WorldWideScience

Sample records for coal bulk analysis

  1. Proximate Analysis of Coal

    Science.gov (United States)

    Donahue, Craig J.; Rais, Elizabeth A.

    2009-01-01

    This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter,…

  2. Grounded or submerged bulk carrier: the potential for leaching of coal trace elements to seawater.

    Science.gov (United States)

    Lucas, Steven Andrew; Planner, John

    2012-05-01

    This study investigates the potential for leaching of coal trace elements to seawater from a grounded bulk carrier. The coal type and ecological scenario was based on the grounding of the "Shen Neng" (April 2010) at Douglas Shoal located within the Great Barrier Reef (Queensland, Australia). The area is of high ecological value and the Queensland Water Quality Guidelines (2009) provided threshold limits to interpret potential impacts. Coal contains many trace elements that are of major and moderate concern to human health and the environment although many of these concerns are only realised when coal is combusted. However, "unburnt" coal contains trace elements that may be leached to natural waterways and few studies have investigated the potential ecological impact of such an occurrence. For example, coal maritime transport has increased by almost 35% over the last five reported years (Jaffrennou et al., 2007) and as a result there is an increased inherent risk of bulk carrier accidents. Upon grounding or becoming submerged, coal within a bulk carrier may become saturated with seawater and potentially leach trace elements to the environment and impact on water quality and ecological resilience. The worst case scenario is the breakup of a bulk carrier and dispersal of cargo to the seafloor. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  3. Modelling and analysis of global coal markets

    Energy Technology Data Exchange (ETDEWEB)

    Trueby, Johannes

    2013-01-17

    International Steam Coal Trade. In this paper, we analyse steam coal market equilibria in the years 2006 and 2008 by testing for two possible market structure scenarios: perfect competition and an oligopoly setup with major exporters competing in quantities. The assumed oligopoly scenario cannot explain market equilibria for any year. While we find that the competitive model simulates market equilibria well in 2006, the competitive model is not able to reproduce real market outcomes in 2008. The analysis shows that not all available supply capacity was utilised in 2008. We conclude that either unknown capacity bottlenecks or more sophisticated non-competitive strategies were the cause for the high prices in 2008. Chapter 4 builds upon the findings of the analysis in chapter 3 and adds a more detailed representation of domestic markets. The corresponding essay is titled Nations as Strategic Players in Global Commodity Markets: Evidence from World Coal Trade. In this chapter we explore the hypothesis that export policies and trade patterns of national players in the steam coal market are consistent with non-competitive market behaviour. We test this hypothesis by developing a static equilibrium model which is able to model coal producing nations as strategic players. We explicitly account for integrated seaborne trade and domestic markets. The global steam coal market is simulated under several imperfect market structure setups. We find that trade and prices of a China - Indonesia duopoly fits the real market outcome best and that real Chinese export quotas in 2008 were consistent with simulated exports under a Cournot-Nash strategy. Chapter 5 looks at the long-term effect of Chinese energy system planning decisions. The time horizon is 2006 to 2030. The analysis in this chapter combines a dynamic equilibrium model with the scenario analysis technique. The corresponding essay is titled Coal Lumps vs. Electrons: How Do Chinese Bulk Energy Transport Decisions Affect the Global

  4. Bulk transport of ores and coal: recent developments and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    van der Burg, J.

    1984-01-01

    The economic prospects for Rotterdam in bulk transshipment of ore and coal are discussed. For the whole of 1984, coal and ore transshipments are expected to total 2.7 million tonnes and 37.9 million tonnes respectively. Ore trade trends are considered. Predictions for EEC imports are tabulated. Coal trade trends are examined, noting declining market share of the USA. Anticipated EEC imports are tabulated. Studies the composition of the freight market and examines the orders for new combined carriers and bulk carriers, classified by dwt size. The paper suggests that maximum size of ore carriers will be 350,000 dwt, studies capacities of ore and coal unloading terminals worldwide, noting particular facilities at Rotterdam, outlines the six barge pushtow programme, and examines the freight cost advantage of such shipping.

  5. Functional group analysis of coal and coal products by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perry, D.L.; Grint, A.

    1986-04-01

    In a number of technologies such as polymers and carbon fibres, where there is a similar interest in the nature of organic functional groups and their effect on material performance, the technique of x-ray photoelectron spectroscopy (XPS), also known as electron spectroscopy for chemical analysis (ESCA), has been applied successfully to a wide range of problems. However XPS is a technique which is little used in coal science. Since it has high surface sensitivity and the specific surfaces properties of coals play an important role in a number of coal technologies, e.g. flotation and agglomeration, it is perhaps surprising that XPS is not used more extensively. The reasons for this may lie in some of the discouraging references in the literature. For example early work by Frost et al found no relationship between oxygen concentrations determined by XPS and the bulk analysis of a series of float-sink fractions. More recently Huffmann et al observed that oxidation of bituminous coals for up to 383 days at 50/sup 0/C in air completely destroyed Geiseler fluidity but neither XPS nor DRIFT (Diffuse Reflectance FTIR) spectroscopy could detect any parallel changes in the functional group composition of the coal. This paper describes the application of XPS to coal, coal reactions and coal products. The aim is to present a critical evaluation in the context of other techniques which are applied to coal.

  6. The impacts of coal refuse/fly ash bulk bends on water quality and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Stewar, B.R.; Daniels, W.L. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-09-01

    There is considerable interest in the beneficial reuse of coal fly ash as a soil amendment on coal refuse piles. One method of application would be to blend the coal refuse and the fly ash before deposition in a refuse pile. A field experiment was initiated to measure the effects of bulk blending fly ash with coal refuse on water quality and plant growth parameters. Fly ash (class F) from three sources were used in the experiment. Two of the fly ashes were acidic and the third was alkaline. Trenches were excavated in a coal refuse pile to a depth of 2 m and the refuse was blended with fly ash and then returned to the trench. In other plots the ash was applied as a surface amendment. A treatment of a bulk blend of 5% (w/w) rock phosphate was also included in the experiment. Large volume lysimeters were installed in some trenches to collect the leachates. The fly ash treatments appear to improve the quality of the leachates when compared to the leachates from the untreated plots. The fly ash amended treatments have lower leachate concentrations of Fe and Al. Initially the fly ash treatments showed high levels of leachate B, however those levels have decreased with time. Millet (Setaria italica) yields from the first year of the experiment were highest n the alkaline fly ash and rock phosphate blended plots. In the second growing season, the two bulk blends with alkaline fly ash had the highest yields. In the third growing season all treatments had higher yield levels than the untreated control plots. The positive effects of the fly ash on leachate quality were attributed to the alkalinity of the ash, and the increase in yield was attributed to the increases in water holding capacity due to fly ash treatments.

  7. Optimisation of coal blend and bulk density for coke ovens by vibrocompacting technique non-recovery ovens

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.P.; Vinoo, D.S.; Yadav, U.S.; Ghosh, S.; Lal, J.P.N. [J.S.W. Steel Ltd, Bellary (India)

    2007-09-15

    The quality of coke produced in a coke oven depends on the coal blend characteristics and carbonisation conditions. Scarcity of good quality coking coal made it necessary to look for techniques capable of producing superior coke from inferior coals. Precarbonisation techniques improve the bulk density of the coal charge and produce good quality coke from inferior coals. The stamp charging technique, the most effective among them requires finer crushing of coal and higher moisture as binder, both requiring additional energy. JSW Steel has adopted vibrocompaction along with non-recovery ovens for its 1.2 Mtpa coke production. This is a highly ecofriendly coke making process producing excellent quality coke from inferior coals. It increases the bulk density of cake, similar to stamp charging, using compaction in place of stamping. A cake density of 1.10 t m{sup -3} has been achieved using the vibrocompacting technique with optimum moisture and crushing fineness. Coal blend containing up to 35% soft coal and coking coal, having 32% volatile matter have been successfully used to produce a coke with coke strength after reaction >65%, coke reactivity index <25% and M10 <6%. The paper discusses the experience of operating vibrocompaction non-recovery coke ovens.

  8. Surface and bulk characterization of an ultrafine South African coal fly ash with reference to polymer applications

    Science.gov (United States)

    van der Merwe, E. M.; Prinsloo, L. C.; Mathebula, C. L.; Swart, H. C.; Coetsee, E.; Doucet, F. J.

    2014-10-01

    South African coal-fired power stations produce about 25 million tons of fly ash per annum, of which only approximately 5% is currently reused. A growing concern about pollution and increasing landfill costs stimulates research into new ways to utilize coal fly ash for economically beneficial applications. Fly ash particles may be used as inorganic filler in polymers, an application which generally requires the modification of their surface properties. In order to design experiments that will result in controlled changes in surface chemistry and morphology, a detailed knowledge of the bulk chemical and mineralogical compositions of untreated fly ash particles, as well as their morphology and surface properties, is needed. In this paper, a combination of complementary bulk and surface techniques was explored to assess the physicochemical properties of a classified, ultrafine coal fly ash sample, and the findings were discussed in the context of polymer application as fillers. The sample was categorized as a Class F fly ash (XRF). Sixty-two percent of the sample was an amorphous glass phase, with mullite and quartz being the main identified crystalline phases (XRD, FTIR). Quantitative carbon and sulfur analysis reported a total bulk carbon and sulfur content of 0.37% and 0.16% respectively. The spatial distribution of the phases was determined by 2D mapping of Raman spectra, while TGA showed a very low weight loss for temperatures ranging between 25 and 1000 °C. Individual fly ash particles were characterized by a monomodal size distribution (PSD) of spherical particles with smooth surfaces (SEM, TEM, AFM), and a mean particle size of 4.6 μm (PSD). The BET active surface area of this sample was 1.52 m2/g and the chemical composition of the fly ash surface (AES, XPS) was significantly different from the bulk composition and varied considerably between spheres. Many properties of the sample (e.g. spherical morphology, small particle size, thermal stability) appeared

  9. Analysis of photographic records of coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Dodoo, J.N.D.

    1991-10-01

    Bituminous coals upon heating undergo melting and pyrolytic decomposition with significant parts of the coal forming an unstable liquid that can escape from the coal by evaporation. The transient liquid within the pyrolyzing coal causes softening or plastic behavior that can influence the chemistry and physics of the process. Bubbles of volatiles can swell the softened coal mass in turn affecting the combustion behavior of the coal particles. The swelling behavior of individual coal particles has to be taken into account both as the layout as well as for the operation of pyrolysis, coking and performance of coal-fired boilers. Increased heating rates generally increase the amount of swelling although it is also known that in some cases, even highly swelling coals can be transformed into char with no swelling if they are heated slowly enough. The swelling characteristics of individual coal particles have been investigated by a number of workers employing various heating systems ranging from drop tube and shock tube furnaces, flow rate reactors and electrical heating coils. Different methods have also been employed to determine the swelling factors. The following sections summarize some of the published literature on the subject and outline the direction in which the method of analysis will be further extended in the study of the swelling characteristics of hvA bituminous coal particles that have been pyrolyzed with a laser beam.

  10. A mechanistic analysis of bulk powder caking

    Science.gov (United States)

    Calvert, G.; Curcic, N.; Ghadiri, M.

    2013-06-01

    Bulk powder transformations, such as caking, can lead to numerous problems within industry when storing or processing materials. In this paper a new Environmental Caking Rig (ECR) is introduced and has been used to evaluate the caking propensity of a hygroscopic powder as a function of temperature, Relative Humidity (RH), mechanical stress and also when RH is cycled. A linear relationship exists between cake strength and the extent of bulk deformation, here defined by the engineering strain. An empirical model has been used to predict the caking behaviour based on consolidation stress and environmental conditions.

  11. Scaling Bulk Data Analysis with Mapreduce

    Science.gov (United States)

    2017-09-01

    Writing Bulk_Extractor MapReduce 101 List of References 105 viii Initial Distribution List 113 ix THIS PAGE INTENTIONALLY LEFT BLANK x List of Figures...dedicated Experts -Formal definition presented -Large technology growth
 -Everyone has email, cell phones, networks Adolescence
 -Growth in Academics ...period is where we see those requirements come to fruition with an explosive growth into the academic community. This period marks a point where research

  12. Advanced Coal Wind Hybrid: Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

    2008-11-28

    Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW

  13. Liquid chromatographic analysis of coal surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, K.C.

    1991-01-01

    The main objectives of this proposed research are to refine further the inverse liquid chromatography technique for the study of surface properties of raw coals, treated coals and coal minerals in water, to evaluate relatively surface properties of raw coals, treated coals and coal minerals by inverse liquid chromatography, and to evaluate floatability of various treated coals in conjunction with surface properties of coals. Alcohols such as methanol, ethanol, isopropanol, isobutanol, tert-butanol, heptanol, 1-hexadecanol, 2-methyl-pentanol, 4-methyl-2-penthanol (methylisobutyl carbinol), n-octanol, s-octanol, and cyclohexanol as probe compounds are utilized to evaluate hydrophilicity of coals and coal minerals. N-alkanes such as hexane, heptane and octane, and stearic acid are employed as probe compounds to evaluate hydrophobicity of coals and coal minerals. Aromatic compounds such as benzene and toluene as probe compounds are used to examine aromaticity of coal surface. Aromatic acids such as o-cresol, m-cresol, p-cresol, phenol and B-naphthol are used to detect aromatic acidic sites of coal surface. Hydrophilicity, hydrophobicity and aromaticity of surfaces for either raw coals or treated coals in water are relatively determined by evaluating both equilibrium physical/chemical adsorption and dynamic adsorption of probe compounds on various raw coals and treated coals to compare affinities of coals for water.

  14. GC/MS analysis of coal tar composition produced from coal pyrolysis

    Directory of Open Access Journals (Sweden)

    Jianfang Jiang

    2007-08-01

    Full Text Available Coal tar is a significant product generated from coal pyrolysis. A detailed analytical study on its composition and chemical structure will be of great advantage to its further processing and utilization. Using a combined method of planigraphy-gas chromatograph/mass spectroscopy (GC/MS, this work presents a composition analysis on the coal tar generated in the experiment. The analysis gives a satisfactory result, which offers a referable theoretical foundation for the further processing and utilization of coal tar.

  15. ANALYSIS OF COAL TAR COMPOSITIONS PRODUCED FROM SUB-BITUMINOUS KALIMANTAN COAL TAR

    Directory of Open Access Journals (Sweden)

    Dewi Selvia Fardhyanti

    2016-10-01

    Full Text Available Coal tar is a liquid by-product of coal pyrolysis processes. This liquid oil mixture contains various kind of useful compounds such as benzoic aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. The coal tar was collected by pyrolysis process of coal obtained from PT Kaltim Prima Coal and Arutmin-Kalimantan. The experiments typically occurred at the atmospheric pressure in a laboratory furnace at temperatures ranging from 300 to 550oC with a heating rate of 10oC/min and a holding time of 1 hour at the pyrolysis temperature. The Gas Chromatography-Mass Spectroscopy (GCMS was used to analyze the coal tar components. The obtained coal tar has the viscosity of 3.12 cp, the density of 2.78 g/cm3, the calorific value of 11,048.44 cal/g, and the molecular weight of 222.67. The analysis result showed that the coal tar contained more than 78 chemical compounds such as benzene, cresol, phenol, xylene, naphtalene, etc. The total phenolic compounds contained in coal tar is 33.25% (PT KPC and 17.58% (Arutmin-Kalimantan. The total naphtalene compounds contained in coal tar is 14.15% (PT KPC and 17.13% (ArutminKalimantan.

  16. Analysis of parameters of coal gasification process for demand of clean coal technology

    Energy Technology Data Exchange (ETDEWEB)

    Zaporowski, B. (Technical University of Poznan, Poznan (Poland))

    1993-01-01

    The paper presents the complex energy analysis of the process of total, pressure coal gasification. The basis of this analysis is an elaborated mathematical model of the coal gasification process. This model is elaborated in a form that allows a simulation of the total pressure of gasification of coal, with the use of various gasifying media. The model constitutes a system of equations, describing chemical, physical and energy processes taking place in the gas generator. The laws of statistical quantum thermodynamics are used to formulate the equations describing chemical and physical processes proceeding in the gas generator. On the basis of the elaborated mathematical model of coal gasification process, special computer program was derived. This program allows multivariant calculations of parameters of coal gasification process to be made. For each variant the following were calculated: composition of gas produced in the process of coal gasification, caloric value of produced gas, volume of gas obtained from 1 kg of coal, consumption of gasifying medium per 1 kg of coal and chemical and energy efficiency of coal gasification process. 4 refs., 14 figs.

  17. Comparison Analysis of Coal Biodesulfurization and Coal's Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    Science.gov (United States)

    Hong, Fen-Fen; He, Huan; Liu, Jin-Yan; Tao, Xiu-Xiang; Zheng, Lei; Zhao, Yi-Dong

    2013-01-01

    Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal's pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal's pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal's pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32%) and jarosite (18.99%) were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34%) and elemental sulfur (50.72%) but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process. PMID:24288464

  18. Analysis of photographic records of coal pyrolysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dodoo, J.N.D.

    1991-10-01

    Bituminous coals upon heating undergo melting and pyrolytic decomposition with significant parts of the coal forming an unstable liquid that can escape from the coal by evaporation. The transient liquid within the pyrolyzing coal causes softening or plastic behavior that can influence the chemistry and physics of the process. Bubbles of volatiles can swell the softened coal mass in turn affecting the combustion behavior of the coal particles. The swelling behavior of individual coal particles has to be taken into account both as the layout as well as for the operation of pyrolysis, coking and performance of coal-fired boilers. Increased heating rates generally increase the amount of swelling although it is also known that in some cases, even highly swelling coals can be transformed into char with no swelling if they are heated slowly enough. The swelling characteristics of individual coal particles have been investigated by a number of workers employing various heating systems ranging from drop tube and shock tube furnaces, flow rate reactors and electrical heating coils. Different methods have also been employed to determine the swelling factors. The following sections summarize some of the published literature on the subject and outline the direction in which the method of analysis will be further extended in the study of the swelling characteristics of hvA bituminous coal particles that have been pyrolyzed with a laser beam.

  19. Integrated analysis software for bulk power system stability

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Nagao, T.; Takahashi, K. [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1994-12-31

    This paper presents Central Research Inst.of Electric Power Industry - CRIEPI`s - own developed three softwares for bulk power network analysis and the user support system which arranges tremendous data necessary for these softwares with easy and high reliability. (author) 3 refs., 7 figs., 2 tabs.

  20. Stability analysis of bulk viscous anisotropic universe model

    Science.gov (United States)

    Sharif, M.; Mumtaz, Saadia

    2017-11-01

    This paper is devoted to study the phase space analysis of locally rotationally symmetric Bianchi type I universe model by taking three different cases for bulk viscosity coefficient. An autonomous system of equations is established by defining normalized dimensionless variables. In order to investigate stability of the system, we evaluate corresponding critical points for different values of the parameters. In the case of bulk viscous matter and radiation, the parameters η=η0 and m≥0.8 show realistic evolution of the universe (prior radiation dominated era, conventional decelerated matter dominated state and ultimately accelerated expansion). We conclude that stable solutions exist in the presence of bulk viscosity with different choices of parameter m.

  1. GC/MS ANALYSIS OF COAL TAR COMPOSITION PRODUCED ...

    African Journals Online (AJOL)

    GC/MS ANALYSIS OF COAL TAR COMPOSITION PRODUCED FROM COAL PYROLYSIS. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information about how to print, save, and work ...

  2. Kinetic study of Mongolian coals by thermal analysis

    Directory of Open Access Journals (Sweden)

    Jargalmaa S

    2018-02-01

    Full Text Available Thermal analysis was used for the thermal characterization of the coal samples. The experiments were performed to study the pyrolysis and gasification kinetics of typical Mongolian brown coals. Low rank coals from Shivee ovoo, Ulaan ovoo, Aduun chuluun and Baganuur deposits have been investigated. Coal samples were heated in the thermogravimetric apparatus under argon at a temperature ranges of 25-1020ºC with heating rates of 10, 20, 30 and 40ºC/min. Thermogravimetry (TG and derivative thermogravimetry (DTG were performed to measure weight changes and rates of weight losses used for calculating the kinetic parameters. The activation energy (Ea was calculated from the experimental results by using an Arrhenius type kinetic model.

  3. Functional group analysis in coal and on coal surfaces by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Verkade, J.G.

    1989-10-01

    The reaction of Cl{ovr POCH{sub 2}CH{sub 2}O} (2) with moisture in pyridine extracts of Argonne standard coal samples has been found to give results comparable with the ASTM D3302 moisture analyses of these samples. Differences in the two sets of results are discussed. Some exceptionally large solvent effects on {sup 31}P chemical shifts of model compounds derivatized with 2 and 8 have been discovered. Initial experiments aimed at labile hydrogen functional group analysis of solid coal samples with 2 and Me{sub 2}N{ovr POCH{sub 2}CH{sub 2}O} (15) are described. 17 refs., 1 fig., 6 tabs.

  4. The Comparative Analysis of the Efficiency of Coal Liquefaction Technologies

    Directory of Open Access Journals (Sweden)

    Rudyka Viktor I.

    2017-12-01

    Full Text Available Organization of production of synthetic liquid fuels (SLF in Ukraine becomes an especially topical and at the same time complex scientific and applied task, taking into consideration criteria of the techno-ecological and economic rationality. The article presents a methodical approach to the comparative analysis of efficiency of the main methods and technologies for the synthetic liquid fuels production and a carried out testing, the results of which allowed to conclude that the most rational is the technology of indirect coal liquefaction based on coal thermal plasma gasification.

  5. Analysis of operational risk in a Polish coal preparation plant

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, W.; Sablik, J.; Martyniak, J.; Wycisk, H. [Central Mining Institute, Katowice (Poland)

    2001-07-01

    The article presents methodology and results of studies, which allow one to characterise a coal preparation plant by means of operational risk analysis and to draw conclusions which could be used for making production management and investment decisions. 6 refs., 6 figs., 2 tabs.

  6. Econometric Analysis of Bulk Shipping: implications for investment strategies and financial decision-making

    NARCIS (Netherlands)

    S. Tsolakis

    2005-01-01

    textabstractThis thesis provides an econometric analysis of the bulk shipping markets and the implications for shipping investment and financial decision making. Chapter 1 sets the scene by providing a historic analysis of bulk shipping markets over the last 55 years. From this analysis, four

  7. Joint Analysis of Bulk Wildfire Characteristics from Multiple Satellite Retrievals

    Science.gov (United States)

    Tang, W.; Arellano, A. F.

    2015-12-01

    Biomass burning significantly impacts atmospheric composition, as well as regional and global climate. Here, we investigate the spatiotemporal trends in fire characteristics in several major fire regions using combustion signatures observed from space. Our main goals is to identify key relationships between the trends in co-emitted constituents across these regions, as well as linkages to main drivers of change such as meteorology, fire practice, development patterns, and ecosystem feedbacks. Our approach begins with a multi-species analysis of trends in the observed abundance of CO, NO2, and aerosols over these regions and across the time period 2005 to 2014. We use MOPITT multi-spectral CO, OMI tropospheric NO2 column, MODIS AOD, and MODIS FRP retrievals. The long records from these retrievals provide a unique opportunity to study atmospheric composition across the most recent decade. While several studies in the past have reported trends over these regions, most of these studies have focused on a particular constituent. A unique aspect of this work involves understanding co-variations in co-emitted constituents to provide a more comprehensive look at fire characteristics, which are yet to be fully understood. Here, we introduce a derived quantity (called smoke index) to represent bulk fire characteristics (e.g., flaming versus smoldering). The smoke index is calculated as the ratio of the geometric mean of CO and AOD fire enhancements to that of NO2 fire enhancements. Our initial results, which focused on the Amazon region, show that: 1) deforestation fires are dominantly flaming fires while non-deforestation fires are more likely to be dominantly smoldering fires; and 2) droughts have larger influence on non-deforestation (possibly understorey) fires than deforestation fires. Here, we will present an extension of this analysis to other fire regions around the globe (tropical, temperate and boreal fires) and explore other measurements available during this

  8. Analysis of some potential social effects of four coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Walker, C.A.; Gould, L.C.

    1980-09-01

    This is an analysis of the potential social impacts of four coal technologies: conventional combustion, fluidized-bed combustion, liquifaction, and gasification. Because of their flexibility, and the abundance and relatively low costs of coal, the potential benefits of these technologies would seem to outweigh their potential social costs, both in the intermediate and long term. Nevertheless, the social costs of a coal industry are far more obscure and hard to quantify than the benefits. In general, however, it maybe expected that those technologies that can be deployed most quickly, that provide fuels that can substitute most easily for oil and natural gas, that are the cheapest, and that are the most thermally efficient will minimize social costs most in the intermediate term, while technologies that can guide energy infrastructure changes to become the most compatable with the fuels that will be most easily derived from inexhaustible sources (electricity and hydrogen) will minimize social costs most in the long run. An industry structured to favor eastern over western coal and plant sites in moderate sized communities, which could easily adapt to inexhaustible energy technologies (nuclear or solar) in the future, would be favored in either time period.

  9. Morphological analysis and modelling of fine coal filter cake microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, F.S.; Lyman, G.J. [University of Queensland, Brisbane, Qld. (Australia). Dept. of Mining and Metallurgical Engineering

    1997-04-01

    The microstructure of fine coal filter cakes governs their formation rate and dewaterability, which are both critical to the efficient filtering and dewatering of fine coal. However, the principles by which the microstructure influences the transport properties of filter cakes are not well understood. The paper describes an example of application of the Boolean model that leads to a straightforward and realistic quantification of the three-dimensional microstructure of fine coal filter cakes. Such a model is attractive, since it relies on well-established random set theory, its characterisation involves standard image analysis of polished sections, and no empiricism is involved. Although the model was found to be ideally suited to the characterisation of fine coal filter cakes, the flexibility of its underlying theory makes it an excellent candidate for quantifying other porous media. The model not only permits easy access to the three-dimensional details of porous media but might also assist in predicting the transport properties of porous media because of its realism. Subsequent publications will discuss applications of the model to obtain three-dimensional computer simulations of filter cakes, and to predict single-phase permeability of filter cakes. 21 refs., 6 figs., 8 tabs.

  10. Analysis of coal slag for naturally occurring radioactive material.

    Science.gov (United States)

    Spitz, H B; Rajaretnam, G

    1998-07-01

    Samples of aerosolized coal slag were collected during an abrasive blasting operation to determine the concentration of naturally occurring radioactive materials (NORM) in the respirable and nonrespirable fractions. Each slag fraction was analyzed using alpha and gamma spectrometry. Since the slag is insoluble, it was necessary to dissolve samples completely by fusion with potassium fluoride and, after additional transposing and separation, mount the precipitate containing radium (Ra), the main radioactive component in NORM, on a membrane filter for alpha counting. The concentration of 226Ra in coal slag was independent of the particle size fraction and equal to 2.28 picocuries/gram (pCi/g) +/- 0.43 pCi/g, which is approximately twice the typical concentration of NORM in uncontaminated soil. Analysis of NORM by gamma spectrometry identified low concentrations of uranium, thorium, and potassium, all primordial radioactive materials that are commonly encountered in normal background soil. Integral exposure to workers from inhalation of NORM during abrasive blasting with coal slag is extremely low and could be essentially eliminated by use of appropriate respiratory protection. External radiation exposure to workers handling large quantities of NORM-contaminated coal slag during shipping or storage is also low, but would vary depending on the concentration of NORM in the slag.

  11. Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health.

    Science.gov (United States)

    Li, Hongxia; Ji, Hongbing; Shi, Chunjing; Gao, Yang; Zhang, Yan; Xu, Xiangyu; Ding, Huaijian; Tang, Lei; Xing, Yuxin

    2017-04-01

    Heavy metals (HMs) and metalloids migrate into their surroundings, thus increasing environmental risks and threatening human health. Current studies on coal-mine brownfields, however, have not thoroughly investigated soil-associated HMs and metalloids produced by coal mining. Therefore, this study explored the spatial and particle fraction distribution and human health implications of HMs and metalloids. The soil-associated HMs and metalloids are Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Manganese (Mn), Nickel (Ni), Lead (Pb), Scandium (Sc), Titanium (Ti) and Zinc (Zn). Results showed that Cd, Cu, Pb, and Ni were enriched in bulk soils. Cadmium, Cu and Pb from anthropogenic source were mainly found at entrance roadsides and in sites closest to coal mines. HMs and metalloids primarily accumulated in fine fractions (<1, 1-5, and 5-10 μm). Moreover, HM and metalloid loadings substantially accumulated in the 75-250 μm and 250-1000 μm fractions. Most fine soil fractions showed moderate to strong potential ecological risks, whereas all the coarse particle fractions (50-75, 75-250, and 250-1000 μm) presented slight potential ecological risk. Exposure to soil-associated HMs and metalloids mainly occurred via ingestion. The total non-carcinogenic risks to children and adults fell below the safe level of 1, whereas the total carcinogenic risks to these individuals were higher than that of the maximum acceptable level set by the United States Environmental Protection Agency (USEPA, 1 × 10 -4). The total carcinogenic risk was mainly contributed by Cd and Ni through ingestion and dermal access. Therefore, hygiene and food security in areas should be emphasized. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Comparative Study of Coal and Biomass Co-Combustion With Coal Burning Separately Through Emissions Analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Siddique

    2016-06-01

    Full Text Available Appropriate eco-friendly methods to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal & coal-biomass co-combustion on the gaseous emissions. Different biomass' were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves. Various ratios of coal and biomass were used to investigate the combustion behavior of coal-biomass blends and their emissions. The study revealed that the ratio of 80:20 of coal (lignite-cow dung and 100% banana tree leaves emits less emissions of CO, CO2, NOx and SO2 as compared to 100% coal. Maximum amount of CO emissions were 1510.5 ppm for banana tree waste and minimum amount obtained for lakhra coal and cow dung manure (70:30 of 684.667 ppm. Maximum percentage of SO2 (345.33 ppm was released from blend of lakhra coal and tree leaves (90:10 and minimum amount of SO2 present in samples is in lakhra coal-banana tree waste (80:20. The maximum amount of NO obtained for banana tree waste were 68 ppm whereas maximum amount of NOx was liberated from lakhra coal-tree leaves (60:40 and minimum amount from cow dung manure (30.83 ppm. The study concludes that utilization of biomass with coal could make remedial action against environment pollution.

  13. Dynamic Factor Analysis of Trends in Temporal–Spatial Patterns of China’s Coal Consumption

    Directory of Open Access Journals (Sweden)

    Yuhuan Sun

    2015-11-01

    Full Text Available This paper analyzes coal consumption in the 31 provinces and regions of China from 1995 to 2012. Using spatial analysis in Arc geographical information systems (ArcGIS and the concept of the center of gravity in physics, we explore the regional differences in temporal-spatial coal consumption and the factors influencing them. The results show that China’s coal consumption increased yearly, especially after 2003. It exhibits a marked spatial clustering phenomenon; consumption in the south and east exceeded that in the north and west respectively. Moreover, the center of gravity of consumption gradually moved toward the southwest, indicating reducing gaps in coal consumption between the north-south and the east-west regions. Both the level of economic development and coal consumption are positively related with regional coal production. Promoting urbanization and increasing the proportion of the tertiary industry can effectively reduce coal consumption and help readjust coal consumption patterns to sustainable levels.

  14. Dynamic Game Analysis of Coal Electricity Market Involving Multi-Interests

    Directory of Open Access Journals (Sweden)

    Yu Xiaobao

    2016-01-01

    Full Text Available The coal consumption of China reached 2.75 billion tons of standard coal in 2013, which accounted for 67.5% of total energy consumption and more than 50% of global coal consumption. Therefore, the impact of coal price is huge on coal market and even energy market in China. As a large consumer of coal, thermal power enterprise has a strong sensitivity to coal price. In order to balance the rising cost of enterprises due to coal price, we need to analyze the interests of multiple stakeholders. Firstly, this paper combined the Nash equilibrium and cobweb model and proposed the characteristics in different cobweb model. Then, for coal, power, and energy companies, the dynamic game analysis model is constructed. This model gives a game analysis in four scenarios and quantifies the decision of each stakeholder in different coal prices. Finally, the impact figure of different coal prices on each stakeholder has been drawn. The impacts of different coal or thermal power prices on different markets have been put forward, so relevant policy recommendations have been proposed combined with the cobweb model.

  15. Cofiring of rice straw and coal in a coal-fired utility boiler: thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Raphael Guardini; Bazzo, Edson [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Mechanical Engineering], Emails: miyake@labcet.ufsc.br, ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia, Capivari de Baixo, SC (Brazil)], E-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    Cofiring combustion of biomass and coal is a near-term, low cost alternative for reduction fossil greenhouse gas emissions in coal fired power plants. Recent reviews identified over 288 applications in over 16 countries with promising results for different coal and biomass combinations. In Brazil, there is no previous experience of cofiring biomass and coal, resulting in new challenges to fuel handling and boiler operation. A first experience is now proposed into an existing coal power plant, using rice straw as biomass fuel. A thermodynamic model was developed in order to predict operating and emissions data, which should be used in cofiring system design. For 10% of biomass input, the total CO{sub 2} emission is expected to slightly increase. However, considering only the coal CO{sub 2} emission, it is expected to decrease in about 10%. Also, the corresponding SO{sub 2} emission decreases in about 8%. (author)

  16. Analysis of bulk heterojunction material parameters using lateral device structures

    Science.gov (United States)

    Danielson, Eric; Ooi, Zi-En; Liang, Kelly; Morris, Joshua; Lombardo, Christopher; Dodabalapur, Ananth

    2014-01-01

    We review the key optoelectronic properties of lateral organic bulk heterojunction (BHJ) device structures with asymmetric contacts. These structures are used to develop a detailed model of charge transport and recombination properties within materials used for organic photovoltaics. They permit a variety of direct measurement techniques, such as nonlinear optical microscopy and in situ potentiometry, as well as photoconductive gain and carrier drift length studies from photocurrent measurements. We present a theoretical framework that describes the charge transport physics within these devices. The experimental results presented are in agreement with this framework and can be used to measure carrier concentrations, recombination coefficients, and carrier mobilities within BHJ materials. Lateral device structures offer a useful complement to measurements on vertical photovoltaic structures and provide a more complete and detailed picture of organic BHJ materials.

  17. Targets for bulk hydrogen analysis using thermal neutrons

    CERN Document Server

    Csikai, J; Buczko, C M

    2002-01-01

    The reflection property of substances can be characterized by the reflection cross-section of thermal neutrons, sigma subbeta. A combination of the targets with thin polyethylene foils allowed an estimation of the flux depression of thermal neutrons caused by a bulk sample containing highly absorbing elements or compounds. Some new and more accurate sigma subbeta values were determined by using the combined target arrangement. For the ratio, R of the reflection and the elastic scattering cross-sections of thermal neutrons, R=sigma subbeta/sigma sub E sub L a value of 0.60+-0.02 was found on the basis of the data obtained for a number of elements from H to Pb. Using this correlation factor, and the sigma sub E sub L values, the unknown sigma subbeta data can be deduced. The equivalent thicknesses, to polyethylene or hydrogen, of the different target materials were determined from the sigma subbeta values.

  18. Analysis of coal extracts by HPLC-ESI-MS

    Energy Technology Data Exchange (ETDEWEB)

    Jie Feng; Cui-Ping Ye; Wen-Ying Li; Ke-Chang Xie [Taiyuan University of Technology, Taiyuan (China). Key Laboratory of Coal Science and Technology

    2003-07-01

    In order to get the structure information of the coal pyridine extracts, the methods based on reverse-phase high-performance liquid chromatography (RP-HPLC) with photodiode array detector (PDA) and electro-spray ionization mass spectrometer (ESI-MS) has been developed. For the purpose of classifying the mixture according to the polarity of the compound before HPLC/MS analysis, column chromatography packed with silica gel was applied to separate coal pyridine extracts into three fractions: acetonitrile (lower), chloroform (middle), pyridine (higher). The fraction of chloroform (CHCl{sub 3}) was analyzed in this article. In the mass range of 150-1500amu, the components observed include 314.3/369.1, and 301.3/369.1, which should be the plasticizer in the solvent. Other peaks included a series of molecular ions from the beginning of 541.3amu with m/z difference 74amu (C{sub 3}H{sub 6}O{sub 2} or C{sub 4}H{sub 10}O). 541.3amu (ESI+) is the elemental structure in the series; this implied that the higher molecular mass parts in coal might consist of some basic units. And two valuable compounds containing nitrogen atom were acquired at m/z 393.5amu (C{sub 27}H{sub 39}NO) and 334.5amu (C{sub 20}H{sub 38}N{sub 4}). 11 refs., 5 figs., 1 tab.

  19. Quantitative group-type analysis of coal-tar pitches

    Energy Technology Data Exchange (ETDEWEB)

    Membrado, L.; Cebolla, V.L.; Vela, J. [Instituto de carboquimica, Zaragoza (Spain)

    1995-12-31

    Preparative liquid chromatographic (LC) and related techniques (e.g.., extrography) are mostly used for quantitative compound class or group-type analysis of coal-tar pitches. TLC-FID has hardly been used for this purpose because of the time-consuming calibration steps required. As the FID response of each peak depends on its nature, the classical approach in fossil fuel analysis to a quantitative analysis is the absolute calibration using fractions derived from the fossil fuel itself (previously isolated by LC) as external standards. An added problem is the isolation of these fractions with the required purity. A TLC-FID system has previously been described in this issue, which gives adequate repeatability and precision, and gives a quantitative FID response. In this work, a rapid calibration procedure which allows a quantitative group-type analysis of a whole coal-tar pitch (without any prefractionation) using TLC-FID is presented as an alternative to absolute calibration. This method considerably reduces the total time of analysis. Likewise, the use of TLC-FID as a monitoring technique to improve the classical absolute calibration is also proposed. Pros and cons of group-type analysis techniques are finally discussed with regard to TLC-FID.

  20. On-conveyor belt analysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Cheryl Lim; David Abernethy; S. Rainey; L.K. Noack [CSIRO Minerals (Australia)

    2007-09-15

    The report describes the design and plant-testing of a prototype commercial on-belt ash analyser at the Bengalla CHPP (Muswellbrook, NSW). This analyser uses the Neutron Inelastic Scatter (NIS) and Thermal Neutron Capture (TNC) Analysis (NITA) technique, which has been investigated extensively in earlier ACARP projects C5051 (laboratory feasibility study) and the previous stage of C9042 (development and lab testing of a field prototype and evaluate the suitability of the technique for specific energy and sulphur measurement). The NITA analyser has been demonstrated to be capable of achieving an accuracy of 0.46 %ash. Specifically, a measured value for total r.m.s. error of 0.77 %ash, measured r.m.s error includes various uncertainties (estimated to be 0.61 %ash) associated with the chemical analysis and sample collection procedures used to generate the chemical laboratory data provided for calibration. In earlier laboratory work it was demonstrated that a measured r.m.s error of 0.75 %ash corresponded to an actual accuracy of 0.53 %ash after much smaller laboratory sampling errors had been excluded. Accurate measurement of ash value can be achieved in material which is expected to have significant variability in mineralogy, and in the past has not been amenable to analysis using the DUET technique. Accurate measurement of ash value is possible in the presence of significant levels of segregation and changes in mineral matter composition. CSIRO is collaborating with a commercial partner to demonstrate and complete the implementation of the NITA technology in industry. A commercial prototype analyser (NITA II) is under development and a plant installation is expected to occur in mid 2008.

  1. Coal and coke - analysis and testing. Higher rank coal. Hardgrove grindability index

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-04

    The Standard specifies the method for determining the grindability index of hard coal using the Hardgrove machine. It also specifies the procedure for calibrating the test machine and for preparing the standard reference coal samples. The Standard is identical with ISO 5074:1994.

  2. Gc/ms analysis of coal tar composition produced from coal

    African Journals Online (AJOL)

    2005-11-17

    Technology, Hubei Province, Wuhan, China. (Received November 17, 2005; revised December 22, 2006). ABSTRACT. Coal tar is a significant product generated from coal pyrolysis. A detailed analytical study on its composition and chemical structure will be of great advantage to its further processing and utilization.

  3. gc/ms analysis of coal tar composition produced from coal pyrolysis

    African Journals Online (AJOL)

    Coal tar is a significant product generated from coal pyrolysis. A detailed analytical study on its composition and chemical structure will be of great advantage to its further processing and utilization. Using a combined method of planigraphy-gas chromatograph/mass spectroscopy (GC/MS), this work presents a composition ...

  4. Recent advances in the use of synchrotron radiation for the analysis of coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    Two major coal combustion problems are the formation and build-up of slag deposits on heat transfer surfaces and the production and control of toxic species in coal combustion emissions. The use of synchrotron radiation for the analysis of coal combustion products can play a role in the better understanding of both these phenomena. An understanding of the chemical composition of such slags under boiler operating conditions and as a function of the mineral composition of various coals is one ultimate goal of this program. The principal constituents in the ash of many coals are the oxides of Si, Al, Fe, Ca, K, S, and Na. The analytical method required must be able to determine the functional forms of all these elements both in coal and in coal ash at elevated temperatures. One unique way of conducting these analyses is by x-ray spectroscopy.

  5. Speeding up stochastic analysis of bulk water supply systems using ...

    African Journals Online (AJOL)

    It is possible to analyse the reliability of municipal storage tanks through stochastic analysis, in which the user demand, fire water demand and pipe failures are simulated using Monte Carlo analysis. While this technique could in principle be used to find the optimal size of a municipal storage tank, in practice the high ...

  6. Bulk density estimation using a 3-dimensional image acquisition and analysis system

    Directory of Open Access Journals (Sweden)

    Heyduk Adam

    2016-01-01

    Full Text Available The paper presents a concept of dynamic bulk density estimation of a particulate matter stream using a 3-d image analysis system and a conveyor belt scale. A method of image acquisition should be adjusted to the type of scale. The paper presents some laboratory results of static bulk density measurements using the MS Kinect time-of-flight camera and OpenCV/Matlab software. Measurements were made for several different size classes.

  7. Analysis of coal prices for thermal power plants. [Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Cuk, L.; Stojkovic, D.

    1983-07-01

    Data are given on the operating costs, transportation costs and coal prices (expressed in Dinar/t and in Dinar/kJ 10/SUP/6) of 20 major Yugoslav coal mines and 15 coal fired power plants for the period 1977-1981. Despite the average increase of coal prices of 19.67% and the increased transportation cost of 18.7% almost all of the mines sold their coal to power plants at prices below mine operating costs. The negative impact of an inappropriate national coal price policy on coal mine development is stressed (almost 75% of Yugoslav coal production is consumed by power plants). Recommendations are made for changes in the coal price policy. In addition to calorific value, the following factors should be included in the determination of price: operating conditions of a mine, chemical and physical properties of coal (size, moisture, ash and sulfur content, etc.). Power plant consumption of coal is expected to increase from the present 42 Mt/a to 175 Mt/a at the turn of the century.

  8. SWOT analysis for safer carriage of bulk liquid chemicals in tankers.

    Science.gov (United States)

    Arslan, Ozcan; Er, Ismail Deha

    2008-06-15

    The application of strengths, weaknesses, opportunities and threats (SWOT) analysis to formulation of strategy concerned with the safe carriage of bulk liquid chemicals in maritime tankers was examined in this study. A qualitative investigation using SWOT analysis has been implemented successfully for ships that are designed to carry liquid chemicals in bulk. The originality of this study lies in the use of SWOT analysis as a management tool to formulate strategic action plans for ship management companies, ship masters and officers for the carriage of dangerous goods in bulk. With this transportation-based SWOT analysis, efforts were made to explore the ways and means of converting possible threats into opportunities, and changing weaknesses into strengths; and strategic plans of action were developed for safer tanker operation.

  9. Direct Quantitative Analysis of Arsenic in Coal Fly Ash

    Directory of Open Access Journals (Sweden)

    Sri Hartuti

    2012-01-01

    Full Text Available A rapid, simple method based on graphite furnace atomic absorption spectrometry is described for the direct determination of arsenic in coal fly ash. Solid samples were directly introduced into the atomizer without preliminary treatment. The direct analysis method was not always free of spectral matrix interference, but the stabilization of arsenic by adding palladium nitrate (chemical modifier and the optimization of the parameters in the furnace program (temperature, rate of temperature increase, hold time, and argon gas flow gave good results for the total arsenic determination. The optimal furnace program was determined by analyzing different concentrations of a reference material (NIST1633b, which showed the best linearity for calibration. The optimized parameters for the furnace programs for the ashing and atomization steps were as follows: temperatures of 500–1200 and 2150°C, heating rates of 100 and 500°C s−1, hold times of 90 and 7 s, and medium then maximum and medium argon gas flows, respectively. The calibration plots were linear with a correlation coefficient of 0.9699. This method was validated using arsenic-containing raw coal samples in accordance with the requirements of the mass balance calculation; the distribution rate of As in the fly ashes ranged from 101 to 119%.

  10. Novel technique for coal pyrolysis and hydrogenation product analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, L.D.; Boyle, J.

