environmental control systems that utilize conventional or advanced systems. The Liquid Phase Methanol Project Development Unit in LaPorte, Texas, was restarted after a successful shakedown run was completed. PETC has recently begun an in-house research project aimed at exploring the basic chemistry of liquefying coal in the presence of water under supercritical conditions. In the Alternative Fuels Technology Program, the Gulf Research and Development Company has completed the preliminary testing phase of its erosion test loop. Their results indicate that when pumping a coal-water slurry fuel through a flow loop, the erosion rate increases as velocity increases, suggesting a well-defined relationship between these two parameters.

  18. Assessment of Combustor Working Environments

    Directory of Open Access Journals (Sweden)

    Leiyong Jiang

    2012-01-01

    Full Text Available In order to assess the remaining life of gas turbine critical components, it is vital to accurately define the aerothermodynamic working environments and service histories. As a part of a major multidisciplinary collaboration program, a benchmark modeling on a practical gas turbine combustor is successfully carried out, and the two-phase, steady, turbulent, compressible, reacting flow fields at both cruise and takeoff are obtained. The results show the complicated flow features inside the combustor. The airflow over each flow element of the combustor can or liner is not evenly distributed, and considerable variations, ±25%, around the average values, are observed. It is more important to note that the temperatures at the combustor can and cooling wiggle strips vary significantly, which can significantly affect fatigue life of engine critical components. The present study suggests that to develop an adequate aerothermodynamics tool, it is necessary to carry out a further systematic study, including validation of numerical results, simulations at typical engine operating conditions, and development of simple correlations between engine operating conditions and component working environments. As an ultimate goal, the cost and time of gas turbine engine fleet management must be significantly reduced.

  19. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Third quarterly technical progress report 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur, coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3} and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high-sulfur US coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida.

  20. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  1. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction technology for the control of nitrogen oxide emissions from high-sulfur coal-fired boilers. First and second quarterly technical progress reports, [January--June 1995]. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia (NH{sub 3}) into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor containing a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW nameplate capacity) near Pensacola, Florida. The project is funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  2. Engineering development of coal-fired high performance power systems, Phase II and Phase III. Quarter progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    Work is presented on the development of a coal-fired high performance power generation system by the year 2000. This report describes the design of the air heater, duct heater, system controls, slag viscosity, and design of a quench zone.

  3. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 5, October 1, 1992--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Two base case flow sheets have now been prepared. In the first, which was originally presented in TPR4, a Texaco gasifier is used. Natural gas is also burned in sufficient quantity to increase the hydrogen to carbon monoxide ratio of the synthesis gas to the required value of 1. 1 for alcohol synthesis. Acid gas clean up and sulfur removal are accomplished using the Rectisol process followed by the Claus and Beavon processes. About 10% of the synthesis gas is sent to a power generation unit in order to produce electric power, with the remaining 90% used for alcohol synthesis. For this process, the estimated installed cost is $474.2 mm. The estimated annual operating costs are $64.5 MM. At a price of alcohol fuels in the vicinity of $1. 00/gal, the pay back period for construction of this plant is about four years. The details of this case, called Base Case 1, are presented in Appendix 1. The second base case, called Base Case 2, also has a detailed description and explanation in Appendix 1. In Base Case 2, a Lurgi Gasifier is used. The motivation for using a Lurgi Gasifier is that it runs at a lower temperature and pressure and, therefore, produces by-products such as coal liquids which can be sold. Based upon the economics of joint production, discussed in Technical Progress Report 4, this is a necessity. Since synthesis gas from natural gas is always less expensive to produce than from coal, then alcohol fuels will always be less expensive to produce from natural gas than from coal. Therefore, the only way to make coal- derived alcohol fuels economically competitive is to decrease the cost of production of coal-derived synthesis gas. one method for accomplishing this is to sell the by-products from the gasification step. The details of this strategy are discussed in Appendix 3.

  4. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report Number 8, 1 July, 1993--30 September, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    Task 1, the preparation of catalyst materials, is proceeding actively. At WVU, catalysts based on Mo are being prepared using a variety of approaches to alter the oxidation state and environment of the Mo. At UCC and P, copper-based zinc chromite spinel catalysts will be prepared and tested. The modeling of the alcohol-synthesis reaction in a membrane reactor is proceeding actively. Under standard conditions, pressure drop in the membrane reactor has been shown to be negligible. In Task 2, base case designs had previously been completed with a Texaco gasifier. Now, similar designs have been completed using the Shell gasifier. A comparison of the payback periods or production cost of these plants shows significant differences among the base cases. However, a natural gas only design, prepared for comparison purposes, gives a lower payback period or production cost. Since the alcohol synthesis portion of the above processes is the same, the best way to make coal-derived higher alcohols more attractive economically than natural gas-derived higher alcohols is by making coal-derived syngas less expensive than natural gas-derived syngas. The maximum economically feasible capacity for a higher alcohol plant from coal-derived syngas appears to be 32 MM bbl/yr. This is based on consideration of regional coal supply in the eastern US, coal transportation, and regional product demand. The benefits of economics of scale are illustrated for the base case designs. A value for higher alcohol blends has been determined by appropriate combination of RVP, octane number, and oxygen content, using MTBE as a reference. This analysis suggests that the high RVP of methanol in combination with its higher water solubility make higher alcohols more valuable than methanol.

  5. Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Fourth quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  6. Fluidized-bed reactor model with generalized particle balances. Part 2. Coal combustion application

    Energy Technology Data Exchange (ETDEWEB)

    Overturf, B.W.; Reklaitis, G.V.

    1983-09-01

    In the second part, the model is applied to the study of an atmospheric fluidized-bed coal combustor. Case studies are investigated to show the effects of a number of parameters. Proper representation of the grid region and use of actual feed distributions are shown to be essential to the prediction of combustor performance. Better particle elutriation and single-particle combustion sub-models are found to be key requirements for improved combustor modelling.

  7. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Innovative Clean Coal Technology (ICCT). Quarterly report No. 7, January--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the amonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO, and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project will be funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), and the Electric Power Research Institute.

  8. Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 3, January--March 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

  9. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of Nitrogen Oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  10. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 2, October--December 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide NO{sub x} control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  11. Characterization and supply of coal based fuels

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  12. Hydrocarbon-oil encapsulated bubble flotation of fine coal using 3-in. ID flotation column. Technical progress report for the eleventh quarter, April 1--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Peng, F.F.

    1996-05-01

    There are four modes of the collector dispersion techniques. They are (1) direct liquid additions and stirring, (2) ultrasonic energy collector dispersion, (3) atomized collector dispersion, and (4) gasified collector transported in air stream. Among those collector dispersion techniques, the technique using the gasified collector transported in air phase can be used to enhance the flotation performance with substantial reduction in collector usage and selectivity, compared to the flotation using direct liquid addition (and mechanical agitation) technique. In this phase of study, two modes of collector addition techniques including gasified collector transported in gas phase and direct collector addition techniques were applied in the column flotation to demonstrate the selectivity of utilizing the hydrocarbon-oil encapsulated air bubbles in the fine coal flotation process. The 1-in. ID flotation column was used to scale-up to 3-in. ID flotation column. The initial starting point to operate the 3-in ID flotation column were determined using both 1-in. and 3-in. flotation columns based on the three phases of work plans and experiment design. A 3-in. flotation column was used to evaluate two modes of collector dispersion and addition techniques on the recovery and grade of fine coals using various ranks of coal.

  13. Organosulphur compounds in coals as determined by reaction with Raney nickel and microscale pyrolysis techniques. Fifth quarterly report, October 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Philp, R.P.

    1996-01-31

    This project is designed to study the nature of sulphur-containing organic compounds and their respective linkages in coals and related materials using a variety of microscale pyrolysis techniques combined with gas chromatography--mass spectrometry. The majority of the work will be undertaken using a PYRAN pyrolysis system purchased with funds from the DOE University Instrumentation Program. Since the last report, we have reached the point in the project that we are satisfied with the nickel boride chemical degradation method, and are now working our way through the large amounts of data collected by gas chromatography-mass spectrometry analysis. While we have tentatively identified a variety of compounds produced by the chemical degradation method with spectra from the literature, we have yet to confirm many of these identifications with pure standards or specialized oil samples. As a result we will present in this report chromatograms of one of the coals (Illinois No. 6) and compare the free aliphatic hydrocarbons with those compounds cleaved from the polar extract, asphaltenes and pre-extracted coal matrix.

  14. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

  15. Hydrogen bonding in asphaltenes and coal liquids. Quarterly report, May 1, 1981-July 31, 1981. [Effects of phenols or anisole on aging of SRC blends

    Energy Technology Data Exchange (ETDEWEB)

    Li, N.C.; Jones, L.; Yaggi, N.F.

    1981-01-01

    Coal-derived liquids are very susceptible to oxidative degradation. Oxygen and temperature exert a dramatic effect on enhancing the viscosity of coal-derived fuels, and a free-radical mechanism is an obvious choice for the mechanism of this noted oxidative degradation. In the present study, several different phenols were added to blends consisting of two different ratios of SRC I and SRC II middle distillate: 20/80 and 30/70 by weight. The objective of this research is to study the effect of phenols on the aging of the SRC blends. It has been found that upon the addition of phenol itself, the original hydrogen bonding between the acidic and basic functional groups in the coal-derived liquids is apparently disrupted because the added phenol can now interact with the proton-accepting species in liquids, thus, leading to a lower viscosity. When anisole (which contains no hydroxyl group) is added instead of phenol, the effect of slowing down the aging process is much smaller. o-Phenylphenol is a hindered phenol, and the effect on the aging process is intermediate between anisole and phenol.

  16. Studies in coal liquefaction with application to the SRC and related processes. Quarterly report, August 1981-October 1981. [Using model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tarrer, A. R.; Guin, J. A.; Curtis, C. W.

    1981-01-01

    Model compound reactions were studied to evaluate the effects of mass transfer, solvent type, solvent blending, hydrogen partial pressure, temperature, reactant concentration, additive loading and its preparation, etc. Naphthalene hydrogenation and benzothiophene hydrodesulfurization were investigated under the conditions comparable to commercial coal liquefaction and related processes. Both of these reaction systems were observed to be surface reaction controlled under the reaction conditions used in this work. Certain aromatic compounds were observed to cause a reduction in the reaction rates of naphthalene and benzothiophene. Single stage coal dissolution was investigated using tetralin as a hydrogen donor solvent and a commercial cobalt-molybdate catalyst. A spinning basket system was developed to allow injection of the catalyst at a desired time in the reaction cycle. This catalyst injection technique proved to be reliable for the exploratory work done here. The degree of catalyst deactivation was rated by comparing the activities of the spent catalyst for model compound (naphthalene and cumene) reactivities relative to those of the fresh catalyst. No substantial reduction in deactivation was observed to result with delayed contacting of the catalyst with the coal-tetralin reaction mixture. The effect of reaction temperature on the initial rate of catalyst deactivation was also studied.

  17. Low NO/sub x/ Heavy Fuel Combustor Concept Program. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cutrone, M B

    1981-10-01

    Six combustor concepts were designed, fabricated, and underwent a series of combustion tests with the objective of evaluating and developing a combustor capable of meeting US New Source Performance Standards (NSPS), dry, for high-nitrogen liquid fuels. Three rich/lean and three lean/lean two-stage combustors were tested with ERBS distillate, petroleum residual, and SRC-II coal derived liquid (CDL) fuels with fuel-bound nitrogen contents of 0.0054, 0.23, and 0.87 weight percent, respectively. A lean/lean concept was demonstrated with ultralow NO/sub x/ emissions, dry, of 5 gm NO/sub x/kg fuel on ERBS, and NO/sub x/ emissions meeting the NSPS NO/sub x/ standard on residual fuel. This combustor concept met operational goals for pressure drop, smoke, exhaust pattern factor, and combustion efficiency. A rich/lean concept was identified and developed which demonstrated NO/sub x/ emissions approaching the NSPS standards, dry, for all liquid fuels including the 0.87 weight percent nitrogen SRC-II coal-derived liquid. Exhaust pattern factor and pressure drop met or approached goals. Smoke emissions were higher than the program goal. However, a significant improvement was made with only a minor modification of the fuel injector/air swirler system, and further development should result in meeting smoke goals for all fuels. Liner metal temperatures were higher than allowable for commercial application. Conceptual designs for further development of these two rich/lean and lean/lean concepts have been completed which address smoke and metal temperature concerns, and are available for the next phase of this NASA-sponsored, DOE-funded program. Tests of a rich/lean concept, and a catalytic combustor concept using low- and intermediate-Btu simulated coal-derived gases will be completed during the ongoing Phase IA extension of this program.

  18. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    Energy Technology Data Exchange (ETDEWEB)

    Patel, R.; Borio, R.W.; Liljedahl, G. [Combustion Engineering, Inc., Windsor, CT (United States)] [and others

    1995-11-01

    Under US Department of Energy, Pittsburgh Energy Technology Center (PETC) support, the development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 at the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment.

  19. Sixth annual coal preparation, utilization, and environmental control contractors conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    A conference was held on coal preparation, utilization and environmental control. Topics included: combustion of fuel slurries; combustor performance; desulfurization chemically and by biodegradation; coal cleaning; pollution control of sulfur oxides and nitrogen oxides; particulate control; and flue gas desulfurization. Individual projects are processed separately for the databases. (CBS).

  20. Numerical Modelling of Scramjet Combustor

    Directory of Open Access Journals (Sweden)

    M. Deepu

    2007-07-01

    Full Text Available Numerical modelling of turbulent-reacting flow field of supersonic combustion ramjet(scramjet combustors are presented. The developed numerical procedure is based on the implicittreatment of chemical source terms by preconditioning and solved along with unstedy turbulentNavier-Stokes equations explicitly. Reaction is modelled using an eight-step hydrogen-airchemistry. Code is validated against a standard wall jet experimental data and is successfullyused to model the turbulent-reacting flow field resulting due to the combustion of hydrogeninjected from diamond-shaped strut and also in the wake region of wedge-shaped strut placedin the heated supersonic airstream. The analysis could demonstrate the effect of interaction ofoblique shock wave with a supersonic stream of hydrogen  in its (fuel-air mixing and reactionfor strut-based scramjet combustors.

  1. Assessment of Combustor Working Environments

    OpenAIRE

    Leiyong Jiang; Andrew Corber

    2012-01-01

    In order to assess the remaining life of gas turbine critical components, it is vital to accurately define the aerothermodynamic working environments and service histories. As a part of a major multidisciplinary collaboration program, a benchmark modeling on a practical gas turbine combustor is successfully carried out, and the two-phase, steady, turbulent, compressible, reacting flow fields at both cruise and takeoff are obtained. The results show the complicated flow features inside the com...

  2. Bench-scale demonstration of biological production of ethanol from coal synthesis gas. Quarterly report, January 1, 1994--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report presents results from the solvent selection, fermentation, and product recovery studies performed thus far in the development of a bench scale unit for the production of ethanol from coal-derived synthesis gas. Several additional solvents have been compared for their ability to extract ethanol from aqueous solutions of ethanol in water and fermentation permeate. The solvent 2,6-dimethyl-4-heptanol still appears to be the solvent of choice. Liquid-liquid equilibrium data have been collected for ethanol and 2,6-dimethyl-4-heptanol.

  3. Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Quarterly technical status report, January--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-14

    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  4. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, January 1--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This quarterly technical progress report summarizes work completed during the Sixth Quarter of the First Budget Period, January 1 through March 31, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. The major emphasis during this reporting period was expanding the test facility to address system integration issues of hot particulate removal in advanced power generation systems. The conceptual design of the facility was extended to include additional modules for the expansion of the test facility, which is referred to as the Power Systems Development Facility (PSOF). A letter agreement was negotiated between Southern Company Services (SCS) and Foster Wheeler (FW) for the conceptual design of the Advanced Pressurized Fluid-Bed Combustion (APFBC)/Topping Combustor/Gas Turbine System to be added to the facility. The expanded conceptual design also included modifications to the existing conceptual design for the Hot Gas Cleanup Test Facility (HGCTF), facility layout and balance of plant design for the PSOF. Southern Research Institute (SRI) began investigating the sampling requirements for the expanded facility and assisted SCS in contacting Particulate Control Device (PCD) vendors for additional information. SCS also contacted the Electric Power Research Institute (EPRI) and two molten carbonate fuel cell vendors for input on the fuel cell module for the PSDF.

  5. Combustion of biomass-derived, low caloric value, fuel gas in a gasturbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J.; Hoppesteyn, P.D.J.; Hein, K.R.G. [Technische Univ. Delf (Netherlands)

    1998-09-01

    The use of biomass and biomass/coal mixtures to produce electricity and heat reduces the net emissions of CO{sub 2}, contributes to the restructuring of the agricultural sector, helps to reduce the waste problem and saves finite fossil fuel reserves. Pressurised fluidised bed gasification followed by an adequate gas cleaning system, a gas turbine and a steam turbine, is a potential attractive way to convert biomass and biomass/coal mixtures. To develop and validate mathematical models, which can be used to design and operate Biomass-fired Integrated Gasification Combined Cycle (BIGCC) systems, a Process Development Unit (PPDU) with a maximum thermal capacity of 1.5 MW{sub th}, located at the Laboratory for Thermal Power Engineering of the Delft University of Technology in The Netherlands is being used. The combustor forms an integral part of this facility. Recirculated flue gas is used to cool the wall of the combustor. (orig.)

  6. Alternate-Fueled Combustor-Sector Performance: Part A: Combustor Performance Part B: Combustor Emissions

    Science.gov (United States)

    Shouse, D. T.; Neuroth, C.; Henricks, R. C.; Lynch, A.; Frayne, C.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2010-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as drop-in fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of feedstock. Adherence to alternate fuels and fuel blends requires smart fueling systems or advanced fuel-flexible systems, including combustors and engines without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data for synthetic-parafinic-kerosene- (SPK-) type fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling.

  7. Emissions reductions in coal-fired home heating stoves through use of briquettes. Quarterly report, January 1, 1995--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-27

    The purpose of this program is to encourage the formation of commercial ventures between the U.S. and Polish firms to provide equipment and /or services to reduce pollution from low emission sources in Krakow, Poland. This period has seen additional briquette testing at Akademia Gorniczo Hutnicza (AGH). In addition, Euromining has begun large-scale briquette production. The initial multi-ton batches were delivered as this period ended. Acurex Environmental Corporation has delivered a sampling crew and equipment to Krakow. Testing at INCO Veritas (INCO) has not started due to delays in the delivery of briquettes by Euromining but is expected to begin with the new quarter. Arrangements are in place for the product market testing to begin as soon as the briquettes are available.

  8. Micropore diffusion in coal chars under reactive conditions: Quarterly technical progress report, 15 December 1986-15 March 1987. [Effect of activated diffusion in small pores

    Energy Technology Data Exchange (ETDEWEB)

    Calo, J.M.; Perkins, M.T.; Lilly, W.D.

    1987-01-01

    In this second quarterly technical progress report, we present some additional developments concerning the analysis of the effect of activated micropore diffusion on gasification reactivity, and report on progress with the experimental apparatus: (1) The Autoclave Engineers 3'' Berty catalytic reactor has been reassembled and tested, and has been found to function satisfactorily. However, the mass spectrometer malfunctioned and had to be repaired. (2) The effect of sorbate partial pressure on miropore diffusion and gasification reactivity have been examined. It was found that: pressure can have a significant effect on micropore diffusivities; increasing pressure generally increases the microparticle effectiveness factor for pressures far from saturation (while the opposite is true at near-saturation conditions); and the effect of sorbate partial pressure should be considered in conducting and interpreting measurements regarding micropore diffusion. 6 refs., 1 fig., 1 tab.

  9. Kinetics and mechanism of catalytic hydroprocessing of components of coal-derived liquids. Twentieth quarterly report, February 16, 1984-May 15, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Gates, B.C.; Olson, J.H.; Schuit, G.C.A.; Stiles, A.B.; Petrakis, L.

    1984-06-26

    Kinetics data have been determined for the catalytic hydroprocessing of the acidic fractions of a heavy distillate of a liquid derived from Powhatan No. 5 coal. A commercial, sulfided Ni-Mo/..gamma..-Al/sub 2/O/sub 3/ catalyst was used in the experiments, carried out at 350/sup 0/C and 120 atm with the coal liquid fractions dissolved in cyclohexane. The feed and hydrotreated products were analyzed by gas chromatography/mass spectrometry. The data were analyzed with group-type methods for compound classes, and results were also obtained for some individual organooxygen compounds. Catalytic hydroprocessing leads to a large increase in the number of compounds and a shift to lower boiling ranges. The data are broadly consistent with reaction networks determined with pure compounds; the most important reactions include aromatic ring hydrogenation, hydrodeoxygenation, and hydrodemethylation. Pseudo first-order rate constants for conversion of the predominant organooxygen compounds are on the order of 10/sup -4/ L/(g of catalyst.s); the reactivity decreases in the order cyclohexylphenol > dimethylhydroxyindane > tetrahydronaphthol > phenylphenol > 1-naphthol. 12 references, 15 figures, 5 tables.

  10. Engineering development of coal-fired high performance power systems, Phases 2 and 3. Quarterly progress report, October 1--December 31, 1996. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The goals of this program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of: {gt} 47% efficiency (HHV); NO{sub x}, SO{sub x}, and particulates {gt} 10% NSPS; coal providing {ge} 65% of heat input; all sold wastes benign; and cost of electricity 90% of present plant. Work reported herein is from Task 1.3 HIPPS Commercial Plant Design, Task 2,2 HITAF Air Heater, and Task 2.4 Duct Heater Design. The impact on cycle efficiency from the integration of various technology advances is presented. The criteria associated with a commercial HIPPS plant design as well as possible environmental control options are presented. The design of the HITAF air heaters, both radiative and convective, is the most critical task in the program. In this report, a summary of the effort associated with the radiative air heater designs that have been considered is provided. The primary testing of the air heater design will be carried out in the UND/EERC pilot-scale furnace; progress to date on the design and construction of the furnace is a major part of this report. The results of laboratory and bench scale activities associated with defining slag properties are presented. Correct material selection is critical for the success of the concept; the materials, both ceramic and metallic, being considered for radiant air heater are presented. The activities associated with the duct heater are also presented.

  11. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  12. Two-stage combustion of coal in a pressurized fluidized bed combustor for use in gas turbine processes; Zweistufige Verbrennung von Kohlen in einer Druckwirbelschichtanlage fuer den Einsatz in Gasturbinenprozessen

    Energy Technology Data Exchange (ETDEWEB)

    Mieden, M.; Bonn, B.; Baumann, H.

    1996-12-31

    The power raising efficiencies of PFBC-processes depend on the temperature of the flue-gas at the entrance of gas-turbines. In order to rise efficiencies, hybrid combined cycles have been suggested in which the gas temperature increased e.g. by firing natural gas in an afterburner at the entrance of the turbine. Alternatively a fuel gas can be produced by gasifying coal in a carboniser or gasifier. This fuel gas can be used to heat up the flue gas of the PFBC to a temperature that ensures an optimum gas-turbine efficiency. A process has been examined at DMT that provides a fuel gas with high CO concentration by substoichiometric combustion of coal in a PFBC. In order to increase the gas temperature the fuel gas is mixed with oxygen in an afterburner and then burns spontaneously. The experiments showed that it was possible to reach a temperature of about 1300 C in the afterburner. As the laboratory scale PFBC plant is provided with flue gas recirculation, equilibrium calculations have been made to examine the feasibility of the process for operation with air. (orig.) [Deutsch] Fuer die Erhoehung des Wirkungsgrades von druckwirbelschichtgefeuerten Kombiprozessen durch die Temperaturerhoehung im Eingang der Gasturbine wurde ein neuartiges Verfahren mit extrem gestufter Verbrennung der Kohle untersucht. Durch unterstoechiometrische Verbrennung von Kohle in einem Druckwirbelschichtreaktor (p=5 bar; T=900 C) wird zunaechst ein stark CO-haltiges Gas erzeugt, das nach der Entstaubung durch Vermischung mit Sauerstoff in einer zweiten Stufe, die als Nachbrennkammer diente, ausgebrannt wurde. Dabei erhoehte sich die Temperatur des Rauchgases, und es wurden Temperaturen von ueber 1300 C erreicht. Bei Sauerstoffzahlen von minimal {lambda}=0,75 betrugen die CO-Konzentrationen des Schwachgases der ersten Stufe bis zu 14%. Der Sauerstoffmangel fuehrte dazu, dass auch unverbrannter Kohlenstoff aus der Druckwirbelschicht ausgetragen wurde und in die Nachbrennkammer gelangte. Bei den

  13. Development of a use for Illinois coal concentrates for slurry fed gasifiers. [Quarterly] technical report, December 1, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Khan, L.A.; Lytle, J.M.; Khan, S.; At-Taras, M. [Illinois State Geological Survey, Champaign, IL (United States); Ehrlinger, H.P. III [Consultant (United States)

    1994-06-01

    The purpose of this project is to test concentrates made from preparation plant fines as to their amenability as feed for slurry fed, slagging, entrained-flow gasifiers. During the current reporting period, waste slurry samples were obtained from the washing plants associated with surface mining, underground mining from which the fines are not treated, underground mining from which a flotation concentrate is made from the washer plant waste fines, and from a tailing pile associated with one of the washing plants which had been deposited for over five years. Column flotation testing was conducted on representative samples of several of these. Using a typical flotation reagent requirement of kerosene and MIBC several tests showed outstanding results when the feed rate was kept at the nominal rate of 10 pounds per hour as suggested by the Deister Concentrator Company. The most encouraging test was conducted on waste fines from the surface plant. While the ash content in the clean coal concentrate was higher than expected, the calorific content in the tailing was 422 BTU/pound, which was at least twice as low as any tailings produced either in the laboratory or in plants during the last ten years of coal flotation research. In this same test 96.9% of the BTU`s were concentrated in the flotation product and 80.3% of the ash reported in the flotation tailing. Flotation results of the material which had been impounded for an extended period were encouraging as 67.7% of the BTU`s were concentrated in a product which contained 12,762 BTU/pound.

  14. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 4, July 1, 1992--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    A base case flow sheet for the production of higher alcohols from coal derived synthesis gas has been completed, including an economic analysis. The details of the flow sheet and economics are in Appendix 1. The pay back period for the capital investment for the plant has been calculated as a function of the market price of the product, and this figure is also shown as Figure I in Appendix 1. The estimated installed cost is almost $500 MM, and the estimated annual operating cost is $64 MM. At a price in the vicinity of $1.00/gal for the alcohol product, the pay back period for construction of the plant is four years. These values should be considered preliminary, since many of the capital costs were obtained from other paper studies sponsored by DOE and TVA and very few values could be found from actual plants which were built. This issue is currently being addressed. The most expensive capital costs were found to be the gasifier, the cryogenic air separation plant, the steam/power generation plant and the acid gas/sulfur removal processes taken as a whole. It is planned to focus attention on alternatives to the base case. The problem is that it is less expensive to make syngas from natural gas. Therefore, it is essential to reduce the cost of syngas from coal. This is where the energy park concept becomes important. In order for this process to be economical (at current market and political conditions) a method must be found to reduce the cost of syngas manufacture either by producing energy or by-products. Energy is produced in the base case, but the amount and method has not been optimized. The economic arguments for this concept are detailed in Appendix 2.

  15. Refractory experience in circulating fluidized bed combustors, Task 7. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  16. Development and testing of commercial-scale, coal-fired combustion systems, Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The US Department of Energy's Pittsburgh Energy Technology Center (PETC) is actively pursuing the development and testing of coal-fired combustion systems for residential, commercial, and industrial market sectors. In response, MTCI initiated the development of a new combustor technology based on the principle of pulse combustion under the sponsorship of PETC (Contract No. AC22-83PC60419). The initial pulse combustor development program was conducted in three phases (MTCI, Development of a Pulsed Coal Combustor Fired with CWM, Phase III Final Report, DOE Contract No. AC22-83PC60419, November 1986). Phase I included a review of the prior art in the area of pulse combustion and the development of pulse combustor design concepts. It led to the conclusion that pulse combustors offer technical and base-of-operation advantages over conventional burners and also indicated favorable economics for replacement of oil- and gas-fired equipment.

  17. Combustion Control and Diagnostics Sensor Testing in a Thermal Barrier Coated Combustor

    Energy Technology Data Exchange (ETDEWEB)

    Chorpening, B.T.; Dukes, M.G.; Robey, E.H.; Thornton, J.D.

    2007-05-01

    The combustion control and diagnostics sensor (CCADS) continues to be developed as an in-situ combustion sensor, with immediate application to natural gas fired turbines. In-situ combustion monitoring is also expected to benefit advanced power plants of the future, fueled by coal-derived syngas, liquified natural gas (LNG), hydrogen, or hydrogen blend fuels. The in-situ monitoring that CCADS provides can enable the optimal operation of advanced, fuel-flexible turbines for minimal pollutant emissions and maximum efficiency over the full operating range of an advanced turbine. Previous work has demonstrated CCADS as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff, in experimental combustors without thermal barrier coatings (TBC). Since typical TBC materials are electrical insulators at room temperature, and CCADS operation requires conduction of electrical current to the walls of the combustor, a TBC on the combustion liner was identified as a potential barrier to CCADS operation in commercial application. This paper reports on CCADS experiments in a turbulent lean premixed combustor with a yttria-stabilized zirconia (YSZ) thermal barrier coating on the combustor wall. The tests were conducted at 0.1 MPa (1 atm), with a 15V excitation voltage on the CCADS electrodes. The results confirm that for a typical thermal barrier coating, CCADS operates properly, and the total measured average resistance is close to that of an uncoated combustor. This result is consistent with previous materials studies that found the electrical resistance of typical TBC materials considerably decreases at combustor operating temperatures.