    1993-03-15

    A microjet reactor coupled to a VUV photoionization time-of-flight mass spectrometer has been used to obtain species measurements during high temperature pyrolysis and oxidation of a wide range of hydrocarbon compounds ranging from allene and acetylene to cyclohexane, benzene and toluene. Initial work focused on calibration of the technique, optimization of ion collection and detection and characterization of limitations. Using the optimized technique with 118 nm photoionization, intermediate species profiles were obtained for analysis of the hydrocarbon pyrolysis and oxidation mechanisms. The soft'' ionization, yielding predominantly molecular ions, allowed the study of reaction pathways in these high temperature systems where both sampling and detection challenges are severe. Work has focused on the pyrolysis and oxidative pyrolysis of aliphatic and aromatic hydrocarbon mixtures representative of coal pyrolysis and hydropyrolysis products. The detailed mass spectra obtained during pyrolysis and oxidation of hydrocarbon mixtures is especially important because of the complex nature of the product mixture even at short residence times and low primary reactant conversions. The combustion community has advanced detailed modeling of pyrolysis and oxidation to the C4 hydrocarbon level but in general above that size uncertainties in rate constant and thermodynamic data do not allow us to a priori predict products from mixed hydrocarbon pyrolyses using a detailed chemistry model. For pyrolysis of mixtures of coal-derived liquid fractions with a large range of compound structures and molecular weights in the hundreds of amu the modeling challenge is severe. Lumped models are possible from stable product data.

  11. Mercury emissions from coal combustion in Silesia, analysis using geostatistics

    Science.gov (United States)

    Zasina, Damian; Zawadzki, Jaroslaw

    2015-04-01

    Data provided by the UNEP's report on mercury [1] shows that solid fuel combustion in significant source of mercury emission to air. Silesia, located in southwestern Poland, is notably affected by mercury emission due to being one of the most industrialized Polish regions: the place of coal mining, production of metals, stone mining, mineral quarrying and chemical industry. Moreover, Silesia is the region with high population density. People are exposed to severe risk of mercury emitted from both: industrial and domestic sources (i.e. small household furnaces). Small sources have significant contribution to total emission of mercury. Official and statistical analysis, including prepared for international purposes [2] did not provide data about spatial distribution of the mercury emitted to air, however number of analysis on Polish public power and energy sector had been prepared so far [3; 4]. The distribution of locations exposed for mercury emission from small domestic sources is interesting matter merging information from various sources: statistical, economical and environmental. This paper presents geostatistical approach to distibution of mercury emission from coal combustion. Analysed data organized in 2 independent levels: individual, bottom-up approach derived from national emission reporting system [5; 6] and top down - regional data calculated basing on official statistics [7]. Analysis, that will be presented, will include comparison of spatial distributions of mercury emission using data derived from sources mentioned above. Investigation will include three voivodeships of Poland: Lower Silesian, Opole (voivodeship) and Silesian using selected geostatistical methodologies including ordinary kriging [8]. References [1] UNEP. Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. UNEP Chemicals Branch, Geneva, Switzerland, 2013. [2] NCEM. Poland's Informative Inventory Report 2014. NCEM at the IEP-NRI, 2014. http

  12. Proceedings of BulkTrans '89

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Papers were presented on bulk commodity demand; steel industry bulk trades; grains and the world food economy; steam coal and cement demand; shipping profitability; bulk carrier design and economics; bulk ports and terminals; ship unloading; computers in bulk terminals; and conveyors and stockyard equipment.

  13. Refining and end use study of coal liquids II - linear programming analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, C.; Tam, S.

    1995-12-31

    A DOE-funded study is underway to determine the optimum refinery processing schemes for producing transportation fuels that will meet CAAA regulations from direct and indirect coal liquids. The study consists of three major parts: pilot plant testing of critical upgrading processes, linear programming analysis of different processing schemes, and engine emission testing of final products. Currently, fractions of a direct coal liquid produced form bituminous coal are being tested in sequence of pilot plant upgrading processes. This work is discussed in a separate paper. The linear programming model, which is the subject of this paper, has been completed for the petroleum refinery and is being modified to handle coal liquids based on the pilot plant test results. Preliminary coal liquid evaluation studies indicate that, if a refinery expansion scenario is adopted, then the marginal value of the coal liquid (over the base petroleum crude) is $3-4/bbl.

  14. Electrofacies analysis for coal lithotype profiling based on high-resolution wireline log data

    Science.gov (United States)

    Roslin, A.; Esterle, J. S.

    2016-06-01

    The traditional approach to coal lithotype analysis is based on a visual characterisation of coal in core, mine or outcrop exposures. As not all wells are fully cored, the petroleum and coal mining industries increasingly use geophysical wireline logs for lithology interpretation.This study demonstrates a method for interpreting coal lithotypes from geophysical wireline logs, and in particular discriminating between bright or banded, and dull coal at similar densities to a decimetre level. The study explores the optimum combination of geophysical log suites for training the coal electrofacies interpretation, using neural network conception, and then propagating the results to wells with fewer wireline data. This approach is objective and has a recordable reproducibility and rule set.In addition to conventional gamma ray and density logs, laterolog resistivity, microresistivity and PEF data were used in the study. Array resistivity data from a compact micro imager (CMI tool) were processed into a single microresistivity curve and integrated with the conventional resistivity data in the cluster analysis. Microresistivity data were tested in the analysis to test the hypothesis that the improved vertical resolution of microresistivity curve can enhance the accuracy of the clustering analysis. The addition of PEF log allowed discrimination between low density bright to banded coal electrofacies and low density inertinite-rich dull electrofacies.The results of clustering analysis were validated statistically and the results of the electrofacies results were compared to manually derived coal lithotype logs.

  15. ANALYSIS ON CONFLICTS OF CHINA’S COAL TAX REFORM

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-01-01

    Full Text Available This paper investigates the conflicts which are resulted from coal tax reform in China from economic and public policy perspectives. An analytical framework involving actors, values, interests and institution has been applied. China’s central government eagers to achieve fiscal revenue increase, environmental protection and energy conversation goals by a good governance of coal system. As a traditional and feasible policy instrument, taxation is regarded for dealing with energy issues in politics and governance. However, coal tax reform proposal has induced many controversies in China. The causes of that include value conflicts of all actors, competing interests of all parties and institutional barriers of economic, politics and legislation. Therefore, the government cannot regulate coal issues only through taxation. The case reveals that good governance on coal cannot be achieved only by economic tools as coal system contains so high stake and involves so many players.

  16. Direct coal liquefaction baseline design and system analysis

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    The primary objective of the study is to develop a computer model for a base line direct coal liquefaction design based on two stage direct coupled catalytic reactors. This primary objective is to be accomplished by completing the following: a base line design based on previous DOE/PETC results from Wilsonville pilot plant and other engineering evaluations; a cost estimate and economic analysis; a computer model incorporating the above two steps over a wide range of capacities and selected process alternatives; a comprehensive training program for DOE/PETC Staff to understand and use the computer model; a thorough documentation of all underlying assumptions for baseline economics; and a user manual and training material which will facilitate updating of the model in the future.

  17. Structural Analysis and Total Coal Demand Forecast in China

    Directory of Open Access Journals (Sweden)

    Qing Zhu

    2014-01-01

    Full Text Available Considering the speedy growth of industrialization and urbanization in China and the continued rise of coal consumption, this paper identifies factors that have impacted coal consumption in 1985–2011. After extracting the core factors, the Bayesian vector autoregressive forecast model is constructed, with variables that include coal consumption, the gross value of industrial output, and the downstream industry output (cement, crude steel, and thermal power. The impulse response function and variance decomposition are applied to portray the dynamic correlations between coal consumption and economic variables. Then for analyzing structural changes of coal consumption, the exponential smoothing model is also established, based on division of seven sectors. The results show that the structure of coal consumption underwent significant changes during the past 30 years. Consumption of both household sector and transport, storage, and post sectors continues to decline; consumption of wholesale and retail trade and hotels and catering services sectors presents a fluctuating and improving trend; and consumption of industry sector is still high. The gross value of industrial output and the downstream industry output have been promoting coal consumption growth for a long time. In 2015 and 2020, total coal demand is expected to reach 2746.27 and 4041.68 million tons of standard coal in China.

  18. Extraction, separation, and analysis of high sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    Olesik, S.V.; Pekay, L.A.; Larkins, W. Jr. (comps.)

    1992-05-31

    The work described in this report studies the removal of sulfur by oxidative interaction of various cupric salts with coal and also considers the possibility of removing organic sulfur by the selective interaction of supercritical ethanol with the organic coal matrix. Either one of these methods could potentially be used to pretreat coals before burning. The primary purpose of these studies is to ascertain the nature of the chemical reactions occurring, the chemical composition of the resultant products, and information on possible reaction mechanisms. This information should allow prediction of reasonable reaction conditions for the removal of organosulfur compound from coal.

  19. Extraction, separation, and analysis of high sulfur coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olesik, S.V.; Pekay, L.A.; Larkins, W. Jr. [comps.

    1992-05-31

    The work described in this report studies the removal of sulfur by oxidative interaction of various cupric salts with coal and also considers the possibility of removing organic sulfur by the selective interaction of supercritical ethanol with the organic coal matrix. Either one of these methods could potentially be used to pretreat coals before burning. The primary purpose of these studies is to ascertain the nature of the chemical reactions occurring, the chemical composition of the resultant products, and information on possible reaction mechanisms. This information should allow prediction of reasonable reaction conditions for the removal of organosulfur compound from coal.

  20. Ancillary operation in coal preparation instrumentation: On-line low cost sulfur and ash analysis

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    Progress in reported on ancillary operations in coal preparation instrumentation, and on-line low cost sulfur and ash analysis of coal. This quarter's activities consisted of the following; the assembly of the sample preparation and delivery (SPAD) system was completed and laboratory pretesting performed; the entire system was assembled and debugged at C.Q. Inc.; field tests were executed according to the Field Test Plan with certain modifications necessitated by actual field conditions and C.Q. test schedule; coal slurry samples collected at C.Q. Inc. were either sent to the Homer City Coal Lab or brought back to B W for ICP analysis; and Homer City Coal Lab analysis of field collected slurry samples was completed and results reported to B W.

  1. Application of XPS to coal characterization

    Energy Technology Data Exchange (ETDEWEB)

    Perry, D.L.; Grint, A.

    1983-09-01

    The use of X-ray photoelectron spectroscopy to probe the chemistry of coal surfaces is reviewed and its application to the functional group composition of bulk coals discussed. The surface composition of a range of 19 coals (anthracite to brown coal), ground under heptane, was measured and compared with the results of bulk analysis. A good correlation was obtained for oxygen, with the bituminous and higher-rank coals showing surface enrichment in oxygen. The surface bulk correlation was less good for sulphur, nitrogen and chlorine and was poor for silicon, aluminium and iron. Silicon and aluminium are enriched at the surface while iron is surface depleted. These effects are either due to different particle-size distributions of mineral and organic phases or to the mechanism of fracture in heptane preferentially exposing specific components of the coal. Oxidation and carbonization of a bituminous coal were also investigated. Oxidation was seen to occur initially via the exterior surface, producing a distribution of carbon-oxygen groups. Singly-bonded species predominate at all temperatures, stable carboxyl groups forming in significant proportion only at temperatures > 250/sup 0/C. Carbonization was seen to result in the formation of ether linkages by condensation of hydroxyl groups. (18 refs.)

  2. Critical Analysis of Underground Coal Gasification Models. Part II: Kinetic and Computational Fluid Dynamics Models

    Directory of Open Access Journals (Sweden)

    Alina Żogała

    2014-01-01

    Originality/value: This paper presents state of art in the field of coal gasification modeling using kinetic and computational fluid dynamics approach. The paper also presents own comparative analysis (concerned with mathematical formulation, input data and parameters, basic assumptions, obtained results etc. of the most important models of underground coal gasification.

  3. An analysis of the coal-seam gas resource of the Piceance Basin, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    McFall, K.S.; Wicks, D.E.; Kelso, B.S.; Brandenburg, C.F.

    1988-06-01

    A detailed geologic analysis of the Piceance basin in northwestern Colorado shows that nearly 84 Tcf (2.4 x 10/sup 12/ m/sup 3/) of coal-seam gas is in place in three target coal groups. The Cameo coal group contains the most coalbed methane with 65 Tcf (1.8 x 10/sup 12/ m/sup 3/). The more areally limited Coal Ridge and Black Diamond coal groups contain significantly less gas, 10 and 9 Tcf (280 x 10/sup 9/ and 255 x 10/sup 9/ m/sup 3/), respectively. The areas of highest methane concentration are in the east-central portion of the Piceance basin. These areas coincide with thick deposits of high-rank coal at significant depths and their associated higher gas contents. Also, these areas appear to have been structurally (tectonically) altered, leading to enhanced permeability to gas and water. Thus, the east-central basin area appears favorable for coalbed methane production. This study relied on extensive well data to correlate and map the subsurface extent of the Cretaceous coals of the Piceance basin. Newly derived correlations of coal-rank/depth with gas content were used along with estimates of coal volume to determine gas in place.

  4. Systems Analysis Of Advanced Coal-Based Power Plants

    Science.gov (United States)

    Ferrall, Joseph F.; Jennings, Charles N.; Pappano, Alfred W.

    1988-01-01

    Report presents appraisal of integrated coal-gasification/fuel-cell power plants. Based on study comparing fuel-cell technologies with each other and with coal-based alternatives and recommends most promising ones for research and development. Evaluates capital cost, cost of electricity, fuel consumption, and conformance with environmental standards. Analyzes sensitivity of cost of electricity to changes in fuel cost, to economic assumptions, and to level of technology. Recommends further evaluation of integrated coal-gasification/fuel-cell integrated coal-gasification/combined-cycle, and pulverized-coal-fired plants. Concludes with appendixes detailing plant-performance models, subsystem-performance parameters, performance goals, cost bases, plant-cost data sheets, and plant sensitivity to fuel-cell performance.

  5. Use of thermal neutron reflection method for chemical analysis of bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Papp, A., E-mail: papppa@atomki.hu [Institute of Nuclear Research of the Hungarian Academy of Sciences, (ATOMKI), 4001 Debrecen, Pf. 51 (Hungary); Csikai, J. [Institute of Nuclear Research of the Hungarian Academy of Sciences, (ATOMKI), 4001 Debrecen, Pf. 51 (Hungary); Institute of Experimental Physics, University Debrecen (IEP), 4010 Debrecen-10, Pf. 105 (Hungary)

    2014-09-11

    Microscopic, σ{sub β}, and macroscopic, Σ{sub β}, reflection cross-sections of thermal neutrons averaged over bulk samples as a function of thickness (z) are given. The σ{sub β} values are additive even for bulk samples in the z=0.5–8 cm interval and so the σ{sub βmol}(z) function could be given for hydrogenous substances, including some illicit drugs, explosives and hiding materials of ∼1000 cm{sup 3} dimensions. The calculated excess counts agree with the measured R(z) values. For the identification of concealed objects and chemical analysis of bulky samples, different neutron methods need to be used simultaneously. - Highlights: • Check the proposed analytical expression for the description of the flux. • Determination of the reflection cross-sections averaged over bulk samples. • Data rendered to estimate the excess counts for various materials.

  6. Coal terminal project report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    Malaysia is building the necessary infrastructure to cope with an increasing demand for electricity. Its restructured energy policy has led to construction of the 2,100 MW Manjung coal-fired power plant in the state of Perak, for which coal has to be imported via the new Lekiv Bulk Terminal (LBT) adjacent to the plant. Contracts for the LBC and the TNBJ coal stockyard were awarded to the Koch Consortium. The article describes equipment for handling and storing coal. 4 photos.

  7. Analysis of coals and biomass pyrolysis using the distributed activation energy model.

    Science.gov (United States)

    Li, Zhengqi; Liu, Chunlong; Chen, Zhichao; Qian, Juan; Zhao, Wei; Zhu, Qunyi

    2009-01-01

    The thermal decomposition of coals and biomass was studied using thermogravimetric analysis with the distributed activation energy model. The integral method resulted in Datong bituminous coal conversions of 3-73% at activation energies of 100-486 kJ/mol. The corresponding frequency factors were e(19.5)-e(59.0)s(-1). Jindongnan lean coal conversions were 8-52% at activation energies of 100-462 kJ/mol. Their corresponding frequency factors were e(13.0)-e(55.8)s(-1). The conversion of corn-stalk skins were 1-84% at activation energies of 62-169 kJ/mol with frequency factors of e(10.8)-e(26.5)s(-1). Datong bituminous coal, Jindongnan lean coal and corn-stalk skins had approximate Gaussian distribution functions with linear ln k(0) to E relationships.

  8. Modelling of pyrolysis of coal-biomass blends using thermogravimetric analysis.

    Science.gov (United States)

    Sadhukhan, Anup Kumar; Gupta, Parthapratim; Goyal, Tripurari; Saha, Ranajit Kumar

    2008-11-01

    The primary objective of this work was to develop an appropriate model to explain the co-pyrolysis behaviour of lignite coal-biomass blends with different proportions using a thermogravimetric analyzer. A new parallel-series kinetic model was proposed to predict the pyrolysis behaviour of biomass over the entire pyrolysis regime, while a kinetic model similar to that of Anthony and Howard [Anthony, D.B., Howard, J.B., 1976. Coal devolatilization and hydrogasification. AIChE Journal 22(4), 625-656] was used for pyrolysis of coal. Analysis of mass loss history of blends showed an absence of synergistic effect between coal and biomass. Co-pyrolysis mass-loss profiles of the blends were predicted using the estimated kinetic parameters of coal and biomass. Excellent agreement was found between the predicted and the experimental results.

  9. Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2012-03-01

    Full Text Available The results are reported of an energy analysis of a biomass/coal co-firing based power generation system, carried out to investigate the impacts of biomass co-firing on system performance. The power generation system is a typical pulverized coal-fired steam cycle unit, in which four biomass fuels (rice husk, pine sawdust, chicken litter, and refuse derived fuel and two coals (bituminous coal and lignite are considered. Key system performance parameters are evaluated for various fuel combinations and co-firing ratios, using a system model and numerical simulation. The results indicate that plant energy efficiency decreases with increase of biomass proportion in the fuel mixture, and that the extent of the decrease depends on specific properties of the coal and biomass types.

  10. Using proximate analysis to characterize airborne dust generation from bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Page, S.J.; Organiscak, J.A. [NIOSH, Pittsburgh, PA (United States). Pittsburgh Research Lab.

    2002-06-01

    Laboratory crushing experiments were conducted on a range of low to high volatile bituminous coals to investigate the various factors influencing airborne respirable dust generation. Bituminous coal samples from 8 mines (5 U.S. and 3 Polish) were uniformly prepared and processed through a double roll crusher located in a low air velocity wind tunnel. Experimental factors studied included inherent coal seam constituents, specific energy of crushing, product size characteristics, dust cloud electrostatic field, and specific quantity of airborne respirable dust generated. A combination of factors is associated with the generation of airborne respirable dust. One factor involved is the effect of coal rank, described by the inherent moist fuel ratio, on the product size characteristics. However, since coals of high moist fuel ratio (high rank) are generally more extensively cleated, it is suggested that the degree of cleating is directly responsible for the quantity of respirable-sized particles produced in the crushed product material for eastern U.S. coals. This is implied by the relationship of ash content and at least one mineral constituent (pyrite, determined from pyritic sulfur analysis) to the percentage of airborne respirable dust. A clear delineation of coals, based on well-known proximate analysis characteristics, that generate the most respirable dust appears to be possible. It was also shown that the dust-generating characteristics of coals could be reasonably described by both the moist fuel ratio and the Hardgrove Grindability Index (HGI). These results show a clear distinction between eastern and western U.S. coals. However, no consistent distinction for Polish coal was observed.

  11. Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis.

    Science.gov (United States)

    Ferrara, Francesca; Orsini, Alessandro; Plaisant, Alberto; Pettinau, Alberto

    2014-11-01

    With the aim to support the experimental tests in a gasification pilot plant, the thermal decomposition of coal, biomass and their mixtures has been carried out through a thermogravimetric analysis (TGA) and a simplified kinetic analysis. The TGA of pure fuels indicates the low reactivity of South African coal and the relatively high reactivity of Sardinian Sulcis coal during pyrolysis. Among the tested fuels, biomass (stone pine wood chips) is the most reactive one. These results fully confirm those obtained during the experimental tests in the gasification pilot plant. As for the fuel blends, the analysis shows that the synergic effects between the considered coals and biomass are negligible when they are co-pyrolyzed. The results of the analysis confirm that TGA could be very useful to generally predict the gasification performance and to optimize the experimental campaigns in pilot-scale gasification plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Analysis and characterization of ash-free coals from the Pechora coal basin obtained by organic solvent extraction

    Science.gov (United States)

    Burdelnaya, N. S.; Burtsev, I. N.; Bushnev, D. A.; Kuzmin, D. V.; Mokeev, M. V.

    2017-12-01

    The probability of obtaining of ash-free coal extracts, so-called "hyper-coals," has been shown for coals of the Pechora basin for the first time. The ash content in them does not exceed a few percent, whereas initial coals contain up to 20% ash. High-resolution 13C NMR shows the similarity in the structure of the initial coal and the extract. It is demonstrated that the solvent selected for hyper-coal extraction is not chemically inert, and the products of interaction of N-metylpyrrolidone and organic matter of coal are present in the composition of the extracts obtained.

  13. Analysis of chemical coal cleaning processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Six chemical coal cleaning processes were examined. Conceptual designs and costs were prepared for these processes and coal preparation facilities, including physical cleaning and size reduction. Transportation of fine coal in agglomerated and unagglomerated forms was also discussed. Chemical cleaning processes were: Pittsburgh Energy Technology Center, Ledgemont, Ames Laboratory, Jet Propulsion Laboratory (two versions), and Guth Process (KVB). Three of the chemical cleaning processes are similar in concept: PETC, Ledgemont, and Ames. Each of these is based on the reaction of sulfur with pressurized oxygen, with the controlling factor being the partial pressure of oxygen in the reactor. All of the processes appear technically feasible. Economic feasibility is less certain. The recovery of process chemicals is vital to the JPL and Guth processes. All of the processes consume significant amounts of energy in the form of electric power and coal. Energy recovery and increased efficiency are potential areas for study in future more detailed designs. The Guth process (formally designed KVB) appears to be the simplest of the systems evaluated. All of the processes require future engineering to better determine methods for scaling laboratory designs/results to commercial-scale operations. A major area for future engineering is to resolve problems related to handling, feeding, and flow control of the fine and often hot coal.

  14. COAL SLAGGING AND REACTIVITY TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

    2003-10-01

    Union Fenosa's La Robla I Power Station is a 270-MW Foster Wheeler arch-fired system. The unit is located at the mine that provides a portion of the semianthracitic coal. The remaining coals used are from South Africa, Russia, Australia, and China. The challenges at the La Robla I Station stem from the various fuels used, the characteristics of which differ from the design coal. The University of North Dakota Energy & Environmental Research Center (EERC) and the Lehigh University Energy Research Center (LUERC) undertook a program to assess problematic slagging and unburned carbon issues occurring at the plant. Full-scale combustion tests were performed under baseline conditions, with elevated oxygen level and with redistribution of air during a site visit at the plant. During these tests, operating information, observations and temperature measurements, and coal, slag deposit, and fly ash samples were obtained to assess slagging and unburned carbon. The slagging in almost all cases appeared due to elevated temperatures rather than fuel chemistry. The most severe slagging occurred when the temperature at the sampling port was in excess of 1500 C, with problematic slagging where first-observed temperatures exceeded 1350 C. The presence of anorthite crystals in the bulk of the deposits analyzed indicates that the temperatures were in excess of 1350 C, consistent with temperature measurements during the sampling period. Elevated temperatures and ''hot spots'' are probably the result of poor mill performance, and a poor distribution of the coal from the mills to the specific burners causes elevated temperatures in the regions where the slag samples were extracted. A contributing cause appeared to be poor combustion air mixing and heating, resulting in oxygen stratification and increased temperatures in certain areas. Air preheater plugging was observed and reduces the temperature of the air in the windbox, which leads to poor combustion

  15. Studies of relationship between petrography and elemental analysis with grindability for Kentucky coals

    Energy Technology Data Exchange (ETDEWEB)

    E. Jorjani; James C. Hower; S. Chehreh Chelgani; Mohsen A. Shirazi; S. Mesroghli [Islamic Azad University, Tehran (Iran). Department of Mining Engineering

    2008-05-15

    The effects of macerals, ash, elemental analysis and moisture of wide range of Kentucky coal samples from calorific value of 23.65-34.68 MJ/kg (10,170-14,910 (BTU/lb)) on Hardgrove Grindability Index (HGI) have been investigated by multivariable regression method. Two sets of input: (a) macerals, ash and moisture (b) macerals, elemental analysis and moisture, were used for the estimation of HGI. The least square mathematical method shows that increase of the TiO{sub 2} and Al{sub 2}O{sub 3} contents in coal can decrease HGI. The higher Fe{sub 2}O{sub 3} content in coal can result in higher HGI. With the increase of micrinite and exinite contents in coal, the HGI has been decreased and higher vitrinite content in coal results in higher HGI. The multivariable studies have shown that input set of macerals, elemental analysis and moisture in non-linear condition can be achieved an acceptable correlation, R = 90.38%, versus R = 87.34% for the input set of macerals, ash and moisture. It is predicted that elemental analysis of coal can be a better representative of mineral matters for the prediction of HGI than ash. 16 refs., 9 figs., 2 tabs.

  16. ASTM clustering for improving coal analysis by near-infrared spectroscopy.

    Science.gov (United States)

    Andrés, J M; Bona, M T

    2006-11-15

    Multivariate analysis techniques have been applied to near-infrared (NIR) spectra coals to investigate the relationship between nine coal properties (moisture (%), ash (%), volatile matter (%), fixed carbon (%), heating value (kcal/kg), carbon (%), hydrogen (%), nitrogen (%) and sulphur (%)) and the corresponding predictor variables. In this work, a whole set of coal samples was grouped into six more homogeneous clusters following the ASTM reference method for classification prior to the application of calibration methods to each coal set. The results obtained showed a considerable improvement of the error determination compared with the calibration for the whole sample set. For some groups, the established calibrations approached the quality required by the ASTM/ISO norms for laboratory analysis. To predict property values for a new coal sample it is necessary the assignation of that sample to its respective group. Thus, the discrimination and classification ability of coal samples by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) in the NIR range was also studied by applying Soft Independent Modelling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) techniques. Modelling of the groups by SIMCA led to overlapping models that cannot discriminate for unique classification. On the other hand, the application of Linear Discriminant Analysis improved the classification of the samples but not enough to be satisfactory for every group considered.

  17. HTGR-INTEGRATED COAL TO LIQUIDS PRODUCTION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Anastasia M Gandrik; Rick A Wood

    2010-10-01

    As part of the DOE’s Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to “shift” the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700°C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: • 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal

  18. Climatic features of the Mediterranean Sea detected by the analysis of the longwave radiative bulk formulae

    Directory of Open Access Journals (Sweden)

    M. E. Schiano

    Full Text Available Some important climatic features of the Mediterranean Sea stand out from an analysis of the systematic discrepancies between direct measurements of longwave radiation budget and predictions obtained by the most widely used bulk formulae. In particular, under clear-sky conditions the results show that the surface values of both air temperature and humidity over the Mediterranean Sea are larger than those expected over an open ocean with the same amount of net longwave radiation. Furthermore, the twofold climatic regime of the Mediterranean region strongly affects the downwelling clear-sky radiation. This study suggests that a single bulk formula with constant numerical coefficients is unable to reproduce the fluxes at the surface for all the seasons.

    Key words: Meteorology and Atmospheric dynamics (radiative processes – Oceanography: general (marginal and semienclosed seas; marine meteorology

  19. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Akihisa Inoue

    2011-04-01

    Full Text Available This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs. In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni and Cu–Zr–Ag–Al–(Nb bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance.

  20. Petrographical and mineralogical analysis of coal after biological leaching

    Directory of Open Access Journals (Sweden)

    Kupka Daniel

    2000-09-01

    Full Text Available For coal utilization the sulphur content is a decisive parameter for the quality of the coal. In many countries clean coal technologies have to be applied on the basis of regulations concerning fuel quality and emission standards for dust, CO, SO2 and NOx in the flue gas. It becomes quite obvious that it is always preferable to keep the sulphur levels in coal at a minimum. Bacterial oxidation of the sulphur present in coal could well be thought of as an effective alternative.Desulphurization by bacteria Thiobacillus ferrooxidans was applied to coal sample from Sokolov mine. Bacteria growing in batch culture on ferrous iron at initial pH 1.6 were harvested at the later growth phase. The ferric iron precipitates were separated from the cells by centrifugation and the rest medium by membrane filtration. Cell pellet captured on the filter was washed by hydrochloric acid and distilled water and finally suspended in fresh Waksmann & Joffe medium. The medium was previously acidified by 5M H2SO4 to pH 2. Initial concentration of sulphates in medium was 1.8 g L-1. Desulphurization of coal was studied in a stirred batch reactor at 10% w/v pulp density in diluted H2SO4 at pH = 2.The effect of bacterial leaching on mineral and organic matter of coal was followed by optical microscopy. Petrographic evaluation of the coal matter samples consisted of the determination of reflectance of gelified huminite macerals (R0, determination of maceral group contents of huminite, liptinite, inertinite and determination of the mineral content with emphasis on the various forms of iron sulphides. The sample examined were brown coal with higher liptinite and pyrite contents. The huminite reflectance of 0,33 % is corresponding to the lignitic metatype. Huminite concentration is 65,7 % and is the most abundant maceral group. The maceral ulminite and densinite contributes to the high huminite content. The concentration of attrinite, who be pass to liptodetrinite, textinite

  1. Variations in concentrations and compositions of polycyclic aromatic hydrocarbons (PAHs) in coals related to the coal rank and origin.

    Science.gov (United States)

    Laumann, S; Micić, V; Kruge, M A; Achten, C; Sachsenhofer, R F; Schwarzbauer, J; Hofmann, T

    2011-10-01

    The release of unburnt coal particles and associated polycyclic aromatic hydrocarbons (PAHs) may cause adverse impacts on the environment. This study assessed variations in the concentration and composition of PAHs in a set of fifty coal samples from eleven coal basins worldwide. The maximum PAH concentrations at high volatile bituminous rank were recorded in samples from a single basin. Considering the entire sample set, the highest PAH concentrations were in fact found outside of this rank range, suggesting that the maceral composition and thus the coal's origin also influenced PAH concentrations. The examination of the PAH compositions revealed that alkylated 2-3 ring PAHs remain dominant compounds irrespective of coal rank or origin. Multivariate analysis based on PAH and maceral content, bulk and maturity parameters allowed the recognition of seven groups with different rank and origin within the coal sample set. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Qualitative analysis of coal combusted in boilers of the thermal power plants in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Đurić Slavko N.

    2012-01-01

    Full Text Available In this paper we have looked into the qualitative analysis of coals in Bosnia and Herzegovina (B-H. The analysis includes the following characteristics: moisture (W, ash (A, combustible matter (Vg and lower heating value (Hd. From the statistic parameters we have determined: absolute range (R, arithmetic mean (X, standard deviation (S and variations coefficient (Cv. It has been shown that the coal characteristics (W, A, Vg, Hd have normal distribution. The analysis show that there are considerable deviations of ash characteristics: moisture (36.23%, ash (34.21%, combustible matter (16.15% and lower heating value (25.16% from the mean value which is shown by the variations coefficient (Cv. Large oscilations of mass portions: W, A, Vg and Hd around the mean value can adversely influence the function of a boiler plant and an electric filter plant in thermal power plants in B-H in which the mentioned types of coal burn. Large ash oscilations (34.21% around the mean value point out to the inability of application of dry procedures of desulphurisation of smoke gasses (FGD due to the additional quantity of ash. It has been shown that the characteristics of Bosnian types of coal do not deviate a lot from the characteristics of coal in the surrounding countries (coals of Serbia and Monte Negro. The results can be used in analysis of coal combustion in thermal power plants, optimisation of electrical-filtre, reduction of SO2 in smoke gas and other practical problems.

  3. Alaska Regional Energy Resources Planning Project. Phase 2: coal, hydroelectric and energy alternatives. Volume I. Beluga Coal District Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, G.; Lane, D.; Edblom, G.

    1980-01-01

    This volume deals with the problems and procedures inherent in the development of the Beluga Coal District. Socio-economic implications of the development and management alternatives are discussed. A review of permits and approvals necessary for the initial development of Beluga Coal Field is presented. Major land tenure issues in the Beluga Coal District as well as existing transportation routes and proposed routes and sites are discussed. The various coal technologies which might be employed at Beluga are described. Transportation options and associated costs of transporting coal from the mine site area to a connecting point with a major, longer distance transportation made and of transporting coal both within and outside (exportation) the state are discussed. Some environmental issues involved in the development of the Beluga Coal Field are presented. (DMC)

  4. Strength and Compaction Analysis of Sand-Bentonite-Coal Ash Mixes

    Science.gov (United States)

    Sobti, Jaskiran; Singh, Sanjay Kumar

    2017-08-01

    This paper deals with the strength and compaction characteristics of sand-bentonite-coal ash mixes prepared by varying percentages of sand, bentonite and coal ash to be used in cutoff walls and as a liner or cover material in landfills. The maximum dry density (MDD) and optimum moisture content (OMC) of sand-bentonite mixes and sand-bentonite-coal ash mixes were determined by conducting the standard proctor test. Also, the strength and stiffness characteristics of soil mixes were furnished using unconfined compressive strength test. The results of the study reveal influence of varying percentages of coal ash and bentonite on the compaction characteristics of the sand-bentonite-coal ash mixes. Also, validation of a statistical analysis of the correlations between maximum dry density (MDD), optimum moisture content (OMC) and Specific Gravity (G) was done using the experimental results. The experimental results obtained for sand-bentonite, sand-bentonite-ash and coal ash-bentonite mixes very well satisfied the statistical relations between MDD, OMC and G with a maximum error in the estimate of MDD being within ±1 kN/m3. The coefficient of determination (R2) ranged from 0.95 to 0.967 in case of sand-bentonite-ash mixes. However, for sand-bentonite mixes, the R2 values are low and varied from 0.48 to 0.56.

  5. A Combined Raman Spectroscopic and Thermogravimetric Analysis Study on Oxidation of Coal with Different Ranks

    Directory of Open Access Journals (Sweden)

    Weiqing Zhang

    2015-01-01

    Full Text Available Raman spectroscopy and nonisothermal thermogravimetric analysis (TGA measurements have been reported for different rank coals (lignite, bituminous coal, and anthracite and the relationship between the measurements was examined. It was found that the Raman spectra parameters can be used to characterize structure changes in the different rank coals, such as the band area ratios based on the curve-fitted results. Higher ranked coal was found to have higher values of IGR/IAll and IG+GR/IAll but lower values of ID/I(G+GR, IDL/I(G+GR, IS+SL/I(G+GR, and I(GL+GL'/I(G+GR. The oxidation properties of the coal samples were characterized by the reactivity indexes Tig, T20%, and Tmax from TGA data which were found to correlate well with the band area ratios of IGR/IAll, IG+GR/IAll, and IS+SL/I(G+GR. Based on these correlations, the Raman band area ratios were found to correlate with the oxidation activity of coal providing additional structural information which can be used to understand the changes in the TGA measurements.

  6. Problems with the quantitative spectroscopic analysis of oxygen rich Czech coals

    Energy Technology Data Exchange (ETDEWEB)

    Pavlikova, H.; Machovic, V.; Cerny, J. [Inst. of Chemical Technology, Prague (Czechoslovakia); Sebestova, E. [Inst. of Rock Structure and Mechanics, Prague (Czechoslovakia)

    1995-12-01

    Solid state NMR and FTIR spectroscopies are two main methods used for the structural analysis of coals and their various products. Obtaining quantitative parameters from coals, such as arornaticity (f{sub a}) by the above mentioned methods can be a rather difficult task. Coal samples of various rank were chosen for the quantitative NMR, FTIR and EPR analyses. The aromaticity was obtained by the FTIR, {sup 13}C CP/MAS and SP/MAS NMR experiments. The content of radicals and saturation characteristics of coals were measured by EPR spectroscopy. The following problems have been discussed: 1. The relationship between the amount of free radicals (N{sub g}) and f{sub a} by NMR. 2. The f{sub a} obtained by solid state NMR and FTIR spectroscopies. 3. The differences between the f{sub a} measured by CP and SP/NMR experiments. 4. The relationship between the content of oxygen groups and the saturation responses of coals. The reliability of our results was checked by measuring the structural parameters of Argonne premium coals.

  7. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  8. Midterm outcomes of injectable bulking agents for fecal incontinence: a systematic review and meta-analysis.

    Science.gov (United States)

    Hong, K D; Kim, J S; Ji, W B; Um, J W

    2017-03-01

    Various bulking agents have been used to treat fecal incontinence. While short-term outcomes are attractive, there is still a lack of long-term data. The aim of this systematic review and meta-analysis was to investigate the midterm outcomes of treatment with injectable bulking agents and to identify predictive factors for improvement in incontinence. PubMed, EMBASE, Web of Science, and Cochrane Library databases were searched using the terms injection, bulking agents, and fecal incontinence. Studies with a minimum follow-up of 1 year were included. The improvement rate in incontinence was calculated by percent change in validated fecal incontinence score (FIS) following injection treatment. To explore the impact of predictive factors on improvement in incontinence, univariate meta-regressions were conducted using the random-effect model. A total of 889 patients in 23 articles were included. The weighted mean follow-up duration was 23.7 months (95% CI 19.3-28.2). Eleven different bulking agents were used. Four validated FISs were used. The Cleveland Clinic Fecal Incontinence score (CC-FIS) was used in 19 studies. Most studies reported a statistically significant improvement in FIS. The pooled mean preoperative CC-FIS (n = 637) was 12.4 (95% CI 11.4-13.3). The pooled mean CC-FIS at last follow-up (n = 590) was 7.7 (95% CI 6.1-9.3). The weighted mean difference in CC-FIS between preoperative visit and last follow-up was 4.9 (95% CI 4.0-5.8). Hence, the rate of improvement in incontinence was 39.5% based on CC-FIS. Meta-regression revealed that the perianal injection route and implants intact on endoanal ultrasonography were predictive of greater improvement in incontinence. The manometric data revealed that the initial increase in the mean resting pressure following injection was attenuated over time. The pooled rate of adverse events was 18.0% (95% CI 10.0-30.1). In most cases, adverse events were minor and resolved within a couple of weeks. Administration of

  9. Quantitative analysis of phenol and alkylphenols in Brazilian coal tar

    Directory of Open Access Journals (Sweden)

    Elina Bastos Caramão

    2004-04-01

    Full Text Available The main purpose of this work is the identification and quantification of phenolic compounds in coal tar samples from a ceramics factory in Cocal (SC, Brazil. The samples were subjected to preparative scale liquid chromatography, using Amberlyst A-27TM ion-exchange resin as stationary phase. The fractions obtained were classified as "acids" and "BN" (bases and neutrals. The identification and quantification of phenols, in the acid fraction, was made by gas chromatography coupled to mass spectrometry (GC/MS. Nearly twenty-five phenols were identified in the samples and nine of them were also quantified. The results showed that coal tar has large quantities of phenolic compounds of industrial interest.

  10. Determination of Lubricant Bulk Modulus in Metal Forming by Means of a Simple Laboratory Test and Inverse FEM Analysis

    DEFF Research Database (Denmark)

    Hafis, S. M.; Christiansen, P.; Martins, P. A. F.

    2016-01-01

    facilitates the lubricant entrainment, pressurization and possible escape by micro-plasto-hydrodynamic lubrication. In order to model these mechanisms an important lubricant propertyd esignated as the bulk modulus is needed for characterizing the compressibility of the lubricant. The present paper describes...... a simple, practical test to determine the bulk modulus. Combination of the experimental upsetting of an axisymmetric metal workpiece containing a truncated conical surface pocket with an inverse finite element analysis of the test allows determining the lubricant bulk modulus. The finite element analysis...

  11. Analysis of green liquor influence on coal steam gasification process

    Directory of Open Access Journals (Sweden)

    Karczewski Mateusz

    2017-01-01

    Full Text Available Gasification is a clean and efficient technology with a long history dating up to the 19th century. The possible application of this process ranges from gas production and chemical synthesis to the energy sector and therefore this technology holds noticeable potential for future applications. In order to advance it, a new efficient approaches for this complex process are necessary. Among possible methods, a process enhancing additives, such as alkali and alkaline earth metals seems to be a promising way of achieving such a goal, but in practice might turn to be a wasteful approach for metal economy, especially in large scale production. This paper shows alkali abundant waste material that are green liquor dregs as a viable substitute. Green liquor dregs is a waste material known for its low potential as a fuel, when used separately, due to its low organic content, but its high ash content that is also abundant in alkali and alkaline earth elements seems to make it a suitable candidate for application in coal gasification processes. The aim of this work is an evaluation of the suitability of green liquor waste to work as a potential process enhancing additive for coal steam gasification process. During the experiment, three blends of hard coal and green liquor dregs were selected, with consideration for low corrosive potential and possibly high catalytic activity. The mixtures were gasified in steam under four different temperatures. Their energies syngas yield, coal conversion degree and energies of activation were calculated with use of Random Pore Model (RPM and Grain Model (GM which allowed for their comparison.

  12. Materials Analysis of CED Nb Films Being Coated on Bulk Nb Single Cell SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin; Reece, Charles; Palczewski, Ari; Ciovati, Gianluigi; Krishnan, Mahadevan; James, Colt; Irfan, Irfan

    2013-09-01

    This study is an on-going research on depositing a Nb film on the internal wall of bulk Nb single cell SRF cavities, via a cathodic arc Nb plasma ions source, an coaxial energetic condensation (CED) facility at AASC company. The motivation is to firstly create a homoepitaxy-like Nb/Nb film in a scale of a ~1.5GHz RF single cell cavity. Next, through SRF measurement and materials analysis, it might reveal the baseline properties of the CED-type homoepitaxy Nb films. Literally, a top-surface layer of Nb films which sustains SRF function, always grows up in homo-epitaxy mode, on top of a Nb nucleation layer. Homo-epitaxy growth of Nb must be the final stage (a crystal thickening process) of any coatings of Nb film on alternative cavity structure materials. Such knowledge of Nb-Nb homo-epitaxy is useful to create future realistic SRF cavity film coatings, such as hetero-epitaxy Nb/Cu Films, or template-layer-mitigated Nb films. One large-grain, and three fine grain bulk Nb cavities were coated. They went through cryogenic RF measurement. Preliminary results show that the Q0 of a Nb film could be as same as the pre-coated bulk Nb surface (which received a chemically-buffered polishing plus a light electro-polishing); but quality factor of two tested cavities dropped quickly. We are investigating if the severe Q-slope is caused by hydrogen incorporation before deposition, or is determined by some structural defects during Nb film growth.

  13. Measurement of Vibrated Bulk Density of Coke Particle Blends Using Image Texture Analysis

    Science.gov (United States)

    Azari, Kamran; Bogoya-Forero, Wilinthon; Duchesne, Carl; Tessier, Jayson

    2017-09-01

    A rapid and nondestructive machine vision sensor was developed for predicting the vibrated bulk density (VBD) of petroleum coke particles based on image texture analysis. It could be used for making corrective adjustments to a paste plant operation to reduce green anode variability (e.g., changes in binder demand). Wavelet texture analysis (WTA) and gray level co-occurrence matrix (GLCM) algorithms were used jointly for extracting the surface textural features of coke aggregates from images. These were correlated with the VBD using partial least-squares (PLS) regression. Coke samples of several sizes and from different sources were used to test the sensor. Variations in the coke surface texture introduced by coke size and source allowed for making good predictions of the VBD of individual coke samples and mixtures of them (blends involving two sources and different sizes). Promising results were also obtained for coke blends collected from an industrial-baked carbon anode manufacturer.

  14. HPTLC densitometric analysis of arbutin in bulk drug and methanolic extracts of Arctostaphylos uva-ursi.

    Science.gov (United States)

    Alam, P; Alqasoumi, S I; Shakeel, F; Abdel-Kader, M S

    2011-10-01

    A high-performance thin layer chromatographic densitometric method for the analysis of arbutin was developed and validated in the present investigation. Arbutin was separated on aluminium-backed silica gel 60 F(254) plates with methanol : chloroform (3:7)% (v/v) as the mobile phase. This system was found to give a compact spot of arbutin at a retention factor (R(f)) value of 0.32 ± 0.02. The limit of detection and limit of quantification were found to be 35.42 and 106.26 ng/spot, respectively. The proposed method with a high degree of precision and accuracy was employed for the analysis of arbutin in the bulk drug and methanolic extract of Arctostaphylos uva-ursi.

  15. Simultaneous Real-Time Analysis of Bulk and Bottom Cure of Ultraviolet-Curable Inks Using Fourier Transform Infrared Spectroscopy.

    Science.gov (United States)

    Boonen, Hennie A L; Koskamp, Janou A; Theiss, Wolfgang; Iedema, Piet D; Willemse, Robin X E

    2017-12-01

    The curing characteristics of an ultraviolet (UV) ink layer are of utmost importance for the development of UV inks. Measuring either bulk or bottom cure in itself is not new and has been the subject of many articles. In this article, two methods are described based on Fourier transform infrared (FT-IR) spectrometry to measure in real time and simultaneously the bulk and bottom cure of a thin UV ink layer. The procedure consists of applying a thin (10-12 µm) layer of UV-curing ink on an attenuated total reflection (ATR) crystal. The bottom cure is measured with ATR. The bulk cure is measured simultaneously with a reflection analysis (method 1) or a transmission analysis (method 2). With both methods, the bulk and bottom cure can be determined. To overcome problems with the interference in the ATR reflection setup, it is recommended to use the ATR transmission setup.

  16. Steam coal forecaster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This quarterly forecasting service provides a short-term analysis and predictions of the international steam coal trade. Sections are entitled: market review; world steam coal at a glance; economics/foreign exchange; demand (reviewing the main purchasing companies country-by-country); supply (country-by-country information on the main producers of steam coal); and freight. A subscription to Steam Coal Forecaster provides: a monthly PDF of McCloskey's Steam Coal Forecaster sent by email; access to database of stories in Steam Coal Forecaster via the search function; and online access to the latest issue of Steam Coal.

  17. Analysis of Index Gases of Coal Spontaneous Combustion Using Fourier Transform Infrared Spectrometer

    Directory of Open Access Journals (Sweden)

    Xiaojun Tang

    2014-01-01

    Full Text Available Analysis of the index gases of coal for the prevention of spontaneous combustion is of great importance for the enhancement of coal mine safety. In this work, Fourier Transform Infrared Spectrometer (FTIRS is presented to be used to analyze the index gases of coal in real time to monitor spontaneous combustion conditions. Both the instrument parameters and the analysis method are introduced at first by combining characteristics of the absorption spectra of the target analyte with the analysis requirements. Next, more than ten sets of the gas mixture containing ten components (CH4, C2H6, C3H8, iso-C4H10, n-C4H10, C2H4, C3H6, C2H2, CO, and CO2 are included and analyzed with a Spectrum Two FTIRS made by Perkin Elmer. The testing results show that the detection limit of most analytes is less than 2×10-6. All the detection limits meet the monitoring requirements of coal spontaneous combustion in China, which means that FTIRS may be an ideal instrument and the analysis method used in this paper is sufficient for spontaneous combustion gas monitoring on-line and even in situ, since FTIRS has many advantages such as fast analysis, being maintenance-free, and good safety.

  18. Multi - party Game Analysis of Coal Industry and Industry Regulation Policy Optimization

    Science.gov (United States)

    Jiang, Tianqi

    2018-01-01

    In the face of the frequent occurrence of coal mine safety accidents, this paper analyses the relationship between central and local governments, coal mining enterprises and miners from the perspective of multi - group game. In the actual production, the decision of one of the three groups can affect the game strategy of the other of the three, so we should assume the corresponding game order. In this order, the game analysis of the income and decision of the three is carried out, and the game decision of the government, the enterprise and the workers is obtained through the establishment of the benefit matrix and so on. And then on the existing system to optimize the coal industry regulation proposed practical recommendations to reduce the frequency of industry safety accidents, optimize the industry production environment.

  19. Design and flow analysis for an oxygen-blown pulverized coal burner

    Energy Technology Data Exchange (ETDEWEB)

    Haeyang Pak; Nobuyuki Iwashima; Noriyuki Kobayashi; Masanobu Hasatani [Nagoya University, Nagoya (Japan). Department of Energy Engineering and Science

    2006-07-01

    An oxygen-blown pulverized coal burner for utilization of various kinds of coal was newly proposed and developed. The combustion efficiency of 99.7% was achieved by the moderate swirl burner. The flame stabilization could not be realized by the strong swirl burner, and the content of unburned carbon in ash was more than that of the moderate swirl burner experiment. The distribution of vorticity in the moderate swirling flow was equally proportioned even though the flow ratio was changed between 0.15 and 0.88. Additionally, the state of untidiness was observed near the central part of the burner nozzle in the strong swirling flow. The close relationship between combustion efficiency and vorticity profiles was found by PIV analysis of the flow. The moderate swirl burner was suitable for designing the burner structure in oxygen-blown pulverized coal combustion.

  20. Automated Clean Chemistry for Bulk Analysis of Environmental Swipe Samples - FY17 Year End Report

    Energy Technology Data Exchange (ETDEWEB)

    Ticknor, Brian W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Metzger, Shalina C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McBay, Eddy H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hexel, Cole R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tevepaugh, Kayron N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bostick, Debra A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-11-30

    Sample preparation methods for mass spectrometry are being automated using commercial-off-the-shelf (COTS) equipment to shorten lengthy and costly manual chemical purification procedures. This development addresses a serious need in the International Atomic Energy Agency’s Network of Analytical Laboratories (IAEA NWAL) to increase efficiency in the Bulk Analysis of Environmental Samples for Safeguards program with a method that allows unattended, overnight operation. In collaboration with Elemental Scientific Inc., the prepFAST-MC2 was designed based on COTS equipment. It was modified for uranium/plutonium separations using renewable columns packed with Eichrom TEVA and UTEVA resins, with a chemical separation method based on the Oak Ridge National Laboratory (ORNL) NWAL chemical procedure. The newly designed prepFAST-SR has had several upgrades compared with the original prepFAST-MC2. Both systems are currently installed in the Ultra-Trace Forensics Science Center at ORNL.

  1. Cluster analysis on the bulk elemental compositions of Antarctic stony meteorites

    Science.gov (United States)

    Miyamoto, Hideaki; Niihara, Takafumi; Kuritani, Takeshi; Hong, Peng K.; Dohm, James M.; Sugita, Seiji

    2016-05-01

    Remote sensing observations by recent successful missions to small bodies have revealed the difficulty in classifying the materials which cover their surfaces into a conventional classification of meteorites. Although reflectance spectroscopy is a powerful tool for this purpose, it is influenced by many factors, such as space weathering, lighting conditions, and surface physical conditions (e.g., particle size and style of mixing). Thus, complementary information, such as elemental compositions, which can be obtained by X-ray fluorescence (XRF) and gamma-ray spectrometers (GRS), have been considered very important. However, classifying planetary materials solely based on elemental compositions has not been investigated extensively. In this study, we perform principal component and cluster analyses on 12 major and minor elements of the bulk compositions of 500 meteorites reported in the National Institute of Polar Research (NIPR), Japan database. Our unique approach, which includes using hierarchical cluster analysis, indicates that meteorites can be classified into about 10 groups purely by their bulk elemental compositions. We suggest that Si, Fe, Mg, Ca, and Na are the optimal set of elements, as this set has been used successfully to classify meteorites of the NIPR database with more than 94% accuracy. Principal components analysis indicates that elemental compositions of meteorites form eight clusters in the three-dimensional space of the components. The three major principal components (PC1, PC2, and PC3) are interpreted as (1) degree of differentiations of the source body (i.e., primitive versus differentiated), (2) degree of thermal effects, and (3) degree of chemical fractionation, respectively.

  2. Elemental Analysis and Comparison of Bulk Soil Using LA-ICP-MS and LIBS methods

    Science.gov (United States)

    Almirall, J.

    2012-04-01

    Elemental analysis methods utilizing Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) were developed and used in the characterization of soil samples from the US and Canada as part of a comprehensive forensic evaluation of soils. A LA-ICP-MS method was recently optimized for analysis and comparison between different soil samples in an environmental forensic application [1,2] and LIBS has recently attracted the interest of analytical chemists and forensic laboratories as a simpler, lower cost alternative to the more established analytical methods. In developing a LIBS method, there are many parameters to consider, including laser wavelength, spectral resolution, sensitivity, and matrix effects. The first LIBS method using a 266 nm laser for forensic soil analysis has also been recently reported by our group [3]. The results of an inter-laboratory comparison involving thirteen (13) laboratories conducting bulk elemental analysis by various methods are also reported. The aims of the inter-laboratory tests were: a) to evaluate the inter-laboratory performance of three methods (LA-ICP-MS, µXRF and LIBS) in terms of accuracy (bias), precision (relative standard deviation, RSD) and sensitivity using standard reference materials (SRMs); b) to evaluate the newly released NIST SRM 2710a, which supersedes 2710; and c) to evaluate the utility of LIBS as an alternative technique to LA-ICP-MS and µXRF for bulk analysis of soils. Each sample and standard was homogenized in a high-speed ball mill and pressed into pellets. Participants were instructed to measure the following elements: 7Li, 25Mg, 27Al, 42Ca, 45Sc, 47,49Ti, 51V, 55Mn, 88Sr, 137Ba, 206,207,208 Pb (LA-ICP-MS); Ti, Cr, Mn, Fe, Cu, Sr, Zr, Pb (µXRF); Ba, Cr, Cu, Fe, Li, Mg, Mn, Pb, Sr, Ti, Zr (LIBS). For both LIBS and µXRF, the choice of appropriate spectral lines was determined by the user, optimizing for linearity, sensitivity and precision

  3. Coal in a sustainable society: Stage 1: Life cycle analysis of steel and electricity production in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Nunn, J.; Wibberley, L.; Scaife, P. [BHP Centre for Metallurgy and Resource Processing, Newcastle, NSW (Australia)

    2000-10-01

    Sustainable development is a key issue in the future of the coal industry. The first stage of a project aimed at understanding and supporting coal's role in a sustainable society is discussed. In this stage, the impacts of steel and electricity production in Australia is considered using life cycle analysis. 2 refs., 2 figs.

  4. Materials, process, product analysis of coal process technology. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, J. C.; Roig, R. W.; Loridan, A.; Leggett, N. E.; Capell, R. G.; Humpstone, C. C.; Mudry, R. N.; Ayres, E.

    1976-02-01

    The purpose of materials-process-product analysis is a systematic evaluation of alternative manufacturing processes--in this case processes for converting coal into energy and material products that can supplement or replace petroleum-based products. The methodological steps in the analysis include: Definition of functional operations that enter into coal conversion processes, and modeling of alternative, competing methods to accomplish these functions; compilation of all feasible conversion processes that can be assembled from combinations of competing methods for the functional operations; systematic, iterative evaluation of all feasible conversion processes under a variety of economic situations, environmental constraints, and projected technological advances; and aggregative assessments (economic and environmental) of various industrial development scenarios. An integral part of the present project is additional development of the existing computer model to include: A data base for coal-related materials and coal conversion processes; and an algorithmic structure that facilitates the iterative, systematic evaluations in response to exogenously specified variables, such as tax policy, environmental limitations, and changes in process technology and costs. As an analytical tool, the analysis is intended to satisfy the needs of an analyst working at the process selection level, for example, with respect to the allocation of RDandD funds to competing technologies.

  5. [A Quick Quantitative Analysis for Group Composition of Coal Liquefaction Oil by Ultraviolet Spectroscopy].

    Science.gov (United States)

    Fan, Wen-jun; Wu, Mei-xiang; Hao, Jian-shu; Feng, Jie; Li, Wen-ying

    2015-07-01

    Gas chromatography is now the primary analysis method for the coal liquefaction oil. However, a simple and rapid quantification/qualification of the coal liquefaction oil can hardly be realized, because the coal liquefaction oil is in a heterogeneous state with a long boiling range. The aim of this study was to establish a rapid and accurate method for the quantification of phenolic compounds, aromatics and aliphatic hydrocarbons in coal liquefaction oil. A representative composition of coal liquefaction light oil, i.e., the distillate fractions of the boiling point range 180-200 degrees C, was chosen as the investigated object. The characteristic absorption peaks of the samples in the UV spectra (200-400 nm) were examined, using three kinds of solvents, cyclohexane, ethanol, 50 Wt% NaOH/ethanol mixture. Among them, the mixture solvent provided the best performance, where the aromatics interfered minimally with the quantification of phenolic compounds by avoiding the peak overlapping problem. By comparison of the UV absorption standard curves between the standard compounds (phenol, m-cresol, p-cresol and o-cresol) and the phenolic mixtures in coal liquefaction oil, m-cresol was selected for the quantification of phenolic compounds in coal liquefaction oil. The content of phenolic compounds was determined to be 32.14% according to the calibration curve of m-cresol at 290 nm, and this result is largely consistent with that determined by weighing after separation. Based on UV and GC analysis of the dephenolized oil, the standard curve of tetrahydronaphthalene at 266 nm was used for the quantification of aromatic hydrocarbons in coal liquefaction oil. The contents of aromatic and aliphatic hydrocarbons were determined to be 44.91% and 22.95%, respectively. To verify the accuracy of the method, recovery of added standards in the oil samples was determined and found to be 104.3%-110.75% and 84.3%-91.75% for phenolic compounds and aromatics, respectively. These results

  6. Built-in potential and validity of the Mott-Schottky analysis in organic bulk heterojunction solar cells

    Science.gov (United States)

    Mingebach, M.; Deibel, C.; Dyakonov, V.

    2011-10-01

    We investigated poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61 butyric acid methyl ester bulk heterojunction (BHJ) solar cells by means of pulsed photocurrent, temperature dependent current-voltage, and capacitance-voltage measurements. We show that a direct transfer of Mott-Schottky (MS) analysis from inorganic devices to organic BHJ solar cells is not generally appropriate to determine the built-in potential, since the resulting potential depends on the active layer thickness. Pulsed photocurrent measurements enabled us to directly study the case of quasi-flat bands (QFB) in the bulk of the solar cell. It is well below the built-in potential and differs by diffusion-induced band-bending at the contacts. In contrast to MS analysis, the corresponding potential is independent on the active layer thickness and therefore a better measure for flat band conditions in the bulk of a BHJ solar cell as compared to MS analysis.

  7. Thermal analysis and kinetics of coal during oxy-fuel combustion

    Science.gov (United States)

    Kosowska-Golachowska, Monika

    2017-08-01

    The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied using non-isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870°C in both N2 and CO2 atmospheres, while further mass loss occurred in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Replacement of N2 in the combustion environment by CO2 delayed the combustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.

  8. Flow assignment model for quantitative analysis of diverting bulk freight from road to railway.

    Directory of Open Access Journals (Sweden)

    Chang Liu

    Full Text Available Since railway transport possesses the advantage of high volume and low carbon emissions, diverting some freight from road to railway will help reduce the negative environmental impacts associated with transport. This paper develops a flow assignment model for quantitative analysis of diverting truck freight to railway. First, a general network which considers road transportation, railway transportation, handling and transferring is established according to all the steps in the whole transportation process. Then general functions which embody the factors which the shippers will pay attention to when choosing mode and path are formulated. The general functions contain the congestion cost on road, the capacity constraints of railways and freight stations. Based on the general network and general cost function, a user equilibrium flow assignment model is developed to simulate the flow distribution on the general network under the condition that all shippers choose transportation mode and path independently. Since the model is nonlinear and challenging, we adopt a method that uses tangent lines to constitute envelope curve to linearize it. Finally, a numerical example is presented to test the model and show the method of making quantitative analysis of bulk freight modal shift between road and railway.

  9. Comparative Analysis of Pine Needles and Coal for Electricity Generation using Carbon Taxation and Emission Reductions

    Directory of Open Access Journals (Sweden)

    Dhaundiyal Alok

    2015-06-01

    Full Text Available Mitigating global climate change via emission control and taxation is promising for strengthening the economic benefits of bioenergy generation and utilization. This study examines the cost effectiveness of pine needles as an alternative fuel for off-grid electricity generation in India. We first examined the changes of prices in coal for electricity generation due to CO2 emission reductions and taxes using experimental data of gasification plants. The time value of money and depreciation scale were used to find out the real levellized cost of electricity generation of gasification plants. Then, the costs of electricity generation fuelled by pine needles and coal were estimated using the cost analysis method. Our results indicate that pine needles would have more competitive edge than coal if emission had taxed at about an emission tax INR 525.15 Mg-1 of CO2 (US$ 8.4, or higher would be needed for pine needles at a yield of 202.176 dry Mg hm-2 yr. The price of coal used for electricity generation would have significantly increased if global CO2 emission had abridged by 20% or more. However, pine needles were found a much better fuel source with an increasing yield of 5.05 Mg hm-2 yr (with respect to power generation and 2.335 Mg hm-2 yr (with respect to feedstock production.

  10. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

    1997-12-31

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  11. Area 3, SRC-II coal slurry preheater studies report for the technical data analysis program

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    This report reviews the raw data gathered from the Preheater B test runs at Ft. Lewis, and also the Preheater B results presented in the Solvent Refined Coal (SRC) Process Final Report, Volumes 1 and 2 of Slurry Preheater Design, SRC-II Process and the Ft. Lewis Slurry Preheater Data Analysis, 1 1/2 Inch Coil by Gulf Science and Technology Corporation of Pittsburgh, Pennsylvania. attempts were made to correlate several variables not previously considered with slurry viscosity and thermal conductivity. Only partial success was realized. However, in the process of attempting to correlate these variables an understanding of why some variables could not be correlated was achieved. An attempt was also made, using multiple linear regression, to correlate coal slurry viscosity and thermal conductivity with several independent variables among which were temperature, coal concentration, total solids, coal type, slurry residence time, shear rate, and unit size. The final correlations included some, but not all, of these independent variables. This report is not a stand alone document and should be considered a supplement to work already done. It should be read in conjunction with the reports referenced above.

  12. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2007-09-01

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  13. Comparative Visual Analysis of Structure-Performance Relations in Complex Bulk-Heterojunction Morphologies

    KAUST Repository

    Aboulhassan, A.

    2017-07-04

    The structure of Bulk-Heterojunction (BHJ) materials, the main component of organic photovoltaic solar cells, is very complex, and the relationship between structure and performance is still largely an open question. Overall, there is a wide spectrum of fabrication configurations resulting in different BHJ morphologies and correspondingly different performances. Current state-of-the-art methods for assessing the performance of BHJ morphologies are either based on global quantification of morphological features or simply on visual inspection of the morphology based on experimental imaging. This makes finding optimal BHJ structures very challenging. Moreover, finding the optimal fabrication parameters to get an optimal structure is still an open question. In this paper, we propose a visual analysis framework to help answer these questions through comparative visualization and parameter space exploration for local morphology features. With our approach, we enable scientists to explore multivariate correlations between local features and performance indicators of BHJ morphologies. Our framework is built on shape-based clustering of local cubical regions of the morphology that we call patches. This enables correlating the features of clusters with intuition-based performance indicators computed from geometrical and topological features of charge paths.

  14. Analysis of waste coal from the enterprises of Kemerovo region as raw materials for production of ceramic materials

    Science.gov (United States)

    Stolboushkin, A. Yu; Akst, D. V.; Fomina, O. A.; Ivanov, A. I.; Syromyasov, V. A.

    2017-09-01

    The analysis of waste coal from mining enterprises of Kemerovo region as raw materials for production of building ceramics is given. The results of studies of material, chemical and mineralogical compositions of waste coal from Abashevskaya processing plant (Novokuznetsk) are presented. It was established that the chemical composition of waste coal refers to aluminosilicate raw materials with a high content of alumina and coloring oxides, the residual carbon content in the wastes is 12-25 %. According to the granulometric composition the waste coal is basically a sandy-dusty fraction with a small amount of clay particles (1-3 %). Additional grinding of coal waste and the introduction of a clay additive in an amount of up to 30 % are recommended. The results of the study of the mineral composition of waste coal are presented. Clay minerals are represented in the descending order by hydromuscovite, montmorillonite and kaolinite, minerals-impurities consist of quartz, feldspar fine-dispersed carbonates. The results of the investigation of ceramic-technological properties of waste coal, which belong to the group of moderately plastic low-melting raw materials, are given. As a result of a comprehensive study it was been established that with chemical, granulometric and mineralogical compositions waste coal with the reduced residual carbon can be used in the production of ceramic bricks.

  15. Analysis of fluorine in coal. Sekitanchu no fusso bunseki ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Oka, H.; Baba, H. (The Chugoku Electric Power Co. Inc., Hiroshima (Japan))

    1991-03-20

    Analysis of fluorine in coal being not established in method at present, pointing out is made of large differential due to change in analysis method and other problems. Then, adoption being made of alkali fusion method, bomb method and combustion tube method as a pretreatment method, and lanthanum-alizarin complexone absorption spectrophotometry and ion electrode method, standardized per JIS K 0102 to test the exhaust water from the plant, as a quantitative analysis method, comparison was studied among 9 types of analysis method, selected by combining the above methods. As for test material, 27 oversea coal specimens (covering 7 places of production and 18 brands) and 1 standard material coal specimen were used, and distillation-operated, as influence of ash content was taken into consideration after the pretreatment, or mashed by adding reagent thereto. As a result, it was known that the skillfulness is required against a possible obtainment of lower value in case of using the alkali fusion method for the pretreatment and that the bomb method and combustion tube method for it give a comparatively good result. 4 figs., 6 tabs.

  16. Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood bioenergy

    Science.gov (United States)

    Sterman, John D.; Siegel, Lori; Rooney-Varga, Juliette N.

    2018-01-01

    Bioenergy is booming as nations seek to cut their greenhouse gas emissions. The European Union declared biofuels to be carbon-neutral, triggering a surge in wood use. But do biofuels actually reduce emissions? A molecule of CO2 emitted today has the same impact on radiative forcing whether it comes from coal or biomass. Biofuels can only reduce atmospheric CO2 over time through post-harvest increases in net primary production (NPP). The climate impact of biofuels therefore depends on CO2 emissions from combustion of biofuels versus fossil fuels, the fate of the harvested land and dynamics of NPP. Here we develop a model for dynamic bioenergy lifecycle analysis. The model tracks carbon stocks and fluxes among the atmosphere, biomass, and soils, is extensible to multiple land types and regions, and runs in ≈1s, enabling rapid, interactive policy design and sensitivity testing. We simulate substitution of wood for coal in power generation, estimating the parameters governing NPP and other fluxes using data for forests in the eastern US and using published estimates for supply chain emissions. Because combustion and processing efficiencies for wood are less than coal, the immediate impact of substituting wood for coal is an increase in atmospheric CO2 relative to coal. The payback time for this carbon debt ranges from 44–104 years after clearcut, depending on forest type—assuming the land remains forest. Surprisingly, replanting hardwood forests with fast-growing pine plantations raises the CO2 impact of wood because the equilibrium carbon density of plantations is lower than natural forests. Further, projected growth in wood harvest for bioenergy would increase atmospheric CO2 for at least a century because new carbon debt continuously exceeds NPP. Assuming biofuels are carbon neutral may worsen irreversible impacts of climate change before benefits accrue. Instead, explicit dynamic models should be used to assess the climate impacts of biofuels.

  17. Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles

    Science.gov (United States)

    Wu, H. I.; Spence, R. D.; Sharpe, P. J.; Goeschl, J. D.

    1985-01-01

    The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.

  18. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.

    Science.gov (United States)

    Ancora, Maria Pia; Zhang, Lei; Wang, Shuxiao; Schreifels, Jeremy; Hao, Jiming

    2015-07-01

    Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF+WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments. Copyright © 2015. Published by Elsevier B.V.

  19. Thermodynamic properties of pulverized coal during rapid heating devolatilization processes

    Energy Technology Data Exchange (ETDEWEB)

    Proscia, W.M.; Freihaut, J.D. [United Technologies Research Center, E. Hartford, CT (United States); Rastogi, S.; Klinzing, G.E. [Univ. of Pittsburg, PA (United States)

    1994-07-01

    The thermodynamic properties of coal under conditions of rapid heating have been determined using a combination of UTRC facilities including a proprietary rapid heating rate differential thermal analyzer (RHR-DTA), a microbomb calorimeter (MBC), an entrained flow reactor (EFR), an elemental analyzer (EA), and a FT-IR. The total heat of devolatilization, was measured for a HVA bituminous coal (PSOC 1451D, Pittsburgh No. 8) and a LV bituminous coal (PSOC 1516D, Lower Kittaning). For the HVA coal, the contributions of each of the following components to the overall heat of devolatilization were measured: the specific heat of coal/char during devolatilization, the heat of thermal decomposition of the coal, the specific heat capacity of tars, and the heat of vaporization of tars. Morphological characterization of coal and char samples was performed at the University of Pittsburgh using a PC-based image analysis system, BET apparatus, helium pcynometer, and mercury porosimeter. The bulk density, true density, CO{sub 2} surface area, pore volume distribution, and particle size distribution as a function of extent of reaction are reported for both the HVA and LV coal. Analyses of the data were performed to obtain the fractal dimension of the particles as well as estimates for the external surface area. The morphological data together with the thermodynamic data obtained in this investigation provides a complete database for a set of common, well characterized coal and char samples. This database can be used to improve the prediction of particle temperatures in coal devolatilization models. Such models are used both to obtain kinetic rates from fundamental studies and in predicting furnace performance with comprehensive coal combustion codes. Recommendations for heat capacity functions and heats of devolatilization for the HVA and LV coals are given. Results of sample particle temperature calculations using the recommended thermodynamic properties are provided.

  20. Interaction and kinetic analysis for coal and biomass co-gasification by TG-FTIR.

    Science.gov (United States)

    Xu, Chaofen; Hu, Song; Xiang, Jun; Zhang, Liqi; Sun, Lushi; Shuai, Chao; Chen, Qindong; He, Limo; Edreis, Elbager M A

    2014-02-01

    This study aims to investigate the interaction and kinetic behavior of CO2 gasification of coal, biomass and their blends by thermogravimetry analysis (TG). The gas products evolved from gasification were measured online with Fourier Transform Infrared Spectroscopy (FTIR) coupled with TG. Firstly, TG experiments indicated that interaction between the coals and biomasses mainly occurred during co-gasification process. The most significant synergistic interaction occurred for LN with SD at the blending mass ratio 4:1. Furthermore, thermal kinetic analysis indicated that the activation energy involved in co-gasification decreased as the SD content increased until the blending ratio of SD with coal reached 4:1. The rise of the frequency factor indicated that the increase of SD content favored their synergistic interaction. Finally, FTIR analysis of co-gasification of SD with LN indicated that except for CO, most gases including CH3COOH, C6H5OH, H2O, etc., were detected at around 50-700°C. Copyright © 2014. Published by Elsevier Ltd.

  1. adwTools Developed: New Bulk Alloy and Surface Analysis Software for the Alloy Design Workbench

    Science.gov (United States)

    Bozzolo, Guillermo; Morse, Jeffrey A.; Noebe, Ronald D.; Abel, Phillip B.

    2004-01-01

    A suite of atomistic modeling software, called the Alloy Design Workbench, has been developed by the Computational Materials Group at the NASA Glenn Research Center and the Ohio Aerospace Institute (OAI). The main goal of this software is to guide and augment experimental materials research and development efforts by creating powerful, yet intuitive, software that combines a graphical user interface with an operating code suitable for real-time atomistic simulations of multicomponent alloy systems. Targeted for experimentalists, the interface is straightforward and requires minimum knowledge of the underlying theory, allowing researchers to focus on the scientific aspects of the work. The centerpiece of the Alloy Design Workbench suite is the adwTools module, which concentrates on the atomistic analysis of surfaces and bulk alloys containing an arbitrary number of elements. An additional module, adwParams, handles ab initio input for the parameterization used in adwTools. Future modules planned for the suite include adwSeg, which will provide numerical predictions for segregation profiles to alloy surfaces and interfaces, and adwReport, which will serve as a window into the database, providing public access to the parameterization data and a repository where users can submit their own findings from the rest of the suite. The entire suite is designed to run on desktop-scale computers. The adwTools module incorporates a custom OAI/Glenn-developed Fortran code based on the BFS (Bozzolo- Ferrante-Smith) method for alloys, ref. 1). The heart of the suite, this code is used to calculate the energetics of different compositions and configurations of atoms.

  2. Thermodynamic analysis of an existing coal-fired power plant for district heating/cooling application

    Energy Technology Data Exchange (ETDEWEB)

    Erdem, H.H.; Dagdas, A.; Sevilgen, S.H.; Cetin, B.; Akkaya, A.V.; Sahin, B.; Teke, I.; Gungor, C.; Atas, S. [Yildiz Technical University, Istanbul (Turkey). Dept. of Mechanical Engineering

    2010-02-15

    In a conventional coal-fired power plant, which is only designed for electricity generation, 2/3 of fuel energy is wasted through stack gases and cooling water of condensers. This waste energy could be recovered by trigeneration; modifying the plants in order to meet district heating/cooling demand of the locations. In this paper, thermodynamical analysis of trigeneration conversion of a public coal-fired power plant, which is designed only for electricity generation, has been carried out. Waste heat potential and other heat extraction capabilities have been evaluated. Best effective steam extraction point for district heating/cooling systems have been identified by conducting energetic and exergetic performance analyses. Analyses results revealed that the low-pressure turbine inlet stage is the most convenient point for steam extraction for the plant analyzed.

  3. Chloride diffusivity of the interfacial transition zone and bulk paste in concrete from microscale analysis

    Science.gov (United States)

    Carrara, P.; De Lorenzis, L.

    2017-06-01

    The chloride diffusive behavior of the interfacial transition zone (ITZ) and of the bulk hardened cement paste (HCP) in concrete is studied at the microscale level and accounts for the coupling between diffusion and binding under steady state conditions. Plain HCP is also studied as a reference. All the microstructures are obtained using the cement hydration model CEMHYD3D, and the relevant diffusive parameters are upscaled from the microscale to the mesoscale using volume averaging. The phenomena characterizing the diffusive behavior of ITZ and bulk paste are identified and quantitatively evaluated.

  4. Structure instability forecasting and analysis of giant rock pillars in steeply dipping thick coal seams

    Science.gov (United States)

    Lai, Xing-ping; Sun, Huan; Shan, Peng-fei; Cai, Ming; Cao, Jian-tao; Cui, Feng

    2015-12-01

    Structure stability analysis of rock masses is essential for forecasting catastrophic structure failure in coal seam mining. Steeply dipping thick coal seams (SDTCS) are common in the Urumqi coalfield, and some dynamical hazards such as roof collapse and mining- induced seismicity occur frequently in the coal mines. The cause of these events is mainly structure instability in giant rock pillars sandwiched between SDTCS. Developing methods to predict these events is important for safe mining in such a complex environment. This study focuses on understanding the structural mechanics model of a giant rock pillar and presents a viewpoint of the stability of a trend sphenoid fractured beam (TSFB). Some stability index parameters such as failure surface dips were measured, and most dips were observed to be between 46° and 51°. We used a digital panoramic borehole monitoring system to measure the TSFB's height (Δ H), which varied from 56.37 to 60.50 m. Next, FLAC3D was used to model the distribution and evolution of vertical displacement in the giant rock pillars; the results confirmed the existence of a TSFB structure. Finally, we investigated the acoustic emission (AE) energy accumulation rate and observed that the rate commonly ranged from 20 to 40 kJ/min. The AE energy accumulation rate could be used to anticipate impeding seismic events related to structure failure. The results presented provide a useful approach for forecasting catastrophic events related to structure instability and for developing hazard prevention technology for mining in SDTCS.

  5. The Infrared Spectrum Analysis on Compound Urea with Humic Acid Extracted from Weathered Coal

    Directory of Open Access Journals (Sweden)

    LIU Zeng-bing

    2014-10-01

    Full Text Available After treated with alkaline solution and then centrifuged, weathered coal was divided into water-soluble humic acid and deposi- tion. Then as the urea synergist materials, weathering coal, humic acid and deposition were respectively mixed with melted urea according to different proportion to produce three kinds of compound urea. The infrared spectrum analysis(IRof above synergist materials and products found that after being treated with alkaline, weathered coal was reduced carbon-carbon bond amount and its carbon chain became shorten,more active functional group happened to the HA extracts. While the FR deposition showed carbon-carbon bond reduced and parts of amine or amide structure were formed. Additionally, the IR also found that during the compound of urea with the synergists, the formation of carbon-carbon triple bond, the broken of accumulated double bonds, the shorten of carbon chain, and the formation of more double bond and stablestructure were observed. However, the different synergists mixed with urea brought out different IR characters.

  6. The bond force constant and bulk modulus of small fullerenes using density functional theory and finite element analysis.

    Science.gov (United States)

    Tapia, A; Villanueva, C; Peón-Escalante, R; Quintal, R; Medina, J; Peñuñuri, F; Avilés, F

    2015-06-01

    Dedicated bond force constant and bulk modulus of C n fullerenes (n = 20, 28, 36, 50, 60) are computed using density functional theory (DFT). DFT predicts bond force constants of 611, 648, 675, 686, and 691 N/m, for C20, C28, C36, C50, and C60, respectively, indicating that the bond force constant increases for larger fullerenes. The bulk modulus predicted by DFT increases with decreased fullerene diameter, from 0.874 TPa for C60 to 1.830 TPa for C20. The bond force constants predicted by DFT are then used as an input for finite element analysis (FEA) of the fullerenes, considered as spatial frames in structural models where the bond stiffness is represented by the DFT-computed bond force constant. In agreement with DFT, FEA predicts that smaller fullerenes are stiffer, and underestimates the bulk modulus with respect to DFT. The difference between the FEA and DFT predictions of the bulk modulus decreases as the size of the fullerene increases, from 20.9% difference for C20 to only 4% difference for C60. Thus, it is concluded that knowing the appropriate bond force constant, FEA can be used as a plausible approximation to model the elastic behavior of small fullerenes.

  7. Prevalence of coal workers' pneumoconiosis in China: a systematic analysis of 2001-2011 studies.

    Science.gov (United States)

    Mo, Jingfu; Wang, Lu; Au, William; Su, Min

    2014-01-01

    Nowadays, coal workers' pneumoconiosis (CWP) is still believed to be the main occupational disease in China. However, information on the exact prevalence of the disease is not available. Therefore, the aims of our investigation were to provide the missing information in China by conducting a systematic evaluation of published data from 2001 to 2011 and to compare the prevalence of CWP with those in other countries. Published reports about the prevalence of CWP were searched from PudMed(English language databases), Foreign Medical Journal Full-Text Service Database (FMJS, English language databases), Chinese Journal Full-Text Database (CJFD, Chinese language databases), Chongqing VIP Chinese Science and Technology Journals Database (VIP, Chinese language databases), Chinese Biomedical Literature Database (CBM, Chinese language databases) and Chinese Medical Association Journals Database (CMAJ, Chinese language databases). The quality of identified reports was strictly evaluated using predetermined inclusion and exclusion criteria. Based on these criteria, 11 reports were selected. Then, the content of these reports were reviewed and the needed information was extracted. Meta-analysis was performed on the extracted data. The R2.15.1 software was applied for statistical analysis. The total populations from these reports were 173,646 and 10,821 for dust-exposed coal workers and patients with CWP, respectively. The pooled prevalence of CWP was 6.02% (95% CI: 3.43-9.26%) and the pooled rate of CWP patients combined with tuberculosis was 10.82% (95% CI: 8.26-13.66%). The prevalence was analyzed according to the geographic areas of the study, years of the investigation, duration of dust exposure, coal rank, stages of CWP, types of work and coal-mining categories, etc. Among them, the prevalence of CWP in locally owned mines (9.86%; 95% CI: 1.25-25.17%) was significantly higher than that of state-owned mines (4.83%; 95% CI: 2.35-8.13%) (P0.05). It was concluded that the

  8. Comparative analysis of the structure of palladium-based bulk metallic glasses prepared by treatment of melts with flux

    Science.gov (United States)

    Louzguine-Luzgin, D. V.; Bazlov, A. I.; Churyumov, A. Yu.; Georgarakis, K.; Yavari, A. R.

    2013-10-01

    A comparative analysis has been presented of structural features of palladium-based bulk metallic glasses prepared by argon gas casting into a copper mold after treatment of melts with a flux and studied using X-ray synchrotron radiation. The radial distribution functions have been calculated. The short-range order (in the first and second coordination shells) and the medium-range order (from the third to several subsequent coordination shells) in atomic arrangement have been analyzed.

  9. Inorganic constituents in coal

    Energy Technology Data Exchange (ETDEWEB)

    A. Radenovic [University of Zagreb, Sisak (Croatia). Faculty of Metallurgy

    2006-07-01

    Coal contains not only organic matter but also small amounts of inorganic constituents. More than one hundred different minerals and virtually every element in the periodic table have been found in coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates), minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the order of w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprised in coal. The fractions of trace elements usually decrease when the rank of coal increases. Fractions of the inorganic elements are different, depending on the coal bed and basin. A variety of analytical methods and techniques can be used to determine the mass fractions, mode of occurrence, and distribution of organic constituents in coal. There are many different instrumental methods for analysis of coal and coal products but atomic absorption spectroscopy (AAS) is the one most commonly used. Fraction and mode of occurrence are one of the main factors that have influence on transformation and separation of inorganic constituents during coal conversion. Coal, as an important world energy source and component for non-fuels usage, will be continuously and widely used in the future due to its relatively abundant reserves. However, there is a conflict between the requirements for increased use of coal on the one hand and less pollution on the other. It's known that the environmental impacts, due to either coal mining or coal usage, can be: air, water and land pollution. Although, minor components, inorganic constituents can exert a significant influence on the economic value, utilization, and environmental impact of the coal.

  10. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  11. TOXIC SUBSTANCES FROM COAL COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    A KOLKER; AF SAROFIM; CL SENIOR; FE HUGGINS; GP HUFFMAN; I OLMEZ; J LIGHTY; JOL WENDT; JOSEPH J HELBLE; MR AMES; N YAP; R FINKELMAN; T PANAGIOTOU; W SEAMES

    1998-12-08

    carried out during August at the Advanced Photon Source (APS), the new synchrotron facility at Argonne National Laboratory, Chicago, IL. Further analysis of small-scale combustion experiments conducted at PSI in Phase I was completed this quarter. The results of these experiments for the first time suggest almost complete vaporization of certain trace elements (Se, Zn) from coal combustion in the flame zone, in accordance with theoretical equilibrium predictions. Other elements (As, Sb, Cr) appeared considerably less volatile and may react with constituents in the bulk ash at combustion temperatures. The combustion section of the University of Arizona's Downflow Combustor was completely rebuilt. The University of Utah worked on setting up EPA Method 26A to give the capability to measure chlorine in flue gas. The chlorine kinetic calculations performed as part of the Phase I program were found to have an error in the initial conditions. Therefore, the calculations were re-done this quarter with the correct starting conditions. Development of a quasi-empirical emissions model based on reported emissions of particulate matter from field measurements was continued this quarter. As a first step in developing the ToPEM, we developed a sub-model that calculates the evaporation of major elements (Na, K, Fe, Si, Al, Ca and Mg) from both inherent and extraneous minerals of coal. During this quarter, this sub-model was included into EMAF, which formed the ToPEM. Experimental data from the Phase I program were used to test and modify the sub-model and the ToPEM.

  12. Theoretical Analysis of Tuned HVAC Line for Low Loss Long Distance Bulk Power Transmission

    OpenAIRE

    Ukil, Abhisek

    2015-01-01

    One of the main objectives of the smart grid initiative is to enable bulk power transmission over long distance, with reduced transmission losses. Besides the traditional high-voltage alternating current (HVAC) transmission, with the advancement in power electronics, high-voltage direct current (HVDC) transmission is increasingly becoming important. One of the main factors impacting the transmission line parameters and the losses is the length of the transmission line (overhead). In this pape...

  13. Analysis of Geodynamical Conditions of Region of Burning Coal Dumps Location

    Science.gov (United States)

    Batugin, Andrian; Musina, Valeria; Golovko, Irina

    2017-12-01

    Spontaneous combustion of coal dumps and their impact on the environment of mining regions remain important environmental problem, in spite of the measures that are being taken. The paper presents the hypothesis, which states that the location of coal dumps at the boundaries of geodynamically active crust blocks promotes the appearance of conditions for their combustion. At present geodynamically active crust faults that affect the operating conditions of engineering facilities are observed not only in the areas of tectonic activity, but also on platforms. According to the concept of geodynamical zoning, geodynamically dangerous zones for engineering structures can be not only large, well-developed crust faults, but also just formed fractures that appear as boundaries of geodynamically impacting and hierarchically ordered crust blocks. The purpose of the study is to estimate the linkage of burning dumps to boundaries of geodynamically active crust blocks (geodynamically dangerous zones) for subsequent development of recommendations for reducing environmental hazard. The analysis of 27 coal dumps location was made for one of the Eastern Donbass regions (Russia). Nine of sixteen burning dumps are located in geodynamically dangerous zones, which, taking into account relatively small area occupied by all geodynamically dangerous zones, results that there is a concentration (pcs/km2) of burning dumps, which is 14 times higher than the baseline value. While the probability of accidental obtaining of such a result is extremely low, this can be considered as the evidence of the linkage of burning dumps to geodynamically dangerous zones. Taking into account the stressed state of the rock massif in this region, all geodynamically dangerous zones can be divided into compression and tension zones. The statistic is limited, but nevertheless in tension zones the concentration of burning dumps is 2 times higher than in compression zones. Available results of thermal monitoring of

  14. Preliminary flashing multiphase flow analysis with application to letdown valves in coal-conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Ott, L. J.; Khan, A. A.

    1982-09-01

    As part of the Oak Ridge National Laboratory's technical support to large coal liquefaction projects, attempts have been made to (1) develop the methodology for characterizing and predicting multicomponent, multiphase, non-Newtonian flow behavior within letdown valves and devices, and (2) analyze the fluid flow in the entire letdown region of the process. An engineering model that can be used in the analysis of multicomponent, multiphase, flashing, flowing systems has been developed. A preliminary version of a user-oriented computer code for this model has been developed and is fully described.

  15. Finite element analysis of effect of underground coal mining on landslide of the Wei Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Shan Xioa-yun; Jiang Yao-dong; Wang Le-jie; Zhao Yi-xin; Hong Yi-qing [China University of Mining and Technology, Beijing (China). School of Mechanics, Architecture and Civil Engineering

    2008-01-15

    A study of the landslide of Wei Mountain near Zhaogezhuang coal mine in the Kailuan mining area was made in respect of the cause, development and relationship with underground mining, using methods of in-situ monitoring, numerical simulation and analysis of comprehensive coupling factors based on summarizing and analyzing previous information. Results of numerical simulation and in-situ monitoring show that, as long as the slope base is not damaged, no large landslide would occur and the main cause of damage of underground mining is horizontal movement of the south of the mountain in a southerly direction. 5 refs., 7 figs., 2 tabs.

  16. Low-grade coal and biomass co-combustion on fluidized bed: exergy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C.; Villamanan, M.A.; Chamorro, C.R.; Segovia, J.J. [University of Valladolid (Spain). Dept. of Energy; Otero, J.; Cabanillas, A. [Environment and Technology Ciemat, Madrid (Spain). Dept. of Fossil Fuels

    2006-03-01

    The purpose of this work is to prove the technical feasibility of the bubbling fluidized bed co-combustion, using biomass and low-grade coal mixtures and applying the exergy method. The pilot plant modelled is an atmospheric bubbling fluidized bed combustion chamber with a nominal capacity of 1 MWth. We have applied the mass balance, the energy balance and the exergy balance to the plant in nine experiments, which have been performed at different operation conditions. The exergy analysis includes the calculation of the exergy destruction and the exergetic efficiency of the plant for these experiments. An estimation of the irreversibility cost is also evaluated. (author)

  17. Thermal analysis evaluation of the reactivity of coal mixtures for injection in the blast furnace

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Ilha Gomes

    2006-03-01

    Full Text Available Pulverized Coal Injection (PCI is an important standard technology replacing coke partially by pulverized coal into the blast furnace that allows a significant reduction of hot metal costs and environmental impact, contributing to a decrease of coke requirements for ironmaking. Coals typically used in this process in Brazil are, at current time, exclusively imported from many countries, although economic important coal-measures occur in the southern part of the country. The Brazilian coals have a low rank, higher contents of inert components, proportioning nocoking properties and an expected high reactivity. Due to these caractheristics, these coals could be used for injection in the blast furnaces in order to decrease the dependency on high cost imported coals. The efficiency in the combustion and the coal reactivity are considered important parameters in the blast furnace, since a larger amount of char (unburned coal causes severe problems to the furnace operation. The aim of the present work is to compare the reactivity of a south Brazilian coal, obtained from Faxinal mine, with two imported coals and the blends of the Brazilian coal with the imported ones. The reactivity of these coals and their blends were evaluated in a thermogravimetric analyzer. In the experiments, various mass ratios of Faxinal coal and the imported coals were used to compose the blends. The gasification reaction with pure CO2 was conducted under isothermal conditions at 1050 °C and atmospheric pressure. The experimental results show the greater reactivity of the Faxinal coal. The additive behavior was confirmed. The blends with a composition of up to 50% Faxinal coal have parameters according to the usual limits used for PCI.

  18. Coal stockyard systems

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, K.