  18. Utilization of Illinois coal gasification slags for production of ultra-lightweight aggregates. [Quarterly] technical report, March 1--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Zimmerle, T. [Silbrico Corp. (United States)

    1993-09-01

    This research is aimed at testing and developing the expansion potential of gasification solid residues (slag) to manufacture ultra-lightweight aggregates (ULWA). Conventional ULWAs are manufactured by pyroprocessing of perlite or vermiculite ores and have unit weights in the range of 5--15 lb/ ft3. These materials are sold for approximately $200/ton (or $1.00/ft3) and have numerous applications including loose fill insulation, insulating concrete, precast products, filtration media, and agricultural applications. In a previous project, Praxis Engineers demonstrated that lightweight aggregates (LWA) with unit weights of 25--55 lb/ ft3 can be produced from Illinois coal slags and used as substitutes for conventional LWAs. In this program, tests are being undertaken in a pilot-scale vertical shaft furnace to identify operating conditions for the expansion of Illinois slags such that the product can be substituted for ULWA. Upon completion of testing, a large batch of expanded slag will be produced for evaluation in various applications, both in this phase and in subsequent Phase II testing. During the initial pilot plant runs using two Illinois slags, expanded products with unit weights of 12.5--26.5 and 20--52 lb/ ft3, respectively, were produced. Efforts are under way to generate products with lower unit weights.

  19. Toxic substances from coal combustion -- A comprehensive assessment

    Energy Technology Data Exchange (ETDEWEB)

    Senior, C.L.; Panagiotou, T.; Huggins, F.E.; Huffman, G.P.; Yap, N.; Wendt, J.O.L.; Seames, W.; Ames, M.R.; Sarofim, A.F.; Lighty, J.; Kolker, A.; Finkelman, R.; Palmer, C.A.; Mroczkowsky, S.J.; Helble, J.J.; Mamani-Paco, R.

    1999-07-30

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the period from 1 April 1999 to 30 June 1999. During this quarter low temperature ashing and elemental analysis of the three Phase II coals were completed. Results from MIT and USGS are comparable. Plans were made for measurements of loss of trace elements during devolatilization and for single particle combustion studies at the University of Utah. The iodated charcoal trap was tested on coal combustion flue gas and was shown to collect both Hg and Se in from the vapor phase with 100% efficiency. Data from the University of Arizona self-sustained combustor were analyzed from the combustion of three coals: Ohio, Wyodak and Illinois No. 6. Ash size distributions and enrichment factors for selected trace elements were calculated. The correlation between the concentration of the more volatile trace elements in the ash and the

  20. Characterisation of a gas turbine prototype combustor design for an ABGC plant

    Energy Technology Data Exchange (ETDEWEB)

    Kelsall, G.J.; Whinfrey, J. [European Gas Turbines Ltd. (United Kingdom)

    1997-08-01

    Advanced coal-based power generation systems, such as the Air Blown Gasification Cycle (ABGC), offer the potential for high efficiency electricity generation with low environmental impact. An important component of the ABGC development programme is the design of a gas turbine combustion system to burn the coal-derived low calorific value (LCV) fuel-gas, generated by the air-blown gasifier. The overall objective of this project was to characterise at full-scale the initial prototype combustor hardware designed for an ABGC Prototype Integrated Plant. As part of the project, European Gas Turbine Ltd., provisioned what is believed to be a unique combustion test facility within Europe for the development of LCV gas-fired gas turbine combustion systems. This facility utilises a synthetic fuel-gas system capable of providing a variable fuel-gas mixture at mass flow rates up to 3.0 kg s{sup -1} and temperatures up to 600{degree}C. This allows testing of turbine combustion systems at full engine operating pressure and fuel-gas flows appropriate to medium-sized industrial gas turbines. The facility was used to characterise the first prototype combustor firing a synthetic fuel-gas representing the essential features of a coal-derived LCV fuel-gas. Combustor performance was encouraging. Combustor performance firing distillate oil as supplementary fuel was satisfactory in regard to light-up and change-over to fuel-gas, but was not as good as that for synthetic fuel-gas operation. 6 refs., 9 figs., 2 tabs.

  1. Optical properties of flyash. Quarterly report, 1 January--31 March 1990

    Energy Technology Data Exchange (ETDEWEB)

    Self, S.A.

    1990-04-01

    In this research program, we have adopted the approach that by measuring fundamental properties (i.e, the complex refractive index, m) of the fly ash which participates in the radiation transfer, we can use well established theoretical principles (Mie theory) to compute the radiative properties of dispersions of fly ash as found in coal combustors. With this approach one can, understand the underlying principles that affect the radiative properties of an ash dispersion and more confidently predict how variations in the characteristics of the ash dispersion cause variations in its radiative properties. An important criterion in this approach is that the fly ash particles be spherical, homogeneous, and isotropic. Fortunately, fly ash particles are formed at high temperatures at which most of them are molten, leading primarily to spherical particles. Furthermore, one should expect that molten particles will be reasonably homogeneous and isotropic. On cooling, most fly ash particles form glassy spheres which are homogeneous and isotropic. Some ash particles form hollow shells (cenospheres) while others form as particles with ``bubbles`` or voids, but most fly ash particles are well approximated as homogeneous isotropic spheres. In the following sections we review some of the underlying principles that affect the radiative properties of fly ash dispersions and report on progress that has been made during the past quarter.

  2. Chaos in an imperfectly premixed model combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kabiraj, Lipika, E-mail: lipika.kabiraj@tu-berlin.de; Saurabh, Aditya; Paschereit, Christian O. [Hermann Föttinger Institut, Technische Universität Berlin (Germany); Karimi, Nader [School of Engineering, University of Glasgow (United Kingdom); Sailor, Anna [University of Wisconsin-Madison, Madison 53706 (United States); Mastorakos, Epaminondas; Dowling, Ann P. [Department of Engineering, University of Cambridge (United Kingdom)

    2015-02-15

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.

  3. Large eddy simulation of a high aspect ratio combustor

    Science.gov (United States)

    Kirtas, Mehmet

    The present research investigates the details of mixture preparation and combustion in a two-stroke, small-scale research engine with a numerical methodology based on large eddy simulation (LES) technique. A major motivation to study such small-scale engines is their potential use in applications requiring portable power sources with high power density. The investigated research engine has a rectangular planform with a thickness very close to quenching limits of typical hydrocarbon fuels. As such, the combustor has a high aspect ratio (defined as the ratio of surface area to volume) that makes it different than the conventional engines which typically have small aspect ratios to avoid intense heat losses from the combustor in the bulk flame propagation period. In most other aspects, this engine involves all the main characteristics of traditional reciprocating engines. A previous experimental work has identified some major design problems and demonstrated the feasibility of cyclic combustion in the high aspect ratio combustor. Because of the difficulty of carrying out experimental studies in such small devices, resolving all flow structures and completely characterizing the flame propagation have been an enormously challenging task. The numerical methodology developed in this work attempts to complement these previous studies by providing a complete evolution of flow variables. Results of the present study demonstrated strengths of the proposed methodology in revealing physical processes occuring in a typical operation of the high aspect ratio combustor. For example, in the scavenging phase, the dominant flow structure is a tumble vortex that forms due to the high velocity reactant jet (premixed) interacting with the walls of the combustor. Since the scavenging phase is a long process (about three quarters of the whole cycle), the impact of the vortex is substantial on mixture preparation for the next combustion phase. LES gives the complete evolution of this flow

  4. Alternate-Fueled Combustor-Sector Performance. Parts A and B; (A) Combustor Performance; (B) Combustor Emissions

    Science.gov (United States)

    Shouse, D. T.; Hendricks, R. C.; Lynch, A.; Frayne, C. W.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2012-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as "drop-in" fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of processing and assumed to be feedstock agnostic. Adherence to alternate fuels and fuel blends requires "smart fueling systems" or advanced fuel-flexible systems, including combustors and engines, without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data. The data are for nominal inlet conditions at 225 psia and 800 F (1.551 MPa and 700 K), for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling. Assessments are made of the change in combustor efficiency, wall temperatures, emissions, and luminosity with SPK of 0%, 50%, and 100% fueling composition at 3% combustor pressure drop. The performance results (Part A) indicate no quantifiable differences in combustor efficiency, a general trend to lower liner and higher core flow temperatures with increased FT fuel blends. In general, emissions data (Part B) show little differences, but with percent increase in FT-SPK-type fueling, particulate emissions and wall temperatures are less than with baseline JP-8. High-speed photography illustrates both luminosity and combustor dynamic flame characteristics.

  5. Turbulent Recirculating Flows in Isothermal Combustor Geometries

    Science.gov (United States)

    Lilley, D.; Rhode, D.

    1985-01-01

    Computer program developed that provides mathematical solution to design and construction of combustion chambers for jet engines. Improved results in areas of combustor flow fields accomplished by this computerprogram solution, cheaper and quicker than experiments involving real systems for models.

  6. Short-term energy outlook, quarterly projections, second quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections. The details of these projections, as well as monthly updates, are available on the Internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The paper discusses outlook assumptions; US energy prices; world oil supply and the oil production cutback agreement of March 1998; international oil demand and supply; world oil stocks, capacity, and net trade; US oil demand and supply; US natural gas demand and supply; US coal demand and supply; US electricity demand and supply; US renewable energy demand; and US energy demand and supply sensitivities. 29 figs., 19 tabs.

  7. Calculations of magnetohydrodynamic swirl combustor flowfields

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Beer, J.H.; Khan, H.; Lilley, D.G.

    1982-09-01

    The objectives of the paper were to theoretically calculate and experimentally verify the fluid mechanics in the second stage of a model MHD swirl combustor with special emphasis on avoidance of the boundary-layer separation as the flow turns in to the MHD disk generator; to find the most suitable seed injection point at the entrance to the second stage which will yield uniform seed concentration at the combustor exit prior to entry into the disk generator. The model combustor is a multiannular swirl burner that is placed at the exit of the first-stage swirl combustor, which in turn can be used to vary the turbulent shear that arises between the individual swirling concentric annuli. This design permits ultrahigh swirl in the second stage with swirl vanes (if any) to be placed outside the very high temperature regions of the combustor in the clean preheated air. The gas burns completely in the second-stage combustor and turns 90 deg into the disk generator along a trumpet-shaped exit module. In this synoptic results are presented of the fluid mechanics in the trumpet-shaped second-stage exit module, with water as the working fluid.

  8. Computational Analysis of Mixing and Transport of Air and Fuel in Co-Fired Combustor

    Directory of Open Access Journals (Sweden)

    Javaid Iqbal

    2015-01-01

    Full Text Available Computational analysis for air fuel mixing and transport in a combustor used for co fired burner has been done by RANS (Reynolds-Averaged Navier?Stokes model comparing with 3D (Three Dimensional LES (Large Eddy Simulation. To investigate the better turbulence level and mixing within co fired combustor using the solid fuel biomass with coal is main purpose of this research work. The results show the difference in flow predicted by the two models, LES give better results than the RANS. For compressible flow the LES results show more swirling effect, The velocity decays along axial and radial distance for both swirling and non-swirling jet. Because of no slip condition near boundary the near the wall velocity is about zero

  9. Development of an LCV fuel gas combustor for an industrial gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Constant, D.R.; Bevan, D.M.; Cannon, M.F.; Kelsall, G.J. [British Coal Corporation, Stoke Orchard (United Kingdom). Coal Technology Development Division

    1997-12-31

    An important component of the Air Blown Gasification Cycle (ABGC) development is the gas turbine combustion system. It must burn low calorific value (LCV) coal derived fuel gas, at high turbine inlet temperatures with minimum pollutant emissions. A phase development programme has been completed burning LCV fuel gas (3.6-4.1 MJ/m{sup 3}) with low emissions, particularly NO{sub x} derived from fuel bound nitrogen. Performance tests were carried out on a generic tubo-annular, prototype combustor, at Mach numbers generally lower than those typical to engine applications, with encouraging results. Five design variants, operating at conditions selected to represent a particular medium sized industrial gas turbine each returned an improvement in combustor performance. A further five variants were investigated to establish which design characteristics and operating parameters most affected NO{sub x} emissions. 5 refs., 5 figs., 2 tabs.

  10. Topping combustor status for second-generation pressurized fluidized bed cycle application

    Energy Technology Data Exchange (ETDEWEB)

    Domeracki, W.F.; Dowdy, T.E. [Westinghouse Electric Corp., Orlando, FL (United States). Power Generation Business Unit; Bachovchin, D.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

    1997-01-01

    Second-generation Pressurized Fluidized (PFB) combined cycle employ topping combustion to raise the turbine inlet temperature for enhanced cycle efficiency. This concept creates special combustion system requirements that are very different from requirements of conventional gas turbine systems. The topping combustor provides the means for achieving state-of-the-art turbine inlet temperatures and is the main contributor to enhanced plant performance. The objective of this program is to develop a topping combustor that provides low emissions, and is a durable, efficient device exhibiting stable combustion and manageable wall temperature. The combustor will be required to burn a low-Btu syngas under normal coal-fired conditions. However, for start-up and/or carbonizer outage, it may be necessary to fire a clean fuel, such as oil or natural gas. Prior testing has shown the Westinghouse Multi-Annular Swirl Burner (MASB) to have excellent potential for this application. Metal wall temperatures can be maintained at acceptable levels, even though most cooling is done by 1,600 F vitiated air. Good pattern factors and combustion efficiencies have been obtained. Additionally, low conversion rates of fuel bound nitrogen to NO{sub x} have been demonstrated. This paper presents an update of the status of an ongoing topping combustor development and test program for application to Second-Generation Pressurized Fluidized Bed Combined Cycles (PFBCC). The program is sponsored by the Department of Energy`s Morgantown Energy Technology Center (DOE/METC) and will first be applied commercially into the Clean Coal Technology Round V Four Rivers Energy Modernization Project. Phase 1 of the program involved a conceptual and economic study (Robertson et al., 1988); Phase 2 addresses design and subscale testing of components; and Phase 3 will cover pilot plant testing of components integrated into one system.