    2001-10-01

    Selection criteria for coal stockyard materials handling systems at bulk terminals is far more complex than it appears at first sight. Criteria for the selection of the best suitable layout and equipment for coal terminals, include the homogenisation of material and the layout of the stockpile in the form of conventional longitudinal piles or circular piles. The article reviews the current state-of-the-art concepts for coal terminals, and groups these ideas into a workable set of guidelines for the coal mine or stockyard operator. As priorities for each application are different, utmost flexibility in the layout and design of bulk terminals is required. It describes storage systems chosen for the transhipment terminal at the Port of Koper in Slovenia, the Callide coal mine in Queensland, Australia, and the Ho-Ping coal-fired power plant in Taiwan. The recent agreement for a combined sales and marketing cooperation between Aumund in Germany and BLW Mechanical Handling in the UK is mentioned. 3 photos.

  19. A Novel Acoustic Liquid Level Determination Method for Coal Seam Gas Wells Based on Autocorrelation Analysis

    Directory of Open Access Journals (Sweden)

    Ximing Zhang

    2017-11-01

    Full Text Available In coal seam gas (CSG wells, water is periodically removed from the wellbore in order to keep the bottom-hole flowing pressure at low levels, facilitating the desorption of methane gas from the coal bed. In order to calculate gas flow rate and further optimize well performance, it is necessary to accurately monitor the liquid level in real-time. This paper presents a novel method based on autocorrelation function (ACF analysis for determining the liquid level in CSG wells under intense noise conditions. The method involves the calculation of the acoustic travel time in the annulus and processing the autocorrelation signal in order to extract the weak echo under high background noise. In contrast to previous works, the non-linear dependence of the acoustic velocity on temperature and pressure is taken into account. To locate the liquid level of a coal seam gas well the travel time is computed iteratively with the non-linear velocity model. Afterwards, the proposed method is validated using experimental laboratory investigations that have been developed for liquid level detection under two scenarios, representing the combination of low pressure, weak signal, and intense noise generated by gas flowing and leakage. By adopting an evaluation indicator called Crest Factor, the results have shown the superiority of the ACF-based method compared to Fourier filtering (FFT. In the two scenarios, the maximal measurement error from the proposed method was 0.34% and 0.50%, respectively. The latent periodic characteristic of the reflected signal can be extracted by the ACF-based method even when the noise is larger than 1.42 Pa, which is impossible for FFT-based de-noising. A case study focused on a specific CSG well is presented to illustrate the feasibility of the proposed approach, and also to demonstrate that signal processing with autocorrelation analysis can improve the sensitivity of the detection system.

  20. Critical Analysis of Underground Coal Gasification Models. Part I: Equilibrium Models – Literary Studies

    Directory of Open Access Journals (Sweden)

    Alina Żogała

    2014-01-01

    Originality/value: This paper presents state of the art in field of equilibrium coal gasification modeling. This article is also attempt to elaborate on the most important problems connected with thermodynamic models of coal gasification.

  1. Analysis of radioactivity concentration in naturally occurring radioactive materials used in coal-fired plants in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Geom; Kim, Si Young; Ji, Seung Woo; Park, Il; Kim, Min Jun; Kim, Kwang Pyo [Dept. of Nuclear Engineering, Kyung Hee University, Yongin (Korea, Republic of)

    2017-02-15

    Coals and coal ashes, raw materials and by-products, in coal-fired power plants contain naturally occurring radioactive materials (NORM). They may give rise to internal exposure to workers due to inhalation of airborne particulates containing radioactive materials. It is necessary to characterize radioactivity concentrations of the materials for assessment of radiation dose to the workers. The objective of the present study was to analyze radioactivity concentrations of coals and by-products at four coal-fired plants in Korea. High purity germanium detector was employed for analysis of uranium series, thorium series, and potassium 40 in the materials. Radioactivity concentrations of {sup 226}Ra, {sup 228}Ra, and {sup 40}K were 2⁓53 Bq kg{sup -1}, 3⁓64 Bq kg{sup -1}, and 14⁓431 Bq kg{sup -1} respectively in coal samples. For coal ashes, the radioactivity concentrations were 77⁓133 Bq kg{sup -1}, 77⁓105 Bq kg{sup -1}, and 252⁓372 Bq kg{sup -1} in fly ash samples and 54⁓91 Bq kg{sup -1}, 46⁓83 Bq kg{sup -1}, and 205⁓462 Bq kg{sup -1} in bottom ash samples. For flue gas desulfurization (FGD) gypsum, the radioactivity concentrations were 3⁓5 Bq kg{sup -1}, 2⁓3 Bq kg{sup -1}, and 22⁓47 Bq kg{sup -1}. Radioactivity was enhanced in coal ash compared with coal due to combustion of organic matters in the coal. Radioactivity enhancement factors for {sup 226}Ra, {sup 228}Ra, and {sup 40}K were 2.1⁓11.3, 2.0⁓13.1, and 1.4⁓7.4 for fly ash and 2.0⁓9.2, 2.0⁓10.0, 1.9⁓7.7 for bottom ash. The database established in this study can be used as basic data for internal dose assessment of workers at coal-fred power plants. In addition, the findings can be used as a basic data for development of safety standard and guide of Natural Radiation Safety Management Act.

  2. Better planning in coal handling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-09-15

    More coal terminals are purchasing planning applications to improve the planning process and optimize throughput. Port Kembla Coal Terminal in New South Wales has chosen Quintiq's integrated advanced planning and scheduling solution (APS) to maximise its capacity capabilities and provide seamless integration across its coal supply chain. Implementation will be completed in early 2010. QMASTOR claims to be the market leader in bulk materials software solutions. Its Horizon APS is used at one coal terminal to manage inbound transportation, stockyard allocations and ship loading. Fuelworx software developed by Energy Softworx can manage fuel procurement process, manage contracts and maintain audit controls. 1 fig., 1 photo.

  3. Study on similar model of high pressure water jet impacting coal rock

    Science.gov (United States)

    Liu, Jialiang; Wang, Mengjin; Zhang, Di

    2017-08-01

    Based on the similarity theory and dimensional analysis, the similarity criterion of the coal rock mechanical parameters were deduced. The similar materials were mainly built by the cement, sand, nitrile rubber powder and polystyrene, by controlling the water-cement ratio, cement-sand ratio, curing time and additives volume ratio. The intervals of the factors were obtained by carrying out series of material compression tests. By comparing the basic mechanical parameters such as the bulk density, compressive strength, Poisson ratio and elastic modulus between the coal rock prototype and similar materials, the optimal producing proposal of the coal rock similar materials was generated based on the orthogonal design tests finally.

  4. Failure Mode Analysis and Dynamic Response of a Coal Mine Refuge Chamber with a Gas Explosion

    National Research Council Canada - National Science Library

    Boyi Zhang; Dongxian Zhai; Wei Wang

    2016-01-01

      A gas and coal dust explosion is potential hazard in majority coal mines. A coal mine mobile refuge chamber is a new class of device for miners those who are unable to escape after an accident which can provide basic survival conditions...

  5. Analysis of conduction responses during an underground coal gasification experiment. [Hanna II

    Energy Technology Data Exchange (ETDEWEB)

    Hommert, P.J.

    1978-01-01

    The Laramie Energy Research Center (LERC) conducted an underground coal gasification experiment in a 9-m thick subbituminous coal seam near Hanna, Wyoming. Sandia Laboratories designed and fielded an extensive instrumentation array which included approximately eight thermocouples within the seam in each of 15 diagnostic wells. The instrumentation provided thermal data related to the process during both reverse combustion linkage and forward gasification. Portions of these data suitable for analysis by inverse heat conduction techniques included (1) the responses from the approximately cylindrical reverse combustion linkage path and (2) the responses at thermocouples outside the gasified zone due to conduction from the final boundary. Because of the effects of property variations and water vaporization on the conduction response, an exact analytical solution could not be used. Instead, the approach was to adjust parameters of the constant property analytical solutions to fit numerical calculations that included property variations and water vaporization. Sensitivity studies performed to estimate the accuracy of solutions obtained indicated that parameters relating to size and distance should be identifiable within +- 0.25 m; however, accurate estimates of temperature could not be obtained. Results allowed the position of the reverse combustion linkage path to be mapped, and estimates of its size (approximately 1 m in diameter) and average temperature (750 K--1000 K) to be obtained. With respect to forward gasification, the analysis yielded estimates of the final boundaries established by the burn and characterizations of how the front approached its final position.

  6. Coal geology

    National Research Council Canada - National Science Library

    Thomas, Larry

    2013-01-01

    This book provides a comprehensive overview of the field of coal geology. All aspects of coal geology are covered in one volume, bridgint the gap between the academic aspects and the practical role of geology in the coal industry...

  7. Analysis of InAs-Si heterojunction nanowire tunnel FETs: Extreme confinement vs. bulk

    Science.gov (United States)

    Carrillo-Nuñez, Hamilton; Luisier, Mathieu; Schenk, Andreas

    2015-11-01

    Extremely narrow and bulk-like p-type InAs-Si nanowire TFETs are studied using (i) a full-band and atomistic quantum transport simulator based on the sp3d5s∗ tight-binding model and (ii) a drift-diffusion TCAD tool. As (iii) option, a two-band model and the WKB approximation have been adapted to work in heterostructures through a careful choice of the imaginary dispersion. It is found that for ultra-scaled InAs-Si nanowire TFETs, the WKB approximation and the quantum transport results agree very well, suggesting that the former could be applied to larger hetero-TFET structures and considerably reduce the simulation time while keeping a high accuracy.

  8. Analysis of Temperature and Humidity Field in a New Bulk Tobacco Curing Barn Based on CFD.

    Science.gov (United States)

    Bai, Zhipeng; Guo, Duoduo; Li, Shoucang; Hu, Yaohua

    2017-01-31

    A new structure bulk tobacco curing barn was presented. To study the temperature and humidity field in the new structure tobacco curing barn, a 3D transient computational fluid dynamics (CFD) model was developed using porous medium, species transport, κ-ε turbulence and discrete phase models. The CFD results demonstrated that (1) the temperature and relative humidity predictions were validated by the experimental results, and comparison of simulation results with experimental data showed a fairly close agreement; (2) the temperature of the bottom and inlet area was higher than the top and outlet area, and water vapor concentrated on the top and outlet area in the barn; (3) tobacco loading density and thickness of tobacco leaves had an explicit effect on the temperature distributions in the barn.

  9. Fractal analysis of acoustic emission parameter series of coal with different properties under uniaxial loading

    Science.gov (United States)

    Yang, Huiming

    2017-08-01

    In order to study acoustic emission (AE) evolution characteristics of coal with different mechanical properties in failure process, uniaxial compression experiments of coals from 4 mines were carried out to analyse fractal feature of AE time series by G-P algorithm. The results indicate that AE parameter series of all 4 different coals have fractal feature, and the fractal dimension value of coal with different properties go through a process of “first rise, then fall”. The change of AE fractal dimension value can reflect the cracking evolution in coal failure process, which is closely related with the failure phase. The continuous decline of AE fractal dimension can be viewed as a precursor of impending failure of coal, which could provide theoretical basis for the AE pre-warning model establishment of coal dynamic disaster.

  10. Exergetic analysis of a steam power plant using coal and rice straw in a co-firing process

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, Alvaro; Miyake, Raphael Guardini; Bazzo, Edson [Federal University of Santa Catarina (UFSC), Dept. of Mechanical Engineering, Florianopolis, SC (Brazil)], e-mails: arestrep@labcet.ufsc.br, miyake@labcet.ufsc.br, ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia S.A., Capivari de Baixo, SC (Brazil). U.O. Usina Termeletrica Jorge Lacerda C.], e-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    This paper presents an exergetic analysis concerning an existing 50 M We steam power plant, which operates with pulverized coal from Santa Catarina- Brazil. In this power plant, a co-firing rice straw is proposed, replacing up to 10% of the pulverized coal in energy basis required for the boiler. Rice straw has been widely regarded as an important source for bio-ethanol, animal feedstock and organic chemicals. The use of rice straw as energy source for electricity generation in a co-firing process with low rank coal represents a new application as well as a new challenge to overcome. Considering both scenarios, the change in the second law efficiency, exergy destruction, influence of the auxiliary equipment and the greenhouse gases emissions such as CO{sub 2} and SO{sub 2} were considered for analysis. (author)

  11. Analysis and Sources of Polycyclic Aromatic Hydrocarbons in Soil and Plant Samples of a Coal Mining Area in Nigeria.

    Science.gov (United States)

    Ugwu, K E; Ukoha, P O

    2016-03-01

    This study analysed coal, plant and soil samples collected from the vicinity of Okobo coal mine in Nigeria for Polycyclic aromatic hydrocarbons (PAHs) and evaluated the sources of the PAH contamination in the environmental samples. The environmental samples were extracted by sonication using a ternary solvent system and analysed for 16 PAHs by gas chromatography-mass spectrometry (GC-MS). The results of the analysis of the samples identified some of the target PAHs. The ranges of total concentrations (in mg/kg) of PAHs in the coal, plant and soil samples were, 0.00-0.04, 0.00-0.16 and 0.00-0.01 respectively. The evaluation of the results of the PAH analysis of the environmental samples using diagnostic ratios revealed that the PAHs in the soil samples were mainly of petrogenic origin, while those in plant samples indicated mixture of petrogenic and pyrolytic origins.

  12. Vegetation index analysis of multi-source remote sensing data in coal mine wasteland

    Energy Technology Data Exchange (ETDEWEB)

    Han, Y.X.; Li, M.Z.; Li, D.L. [China Agricultural University, Beijing (China)

    2007-12-15

    Thirty-six soil samples were collected and their hyperspectral data used to calculate vegetation indices such as a normalised difference vegetation index (NDVI) and a difference vegetation index (DVI). These were evaluated for typical surface object features within the wastelands around Haizhou Opencast Coal Mine in Fuxin city. A principal component analysis to the hyperspectral data was performed, and the result showed that the first and the second principal components satisfactorily accounted for the multi-spectral image information. The panchromatic and multi-spectral images of SPOT5 were then merged. The panchromatic image replaced the first principal component to improve spatial resolution of the image. In addition, the multispectral images and the NDVI image were classified into six types using the unsupervised classification method. The linear quantitative models were built up and the highest correlation coefficients were obtained between the hyperspectral vegetation index and the vegetation index data from the SPOT5 image. The results show that the hyperspectral data and remote sensing images can be used for quantitative estimation of soil nutrients in coal mine wasteland. They can also provide large area surface information for fast and effective decision making regarding revegetation and the monitoring of dynamic change.

  13. Novel technique for coal pyrolysis and hydrogenation product analysis. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, L.D.; Boyle, J.

    1993-03-15

    A microjet reactor coupled to a VUV photoionization time-of-flight mass spectrometer has been used to obtain species measurements during high temperature pyrolysis and oxidation of a wide range of hydrocarbon compounds ranging from allene and acetylene to cyclohexane, benzene and toluene. Initial work focused on calibration of the technique, optimization of ion collection and detection and characterization of limitations. Using the optimized technique with 118 nm photoionization, intermediate species profiles were obtained for analysis of the hydrocarbon pyrolysis and oxidation mechanisms. The ``soft`` ionization, yielding predominantly molecular ions, allowed the study of reaction pathways in these high temperature systems where both sampling and detection challenges are severe. Work has focused on the pyrolysis and oxidative pyrolysis of aliphatic and aromatic hydrocarbon mixtures representative of coal pyrolysis and hydropyrolysis products. The detailed mass spectra obtained during pyrolysis and oxidation of hydrocarbon mixtures is especially important because of the complex nature of the product mixture even at short residence times and low primary reactant conversions. The combustion community has advanced detailed modeling of pyrolysis and oxidation to the C4 hydrocarbon level but in general above that size uncertainties in rate constant and thermodynamic data do not allow us to a priori predict products from mixed hydrocarbon pyrolyses using a detailed chemistry model. For pyrolysis of mixtures of coal-derived liquid fractions with a large range of compound structures and molecular weights in the hundreds of amu the modeling challenge is severe. Lumped models are possible from stable product data.

  14. CFD analysis of temperature imbalance in superheater/reheater region of tangentially coal-fired boiler

    Science.gov (United States)

    Zainudin, A. F.; Hasini, H.; Fadhil, S. S. A.

    2017-10-01

    This paper presents a CFD analysis of the flow, velocity and temperature distribution in a 700 MW tangentially coal-fired boiler operating in Malaysia. The main objective of the analysis is to gain insights on the occurrences in the boiler so as to understand the inherent steam temperature imbalance problem. The results show that the root cause of the problem comes from the residual swirl in the horizontal pass. The deflection of the residual swirl due to the sudden reduction and expansion of the flow cross-sectional area causes velocity deviation between the left and right side of the boiler. This consequently results in flue gas temperature imbalance which has often caused tube leaks in the superheater/reheater region. Therefore, eliminating the residual swirl or restraining it from being diverted might help to alleviate the problem.

  15. Waterberg coal characteristics and SO2 minimum emissions standards in South African power plants.

    Science.gov (United States)

    Makgato, Stanford S; Chirwa, Evans M Nkhalambayausi

    2017-10-01

    Key characteristics of coal samples from the supply stock to the newly commissioned South African National Power Utility's (Eskom's) Medupi Power Station - which receives its supply coal from the Waterberg coalfield in Lephalale (Limpopo Province, South Africa) - were evaluated. Conventional coal characterisation such as proximate and ultimate analysis as well as determination of sulphur forms in coal samples were carried out following the ASTM and ISO standards. Coal was classified as medium sulphur coal when the sulphur content was detected in the range 1.15-1.49 wt.% with pyritic sulphur (≥0.51 wt.%) and organic sulphur (≥0.49 wt.%) accounted for the bulk of the total sulphur in coal. Maceral analyses of coal showed that vitrinite was the dominant maceral (up to 51.8 vol.%), whereas inertinite, liptinite, reactive semifusinite and visible minerals occurred in proportions of 22.6 vol.%, 2.9 vol.%, 5.3 vol.% and 17.5 vol.%, respectively. Theoretical calculations were developed and used to predict the resultant SO2 emissions from the combustion of the Waterberg coal in a typical power plant. The sulphur content requirements to comply with the minimum emissions standards of 3500 mg/Nm3 and 500 mg/Nm3 were found to be ≤1.37 wt.% and ≤0.20 wt.%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Prospects for coal and clean coal technology in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This report examines the current energy outlook for the Philippines in regard not only to coal but also other energy resources. The history of the power sector, current state of play and future plans to meet the increasing energy demand from a growing population are discussed. There is also analysis of the trends for coal demand and production, imports and exports of coal and the types of coal-fired power stations that have been built. This includes examination of the legislation involving coal and the promotion of clean coal technologies.

  17. The comparative analysis of heat transfer efficiency in the conditions of formation of ash deposits in the boiler furnaces, with taking into account the crystallization of slag during combustion of coal and water-coal fuel

    Science.gov (United States)

    Salomatov, V. V.; Kuznetsov, G. V.; Syrodoy, S. V.

    2017-11-01

    The results of the numerical simulation of heat transfer from the combustion products of coal and coal-water fuels (CWF) to the internal environment. The mathematical simulation has been carried out on the sample of the pipe surfaces of the combustion chamber of the boiler unit. The change in the characteristics of heat transfer (change of thermochemical characteristics) in the conditions of formation of the ash deposits have been taken into account. According to the results of the numerical simulation, the comparative analysis of the efficiency of heat transfer has been carried out from the furnace environment to the inside pipe coolant (water, air, or water vapor) from the combustion of coal and coal-water fuels. It has been established that, in the initial period of the boiler unit operation during coal fuel combustion the efficiency of heat transfer from the combustion products of the internal environment is higher than when using CWF. The efficiency of heat transfer in CWF combustion conditions is more at large times (τ≥1.5 hours) of the boiler unit. A significant decrease in heat flux from the combustion products to the inside pipe coolant in the case of coal combustion compared to CWF has been found. It has been proved that this is due primarily to the fact that massive and strong ash deposits are formed during coal combustion.

  18. Sensitivity Analysis of Mechanical Parameters of Different Rock Layers to the Stability of Coal Roadway in Soft Rock Strata

    Science.gov (United States)

    Zhao, Zeng-hui; Wang, Wei-ming; Gao, Xin; Yan, Ji-xing

    2013-01-01

    According to the geological characteristics of Xinjiang Ili mine in western area of China, a physical model of interstratified strata composed of soft rock and hard coal seam was established. Selecting the tunnel position, deformation modulus, and strength parameters of each layer as influencing factors, the sensitivity coefficient of roadway deformation to each parameter was firstly analyzed based on a Mohr-Columb strain softening model and nonlinear elastic-plastic finite element analysis. Then the effect laws of influencing factors which showed high sensitivity were further discussed. Finally, a regression model for the relationship between roadway displacements and multifactors was obtained by equivalent linear regression under multiple factors. The results show that the roadway deformation is highly sensitive to the depth of coal seam under the floor which should be considered in the layout of coal roadway; deformation modulus and strength of coal seam and floor have a great influence on the global stability of tunnel; on the contrary, roadway deformation is not sensitive to the mechanical parameters of soft roof; roadway deformation under random combinations of multi-factors can be deduced by the regression model. These conclusions provide theoretical significance to the arrangement and stability maintenance of coal roadway. PMID:24459447

  19. COAL OF THE FUTURE (Supply Prospects for Thermal Coal by 2030-2050)

    OpenAIRE

    2007-01-01

    The report, produced by Messrs. Energy Edge Ltd. (the U.K.) for the JRC Institute for Energy, aims at making a techno-economic analysis of novel extraction technologies for coal and their potential contribution to the global coal supply. These novel extraction technologies include: advanced coal mapping techniques, improved underground coal mining, underground coal gasification and utilisation of coalmine methane gas.

  20. Safety Analysis Report for Packaging, Y-12 National Security Complex, Model ES-3100 Package with Bulk HEU Contents

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, James [Y-12 National Security Complex, Oak Ridge, TN (United States); Goins, Monty [Y-12 National Security Complex, Oak Ridge, TN (United States); Paul, Pran [Y-12 National Security Complex, Oak Ridge, TN (United States); Wilkinson, Alan [Y-12 National Security Complex, Oak Ridge, TN (United States); Wilson, David [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2015-09-03

    This safety analysis report for packaging (SARP) presents the results of the safety analysis prepared in support of the Consolidated Nuclear Security, LLC (CNS) request for licensing of the Model ES-3100 package with bulk highly enriched uranium (HEU) contents and issuance of a Type B(U) Fissile Material Certificate of Compliance. This SARP, published in the format specified in the Nuclear Regulatory Commission (NRC) Regulatory Guide 7.9 and using information provided in UCID-21218 and NRC Regulatory Guide 7.10, demonstrates that the Y-12 National Security Complex (Y-12) ES-3100 package with bulk HEU contents meets the established NRC regulations for packaging, preparation for shipment, and transportation of radioactive materials given in Title 10, Part 71, of the Code of Federal Regulations (CFR) [10 CFR 71] as well as U.S. Department of Transportation (DOT) regulations for packaging and shipment of hazardous materials given in Title 49 CFR. To protect the health and safety of the public, shipments of adioactive materials are made in packaging that is designed, fabricated, assembled, tested, procured, used, maintained, and repaired in accordance with the provisions cited above. Safety requirements addressed by the regulations that must be met when transporting radioactive materials are containment of radioactive materials, radiation shielding, and assurance of nuclear subcriticality.

  1. The application of x-ray fluorescence analysis with total external reflection for determining the microelements in coal

    Energy Technology Data Exchange (ETDEWEB)

    Krasnolutskii, V.P.; Losev, N.F.; Poluyanova, G.I. [Rostov Don State University, Rostov na Donu (Russian Federation)

    1995-09-01

    The results of studying the metrological parameters of a small-size energy dispersive x-ray fluorescence spectrometer with total external reflection of primary radiation are presented. The results of direct x-ray fluorescence measurement of spectral intensities from coal powder sample 1 mg in mass using the spectrometer are in agreement with the data of neutron activation and atomic emission analysis.

  2. Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kakwani, R. M.; Wilson, Jr., R. P.; Winsor, R. E.

    1991-12-01

    Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

  3. Direct coal liquefaction baseline design and system analysis. Quarterly report, April--June 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    The primary objective of the study is to develop a computer model for a base line direct coal liquefaction design based on two stage direct coupled catalytic reactors. This primary objective is to be accomplished by completing the following: a base line design based on previous DOE/PETC results from Wilsonville pilot plant and other engineering evaluations; a cost estimate and economic analysis; a computer model incorporating the above two steps over a wide range of capacities and selected process alternatives; a comprehensive training program for DOE/PETC Staff to understand and use the computer model; a thorough documentation of all underlying assumptions for baseline economics; and a user manual and training material which will facilitate updating of the model in the future.

  4. Analysis of mercury species present during coal combustion by thermal desorption

    OpenAIRE

    López Antón, María Antonia; Yuan, Yang; Perry, Ron; Maroto Valer, Mercedes

    2010-01-01

    [EN] Mercury in coal and its emissions from coal-fired boilers is a topic of primary environmental concern in the United States and Europe. The predominant forms of mercury in coal-fired flue gas are elemental (Hg0) and oxidized (Hg2+, primarily as HgCl2). Because Hg2+ is more condensable and far more water soluble than Hg0, the wide variability in mercury speciation in coal-fired flue gases undermines the total mercury removal efficiency of most mercury emission control technologies. It is i...

  5. Sensitivity analysis of effective fluid and rock bulk modulus due to changes in pore pressure, temperature and saturation

    Science.gov (United States)

    Bhakta, Tuhin; Avseth, Per; Landrø, Martin

    2016-12-01

    Fluid substitution plays a vital role in time-lapse seismic modeling and interpretation. It is, therefore, very important to quantify as exactly as possible the changes in fluid bulk modulus due to changes in reservoir parameters. In this paper, we analyze the sensitivities in effective fluid bulk modulus due to changes in reservoir parameters like saturation, pore-pressure and temperature. The sensitivities are analyzed for two extreme bounds, i.e. the Voigt average and the Reuss average, for various fluid combinations (i.e. oil-water, gas-water and gas-oil). We quantify that the effects of pore-pressure and saturation changes are highest in the case of gas-water combination, while the effect of temperature is highest for oil-gas combination. Our results show that sensitivities vary with the bounds, even for same amount of changes in any reservoir parameter. In 4D rock physics studies, we often neglect the effects of pore-pressure or temperature changes assuming that those effects are negligible compare to the effect due to saturation change. Our analysis shows that pore-pressure and temperature changes can be vital and sometimes higher than the effect of saturation change. We investigate these effects on saturated rock bulk modulus. We first compute frame bulk modulus using the Modified Hashin Shtrikman (MHS) model for carbonate rocks and then perform fluid substitution using the Gassmann equation. We consider upper bound of the MHS as elastic behavior for stiffer rocks and lower bound of the MHS as elastic behavior for softer rocks. We then investigate four various combinations: stiff rock with upper bound (the Voigt bound) as effective fluid modulus, stiff rock with lower bound (Reuss bound) as effective fluid modulus, soft rock with upper bound as effective fluid modulus and soft rock with lower bound as effective fluid modulus. Our results show that the effect of any reservoir parameter change is highest for soft rock and lower bound combination and lowest

  6. Modeling of bulk acoustic wave devices built on piezoelectric stack structures: impedance matrix analysis and network representation.

    Science.gov (United States)

    Zhang, Victor Y; Dubus, Bertrand; Lefebvre, Jean Etienne; Gryba, Tadeusz

    2008-03-01

    The fundamental electro-acoustic properties of a solid layer are deduced in terms of its impedance matrix (Z) and represented by a network for modeling the bulk acoustic wave devices built on piezoelectric stacked structures. A piezoelectric layer is described by a three-port equivalent network, a nonpiezoelectric layer, and a short- or open-circuit piezoelectric layer by a two-port one. Electrical input impedance of the resonator is derived in terms of the Z-matrix of both the piezoelectric layer and an external load, the unique expression applies whether the resonator is a mono- or electroded-layer or a solidly mounted resonator (SMR). The loading effects of Al-electrodes on the resonating frequencies of the piezoelectric ZnO-layer are analyzed. Transmission and reflection properties of Bragg mirrors are investigated along with the bulk radiation in SMR. As a synthesizing example, a coupled resonator filter (CRF) is analyzed using the associated two-port equivalent network and by calculating the power transmission to a 50Omega-load. The stacked crystal filter is naturally included in the model as a special case of CRF. Combining a comprehensive matrix analysis and an instructive network representation and setting the problem with a full vectorial formalism are peculiar features of the presented approach.

  7. A 90 m-thick coal seam in the Lubstow lignite deposit (Central Poland): palynological analysis and sedimentary environment

    Energy Technology Data Exchange (ETDEWEB)

    Durska, E. [University of Warsaw, Warsaw (Poland). Faculty of Geology

    2008-07-01

    A 90 m-thick brown coal seam, the result of organic matter deposition in a fault-trough, is exploited in an open cast mine at Lubstow (Central Poland). Palynological analysis was conducted in order to determine which plants were the source of organic matter forming such a thick coal bed. The pollen spectrum is dominated by the gymnosperm pollen Inaperturopollenites, produced by trees closely related to the extant genera Taxodium and Glyptostrobus, the dominant constituents of swamp forests in SE North America and SE Asia today. However the lack of xylites and preserved tissues in the coal does not support the conception of a swamp forest as the peat-producing community. There is also significant percentage of angiosperm pollen in the coal, mainly from the groups: Castaneoideapollis, Tricolporopollenites exactus and T. pseudocingulum. The plants producing these pollen were probably the main constitutent of the peat-producing community. The community shows signs of a shrub swamp with local tree islands and a low water table. Evidence for this also includes the detrital type of coal, the lack of preserved plant tissues and the presence of fungal remains. The characteristics show the existence of aerobic zones at the time of peat production. The peat was probably derived from angiosperms. Dome-shaped forms in the upper part of the deposit are the remains of tree islands. As detritus accumulation is very on the surfaces of present-day tree islands, a similar rate of deposition may have taken place during peat production at Lubstow. This, combined with subsidence in the fault-through, explains the great thickness of the coal bed.

  8. Citation-related reliability analysis for a pilot sample of underground coal mines.

    Science.gov (United States)

    Kinilakodi, Harisha; Grayson, R Larry

    2011-05-01

    The scrutiny of underground coal mine safety was heightened because of the disasters that occurred in 2006-2007, and more recently in 2010. In the aftermath of the 2006 incidents, the U.S. Congress passed the Mine Improvement and New Emergency Response Act of 2006 (MINER Act), which strengthened the existing regulations and mandated new laws to address various issues related to emergency preparedness and response, escape from an emergency situation, and protection of miners. The National Mining Association-sponsored Mine Safety Technology and Training Commission study highlighted the role of risk management in identifying and controlling major hazards, which are elements that could come together and cause a mine disaster. In 2007 MSHA revised its approach to the "Pattern of Violations" (POV) process in order to target unsafe mines and then force them to remediate conditions in their mines. The POV approach has certain limitations that make it difficult for it to be enforced. One very understandable way to focus on removing threats from major-hazard conditions is to use citation-related reliability analysis. The citation reliability approach, which focuses on the probability of not getting a citation on a given inspector day, is considered an analogue to the maintenance reliability approach, which many mine operators understand and use. In this study, the citation reliability approach was applied to a stratified random sample of 31 underground coal mines to examine its potential for broader application. The results clearly show the best-performing and worst-performing mines for compliance with mine safety standards, and they highlight differences among different mine sizes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Cost analysis of a coal-fired power plant using the NPV method

    Science.gov (United States)

    Kumar, Ravinder; Sharma, Avdhesh Kr.; Tewari, P. C.

    2015-06-01

    The present study investigates the impact of various factors affecting coal-fired power plant economics of 210 MW subcritical unit situated in north India for electricity generation. In this paper, the cost data of various units of thermal power plant in terms of power output capacity have been fitted using power law with the help of the data collected from a literature search. To have a realistic estimate of primary components or equipment, it is necessary to include the latest cost of these components. The cost analysis of the plant was carried out on the basis of total capital investment, operating cost and revenue. The total capital investment includes the total direct plant cost and total indirect plant cost. Total direct plant cost involves the cost of equipment (i.e. boiler, steam turbine, condenser, generator and auxiliary equipment including condensate extraction pump, feed water pump, etc.) and other costs associated with piping, electrical, civil works, direct installation cost, auxiliary services, instrumentation and controls, and site preparation. The total indirect plant cost includes the cost of engineering and set-up. The net present value method was adopted for the present study. The work presented in this paper is an endeavour to study the influence of some of the important parameters on the lifetime costs of a coal-fired power plant. For this purpose, parametric study with and without escalation rates for a period of 35 years plant life was evaluated. The results predicted that plant life, interest rate and the escalation rate were observed to be very sensitive on plant economics in comparison to other factors under study.

  10. [Analysis on the disease burden and its impact factors of coal worker's pneumoconiosis inpatients].

    Science.gov (United States)

    Zhang, Lei; Zhu, Lei; Li, Zhi-heng; Li, Jin-zhou; Pan, Hong-wei; Zhang, Shao-feng; Qin, Wen-hua; He, Li-hua

    2014-04-18

    To obtain the baseline data and decision of quantitative analysis for the allocation of scarce health care resources,and for the health policymaking about easing the disease burden, to provide estimation of the economic costs and the disability-adjusted life years (DALYs) loss of the coal worker's pneumoconiosis (CWP) and to explore the influencing factors of the disease burden. The CWP inpatients from the Institute of Occupational Diseases Prevention and Control of a Coal Mining Group for 2011 were recruited in the study. Multiple dimensions of the disease burden were measured in the inception cohort of the 194 CWP inpatients: the direct economic burden, the indirect economic burden and the DALYs loss. The direct economic burden of the inpatients included hospitalization expenses and food allowances and nutritional supplements. The indirect economic burden was estimated using the DALYs and human capital approach,and the influencing factors of hospitalization expenses were analyzed in this study. The estimated direct economic burden for the 194 CWP inpatients for 2011 was approximately 4.68 million yuan and direct burden per capita was 24 108.05 yuan, and their indirect burden about 6.98 million yuan and indirect burden per capita 35 977.36 yuan. The study discovered that 1 681.53 health years were lost for the CWP inpaitents and per capita health years loss (8.67±3.65) years. The medical cost, the indirect cost and the DALYs loss of CWP are all sizable. Age and length of stay in the hospital are the major influencing factors for high hospitalization expenses. The hospitalization expenses of the CWP inpatients increase with their age and length of stay in the hospital. Taking effective measures to reduce the morbility is the key point to reduce the CWP burden.

  11. Calculating analysis of firing different composition artificial coal liquid fuels (ACLF) in the cyclone primary furnace

    Energy Technology Data Exchange (ETDEWEB)

    Tsepenok, A. [Novosibirsk State Technological Univ. (Russian Federation); Joint Stock company ' ' ZiO-COTES' ' , Novosibirsk (Russian Federation); Ovchinnikov, Yu. [Novosibirsk State Technological Univ. (Russian Federation); Serant, F. [Joint Stock company ' ' ZiO-COTES' ' , Novosibirsk (Russian Federation)

    2013-07-01

    This chapter describes the preparation technologies, results of computer simulation of combustion processes in a cyclone primary furnace during firing of artificial coal liquid fuels prepared from different coal grades and results of live testing. As a result the values of unburned carbon, NO{sub x} emissions and other concentrations in the outlet section primary furnace were estimated.

  12. Determination of the calcium species in coal chars by Ca K-edge XANES analysis

    Science.gov (United States)

    Liu, Li-Juan; Liu, Hui-Jun; Cui, Ming-Qi; Hu, Yong-Feng; Zheng, Lei; Zhao, Yi-Dong; Ma, Chen-Yan; Xi, Shi-Bo; Yang, Dong-Liang; Guo, Zhi-Ying; Wang, Jie

    2013-02-01

    Ca-based additives have been widely used as a sulfur adsorbent during coal pyrolysis and gasification. The Ca speciation and evolution during the pyrolysis of coal with Ca additives have attracted great attention. In this paper, Ca species in the coal chars prepared from the pyrolysis of Ca(OH)2 or CaCO3-added coals are studied by using Ca K-edge X-ray absorption near-edge structural spectroscopy. The results demonstrate that Ca(OH)2, CaSO4, CaS and CaO coexist in the Ca(OH)2-added chars, while Ca(OH)2 and CaSO4 are the main species in the Ca(OH)2-added chars. Besides, a carboxyl-bound Ca is also formed during both the pyrolysis for the Ca(OH)2-added and the CaCO3-added coals. A detailed discussion about the Ca speciation is given.

  13. Production of Indigenous and Enriched Khyber Pakhtunkhwa Coal Briquettes: Combustion and Disintegration Strength Analysis

    Directory of Open Access Journals (Sweden)

    Unsia Habib

    2013-06-01

    Full Text Available Khyber Pakhtun Khwa province of Pakistan has considerable amounts of low ranked coal. However, due to the absence of any centrally administered power generation system there is a need to explore indigenous methods for effectively using this valuable energy resource. In the present study an indigenous coal briquetting technology has been developed and evaluated in terms of combustion characteristics such as moisture content, volatile matter, ash, fixed carbon and calorific value of the resulting coal briquette and disintegration strength using polyvinyl acetate (PVA in combination with calcium carbonate (sample no 3 with highest disintegration strength value of 2059N. Comparison of test samples with the commercially available coal briquettes revealed improved combustion characteristics for the PVA bonded (sample no 1 and 5 coal briquettes having higher fixed carbon content and calorific value, lower ash contents as well as lower initial ignition time.

  14. A Voronoi-diagram analysis of the microstructures in bulk-molding compounds and its correlation with the mechanical properties

    Directory of Open Access Journals (Sweden)

    B. Bertoncelj

    2016-06-01

    Full Text Available Voronoi analysis is implemented to assess the influence of fiber content on the microstructure and mechanical properties of bulk-molding compounds containing different weight fractions of E-glass fibers (EGF (5–20 wt%. The fiber distribution in the polymer matrix is analyzed by scanning electron microscopy followed by the Voronoi tessellations, radial distribution function and statistical calculations. The experimental results are compared to modelled microstructures. The derived microstructural descriptors allow us to correlate the fiber weight content and the degree of fiber distribution homogeneity with the mechanical properties of EGF-reinforced composites. The distribution of fibers in composites with 10 and 15 wt% of fibers could be considered as the most homogeneous. This is in a good agreement with the results of the flexural strength and dynamic mechanical analyses, which confirmed that the latter samples exhibit the highest level of reinforcement.

  15. Coals of Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.; Fodor, B.; Gombar, G.; Sebestyen, I.

    1999-07-01

    As part of the activities conducted under the U.S. Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for standard coal analyses and major, minor and trace elements analysis. The mine areas sampled were selected to provide a spectrum of coal quality information for comparison with other coal areas in central Europe and worldwide. All of the areas are of major importance in the energy budget of Hungary. The five sample sites contain coal in rocks of Jurassic, Cretaceous, Eocene, Miocene, and Pliocene age. The coals, from four underground and one surface mine, range in rank from high volatile bituminous to lignite B. Most of the coal produced from the mines sampled is used to generate electricity. Some of the power plants that utilize the coals also provide heat for domestic and process usage. The standard coal analysis program is based on tests performed in accordance with standards of the American Society for Testing and Materials (ASTM). Proximate and ultimate analyses were supplemented by determinations of the heating value, equilibrium moisture, forms of sulfur, free-swelling index, ash fusion temperatures (both reducing and oxidizing), apparent specific gravity and Hardgrove Grindability index. The major, minor and trace element analyses were performed in accordance with standardized procedures of the U.S. Geological Survey. The analytical results will be available in the International Coal Quality Data Base of the USGS. The results of the program provide data for comparison with test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.

  16. Analysis of the evaporative towers cooling system of a coal-fired power plant

    Directory of Open Access Journals (Sweden)

    Laković Mirjana S.

    2012-01-01

    Full Text Available The paper presents a theoretical analysis of the cooling system of a 110 MW coal-fired power plant located in central Serbia, where eight evaporative towers cool down the plant. An updated research on the evaporative tower cooling system has been carried out to show the theoretical analysis of the tower heat and mass balance, taking into account the sensible and latent heat exchanged during the processes which occur inside these towers. Power plants which are using wet cooling towers for cooling condenser cooling water have higher design temperature of cooling water, thus the designed condensing pressure is higher compared to plants with a once-through cooling system. Daily and seasonal changes further deteriorate energy efficiency of these plants, so it can be concluded that these plants have up to 5% less efficiency compared to systems with once-through cooling. The whole analysis permitted to evaluate the optimal conditions, as far as the operation of the towers is concerned, and to suggest an improvement of the plant. Since plant energy efficiency improvement has become a quite common issue today, the evaluation of the cooling system operation was conducted under the hypothesis of an increase in the plant overall energy efficiency due to low cost improvement in cooling tower system.

  17. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Steven S. C. [Univ. of Akron, OH (United States)

    2014-08-31

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of building a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH4 can interact with CO2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels

  18. Decorrelation correction for nanoparticle tracking analysis of dilute polydisperse suspensions in bulk flow

    Science.gov (United States)

    Hartman, John; Kirby, Brian

    2017-03-01

    Nanoparticle tracking analysis, a multiprobe single particle tracking technique, is a widely used method to quickly determine the concentration and size distribution of colloidal particle suspensions. Many popular tools remove non-Brownian components of particle motion by subtracting the ensemble-average displacement at each time step, which is termed dedrifting. Though critical for accurate size measurements, dedrifting is shown here to introduce significant biasing error and can fundamentally limit the dynamic range of particle size that can be measured for dilute heterogeneous suspensions such as biological extracellular vesicles. We report a more accurate estimate of particle mean-square displacement, which we call decorrelation analysis, that accounts for correlations between individual and ensemble particle motion, which are spuriously introduced by dedrifting. Particle tracking simulation and experimental results show that this approach more accurately determines particle diameters for low-concentration polydisperse suspensions when compared with standard dedrifting techniques.

  19. Management of coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, A.M. [IEA Coal Research, London (United Kingdom)

    1999-10-01

    Stockpile management is an important part of the coal handling process from mine to customer. Virtually all coal producers and consumers make use of stockpiles at their facilities, either to serve as a buffer between material delivery and processing or to enable coal blending to meet quality requirements. This report begins by examining why stockpiles are employed. The stacking and reclaiming of piles, and the reduction of noise arising from the handling equipment is then discussed, along with stockpile automation and management. Good sampling and analysis procedures are essential for coal quality management. Sampling systems, representative samples and on-line analysis are described. Stock auditing to reconcile the amount of coal in the stockpiles is also covered. Coals are susceptible to weathering and atmospheric oxidation during storage in open-air piles. Properties and processes affected by coal oxidation and weathering, including heating value losses, handleability, cleaning, combustion and coking are examined. Spontaneous combustion poses safety, environmental, economic and handling problems if it becomes established in stockpiles. Factors affecting spontaneous combustion are discussed with the emphasis on prevention, detection and control. Stockyard operators are under constant social and political pressures to improve the environmental acceptability of their operations. Thus the control, prevention, and monitoring of fugitive dust emissions, and the composition, collection and treatment of stockpile runoff are addressed. The prevention and control of flowslides is also covered. Experience has shown that with good stockpile design and management, most coals can be safely stored in an environmentally acceptable way. 187 refs., 41 figs., 8 tabs.

  20. Analysis of organic sulfur and nitrogen in coal via tandem degradation methods. Final technical report, 1 September 1991--31 August 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kruge, M.A.; Palmer, S.R. [Southern Illinois Univ., Carbondale, IL (United States)

    1992-12-31

    With the recent increase in concern for environmental issues and the implication of sulfur and nitrogen in coal combustion products as prime causes of acid rain, it has become clear that there is an urgent need for alternative methods for de g the nature of organic sulfur and nitrogen compounds in coal. The principal impediment to the molecular characterization of organic sulfur and nitrogen forms in coal is the polymeric nature of coal`s molecular structure, ordering coal insoluble and impossible to analyze by the necessary gas chromatographic (GC) methods. In our research, we apply mild chemical degradation techniques in order to render coal soluble in common organic solvents and thus amenable to standard GC characterization. The study also seeks to apply the degradative techniques to coal asphaltenes, since they are believed to be polymeric structures similar to the whole coal, but smaller and more readily analyzed. Of the degradation techniques used to date, oxidation by sodium dichromate provides the best chemical structural information. A variety of major sulfur compounds were detected in the dichromate oxidation products of demineralized IBC101 coal, including thiazoles (compounds which contains both sulfur and nitrogen) and a series of isomers of C{sub 2}-, C{sub 3}and C{sub 4}-alkylthiophene derivatives. Precise agreement between GC-MS and sulfur-selective GC-FPD data was obtained for these compounds, which probably originated as short alkyl chains on exterior portions of the original peat macromolecular structure that were sulfurized shortly after burial by H{sub 2}S. The results were further confirmed by the analysis of a non-Illinois Basin coal with nearly twice the organic sulfur content of IBC101.