  11. Numerical simulation of coal combustion in circulating fluidized beds; Junkan ryudoso ni okeru sekitan nensho no suchi simulation

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, H. [Technical University Hamburg, Hamburg (Germany); Suzuki, Y.; Hatano, H. [National Institute for Resources and Environment, Tsukuba (Japan)

    1997-09-25

    A numerical simulator has been developed, using a one-dimensional heterogeneous reaction model, for circulating fluidized bed combustors. The model is based on the Johnson`s method for modeling circulating fluidized bed combustors operating at low gas velocity, and involves kinetic models of combustion process and fluidization mechanisms in circulating fluidized bed risers. In order to determine rate parameters for coal combustion, Chinese coal is combusted by a circulating fluidized bed combustor of quartz, installed at the National Institute for Resources and Environment. The simulation after parameter-fitting indicates that char produced from coal shows a medium activity for NO reduction and very low activity for N2O reduction. It is also found that reduction of No by CO is very important. The simulator satisfactorily gives gas concentration at the combustor outlet and axial distributions of the vapor component concentrations. 19 refs., 11 figs., 5 tabs.

  12. Dish stirling solar receiver combustor test program

    Science.gov (United States)

    Bankston, C. P.; Back, L. H.

    1981-01-01

    The operational and energy transfer characteristics of the Dish Stirling Solar Receiver (DSSR) combustor/heat exchanger system was evaluated. The DSSR is designed to operate with fossil fuel augmentation utilizing a swirl combustor and cross flow heat exchanger consisting of a single row of 4 closely spaced tubes that are curved into a conical shape. The performance of the combustor/heat exchanger system without a Stirling engine was studied over a range of operating conditions and output levels using water as the working fluid. Results show that the combustor may be started under cold conditions, controlled safety, and operated at a constant air/fuel ratio (10 percent excess air) over the required range of firing rates. Furthermore, nondimensional heat transfer coefficients based on total heat transfer are plotted versus Reynolds number and compared with literature data taken for single rows of closely spaced tubes perpendicular to cross flow. The data show enhanced heat transfer for the present geometry and test conditions. Analysis of the results shows that the present system meets specified thermal requirements, thus verifying the feasibility of the DSSR combustor design for final prototype fabrication.

  13. Alternate-Fueled Combustor-Sector Performance

    Science.gov (United States)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as "drop-in" fuel replacements. This report provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fischer-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 degF (533 K), 125 psia (0.86 MPa) at 625 degF (603 K), 175 psia (1.21 MPa) at 725 degF (658 K), and 225 psia (1.55 MPa) at 790 degF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3, 4, and 5 percent combustor pressure drop (DP) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade and vane lives.

  14. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

  15. Multi-Ducted Inlet Combustor Research and Development.

    Science.gov (United States)

    1983-11-01

    of a reactor or combustor as defined in equation (1) is the combustor volume divided by the fluid flow rate through the combustor. Therefore, for a...Development Laboratories, Inc., Costa Mesa, California, March, 1983. 3. 0. Levenspiel , Chemical Reaction Engineering, John Wiley and Sons, 1962. 59 •rac v £98 kg3-ඃ-,162-;8b

  16. Dilution jet experiments in compact combustor configurations

    Science.gov (United States)

    Greber, I.; Zizelman, J.

    1984-01-01

    This project concerns the effects of cooling jets on the velocity and temperature fields in a compact reverse flow combustor. The work is motivated by the need to limit the temperatures of post combustion gases in jet engines to values within the endurance capabilities of turbine blades. The application requires not only that the temperature be kept sufficiently low but also that a suitably tailored temperature profile be provided at the combustor exit, with higher temperatures generally permissible at the blade tip than at the blade root because of higher centrifugal loads at the root. Flows in reverse flow combustor accelerate both longitudinally because of area changes and transversely because of flow turning. The current project started with flow visualization experiments in water, using aqueous solutions of zinc bromide to model the relatively higher density of cooling jets.

  17. Co-combustion of waste from olive oil production with coal in a fluidised bed.

    Science.gov (United States)

    Cliffe, K R; Patumsawad, S

    2001-01-01

    Waste from olive oil production was co-fired with coal in a fluidised bed combustor to study the feasibility of using this waste as an energy source. The combustion efficiency and CO emission were investigated and compared to those of burning 100% of coal. Olive oil waste with up to 20% mass concentration can be co-fired with coal in a fluidised bed combustor designed for coal combustion with a maximum drop of efficiency of 5%. A 10% olive oil waste concentration gave a lower CO emission than 100% coal firing due to improved combustion in the freeboard region. A 20% olive oil waste mixture gave a higher CO emission than both 100% coal firing and 10% olive oil waste mixture, but the combustion efficiency was higher than the 10% olive oil waste mixture due to lower elutriation from the bed.

  18. Sintering in Biofuel and Coal-Biofuel Fired FBC's

    DEFF Research Database (Denmark)

    Lin, Weigang; Dam-Johansen, Kim

    1998-01-01

    This report presents the results of systematic experiments conducted in a laboratory scale fluidized bed combustor in order to study agglomeration phenomena during firing straw and co-firing straw with coal. The influence of operating conditions on ag-glomeration was investigated. The effect of co...

  19. Experimental Studies on Swirling Gas—Particle Flows in a Spouting —Cyclone Combustor

    Institute of Scientific and Technical Information of China (English)

    L.X.Zhou; B.Zhou; 等

    1992-01-01

    The gas and particle time-averaged velocity and RMS fluctuation velocity of swirling gas-particle flows in a spouting-cyclone combustor were maesured by a hot-ball probe and a conventional LDV system.The results show large velocity slip between the two phases both in tangential and axial directions and high noisotropic turbulence of the two phases were also observed which is favorable to coal combustion.the particle RMS flutuation velocity is higher than the gas RMS fluctuation velocity only in some regions of the flow field.

  20. Micro-combustor for gas turbine engine

    Science.gov (United States)

    Martin, Scott M.

    2010-11-30

    An improved gas turbine combustor (20) including a basket (26) and a multiplicity of micro openings (29) arrayed across an inlet wall (27) for passage of a fuel/air mixture for ignition within the combustor. The openings preferably have a diameter on the order of the quenching diameter; i.e. the port diameter for which the flame is self-extinguishing, which is a function of the fuel mixture, temperature and pressure. The basket may have a curved rectangular shape that approximates the shape of the curved rectangular shape of the intake manifolds of the turbine.

  1. Variable volume combustor with aerodynamic support struts

    Energy Technology Data Exchange (ETDEWEB)

    Ostebee, Heath Michael; Johnson, Thomas Edward; Stewart, Jason Thurman; Keener, Christopher Paul

    2017-03-07

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and providing the flow of fuel therethrough. The support struts may include an aerodynamic contoured shape so as to distribute evenly a flow of air to the micro-mixer fuel nozzles.

  2. Coupling between hydrodynamics, acoustics, and heat release in a self-excited unstable combustor

    Science.gov (United States)

    Harvazinski, Matthew E.; Huang, Cheng; Sankaran, Venkateswaran; Feldman, Thomas W.; Anderson, William E.; Merkle, Charles L.; Talley, Douglas G.

    2015-04-01

    The unsteady gas dynamic field in a closed combustor is determined by the nonlinear interactions between chamber acoustics, hydrodynamics, and turbulent combustion that can energize these modes. These interactions are studied in detail using hybrid RANS/large eddy simulations (RANS = Reynolds Averaged Navier-Stokes) of a non-premixed, high-pressure laboratory combustor that produces self-excited longitudinal instabilities. The main variable in the study is the relative acoustic length between the combustion chamber and the tube that injects oxidizer into the combustor. Assuming a half-wave (closed-closed) combustion chamber, the tube lengths approximately correspond to quarter-, 3/8-, and half-wave resonators that serve to vary the phasing between the acoustic modes in the tube and the combustion chamber. The simulation correctly predicts the relatively stable behavior measured with the shortest tube and the very unstable behavior measured with the intermediate tube. Unstable behavior is also predicted for the longest tube, a case for which bifurcated stability behavior was measured in the experiment. In the first (stable) configuration, fuel flows into the combustor uninterrupted, and heat release is spatially continuous with a flame that remains attached to the back step. In the second (unstable) configuration, a cyclic process is apparent comprising a disruption in the fuel flow, subsequent detachment of the flame from the back step, and accumulation of fuel in the recirculation zone that ignites upon arrival of a compression wave reflected from the downstream boundary of the combustion chamber. The third case (mixed stable/unstable) shares features with both of the other cases. The major difference between the two cases predicted to be unstable is that, in the intermediate length tube, a pressure wave reflection inside the tube pushes unburnt fuel behind the back step radially outward, leading to a post-coupled reignition mechanism, while in the case of the

  3. Engineering development of coal-fired high-performance power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, AL. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. This report addresses the areas of technical progress for this quarter. The char combustion tests in the arch-fired arrangement were completed this quarter. A total of twenty-one setpoints were successfully completed, firing both synthetically-made char

  4. Prediction of combustion behavior of coal blends in industrial scale boilers from laboratory scale data

    Energy Technology Data Exchange (ETDEWEB)

    Pisupati, S.V.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States). Coal Utilization Lab.

    1997-12-31

    Thermal analytical techniques such as thermogravimetric analysis (TGA) have been used extensively in characterizing the thermal behavior of coals. Studies have shown that burning profiles are useful for evaluating laboratory scale combustion characteristics. Blending of coals is common in the utility industry to meet emission regulations and lower fuel costs. In this paper, it is shown that using burning profiles to predict carbon burnout of individual coals and blends in a practical combustor is appropriate. (orig.)

  5. Development and testing of commercial-scale, coal-fired combustion systems, Phase 3. Technical progress report, October 1990--December 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    The US Department of Energy`s Pittsburgh Energy Technology Center (PETC) is actively pursuing the development and testing of coal-fired combustion systems for residential, commercial, and industrial market sectors. In response, MTCI initiated the development of a new combustor technology based on the principle of pulse combustion under the sponsorship of PETC (Contract No. AC22-83PC60419). The initial pulse combustor development program was conducted in three phases (MTCI, Development of a Pulsed Coal Combustor Fired with CWM, Phase III Final Report, DOE Contract No. AC22-83PC60419, November 1986). Phase I included a review of the prior art in the area of pulse combustion and the development of pulse combustor design concepts. It led to the conclusion that pulse combustors offer technical and base-of-operation advantages over conventional burners and also indicated favorable economics for replacement of oil- and gas-fired equipment.

  6. Thermal Imaging Control of Furnaces and Combustors

    Energy Technology Data Exchange (ETDEWEB)

    David M. Rue; Serguei Zelepouga; Ishwar K. Puri

    2003-02-28

    The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

  7. Computation of Three-Dimensional Combustor Performance

    Science.gov (United States)

    Srivatsa, S.

    1985-01-01

    Existing steady-state 3-D computer program for calculating gasturbine flow fields modified to include computation of soot and nitrogen oxide emission. In addition, radiation calculation corrected for soot particles. These advanced tools offer potential of reducing design and development time required for gas-turbine combustors.

  8. Core/Combustor Noise - Research Overview

    Science.gov (United States)

    Hultgren, Lennart S.

    2017-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and advances in mitigation of other noise sources. Future propulsion systems for ultra-efficient commercial air vehicles are projected to be of increasingly higher bypass ratio from larger fans combined with much smaller cores, with ultra-clean burning fuel-flexible combustors. Unless effective noise-reduction strategies are developed, combustor noise is likely to become a prominent contributor to overall airport community noise in the future. This presentation gives a brief overview of the NASA outlook on pertinent issues and far-term research needs as well as current and planned research in the core/combustor-noise area. The research described herein is aligned with the NASA Ultra-Efficient Commercial Transport strategic thrust and is supported by the NASA Advanced Air Vehicle Program, Advanced Air Transport Technology Project, under the Aircraft Noise Reduction Subproject. The overarching goal of the Advanced Air Transport Technology (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.

  9. Configurational diffusion of asphaltenes in fresh and aged catalyst extrudates. Quarterly progress report, June 20, 1995--September 20, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Guin, J.A.

    1996-01-01

    The objective of this research is to determine the relationship between the size and shape of coal and petroleum macromolecules and their diffusion rates i.e., effective diffusivities, in catalyst pore structures. This quarter, three petroleum and two coal asphaltenes were prepared from petroleum asphalts and coal derived solids separately by solvent extraction.

  10. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH-PERFORMANCE POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2, which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, AL. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. This report addresses the areas of technical progress for this quarter. In order to prepare the CETF for the HIPPS char combustion test program, the following three subsystems were designed during this quarter: (1) Flue Gas Recycle System; (2

  11. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; Ursla Levy; John Sale; Nenad Sarunac

    2006-01-01

    This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energy extracted from boiler flue gas.

  12. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; Ursla Levy; John Sale; Nenad Sarunac

    2006-01-01

    This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energy extracted from boiler flue gas.

  13. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH PERFORMANCE POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2, which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, Al. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. During this quarter, initial char combustion tests were performed at the CETF using a Foster Wheeler commercial burner. These preliminary tests were encouraging and will be used to support the development of an innovative char burner for the HIPPS

  14. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 4, April--June 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor, Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuel performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  15. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 8, April--June, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U. S. coal.

  16. Small, modular, low-cost coal-fired power plants for the international market

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.; Frain, B.; Borck, B. [Coal Tech Corp., Merion Station, PA (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center

    1997-12-31

    This paper presents recent operating results of Coal Tech`s second generation, air cooled, slagging coal combustor, and its application to power plants in the 1 to 20 MW range. This 20 MMBtu/hour combustor was installed in a new demonstration plant in Philadelphia, PA in 1995. It contains the combustion components of a 1 MWe coal fired power plant, a 17,500 lb/hour steam boiler, coal storage and feed components, and stack gas cleanup components. The plant`s design incorporates improvements resulting from 2,000 hours of testing between 1987 and 1993 on a first generation, commercial scale, air cooled combustor of equal thermal rating. Since operations began in early 1996, a total of 51 days of testing have been successfully completed. Major results include durability of the combustor`s refractory wall, excellent combustion with high ash concentration in the fuel, removal of 95% to 100% of the slag in the combustor, very little ash deposition in the boiler, major reduction of in-plant parasitic power, and simplified power system control through the use of modular designs of sub-systems and computer control. Rapid fuel switching between oil, gas, and coal and turndown of up to a factor of three was accomplished. All these features have been incorporated in advanced coal fired plant designs in the 1 to 20 MWe range. Incremental capital costs are only $100 to $200/kW higher than comparable rated gas or oil fired steam generating systems. Most of its components and subsystems can be factory assembled for very rapid field installation. The low capital, low operating costs, fuel flexibility, and compatibility with very high ash fuels, make this power system very attractive in regions of the world having domestic supplies of these fuels.

  17. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, first and second quarters 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involve injecting ammonia into the flue gas generated from coal combustion in a boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The project is being conducted in the following three phases: permitting, environmental monitoring plan and preliminary engineering; detailed design engineering and construction; and operation, testing, disposition and final report. The project was in the operation and testing phase during this reporting period. Accomplishments for this period are described.

  18. Pressurised coal combustion in a pilot scale facility

    Energy Technology Data Exchange (ETDEWEB)

    Hardalupas, Y.; Prassas, I.; Taylor, A.M.K.P.; Whitelaw, J.H. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Mechanical Engineering Dept.