  1. Analysis of organic sulfur and nitrogen in coal via tandem degradation methods. Final technical report, 1 September 1991--31 October 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kruge, M.A.; Palmer, S.R. [Southern Illinois Univ., Carbondale, IL (United States)

    1992-12-31

    With the recent increase in concern for environmental issues and the implication of sulfur and nitrogen in coal combustion preducts as prime causes of acid rain, it has become clear that there is an urgent need for alternative methods for determining the nature of organic sulfur and nitrogen compounds in coal. The principal impediment to the molecular characterization of organic sulfur and nitrogen forms in coal is the polymeric nature of coal`s molecular structure, rendering coal insoluble and impossible to analyze by the necessary gas chromatographic (GC) methods. In our research, we apply mild chemical degradation techniques in order to render coal soluble in common organic solvents and thus amenable to standard GC characterization. The study also seeks to apply the degradative techniques to coal asphaltenes, since they are believed to be polymeric structures similar to the whole coal, but smaller and more readily analyzed. Of the degradation techniques used to date, oxidation by sodium dichromate provides the best chemical structure information. A variety of major sulfur compounds were detected in the dichromate oxidation products of demineralized IBC101 coal, including thiazoles (compounds which contains both sulfur and nitrogen) and a series of isomers of C{sub 2}-, C{sub 3}- and C{sub 4}-alkylthiophene derivatives. Precise agreement between GC-MS and sulfur-selective GC-FPD data was obtained for these compounds, which probably originated as short alkyl chains on exterior portions of the original peat macromolecular structure that were sulfurized shortly after burial by H{sub 2}S. The results were further confirmed by the analysis of a non-Illinois Basin coal with nearly twice the organic sulfur content of IBC101.

  2. Analysis on the Initial Cracking Parameters of Cross-Measure Hydraulic Fracture in Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2015-07-01

    Full Text Available Initial cracking pressure and locations are important parameters in conducting cross-measure hydraulic fracturing to enhance coal seam permeability in underground coalmines, which are significantly influenced by in-situ stress and occurrence of coal seam. In this study, stress state around cross-measure fracturing boreholes was analyzed using in-situ stress coordinate transformation, then a mathematical model was developed to evaluate initial cracking parameters of borehole assuming the maximum tensile stress criterion. Subsequently, the influences of in-situ stress and occurrence of coal seams on initial cracking pressure and locations in underground coalmines were analyzed using the proposed model. Finally, the proposed model was verified with field test data. The results suggest that the initial cracking pressure increases with the depth cover and coal seam dip angle. However, it decreases with the increase in azimuth of major principle stress. The results also indicate that the initial cracking locations concentrated in the second and fourth quadrant in polar coordinate, and shifted direction to the strike of coal seam as coal seam dip angle and azimuth of maximum principle stress increase. Field investigation revealed consistent rule with the developed model that the initial cracking pressure increases with the coal seam dip angle. Therefore, the proposed mathematical model provides theoretical insight to analyze the initial cracking parameters during cross-measure hydraulic fracturing for underground coalmines.

  3. Analysis of mercury species present during coal combustion by thermal desorption

    Energy Technology Data Exchange (ETDEWEB)

    M. Antonia Lopez-Anton; Yang Yuan; Ron Perry; M. Mercedes Maroto-Valer [University of Nottingham, Nottingham (United Kingdom). United Kingdom Fuels and Power Technology Research Division

    2010-03-15

    Mercury in coal and its emissions from coal-fired boilers is a topic of primary environmental concern in the United States and Europe. The predominant forms of mercury in coal-fired flue gas are elemental (Hg{sup 0) and oxidized (Hg{sup 2+}, primarily as HgCl{sub 2}). Because Hg{sup 2+} is more condensable and far more water soluble than Hg{sup 0}, the wide variability in mercury speciation in coal-fired flue gases undermines the total mercury removal efficiency of most mercury emission control technologies. It is important therefore to have an understanding of the behaviour of mercury during coal combustion and the mechanisms of mercury oxidation along the flue gas path. In this study, a temperature programmed decomposition technique was applied in order to acquire an understanding of the mode of decomposition of mercury species during coal combustion. A series of mercury model compounds were used for qualitative calibration. The temperature appearance range of the main mercury species can be arranged in increasing order as HgCl{sub 2} < HgS < HgO < HgSO{sub 4}. Different fly ashes with certified and reference values for mercury concentration were used to evaluate the method. This study has shown that the thermal decomposition test is a newly developed efficient method for identifying and quantifying mercury species from coal combustion products. 30 refs., 8 figs., 3 tabs.

  4. A critical evaluation of how ancient DNA bulk bone metabarcoding complements traditional morphological analysis of fossil assemblages

    Science.gov (United States)

    Grealy, Alicia C.; McDowell, Matthew C.; Scofield, Paul; Murray, Dáithí C.; Fusco, Diana A.; Haile, James; Prideaux, Gavin J.; Bunce, Michael

    2015-11-01

    caveats. Our results show that DNA analysis of bulk bone samples can be a universally useful tool for studying past biodiversity, when integrated with existing morphology-based approaches. Despite several limitations that remain, the BBM method offers a cost-effective and efficient way of studying fossil assemblages, offering complementary insights into evolution, extinction, and conservation.

  5. Studies on thermal neutron perturbation factor needed for bulk sample activation analysis

    CERN Document Server

    Csikai, J; Sanami, T; Michikawa, T

    2002-01-01

    The spatial distribution of thermal neutrons produced by an Am-Be source in a graphite pile was measured via the activation foil method. The results obtained agree well with calculated data using the MCNP-4B code. A previous method used for the determination of the average neutron flux within thin absorbing samples has been improved and extended for a graphite moderator. A procedure developed for the determination of the flux perturbation factor renders the thermal neutron activation analysis of bulky samples of unknown composition possible both in hydrogenous and graphite moderators.

  6. Formation and retention of methane in coal

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  7. Bioinformatic and proteomic analysis of bulk histones reveals PTM crosstalk and chromatin features.

    Science.gov (United States)

    Zhang, Chunchao; Gao, Shan; Molascon, Anthony J; Wang, Zhe; Gorovsky, Martin A; Liu, Yifan; Andrews, Philip C

    2014-07-03

    Systems analysis of chromatin has been constrained by complex patterns and dynamics of histone post-translational modifications (PTMs), which represent major challenges for both mass spectrometry (MS) and immuno-based approaches (e.g., chromatin immuno-precipitation, ChIP). Here we present a proof-of-concept study demonstrating that crosstalk among PTMs and their functional significance can be revealed via systematic bioinformatic and proteomic analysis of steady-state histone PTM levels from cells under various perturbations. Using high resolution tandem MS, we quantified 53 modification states from all core histones and their conserved variants in the unicellular eukaryotic model organism Tetrahymena. By correlating histone PTM patterns across 15 different conditions, including various physiological states and mutations of key histone modifying enzymes, we identified 5 specific chromatin states with characteristic covarying histone PTMs and associated them with distinctive functions in replication, transcription, and DNA repair. In addition to providing a detailed picture on histone PTM crosstalk at global levels, this work has established a novel bioinformatic and proteomic approach, which can be adapted to other organisms and readily scaled up to allow increased resolution of chromatin states.

  8. Estimation for origin of coals on biomaker analysis; Jinko sekitan oyobi tennen sekitan no biomaker bunseki ni yoru sekitan kigen busshitsu no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y. [Geological Survey of Japan, Tsukuba (Japan); Sugimoto, Y. [National Institute of Materials and Chemical Research, Tsukuba (Japan); Okada, K. [Coal Mining Research Center, Tokyo (Japan)

    1996-10-28

    In order to study coal production processes, an estimation study was carried out on coal originating materials by using biomaker analysis. Test samples are original coals collected directly from a mine in Hokkaido (not having been subjected cleaning). Mixing and solvent extraction were performed after pulverization, and then tests were given on saturated hydrocarbon components divided by using a silicagel column chromatograph for the present study. It can be known from n-alkane distribution in the coal that low molecular alkane increases with increasing degree of coalification. Artificial coal made by wet-heating Metasequoia leaves contains only little n-alkane. Diterpenoid compound exists in the Taiheiyo and Akabira coals. Tetra-cyclic diterpernoid is contained abundantly in subtropical coniferous trees, serving as a parameter for warm environment. The compound is contained also in the Fushun coal, but not in Indonesian coals. Hopanoid constitution shows very high similarity, but H/C atomic ratio may vary largely even if the coalification is at the same degree. This is likely to be caused from difference in originating materials. Hopanoids are bacteria attributed substances, whose activities are not affected by the originating materials. 2 figs., 1 tab.

  9. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  10. Diversified management of coal enterprises in China: model selection, motivation and effect analysis

    Science.gov (United States)

    Lyu, Jingye; Lian, Xu; Li, Penglin

    2018-01-01

    In the context of promoting the new energy revolution and economic development of the new normal, the coal industry to excess production capacity is one of the important aspects of structural reform of the supply side. The purpose of diversification of coal enterprises in China is to seize historical opportunities, create new models of development and improve operational efficiency. In the research on diversification of coal enterprises, exploring the mode selection, motivation and effect from the aspects of the industry is conducive to the realization of the smooth replacement and the sustainable development of enterprises, to further enrich the strategic management of coal enterprises, to provide effective reference for the formulation of enterprise management decision-making and implementation of diversification strategy.

  11. A global equilibrium analysis of co-firing coal and solid recovered fuel

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Jappe Frandsen, Flemming

    Global equilibrium calculations have been performed to study the behavior of ash forming species in cocombustion of a bituminous coal and a solid recovered fuel (SRF). It revealed that co-combustion of coal and 25% SRF (weight basis) could significantly reduce the formation of NaCl (g) and KCl (g...... to aluminosilicates during the flue gas cooling in the experiments, probably due to kinetic limitations. The results suggest that it is important to control the chlorine and alkali content in SRF, in order to facilitate co-combustion of coal and SRF....... method to increase the electrical efficiency of utilizing waste, as the aluminosilicates content in the coal could mitigate the ash related problems caused by the relative high chlorine and alkali content in the SRF. The influence of different SRF quality on the behavior of co-combustion was evaluated...

  12. Coal desulfurization

    Science.gov (United States)

    Corcoran, William H. (Inventor); Vasilakos, Nicholas P. (Inventor); Lawson, Daniel D. (Inventor)

    1982-01-01

    A method for enhancing solubilizing mass transport of reactive agents into and out of carbonaceous materials, such as coal. Solubility parameters of mass transfer and solvent media are matched to individual peaks in the solubility parameter spectrum of coals to enhance swelling and/or dissolution. Methanol containing reactive agent carriers are found particularly effective for removing organic sulfur from coals by chlorinolysis.

  13. Proximate and The Calorific Value Analysis of Brown Coal for High-Calorie Hybrid Briquette Application

    Science.gov (United States)

    Sahaluddin Hasan, Erzam; Jahiding, Muhammad; Mashuni; Ilmawati, WOS; Wati, Wa; Nyoman Sudiana, I.

    2017-05-01

    A study has been conducted about the quality of young coal (brown coal ) briquettes from North Kolaka to determine the effect of varied adhesive on the proximate characteristics and calorific value. The young coal briquettes were made by using adhesives of starch, cassava starch and Castor oil plant starch at a concentration of 5 to 15% of the total mass. The grain size of young coal and the adhesive used were 60 mesh and 100 mesh, respectively. The samples were molded in a cylindrical mold with a diameter of 2.5 cm and a high of 6 cm, and with a pressure of 100 kg/cm2. After having been compacted, the young coal samples were then analyzed proximately i.e. moisture content, volatile matter, ash content and fixed carbon, as well as their calorific values calculation. The results showed that the increase of the adhesive could tend to increased the water content and volatile matter, but reduced the ash content, and the fixed carbon tend to constant except coal briquettes using starch adhesive it were increased. The calorific value of the young coal briquettes increased for all kinds of adhesives when the adhesive increased. The calorific value per one gram ranged from 3162.7 cal/g to 4678.7 cal/g. The highest calorific value, 4678.7 cal/g, was observed at the adhesive of 15 % of starch. The characteristics of young coal can be used as a raw material for making high-calorie hybrid briquettes.

  14. Toxicity analysis of coal mining industry NPDES discharges in Southwest Virginia

    OpenAIRE

    Brendlinger, Robert Lee

    1991-01-01

    Industrial toxicity has become a major environmental subject over the past decade. Although much research and data have been collected and published for the manufacturing type industries, minimal data is currently available concerning the possible toxics that may be associated with coal mining industry NPDES discharges. Thus, in this report, an environmental toxicity assessment with respective data shall be presented on the three major constituent sectors of the coal mining industry in Southw...

  15. Oak ridge national laboratory automated clean chemistry for bulk analysis of environmental swipe samples

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, Debra A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hexel, Cole R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ticknor, Brian W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tevepaugh, Kayron N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Metzger, Shalina C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-11-01

    To shorten the lengthy and costly manual chemical purification procedures, sample preparation methods for mass spectrometry are being automated using commercial-off-the-shelf (COTS) equipment. This addresses a serious need in the nuclear safeguards community to debottleneck the separation of U and Pu in environmental samples—currently performed by overburdened chemists—with a method that allows unattended, overnight operation. In collaboration with Elemental Scientific Inc., the prepFAST-MC2 was designed based on current COTS equipment that was modified for U/Pu separations utilizing Eichrom™ TEVA and UTEVA resins. Initial verification of individual columns yielded small elution volumes with consistent elution profiles and good recovery. Combined column calibration demonstrated ample separation without crosscontamination of the eluent. Automated packing and unpacking of the built-in columns initially showed >15% deviation in resin loading by weight, which can lead to inconsistent separations. Optimization of the packing and unpacking methods led to a reduction in the variability of the packed resin to less than 5% daily. The reproducibility of the automated system was tested with samples containing 30 ng U and 15 pg Pu, which were separated in a series with alternating reagent blanks. These experiments showed very good washout of both the resin and the sample from the columns as evidenced by low blank values. Analysis of the major and minor isotope ratios for U and Pu provided values well within data quality limits for the International Atomic Energy Agency. Additionally, system process blanks spiked with 233U and 244Pu tracers were separated using the automated system after it was moved outside of a clean room and yielded levels equivalent to clean room blanks, confirming that the system can produce high quality results without the need for expensive clean room infrastructure. Comparison of the amount of personnel time necessary for successful manual vs

  16. Analysis of the holistic impact of the Hydrogen Economy on the coal industry

    Science.gov (United States)

    Lusk, Shannon Perry

    As gas prices soar and energy demand continues to grow amidst increasingly stringent environmental regulations and an assortment of global pressures, implementing alternative energy sources while considering their linked economic, environmental and societal impacts becomes a more pressing matter. The Hydrogen Economy has been proposed as an answer to meeting the increasing energy demand for electric power generation and transportation in an environmentally benign way. Based on current hydrogen technology development, the most practical feedstock to fuel the Hydrogen Economy may prove to be coal via hydrogen production at FutureGen plants. The planned growth of the currently conceived Hydrogen Economy will cause dramatic impacts, some good and some bad, on the economy, the environment, and society, which are interlinked. The goal of this research is to provide tools to inform public policy makers in sorting out policy options related to coal and the Hydrogen Economy. This study examines the impact of a transition to a Hydrogen Economy on the coal industry by creating FutureGen penetration models, forecasting coal MFA's which clearly provide the impact on coal production and associated environmental impacts, and finally formulating a goal programming model that seeks the maximum benefit to society while analyzing the trade-offs between environmental, social, and economical concerns related to coal and the Hydrogen Economy.

  17. Analysis of natural radioactivity in Yatağan coal - fired power plant in Turkey

    Science.gov (United States)

    Altıkulaç, Aydan; Turhan, Şeref; Gümüş, Hasan

    2017-09-01

    Use of the coal in order to generate electricity increases the exposure of people to radiation. In this paper, the activity concentrations of nuclides 226Ra, 232Th and 40K in samples of coal and bottom ash from the Yatagan Coal-Fired thermal power plant determined using gamma ray spectrometer with a NaI(Tl) scintillation detector. The mean activity concentrations of 226Ra, 232Th, and 40K in the coal were found to be 37.2±2.8 Bqkg-1, 51.8±3.4 Bqkg-1 and 166.7±11.1 Bqkg-1, respectively. Whereas in the bottom ashes, the concentrations of the corresponding radionuclides were found to be 62.2±5.6 Bqkg-1, 87.4±5.9 Bqkg-1 and 221.0 ±12.5 Bqkg-1, respectively. The findings show that bottom ashes show higher activity concentrations of related radionuclide to coal samples. The absorbed gamma dose rate in outdoor air DROUT and annual effective dose rate (AED) from coal were calculated to define radıologıcal rısk. The average findings of annual effective doses were detected as 68.6±5.1 μSvy-1 and 110.3±11.2 μSvy-1, respectively.

  18. Coal Mine Permit Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — ESRI ArcView shapefile depicting New Mexico coal mines permitted under the Surface Mining Control and Reclamation Act of 1977 (SMCRA), by either the NM Mining these...

  19. Sensitivity analysis of bulk traps detection in analog deep-level transient spectroscopy measurement systems with exponentially weighted average

    Science.gov (United States)

    Dmowski, K.; Jakubowski, A.

    1989-01-01

    Improved formulas are proposed describing the correlation signals of bulk traps in semiconductor devices (Schottky barrier diodes and p-n junctions) for constant voltage and constant capacitance deep-level transient spectroscopy analog measurement systems with exponentially weighted average. The presented formulas describe the correlation signals for the two kinds of these systems most often used in practice, i.e., systems utilizing a two-channel boxcar integrator or utilizing a simple one-channel correlator with a bipolar rectangular weighting function. These formulas take into account arbitrary gate width of the applied correlator and the so-called Lambda effect. New analytical formulas describing the rate window for an arbitrarily chosen gate width are proposed. A comparative analysis has been made of the potential sensitivity of these systems as a function of gate width based on two figures of merit: the normalized correlation signal and the normalized output signal-to-noise ratio. The analysis presented enables one to maximize sensitivity of these systems for the study of low-concentration, processing-induced defects in semiconductor devices.

  20. Evaluation of metal biouptake from the analysis of bulk metal depletion kinetics at various cell concentrations: theory and application.

    Science.gov (United States)

    Rotureau, Elise; Billard, Patrick; Duval, Jérôme F L

    2015-01-20

    Bioavailability of trace metals is a key parameter for assessment of toxicity on living organisms. Proper evaluation of metal bioavailability requires monitoring the various interfacial processes that control metal partitioning dynamics at the biointerface, which includes metal transport from solution to cell membrane, adsorption at the biosurface, internalization, and possible excretion. In this work, a methodology is proposed to quantitatively describe the dynamics of Cd(II) uptake by Pseudomonas putida. The analysis is based on the kinetic measurement of Cd(II) depletion from bulk solution at various initial cell concentrations using electroanalytical probes. On the basis of a recent formalism on the dynamics of metal uptake by complex biointerphases, the cell concentration-dependent depletion time scales and plateau values reached by metal concentrations at long exposure times (>3 h) are successfully rationalized in terms of limiting metal uptake flux, rate of excretion, and metal affinity to internalization sites. The analysis shows the limits of approximate depletion models valid in the extremes of high and weak metal affinities. The contribution of conductive diffusion transfer of metals from the solution to the cell membrane in governing the rate of Cd(II) uptake is further discussed on the basis of estimated resistances for metal membrane transfer and extracellular mass transport.

  1. Simulation-integrated Design of Dry Bulk Terminals

    NARCIS (Netherlands)

    Van Vianen, T.A.

    2015-01-01

    To meet the expected increase of seaborne trade flows for coal and iron ore dry bulk terminals need to be designed or expanded. A comprehensive design method for dry bulk terminals is missing. Designs are currently based on rules-of-thumb, practical experiences and average values for specific design

  2. Using of dimensional analysis to determine the parameters of gravity separator table device to minimize impurities in bulk lentils

    Directory of Open Access Journals (Sweden)

    H Bagheri

    2017-05-01

    Full Text Available Introduction Lentil (Lens culinaris medic is an important and highly nutritious crop belonging to the family of legumes. Lentil is cultivated worldwide but competition with weeds is a problem affecting production and can reduce yield by more than 80%. The study on the separation of impurities in bulk lentils (Euphorbia helioscopia weed, Wild oat weed and etc. by a gravity separator has an extreme importance. Since no study has been done to date, in this study, the effects of different parameters of a gravity separator (longitudinal and latitudinal slopes, oscillation frequency and amplitude on the separation of foreign matters in lentil seeds were evaluated. A dimensionless number (v/aω which shows ration of air current velocity blown to lentil to the maximum velocity of table oscillation, was considered in ratio of separation. Materials and Methods In this research, lentil samples were taken from farms in Ardebil Province (Bileh-Savar cultivar. A gravity separator apparatus was also used for separating impurities from lentil seeds. A Laboratory Gravity Separator Type LA-K (Westrup A/S Denmark was used to separate impurities from bulk lentils. In this machine, table settings were as follows; longitudinal slope parameters (1°,1.5°, 1.75°, 2° and 2.5°, latitudinal slope (0.5°, 1°, and 1.5°, frequency of oscillation (380, 400, 420 and 450 cycles min-1, and amplitude of oscillation (5 and 7 mm, these settings were all adjustable. Similarly, the instrument had 5 boxes whereby, through proper adjustment, the heavier material was transferred toward the right side of the table and lighter material moved toward the left side. Through proper adjustment of the main parameters of the instrument, the impurities were separated from bulk lentils. Then using an electronic seed counter, five groups of seed which each group containing 100 seeds were counted and selected. Results and Discussion The results of variance analysis of the factorial design with

  3. Analysis on Filling Ratio and Shield Supporting Pressure for Overburden Movement Control in Coal Mining with Compacted Backfilling

    Directory of Open Access Journals (Sweden)

    Yanli Huang

    2016-12-01

    Full Text Available Since the weight of overburden is sustained by both the backfill body and the unmined solid coal in coal mining with compacted backfilling (CMCB panels, the stress and deformation characteristics of the surrounding rocks in coal mining are radically changed. The overburden movement control mechanism by coordinating with backfill body and shield in CMCB was studied systematically in this paper. Based on the analysis of deformational and structural characteristics of surrounding rock in CMCB panels, the methods of theoretical analysis, numerical simulation and engineering test are employed. The results show that the fracture of the main roof is mainly controlled by the filling ratio φ and is non-correlated to the shield supporting pressure p. However, p has a significant control effect on the deflection of roof within the shield canopy length, and adversely affects the filling ratio. With the increase of the filling ratio of the gob, the maximum sagging of the immediate and the main roofs, the peak front and the influence range of the abutment pressures are gradually reduced. Correspondingly, the stable period of internal pressure of backfill body in the gob is shortened. Engineering practice shows that the sagging of the gob roof, the distribution of the abutment pressure, the distribution of the internal pressure in the backfill body, and the ground surface sagging results obtained by the in-situ measurement are approximately corresponding to the theoretical analysis and numerical simulation results.

  4. Application of multivariate statistical analysis to superficial soils around a coal burning power plant

    Directory of Open Access Journals (Sweden)

    Godoy Maria Luiza D. P

    2004-01-01

    Full Text Available The Thermoelectric Complex Jorge Lacerda (TCJL, located in the Santa Catarina State, Brazil, is the largest coal burning thermoelectric complex of Latin America and consists of seven power plants with a total capacity of 832 MWe. In order to estimate the contribution of the atmospheric releases from the TCJL to the elemental composition of surface soils around it, forty-five samples were collected at up to a distance of 8 km. Forty-two elements were determined by ICP-MS and ICP-AES after total acid dissolution. The technique of principal component analysis was employed to identify the major sources that contribute to surface soil composition. Additionally, a source apportioning using multiple regression on absolute principal component scores was performed in order to obtain quantitative information about the contribution of the different identified sources on the soil composition. Based on the results obtained, four sources were identified as the main contributors to the surface soil elemental composition. One of them was related to TCJL because it retains volatile elements enriched on fly ash and released from powerhouse stacks.

  5. Application of subtracted gDNA microarray-assisted Bulked Segregant Analysis for rapid discovery of molecular markers associated with day-neutrality in strawberry (Fragaria x ananassa)

    Science.gov (United States)

    Gor, Mian Chee; Mantri, Nitin; Pang, Edwin

    2016-01-01

    A Fragaria Discovery Panel (FDP; strawberry-specific SDA) containing 287 features was constructed by subtracting the pooled gDNA of nine non-angiosperm species from the pooled gDNA of five strawberry genotypes. This FDP was used for Bulk Segregant Analysis (BSA) to enable identification of molecular markers associated with day-neutrality. Analysis of hybridisation patterns of a short day (SD) DNA bulk and three day-neutral (DN) DNA bulks varying in flowering strength allowed identification of a novel feature, FaP2E11, closely linked to CYTOKININ OXIDASE 1 (CKX1) gene possibly involved in promoting flowering under non-inductive condition. The signal intensities of FaP2E11 feature obtained from the strong DN bulk (DN1) is three fold higher than the short day bulk (SD), indicating that the putative marker may linked to a CKX1 variant allele with lower enzyme activity. We propose a model for flowering regulation based on the hypothesis that flowering strength may be regulated by the copy number of FaP2E11-linked CKX1 alleles. This study demonstrates the feasibility of the SDA-based BSA approach for the identification of molecular markers associated with day-neutrality in strawberry. This innovative strategy is an efficient and cost-effective approach for molecular marker discovery. PMID:27586242

  6. Scenario-Based Analysis on Water Resources Implication of Coal Power in Western China

    Directory of Open Access Journals (Sweden)

    Jiahai Yuan

    2014-10-01

    Full Text Available Currently, 58% of coal-fired power generation capacity is located in eastern China, where the demand for electricity is strong. Serious air pollution in China, in eastern regions in particular, has compelled the Chinese government to impose a ban on the new construction of pulverized coal power plants in eastern regions. Meanwhile, rapid economic growth is thirsty for electric power supply. As a response, China planned to build large-scale coal power bases in six western provinces, including Inner Mongolia, Shanxi, Shaanxi, Xinjiang, Ningxia and Gansu. In this paper, the water resource implication of the coal power base planning is addressed. We find that, in a business-as-usual (BAU scenario, water consumption for coal power generation in these six provinces will increase from 1130 million m3 in 2012 to 2085 million m3 in 2020, experiencing nearly a double growth. Such a surge will exert great pressure on water supply and lead to serious water crisis in these already water-starved regions. A strong implication is that the Chinese Government must add water resource constraint as a critical point in its overall sustainable development plan, in addition to energy supply and environment protection. An integrated energy-water resource plan with regionalized environmental carrying capacity as constraints should be developed to settle this puzzle. Several measures are proposed to cope with it, including downsizing coal power in western regions, raising the technical threshold of new coal power plants and implementing retrofitting to the inefficient cooling system, and reengineering the generation process to waterless or recycled means.

  7. Statistical Analysis of Consequences Caused by the Collisions of Soaring Drops of Organic Coal-Water Fuel

    Directory of Open Access Journals (Sweden)

    Valiullin Timur R.

    2017-01-01

    Full Text Available The paper examines the processes of collision of the soaring organic coal – water fuel (OCWF drops in the specialized combustion chamber in case of direct injection of suspension with the subsequent crushing, decay and coagulation. High speed video registration is used. The fuel composition is prepared with the use of a coal conversion waste (filter-cake “G”, turbine oil waste, water and a plasticizer. The statistical analysis of consequences of impingement of OCWF drops at their movement in an oxidizer flotation (temperature is about 800-840 K with their following deformation is carried out. The conditions when the processes of coagulation, disintegration or crushing of drops are dominated are established.

  8. Hyperspectral analysis of soil organic matter in coal mining regions using wavelets, correlations, and partial least squares regression.

    Science.gov (United States)

    Lin, Lixin; Wang, Yunjia; Teng, Jiyao; Wang, Xuchen

    2016-02-01

    Hyperspectral estimation of soil organic matter (SOM) in coal mining regions is an important tool for enhancing fertilization in soil restoration programs. The correlation--partial least squares regression (PLSR) method effectively solves the information loss problem of correlation--multiple linear stepwise regression, but results of the correlation analysis must be optimized to improve precision. This study considers the relationship between spectral reflectance and SOM based on spectral reflectance curves of soil samples collected from coal mining regions. Based on the major absorption troughs in the 400-1006 nm spectral range, PLSR analysis was performed using 289 independent bands of the second derivative (SDR) with three levels and measured SOM values. A wavelet-correlation-PLSR (W-C-PLSR) model was then constructed. By amplifying useful information that was previously obscured by noise, the W-C-PLSR model was optimal for estimating SOM content, with smaller prediction errors in both calibration (R(2) = 0.970, root mean square error (RMSEC) = 3.10, and mean relative error (MREC) = 8.75) and validation (RMSEV = 5.85 and MREV = 14.32) analyses, as compared with other models. Results indicate that W-C-PLSR has great potential to estimate SOM in coal mining regions.

  9. Coal demand feeds stockyard market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-04-01

    After a period of relatively sluggish growth, particularly in northern Europe where heavy bulk imports have been static, a sudden surge in coal demand has put pressure on stockyard handling capacity. The article reports on several new bucket wheel stacker/reclaimers which have recently been ordered or installed in Germany, Wales, China and other countries. 2 figs.

  10. A combined surface and bulk TCAD damage model for the analysis of radiation detectors operating at HL-LHC fluences

    Science.gov (United States)

    Morozzi, A.; Passeri, D.; Moscatelli, F.; Dalla Betta, G.-F.; Bilei, G. M.

    2016-12-01

    In this work we present the development and the application of a new TCAD modelling scheme to simulate the effects of radiation damage on silicon radiation detectors at the very high fluence levels expected at High Luminosity LHC (up to 2 × 1016 1MeV n/cm2). In particular, we propose a combined approach for the analysis of the surface effects (oxide charge build-up and interface trap states introduction) as well as bulk effects (deep level traps and/or recombination centers introduction). Experimental measurements have been carried out aiming at: i) extraction from simple test structures of relevant parameters to be included within the TCAD model and ii) validation of the new modelling scheme through comparison with measurements of different test structures (e.g. different technologies) before and after irradiation. The good agreements between experimental measurements and simulation findings foster the suitability of the TCAD modelling approach as a predictive tool for investigating the radiation detector behavior at different fluences and operating conditions. This would allow the design and optimization of innovative 3D and planar silicon detectors for future HL-LHC High Energy Physics experiments.

  11. Bulk and Compound Specific Isotope Analysis Provide Insights into Habitat Use and Diet Variability Among Female Sperm Whales (Physeter macrocephalus) from the Eastern Tropical Pacific

    Science.gov (United States)

    Zupcic-Moore, J. R.; Ruiz-Cooley, R. I.; McCarthy, M. D.; Koch, P. L.

    2016-02-01

    Sperm whales (Physeter macrocephalus) have a strong social structure and females form sympatric clans that span thousands of kilometers and encompass thousands of whales. We investigated variability in foraging habitat and diet through the life history of ten female sperm whales from the Eastern Tropical Pacific (ETP), using coupled bulk and compound specific amino acid stable isotope measurements made on annual tooth growth layers. We identified three broad temporal patterns in annual records of bulk nitrogen (δ15N) and carbon (δ13C) isotope values in sub-groups of individuals: 1) constant, 2) increasing, and 3) decreasing isotopic values between ca.1930 and 1960. These different isotopic patterns suggest that whales sampled may belong to different clans. In addition, average bulk δ15N and δ13C values differed among individuals and appear to be group-specific. This suggests that whales from different sub-groups foraged in different habitats and/or had differing diets. To differentiate between these interpretations, we conducted compound specific amino acid isotope analysis on dentin samples from six whales. Amino acid proxies for baseline δ15N values indicate that bulk variability among whales is due to δ15N differences at the base of the food web, indicating different feeding areas. The δ13C values of essential amino acids, which are positively correlated to bulk δ13C values, support this conclusion. Together, the compound specific and bulk annual records suggest that whales with higher isotopic values likely foraged in regions closer to the coast throughout their lives, while whales with lower isotopic values likely foraged further offshore. Overall, our data suggest clear spatial segregation of clans within a similar ocean region. Since molecular analysis cannot yet distinguish genetic variability among whale clans, we suggest that stable isotope analysis can help to identify clans and their foraging ecology, based on habitat use.

  12. Bulk Compositional Trends in Meteorites: A Guide for Analysis and Interpretation of NEAR XGRS Data from Asteroid 433 Eros

    Science.gov (United States)

    Nittler, L. R.; Clark, P. E.; McCoy, T. J.; Murphy, M. E.; Trombka, J. I.

    2000-01-01

    We have compiled a large database of bulk meteorite elemental compositions. We investigate compositional trends in a variety of meteorite classes to aid in interpretation of NEAR XGRS elemental abundance data from the asteroid Eros.

  13. GIS-based Analysis of LS Factor under Coal Mining Subsidence Impacts in Sandy Region

    Directory of Open Access Journals (Sweden)

    W. Xiao

    2014-09-01

    Full Text Available Coal deposits in the adjacent regions of Shanxi, Shaanxi, and Inner Mongolia province (SSI account for approximately two-thirds of coal in China; therefore, the SSI region has become the frontier of coal mining and its westward movement. Numerous adverse impacts to land and environment have arisen in these sandy, arid, and ecologically fragile areas. Underground coal mining activities cause land to subside and subsequent soil erosion, with slope length and slope steepness (LS as the key influential factor. In this investigation, an SSI mining site was chosen as a case study area, and 1 the pre-mining LS factor was obtained using a digital elevation model (DEM dataset; 2 a mining subsidence prediction was implemented with revised subsidence prediction factors; and 3 the post-mining LS factor was calculated by integrating the pre-mining DEM dataset and coal mining subsidence prediction data. The results revealed that the LS factor leads to some changes in the bottom of subsidence basin and considerable alterations at the basin’s edges of basin. Moreover, the LS factor became larger in the steeper terrain under subsidence impacts. This integrated method could quantitatively analyse LS changes and spatial distribution under mining impacts, which will benefit and provide references for soil erosion evaluations in this region

  14. LIQUID COAL CHARACTERISTIC ANALYSIS WITH FOURIER TRANSFORM INFRA RED (FTIR AND DIFFERENTIAL SCANNING CALORIMETER (DSC

    Directory of Open Access Journals (Sweden)

    ATUS BUKU

    2017-02-01

    Full Text Available The aim of this study is to identify the value of compounds contained in liquid coal by using Fourier Transform Infra-Red (FTIR and Differential Scanning Calorimeter (DSC. FTIR was used to analyse the components contained in liquid coal, while the DSC is done to observe the heat reaction to the environment. Based on the Fourier Transform Infra-Red (FTIR test results it is shown that the compound contained in the liquid Coal consisting of alkanes, alkenes and alkyne. These compounds are similar compounds. The alkanes, alkenes and alkynes compounds undergo complete combustion reaction with oxygen and would produce CO2 and water vapour [H2O (g]. If incomplete combustion occurs, the reaction proceeds in the form of Carbon Monoxide CO gas or solid carbon andH2O. Combustion reaction that occurs in all these three compounds also produces a number of considerable energy. And if it has higher value of Carbon then the boiling point would be higher. From the Differential Scanning Calorimetric (DSC test results obtained some of the factors that affect the reaction speed, which are the temperature, the reaction mixture composition, and pressure. Temperature has a profound influence in coal liquefaction, because if liquid coal heated with high pressure, the carbon chain would break down into smaller chains consisting of aromatic chain, hydro-aromatic, or aliphatic. This then triggers a reaction between oil formation and polymerization reactions to form solids (char.

  15. Analysis of natural radioactivity in Yatağan coal – fired power plant in Turkey

    Directory of Open Access Journals (Sweden)

    Altıkulaç Aydan

    2017-01-01

    Full Text Available Use of the coal in order to generate electricity increases the exposure of people to radiation. In this paper, the activity concentrations of nuclides 226Ra, 232Th and 40K in samples of coal and bottom ash from the Yatagan Coal–Fired thermal power plant determined using gamma ray spectrometer with a NaI(Tl scintillation detector. The mean activity concentrations of 226Ra, 232Th, and 40K in the coal were found to be 37.2±2.8 Bqkg-1, 51.8±3.4 Bqkg-1 and 166.7±11.1 Bqkg-1, respectively. Whereas in the bottom ashes, the concentrations of the corresponding radionuclides were found to be 62.2±5.6 Bqkg-1, 87.4±5.9 Bqkg-1 and 221.0 ±12.5 Bqkg-1, respectively. The findings show that bottom ashes show higher activity concentrations of related radionuclide to coal samples. The absorbed gamma dose rate in outdoor air DROUT and annual effective dose rate (AED from coal were calculated to define radıologıcal rısk. The average findings of annual effective doses were detected as 68.6±5.1 μSvy-1 and 110.3±11.2 μSvy-1, respectively.

  16. Ultra-fine coal characterization. 12th progress report

    Energy Technology Data Exchange (ETDEWEB)

    Smit, F. J.

    1988-02-29

    Research continued on this program to relate beneficiation characteristics of ultra-fine coals to the mineral-matter liberation and bulk properties of the coals. Washability tests are reported here which quantify mineral-matter liberation during ultra-fine grinding of Pittsburgh, Pocahontas No. 3, Sunnyside, Anderson and Beulah-Zap coals. The first three are bituminous coals from Pennsylvania, West Virginia and Utah, respectively, and the last two are a subbituminous coal from the Powder River area of Wyoming and a lignite coal from North Dakota. 4 refs., 5 tabs.

  17. Characterization of extracts of coals and coal-derived products by liquid chromatography using optical activity detection

    Energy Technology Data Exchange (ETDEWEB)

    Bobbitt, D.R.; Aida, T.; Chen, Y.Y.; Reitsma, B.H.; Rougvie, A.; Smith, B.F.; Squires, T.G.; Venier, C.G.; Yeung, E.S.

    1985-01-01

    Extracts from various coals and coal-derived products were studied using liquid chromatography with optical activity detection. The chromatograms show that there are substantial numbers of optically active components in these samples. Since both dextrorotatory and laevorotatory components are present, some mutual cancellation would result if only the bulk optical rotation were measured. The chromatograms are generally rich in structure and contain distinct features which may be good fingerprints for establishing the origins of the coals and monitoring coal processing.

  18. FTIR and multivariate analysis to study the effect of bulk and nano copper oxide on peanut plant leaves

    Directory of Open Access Journals (Sweden)

    S. Suresh

    2016-09-01

    Full Text Available In this article the potential variation in biochemical constituents of peanut plant leaves affect by presoaking peanut seeds in copper oxide nanoparticles suspension has been studied and compared with its bulk counterpart. The synthesized nanoparticles were characterized by x-ray diffraction (XRD, scanning electron microscope (SEM and transmission electron microscope (TEM studies. The Fourier transform infrared (FTIR analysis shows the most prominent peaks at ∼2923 cm−1, ∼1636 cm−1 and ∼1033 cm−1, which correspond to lipids, protein and carbohydrate content in leaf samples respectively. The calculated mean ratio of the peak intensities for various frequency regions and total band area calculation for various band regions explain the variation in lipid, protein and carbohydrate content of leaf samples. Further the FTIR spectra were processed by de-convolution and curve fitting to quantitatively examine the chemical contents and structure changing of the secondary structure of protein. The calculated integrated band area of β – sheet, β – turn and α – helix secondary structure of protein varies to greater extent in all samples compared to control. Principal component analysis (PCA has been carried out to explain the total variance in secondary structure of protein content in peanut plant leaves. Principal component 1 (PC1 accounts for 63.50% variation in secondary structure of protein whereas principal component 2 (PC2 accounts for 29.56%. The application of nanoparticles via presoaking method implies potential variation in biochemical constituents but doesn't affect the growth of plants considerably.

  19. CFD Analysis of Coal and Heavy Oil Gasification for Syngas Production

    DEFF Research Database (Denmark)

    Sreedharan, Vikram

    2012-01-01

    This work deals with the gasification of coal and heavy oil for syngas production using Computational Fluid Dynamics (CFD). Gasification which includes complex physical and chemical processes such as turbulence, multiphase flow, heat and mass transfer and chemical reactions has been modeled using...... phases. Gasification consists of the processes of passive heating, devolatilization, volatiles oxidation, char gasification and gas phase reactions. Attention is given here to the chemical kinetics of the gasification processes. The coal gasification model has been validated for entrained-flow gasifiers...... dioxide is overestimated. The deviation is fairly small, particularly for the improved chemical kinetics scheme. The heavy oil gasification model has been validated for a pilot-scale entrained-flow gasifier operating under different oxygen ratios. A gasification model similar to that developed for coal...

  20. Cause analysis of Hujiagou coal wastes landslide in Nantong mining district of Wansheng, Chongqing

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Q.; Liu, D.; Zhu, Z.; Sun, H. [Chongqing University of Science and Technology, Chongqing (China)

    2007-06-15

    The article discusses the situation and background of two landslides and a series cause of two environmental geological hazards of a coal dump waste in Nantong mining district, China. The stability of the waste dump was discussed using the limiting equilibrium method and the FLAC numerical simulation method. The results indicate that the stability of the waste dump was insufficient before rainfall and a potential slip surface existed in the waste dump. After rain, the stability of the waste dump decreased. At the same time, self-ignition and explosion of the coal waste occurred and then a blast. The blast made the dump loose its self-organised critical state and a mass of coal wastes burst from the dump and turned into flow. Lessons can be drawn from this. 6 refs., 4 figs., 1 tab.

  1. Prediction of coal grindability based on petrography, proximate and ultimate analysis using multiple regression and artificial neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Chelgani, S. Chehreh; Jorjani, E.; Mesroghli, Sh.; Bagherieh, A.H. [Department of Mining Engineering, Research and Science Campus, Islamic Azad University, Poonak, Hesarak Tehran (Iran); Hower, James C. [Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY 40511 (United States)

    2008-01-15

    The effects of proximate and ultimate analysis, maceral content, and coal rank (R{sub max}) for a wide range of Kentucky coal samples from calorific value of 4320 to 14960 (BTU/lb) (10.05 to 34.80 MJ/kg) on Hardgrove Grindability Index (HGI) have been investigated by multivariable regression and artificial neural network methods (ANN). The stepwise least square mathematical method shows that the relationship between (a) Moisture, ash, volatile matter, and total sulfur; (b) ln (total sulfur), hydrogen, ash, ln ((oxygen + nitrogen)/carbon) and moisture; (c) ln (exinite), semifusinite, micrinite, macrinite, resinite, and R{sub max} input sets with HGI in linear condition can achieve the correlation coefficients (R{sup 2}) of 0.77, 0.75, and 0.81, respectively. The ANN, which adequately recognized the characteristics of the coal samples, can predict HGI with correlation coefficients of 0.89, 0.89 and 0.95 respectively in testing process. It was determined that ln (exinite), semifusinite, micrinite, macrinite, resinite, and R{sub max} can be used as the best predictor for the estimation of HGI on multivariable regression (R{sup 2} = 0.81) and also artificial neural network methods (R{sup 2} = 0.95). The ANN based prediction method, as used in this paper, can be further employed as a reliable and accurate method, in the hardgrove grindability index prediction. (author)

  2. Statistical Analysis of the Tensile Strength of Coal Fly Ash Concrete with Fibers Using Central Composite Design

    Directory of Open Access Journals (Sweden)

    Marinela Barbuta

    2015-01-01

    Full Text Available The influence of coal fly ash and glass fiber waste on the tensile strength of cement concrete was studied using central composite design. Coal fly ash was used to replace 10% of the cement in the concrete mix. Glass fiber was added to improve the tensile properties of the concrete in different dosages and lengths. In total, 14 mixes were investigated, one only with 10% coal fly ash replacement of cement and the other thirteen were determined by the experimental design. Using analysis of variance, the order of importance of the variables was established for each property (flexural strength and split tensile strength. From the nonlinear response surfaces, it was found that higher values of flexural strength were obtained for fibers longer than 12 mm and at a dosage of 1-2%. For split tensile strength, higher values were obtained for fibers with a length of 19–28 mm and at a dosage of 1–1.5%.

  3. Use of mineralogical analysis in geotechnical assessment of rock strata for coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Colin R.; Nunt-jaruwong, Sorawit; Swanson, Jeni [School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052 (Australia)

    2005-10-17

    The fundamental geotechnical properties of sedimentary rocks from the coal-bearing Sydney Basin of New South Wales, Australia, including density, porosity, water absorption and moisture content, as well as compressive strength, have been related to the mineralogy of the materials as determined by quantitative X-ray diffraction of powdered rock samples and processing by the Rietveld-based Siroquant technique. The results show, for example, that the overall proportions of clay minerals in the rocks, as well as the types of clay minerals present, affect properties such as water absorption and moisture content. The presence of clay minerals also adds to the dry strength of silica-cemented quartz sandstones; however, the strength of finer-grained mudrocks is inversely related to the total percentage of clay minerals. Correlations have been established between the deterioration or slaking behaviour of mudrocks in water and their clay mineral content, based on either simple immersion tests or on more sophisticated slake durability index determinations. These relationships may be of significance in understanding the longer-term behaviour of rock strata when exposed in different types of mining operations. The propensity of different rocks to ignite methane in underground mines by frictional effects has also been shown to depend on the mineralogy of the rock materials, whether determined by point counting of thin sections or by Rietveld-based XRD analysis. Abundant quartz, feldspar, and rock fragments in sandstones, for example, increase the likelihood of frictional ignitions, whereas clay minerals and (especially) carbonates in the rock reduce the frictional ignition potential. Pyrite in the rocks, if present, also increases the ignition risk; pyrite undergoes exothermic oxidation at high temperatures whereas other minerals respond by simple heating due to rock-on-rock or pick-on-rock friction processes. (author)

  4. Structural analysis of the Tabaco anticline, Cerrejón open-cast coal mine, Colombia, South America

    Science.gov (United States)

    Cardozo, Néstor; Montes, Camilo; Marín, Dora; Gutierrez, Iván; Palencia, Alejandro

    2016-06-01

    The Tabaco anticline is a 15 km long, south plunging, east-vergent anticline in northern Colombia, close to the transpressional collisional margin between the Caribbean and South American plates. In the Cerrejón open-cast coal mine, systematic mapping of coal seams in the middle to upper Paleocene Cerrejón Formation has yielded an exceptional dataset consisting of 10 horizontal slices (sea level to 90 m elevation, regularly spaced at 10 m intervals) through the anticline. Coal seams and fault traces in these slices are used to construct a 3D model of the anticline. This 3D model shows tighter folds within lower coal seams, NW-vergent thrusts and related folds on the gentler western limb, and strike-slip faults on the steeper eastern limb. Fault slip-tendency analysis is used to infer that these two faulting styles resulted from two different stress fields: an earlier one consistent with thrusting and uplift of the Perijá range, and a later one consistent with strike-slip faulting (Oca, Ranchería and Samán faults). Our preferred interpretation is that the anticline developed its eastern vergence during the early stages (late Paleocene-early Eocene) of tilting of the Santa Marta massif. Later NW-vergent thrusting on the western limb (early to middle Eocene) was related to western propagation of the Perijá thrust system. These results contribute to the understanding of the structural evolution of the area. They are also a good example of the complex interplay between detachment folding, thrusting, and strike-slip faulting during the growth of a km-size fold in a transpressive setting.

  5. Permeability evolution model and numerical analysis of coupled coal deformation, failure and liquid nitrogen cooling

    Directory of Open Access Journals (Sweden)

    Chunhui ZHANG

    Full Text Available How to quantitatively evaluate the permeability change of coalbed subjected to liquid nitrogen cooling is a key issue of enhanced-permeability technology of coalbed. To analyze the evolution process of permeability of coupled coal deformation, failure and liquid introgen cooling, the coal is supposed as elastic, brittle and plastic material. Its deformation process includes elastic deformation stage, brittle strength degradation stage and residual plastic flow stage. Combined with strength degradation index, dilatancy index of the element and Mohr-Column strength criterion, the element scale constitutive model with the effects of confining pressure on peak-post mechanical behaviors is built. Based on the deformation process of coal rock, there exist two stages of permeability evolution of the element including decrease of permeability due to elastic contraction and increase due to coal rock element's failure. The relationships between the permeability and elastic deformation, shear failure and tension failure for coal are studied. The permeability will be influenced by the change of pore space due to elastic contraction or tension of element. Conjugate shear zones appear during the shear failure of the element, in which the flow follows so-called cubic law between smooth parallel plates. The calculation formulas of the permeability and the aperture of the fractures are given out based on the volumetric strain. When tension failure criterion is satisfied with the rock element fails and two orthogonal fractures appear. The calculation formulas of the permeability and the width of the fractures are given out based on the volumetric strain. Further, combined with the thermal conduction theory the permeability evolution model of coupled coal deformation, failure and liquid nitrogen cooling is presented. Then Fish function method in FLAC is employed to perform the model. The permeability's evolution process for coal bed cryogenically stimulated

  6. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jared W Wenger

    2010-05-01

    Full Text Available Fermentation of xylose is a fundamental requirement for the efficient production of ethanol from lignocellulosic biomass sources. Although they aggressively ferment hexoses, it has long been thought that native Saccharomyces cerevisiae strains cannot grow fermentatively or non-fermentatively on xylose. Population surveys have uncovered a few naturally occurring strains that are weakly xylose-positive, and some S. cerevisiae have been genetically engineered to ferment xylose, but no strain, either natural or engineered, has yet been reported to ferment xylose as efficiently as glucose. Here, we used a medium-throughput screen to identify Saccharomyces strains that can increase in optical density when xylose is presented as the sole carbon source. We identified 38 strains that have this xylose utilization phenotype, including strains of S. cerevisiae, other sensu stricto members, and hybrids between them. All the S. cerevisiae xylose-utilizing strains we identified are wine yeasts, and for those that could produce meiotic progeny, the xylose phenotype segregates as a single gene trait. We mapped this gene by Bulk Segregant Analysis (BSA using tiling microarrays and high-throughput sequencing. The gene is a putative xylitol dehydrogenase, which we name XDH1, and is located in the subtelomeric region of the right end of chromosome XV in a region not present in the S288c reference genome. We further characterized the xylose phenotype by performing gene expression microarrays and by genetically dissecting the endogenous Saccharomyces xylose pathway. We have demonstrated that natural S. cerevisiae yeasts are capable of utilizing xylose as the sole carbon source, characterized the genetic basis for this trait as well as the endogenous xylose utilization pathway, and demonstrated the feasibility of BSA using high-throughput sequencing.

  7. A X-ray diffraction analysis on graphene layers of Assam coal

    Indian Academy of Sciences (India)

    The so-called turbostatic structure of carbons in coal with randomly oriented stacking of the lamellae (graphene) produces intense peaks, which are the dominant features in its X-ray diffraction profiles. The diffractogram may be conveniently divided into two regions of reciprocal space, the medium S region (1 < S < 3 Å) and ...

  8. Impact Analysis of Air Pollutant Emission Policies on Thermal Coal Supply Chain Enterprises in China

    Directory of Open Access Journals (Sweden)

    Xiaopeng Guo

    2014-12-01

    Full Text Available Spurred by the increasingly serious air pollution problem, the Chinese government has launched a series of policies to put forward specific measures of power structure adjustment and the control objectives of air pollution and coal consumption. Other policies pointed out that the coal resources regional blockades will be broken by improving transportation networks and constructing new logistics nodes. Thermal power takes the largest part of China’s total installed power generation capacity, so these policies will undoubtedly impact thermal coal supply chain member enterprises. Based on the actual situation in China, this paper figures out how the member enterprises adjust their business decisions to satisfy the requirements of air pollution prevention and control policies by establishing system dynamic models of policy impact transfer. These dynamic analyses can help coal enterprises and thermal power enterprises do strategic environmental assessments and find directions of sustainable development. Furthermore, the policy simulated results of this paper provide the Chinese government with suggestions for policy-making to make sure that the energy conservation and emission reduction policies and sustainable energy policies can work more efficiently.

  9. Energy and exergy analysis of alternating injection of oxygen and steam in the low emission underground gasification of deep thin coal

    DEFF Research Database (Denmark)

    Eftekhari, Ali Akbar; Wolf, Karl Heinz; Rogut, Jan

    2017-01-01

    Recent studies have shown that by coupling the underground coal gasification (UCG) with the carbon capture and storage (CCS), the coal energy can be economically extracted with a low carbon footprint. To investigate the effect of UCG and CCS process parameters on the feasibility of the UCG....... Additionally, we show that the zero-emission conversion of unmineable deep thin coal resources in a coupled UCG-CCS process, that is not practical with the current state of technology, can be realized by increasing the energy efficiency of the carbon dioxide capture process....... to conduct an energy and exergy analysis of the UCG process. We study the effect of various process parameters on the efficiency of the UCG process, the zero-emission recovery factor of coal, and the total CO2 emission of the process. Moreover, we compare the alternating injection of air...

  10. [Based on Curing Age of Calcined Coal Gangue Fine Aggregate Mortar of X-Ray Diffraction and Scanning Electron Microscopy Analysis].

    Science.gov (United States)

    Dong, Zuo-chao; Xia, Jun-wu; Duan, Xiao-mu; Cao, Ji-chang

    2016-03-01

    By using X-ray diffraction (XRD) and environmental scanning electron microscope (SEM) analysis method, we stud- ied the activity of coal gangue fine aggregate under different calcination temperature. In view of the activity of the highest-700 degrees C high temperature calcined coal gangue fine aggregate mortar of hydration products, microstructure and strength were discussed in this paper, and the change laws of mortar strength with curing age (3, 7, 14, 28, 60 and 90 d) growth were analyzed. Test results showed that coal gangue fine aggregate with the increase of calcination temperature, the active gradually increases. When the calcination temperature reaches 700 degrees C, the activity of coal gangue fine aggregate is the highest. When calcining temperature continues to rise, activity falls. After 700 degrees C high temperature calcined coal gangue fine aggregate has obvious ash activity, the active components of SiO2 and Al2 O3 can be with cement hydration products in a certain degree of secondary hydration reaction. Through on the top of the activity of different curing age 700 degrees C high temperature calcined coal gangue fine aggregate mortar, XRD and SEM analysis showed that with the increase of curing age, secondary hydration reaction will be more fully, and the amount of hydration products also gradually increases. Compared with the early ages of the cement mortar, the products are more stable hydration products filling in mortar microscopic pore, which can further improve the microstructure of mortar, strengthen the interface performance of the mortar. The mortar internal structure is more uniform, calcined coal gangue fine aggregate and cement mortar are more of a strong continuous whole, which increase the later strength of hardened cement mortar, 700 degrees C high temperature calcined coal gangue fine aggregate pozzolanic effect is obvious.

  11. Mercury and trace element distribution in density separates of a South African Highveld (#4) coal: Implications for mercury reduction and preparation of export coal

    Science.gov (United States)

    Kolker, Allan; Senior, Connie L.; van Alphen, Chris; Koenig, Alan E.; Geboy, Nicholas J.

    2017-01-01

    Eight density separates of Permian Highveld (#4) coal were investigated for partitioning of Hg and trace elements. The separates include float fractions obtained in heavy media having densities of 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, and 2.0 g/cm3, and the sink fraction for 2.0 g/cm3. Bulk analysis of the separates shows strong (R2 ≥ 0.80) positive correlations between pyritic sulfur and mercury, and between ash yield and both pyritic sulfur and mercury. Laser ablation (LA) ICP-MS analysis of individual pyrite grains in the separates confirms association of Hg and As with pyrite as indicated by bulk analysis. Other elements detected in pyrite by LA-ICP-MS include Mn, Co, Ni, Tl, and Pb. Results for the separates allow prediction of Hg, trace elements, and ash yields expected in specific South African coal products. These range from 0.06 ppm Hg and an ash yield of 11.5% ash for the export fraction to 0.47 ppm Hg and an ash yield of 60.9% for the discard (stone) fraction (dry basis). Results show pronounced differences expected between coal used for domestic power generation and coal which is exported.

  12. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  13. Coal trade means shipbuilders' goldmine

    Energy Technology Data Exchange (ETDEWEB)

    Ridgeway, J.

    1980-03-01

    Nowhere is the advent of a new international trade in coal more important than in the shipping industry. Since the middle of the last decade the world shipping industry has been in the doldrums. As the world switches slowly away from oil, the trade in coal probably will increase dramatically. As it does, the structure of the trade will change. Much of the coal will be shipped by water. During the past decade, US influence declined as the energy crisis changed the nature of the trade away from metallurgical coals to thermal coals. Shipping experts predict the dry bulk carriers that are used for coal, grain, and iron ore (a commodity whose trade is expected to increase) will replace the oil tankers as the most-important class of ships on the high seas by the year 2000.

  14. Experimental Study of Methane Hydrates in Coal

    Directory of Open Access Journals (Sweden)

    Smirnov Vyacheslav

    2017-01-01

    Full Text Available The possibility of gas hydrate formation in porous space of coal has been studied. The experiments conducted have proven the possibility of methane gas hydrate formation in moist coal. It has been demonstrated that the decomposition points of methane gas hydrates in coal are near to the phase equilibrium curve for bulk methane hydrate. Only part of water absorbed by coal can be involved in the methane gas hydrate formation. With the increase in gas pressure increases the amount of gas hydrate formed in natural coal. For formation of hydrates at a positive temperature, the pressure in the system has to be at least 2 MPa. At the same time the speed of formation and decomposition of gas hydrates in coal is big enough.

  15. Cultivation-independent analysis of archaeal and bacterial communities of the formation water in an Indian coal bed to enhance biotransformation of coal into methane.

    Science.gov (United States)

    Singh, Durgesh Narain; Kumar, Ashok; Sarbhai, Munish Prasad; Tripathi, Anil Kumar

    2012-02-01

    Biogenic origin of the significant proportion of coal bed methane has indicated the role of microbial communities in methanogenesis. By using cultivation-independent approach, we have analysed the archaeal and bacterial community present in the formation water of an Indian coal bed at 600-700 m depth to understand their role in methanogenesis. Presence of methanogens in the formation water was inferred by epifluorescence microscopy and PCR amplification of mcrA gene. Archaeal 16S rRNA gene clone library from the formation water metagenome was dominated by methanogens showing similarity to Methanobacterium, Methanothermobacter and Methanolinea whereas the clones of bacterial 16S rRNA gene library were closely related to Azonexus, Azospira, Dechloromonas and Thauera. Thus, microbial community of the formation water consisted of predominantly hydrogenotrophic methanogens and the proteobacteria capable of nitrogen fixation, nitrate reduction and polyaromatic compound degradation. Methanogenic potential of the microbial community present in the formation water was elucidated by the production of methane in the enrichment culture, which contained 16S rRNA gene sequences showing close relatedness to the genus Methanobacterium. Microcosm using formation water as medium as well as a source of inoculum and coal as carbon source produced significant amount of methane which increased considerably by the addition of nitrite. The dominance of Diaphorobacter sp. in nitrite amended microcosm indicated their important role in supporting methanogenesis in the coal bed. This is the first study indicating existence of methanogenic and bacterial community in an Indian coal bed that is capable of in situ biotransformation of coal into methane.

  16. Elemental analysis of coal by tandem laser induced breakdown spectroscopy and laser ablation inductively coupled plasma time of flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Meirong [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Oropeza, Dayana [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Chirinos, José [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1041a (Venezuela, Bolivarian Republic of); González, Jhanis J. [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Lu, Jidong [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); Mao, Xianglei [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Russo, Richard E., E-mail: RERusso@lbl.gov [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2015-07-01

    The capabilities and analytical benefits of combined LIBS and LA-ICP-MS were evaluated for the analysis of coal samples. The ablation system consisted of a Nd:YAG laser operated 213 nm. A Czerny-turner spectrograph with ICCD detector and time-of-flight based mass spectrometer were utilized for LIBS and ICP-MS detection, respectively. This tandem approach allows simultaneous determination of major and minor elements (C, Si, Ca, Al, Mg), and trace elements (V, Ba, Pb, U, etc.) in the coal samples. The research focused on calibration strategies, specifically the use of univariate and multivariate data analysis on analytical performance. Partial least square regression (PLSR) was shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The correlation between measurements from these two techniques demonstrated that mass spectral data combined with LIBS emission measurements by PLSR improved the accuracy and precision for quantitative analysis of trace elements in coal. - Highlights: • Tandem LIBS LA-ICP-MS • Simultaneous determination of major and minor elements and trace elements in the coal samples. • Extended Dynamic Range • Correlation between LIBS with LA-ICP-MS demonstrated improved the accuracy and precision for quantitative analysis of coal.

  17. Spectrum response and analysis of 77 GHz band collective Thomson scattering diagnostic for bulk and fast ions in LHD plasmas

    DEFF Research Database (Denmark)

    Nishiura, M.; Kubo, S.; Tanaka, K.

    2014-01-01

    A collective Thomson scattering (CTS) diagnostic was developed and used to measure the bulk and fast ions originating from 180 keV neutral beams in the Large Helical Device (LHD). Electromagnetic waves from a gyrotron at 77 GHz with 1 MW power output function as both the probe and electron cyclot...

  18. Application of a tangent curve mathematical model for analysis of the mechanical behaviour of sunflower bulk seeds

    Science.gov (United States)

    Sigalingging, Riswanti; Herák, David; Kabutey, Abraham; Dajbych, Oldřich; Hrabě, Petr; Mizera, Čestmír

    2015-10-01

    This paper evaluate the use of a tangent curve mathematical model for representation of the mechanical behaviour of sunflower bulk seeds. Compression machine (Tempos Model 50, Czech Republic) and pressing vessel diameter 60 mm were used for the loading experiment. Varying forces between 50 and 130 kN and speeds ranging from 10, 50, and 100 mm min-1 were applied respectively on the bulk seeds with moisture content 12.37±0.38% w.b. The relationship between force and deformation curves of bulk seeds of pressing height 80 mm was described. The oil point strain was also determined from the different deformation values namely 30, 35, 40, and 45 mm at speed 10 mm min-1. Based on the results obtained, model coefficients were determined for fitting the experimental load and deformation curves. The validity of these coefficients were dependent on the bulk seeds of pressing height, vessel diameter, maximum force 110 kN, and speed 10 mm min-1, where optimal oil yield was observed. The oil point was detected at 45 mm deformation giving the strain value of 0.56 with the corresponding force 16.65±3.51 kN and energy 1.06±0.18 MJ m-3. At the force of 130 kN, a serration effect on the curves was indicated; hence, the compression process was ceased.

  19. Environmental Forensics : Compound Specific Isotope Analysis Of PAHs. Study Of A Former Coal Tar Plant.

    Science.gov (United States)

    Assal, A.; Doherty, R.; Dickson, K.; Kalin, R. M.

    2008-12-01

    Stable carbon isotopic fingerprints of PAHs obtained by GC-IRMS have often been used in source apportionment studies. The use of PAHs in environmental forensics relies on the assumption that carbon isotopic fractionation caused by microbial degradation is less significant for these heavy molecular weight compounds than for lighter molecules such as chlorinated solvents or BTEX. Carbon isotopic fractionation of PAHs during degradation is still not well understood. The aim of this study was to assess the potential of CSIA of PAHs for environmental forensics applications at a complex (hydrogeology affected by tidal fluxes) former coal tar plant. In this work, soil samples from a tar works site were analyzed. The tar works operated on the site over a period of sixty years. A source apportionment study was first carried out based on 90 target PAHs quantified by GC-MS. These results were then compared to carbon isotope fingerprints. The separation of compounds of interest from co-extracted interfering peaks is a crucial prerequisite of CSIA by GC-IRMS. Hence, a sample preparation method which allowed the determination of precise carbon isotope signatures for up to 35 compounds per soil extract was developed, validated and applied to the samples previously analyzed by GC- MS. Although most soil samples were shown to be related to the point source tar contamination, PAHs ratios and principal component analysis of abundances highlighted some samples with unusual patterns, suggesting the input of a second source of contaminants. However, no statistically significant variation of the isotopic fingerprints of heavy molecular weight PAHs of these samples was observed. This was inconsistent with the first diagnosis. Since evidence was provided that most samples were only affected by a single source of contaminants, carbon isotopic fractionation was investigated in-situ. Importantly, naphthalene and 2- and 1- methylnaphthalenes isotopic fractionation was observed in a vertical

  20. Self-Adaptive Gradient-Based Thresholding Method for Coal Fire Detection Based on ASTER Data—Part 2, Validation and Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Xiaomin Du

    2015-03-01

    Full Text Available The self-adaptive gradient-based thresholding (SAGBT method is a simple non-interactive coal fire detection approach involving segmentation and a threshold identification algorithm that adapts to the spatial distribution of thermal features over a landscape. SAGBT detects coal fire using multispectral thermal images acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER sensor. The method was detailed by our previous work “Self-Adaptive Gradient-Based Thresholding Method for Coal Fire Detection Based on ASTER Data—Part 1, Methodology”. The current study evaluates the performance of SAGBT and validates its results by using ASTER thermal infrared (TIR images and ground temperature data collected at the Wuda coalfield (China during satellite overpass. We further analyzed algorithm performance by using nighttime TIR images and images from different seasons. SAGBT-derived fires matched fire spots measured in the field with an average offset of 32.44 m and a matching rate of 70%–85%. Coal fire areas from TIR images generally agreed with coal-related anomalies from visible-near infrared (VNIR images. Further, high-temperature pixels in the ASTER image matched observed coal fire areas, including the major extreme high-temperature regions derived from field samples. Finally, coal fires detected by daytime and by nighttime images were found to have similar spatial distributions, although fires differ in shape and size. Results included the stratification of our study site into two temperature groups (high and low temperature, using a fire boundary. We conclude that SAGBT can be successfully used for coal fire detection and analysis at our study site.

  1. Thin-layer chromatography with UV-scanning detection for quantitative analysis of coal-derived products

    Energy Technology Data Exchange (ETDEWEB)

    Vela, J.; Cebolla, V.L.; Membrado, L.; Ferrando, A.C. [University of Zaragoza, Zaragoza (Spain). Dept. of Analytical Chemistry

    1998-07-01

    Quantitative analysis of hydrocarbon groups (HGTA) is important in the characterization of products derived from coal conversion. The heaviest products are usually analyzed by thin-layer chromatography with flame-ionization detection (TLC-FID). TLC with ultraviolet (UV) scanning densitometry was investigated as an alternative to TLC-FID for the rapid determination of aromatic, polar, and noneluted compounds in coal-derived products. The results obtained show that TLC-UV is adequate in terms of speed, repeatability, and quantitative analysis, and furnishes results similar to those obtained by TLC-FID. Preparative TLC enables isolation of fractions suitable for preparative purposes and is less time-consuming (hours rather than days) than LC methods. Rapid calibration of TLC-UV is possible by use of fractions isolated by preparative TLC (derived from the actual fossil fuels to be analyzed) as external standards. A method of fast internal calibration has been tested for hydrocarbon group-type analysis. Direct acquisition of UV spectra from the separated peaks can be used to determine whether this method of calibration is applicable to the sample.

  2. Disaggregating regional energy supply/demand and flow data to 173 BEAs in support of export coal analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-01

    This report documents the procedures and results of a study sponsored jointly by the US Department of Transportation and the US Department of Energy. The study was conducted to provide, Bureau of Economic Analysis (BEA)-level production/consumption data for energy materials for 1985 and 1990 in support of an analysis of transportation requirements for export coal. Base data for energy forecasts at the regional level were obtained from the Department of Energy, Energy Information Administration. The forecasts selected for this study are described in DOE/EIA's 1980 Annual Report to Congress, and are: 1985 Series, B, medium oil import price ($37.00/barrel); and 1990 Series B, medium oil import price ($41.00/barrel). Each forecast period is extensively described by approximately forty-three statistical tables prepared by EIA and made available to TERA for this study. This report provides sufficient information to enable the transportation analyst to appreciate the procedures employed by TERA to produce the BEA-level energy production/consumption data. The report presents the results of the procedures, abstracts of data tabulations, and various assumptions used for the preparation of the BEA-level data. The end-product of this effort was the BEA to BEA energy commodity flow data by more which serve as direct input to DOT's transportation network model being used for a detailed analysis of export coal transportation.

  3. Estimation of coal proximate analysis factors and calorific value by multivariable regression method and adaptive neuro-fuzzy inference system (ANFIS

    Directory of Open Access Journals (Sweden)

    Ali Behnamfard

    2017-06-01

    Full Text Available The proximate analysis is the most common form of coal evaluation and it reveals the quality of a coal sample. It examines four factors including the moisture, ash, volatile matter (VM, and fixed carbon (FC within the coal sample. Every factor is determined through a distinct experimental procedure under ASTM specified conditions. These determinations are time consuming and require a significant amount of laboratory equipment. The calorific value is one of the most important properties of a solid fuel and its experimental determination requires special instrumentation and highly trained analyst to operate it. This paper develops mathematical and ANFIS models for estimation of two factors of proximate analysis based on the other two factors. Furthermore, the estimation of calorific value of coal samples based on proximate analysis factors is performed using multivariable regression, the Minitab 16 software package, and the ANFIS, Matlab software package. The results indicate that ANFIS is a more powerful tool for estimation of proximate analysis factors and calorific value than multivariable regression method. The following equation estimates the calorific value of coal samples with high precision: Calorific value (btu/lb= 12204 - 170 Moisture + 46.8 FC - 127 Ash

  4. Western Coal/Great Lakes Alternative export-coal conference

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This conference dealt with using the Great Lakes/St. Lawrence Seaway as an alternative to the East and Gulf Coasts for the exporting of coal to Europe and the potential for a piece of the European market for the subbituminous coals of Montana and Wyoming. The topics discussed included: government policies on coal exports; the coal reserves of Montana; cost of rail transport from Western mines to Lake Superior; the planning, design, and operation of the Superior Midwest Energy Terminal at Superior, Wisconsin; direct transfer of coal from self-unloading lakers to large ocean vessels; concept of total transportation from mines to users; disadvantage of a nine month season on the Great Lakes; costs of maritime transport of coal through the Great Lakes to Europe; facilities at the ice-free, deep water port at Sept Iles; the use of Western coals from an environmental and economic viewpoint; the properties of Western coal and factors affecting its use; the feasibility of a slurry pipeline from the Powder River Basin to Lake Superior; a systems analysis of the complete hydraulic transport of coal from the mine to users in Europe; the performance of the COJA mill-burner for the combustion of superfine coal; demand for steam coal in Western Europe; and the effect the New Source Performance Standards will have on the production and use of Western coal. A separate abstract was prepared for each of the 19 papers for the Energy Data Base (EDB); 17 will appear in Energy Research Abstracts (ERA) and 11 in Energy Abstracts for Policy Analysis (EAPA). (CKK)

  5. The Analysis of the Experience in Commercialization of Indirect Coal Liquefaction Technologies in the World

    Directory of Open Access Journals (Sweden)

    Rudyka Viktor I.

    2017-09-01

    Full Text Available It is substantiated that, taking into account the world trends in the development of fuel and energy complexes, in the near future the most preferable direction in using solid fossil fuels will become not just their burning but advanced thermochemical processing, which will result in obtaining such end products as substitutes for natural gas, electricity, and synthetic analogues of hydrocarbons. There analyzed foreign experience on commercialization of indirect coal gasification technologies, among which the technologies of traditional and plasma gasification are singled out. The advantages and disadvantages of these technologies are systematized, and the hypothesis about better prospects for using the technology of plasma gasification of coal in comparison with the traditional analogues that are based on the Fischer-Tropsch process is put forward.

  6. Determining the hydraulic and fracture properties of the Coal Seam Gas well by numerical modelling and GLUE analysis

    Science.gov (United States)

    Askarimarnani, Sara; Willgoose, Garry; Fityus, Stephen

    2017-04-01

    Coal seam gas (CSG) is a form of natural gas that occurs in some coal seams. Coal seams have natural fractures with dual-porosity systems and low permeability. In the CSG industry, hydraulic fracturing is applied to increase the permeability and extract the gas more efficiently from the coal seam. The industry claims that it can design fracking patterns. Whether this is true or not, the public (and regulators) requires assurance that once a well has been fracked that the fracking has occurred according to plan and that the fracked well is safe. Thus defensible post-fracking testing methodologies for gas generating wells are required. In 2009 a fracked well HB02, owned by AGL, near Broke, NSW, Australia was subjected to "traditional" water pump-testing as part of this assurance process. Interpretation with well Type Curves and simple single phase (i.e. only water, no gas) highlighted deficiencies in traditional water well approaches with a systemic deviation from the qualitative characteristic of well drawdown curves (e.g. concavity versus convexity of drawdown with time). Accordingly a multiphase (i.e. water and methane) model of the well was developed and compared with the observed data. This paper will discuss the results of this multiphase testing using the TOUGH2 model and its EOS7C constitutive model. A key objective was to test a methodology, based on GLUE monte-carlo calibration technique, to calibrate the characteristics of the frack using the well test drawdown curve. GLUE involves a sensitivity analysis of how changes in the fracture properties change the well hydraulics through and analysis of the drawdown curve and changes in the cone of depression. This was undertaken by changing the native coal, fracture, and gas parameters to see how changing those parameters changed the match between simulations and the observed well drawdown. Results from the GLUE analysis show how much information is contained in the well drawdown curve for estimating field scale

  7. Trace component analysis of process hydrogen streams at the Wilsonville Advanced Coal Liquefaction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bronfenbrenner, J.C.

    1983-09-01

    This report summarizes subcontracted work done by the Radian Corporation to analyze trace components in process hydrogen streams at the Advanced Coal Liquefaction Facility in Wilsonville, Alabama. The data will be used to help define whether the gas streams to be treated in the hydrogen processing unit in the SRC-I Demonstration Plant will require further treatment to remove trace contaminants that could be explosive under certain conditions. 2 references.

  8. Cosmic bulk flows on 50 h-1 Mpc scales: a Bayesian hyper-parameter method and multishell likelihood analysis

    Science.gov (United States)

    Ma, Yin-Zhe; Scott, Douglas

    2013-01-01

    It has been argued recently that the galaxy peculiar velocity field provides evidence of excessive power on scales of 50 h-1 Mpc, which seems to be inconsistent with the standard Λ cold dark matter (ΛCDM) cosmological model. We discuss several assumptions and conventions used in studies of the large-scale bulk flow to check whether this claim is robust under a variety of conditions. Rather than using a composite catalogue we select samples from the SN, ENEAR, Spiral Field I-band Survey (SFI++) and First Amendment Supernovae (A1SN) catalogues, and correct for Malmquist bias in each according to the IRAS PSCz density field. We also use slightly different assumptions about the small-scale velocity dispersion and the parametrization of the matter power spectrum when calculating the variance of the bulk flow. By combining the likelihood of individual catalogues using a Bayesian hyper-parameter method, we find that the joint likelihood of the amplitude parameter gives σ8 = 0.65+ 0.47- 0.35 (68 per cent confidence region), which is entirely consistent with the ΛCDM model. In addition, the bulk flow magnitude, v ˜ 310 km s-1, and direction, (l, b) ˜ (280° ± 8°, 5.1° ± 6°), found by each of the catalogues are all consistent with each other, and with the bulk flow results from most previous studies. Furthermore, the bulk flow velocities in different shells of the surveys constrain (σ8, Ωm) to be (1.01+ 0.26- 0.20, 0.31+ 0.28- 0.14) for SFI++ and (1.04+ 0.32- 0.24, 0.28+ 0.30- 0.14) for ENEAR, which are consistent with the 7-year Wilkinson and Microwave Anisotropy Probe (WMAP7) best-fitting values. We finally discuss the differences between our conclusions and those of the studies claiming the largest bulk flows.

  9. Australian coal conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    Almost 600 people attended this year's Australian Coal Conference on Queensland's Gold Coast. The article reports on issues raised at the conference which included the effects of globalisation and the difficulties of raising funds faced by the coal industry and environmental issues. A life cycle analysis of coal's emissions compared to other fuels, released at the conference had demonstrated that coal was a legitimate part of the world's future energy mix. Conference speakers included Michael Pinnock, Queensland Mining Council Chief Executive Officer, Dr Louis Wibberley and Rich Gazzard of BHP, Robin Batterham, the Australian Governments Chief Scientist, Mark Vale, Federal Minister for Trade, Tony Armor of EPRI, Daren Fooks, Clayton Utz Lawyers, Ron Knapp, Chief Executive of the World Coal Institute and Andrew Tucker, Australian Competition and Consumer Commission. Highlights of their addresses are given. Winners of the five research awards presented by the Australian Coal Association at the conference are reported. 11 photos.

  10. Comparison of the Eastern and Western Kentucky coal fields (Pennsylvanian), USA-why are coal distribution patterns and sulfur contents so different in these coal fields?

    Science.gov (United States)

    Greb, S.F.; Eble, C.F.; Chesnut, D.R.

    2002-01-01

    More than 130 Mt of Pennsylvanian coal is produced annually from two coal fields in Kentucky. The Western Kentucky Coal Field occurs in part of the Illinois Basin, an intercratonic basin, and the Eastern Kentucky Coal Field occurs in the Central Appalachian Basin, a foreland basin. The basins are only separated by 140 km, but mined western Kentucky coal beds exhibit significantly higher sulfur values than eastern Kentucky coals. Higher-sulfur coal beds in western Kentucky have generally been inferred to be caused by more marine influences than for eastern Kentucky coals. Comparison of strata in the two coal fields shows that more strata and more coal beds accumulated in the Eastern than Western Kentucky Coal Field in the Early and Middle Pennsylvanian, inferred to represent greater generation of tectonic accommodation in the foreland basin. Eastern Kentucky coal beds exhibit a greater tendency toward splitting and occurring in zones than time-equivalent western Kentucky coal beds, which is also inferred to represent foreland accommodation influences, overprinted by autogenic sedimentation effects. Western Kentucky coal beds exhibit higher sulfur values than their eastern counterparts, but western Kentucky coals occurring in Langsettian through Bolsovian strata can be low in sulfur content. Eastern Kentucky coal beds may increase in sulfur content beneath marine zones, but generally are still lower in sulfur than mined Western Kentucky coal beds, indicating that controls other than purely marine influences must have influenced coal quality. The bulk of production in the Eastern Kentucky Coal Field is from Duckmantian and Bolsovian coal beds, whereas production in the Western Kentucky Coal Field is from Westphalian D coals. Langsettian through Bolsovian paleoclimates in eastern Kentucky were favorable for peat doming, so numerous low-sulfur coals accumulated. These coals tend to occur in zones and are prone to lateral splitting because of foreland tectonic and

  11. Projected configuration of a coal-fired district heating source on the basis of comparative technical-economical optimization analysis

    Science.gov (United States)

    Tańczuk, Mariusz; Radziewicz, Wojciech; Olszewski, Eligiusz; Skorek, Janusz

    2017-10-01

    District heating technologies should be efficient, effective and environmentally friendly. The majority of the communal heating systems in Poland produce district hot water in coal-fired boilers. A large number of them are considerably worn out, low-efficient in the summer time and will not comply with forthcoming regulations. One of the possible solution for such plants is repowering with new CHP systems or new boilers fuelled with fuels alternative to coal. Optimisation analysis of the target configuration of municipal heat generating plant is analysed in the paper. The work concerns repowering the existing conventional heat generating plant according to eight different scenarios of the plant configuration meeting technical and environmental requirements forecasted for the year of 2035. The maximum demand for heat of the system supplied by the plant is 185 MW. Taking into account different technical configurations on one side, and different energy and fuel prices on the other side, the comparative cost-benefits analysis of the assumed scenarios has been made. The basic economical index NPV (net present value) has been derived for each analysed scenario and the results have been compared and discussed. It was also claimed that the scenario with CHP based on ICE engines is optimal.

  12. Projected configuration of a coal-fired district heating source on the basis of comparative technical-economical optimization analysis

    Directory of Open Access Journals (Sweden)

    Tańczuk Mariusz

    2017-01-01

    Full Text Available District heating technologies should be efficient, effective and environmentally friendly. The majority of the communal heating systems in Poland produce district hot water in coal-fired boilers. A large number of them are considerably worn out, low-efficient in the summer time and will not comply with forthcoming regulations. One of the possible solution for such plants is repowering with new CHP systems or new boilers fuelled with fuels alternative to coal. Optimisation analysis of the target configuration of municipal heat generating plant is analysed in the paper. The work concerns repowering the existing conventional heat generating plant according to eight different scenarios of the plant configuration meeting technical and environmental requirements forecasted for the year of 2035. The maximum demand for heat of the system supplied by the plant is 185 MW. Taking into account different technical configurations on one side, and different energy and fuel prices on the other side, the comparative cost-benefits analysis of the assumed scenarios has been made. The basic economical index NPV (net present value has been derived for each analysed scenario and the results have been compared and discussed. It was also claimed that the scenario with CHP based on ICE engines is optimal.

  13. Firing a sub-bituminous coal in pulverized coal boilers configured for bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    N. Spitz; R. Saveliev; M. Perelman; E. Korytni; B. Chudnovsky; A. Talanker; E. Bar-Ziv [Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2008-07-15

    It is important to adapt utility boilers to sub-bituminous coals to take advantage of their environmental benefits while limiting operation risks. We discuss the performance impact that Adaro, an Indonesian sub-bituminous coal with high moisture content, has on opposite-wall and tangentially-fired utility boilers which were designed for bituminous coals. Numerical simulations were made with GLACIER, a computational-fluid-dynamic code, to depict combustion behavior. The predictions were verified with full-scale test results. For analysis of the operational parameters for firing Adaro coal in both boilers, we used EXPERT system, an on-line supervision system developed by Israel Electric Corporation. It was concluded that firing Adaro coal, compared to a typical bituminous coal, lowers NOx and SO{sub 2} emissions, lowers LOI content and improves fouling behavior but can cause load limitation which impacts flexible operation. 21 refs., 7 figs., 3 tabs.

  14. An empirical analysis of freight rate and vessel price volatility transmission in global dry bulk shipping market

    Directory of Open Access Journals (Sweden)

    Lei Dai

    2015-10-01

    Full Text Available Global dry bulk shipping market is an important element of global economy and trade. Since newbuilding and secondhand vessels are often traded as assets and the freight rate is the key determinant of vessel price, it is important for shipping market participants to understand the market dynamics and price transmission mechanism over time to make suitable strategic decisions. To address this issue, a multi-variate GARCH model was applied in this paper to explore the volatility spillover effects across the vessel markets (including newbuilding and secondhand vessel markets and freight market. Specifically, the BEKK parameterization of the multi-variate GARCH model (BEKK GARCH was proposed to capture the volatility transmission effect from the freight market, newbuilding and secondhand vessel markets in the global dry bulk shipping industry. Empirical results reveal that significant volatility transmission effects exist in each market sector, i.e. capesize, panamax, handymax and handysize. Besides, the market volatility transmission mechanism varies among different vessel types. Moreover, some bilateral effects are found in the dry bulk shipping market, showing that lagged variances could affect the current variance in a counterpart market, regardless of the volatility transmission. A simple ratio is proposed to guide investors optimizing their portfolio allocations. The findings in this paper could provide unique insights for investors to understand the market and hedge their portfolios well.

  15. Quantitative thickness prediction of tectonically deformed coal using Extreme Learning Machine and Principal Component Analysis: a case study

    Science.gov (United States)

    Wang, Xin; Li, Yan; Chen, Tongjun; Yan, Qiuyan; Ma, Li

    2017-04-01

    The thickness of tectonically deformed coal (TDC) has positive correlation associations with gas outbursts. In order to predict the TDC thickness of coal beds, we propose a new quantitative predicting method using an extreme learning machine (ELM) algorithm, a principal component analysis (PCA) algorithm, and seismic attributes. At first, we build an ELM prediction model using the PCA attributes of a synthetic seismic section. The results suggest that the ELM model can produce a reliable and accurate prediction of the TDC thickness for synthetic data, preferring Sigmoid activation function and 20 hidden nodes. Then, we analyze the applicability of the ELM model on the thickness prediction of the TDC with real application data. Through the cross validation of near-well traces, the results suggest that the ELM model can produce a reliable and accurate prediction of the TDC. After that, we use 250 near-well traces from 10 wells to build an ELM predicting model and use the model to forecast the TDC thickness of the No. 15 coal in the study area using the PCA attributes as the inputs. Comparing the predicted results, it is noted that the trained ELM model with two selected PCA attributes yields better predication results than those from the other combinations of the attributes. Finally, the trained ELM model with real seismic data have a different number of hidden nodes (10) than the trained ELM model with synthetic seismic data. In summary, it is feasible to use an ELM model to predict the TDC thickness using the calculated PCA attributes as the inputs. However, the input attributes, the activation function and the number of hidden nodes in the ELM model should be selected and tested carefully based on individual application.

  16. Bulk modulus of basic sodalite, Na8[AlSiO4]6(OH)2·2H2O, a possible zeolitic precursor in coal-fly-ash-based geopolymers

    KAUST Repository

    Oh, Jae Eun

    2011-01-01

    Synthetic basic sodalite, Na8[AlSiO4] 6(OH)2•2H2O, cubic, P43n, (also known as hydroxysodalite hydrate) was prepared by the alkaline activation of amorphous aluminosilicate glass, obtained from the phase separation of Class F fly ash. The sample was subjected to a process similar to geopolymerization, using high concentrations of a NaOH solution at 90 °C for 24 hours. Basic sodalite was chosen as a representative analogue of the zeolite precursor existing in Na-based Class F fly ash geopolymers. To determine its bulk modulus, high-pressure synchrotron X-ray powder diffraction was applied using a diamond anvil cell (DAC) up to a pressure of 4.5 GPa. A curve-fit with a truncated third-order Birch-Murnaghan equation of state with a fixed K\\'o = 4 to pressure-normalized volume data yielded the isothermal bulk modulus, K o = 43 ± 4 GPa, indicating that basic sodalite is more compressible than sodalite, possibly due to a difference in interactions between the framework host and the guest molecules. © 2010 Elsevier Ltd.

  17. On the application of principal component analysis to the calculation of the bulk integral optical properties for radiation parameterizations in climate models.

    Science.gov (United States)

    Baran, Anthony J; Newman, Stuart M

    2017-03-01

    Rigorous electromagnetic computations required for the calculation of high-resolution monochromatic bulk integral optical properties of irregular atmospheric particles are onerous in memory and in time requirements. Here, it is shown that from a set of 145 monochromatic bulk integral ice optical properties, it is possible to reduce the set to eight hinge wavelengths by using the method of principal component analysis (PCA) regression. From the eight hinge wavelengths, the full set can be reconstructed to within root mean square errors of ≪1%. To obtain optimal reconstruction, the training set must cover as wide a range of parameter space as possible. Rigorous electromagnetic methods can now be routinely applied to represent accurately the integral optical properties of atmospheric particles in climate models.

  18. Coal in a sustainable society

    Energy Technology Data Exchange (ETDEWEB)

    Louis Wibberley [BHP Minerals Technology (Australia)

    2001-12-01

    This report builds on an earlier ACARP project C8049 Environmental Credentials of Coal and is aimed at assisting the coal industry to understand the role of coal in a sustainable society, for both iron and steel production, and for electricity generation. Iron and steel life cycle analysis (LCA) case studies show that, in terms of resource energy and greenhouse gas emissions (GGEs), the emerging coal based technologies compare favourably with gas based routes, if displacement credits can be claimed. There is clearly a change emerging in technologies for iron and steel production which favours the use of coal, and the coupling of hot metal production to electric arc furnaces. The 'dash to gas' is slowing. An important issue for the Australian coal industry is the relationship between coal properties and operating performance for these emerging technologies. 19 electricity LCA case studies have been carried out for a wide range of technologies. A number of opportunities have been identified from these for reducing the GGEs for coal based electricity generation technologies. LCAs were also carried out on cement production, coal production, and coal mine waste and fly ash utilisation. The GGE results for cement compared favourably with those published by the IEA when allowance was made for fly ash and blast furnace slag use in Australian cements, the results were in agreement with those published by the Cement Industry Federation. Extensive overseas discussions confirmed that coal's positive attributes will underpin the transition to more sustainable energy systems. It is therefore important to reverse the decline in coal R&D which has occurred in many developed countries, and to transfer technology (eg through CDM) to developing countries, and in particular China and India.

  19. Analysis of Overlying Strata Movement and Behaviors in Caving and Solid Backfilling Mixed Coal Mining

    Directory of Open Access Journals (Sweden)

    Yanli Huang

    2017-07-01

    Full Text Available Based on techniques of close upper protective coal-rock layer mining, relieved gas extraction, and underground gangue washing-discharging-backfilling, this paper initiates the concept of mixed fully-mechanized coal mining, which combines a solid backfilling method and a caving method (hereinafter referred to as “backfill and caving mixed mining”. After the principle and key techniques are introduced, a physical simulation experiment and a numerical simulation are used to study the characteristics of the overlying strata’s fracture development, the main roof subsidence, the stress field and its influence area in the transition area with the length ratios of the backfilling section and the caving section, and the advancing distance of the mixed longwall face. Thus, the lengths of the caving section and the backfilling section, the parameters of the support system in the transition section, and the design process of the mixed longwall face are presented. In practice, the mixed longwall face Ji15-31010 in Ping-dingshan No. 12 Colliery proves that the designed lengths of 120 m and 100 m for the backfilling section and the caving section, respectively, are appropriate. The monitoring results of the hydraulic support working resistance show that the supports were working well in general; the maximum growth height of the overlying strata fracture is 18 m; the gas drainage efficiency is up to 80% and the average gas concentration is 0.1 g/m3; a large quantity of gangue generated in the Ji14 seam is disposed underground; coal and gas are extracted simultaneously; and significant environmental and economic benefits are realized.