    1998-12-31

    Flux, velocity and the temperature characteristics of burning coal particles were measured simultaneously in the primary combustion zone of the swirl-stabilised burner of the pilot-scale furnace constructed at Imperial College. The furnace was designed to operate at pressures up to 5 bar and at thermal loadings up to 150 kW, and provision was made for optical access in the near-burner region of the combustor. The combined instrument used a novel technique for the simultaneous measurement of velocity and size, as well as the angle between the trajectory of the particle and an axis of reference, of particles of arbitrary shape, the so-called Shadow Doppler Velocimeter; and a two-colour pyrometer, for the simultaneous measurement of velocity, size and temperature of burning pulverised coal particles. The experiments performed consisted of: measurement of the gaseous phase as a function of the swirl number; measurement of the size, velocity, and temperature of burning coal particles as a function of the swirl number; and measurement of the size and velocity of burning coal particles inside the pressurised coal combustor at atmospheric pressure. The experiments were to evaluate and improve and further develop existing instrumentation with potential to be used in pressurised combustors; provide a database of accurate measurements for the needs of numerical models; and improve the understanding of the fluid mechanics and combustion processes at atmospheric pressures. Results obtained using the optical instrumentation showed that in an open flame, evidence of particle centrifuging existed downstream of the quarl entry. The temperature of volatile flames was about 2250 K and that of the char below 2000 K. Measurements along radial profiles inside the coal combustor showed that the axial and tangential velocity of the particles was almost independent of size. 19 refs., 15 figs., 1 tab.

  19. Assumed PDF modeling in rocket combustor simulations

    Science.gov (United States)

    Lempke, M.; Gerlinger, P.; Aigner, M.

    2013-03-01

    In order to account for the interaction between turbulence and chemistry, a multivariate assumed PDF (Probability Density Function) approach is used to simulate a model rocket combustor with finite-rate chemistry. The reported test case is the PennState preburner combustor with a single shear coaxial injector. Experimental data for the wall heat flux is available for this configuration. Unsteady RANS (Reynolds-averaged Navier-Stokes) simulation results with and without the assumed PDF approach are analyzed and compared with the experimental data. Both calculations show a good agreement with the experimental wall heat flux data. Significant changes due to the utilization of the assumed PDF approach can be observed in the radicals, e. g., the OH mass fraction distribution, while the effect on the wall heat flux is insignificant.

  20. Operational Characteristics of an Ultra Compact Combustor

    Science.gov (United States)

    2014-03-27

    Combustion simulator generated temperature profiles and b) commercial engine combustor temperature profiles [30]. Samuelson [31] describes why...better suited to handle the elevated heat flux. Thus, the desired temperature profile is skewed towards the OD. Samuelson [31] further defines both...backward facing step (Figure 2.30b) delivered the most desirable exit profile per Samuelson [31] and was utilized by 53 Zelina [10]. The downward angled

  1. Catalytic Combustor for Fuel-Flexible Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Laster, W. R.; Anoshkina, E.

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  2. Catalytic Combustor for Fuel-Flexible Turbine

    Energy Technology Data Exchange (ETDEWEB)

    W. R. Laster; E. Anoshkina

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  3. Apparatus and method for cooling a combustor cap

    Science.gov (United States)

    Zuo, Baifang; Washam, Roy Marshall; Wu, Chunyang

    2014-04-29

    A combustor includes an end cap having a perforated downstream plate and a combustion chamber downstream of the downstream plate. A plenum is in fluid communication with the downstream plate and supplies a cooling medium to the combustion chamber through the perforations in the downstream plate. A method for cooling a combustor includes flowing a cooling medium into a combustor end cap and impinging the cooling medium on a downstream plate in the combustor end cap. The method further includes flowing the cooling medium into a combustion chamber through perforations in the downstream plate.

  4. Characterization and supply of coal based fuels. Volume 1, Final report and appendix A (Topical report)

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  5. Engineering development of coal-fired high-performance power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, AL. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. This report addresses the areas of technical progress for this quarter. Analysis of the arch-fired burner continued during this quarter. Unburned carbon and NOx performance are included in this report. Construction commenced this quarter to modify the CETF

  6. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  7. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  8. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH-PERFORMANCE POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-02-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, AL. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. This report addresses the areas of technical progress for this quarter. A general arrangement drawing of the char transfer system was forwarded to SCS for their review. Structural steel drawings were used to generate a three-dimensional model of the char

  9. Coal surface control for advanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J. (California Univ., Berkeley, CA (USA)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (USA)); Hu, Weibai; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (USA)); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (USA))

    1990-08-15

    The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Work this quarter concentrated on the following: washability studies, which included particle size distribution of the washability samples, and chemical analysis of washability test samples; characterization studies of induction time measurements, correlation between yield, combustible-material recovery (CMR), and heating-value recovery (HVR), and QA/QC for standard flotation tests and coal analyses; surface modification and control including testing of surface-modifying reagents, restoration of hydrophobicity to lab-oxidized coals, pH effects on coal flotation, and depression of pyritic sulfur in which pyrite depression with calcium cyanide and pyrite depression with xanthated reagents was investigated; flotation optimization and circuitry included staged reagent addition, cleaning and scavenging, and scavenging and middling recycling. Weathering studies are also discussed. 19 figs., 28 tabs.

  10. Variable volume combustor with nested fuel manifold system

    Energy Technology Data Exchange (ETDEWEB)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-13

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles, a fuel manifold system in communication with the micro-mixer fuel nozzles to deliver a flow of fuel thereto, and a linear actuator to maneuver the micro-mixer fuel nozzles and the fuel manifold system.

  11. Variable volume combustor with pre-nozzle fuel injection system

    Energy Technology Data Exchange (ETDEWEB)

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  12. Gas turbine combustor insensitive to compressor outlet distortion

    Science.gov (United States)

    Humenik, F.; Norgren, C. T.

    1970-01-01

    Short-length annular combustor for turbojet engines eliminates change of exit temperature profile. Individual scoops of full annular height control air distribution so that shifts in the radial velocity profile of air entering the combustor will not affect combustion process or alter exit temperature profile.

  13. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  14. Coal technology program. Progress report, May 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-07-01

    Two successful operability tests with sustained operation of the bench-scale hydrocarbonizer were achieved with Illinois No. 6 coal diluted with char. Several activities in the area of nondestructive testing of coatings are reviewed. Failure analysis activities included examination of several components from the solvent refined coal plants at Wilsonville, Alabama, and Tacoma, Washington. In the gas-fired potassium boiler project, all of the design work were completed except for several of the instrument and control drawings. In the design studies of a coal-fired alkali metal vapor topping cycle, the first phase of a cycle analysis and the design and analysis of a metal vapor turbine were completed. A report entitled ''Critical Component Test Facility--Advance Planning for Test Modules'' presents the planning study for the conceptual design of component test modules on a nonsite-specific basis. Engineering studies, project evaluation and process and program analysis of coal conversion processes were continued. A report on the landfill storage of solid wastes from coal conversion is being finalized. In the coal-fueled MIUS project, a series of successful tests of the coal feeding system and a report on the analysis of 500-hr fire-side corrosion tests in a fluidized bed combustor were completed.

  15. US energy industry financial developments, 1993 first quarter

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-25

    Net income for 259 energy companies-- including, 20 major US petroleum companies-- rose 38 percent between the first quarter of 1992 and the first quarter of 1993. An increased level of economic activity, along with colder weather, helped lift the demand for natural gas. crude oil, coal, and electricity. The sharp rise in the domestic price of natural gas at the wellhead relative to the year-ago quarter was the most significant development in US energy during the first quarter. As a consequence of higher natural gas prices, the upstream segment of the petroleum industry reported large gains in income, while downstream income rose due to higher refined product demand. Increased economic activity and higher weather-related natural gas demand also led to improvements in income for the rate-regulated energy segment. However, declining domestic oil production continued to restrain upstream petroleum industry earnings growth, despite a moderate rise in crude oil prices.

  16. System and method for reducing combustion dynamics in a combustor

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Srinivasan, Shiva; York, William David

    2016-11-29

    A system for reducing combustion dynamics in a combustor includes an end cap that extends radially across the combustor and includes an upstream surface axially separated from a downstream surface. A combustion chamber is downstream of the end cap, and tubes extend from the upstream surface through the downstream surface. Each tube provides fluid communication through the end cap to the combustion chamber. The system further includes means for reducing combustion dynamics in the combustor. A method for reducing combustion dynamics in a combustor includes flowing a working fluid through tubes that extend axially through an end cap that extends radially across the combustor and obstructing at least a portion of the working fluid flowing through a first set of the tubes.

  17. System and method for reducing combustion dynamics in a combustor

    Science.gov (United States)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Srinivasan, Shiva; York, William David

    2016-11-29

    A system for reducing combustion dynamics in a combustor includes an end cap that extends radially across the combustor and includes an upstream surface axially separated from a downstream surface. A combustion chamber is downstream of the end cap, and tubes extend from the upstream surface through the downstream surface. Each tube provides fluid communication through the end cap to the combustion chamber. The system further includes means for reducing combustion dynamics in the combustor. A method for reducing combustion dynamics in a combustor includes flowing a working fluid through tubes that extend axially through an end cap that extends radially across the combustor and obstructing at least a portion of the working fluid flowing through a first set of the tubes.

  18. Measurement and simulation of swirling coal combustion

    Institute of Scientific and Technical Information of China (English)

    Liyuan Hu; Lixing Zhou; Yonghao Luo; Caisong Xu

    2013-01-01

    Particle image velocimetry (PIV),thermocouples and flue gas analyzer are used to study swirling coal combustion and NO formation under different secondary-air ratios.Eulerian-Lagrangian large-eddy simulation (LES) using the Smagorinsky-Lilly sub-grid scale stress model,presumed-PDF fast chemistry and eddy-break-up (EBU) gas combustion models,particle devolatilization and particle combustion models,are simultaneously used to simulate swirling coal combustion.Statistical LES results are validated by measurement results.Instantaneous LES results show that the coherent structures for swirling coal combustion are stronger than those for swirling gas combustion.Particles are shown to concentrate along the periphery of the coherent structures.Combustion flame is located in the high vorticity and high particle concentration zones.Measurement shows that secondary-air ratios have little effect on final NO formation at the exit of the combustor.

  19. Simulation modeling of fluidized bed coal gasifier for new topping cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Piao, Guilin; Yamazaki, Ryohei; Mori, Shigekatsu; Fujima, Yukihisa [Nagoya Univ. (Japan). Dept. of Chemical Engineering

    1997-12-31

    A new topping cycle coal power generation process is to be developed as a Japanese national project of high efficiency power generation process of coal. This process consists of a combination system of a pressurized bubbling fluidized-bed coal gasifier and a pressurized bubbling fluidized-bed combustor in series. To evaluate the performances and also to determine specifications and operation parameters of this process, it is extremely important to analyze the behavior and the performance of this system by a reasonable simulation model. A simulation model of this new process is developed in this paper. It is demonstrated by calculated results from this model that the carbon conversion in the gasifier, the composition and the heating value of produced gas are strongly dependent on operating conditions. Heat recovery by the steam in the combustor is also estimated as the function of coal feed rate.

  20. (Collaborative coal project between the USA and India)

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, R.P.

    1990-10-05

    Under the Phase II, Alternative Energy Resources Development (AERD) project of the United States Agency for International Development (USAID) and the Government of India (GOI), five collaborative coal projects have been initiated in the areas of: (1) NO{sub x}/SO{sub x} control from coal-fired power plants, (2) slagging combustor development for high-ash Indian coals, (3) characterization of Indian coals for combustion and gasification. (4) diagnostic studies for prediction of power plant life expectancy, and (5) environmental and natural resource analysis of coal cycle. The Pittsburgh Energy Technology Center (PETC) has the implementation responsibility for these projects. The Indian collaborative institutions identified for these projects are the Bharat Heavy Electricals Ltd. (BHEL), Trichy, (projects 1--4), and the Tata Energy Research Institute (TERI) for project 5. The Oak Ridge National Laboratory (ORNL) is providing cross-cut technical coordination and support for these five projects.

  1. Combustor nozzles in gas turbine engines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Thomas Edward; Keener, Christopher Paul; Stewart, Jason Thurman; Ostebee, Heath Michael

    2017-09-12

    A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.

  2. Selective flotation of fossil resin from western coal. A special report comprising: Monthly report for December 1991--April 1992 and Quarterly reports for December 1, 1991--February 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, G.F.; Miller, J.D.

    1992-03-20

    The test program has demonstrated that: (1) technically, the new flotation technologies discovered at the University of Utah and then improved upon by Advanced Processing Technologies, Inc. provide a highly efficient means to selectively recover fossil resin from coal. The proof-of-concept continuous flotation circuit resulted in fossil resin recovery with the same separation efficiency as was obtained from laboratory bench-scale testing (more than 80% recovery at about 80% concentrate grade); and (2) economically, the selective flotation process has been shown to be sufficiently profitable to justify the development of a fossil resin industry based on this new flotation process. The proof-of-concept testing has resulted in significant interest from several coal mining companies and has sparked the desire of local and state government to establish a fossil resin industry in the Wasatch Plateau coal field. In this view, the results from the current proof-of-concept testing program have been successful. This special report provides theoretical and analytical data on some surface chemistry work pertinent to fossil resin characterization, and other efforts carried out during the past months.

  3. An investigation of the mechanisms of calcination and sulfation in coal-water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Christofides, N.

    1990-09-21

    The purpose of this investigation is to study the mechanisms of sulfur capture when burning coal-water-limestone mixtures (CWLM) in fluidized beds. Special care is taken to make comparisons with to dry coal and sorbent under comparable experimental conditions. A series of experiments were performed in an eight-inch diameter bubbling fluidized bed combustor to address this problem. 33 refs., 17 figs., 5 tabs.

  4. Advanced liquefaction using coal swelling and catalyst dispersion techniques

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. (Auburn Univ., AL (United States)); Gutterman, C. (Foster Wheeler Development Corp., Livingston, NJ (United States)); Chander, S. (Pennsylvania State Univ., University Park, PA (United States))

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  5. Ninth annual coal preparation, utilization, and environmental control contractors conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Papers are grouped under the following sessions: compliance technology; high-efficiency preparation; characterization; advanced technologies; alternative fuels; coal utilization; industrial/commercial combustor development; combustion; superclean emission systems; carbon dioxide recovery and reuse; air toxics and fine particulates; air toxics sampling and analysis workshop; and combined poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  6. Evaluation of dust cake filtration at high temperature with effluence from an atmospheric fluidized-bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, R.A.