  20. Analysis of industrial markets for low and medium Btu coal gasification. [Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-30

    Low- and medium-Btu gases (LBG and MBG) can be produced from coal with a variety of 13 existing and 25 emerging processes. Historical experience and previous studies indicate a large potential market for LBG and MBG coal gasification in the manufacturing industries for fuel and feedstocks. However, present use in the US is limited, and industry has not been making substantial moves to invest in the technology. Near-term (1979-1985) market activity for LBG and MBG is highly uncertain and is complicated by a myriad of pressures on industry for energy-related investments. To assist in planning its program to accelerate the commercialization of LBG and MBG, the Department of Energy (DOE) contracted with Booz, Allen and Hamilton to characterize and forecast the 1985 industrial market for LBG and MBG coal gasification. The study draws five major conclusions: (1) There is a large technically feasible market potential in industry for commercially available equipment - exceeding 3 quadrillion Btu per year. (2) Early adopters will be principally steel, chemical, and brick companies in described areas. (3) With no additional Federal initiatives, industry commitments to LBG and MBG will increase only moderately. (4) The major barriers to further market penetration are lack of economic advantage, absence of significant operating experience in the US, uncertainty on government environmental policy, and limited credible engineering data for retrofitting industrial plants. (5) Within the context of generally accepted energy supply and price forecasts, selected government action can be a principal factor in accelerating market penetration. Each major conclusion is discussed briefly and key implications for DOE planning are identified.

  1. Northern Cheyenne Reservation Coal Bed Natural Resource Assessment and Analysis of Produced Water Disposal Options

    Energy Technology Data Exchange (ETDEWEB)

    Shaochang Wo; David A. Lopez; Jason Whiteman Sr.; Bruce A. Reynolds

    2004-07-01

    Coalbed methane (CBM) development in the Powder River Basin (PRB) is currently one of the most active gas plays in the United States. Monthly production in 2002 reached about 26 BCF in the Wyoming portion of the basin. Coalbed methane reserves for the Wyoming portion of the basin are approximately 25 trillion cubic feet (TCF). Although coal beds in the Powder River Basin extend well into Montana, including the area of the Northern Cheyenne Indian Reservation, the only CBM development in Montana is the CX Field, operated by the Fidelity Exploration, near the Wyoming border. The Northern Cheyenne Reservation is located on the northwest flank of the PRB in Montana with a total land of 445,000 acres. The Reservation consists of five districts, Lame Deer, Busby, Ashland, Birney, and Muddy Cluster and has a population of 4,470 according to the 2000 Census. The CBM resource represents a significant potential asset to the Northern Cheyenne Indian Tribe. Methane gas in coal beds is trapped by hydrodynamic pressure. Because the production of CBM involves the dewatering of coalbed to allow the release of methane gas from the coal matrix, the relatively large volume of the co-produced water and its potential environmental impacts are the primary concerns for the Tribe. Presented in this report is a study conducted by the Idaho National Engineering and Environmental Laboratory (INEEL) and the Montana Bureau of Mines and Geology (MBMG) in partnership with the Northern Cheyenne Tribe to assess the Tribe’s CBM resources and evaluate applicable water handling options. The project was supported by the U.S. Department of Energy (DOE) through the Native American Initiative of the National Petroleum Technology Office, under contract DEAC07- 99ID13727. Matching funds were granted by the MBMG in supporting the work of geologic study and mapping conducted at MBMG.

  2. On the analysis of building a public information platform based on e-Commerce for coal logistics

    Directory of Open Access Journals (Sweden)

    Zeguo Qiu

    2013-09-01

    Full Text Available Purpose: Putting forward the concept and features of the public information platform for coal logistics based on electronic commerce, as well as the requirements of upper and lower intersections of the coal supply chain. Meanwhile, this paper will also probe into the current condition of statistics management in coal logistics, and then discuss how to build a public information platform based on electronic commerce for coal logistics. Design/methodology/approach: According to the further exploring the concepts and relevant characteristics and the development of coal logistics and supply chain management in China of the current period. Findings/ Practical implications: An advanced public information platform for coal logistics utilizes to best advantage modern information technologies and managerial concepts in the operation of coal logistics, such as e-commerce, e-information, supply chain management, etc. This not only stimulates efficient integration of business flow, information flow, logistics and capital flow of the coal industry, brings about in-depth integration of the logistics resources of the coal industry, but also greatly improves the efficiency of the operation of coal logistics, reduces the cost of coal logistics, and enhances the overall competitiveness of upstream and downstream companies along the coal supply chain. Research limitations/implications: Although the coal logistics public information platform has been applied in some enterprises in China, not yet in a broader range of applications, which need the joint efforts of all parties. Originality/value: Fitted to the e-commerce era, the Public Information Platform for Coal Logistics envisioned in this article is highly feasible and worthy of reference to relevant institutions.

  3. Analysis of Flue Gas Desulfurization (FGD) Processes for Potential Use on Army Coal-Fired Boilers

    Science.gov (United States)

    1980-09-01

    a 0.6 MW slipstream from coal-fired boiler; full- scale operation at oil refinery in Japan. Operated in France at gas30-MW level on flue gas...small alumina pellets which are held by wire screens in a specially designed fixed-bed reactor. As the flue gas passes through the acceptance reactors...Lithium Oxide (Uzfl) Sodium Oxide (HajO) Potassium Oxide — (K20) Magnesium Oxide ~(Mgo) Alumina Oxide " (A1203) Silica Oxide ’ (Si02

  4. Long term stability analysis of cast iron shaft linings after Coal Mine closure and flooding

    Energy Technology Data Exchange (ETDEWEB)

    Hadj-Hassen, F. [Ecole des Mines de Paris - CGES, 77 - Fontainebleau (France); Bienvenu, Y. [Ecole des Mines de Paris, CM, 91 - Evry (France); Noirel, J.F. [Charbonnages de France, DTN, 57 - Freyming Merlebach (France); Metz, M. [charbonnages de France, ESA, 57 - Freyming Merlebach (France)

    2005-07-01

    This paper presents the results of a study conducted to analyse the long term stability of the cast iron shaft lining after coal mine closure and flooding. The attention is mainly focused on the behaviour during the critical phase of flooding as well as the phase corresponding to the disappearance of the water pressure and the stabilization of the environment. This pluri-disciplinary study was conducted by a team combining specialists in rock mechanics who identified the main risks and the conditions of stability of the lining and specialists in metallurgy who studied the composition of the cast iron and its corrosion behaviour after exposure to mine water. (authors)

  5. A case of slope slide induced by underground coal mining - analysis for landslide genesis in Hancheng power plant

    Energy Technology Data Exchange (ETDEWEB)

    Gu Xun

    1988-01-01

    The Hancheng power plant landslide is a super-scale landslide, which consists of 7 landslides of various sizes. Among them the volume of No. 6 landslide is up to 10,000,000 m/sup 3/. The serious deformations and damages of power plant buildings have been caused by landslide. At present, the landslide is in a condition of slow deformation and creeping. Since the slope angle (30 degrees - 20 degrees) and dip (6 degrees - 8 degrees) of the rock formations are quite gentle, therefore, its movement should be slow all the time and no rapid slipping will occur. The characteristics of the No. 6 landslide mainly are the focus of the analysis and discussion in this paper. The landslide is transformed from the rock formation slipping of slope induced by coal mining beneath Hengshan slope. In this paper, the relationships between occurrence of the landslide and underground coal mining are analysed and proved in detail, and the problems, which should be paid attention to in harnessing the landslide, are put forward. 10 figs.

  6. Planar chromatography for the hydrocarbon group type analysis of petroleum middle distillates and coal-derived products

    Energy Technology Data Exchange (ETDEWEB)

    Matt, Muriel; Gruber, Rene [Laboratoire de thermodynamique et d' analyses chimiques, Universite de Metz, Ile du Saulcy, UFR SciFA, 57045 cedex 1 Metz (France); Galvez, Eva; Cebolla, Vicente; Membrado, Luis; Vela, Jesus [Instituto de Carboquimica, CSIC, Miguel Luesma Castan 4, 50015 Zaragoza (Spain)

    2002-06-20

    Different methodologies, based on planar chromatography/detection with densitometry, have been used to analyse compound classes (also known as hydrocarbon group type (HGT)) in samples coming from petroleum and coal conversion. The main problem encountered to analyse these samples is the choice of standard: because of the high variability of the signal that is dependent of molecular structure, one pure hydrocarbon does not reflect the response of a mixture. However, a step based on thin layer chromatography at preparative scale has allowed the fractionation of sample to obtain its derived standards. After this, alkanes have been quantified by fluorescence in presence of berberine sulfate and aromatic compounds have been detected by UV after separation by high performance thin layer chromatography (HPTLC) at analytical scale.The feasibility of the planar chromatography has been tested. The quantitative results obtained for different samples are in agreement with those provided using well-established techniques in the petrochemical industry and the coal-derived product (CDP) analysis.

  7. Thermogravimetric Analysis of Textile Dyeing Sludge (TDS) in N₂/CO₂/O₂ Atmospheres and its Combustion Model with Coal.

    Science.gov (United States)

    Zhuo, Zhongxu; Liu, Jingyong; Sun, Shuiyu; Kuo, Jiahong; Sun, Jian; Chang, Ken-Lin; Fu, Jiewen

    2018-01-01

      The combustion characteristics of textile dyeing sludge (TDS) in N2/O2, CO2/O2, and N2/CO2 atmospheres, and blends of TDS with coal were analyzed using TGA (thermogravimetric analysis). Results showed that the replacement of N2 by CO2 resulted in negative effects on the combustion and pyrolysis of TDS. Comparing N2/O2 and CO2/O2 atmospheres, combustion of TDS was easier in a N2/O2 atmosphere, but the residual mass after TDS pyrolysis in pure CO2 was less than that in N2 by approximately 4.51%. When the proportion of TDS was 30-50% in the blends of coal with TDS, a synergistic interaction clearly occurred, and it significantly promoted combustion. In considering different combustion parameters, the optimal proportion of TDS may be between 20-30%. The activation energy Ea value decreased from 155.6 kJ/mol to 53.35 kJ/mol with an increasing TDS proportion from 0% to 50%, and it rapidly decreased when the TDS proportion was below 20%.

  8. Household coal use and lung cancer: systematic review and meta-analysis of case–control studies, with an emphasis on geographic variation

    Science.gov (United States)

    Hosgood, H Dean; Wei, Hu; Sapkota, Amir; Choudhury, Imran; Bruce, Nigel; Smith, Kirk R; Rothman, Nathaniel; Lan, Qing

    2011-01-01

    Background Emissions from household coal combustion associated with cooking and heating are an important public health issue, particularly in China where hundreds of millions of people are exposed. Although coal emissions are a known human carcinogen, there is still uncertainty about the level of risk for lung and other cancers. Methods We performed a meta-analysis on 25 case–control studies (10 142 cases and 13 416 controls) to summarize the association between household coal use and lung cancer risk, and to explore the effect modification of this association by geographical location. Results Using random-effects models, household coal use was found to be associated with lung cancer risk among all studies throughout the world [odds ratio (OR) = 2.15; 95% confidence interval (CI) = 1.61–2.89, Nstudies = 25], and particularly among those studies carried out in mainland China and Taiwan (OR = 2.27; 95% CI = 1.65–3.12, Nstudies = 20). Stratification by regions of mainland China and Taiwan found a variation in effects across the regions, with south/southeastern (OR = 3.27; 95% CI = 1.27–8.42, Nstudies = 3) and southwestern China (OR = 2.98; 95% CI = 1.18–7.53, Nstudies = 3) experiencing the highest risk. The elevated risk associated with coal use throughout Asia was also observed when stratifying studies by gender, smoking status, sample size, design (population vs hospital case–control) and publication language. No significant publication bias was found (pBegg’s = 0.15). Conclusions Our results provide evidence that although the carcinogenic effect of coal use varies by location, coals from many locations exhibit elevated lung cancer risks. PMID:21278196

  9. The neutron prompt analysis of cement and coal; L'analisi pronta con neutroni di cemento e carbone

    Energy Technology Data Exchange (ETDEWEB)

    Foglio Para, A. [Milan Politecnico, Milan (Italy). Dipt. di Ingegneria Nucleare; Allegri, D. [comp. (Italy)

    2001-12-01

    In this review it is presented a technique, of nuclear origin, with frequent applications in the cement and coal industries, for monitoring on-line the elements of the material, either as normal constituents or as traces. Indeed in the Prompt Gamma Neutron Activation Analysis (Pgnaa), the material under examination is irradiated with neutrons coming from sources installed inside the apparatus, in order to reveal the prompt gamma radiations emitted after the capture of a neutron and that are characteristic of the different elements. [Italian] La Prompt Gamma Neutron Activation Analysis (Pgnaa), e' una tecnica di origine nucleare che trova vasta applicazione nelle industrie del cemento e del carbone per il monitoraggio in tempo reale degli elementi presenti nel materiale di produzione. Il materiale in esame viene irraggiato con neutroni provenienti da sorgenti inserite nell'apparato di misura, per poi rilevare le radiazioni gamma, caratteristiche dei vari elementi, emesse a seguito della cattura dei neutroni.

  10. 19 CFR 149.4 - Bulk and break bulk cargo.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Bulk and break bulk cargo. 149.4 Section 149.4... TREASURY (CONTINUED) IMPORTER SECURITY FILING § 149.4 Bulk and break bulk cargo. (a) Bulk cargo exempted.... (b) Break bulk cargo exempted from time requirement. For break bulk cargo that is exempt from the...

  11. Chemical processes of coal for use in power plants. Part 1: Approximate analysis and associated indexes of pulverized coal; Procesos quimicos del carbon para su uso en centrales termoelectricas. Parte 1: Analisis aproximado e indices asociados del carbon pulverizado

    Energy Technology Data Exchange (ETDEWEB)

    Altamirano-Bedolla, J. A.; Manzanares-Papayanopoulos, E.; Herrera-Velarde, J. R. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: emp@iie.org.mx

    2010-11-15

    The usage of hydrocarbons, such as natural gas, oil products and coal, will be the main source of energy to the mankind for next generations. Therefore, the actual research and technological developments point out to employ with high efficiency those fuels. The main interests are to release most of the energy as possible and to guide the combustion reactions. It is well known that during the combustion process of coal, the chemical energy is converted to thermal energy, which it allows the steam production, and therefore to produce energy through an electric generator. The main interest of the work presented here is to study the behavior of the coal combustion processes in function of the approximate analysis and some associate indices of that analysis, to point out the optimization of the coal usage as main fuel in electrical power generation plants. [Spanish] El uso de hidrocarburos como son el gas natural, los derivados del petroleo y el carbon mineral, continuara siendo en las proximas decadas la principal fuente de energia de la humanidad. Por consiguiente, la investigacion cientifica y los desarrollos tecnologicos actualmente se enfocan en emplear de manera mas eficiente dichos combustibles, satisfaciendo entre otros factores, dos intereses principales: liberar la mayor cantidad de energia, reduciendo al minimo el material combustible no quemado, y direccionar las reacciones del proceso de combustion para minimizar la cantidad de productos no deseados resultantes de la reaccion. A traves de los procesos quimicos de combustion del carbon, se transforma la energia quimica a energia termica, lo que permite la produccion de vapor para a su vez impulsar una turbina la cual esta acoplada a un generador electrico. El objetivo del presente trabajo es el estudio del comportamiento de los procesos quimicos que se llevan a cabo durante las reacciones de combus-tion del carbon en funcion del analisis aproximado y de los indices asociados resultantes de dicho analisis; lo

  12. A contribution to problems of clean transport of bulk materials

    Directory of Open Access Journals (Sweden)

    Fedora Jaroslav

    1996-03-01

    Full Text Available The lecture analyses the problem of development of the pipe conveyor with a rubber belt, the facitities of its application in the practice and environmental aspects resulting from its application. The pipe conveyor is a new perspective transport system. It enables ransporting bulk materials (coal, crushed, rock, coke, plant ash, fertilisers, limestones, time in a specific operations (power plants, heating plants.cellulose, salt, sugar, wheat and other materials with a minimum effect on the environment. The transported material is enclosed in the pipeline so that there is no escape of dust, smell or of the transported material itself. The lecture is aimed at: - the short description of the operating principle and design of the pipe conveyor which was developed in the firm Matador Púchov in cooperation with the firm TEDO, - the analysis of experiencie in working some pipe conveyors which were under operation for a certain

  13. Analysis of Combustion Process of Sewage Sludge in Reference to Coals and Biomass

    Science.gov (United States)

    Środa, Katarzyna; Kijo-Kleczkowska, Agnieszka

    2016-06-01

    Production of sewage sludge is an inseparable part of the treatment process. The chemical and sanitary composition of sewage sludge flowing into the treatment plant is a very important factor determining the further use of the final product obtained in these plants. The sewage sludge is characterized by heterogeneity and multi-components properties, because they have characteristics of the classical and fertilizer wastes and energetic fuels. The thermal utilization of sewage sludge is necessary due to the unfavorable sanitary characteristics and the addition of the industrial sewage. This method ensures use of sewage sludge energy and return of expenditure incurred for the treatment of these wastes and their disposal. Sewage sludge should be analyzed in relation to conventional fuels (coals and biomass). They must comply with the applicable requirements, for example by an appropriate degree of dehydration, which guarantee the stable and efficient combustion. This paper takes the issue of the combustion process of the different sewage sludge and their comparison of the coal and biomass fuels.

  14. Short-term bulk energy storage system scheduling for load leveling in unit commitment: modeling, optimization, and sensitivity analysis

    Science.gov (United States)

    Hemmati, Reza; Saboori, Hedayat

    2016-01-01

    Energy storage systems (ESSs) have experienced a very rapid growth in recent years and are expected to be a promising tool in order to improving power system reliability and being economically efficient. The ESSs possess many potential benefits in various areas in the electric power systems. One of the main benefits of an ESS, especially a bulk unit, relies on smoothing the load pattern by decreasing on-peak and increasing off-peak loads, known as load leveling. These devices require new methods and tools in order to model and optimize their effects in the power system studies. In this respect, this paper will model bulk ESSs based on the several technical characteristics, introduce the proposed model in the thermal unit commitment (UC) problem, and analyze it with respect to the various sensitive parameters. The technical limitations of the thermal units and transmission network constraints are also considered in the model. The proposed model is a Mixed Integer Linear Programming (MILP) which can be easily solved by strong commercial solvers (for instance CPLEX) and it is appropriate to be used in the practical large scale networks. The results of implementing the proposed model on a test system reveal that proper load leveling through optimum storage scheduling leads to considerable operation cost reduction with respect to the storage system characteristics. PMID:27222741

  15. Short-term bulk energy storage system scheduling for load leveling in unit commitment: modeling, optimization, and sensitivity analysis.

    Science.gov (United States)

    Hemmati, Reza; Saboori, Hedayat

    2016-05-01

    Energy storage systems (ESSs) have experienced a very rapid growth in recent years and are expected to be a promising tool in order to improving power system reliability and being economically efficient. The ESSs possess many potential benefits in various areas in the electric power systems. One of the main benefits of an ESS, especially a bulk unit, relies on smoothing the load pattern by decreasing on-peak and increasing off-peak loads, known as load leveling. These devices require new methods and tools in order to model and optimize their effects in the power system studies. In this respect, this paper will model bulk ESSs based on the several technical characteristics, introduce the proposed model in the thermal unit commitment (UC) problem, and analyze it with respect to the various sensitive parameters. The technical limitations of the thermal units and transmission network constraints are also considered in the model. The proposed model is a Mixed Integer Linear Programming (MILP) which can be easily solved by strong commercial solvers (for instance CPLEX) and it is appropriate to be used in the practical large scale networks. The results of implementing the proposed model on a test system reveal that proper load leveling through optimum storage scheduling leads to considerable operation cost reduction with respect to the storage system characteristics.

  16. Latent class analysis of bulk tank milk PCR and ELISA testing for herd level diagnosis of Mycoplasma bovis

    DEFF Research Database (Denmark)

    Nielsen, Per Kantsø; Petersen, Mette Bisgaard; Nielsen, Liza Rosenbaum

    2015-01-01

    of this study was to evaluate the herd-level diagnostic performance of an indirect ELISA test by comparison to a real-time PCR test when diagnosing M. bovis in cattle herds of bulk tank milk. Bulk tank milk samples from Danish dairy herds (N=3437) were analysed with both the antibody detecting BIO K 302 M....... bovis ELISA kit and the antigen detecting PathoProof Mastitis Major-3 kit. As none of these are considered a gold standard test for herd-level diagnostics we applied a series of Bayesian latent class analyses for a range of ELISA cut-off values. The negative and positive predictive values were...... calculated for hypothetical true national prevalences (1, 5, 10, 15 and 20%) of infected herds. We estimated that the ELISA test had a median sensitivity and specificity of 60.4 [37.5-96.2 95% Posterior Credibility Interval] and 97.3 [94.0-99.8 95% PCI] at the currently recommended cut-off (37% Optical...

  17. Assessment of Functional EST-SSR Markers (Sugarcane in Cross-Species Transferability, Genetic Diversity among Poaceae Plants, and Bulk Segregation Analysis

    Directory of Open Access Journals (Sweden)

    Shamshad Ul Haq

    2016-01-01

    Full Text Available Expressed sequence tags (ESTs are important resource for gene discovery, gene expression and its regulation, molecular marker development, and comparative genomics. We procured 10000 ESTs and analyzed 267 EST-SSRs markers through computational approach. The average density was one SSR/10.45 kb or 6.4% frequency, wherein trinucleotide repeats (66.74% were the most abundant followed by di- (26.10%, tetra- (4.67%, penta- (1.5%, and hexanucleotide (1.2% repeats. Functional annotations were done and after-effect newly developed 63 EST-SSRs were used for cross transferability, genetic diversity, and bulk segregation analysis (BSA. Out of 63 EST-SSRs, 42 markers were identified owing to their expansion genetics across 20 different plants which amplified 519 alleles at 180 loci with an average of 2.88 alleles/locus and the polymorphic information content (PIC ranged from 0.51 to 0.93 with an average of 0.83. The cross transferability ranged from 25% for wheat to 97.22% for Schlerostachya, with an average of 55.86%, and genetic relationships were established based on diversification among them. Moreover, 10 EST-SSRs were recognized as important markers between bulks of pooled DNA of sugarcane cultivars through BSA. This study highlights the employability of the markers in transferability, genetic diversity in grass species, and distinguished sugarcane bulks.

  18. Characterization of organic nitrogen in IBCSP coals

    Energy Technology Data Exchange (ETDEWEB)

    Kruge, M.A.

    1991-01-01

    The overall objective of this study was to determine the content and distribution of organic nitrogen in a series of IBCSP coals and their isolated macerals. The specific objectives were: to determine the bulk nitrogen contents for coals, isolated macerals, oxidation products and residues, solvent extracts and their liquid chromatographic fractions, and pyrolyzates; to determine the distribution of organic nitrogen in all coal derivatives enumerated in Objective 1 which are Gas Chromatography (GC)-amenable. This will be accomplished by GC-Thermionic Specific Detectors; to determine the molecular structure of the major nitrogen compounds detected in Objective 2, using mass spectrometry.

  19. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA).

    Science.gov (United States)

    Idris, Siti Shawalliah; Abd Rahman, Norazah; Ismail, Khudzir; Alias, Azil Bahari; Abd Rashid, Zulkifli; Aris, Mohd Jindra

    2010-06-01

    This study aims to investigate the behaviour of Malaysian sub-bituminous coal (Mukah Balingian), oil palm biomass (empty fruit bunches (EFB), kernel shell (PKS) and mesocarp fibre (PMF)) and their respective blends during pyrolysis using thermogravimetric analysis (TGA). The coal/palm biomass blends were prepared at six different weight ratios and experiments were carried out under dynamic conditions using nitrogen as inert gas at various heating rates to ramp the temperature from 25 degrees C to 900 degrees C. The derivative thermogravimetric (DTG) results show that thermal decomposition of EFB, PMF and PKS exhibit one, two and three distinct evolution profiles, respectively. Apparently, the thermal profiles of the coal/oil palm biomass blends appear to correlate with the percentage of biomass added in the blends, thus, suggesting lack of interaction between the coal and palm biomass. First-order reaction model were used to determine the kinetics parameters for the pyrolysis of coal, palm biomass and their respective blends. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Quantitative determination of modal content and morphological properties of coal sulphides by digital image analysis as a tool to check their flotation behaviour

    Energy Technology Data Exchange (ETDEWEB)

    E. Coz; R. Castroviejo; D. Bonilla; F.J. Garcia Frutos [ETS Ingenieros de Minas, Madrid (Spain)

    2003-10-01

    An efficient depression of coal sulphides in the flotation process means a healthier environment and may be essential for the sustainability of a coal operation. Nitric and ferric oxidative pre-treatment of coal pyrite have been tested to improve pyrite depression, and the results are compared with those from the process of raw, not pre-treated coal. The removal indexes point to nitric pre-treatment as the best, but depression is still low. The microscopic study of feed and products, coupled to Digital Image Analysis (DIA) in all the cases, provide important clues to understand the behaviour of pyrite, which can be related to quantitative parameters, such as the exposition ratio (ER), and to qualified interpretation of the textures. Pyrite shows in the first float an unexpected hydrophobic behaviour, which is due to its occurrence as framboids, or porous particles which may be intergrown with organic matter and behave as coal. In general, the flotation results can be predicted from the DIA-data, e.g. depression of liberated pyrite into the tailings, increased by oxidative pre-treatments by 300% (ferric) or by >400% (nitric); or concentration of middlings with lower pyrite ER in the floats. DIA is an efficient tool to obtain some important quantitative informations which otherwise would be inaccessible (e.g. the morphological data on >1,000,000 pyrite particles for this study), and its use should be enhanced to check ore processing. 10 refs., 10 figs., 5 tabs.

  1. Lung cancer among coal miners, ore miners and quarrymen: smoking-adjusted risk estimates from the synergy pooled analysis of case-control studies.

    Science.gov (United States)

    Taeger, Dirk; Pesch, Beate; Kendzia, Benjamin; Behrens, Thomas; Jöckel, Karl-Heinz; Dahmann, Dirk; Siemiatycki, Jack; Kromhout, Hans; Vermeulen, Roel; Peters, Susan; Olsson, Ann; Brüske, Irene; Wichmann, Heinz-Erich; Stücker, Isabelle; Guida, Florence; Tardón, Adonina; Merletti, Franco; Mirabelli, Dario; Richiardi, Lorenzo; Pohlabeln, Hermann; Ahrens, Wolfgang; Landi, Maria Teresa; Caporaso, Neil; Pesatori, Angela Cecilia; Mukeriya, Anush; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Gustavsson, Per; Field, John; Marcus, Michael W; Fabianova, Eleonora; 't Mannetje, Andrea; Pearce, Neil; Rudnai, Peter; Bencko, Vladimir; Janout, Vladimir; Dumitru, Rodica Stanescu; Foretova, Lenka; Forastiere, Francesco; McLaughlin, John; Paul Demers, Paul Demers; Bueno-de-Mesquita, Bas; Schüz, Joachim; Straif, Kurt; Brüning, Thomas

    2015-09-01

    Working in mines and quarries has been associated with an elevated lung cancer risk but with inconsistent results for coal miners. This study aimed to estimate the smoking-adjusted lung cancer risk among coal miners and compare the risk pattern with lung cancer risks among ore miners and quarrymen. We estimated lung cancer risks of coal and ore miners and quarrymen among 14 251 lung cancer cases and 17 267 controls from the SYNERGY pooled case-control study, controlling for smoking and employment in other at-risk occupations. Ever working as miner or quarryman (690 cases, 436 controls) was associated with an elevated odds ratio (OR) of 1.55 [95% confidence interval (95% CI) 1.34-1.79] for lung cancer. Ore miners (53 cases, 24 controls) had a higher OR (2.34, 95% CI 1.36-4.03) than quarrymen (67 cases, 39 controls; OR 1.92, 95% CI 1.21-3.05) and coal miners (442 cases, 297 controls; OR 1.40, 95% CI 1.18-1.67), but CI overlapped. We did not observe trends by duration of exposure or time since last exposure. This pooled analysis of population-based studies demonstrated an excess lung cancer risk among miners and quarrymen that remained increased after adjustment for detailed smoking history and working in other at-risk occupations. The increase in risk among coal miners were less pronounced than for ore miners or quarrymen.

  2. Growth and coal-solubilizing activity of Penicillin simplicissimum on coal-related aromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Achi, O.K. (Federal Polytechnic (Nigeria). Dept. of Science and Technology)

    1994-01-01

    Penicillium simplicissimum, a coal-degrading fungus, was shown to utilize aromatic coal-substructure compounds as the sole carbon source. Aromatic compounds were also mixed with soluble coal polymer and solubilization was studied over a 7-day period. The degradation of coal in supplemented samples measured as the amount of acid-precipitable coal polymer being formed was investigated. Although coal solubilization was produced with most of the aromatic compounds tested, wide differences in the extent of solubilization in the presence of each compound were recorded, depending on whether the intact organism or cell-free extract was used. The efficient conversion of the compounds by the fungus is related to the efficiency shown in the degradation of coal. The infrared spectra and elemental analysis of biodegraded coal and the undegraded parent material were used to draw conclusions concerning the cleavage of functional groups in the coal. Possible involvement of enzymes in the process is discussed.

  3. X-ray photoelectron emission spectromicroscopic analysis of arborescent lycopsid cell wall composition and Carboniferous coal ball preservation

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, C. Kevin [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Abrecht, Mike; Zhou, Dong; Gilbert, P.U.P.A. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2010-08-01

    Two alternative processes complicate understanding of the biochemical origins and geochemical alteration of organic matter over geologic time: selective preservation of original biopolymers and in situ generation of new geopolymers. One of the best constrained potential sources of bio- and geochemical information about extinct fossil plants is frequently overlooked. Permineralized anatomically preserved plant fossils allow analysis of individual cell and tissue types that have an original biochemical composition already known from living plants. The original composition of more enigmatic fossils can be constrained by geochemical comparisons to tissues of better understood fossils from the same locality. This strategy is possible using synchrotron-based techniques for submicron-scale imaging with X-rays over a range of frequencies in order to provide information concerning the relative abundance of different organic bonds with X-ray Absorption Near Edge Spectroscopy. In this study, X-ray PhotoElectron Emission spectroMicroscopy (X-PEEM) was used to analyze the tissues of Lepidodendron, one of the lycopsid trees that were canopy dominants of many Pennsylvanian coal swamp forests. Its periderm or bark - the single greatest biomass contributor to many Late Paleozoic coals - is found to have a greater aliphatic content and an overall greater density of organic matter than lignified wood. Because X-PEEM allows simultaneous analysis of organic matter and matrix calcite in fully mineralized fossils, this technique also has great potential for analysis of fossil preservation, including documentation of significant traces of organic matter entrained in the calcite crystal fabric that fills the cell lumens. (author)

  4. Rapid coal characterization by FT-I. R. spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fredericks, P.M.; Osborn, P.R.; Swinkels, D.A.J.

    1984-01-01

    A method is described for the rapid characterization of bituminous coals based on factor analysis of the FT-I.R. spectra of a wide variety of coals from several countries. Correlations between the factor loadings and some significant coal properties are reported. Weaker, but in some cases still useful, correlations were made between coke properties and factor loadings from analysis of the FT-I.R. spectra of the corresponding coals or coal blends. 18 references

  5. Formation and retention of methane in coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  6. Review of a Proposed Quarterly Coal Publication

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This Review of a Proposed Quartery Coal Publication contains findings and recommendations regarding the content of a new summary Energy Information Administration (EIA) coal and coke publication entitled The Quarterly Coal Review (QCR). It is divided into five sections: results of interviews with selected EIA data users; identification of major functions of the coal and coke industries; analysis of coal and coke data collection activities; evaluation of issues conerning data presentation including recommendations for the content of the proposed QCR; and comparison of the proposed QCR with other EIA publications. Major findings and recommendations are as follows: (1) User interviews indicate a definite need for a compehensive publication that would support analyses and examine economic, supply and demand trends in the coal industry; (2) the organization of the publication should reflect the natural order of activities of the coal and coke industries. Based on an analysis of the industries, these functions are: production, stocks, imports, exports, distribution, and consumption; (3) current EIA coal and coke surveys collect sufficient data to provide a summary of the coal and coke industries on a quarterly basis; (4) coal and coke data should be presented separately. Coke data could be presented as an appendix; (5) three geographic aggregations are recommended in the QCR. These are: US total, coal producing districts, and state; (6) coal consumption data should be consolidated into four major consumer categories: electric utilities, coke plants, other industrial, and residential commercial; (7) several EIA publications could be eliminated by the proposed QCR.

  7. Flotation and flocculation chemistry of coal and oxidized coals

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaran, P.; Ramesh, R.

    1989-01-01

    This project is designed to develop an understanding of the fundamentals involved in flotation and flocculation of coal, and of coal in various states of oxidation. The main objective of this study is to accurately characterize the coal surface and elucidate mechanisms by which surface interactions between coal and various reagents enhance beneficiation of coals. Effects of oxidation on the modification of surface characteristics of coal by various reagents will also be studied. This quarter, the following studies were conducted in order to further develop our understanding of the role of heterogeneity in interfacial phenomena. (1) Since surface characterization is an important aspect in this project, ESCA (Electron Spectroscopy for Chemical Analysis) study of the coal surface was conducted. Surface derivatization, a technique often used in the preparation of organic compounds for gas-liquid chromatography, uses site specific molecular tags'' that bond to key chemical groups on the surface. Application of derivatization in conjunction with ESCA is a relatively new technique for quantifying functional groups on the surface which has not been possible till now. (2) A distribution of contact angles on the surface of coal (pseudo theta map) is presented based on our earlier results and other published information. The role of heterogeneity in contact angle studies is also examined. 14 refs., 2 tabs.

  8. Preservation media analysis for ex vivo measurements of endogenous UV fluorescence of liver fibrosis in bulk samples

    Science.gov (United States)

    Gutierrez-Herrera, Enoch; Perez-Garcia, Adolfo; Aleman-García, Nathalie; Ortega-Martinez, Antonio; Sánchez-Pérez, Celia; Franco, Walfre; Hernández-Ruiz, Joselín.

    2017-02-01

    Non-subjective, minimally-invasive, and quantifying techniques may support development and evaluation of a fibrosis regression treatment. The build-up of extracellular matrix in liver fibrosis may result on changes of the endogenous fluorescence of tissue. In this work, we evaluate the fluorescence excitation/emission matrix in the UV range for several bulk samples of murine hepatic tissue preserved in different media. Chemical changes on tissue, caused by formaldehyde preservation, alter the endogenous fluorescence spectra. To avoid these drawbacks, phosphate-buffered saline (PBS) or Iscove's Modified Dulbecco's Medium were used. PBS buffer showed to be the less harmful and cost-effective preservation medium to study the endogenous fluorescence in fibrotic tissue.

  9. Flow-through Bulk Optode for Spectrophotometric Determination of Thiocyanate and Its Application to Water and Saliva Analysis

    Directory of Open Access Journals (Sweden)

    José Fernández

    2006-10-01

    Full Text Available A flow-through spectrophotometric bulk optode for the flow-injectiondetermination of thiocyanate is described. As active constituents, the optode incorporatesthe lipophilized pH indicator 5-octadecanoyloxy-2-(4-nitrophenylazophenol andmethyltridodecyl ammonium chloride, dissolved in a plasticized poly(vinylchloridemembrane entrapped in a cellulose support. The optode is applied, in conjunction with theflow injection technique, to the determination of thiocyanate at pH 7.5 (TRIS/H2SO4. Thesensor is readily regenerated with a 10-2 M NaOH carrier solution. The analyticalcharacteristics of this optode with respect to thiocyanate response time, dynamicmeasurement range, reproducibility and selectivity are discussed. The proposed FI methodis applied to the determination of thiocyanate in waters from different sources and in humansaliva samples in order to distinguish between smokers and non-smokers.

  10. Chemical Compositional Analysis of Catalytic Hydroconversion Products of Heishan Coal Liquefaction Residue

    Directory of Open Access Journals (Sweden)

    Xiaoming Yue

    2017-01-01

    Full Text Available Liquefaction residue of Heishan bituminous coal (HLR was subject to two hydroconversion reactions under 5 MPa initial pressure of hydrogen at 300°C for 3 h, without catalyst and with acid supported catalyst (ASC, respectively. The reaction products were analyzed with gas chromatography/mass spectrometer (GC/MS. The results show that 222 organic compounds were detected totally in the products and they can be divided into alkanes, aromatic hydrocarbons (AHCs, phenols, ketones, ethers, and other species (OSs. The yield of hydroconversion over the ASC is much higher than that without catalyst. The most abundant products are aromatic hydrocarbons in the reaction products from both catalytic and noncatalytic reactions of HLR. The yield of aromatic hydrocarbons in the reaction product from hydroconversion with the ACS is considerably higher than that from hydroconversion without a catalyst.

  11. pH-dependent leaching of dump coal ash - retrospective environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, A.; Djordjevic, D. [University of Belgrade, Belgrade (Serbia). Dept. of Chemistry

    2009-07-01

    Trace and major elements in coal ash particles from dump of 'Nikola Tesla A' power plant in Obrenovac near Belgrade (Serbia) can cause pollution, due to leaching by atmospheric and surface waters. In order to assess this leaching potential, dump ash samples were subjected to extraction with solutions of decreasing pH values (8.50, 7.00, 5.50, and 4.00), imitating the reactions of the alkaline ash particles with the possible alkaline, neutral, and acidic (e.g., acid rain) waters. The most recently deposited ash represents the greatest environmental threat, while 'aged' ash, because of permanent leaching on the dump, was shown to have already lost this pollution potential. On the basis of the determined leachability, it was possible to perform an estimation of the acidity of the regional rainfalls in the last decades.

  12. Analysis the Purposes of Land Use Planning on the Hard Coal Tailing Dumps

    Science.gov (United States)

    Zástĕrová, Petra; Niemiec, Dominik; Marschalko, Marian; Durd'ák, Jan; Duraj, Miloš; Yilmaz, Işik; Drusa, Marian

    2016-10-01

    The aim of this publication is to analyse the purposes of land use planning on hard coal tailing dumps. This issue is very topical because there are 46 tailing dumps and 281 reservoirs in the Ostrava-Karvina Mining District. They significantly affect the landscape of this region. A major problem is solving problems of reclamation of these geological environment. This means that it is necessary to think about it and start to solve it. It is clear that such reclamation is not simple both economic as well as environmental point of view. It is necessary to think carefully about what purpose would be tailing dump or reservoirs to utilize in a given location.

  13. Advanced NMR-based techniques for pore structure analysis of coal. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.M.; Hua, D.W. [Univ. of New Mexico, Albuquerque, NM (United States). UNM/NSF Center for Micro-Engineered Ceramics; Earl, W. [Los Alamos National Lab., NM (United States)

    1996-02-01

    During the 3 year term of the project, new methods have been developed for characterizing the pore structure of porous materials such as coals, carbons, and amorphous silica gels. In general, these techniques revolve around; (1) combining multiple techniques such as small-angle x-ray scattering (SAXS) and adsorption of contrast-matched adsorbates or {sup 129}Xe NMR and thermoporometry (the change in freezing point with pore size), (2) combining adsorption isotherms over several pressure ranges to obtain a more complete description of pore filling, or (3) applying NMR ({sup 129}Xe, {sup 14}N{sub 2}, {sup 15}N{sub 2}) techniques with well-defined porous solids with pores in the large micropore size range (>1 nm).

  14. Creating bulk nanocrystalline metal.

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, D. Anthony (Georgia Institute of Technology, Atlanta, GA); Saldana, Christopher J. (Purdue University, West Lafayette, IN); Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John (Ktech Corporation, Albuquerque, NM); Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  15. Electrical analysis of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors on flexible bulk mono-crystalline silicon

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-06-01

    We report on the electrical study of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors (MOSCAPs) on a flexible ultra-thin (25 μm) silicon fabric which is peeled off using a CMOS compatible process from a standard bulk mono-crystalline silicon substrate. A lifetime projection is extracted using statistical analysis of the ramping voltage (Vramp) breakdown and time dependent dielectric breakdown data. The obtained flexible MOSCAPs operational voltages satisfying the 10 years lifetime benchmark are compared to those of the control MOSCAPs, which are not peeled off from the silicon wafer. © 2014 IEEE.

  16. A distance correction method for improving the accuracy of particle coal online X-ray fluorescence analysis - Part 2: Method and experimental investigation

    Science.gov (United States)

    Zhang, Yan; Jia, Wen Bao; Gardner, Robin; Shan, Qing; Zhang, Xin Lei; Hou, Guojing; Chang, Hao Ping

    2017-12-01

    The distance from X-Ray Fluorescence (XRF) spectrometer to sample surface always changes with the different coal's particle sizes, resulting in the inaccuracy of online XRF measurement. To improve the accuracy of particle coal online XRF analysis, a distance correction method was established elaborated by iteration, which was based on the relationship between the XRF intensity and the distance. In order to verify the effectiveness of this method, five different particle size coal samples with same components have been measured by the online XRF analyzer directly above the conveyor belt, in the meanwhile, the distances between XRF spectrometer and samples' surface were obtained by a laser rangefinder. The results showed that the average distances are decreased with decreasing the particle size. By comparing the results of before and after applying the distance correction method, we demonstrated that the measurement accuracy of online XRF analysis for particle coal can be significantly increased. The distance correction method can be used for the development of online XRF analysis techniques applicable for real-time industrial processes.

  17. Coal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kroenig, W.

    1944-02-11

    Some considerations in the selection of a catalyst for the liquid phase of coal hydrogenation are discussed. Some of the previous history of such selections is mentioned. At one stage of the development, the principal catalyst had been iron sulfate (FeSO/sub 4/.7H/sub 2/O). Later, for reasons of cost and availability of large supplies, selections had turned to mixtures of iron sulfate and one or another of some iron oxide- and aluminum oxide-containing byproducts of aluminum manufacture, namely Bayermasse, Luxamsse, or Lautamasse. Much of the discussion centered on optimal proportions for such mixtures, particularly as related to pH values of resulting coal pastes. Upper Silesian coal was more alkaline than Ruhr coal, and Bayermasse, etc., were quite alkaline. Thus, since the iron sulfate served as a partial neutralizer for the coal as well as a catalyst, it seemed necessary to increase the proportions of iron sulfate in the catalyst mixture when processing coal of greater alkalinity. A further reason for a greater proportion of iron sulfate seemed to be that most of the catalytic activity of the iron came from the ferrous iron of iron sulfate rather than from the ferric iron of the other materials. Ferrous-ferric ratios also seemed to indicate that Luxmasse or Lautamasse might be better catalyst components than Bayermasse but their water content sometimes caused handling problems, so Bayermasse had been more widely used. Formation of deposits in the preheater was more likely due to the Bayermasse than to the iron sulfate; sodium sulfide could help to prevent them.

  18. Impacts of Coal Seam Gas (Coal Bed Methane) and Coal Mining on Water Resources in Australia

    Science.gov (United States)

    Post, D. A.

    2013-12-01

    Mining of coal bed methane deposits (termed ';coal seam gas' in Australia) is a rapidly growing source of natural gas in Australia. Indeed, expansion of the industry is occurring so quickly that in some cases, legislation is struggling to keep up with this expansion. Perhaps because of this, community concern about the impacts of coal seam gas development is very strong. Responding to these concerns, the Australian Government has recently established an Independent Expert Scientific Committee (IESC) to provide advice to the Commonwealth and state regulators on potential water-related impacts of coal seam gas and large coal mining developments. In order to provide the underlying science to the IESC, a program of ';bioregional assessments' has been implemented. One aim of these bioregional assessments is to improve our understanding of the connectivity between the impacts of coal seam gas extraction and groundwater aquifers, as well as their connection to surface water. A bioregional assessment can be defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion, with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are now being carried out across large portions of eastern Australia which are underlain by coal reserves. This presentation will provide an overview of the issues related to the impacts of coal seam gas and coal mining on water resources in Australia. The methodology of undertaking bioregional assessments will be described, and the application of this methodology to six priority bioregions in eastern Australia will be detailed. Preliminary results of the program of research to date will be assessed in light of the requirements of the IESC to provide independent advice to the Commonwealth and State governments. Finally, parallels between the expansion of the industry in Australia with that

  19. World coal outlook to the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The 1983 edition of the World Coal Outlook to the Year 2000 examines the worldwide impact of lower oil prices and lower economic activity on the demand, production, and international trade in coal. The report includes detailed regional forecasts of coal demand by end-use application. Regions include the US, Canada, Western Europe, Japan, Other Asia, Latin America, Africa, Australia/New Zealand, Communist Europe, and Communist Asia. In addition, regional coal production forecasts are provided with a detailed analysis of regional coal trade patterns. In all instances, the changes relative to Chase's previous forecasts are shown. Because of the current situation in the oil market, the report includes an analysis of the competitive position of coal relative to oil in the generation of electricity, and in industrial steam applications. The report concludes with an examination of the impact of an oil price collapse on the international markets for coal.

  20. [Study on Microwave Co-Pyrolysis of Low Rank Coal and Circulating Coal Gas].