    1990-08-01

    In the spring of 1989, two separate test series were simultaneously conducted at the US Department of Energy's (DOE's) Morgantown Energy Technology Center (METC) to examine applied and fundamental behavior of dust cake filtration under high temperature and high pressure (HTHP) conditions. The purpose was to provide information on dust-cake filtration properties to gas stream cleanup researchers associated with the Tidd 70 megawatt (MW) pressurized fluidized-bed combustor (PFBC). The two test facilities included (1) a high-pressure natural-gas combustor with injected particulate, which was fed to two full-size candle filters; and (2) an atmospheric fluidized-bed combustor (AFBC) with coal and limestone sorbent to generate a particulate-laden combustion exhaust gas, which was sent to a single full-size candle filter and a small-scale disc filter. Several major conclusions from these studies are noted below. On average reducing the mean particulate size by 33% and the associated loading carried in the filtrate will increase the dust cake specific flow resistance (K{sub 2}) by 498%. High-temperature and high-pressure filtration can be successfully performed with ceramic candle filters at moderate filtration face velocities and reasonable system pressure drops. Off-line filter cleaning can produce a filter system with a higher apparent permeability than that produced from on-line filter cleaning at the same face velocity. 19 refs., 89 figs., 13 tabs.

  7. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    Science.gov (United States)

    Błaszczuk, Artur

    2015-09-01

    This paper focuses on assessment of the effect of flue gas recirculation (FGR) on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB) combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater) and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  8. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2015-09-01

    Full Text Available This paper focuses on assessment of the effect of flue gas recirculation (FGR on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  9. THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS. Includes quarterly technical progress report No.25 from 10/01/1997-12/31/1997, and quarterly technical progress report No.26 from 01/01/1998-03/31/1998

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-03-01

    This project was divided into two parts. One part evaluated possible catalysts for producing higher-alcohols (C{sub 2} to C{sub 5+}) as fuel additives. The other part provided guidance by looking both at the economics of mixed-alcohol production from coal-derived syngas and the effect of higher alcohol addition on gasoline octane and engine performance. The catalysts studied for higher-alcohol synthesis were molybdenum sulfides promoted with potassium. The best catalysts produced alcohols at a rate of 200 g/kg of catalyst/h. Higher-alcohol selectivity was over 40%. The hydrocarbon by-product was less than 20%. These catalysts met established success criteria. The economics for mixed alcohols produced from coal were poor compared to mixed alcohols produced from natural gas. Syngas from natural gas was always less expensive than syngas from coal. Engine tests showed that mixed alcohols added to gasoline significantly improved fuel quality. Mixed-alcohols as produced by our catalysts enhanced gasoline octane and decreased engine emissions. Mixed-alcohol addition gave better results than adding individual alcohols as had been done in the 1980's when some refiners added methanol or ethanol to gasoline.

  10. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH PERFORMANCE POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, Al. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. This report addresses the areas of technical progress for this quarter. Preliminary process design was started with respect to the integrated test program at the PSDF. All of the construction tasks at Foster Wheeler's Combustion and Environmental

  11. Process for Operating a Dual-Mode Combustor

    Science.gov (United States)

    Trefny, Charles J. (Inventor); Dippold, Vance F. (Inventor)

    2017-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  12. Non-linear dynamics in pulse combustor: A review

    Indian Academy of Sciences (India)

    Sirshendu Mondal; Achintya Kukhopadhyay; Swarnendu Sen

    2015-03-01

    The state of the art of non-linear dynamics applied to pulse combustor theoretically and experimentally is reviewed. Pulse combustors are a class of air-breathing engines in which pulsations in combustion are utilized to improve the performance. As no analytical solution can be obtained for most of the nonlinear systems, the whole set of solutions can be investigated with the help of dynamical system theory. Many studies have been carried out on pulse combustors whose dynamics include limit cycle behaviour, Hopf bifurcation and period-doubling bifurcation. The dynamic signature has also been used for early prediction of extinction.

  13. Coal 99; Kol 99

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, C.

    2000-07-01

    in equipment for burning pellets instead of coal. In Linkoeping waste of rubber is mixed with coal. Also Soederenergi AB has rebuilt their three coal boilers and replaced 100 % of the coal by peat and wood fuels. Coal is a reserve fuel. Several co-generation plants like Linkoeping, Norrkoeping, Uppsala and Oerebro use both coal and forest fuels. The use of coal is then concentrated to the electricity production. The average price of steam coal imported in Sweden in 1998 was 370 SEK/ton or the same as in 1997. For the world, the average import price fell about 6 USD/ton to 32 USD/ton. The price fall was concentrated to the 4th quarter. The prices have continued to fall during 1999 as a result of the crisis in Asia but are now stabilising as a result of increasing oil prices. All Swedish plants meet their emission limits of dust, SO{sub 2} and NO{sub x}, given by county administrations or concession boards. The co-generation plants have all some sort of SO{sub 2}-removal system. Mostly used is the wet-dry method. The biggest co-generation plant, in Vaesteraas, has recently invested in a catalytic NO{sub x}-cleaning system type SCR, which is reducing the emission level 80-90 %. Most other plants are using low NO{sub x}- burners or injection systems type SNCR, based on ammonium or urea, which are reducing the emissions 50-70 %. A positive effect of the recently introduced NO{sub x}-duties is a 60 % reduction compared to some years ago, when the duties were introduced. World hard coal production was about 3 700 tons in 1998, a minor decrease compared to 1997. The trade, however, has increased about 3 % to 520 mill tons. The coal demand in the OECD-countries has increased about 1,7 % yearly during the last ten years. The coal share of the energy supply is about 20% in the OECD-countries and 27% in the whole world. Several sources estimate a continuing growth during the next 20 years in spite of an increasing use of natural gas and nuclear power. The reason is a strong

  14. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  15. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  16. Appalachian clean coal technology consortium

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.-H.; Basim, B.; Luttrell, G.H.; Phillips, D.I. [Virginia Polytechnic Inst., Blacksburg, VA (United States); Jiang, D.; Tao, D.; Parekh, B.K. [Kentucky Univ., Lexington, KY (United States); Meloy, T. [West Virginia Univ., Morgantown, WV (United States)

    1997-01-28

    Novel chemicals that can be used for increasing the efficiency of fine coal dewatering was developed at Virginia Tech. During the past quarter, Reagent A was tested on three different coal samples in laboratory vacuum filtration tests. these included flotation products from Middle Fork plant, Elkview Mining Company, and CONSOL, Inc. the tests conducted with the Middle Fork coal sample (100 mesh x 0) showed that cake moisture can be reduced by more than 10% beyond what can be achieved without using dewatering aid. This improvement was achieved at 1 lb/ton of Reagent A and 0.1 inch cake thickness. At 0. 5 inches of cake thickness, this improvement was limited to 8% at the same reagent dosage. the results obtained with the Elkview coal (28 mesh x 0) showed similar advantages in using the novel dewatering aid. Depending on the reagent dosage, cake thickness, drying cycle time and temperature, it was possible to reduce the cake moisture to 12 to 14% rage. In addition to achieving lower cake moisture, the use of Reagent A substantially decreased the cake formation time, indicating that the reagent improves the kinetics of dewatering, The test results obtained with CONSOL coal were not as good as with the other coals tested in the present work, which may be attributed to possible oxidation and/or contamination.

  17. Characteristics of American coals in relation to their conversion into clean energy fuels. Quarterly technical progress report, January--March 1976. [2 appendices; 19 refs. Dryflo separation tests data

    Energy Technology Data Exchange (ETDEWEB)

    Spackman, W.; Davis, A.; Walker, P. L.; Lovell, H. L.; Essenhigh, R. H.; Vastola, F. J.; Given, P. H.

    1976-05-01

    Responses to the questionnaire, which was distributed to determine the extent to which the nation's coal seams have been sampled and characterized, are being received. Early comparisons indicate a mathematical relationship between average random reflectance (Rapid Scan) and the mean-maximum reflectance as obtained by standard reflectance analysis. Results obtained so far show support of a diffusion dominance mechanism in the oxidation region of a combustion pot and a chemical kinetic mechanism in the gasification region. Values of reaction rates in coke beds have been calculated from experiments with a fixed bed shaft gasifier. Devolatilization of a North Dakota lignite in a laminar flow reactor and subsequent treatment of the resulting char has shown that weight loss is strongly dependent upon the isothermal decomposition time. Although gasification rates increase with increase in partial pressure of oxygen, the mechanism for gasification of a given char is independent of partial pressure of oxygen. Study of the reactivity of ion-exchanged lignite chars to steam shows that increased heat treatment decreases reactivity and ion exchange increases reactivity. Use of the DSC technique to study the thermal effects involved during chemisorption of oxygen on Saran carbon has yielded information on the activation energy (EA) of the reaction. Work on the infinite parallel plane char combustion computer model has determined that low volatile chars and coals can be suitable fuels if adequate available internal surface area is present.

  18. Induction time effects in pulse combustors

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J B; Marcus, D L; Pember, R B

    1999-04-09

    Combustion systems that take advantage of a periodic combustion process have many advantages over conventional systems. Their rate of heat transfer is greatly enhanced and their pollutant emissions are lower. They draw in their own supply of fuel and air and they are self-venting. They have few moving parts. The most common type of pulse combustor is based on a Helmholtz resonator - a burning cycle drives a resonant pressure wave, which in turn enhances the rate of combustion, resulting in a self-sustaining, large-scale oscillation. Although the basic physical mechanisms controlling such a process were explained by Rayleigh over a century ago, a full understanding of the operation of a pulse combustor still does not exist. The dominant processes in such a system--combustion, turbulent fluid dynamics, acoustics--are highly coupled and interact nonlinearly, which has reduced the design process to a costly and inefficient trial-and-error procedure. Several recent numerical and experimental studies, however, have been focused towards a better understanding of the basic underlying physics. Barr et al. [l] have elucidated the relative roles of the time scales governing the energy release, the turbulent mixing, and the acoustics. Keller et al. [5] have demonstrated the importance of the phase relation between the resonant pressure field in the tailpipe and the periodic energy release. Marcus et al. [6] have developed the capability for a fully three-dimensional simulation of the reacting flow in a pulse combustor. This paper is an application of that methodology to a detailed investigation of the frequency response of the model to changes in the chemical kinetics. The methodology consists of a fully conservative second-order Godunov algorithm for the inviscid, reacting gas dynamics equations coupled to an adaptive mesh refinement procedure[2]. The axisymmetric and three-dimensional simulations allow us to explore in detail the interaction between the transient fluid

  19. Coal 99; Kol 99

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, C.

    2000-07-01

    in equipment for burning pellets instead of coal. In Linkoeping waste of rubber is mixed with coal. Also Soederenergi AB has rebuilt their three coal boilers and replaced 100 % of the coal by peat and wood fuels. Coal is a reserve fuel. Several co-generation plants like Linkoeping, Norrkoeping, Uppsala and Oerebro use both coal and forest fuels. The use of coal is then concentrated to the electricity production. The average price of steam coal imported in Sweden in 1998 was 370 SEK/ton or the same as in 1997. For the world, the average import price fell about 6 USD/ton to 32 USD/ton. The price fall was concentrated to the 4th quarter. The prices have continued to fall during 1999 as a result of the crisis in Asia but are now stabilising as a result of increasing oil prices. All Swedish plants meet their emission limits of dust, SO{sub 2} and NO{sub x}, given by county administrations or concession boards. The co-generation plants have all some sort of SO{sub 2}-removal system. Mostly used is the wet-dry method. The biggest co-generation plant, in Vaesteraas, has recently invested in a catalytic NO{sub x}-cleaning system type SCR, which is reducing the emission level 80-90 %. Most other plants are using low NO{sub x}- burners or injection systems type SNCR, based on ammonium or urea, which are reducing the emissions 50-70 %. A positive effect of the recently introduced NO{sub x}-duties is a 60 % reduction compared to some years ago, when the duties were introduced. World hard coal production was about 3 700 tons in 1998, a minor decrease compared to 1997. The trade, however, has increased about 3 % to 520 mill tons. The coal demand in the OECD-countries has increased about 1,7 % yearly during the last ten years. The coal share of the energy supply is about 20% in the OECD-countries and 27% in the whole world. Several sources estimate a continuing growth during the next 20 years in spite of an increasing use of natural gas and nuclear power. The reason is a strong

  20. Oxy-combustor operable with supercritical fluid

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron M.; Owston, Rebecca A.

    2017-04-04

    An oxy-combustor is provided which comprises a combustion vessel including at least one solid fuel slurry inlet port, at least one oxygen inlet port and at least one supercritical fluid inlet port, wherein the combustion vessel is operable at an operating pressure of at least 1,100 psi; an interior of the combustion vessel comprises a combustion chamber and a supercritical fluid infusion chamber surrounding at least a part of the combustion chamber, the supercritical fluid infusion chamber and the combustion chamber are separated by a porous liner surrounding the combustion chamber, and the supercritical infusion chamber is located between the porous liner and an outer casing of the combustion vessel.

  1. Healy Clean Coal Project: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2003-09-01

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to provide the energy marketplace with advanced, more efficient, and environmentally responsible coal utilization options by conducting demonstrations of new technologies. These demonstration projects are intended to establish the commercial feasibility of promising advanced coal technologies that have been developed to a level at which they are ready for demonstration testing under commercial conditions. This document serves as a DOE post-project assessment (PPA) of the Healy Clean Coal Project (HCCP), selected under Round III of the CCT Program, and described in a Report to Congress (U.S. Department of Energy, 1991). The desire to demonstrate an innovative power plant that integrates an advanced slagging combustor, a heat recovery system, and both high- and low-temperature emissions control processes prompted the Alaska Industrial Development and Export Authority (AIDEA) to submit a proposal for this project. In April 1991, AIDEA entered into a cooperative agreement with DOE to conduct this project. Other team members included Golden Valley Electric Association (GVEA), host and operator; Usibelli Coal Mine, Inc., coal supplier; TRW, Inc., Space & Technology Division, combustor technology provider; Stone & Webster Engineering Corp. (S&W), engineer; Babcock & Wilcox Company (which acquired the assets of Joy Environmental Technologies, Inc.), supplier of the spray dryer absorber technology; and Steigers Corporation, provider of environmental and permitting support. Foster Wheeler Energy Corporation supplied the boiler. GVEA provided oversight of the design and provided operators during demonstration testing. The project was sited adjacent to GVEA's Healy Unit No. 1 in Healy, Alaska. The objective of this CCT project was to demonstrate the ability of the TRW Clean Coal Combustion System to operate on a blend of run-of-mine (ROM) coal and waste coal, while meeting strict

  2. Healy Clean Coal Project: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2003-09-01

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to provide the energy marketplace with advanced, more efficient, and environmentally responsible coal utilization options by conducting demonstrations of new technologies. These demonstration projects are intended to establish the commercial feasibility of promising advanced coal technologies that have been developed to a level at which they are ready for demonstration testing under commercial conditions. This document serves as a DOE post-project assessment (PPA) of the Healy Clean Coal Project (HCCP), selected under Round III of the CCT Program, and described in a Report to Congress (U.S. Department of Energy, 1991). The desire to demonstrate an innovative power plant that integrates an advanced slagging combustor, a heat recovery system, and both high- and low-temperature emissions control processes prompted the Alaska Industrial Development and Export Authority (AIDEA) to submit a proposal for this project. In April 1991, AIDEA entered into a cooperative agreement with DOE to conduct this project. Other team members included Golden Valley Electric Association (GVEA), host and operator; Usibelli Coal Mine, Inc., coal supplier; TRW, Inc., Space & Technology Division, combustor technology provider; Stone & Webster Engineering Corp. (S&W), engineer; Babcock & Wilcox Company (which acquired the assets of Joy Environmental Technologies, Inc.), supplier of the spray dryer absorber technology; and Steigers Corporation, provider of environmental and permitting support. Foster Wheeler Energy Corporation supplied the boiler. GVEA provided oversight of the design and provided operators during demonstration testing. The project was sited adjacent to GVEA's Healy Unit No. 1 in Healy, Alaska. The objective of this CCT project was to demonstrate the ability of the TRW Clean Coal Combustion System to operate on a blend of run-of-mine (ROM) coal and waste coal, while meeting strict

  3. Application of numerical analysis to jet engine combustor design

    Energy Technology Data Exchange (ETDEWEB)

    To, H. (Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))

    1991-04-01

    The design and development process of jet engine combustors in Ishikawajima-Harima Heavy Industries Co., Ltd. was presented which is featured by iterated numerical analyses in earlier stages of design. The analytical methods used, models applied and features were given together with verification results of numerical analyses of a velocity profile in a dump diffuser, flow and temperature distribution in a combustion liner, and liner skin temperature distribution. As examples in design and development of an airblast fuel injector type high temperature combustor, analytical results of the followings were given: flows through a diffuser, flows through a combustion liner, flows through liner cooling slots and liner skin temperature distribution. In addition, results of three-dimensional flow analysis were given in terms of optimization of design parameters for a jet-swirl combustor and calculation of a centrifugal force for a jet-swirl combustor liner as examples. 6 refs., 18 figs., 1 tab.

  4. Tennessee Valley Authority atmospheric fluidized-bed combustor simulation interim annual report, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Wells, J.W.; Krishnan, R.P.

    1980-10-01

    This report contains a detailed description of the work performed during 1979 for the Tennessee Valley Authority in support of the TVA Fluidized-Bed Combustor (FBC) Demonstration Plant Program. The work was carried out under task 4, modeling and simulation of atmospheric fluidized-bed combustor (AFBC) systems. The overall objective of this task is to develop a steady-state mathematical model with the capability of predicting trends in bed performance under various feed and operating conditions. As part of this effort, three predictive subprograms (subcodes) were developed during 1979: (1) bubble-growth subcode, (2) sorbent-coal ash elutriation and attrition subcode, and (3) coal combustion subcode. These codes, which are currently being tested with experimental data, are capable of predicting how some of the important operating variables in the AFBC affect its performance. After testing against field data, these subcodes will be incorporated into an overall AFBC system code, which was developed earlier at ORNL for analysis of the Department of Energy (DOE) Component Test and Integration Unit (CTIU) at Morgantown, West Virginia. In addition to these predictive subcodes, the overall system code previously developed for the CTIU is described. The material balance is closed, based on vendor-supplied data. This balance is then used to predict the heat transfer characteristics of the surfaces (submerged and freeboard) in the AFBC. Existing correlations for heat transfer in AFBC are used in the code along with thermophysical properties of the various streams.

  5. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH-PERFORMANCE POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2, which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, Al. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. The design of the char burner was completed during this quarter. The burner is designed for arch-firing and has a maximum capacity of 30 MMBtu/hr. This size represents a half scale version of a typical commercial burner. The burner is outfitted with

  6. Variable volume combustor with an air bypass system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Ostebee, Heath Michael; Keener, Christopher Paul

    2017-02-07

    The present application provides a combustor for use with flow of fuel and a flow of air in a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles positioned within a liner and an air bypass system position about the liner. The air bypass system variably allows a bypass portion of the flow of air to bypass the micro-mixer fuel nozzles.

  7. Aerotrace. Measurement of particulates from an engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, C.D. [DRA, Farnborough (United Kingdom)

    1997-12-31

    The effect of gas turbine operating conditions, inlet temperature, pressure and overall air fuel ratio, on particulate number density has been measured. Particulate number density was found to be proportional to combustor inlet pressure and decrease with increasing combustor inlet temperature. The relationship with air fuel ratio is more complex. The mechanism of particulate loss down sample lines has been elucidated and equations are presented to predict particulate losses for stainless steel and PTFE sample lines. (author) 3 refs.

  8. Transient heat transfer properties in a pulse detonation combustor

    OpenAIRE

    Fontenot, Dion G.

    2011-01-01

    Approved for public release; distribution is unlimited. The heat transfer along the axis of a pulse detonation combustor has been characterized for various frequencies and fill fractions at 2.5 atmospheres of pressure for chamber refresh conditions. In a pulse detonation combustor, a supersonic detonation wave is the method for transforming chemical energy into mechanical energy and the wave propagates much faster than the subsonic flames in devices such as rockets and ramjets. The flow...

  9. Quarterly technical progress report, October-December 1982 on Energy Conversion Research and Development Programs

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    In this quarterly technical progress report, UTSI reports on the continued design work for the low mass flow train superheater. The detailed design of this component continued and the overall arrangement drawing for the superheater and air heater was finalized. The air heater procurement reached the point of contract award, but the actual purchase order award was held up pending receipt of additional funding from the Department of Energy. Testing activity reported includes two additional tests in the LMF1C series, which concludes this test series. Test data are presented, along with preliminary analyses for the combustor, nozzle, diagnostic channel, diffuser, radiant furnace/secondary combustor and Materials Test Module. In addition to the nitrogen oxide test measurements, corrosion and erosion rates for the boiler tube specimens and the materials test module are reported.

  10. Experimental investigation of syngas flame stability using a multi-tube fuel injector in a high pressure combustor

    Science.gov (United States)

    Maldonado, Sergio Elzar

    Over 92% of the coal consumed by power plants is used to generate electricity in the United States (U.S.). The U.S. has the world's largest recoverable reserves of coal, it is estimated that reserves of coal will last more than 200 years based in current production and demand levels. Integrated Gasification Combined Cycle (IGCC) power plants aim to reduce the amount of pollutants by gasifying coal and producing synthesis gas. Synthesis gas, also known as syngas, is a product of coal gasification and can be used in gas turbines for energy production. Syngas is primarily a mixture of hydrogen and carbon monoxide and is produced by gasifying a solid fuel feedstock such as coal or biomass. The objective of the thesis is to create a flame stability map by performing various experiments using high-content hydrogen fuels with varying compositions of hydrogen representing different coal feedstocks. The experiments shown in this thesis were performed using the High-Pressure Combustion facility in the Center for Space Exploration Technology Research (CSETR) at the University of Texas at El Paso (UTEP). The combustor was fitted with a novel Multi-Tube fuel Injector (MTI) designed to improve flame stability. This thesis presents the results of testing of syngas fuels with compositions of 20, 30, and 40% hydrogen concentrations in mixtures with carbon monoxide. Tests were completed for lean conditions ranging from equivalence ratios between 0.6 and 0.9. The experimental results showed that at an equivalence ratio of 0.6, a stable flame was not achieved for any of the fuel mixtures tested. It was also observed that the stability region of the syngas flame increased as equivalence ratio and the hydrogen concentration in syngas fuel increases with the 40% hydrogen-carbon monoxide mixture demonstrating the greatest stability region. Design improvements to the MTI are also discussed as part of the future work on this topic.

  11. Fine particle coal as a source of energy in small-user applications

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, S.

    1990-11-01

    The use of fine particle micronized coal as a source of energy for home heating applications has been explored in previous years under this program in a 150,000 Btu/hr pulse combustor. Experimental studies have been conducted on the combustion characteristics of micronized coal and combustion efficiencies have been measured. Emission levels of NO{sub x} and SO{sub 2} have been measured. In this final year of the program, the combustion and emissions characteristics of micronized coal were further explored in terms of the influence of stoichiometric ratio and frequency effects. Also, a model has been proposed which has potential for incorporating the unsteady mixing occurring in pulse combustors. 31 refs., 21 figs., 3 tabs.

  12. EMSL Quarterly Highlights Report: 1st Quarter, Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.

    2009-02-02

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2008 - December 2008) of Fiscal Year 2009.

  13. EMSL Quarterly Highlights Report: 1st Quarter, FY08

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-01-28

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  14. EMSL Quarterly Highlights Report: FY 2008, 3rd Quarter

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-09-16

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  15. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141574 Chen Hao(Exploration and Development Research Institute,Daqing Oilfield Company,Daqing 163712,China)High-Resolution Sequences and Coal Accumulating Laws in Nantun Formation of Huhe Lake Sag(Petroleum Geology&Oilfield Development in Daqing,ISSN1000-3754,CN23-1286/TQ,32(4),2013,p.15-19,5 illus.,15 refs.)Key words:coal accumulation regularity,coal

  16. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091159 Gao Yan(No.3 Prospecting Team of Anhui Bureau of Coal Geology,Suzhou 234000,China) Effect of Depositional Environment of Coal-Bearing Stratum on Major Coal Seams in Suntan Coalmine,Anhui Province(Geology of Anhui,ISSN 1005- 6157,CN34-1111/P,18(2),2008,p.114 -117,5 illus.,1 ref.,with English abstract)

  17. Full-scale and bench-scale testing of a coal-fueled gas turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, P.B.; LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1992-01-01

    Components for a coal-fueled industrial gas turbine were developed and tested at both benchscale and full-scale. The components included a two stage slagging combustor, a particulate rejection impact separator (PRIS), and a secondary particulate filter. The Integrated Bench Scale Test Facility (IBSTF) was used for the filter tests ana some of the PRIS testing. Full-scale combustor testing has been carried-out both with and without the PRIS. Bench-scale testing has included evaluating the feasibility of on-site CWM preparation, developing a water-cooled impactor and an extended run with new secondary candle filters.

  18. Full-scale and bench-scale testing of a coal-fueled gas turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, P.B.; LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1992-12-31

    Components for a coal-fueled industrial gas turbine were developed and tested at both benchscale and full-scale. The components included a two stage slagging combustor, a particulate rejection impact separator (PRIS), and a secondary particulate filter. The Integrated Bench Scale Test Facility (IBSTF) was used for the filter tests ana some of the PRIS testing. Full-scale combustor testing has been carried-out both with and without the PRIS. Bench-scale testing has included evaluating the feasibility of on-site CWM preparation, developing a water-cooled impactor and an extended run with new secondary candle filters.

  19. Development and Testing of Industrial Scale Coal Fired Combustion System, Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Bert Zauderer

    1998-09-30

    Coal Tech Corp's mission is to develop, license & sell innovative, lowest cost, solid fuel fired power systems & total emission control processes using proprietary and patented technology for domestic and international markets. The present project 'DEVELOPMENT & TESTING OF INDUSTRIAL SCALE, COAL FIRED COMBUSTION SYSTEM, PHASE 3' on DOE Contract DE-AC22-91PC91162 was a key element in achieving this objective. The project consisted of five tasks that were divided into three phases. The first phase, 'Optimization of First Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor', consisted of three tasks, which are detailed in Appendix 'A' of this report. They were implemented in 1992 and 1993 at the first generation, 20 MMBtu/hour, combustor-boiler test site in Williamsport, PA. It consisted of substantial combustor modifications and coal-fired tests designed to improve the combustor's wall cooling, slag and ash management, automating of its operation, and correcting severe deficiencies in the coal feeding to the combustor. The need for these changes was indicated during the prior 900-hour test effort on this combustor that was conducted as part of the DOE Clean Coal Program. A combination of combustor changes, auxiliary equipment changes, sophisticated multi-dimensional combustion analysis, computer controlled automation, and series of single and double day shift tests totaling about 300 hours, either resolved these operational issues or indicated that further corrective changes were needed in the combustor design. The key result from both analyses and tests was that the combustor must be substantially lengthened to maximize combustion efficiency and sharply increase slag retention in the combustor. A measure of the success of these modifications was realized in the third phase of this project, consisting of task 5 entitled: 'Site Demonstration with the Second Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech

  20. Coal Technology Program progress report, March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    In the final hydrocarbonization experiment with Wyodak subbituminous coal, the coal was hydrocarbonized at 1100/sup 0/F and 300 psig in the recirculating fluidized bed. Two-dimensional pyrolysis behavior of an eastern bituminous coal (Pittsburgh seam) continues to be examined. Results to date indicate that swelling is significantly more pronounced at very low heating rates. Several activities in progress are related to inspection techniques for wear- and process-resistant coatings. Experimental investigations of fireside corrosion on tubing from a fluidized bed combustor have proceeded with metallographic examination and analyses of the scale formed during the test exposure. Methods for nondestructively determining remaining tube wall thickness and scale thickness were developed. Failure prevention and analysis work was aimed at several parts from the Solvent Refined Coal Plant in Ft. Lewis, Washington. The mechanical design of the gas-fired potassium boiler system was completed with the issue of the last four drawings. One electrical and five instrument and control drawings were completed and some fabrication work was completed. Surveys of industrial coal conversion capabilities continued with emphasis on rotating components, valves, hot gas cleanup devices, and heat recovery equipment. Process and program analysis research studies continued with work on low-Btu gasification, direct combustion, advanced power conversion, liquefaction, high-Btu gasification, in-situ gasification, and beneficiation. In the fossil energy environmental project, a first draft of a landfill assessment report was issued for review. Work continued on the Environmental Monitoring Handbook and Pipeline Gas Programmatic Assessment.

  1. Strength and corrosion behavior of SiC - based ceramics in hot coal combustion environments

    Energy Technology Data Exchange (ETDEWEB)

    Breder, K.; Parten, R.J. [Oak Ridge National Lab., TN (United States)

    1996-08-01

    As part of an effort to evaluate the use of advanced ceramics in a new generation of coal-fired power plants, four SiC-based ceramics have been exposed to corrosive coal slag in a laboratory furnace and two pilot scale combustors. Initial results indicate that the laboratory experiments are valuable additions to more expensive pilot plant experiments. The results show increased corrosive attack with increased temperature, and that only slight changes in temperature may significantly alter the degree of strength degradation due to corrosive attack. The present results are part of a larger experimental matrix evaluating the behavior of ceramics in the coal combustion environment.

  2. Quarterly environmental data summary for first quarter 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the first quarter of 1999 is enclosed. The data presented in this constitute the QEDS. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the Weldon Spring Site verification group and merged into the database during the first quarter of 1999. KPA results for on-site total uranium analyses performed during first quarter 1999 are included. Air monitoring data presented are the most recent complete sets of quarterly data.

  3. Quarterly fiscal policy

    NARCIS (Netherlands)

    Kendrick, D.A.; Amman, H.M.

    2014-01-01

    Monetary policy is altered once a month. Fiscal policy is altered once a year. As a potential improvement this article examines the use of feedback control rules for fiscal policy that is altered quarterly. Following the work of Blinder and Orszag, modifications are discussed in Congressional

  4. Quarterly Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Ayman I. Hawari

    2002-12-30

    This report presents the progress made during the first quarter of phase 2 for the project entitled ''Development and Validation of Thermal Neutron Scattering Laws from Applications and Safety Implications in Generation IV Reactor Designs.'' (B204) THIS IS NOT A FINAL REPORT

  5. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131668 Chang Huizhen(Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process,CUMT,Ministry of Edu-cation,School of Resource and Earth Science,China University of Mining and Technology,Xuzhou 221008,China);Qin Yong Differences in of Pore Structure of Coals and Their Impact on the Permeability of Coals from the

  6. Combustion modeling in a model combustor

    Institute of Scientific and Technical Information of China (English)

    L.Y.Jiang; I.Campbell; K.Su

    2007-01-01

    The flow-field of a propane-air diffusion flame combustor with interior and exterior conjugate heat transfers was numerically studied.Results obtained from four combustion models,combined with the re-normalization group (RNG) k-ε turbulence model,discrete ordinates radiation model and enhanced wall treatment are presented and discussed.The results are compared with a comprehensive database obtained from a series of experimental measurements.The flow patterns and the recirculation zone length in the combustion chamber are accurately predicted,and the mean axial velocities are in fairly good agreement with the experimental data,particularly at downstream sections for all four combustion models.The mean temperature profiles are captured fairly well by the eddy dissipation (EDS),probability density function (PDF),and laminar flamelet combustion models.However,the EDS-finite-rate combustion model fails to provide an acceptable temperature field.In general,the flamelet model illustrates little superiority over the PDF model,and to some extent the PDF model shows better performance than the EDS model.

  7. Analysis of Regen Cooling in Rocket Combustors

    Science.gov (United States)

    Harper, Brent (Technical Monitor); Merkle, C. L.; Li, D.; Sankaran, V.

    2004-01-01

    The use of detailed CFD modeling for the description of cooling in rocket chambers is discussed. The overall analysis includes a complete three-dimensional analysis of the flow in the regenerative cooling passages, conjugate heat transfer in the combustor walls, and the effects of film cooling on the inside chamber. The results in the present paper omit the effects of film cooling and include only regen cooling and the companion conjugate heat transfer. The hot combustion gases are replaced by a constant temperature wall boundary condition. Load balancing for parallel cluster computations is ensured by using single-block unstructured grids for both fluids and solids, and by using a 'multiple physical zones' to account for differences in the number of equations. Validation of the method is achieved by comparing simple two-dimensional solutions with analytical results. Representative results for cooling passages are presents showing the effects of heat conduction in the copper walls with tube aspect ratios of 1.5:l.

  8. Research on coal staged conversion poly-generation system based on fluidized bed

    Institute of Scientific and Technical Information of China (English)

    Mingjiang Ni; Chao Li; Mengxiang Fang; Qinhui Wang; Zhongyang Luo; Kefa Cen

    2014-01-01

    A new coal staged conversion poly-generation system combined coal combustion and pyrolysis has been developed for clean and high efficient utilization of coal. Coal is the first pyrolysed in a fluidized pyrolyzer. The pyrolysis gas is then purified and used for chemical product or liquid fuel production. Tar is collected during purification and can be processed to extract high value product and to make liquid fuels by hydro-refining. Semi-coke from the pyrolysis reactor is burned in a circulating fluidized bed (CFB) combustor for heat or power generation. The system can realize coal multi-product generation and has a great potential to increase coal utilization value. A 1 MW poly-generation system pilot plant and a 12 MW CFB gas, tar, heat and power poly-generation system was erected. The experimental study focused on the two fluidized bed operation and characterization of gas, tar and char yields and compositions. The results showed that the system could operate stable, and produce about 0.12 m3/kg gas with 22 MJ/m3 heating value and about 10 wt%tar when using Huainan bituminous coal under pyrolysis temperature between 500 and 600 ?C. The produced gases were mainly H2, CH4, CO, CO2, C2H4, C2H6, C3H6 and C3H8. The CFB combustor can burn semi-coke steadily. The application prospect of the new system was discussed.

  9. Computational Simulation of Acoustic Modes in Rocket Combustors

    Science.gov (United States)

    Harper, Brent (Technical Monitor); Merkle, C. L.; Sankaran, V.; Ellis, M.

    2004-01-01

    A combination of computational fluid dynamic analysis and analytical solutions is being used to characterize the dominant modes in liquid rocket engines in conjunction with laboratory experiments. The analytical solutions are based on simplified geometries and flow conditions and are used for careful validation of the numerical formulation. The validated computational model is then extended to realistic geometries and flow conditions to test the effects of various parameters on chamber modes, to guide and interpret companion laboratory experiments in simplified combustors, and to scale the measurements to engine operating conditions. In turn, the experiments are used to validate and improve the model. The present paper gives an overview of the numerical and analytical techniques along with comparisons illustrating the accuracy of the computations as a function of grid resolution. A representative parametric study of the effect of combustor mean flow Mach number and combustor aspect ratio on the chamber modes is then presented for both transverse and longitudinal modes. The results show that higher mean flow Mach numbers drive the modes to lower frequencies. Estimates of transverse wave mechanics in a high aspect ratio combustor are then contrasted with longitudinal modes in a long and narrow combustor to provide understanding of potential experimental simulations.

  10. The aerodynamics of the near field of pressurised pulverized fuel combustors

    Energy Technology Data Exchange (ETDEWEB)

    Bergeles, G.; Anagnostopoulos, J.; Papadakis, G.; Mouzakis, F.; Voyages, C. [National Technical University of Athens, Athens (Greece). Lab. for Aerodynamics, Dept. of Mechanical Engineering

    1998-12-31

    This research aims at improving knowledge of an effective design of pressurized pulverized fuel combustors (PPFC). Problems investigated are slag, cleaning efficiency, near burner aerodynamics and effects of pressure on combustion characteristics and on NO concentration levels. The Coal Combustion Algorithm (CO. C.A.-3D code) was the basis for the numerical work performed. Several new models were developed and incorporated into the basic code; a model for the calculation of slag formation, thickness and flow inside a PPFC, three different techniques for domain decomposition by the use of locally refined, staggered or collocated grids; an improved NO postprocessor to account for elevated pressure and turbulence effects. A new version of the final code was developed to obtain solutions in 3-D, cylindrical co-ordinates. All the above models were validated using available experimental data. The slag model predictions were in agreement with the practical evidence. The advantages and disadvantages of each of the domain decomposition techniques were assessed. The best proposed technique was found to combine simplicity, increased accuracy of the predictions in complex flow regions, and significantly reduced computer memory and storage requirements. The use of cylindrical co-ordinates for calculations inside cylindrical-type combustion chambers was found to achieve a more stable convergence of the algorithm and a considerable reduction of numerical diffusion. The proposed modifications of a basic NO formation model produced very encouraging predictions in a wide range of combustion conditions examined (various pressures, temperatures and oxygen concentrations). The numerical work performed provides a engineering tool to improve the physical understanding of the effects of pressurization on the performance and efficiency of combustor design. 33 refs., 25 figs., 2 tabs.

  11. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111053 Chen Jian(School of Earth and Environment,Anhui University of Science and Technology,Huainan 232001,China);Liu Wenzhong Organic Affinity of Trace Elements in Coal from No.10 Coal-Bed at Western Huagou,Guoyang(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,38(4),2010,p.16-20,24,3 illus.,3 tables,19 refs.)Key words:coal,minor elements,Anhui Province In order to study the organic affinity of trace elements in coal from No.10 coal-bed at western Huagou,Guoyang,10 borehole samples were collected at exploration area of Huaibei mining area.The contents of 12 kinds of trace elements were determined by the inductively coupled plasma mass spectrometry(ICP-MS),the total organic carbon(TOC)of coal was determined by LECO carbon and sulfur analyzer,and the organic affinity of trace elements were deduced from the correlations between contents and TOCs.The results showed that the contents of V,Cr,Co,Ni,Mo,Cd,Sb,Pb and Zn were lower than

  12. Experimental Study of Ethylene Combustion in a Scramjet Combustor

    Institute of Scientific and Technical Information of China (English)

    XIAO Yin-li; SONG Wen-yan; LE Jia-ling

    2008-01-01

    In this paper the ignition characteristics of gaseous ethylene hydrocarbon fuel is investigated in the supersonic clean airstreams experimental facility with a resistance heater. The generic cavity flame holder is used to create recirculation and promote the fuel/air mixing at the lower wall of the combustor. Three different injection concepts are considered in this research: (1) ethylene injection upstream of the cavity; (2) ethylene and hydrogen injection upstream of the cavity simultaneously; (3) ethylene injection preceded by pilot hydrogen injection. The pilot injection showed to be a supportive tool for holding the flame of the main normal ethylene fuel injection. Therefore, using pilot hydrogen injection and cavity configuration necessitates optimizing the combustor length to ensure the complete combustion and the full liberation of the chemical energy stored in the fuel before exiting the combustor. The present study proved the possibility of igniting the ethylene and maintaining its flame in the supersonic airstreams.

  13. CFD Evaluation of a 3rd Generation LDI Combustor

    Science.gov (United States)

    Ajmani, Kumud; Mongia, Hukam; Lee, Phil

    2017-01-01

    An effort was undertaken to perform CFD analysis of fluid flow in Lean-Direct Injection (LDI) combustors with axial swirl-venturi elements for next-generation LDI-3 combustor design. The National Combustion Code (NCC) was used to perform non-reacting and two-phase reacting flow computations for a nineteen-element injector array arranged in a three-module, 7-5-7 element configuration. All computations were performed with a consistent approach of mesh-optimization, spray-modeling, ignition and kinetics-modeling with the NCC. Computational predictions of the aerodynamics of the injector were used to arrive at an optimal injector design that meets effective area and fuel-air mixing criteria. LDI-3 emissions (EINOx, EICO and UHC) were compared with the previous generation LDI-2 combustor experimental data at representative engine cycle conditions.

  14. 6th Conference on Coal Utilization Technology; Dai 6 kai sekitan riyo gijutsu kaigi koenshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The paper compiled the papers presented in the 6th Conference on Coal Utilization Technology held in September 1996. With relation to the fluidized bed boiler, reported were Field operation test of Wakamatsu PFBC combined cycle power plant and Development of pressurized internally circulating fluidized bed combustion technology. Regarding the coal reformation, Development of advanced coal cleaning process, Coal preparation and coal cleaning in the dry process, etc. Concerning the combustion technology, Study of the O2/CO2 combustion technology, Development of pressurized coal partial combustor, etc. About the CWM, Development of low rank coals upgrading and their CWM producing technology, Technique of CWM distribution system, etc. Relating to the coal ash, Engineering characteristics of the improved soil by deep mixing method using coal ash, Employment of fluidized bed ash as a basecourse material, On-site verification trials using fly ash for reclamation behind bulkheads, Water permeabilities of pulverized fuel ash, Separation of unburned carbon from coal fly ash through froth flotation, Practical use technology of coal ash (POZ-O-TEC), etc

  15. Effectiveness factors for hydroprocessing of coal and coal liquids

    Energy Technology Data Exchange (ETDEWEB)

    Massoth, F.E.; Seader, J.D.

    1990-06-28

    The aim of this project is to develop a methodology to predict, from a knowledge of feed and catalyst properties, effectiveness factors for catalytic hydroprocessing of coal and coal liquids. The research entails a study of hydrodenitrogenation of model compounds and coal-derived liquids using three NiMo/alumina catalysts of different pore size to develop, for restrictive diffusion. During this quarter equilibrium adsorption studies of single and binary solutes in cyclohexane solvent on three NiMo catalysts were completed. Three single solutes, 9-phenylanthracene, 9-phenylcarbazole, and 9-phenylacridine; and two binary-solute mixtures (9-PhAn/9-PhC and 9-PhC/9-PhAn) were used for the studies. Mathematical models for sorptive diffusion on single- and binary-solute systems were developed. The previously hydrotreated coal-derived-liquid was subjected to a secondary hydrotreatment to achieve a satisfactory product quality. The oil was thoroughly analyzed. Hydrogenation of two nickel-porphines were carried out in this oil and the kinetics was studied with two catalysts under the process conditions. Reaction rates and restrictive diffusion effects were compared to those obtained in the pure solvents from the previous studies. 6 refs., 6 figs., 4 tabs.

  16. Dilution-based emissions sampling from stationary sources: Part 2--Gas-fired combustors compared with other fuel-fired systems.

    Science.gov (United States)

    England, Glenn C; Watson, John G; Chow, Judith C; Zielinska, Barbara; Chang, M C Oliver; Loos, Karl R; Hidy, George M

    2007-01-01

    With the recent focus on fine particle matter (PM2.5), new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference. The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2 nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of approximately 10(-4) lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with approximately 5 x 10(-3) lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of approximately 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the

  17. Numerical Simulations of Static Tested Ramjet Dump Combustor

    Science.gov (United States)

    Javed, Afroz; Chakraborty, Debasis

    2016-06-01

    The flow field of a Liquid Fuel Ram Jet engine side dump combustor with kerosene fuel is numerically simulated using commercial CFD code CFX-11. Reynolds Averaged 3-D Navier-Stokes equations are solved alongwith SST turbulence model. Single step infinitely fast reaction is assumed for kerosene combustion. The combustion efficiency is evaluated in terms of the unburnt kerosene vapour leaving the combustor. The comparison of measured pressures with computed values show that the computation underpredicts (~5 %) pressures for non reacting cases but overpredicts (9-7 %) for reacting cases.

  18. Variable volume combustor with aerodynamic fuel flanges for nozzle mounting

    Energy Technology Data Exchange (ETDEWEB)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-20

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.

  19. Nonluminous Spray Combustion in a Jet-Mixing-Type Combustor

    OpenAIRE

    1990-01-01

    A new combustion system called a jet-mixing-type combustor was designed to obtain a nonluminous blue flame of a kerosene spray. A spray was injected by a conventional-type swirl atomizer into the combustor, and combustion air was introduced through a baffle plate with 16 inlet holes. The principle of this combustion method was revealed as a prompt mixing of the air and spray, which was achieved by high-speed air jets. The combustion characteristics such as combustion stability, temperature di...

  20. Variable volume combustor with center hub fuel staging

    Energy Technology Data Exchange (ETDEWEB)

    Ostebee, Heath Michael; McConnaughhay, Johnie Franklin; Stewart, Jason Thurman; Keener, Christopher Paul

    2016-08-23

    The present application and the resultant patent provide a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a center hub for providing the flow of fuel therethrough. The center hub may include a first supply circuit for a first micro-mixer fuel nozzle and a second supply circuit for a second micro-mixer fuel nozzle.