    Science.gov (United States)

    Zhou, Jun; Yang, Zhe; Liu, Xiao-feng; Wu, Lei; Tian, Yu-hong; Zhao, Xi-cheng

    2016-02-01

    The pyrolysis of low rank coal to produce bluecoke, coal tar and gas is considered to be the optimal method to realize its clean and efficient utilization. However, the current mainstream pyrolysis production technology generally has a certain particle size requirements for raw coal, resulting in lower yield and poorer quality of coal tar, lower content of effective components in coal gas such as H₂, CH₄, CO, etc. To further improve the yield of coal tar obtained from the pyrolysis of low rank coal and explore systematically the effect of microwave power, pyrolysis time and particle size of coal samples on the yield and composition of microwave pyrolysis products of low rank coal through the analysis and characterization of products with FTIR and GC-MS, introducing microwave pyrolysis of low rank coal into the microwave pyrolysis reactor circularly was suggested to carry out the co-pyrolysis experiment of the low rank coal and coal gas generated by the pyrolysis of low rank coal. The results indicated that the yield of the bluecoke and liquid products were up to 62.2% and 26.8% respectively when the optimal pyrolysis process conditions with the microwave power of 800W, pyrolysis time of 40 min, coal samples particle size of 5-10 mm and circulating coal gas flow rate of 0.4 L · min⁻¹ were selected. The infrared spectrogram of the bluecoke under different microwave power and pyrolysis time overlapped roughly. The content of functional groups with -OH, C==O, C==C and C−O from the bluecoke through the pyrolysis of particle size coal samples had a larger difference. To improve microwave power, prolonging pyrolysis time and reducing particle size of coal samples were conducive to converting heavy component to light one into coal tar.

  1. EROI Analysis for Direct Coal Liquefaction without and with CCS: The Case of the Shenhua DCL Project in China

    Directory of Open Access Journals (Sweden)

    Zhaoyang Kong

    2015-01-01

    Full Text Available Currently, there are considerable discrepancies between China’s central government and some local governments in attitudes towards coal to liquids (CTL technology. Energy return on investment (EROI analysis of CTL could provide new insights that may help solve this dilemma. Unfortunately, there has been little research on this topic; this paper therefore analyses the EROI of China’s Shenhua Group Direct Coal Liquefaction (DCL project, currently the only DCL commercial project in the world. The inclusion or omission of internal energy and by-products is controversial. The results show that the EROIstnd without by-product and with internal energy is 0.68–0.81; the EROIstnd (the standard EROI without by-product and without internal energy is 3.70–5.53; the EROIstnd with by-product and with internal energy is 0.76–0.90; the EROIstnd with by-product and without internal energy is 4.13–6.14. Furthermore, it is necessary to consider carbon capture and storage (CCS as a means to control the CO2 emissions. Considering the added energy inputs of CCS at the plant level, the EROIs decrease to 0.65–0.77, 2.87–3.97, 0.72–0.85, and 3.20–4.40, respectively. The extremely low, even negative, net energy, which may be due to high investments in infrastructure and low conversion efficiency, suggests CTL is not a good choice to replace conventional energy sources, and thus, Chinese government should be prudent when developing it.

  2. A time series analysis of bulk tank somatic cell counts of dairy herds located in Brazil and the United States

    Directory of Open Access Journals (Sweden)

    Liz Gonçalves Rodrigues

    Full Text Available ABSTRACT: Bulk tank somatic cell counts (BTSCC is widely used to monitore the mammary gland health at the herd and regional level. The BTSCC time series from specific regions or countries can be used to compare the mammary gland health and estimate the trend of subclinical mastitis at the regional level. Three time series of BTSCC from dairy herds located in the USA and the Southeastern Brazil were evaluated from 1995 to 2014. Descriptive statistics and a linear regression model were used to evaluate the data of the BTSCC time series. The mean of annual geometric mean of BTSCC (AGM and the percentage of dairy herds with a BTSCC greater than 400,000 cells mL-1 (%>400 were significantly different (P400 (P400, respectively. The linear regression model for the Brazil time series was not significant (P>0.05 for both dependent variables (AGM and %>400. The Brazil time series showed no increasing or decreasing trend for the AGM and %>400. Consequently, approximately 40 to 50% of the dairy herds from southeastern Brazil will not achieve the regulatory limits for BTSCC over the next years.

  3. Simultaneous Analysis of Losartan Potassium, Amlodipine Besylate, and Hydrochlorothiazide in Bulk and in Tablets by High-Performance Thin Layer Chromatography with UV-Absorption Densitometry

    Directory of Open Access Journals (Sweden)

    Karunanidhi Santhana Lakshmi

    2012-01-01

    Full Text Available A Simple high-performance thin layer chromatography (HPTLC method for separation and quantitative analysis of losartan potassium, amlodipine, and hydrochlorothiazide in bulk and in pharmaceutical formulations has been established and validated. After extraction with methanol, sample and standard solutions were applied to silica gel plates and developed with chloroform : methanol : acetone : formic acid 7.5 : 1.3 : 0.5 : 0.03 (/// as mobile phase. Zones were scanned densitometrically at 254 nm. The values of amlodipine besylate, hydrochlorothiazide, and losartan potassium were 0.35, 0.57, and 0.74, respectively. Calibration plots were linear in the ranges 500–3000 ng per spot for losartan potassium, amlodipine and hydrochlorothiazide, the correlation coefficients, r, were 0.998, 0.998, and 0.999, respectively. The suitability of this method for quantitative determination of these compounds was by validation in accordance with the requirements of pharmaceutical regulatory standards. The method can be used for routine analysis of these drugs in bulk and in formulation.

  4. CoalVal-A coal resource valuation program

    Science.gov (United States)

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  5. Bulk Nanostructured Materials

    Science.gov (United States)

    Koch, C. C.; Langdon, T. G.; Lavernia, E. J.

    2017-11-01

    This paper will address three topics of importance to bulk nanostructured materials. Bulk nanostructured materials are defined as bulk solids with nanoscale or partly nanoscale microstructures. This category of nanostructured materials has historical roots going back many decades but has relatively recent focus due to new discoveries of unique properties of some nanoscale materials. Bulk nanostructured materials are prepared by a variety of severe plastic deformation methods, and these will be reviewed. Powder processing to prepare bulk nanostructured materials requires that the powders be consolidated by typical combinations of pressure and temperature, the latter leading to coarsening of the microstructure. The thermal stability of nanostructured materials will also be discussed. An example of bringing nanostructured materials to applications as structural materials will be described in terms of the cryomilling of powders and their consolidation.

  6. Characterization of Some Nigerian Coals for Power Generation

    Directory of Open Access Journals (Sweden)

    M. Chukwu

    2016-01-01

    Full Text Available Five coal samples from Odagbo (Kogi State, Owukpa (Benue State, Ezimo (Enugu State, Amansiodo (Enugu State, and Inyi (Enugu State of Nigerian coal deposits were subjected to proximate analysis, ultimate analysis, calorific value determination, and petrographic and thermogravimetric analysis to determine their suitability for power generation. Based on results of tests carried out, Amansiodo coal is a bituminous, low sulphur, and medium ash coal, while Owukpa coal is a subbituminous A, low sulphur, low ash coal rich in huminites, Odagbo coal is a subbituminous B, medium sulphur, low ash coal rich in huminites, Ezimo coal is a subbituminous C, low sulphur, high ash coal, and Inyi coal is a subbituminous C, low sulphur, high ash coal. Between Odagbo and Owukpa subbituminous coals, Owukpa has a lower ignition temperature (283.63°C due to its higher volatile matter content (39.1%. However, Ezimo subbituminous coal, which has a lower volatile matter (31.1%, unexpectedly has the same ignition temperature as Owukpa (283.63°C due to its higher liptinite content (7.2% when compared with that of Owukpa (2.9%. The ease of combustion of the coal samples in decreasing order is Odagbo < Owukpa < Inyi < Ezimo < Amansiodo.

  7. Results of bulk sediment analysis and bioassay testing on selected sediments from Oakland Inner Harbor and Alcatraz disposal site, San Francisco, California

    Energy Technology Data Exchange (ETDEWEB)

    Word, J Q; Ward, J A; Woodruff, D L

    1990-09-01

    The Battelle/Marine Sciences Laboratory (MSL) was contracted by the US Army Corps of Engineers, San Francisco District, to perform bulk sediment analysis and oyster larvae bioassays (elutriate) on sediments from Inner Oakland Harbor, California. Analysis of sediment characteristics by MSL indicated elevated priority pollutants, PAHs, pesticides, metals, organotins, and oil and grease concentrations, when compared to Alcatraz Island Dredged Material Disposal Site sediment concentrations. Larvae of the Pacific oyster, Crassostrea gigas, were exposed to seawater collected from the Alcatraz Island Site water, and a series of controls using water and sediments collected from Sequim Bay, Washington. Exposure of larvae to the Alcatraz seawater and the 50% and 100% elutriate concentrations from each Oakland sediment resulted in low survival and a high proportion of abnormal larvae compared to Sequim Bay control exposures. MSL identified that field sample collection, preservation, and storage protocols used by Port of Oakland contractors were inconsistent with standard accepted practices. 23 refs., 10 figs., 40 tabs.

  8. Significance of coal petrological investigations in coal bed methane exploration - Indian context

    Energy Technology Data Exchange (ETDEWEB)

    Misra, B.K.; Singh, B.D.; Singh, A. [Birbal Sahni Institute of Paleobotany, Lucknow (India)

    2006-11-25

    Understanding of sorption and desorption processes of gas by coal is important in coal bed methane (CBM) estimation and determining its producibility. The results of the investigations carried out so far in Australia, on the role of coal type and rank in CBM storage and recovery are found to be inapplicable in the context of Indian coals. This is probably because the Australian Permian coals were considered as a two-component system - vitrinite- and inertinite-rich (liptinite macerals being present in negligible amount), when tested through sorption and desorption experiments. Liptinite maceral group, the third component of almost all high-volatile bituminous Permian coals of India, comprising hydrogen-rich plant parts (mostly the sporinite, spores and pollen), was not acknowledged in the model studies. Likewise, two lithotype bands - bright and dull including bulk coal samples were tested for the preceding experiments, whereas a third lithotype band semi-bright, the common lithotype of Permian coals was not included in such studies. Besides some general and specific comments on observations made, it is suggested to explore the role of liptinite macerals in sorption properties in different lithotypes; and assess coal permeability on three band components.

  9. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  10. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  11. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  12. Comparative analysis of gas and coal-fired power generation in ultra-low emission condition using life cycle assessment (LCA)

    Science.gov (United States)

    Yin, Libao; Liao, Yanfen; Liu, Guicai; Liu, Zhichao; Yu, Zhaosheng; Guo, Shaode; Ma, Xiaoqian

    2017-05-01

    Energy consumption and pollutant emission of natural gas combined cycle power-generation (NGCC), liquefied natural gas combined cycle power-generation (LNGCC), natural gas combined heat and power generation (CHP) and ultra-supercritical power generation with ultra-low gas emission (USC) were analyzed using life cycle assessment method, pointing out the development opportunity and superiority of gas power generation in the period of coal-fired unit ultra-low emission transformation. The results show that CO2 emission followed the order: USC>LNGCC>NGCC>CHP the resource depletion coefficient of coal-fired power generation was lower than that of gas power generation, and the coal-fired power generation should be the main part of power generation in China; based on sensitivity analysis, improving the generating efficiency or shortening the transportation distance could effectively improve energy saving and emission reduction, especially for the coal-fired units, and improving the generating efficiency had a great significance for achieving the ultra-low gas emission.

  13. Life cycle assessment of coal-fired power plants and sensitivity analysis of CO2 emissions from power generation side

    Science.gov (United States)

    Yin, Libao; Liao, Yanfen; Zhou, Lianjie; Wang, Zhao; Ma, Xiaoqian

    2017-05-01

    The life cycle assessment and environmental impacts of a 1000MW coal-fired power plant were carried out in this paper. The results showed that the operation energy consumption and pollutant emission of the power plant are the highest in all sub-process, which accounts for 93.93% of the total energy consumption and 92.20% of the total emission. Compared to other pollutant emissions from the coal-fired power plant, CO2 reached up to 99.28%. Therefore, the control of CO2 emission from the coal-fired power plants was very important. Based on the BP neural network, the amount of CO2 emission from the generation side of coal-fired power plants was calculated via carbon balance method. The results showed that unit capacity, coal quality and unit operation load had great influence on the CO2 emission from coal-fired power plants in Guangdong Province. The use of high volatile and high heat value of coal also can reduce the CO2 emissions. What’s more, under higher operation load condition, the CO2 emissions of 1 kWh electric energy was less.

  14. Microbial solubilization of coal

    Science.gov (United States)

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  15. A large scale investigation into changes in coal quality caused by dolerite dykes in Secunda, South Africa-implications for the use of proximate analysis on a working mine

    Science.gov (United States)

    Bussio, John P.; Roberts, James R.

    2016-05-01

    The coalfields of South Africa contain numerous dolerite intrusions, which affected the quality of the surrounding coal through thermal processes, commonly believed to be controlled by the size of the magmatic body. Data gathered from a working coalfield in Secunda, South Africa, suggest that the relationship between intrusive sills and coal is complex and factors other than intrusion width must be considered in relation to the contact metamorphic effect. The study area contains multiple dolerite intrusions of Karoo age, of which three intrusions occur as sills intruded close to the main coal seam of the. A large database (>8000 boreholes) of coal quality data was used to investigate the presence or absence of a change in coal quality relative to dolerite proximity. Reduction in coal quality was defined using three proximate analysis values, namely the ash, volatile content and dry ash free volatile (DAFV) as defined in the coal industry. The resultant investigation showed no correlation between the position and thickness of the dolerites, and changes in coal quality as measured by proximate analysis. In the absence of a linear relationship between coal quality and dolerite proximity, two processes are proposed to explain the absence of the contact metamorphic effects expected from previous studies. Firstly dolerite emplacement dynamics may influence the size of the metamorphic aureole produced by an intrusion, invalidating intrusion size as a measure of thermal output. Secondly, hydrothermal fluids mobilised by the dolerite intrusions, either from the country rock or the intrusion itself may percolate through the coal and act as the metamorphic agent responsible for changing coal quality, by dissolving the volatile and semi-volatile components of the coal and transporting them to other locations. These two processes are sufficient to explain the lack of a clear "metamorphic effect" related to the dolerite intrusions. However, the perceived lack of a clear

  16. Understanding the Contribution of Mining and Transportation to the Total Life Cycle Impacts of Coal Exported from the United States

    Directory of Open Access Journals (Sweden)

    Michele Mutchek

    2016-07-01

    Full Text Available The construction of two marine bulk terminals in the Pacific Northwest region of the United States are currently under review and would open up additional thermal coal exports to Asia on the order of almost 100 million additional tonnes per year. The major exporters of coal to Asian markets include Indonesia and Australia. This life cycle analysis (LCA seeks to understand the role of transportation and mining in the cradle-to-busbar environmental impacts of coal exports from the Powder River Basin (PRB to Asian countries, when compared to the competitor countries. This LCA shows that: (1 the most significant greenhouse gas (GHG impacts in the cradle-to-busbar life cycle of coal for power generation come from the combustion of coal in a power plant, even when 90% carbon capture is applied; (2 for non-GHG air impacts, power plant combustion impacts are less dominant and variations in upstream impacts (mining and transportation are more important; and (3 when comparing impacts between countries, upstream impacts vary for both GHG and non-GHG results, but conclusions that rank countries cannot be made. Future research should include expansion to include non-air impacts, potential consequential effects of coal exports, and a better understanding around the characterization of non-GHG ocean transport impacts.

  17. Geochemical Proxies for Enhanced Process Control of Underground Coal Gasification

    Science.gov (United States)

    Kronimus, A.; Koenen, M.; David, P.; Veld, H.; van Dijk, A.; van Bergen, F.

    2009-04-01

    generated CO2 has been analyzed with respect to its stable carbon isotope composition by mass spectrometry. All samples exhibited a similar trend: The ^13C signatures of initially produced CO2 revealed to be relatively light and linearly increasing with temperature until approaching the bulk stable carbon isotope composition of the coal at a certain temperature, where the isotope signature kept virtually constant during further temperature increase. The temperature introducing the range of constant isotope compositions of the produced gas increased with coal rank. Additionally, all coal samples were treated by Rock Eval pyrolysis up to 550 ˚ C in order to investigate temperature dependent generation of CO and CO2. The results exhibited a linear decrease of the CO2/CO ratio at increasing temperature. Both experimental approaches demonstrated dependencies between the qualitative and the isotope composition of the generated syngas on the one hand and the applied combustion temperature on the other hand and, consequently, the principal applicability of the considered geochemical parameters as temperature proxies for coals of significantly different rank and origin. Although the investigated samples revealed similar trends, the absolute characteristics of the correlation functions (e.g. linear gradients) between geochemical parameters and combustion temperatures differed on an individual sample base, implying a significant additional dependence of the considered geochemical parameters on the coal composition. As a consequence, corresponding experimental approaches are currently continued and refined by involving multi component compound specific isotope analysis, high temperature Rock Eval pyrolysis as well as an enforced consideration of initial coal and oxidant compositions.

  18. Investigation on characterization of Ereen coal deposit

    Directory of Open Access Journals (Sweden)

    S. Jargalmaa

    2016-03-01

    Full Text Available The Ereen coal deposit is located 360 km west from Ulaanbaatar and 95 km from Bulgan town. The coal reserve of this deposit is approximately 345.2 million tons. The Ereen coal is used directly for the Erdenet power plant for producing of electricity and heat. The utilization of this coal for gas and liquid product using gasification and pyrolysis is now being considered. The proximate and ultimate analysis show that the Ereen coal is low rank D mark hard coal, which corresponds to subbituminous coal. The SEM images of initial coal sample have compact solid pieces. The SEM image of carbonized and activated carbon samples are hard material with high developed macro porosity structure. The SEM images of hard residue after thermal dissolution in autoclave characterizes hard pieces with micro porous structure in comparison with activated carbon sample. The results of the thermal dissolution of Ereen coal in tetralin with constant weight ratio between coal and tetralin (1:1.8 at the 450ºC show that 38% of liquid product can be obtained by thermal decomposition of the COM (coal organic matter.Mongolian Journal of Chemistry 16 (42, 2015, 18-21

  19. Radioactive elements in Paleozoic coals of Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, S.I.; Rikhvanov, L.P.; Volostnov, A.V.; Varlachev, V.A. [Tomsk Polytechnic University, Tomsk (Russian Federation)

    2005-05-01

    The geochemistry of radioactive elements was examined in the Kuznetsk, Minusinsk, Tunguska, and Gorlovo Paleozoic coal basins in Siberia. Quantitative analytical techniques (INAA, delayed neutron analysis, and XRF) were used to study 2600 samples of coals and their host rocks. The average U and Th concentrations in the coals are 2 and 3 ppm, respectively. The lateral and vertical variability of the distribution of radioactive elements was examined on the scale of coal basins, deposits, and individual coal seams. It was determined that elevated U and Th concentrations in coals are often related to rock blocks enriched in radioactive elements in the surroundings of the basins or are correlated with volcanic activity during coal accumulation. High concentrations of these elements in coal seams are restricted to zones near the tops of the seams and the soil zones, the boundaries of partings, or to beds enriched in pyroclastic material. Using the f-radiography method, it was determined that the main mechanism of U accumulation in coals is its sorption on the organic matter. Thorium is contained in both the mineral and the organic constituents of coals. An increase in the ash contents of coals with clarke radioactivity is associated with an increase in the contents of U and Th in the mineral matter.

  20. Characterization and supply of coal based fuels

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  1. Kinetics of coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M. (United Technologies Research Center, East Hartford, CT (USA)); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. (Massachusetts Inst. of Tech., Cambridge, MA (USA)); Jenkins, R.; Mallin, J.; Espindola-Merin, B. (Pennsylvania State Univ., University Park, PA (USA)); Essenhigh, R.; Misra, M.K. (Ohio State Univ., Columbus, OH (USA))

    1989-07-01

    This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

  2. Cluster Analysis of the Organic Peaks in Bulk Mass Spectra Obtained During the 2002 New England Air Quality Study with an Aerodyne Aerosol Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    C. Marcolli

    2006-01-01

    Full Text Available We applied hierarchical cluster analysis to an Aerodyne aerosol mass spectrometer (AMS bulk mass spectral dataset collected aboard the NOAA research vessel R. H. Brown during the 2002 New England Air Quality Study off the east coast of the United States. Emphasizing the organic peaks, the cluster analysis yielded a series of categories that are distinguishable with respect to their mass spectra and their occurrence as a function of time. The differences between the categories mainly arise from relative intensity changes rather than from the presence or absence of specific peaks. The most frequent category exhibits a strong signal at m/z 44 and represents oxidized organic matter probably originating from both anthropogenic as well as biogenic sources. On the basis of spectral and trace gas correlations, the second most common category with strong signals at m/z 29, 43, and 44 contains contributions from isoprene oxidation products. The third through the fifth most common categories have peak patterns characteristic of monoterpene oxidation products and were most frequently observed when air masses from monoterpene rich regions were sampled. Taken together, the second through the fifth most common categories represent on average 17% of the total organic mass that stems likely from biogenic sources during the ship's cruise. These numbers have to be viewed as lower limits since the most common category was attributed to anthropogenic sources for this calculation. The cluster analysis was also very effective in identifying a few contaminated mass spectra that were not removed during pre-processing. This study demonstrates that hierarchical clustering is a useful tool to analyze the complex patterns of the organic peaks in bulk aerosol mass spectra from a field study.

  3. Origin, Bulk Chemical Composition and Physical Structure of the Galilean Satellites of Jupiter: A Post-Galileo Analysis

    Science.gov (United States)

    Prentice, A. J. R.

    1999-01-01

    Callisto, NH3 ice makes up -5% of the condensate mass next to h-rock (approximately 50%) and H2O ice (approximately 45%). Detailed thermal and structural models for each of Europa, Ganymede and Callisto are constructed on the basis of the above initial bulk chemical compositions. For Europa (E), a predicted 2-zone model consisting of a dehydrated rock core of mass 0.912 M (sub E) and a 150 km thick frozen mantle of salty H2O yields a moment-of-inertia coefficient which matches the Galileo Orbiter gravity measurement. For Ganymede (G), a 3-zone model possessing an inner core of solid FeS and mass approximately 0.116 M (sub G), and an outer H2O ice mantle of mass approximately 0.502 M (sub G) is needed to explain the gravity data. Ganymede's native magnetic field was formed by thermoremanent magnetization of Fe3O4. A new Callisto (C) model is proposed consisting of a core of mass 0.826 M (sub C) containing a uniform mixture of h-rock (60% by mass) and H2O and NH3 ices, and capped by a mantle of pure ice. This model may have the capacity to yield a thin layer of liquid NH3 (raised dot) 2H2O at the core boundary, in line with Galileo's discovery of an induced magnetic field.

  4. Life-Cycle Analysis of Greenhouse Gas Emissions and Water Consumption – Effects of Coal and Biomass Conversion to Liquid Fuels as Analyzed with the GREET Model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qianfeng [Argonne National Lab. (ANL), Argonne, IL (United States); Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-06-01

    The vast reserves of coal in the U.S. provide a significant incentive for the development of processes for coal conversion to liquid fuels (CTL). Also, CTL using domestic coal can help move the U.S. toward greater energy independence and security. However, current conversion technologies are less economically competitive and generate greater greenhouse gas (GHG) emissions than production of petroleum fuels. Altex Technologies Corporation (Altex, hereinafter) and Pennsylvania State University have developed a hybrid technology to produce jet fuel from a feedstock blend of coal and biomass. Collaborating with Altex, Argonne National Laboratory has expanded and used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model to assess the life-cycle GHG emissions and water consumption of this hybrid technology. Biomass feedstocks include corn stover, switchgrass, and wheat straw. The option of biomass densification (bales to pellets) is also evaluated in this study. The results show that the densification process generates additional GHG emissions as a result of additional biomass process energy demand. This process coproduces a large amount of char, and this study investigates two scenarios to treat char: landfill disposal (Char-LF) and combustion for combined heat and power (CHP). Since the CHP scenarios export excess heat and electricity as coproducts, two coproduct handling methods are used for well-to-wake (WTWa) analysis: displacement (Char-CHP-Disp) and energy allocation (Char-CHP-EnAllo). When the feedstock contains 15 wt% densified wheat straw and 85 wt% lignite coal, WTWa GHG emissions of the coal-and-biomass-to-liquid pathways are 116, 97, and 137 gCO2e per megajoule (MJ) under the Char-LF, Char-CHP-Disp, and Char-CHP-EnAllo scenarios, respectively, as compared to conventional jet fuel production at 84 gCO2e/MJ. WTWa water consumption values are 0.072, -0.046, and 0.044 gal/MJ for Char-LF, Char-CHP-Disp, and Char

  5. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  6. Analysis of brokerage feasibility for unit coal train shipments to the Midwest. [Unit train shipment and local distribution

    Energy Technology Data Exchange (ETDEWEB)

    Knorr, R.; Vezeris, S.; Wilkie, K.

    1980-01-01

    The purpose of this study is to determine the feasibility of aggregating industry and utility demand for coal and serving the demand through a local brokerage operation to reduce transportation cost. This cost saving is associated with the economy of scale of unit train shipments. The delivered price of western coal is calculated for local users in a given midwest subregion based on present utility and industrial coal demand. The broker operation would consist of unit train hauls from western mines, a receiving and storage terminal, local truck or rail transportation from the terminal to each user, and possible transshipment to distant waterfront users. The research focuses on the Green Bay, Wisconsin area. Applicability of this brokerage concept to other areas receiving western coal shipments is also discussed.

  7. Material and Energy Flow Analysis (Mefa of the Unconventional Method of Electricity Production Based on Underground Coal Gasification

    Directory of Open Access Journals (Sweden)

    Krystyna Czaplicka-Kolarz

    2014-01-01

    Originality/value: This is the first approach which contains a whole chain of electricity production from Underground Coal Gasification, including stages of gas cleaning, electricity production and the additional capture of carbon dioxide.

  8. Preparation and certification of two new bulk welding fume reference materials for use in laboratories undertaking analysis of occupational hygiene samples.

    Science.gov (United States)

    Butler, Owen; Musgrove, Darren; Stacey, Peter

    2014-01-01

    Workers can be exposed to fume, arising from welding activities, which contain toxic metals and metalloids. Occupational hygienists need to assess and ultimately minimize such exposure risks. The monitoring of the concentration of particles in workplace air is one assessment approach whereby fume, from representative welding activities, is sampled onto a filter and returned to a laboratory for analysis. Inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry are generally employed as instrumental techniques of choice for the analysis of such filter samples. An inherent difficulty, however, with inductively coupled plasma-based analytical techniques is that they typically require a sample to be presented for analysis in the form of a solution. The efficiency of the required dissolution step relies heavily upon the skill and experience of the analyst involved. A useful tool in assessing the efficacy of this dissolution step would be the availability and subsequent analysis of welding fume reference materials with stated elemental concentrations and matrices that match as closely as possible the matrix composition of welding fume samples submitted to laboratories for analysis. This article describes work undertaken at the Health and Safety Laboratory to prepare and certify two new bulk welding fume reference materials that can be routinely used by analysts to assess the performance of the digestion procedures they employ in their laboratories.

  9. Rock-Eval analysis of French forest soils: the influence of depth, soil and vegetation types on SOC thermal stability and bulk chemistry

    Science.gov (United States)

    Soucemarianadin, Laure; Cécillon, Lauric; Baudin, François; Cecchini, Sébastien; Chenu, Claire; Mériguet, Jacques; Nicolas, Manuel; Savignac, Florence; Barré, Pierre

    2017-04-01

    Soil organic matter (SOM) is the largest terrestrial carbon pool and SOM degradation has multiple consequences on key ecosystem properties like nutrients cycling, soil emissions of greenhouse gases or carbon sequestration potential. With the strong feedbacks between SOM and climate change, it becomes particularly urgent to develop reliable routine methodologies capable of indicating the turnover time of soil organic carbon (SOC) stocks. Thermal analyses have been used to characterize SOM and among them, Rock-Eval 6 (RE6) analysis of soil has shown promising results in the determination of in-situ SOC biogeochemical stability. This technique combines a phase of pyrolysis followed by a phase of oxidation to provide information on both the SOC bulk chemistry and thermal stability. We analyzed with RE6 a set of 495 soils samples from 102 permanent forest sites of the French national network for the long-term monitoring of forest ecosystems (''RENECOFOR'' network). Along with covering pedoclimatic variability at a national level, these samples include a range of 5 depths up to 1 meter (0-10 cm, 10-20 cm, 20-40 cm, 40-80 cm and 80-100 cm). Using RE6 parameters that were previously shown to be correlated to short-term (hydrogen index, HI; T50 CH pyrolysis) or long-term (T50 CO2 oxidation and HI) SOC persistence, and that characterize SOM bulk chemical composition (oxygen index, OI and HI), we tested the influence of depth (n = 5), soil class (n = 6) and vegetation type (n = 3; deciduous, coniferous-fir, coniferous-pine) on SOM thermal stability and bulk chemistry. Results showed that depth was the dominant discriminating factor, affecting significantly all RE6 parameters. With depth, we observed a decrease of the thermally labile SOC pool and an increase of the thermally stable SOC pool, along with an oxidation and a depletion of hydrogen-rich moieties of the SOC. Soil class and vegetation type had contrasted effects on the RE6 parameters but both affected significantly T

  10. Topical coal tar alone and in combination with oral methotrexate in management of psoriasis : a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Prasad PVS

    1997-01-01

    Full Text Available Thirty five patients admitted with psoriasis were analysed. 16 patients received 20% crude coal tar and 19 patients received 20% crude coal tar along with methotrexate in a weekly oral schedule (15mg/wk. After 4 weeks of therapy there was total clearence in 52.6% of the patients with combination therapy, whereas only 12.5% of the patients with conventional therapy achieved this.

  11. Subcontracted R and D final report: analysis of samples obtained from GKT gasification test of Kentucky coal. Nonproprietary version

    Energy Technology Data Exchange (ETDEWEB)

    Raman, S.V.

    1983-09-01

    A laboratory test program was performed to obtain detailed compositional data on the Gesellshaft fuer Kohle-Technologie (GKT) gasifier feed and effluent streams. GKT performed pilot gasification tests with Kentucky No. 9 coal and collected various samples which were analyzed by GKT and the Radian Corporation, Austin, Texas. The coal chosen had good liquefaction characteristics and a high gasification reactivity. No organic priority pollutants or PAH compounds were detected in the wash water, and solid waste leachates were within RCRA metals limits.

  12. Mechanical Behavior and Permeability Evolution of Reconstituted Coal Samples under Various Unloading Confining Pressures—Implications for Wellbore Stability Analysis

    Directory of Open Access Journals (Sweden)

    Qiangui Zhang

    2017-03-01

    Full Text Available Low pressure, low permeability, and low saturation of Chinese coal-bed methane (CBM reservoirs make underbalanced drilling (UBD widely used for mining CBM in China. In this study, mechanical behavior and permeability of coal rock were investigated under different degrees of unloading confining pressure (UCP-reloading axial stress (RAS by a triaxial experimental apparatus. These tests revealed that: (1 peak deviatoric stress of coal rock in UCP-RAS is lower than that in a conventional triaxial compression (CTC test, and the peak deviatoric stress linearly relates the degree of unloading confining pressure. The deformation modulus of coal in UCP-RAS is lower than that in CTC, while the lateral expansion ratio is larger than that in CTC; (2 higher UCP leads to a faster increase of permeability during RAS until the failure of coal; (3 the cohesion and internal friction angle tested by UCP-RAS are lower by 4.57% and 15.18% than those tested by CTC. In addition, a field case (Zhaozhuang well, Qinshui Basin, China of a well collapse problem validates the higher probability of wellbore collapse due to the increase of equivalent collapse fluid density, which is calculated by using coal rock parameters tested by UCP-RAS rather than by CTC.

  13. Hydrothermal pretreatment of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.S.

    1989-12-21

    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of OH'' seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  14. Coal - testing methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-04-01

    This Standard specifies the method for the particle-size analysis, the method for determination of the float and sink characteristics, the method for determination of Hardgrove grindability indices, the method for determination of the crucible swelling number, the method for determination of the swelling properties, the method for determination of the fluidity properties, the method for determination of the coking properties, the method for determination of the fusibility of ash, and the method for determination of Roga indices of coal.

  15. Discontinuum-Equivalent Continuum Analysis of the Stability of Tunnels in a Deep Coal Mine Using the Distinct Element Method

    Science.gov (United States)

    Shreedharan, Srisharan; Kulatilake, Pinnaduwa H. S. W.

    2016-05-01

    An imperative task for successful underground mining is to ensure the stability of underground structures. This is more so for deep excavations which may be under significantly high stresses. In this manuscript, we present stability studies on two tunnels, a horseshoe-shaped and an inverted arch-shaped tunnel, in a deep coal mine in China, performed using the 3DEC distinct element code. The rock mass mechanical property values for the tunnel shapes have been estimated through a back-analysis procedure using available field deformation data. The back-analysis has been carried out through a pseudo-time dependent support installation routine which incorporates the effect of time through a stress-relaxation mechanism. The back-analysis indicates that the rock mass cohesion, tensile strength, uniaxial compressive strength, and elastic modulus values are about 35-45 % of the corresponding intact rock property values. Additionally, the importance of incorporating stress relaxation before support installation has been illustrated through the increased support factor of safety and reduced grout failures. The calibrated models have been analyzed for different supported and unsupported cases to estimate the significance and adequacy of the current supports being used in the mine and to suggest a possible optimization. The effects of supports have been demonstrated using deformations and yield zones around the tunnels, and average factors of safety and grout failures of the supports. The use of longer supports and floor bolting has provided greater stability for the rock masses around the tunnels. Finally, a comparison between the two differently shaped tunnels establishes that the inverted arch tunnel may be more efficient in reducing roof sag and floor heave for the existing geo-mining conditions.

  16. Measurement of -OH groups in coals of different rank using microwave methodology, and the development of quantitative solid state n.m.r. methods for in situ analysis

    Energy Technology Data Exchange (ETDEWEB)

    Monsef-Mirzai, P.; McWhinnie, W.R.; Perry, M.C.; Burchill, P. [Aston University, Birmingham (United Kingdom). Dept. of Chemical Engineering and Applied Chemistry

    1995-05-01

    Experiments with both model compounds (substituted phenols) and with 11 coals (nine British and two American) have established that microwave heating will greatly accelerate silylation reactions of the phenolic -OH groups, e.g. for Creswell coal complete silylation of -OH groups occurs in 35 min in the microwave oven, whereas 24 h is required using a bench reflux technique. Microwave reaction times for coals vary from 35 min to 3 h for more dense coals such as Cortonwood. The above observations have allowed the development of a `one pot` silylation of coal, followed by an in situ analysis of the added Me{sub 3}Si- groups by quantitative {sup 29}Si magic angle spinning nuclear magnetic resonance (MAS n.m.r.) spectroscopy. The development of a quantitative n.m.r. method required the determination of {sup 29}Si spin lattice relaxation times, T{sub 1}, e.g. for silylated coals T{sub 1} {approximately} 8s; for silylated phenols, T{sub 1} {approximately} 25s; for the synthetic smectite clay laponite, T{sub 1} {approximately} 25 s; and for Ph{sub 3}SiH, T{sub 1} {approximately} 64 s. Inert laponite was selected as the standard. The requirement to wait for five T{sub 1 max} between pulses, together with the relatively low natural abundance of {sup 29}Si (4.71%), results in rather long accumulation times to obtain spectra of analytical quality (8-48 h). However, in comparison with other methods, even in the most unfavourable case, the total time from commencement of analysis to result may be described as `rapid`. The results for O{sub OH}/O{sub total} obtained are compared with other literature data. Comparison with ketene data, for example, shows agreement to vary from excellent (Creswell) through satisfactory (Cortonwood) to poor (Pittsburgh). Even in cases where agreement with ketene data is less good, the silylation results may be close to estimates made via other acetylation methods. Possible reasons for the variations observed are discussed. 18 refs., 2 figs., 7 tabs.

  17. COAL DUST EMISSION PROBLEM

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-12-01

    Full Text Available Purpose. The article aims to develop 2D numerical models for the prediction of atmospheric pollution during transportation of coal in the railway car, as well as the ways to protect the environment and the areas near to the mainline from the dust emission due to the air injection installation. Methodology. To solve this problem there were developed numerical models based on the use of the equations of motion of an inviscid incompressible fluid and mass transfer. For the numerical integration of the transport equation of the pollutant the implicit alternating-triangular difference scheme was used. For numerical integration of the 2D equation for the velocity potential the method of total approximation was used. The developed numerical models are the basis of established software package. On the basis of the constructed numerical models it was carried out a computational experiment to assess the level of air pollution when transporting bulk cargo by rail when the railway car has the air injection. Findings. 2D numerical models that belong to the class «diagnostic models» were developed. These models take into account the main physical factors affecting the process of dispersion of dust pollution in the atmosphere during transportation of bulk cargo. The developed numerical models make it possible to calculate the dust loss process, taking into account the use of the air injection of the car. They require a small cost of the computer time during practical realization at the low and medium power machines. There were submitted computational calculations to determine pollutant concentrations and the formation of the zone of pollution near the train with bulk cargo in «microscale» scale taking into account the air curtains. Originality. 2D numerical models taking into account the relevant factors influencing the process of dispersion of pollutants in the atmosphere, and the formation of the zone of pollution during transportation of bulk cargo by

  18. MECHANISMS AND OPTIMIZATION OF COAL COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    Kyriacos Zygourakis

    1998-05-01

    We report the development of a novel experimental technique that combines video microscopy and thermogravimetric analysis to optimize the detection of coal and char particle ignitions. This technique is particularly effective for detecting ignitions occurring in coal or char samples containing multiple particles, where other commonly used techniques fail. The new approach also allows for visualization of ignition mechanism. Devolatilized char particles appear to ignite heterogeneously, while coal particles may ignite homogeneously, heterogeneously or through a combination of both mechanisms.

  19. Sustainable steel making: a coal perspective

    Energy Technology Data Exchange (ETDEWEB)

    Wibberley, L. [BHP Billiton Minerals Technology (Australia)

    2002-01-01

    The paper discusses the iron and steelmaking technologies based on coal which can potentially achieve significant reductions in greenhouse gas emissions. It summarises the results of life cycle analysis studies for a range of steelmaking routes including conventional and emerging technologies (such as use of charcoal). The work was initiated by the Australian coal industry and includes ongoing research through the Co-operative Research Centre for Coal in Sustainable Development. 3 refs., 5 figs., 2 tabs.

  20. Resolving the bulk δ 15N values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids

    Science.gov (United States)

    Styring, Amy K.; Sealy, Judith C.; Evershed, Richard P.

    2010-01-01

    Stable nitrogen isotope analysis is a fundamental tool in assessing dietary preferences and trophic positions within contemporary and ancient ecosystems. In order to assess more fully the dietary contributions to human tissue isotope values, a greater understanding of the complex biochemical and physiological factors which underpin bulk collagen δ 15N values is necessary. Determinations of δ 15N values of the individual amino acids which constitute bone collagen are necessary to unravel these relationships, since different amino acids display different δ 15N values according to their biosynthetic origins. A range of collagen isolates from archaeological faunal and human bone ( n = 12 and 11, respectively), representing a spectrum of terrestrial and marine protein origins and diets, were selected from coastal and near-coastal sites at the south-western tip of Africa. The collagens were hydrolysed and δ 15N values of their constituent amino acids determined as N-acetylmethyl esters (NACME) via gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The analytical approach employed accounts for 56% of bone collagen nitrogen. Reconstruction of bulk bone collagen δ 15N values reveals a 2‰ offset from bulk collagen δ 15N values which is attributable to the δ 15N value of the amino acids which cannot currently be determined by GC-C-IRMS, notably arginine which comprises 53% of the nitrogen unaccounted for (23% of the total nitrogen). The δ 15N values of individual amino acids provide insights into both the contributions of various amino acids to the bulk δ 15N value of collagen and the factors influencing trophic position and the nitrogen source at the base of the food web. The similarity in the δ 15N values of alanine, glutamate, proline and hydroxyproline reflects the common origin of their amino groups from glutamate. The depletion in the δ 15N value of threonine with increasing trophic level indicates a fundamental difference between

  1. [Alkene bromination used for detailed hydrocarbon and bulk hydrocarbon group-type analysis of gasolines containing alkenes].

    Science.gov (United States)

    Liu, Ying-Rong; Yang, Hai-Ying; Li, Chang-Xiu

    2002-07-01

    The optimized reaction conditions of selective alkene bromination for gasolines containing aromatics and saturated hydrocarbons are presented. By this way, the interfering problem in alkene determination from coeluting saturated hydrocarbons has been solved. So the detailed hydrocarbon analysis can be improved by a simple system containing polar and non-polar columns or by a gas chromatograph coupled with an atomic emission detector (GC-AED). Under the optimized conditions, it was found that the alkene compounds were selectively and completely brominated but the aromatics and alkane compounds were remained unaffected. A simple treatment, 90 s-120 s for reaction and 10 s-20 s for removing the excess bromine, can be easily realized. The treatment is applied for the different types of gasoline containing 0-100% alkene. Besides, one of the most important applications of this treatment is to analyse the hydrocarbons in detail from the fluid catalytic cracking (FCC) gasoline. The samples in these cases may not be accurately analyzed when using the traditional method of hydrocarbon analysis because of the presence of coeluted interfering olefins above C7.

  2. Coal liquefaction

    Science.gov (United States)

    Schindler, Harvey D.

    1985-01-01

    In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

  3. Comparative study on combined co-pyrolysis/gasification of walnut shell and bituminous coal by conventional and congruent-mass thermogravimetric analysis (TGA) methods.

    Science.gov (United States)

    Zhang, Yan; Fan, Di; Zheng, Yan

    2016-01-01

    Combined co-pyrolysis/gasification of bituminous coal (BC) and walnut shell (WS) are comparatively studied with both conventional and congruent-mass thermogravimertric analysis (TGA) methods. The results indicate that BC and WS exhibit additivity in the co-pyrolysis step. However, the gasification reactivity of chars in subsequent gasification step exhibits remarkable sample-mass dependence, which causes the illusions in synergy and inhibition effects when conventional TGA tests are conducted. A congruent-mass TGA method has been developed to overcome the limitations of the conventional TGA mode. One of the advantages of this method is that it can reduce to a minimum the effect of sample mass on reactivity. Thus, the degree of synergy or inhibition can be directly estimated from the deviation of the experimental TG curves between the two separated and blended samples. We recommend this method in studying the co-processing behavior between coal and biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Real-time analysis of soot emissions from bituminous coal pyrolysis and combustion with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer.

    Science.gov (United States)

    Gao, Shaokai; Zhang, Yang; Meng, Junwang; Shu, Jinian

    2009-01-15

    This paper reports on-line analyses of the soot emissions from the Inner Mongolia bituminous coal combustion and pyrolysis processes with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The soot particles are generated by heating a small amount of screened coal powder in synthetic air and nitrogen atmosphere in a tubular oven. The vacuum ultraviolet photoionization time-of-flight (VUV-TOF) mass spectra of the soot particles emitted from combustion and pyrolysis at different oven temperatures and different stages are obtained. The VUV-TOF mass spectra are assigned with the references of the results of the off-line GC/MS analysis.

  5. Biochemical Removal of HAP Precursors from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Gregory J

    1997-05-12

    Column biooxidation tests with Kentucky coal confirmed results of earlier shake flask tests showing significant removal from the coal of arsenic, selenium, cobalt, manganese, nickel and cadmium. Rates of pyrite biooxidation in Kentucky coal were only slightly more than half the rates found previously for Indiana and Pittsburgh coals. Removal of pyrite from Pittsburgh coal by ferric ion oxidation slows markedly as ferrous ions accumulate in solution, requiring maintenance of high redox potentials in processes designed for removal of pyrite and hazardous air pollutant (HAP) precursors by circulation of ferric solutions through coal. The pyrite oxidation rates obtained in these tests were used by Unifield Engineering to support the conceptual designs for alternative pyrite and HAP precursor bioleaching processes for the phase 2 pilot plant. Thermophilic microorganisms were tested to determine if mercury could be mobilized from coal under elevated growth temperatures. There was no evidence for mercury removal from coal under these conditions. However, the activity of the organisms may have liberated mercury physically. It is also possible that the organisms dissolved mercury and it readsorbed to the clay preferentially. Both of these possibilities are undergoing further testing. The Idaho National Engineering and Environmental Laboratory's (INEEL) slurry column reactor was operated and several batches of feed coal, product coal, waste solids and leach solutions were submitted to LBL for HAP precursor analysis. Results to date indicate significant removal of mercury, arsenic and other HAP precursors in the combined physical-biological process.

  6. Surface and bulk 3D analysis of natural and processed ruby using electron probe micro analyzer and X-ray micro CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Rakesh K., E-mail: rakesh.materialscience@gmail.com; Singh, Saroj K.; Mishra, B.K.

    2016-08-15

    Highlights: • Firm linking between two advance techniques: Micro-CT and EPMA for mineral analysis. • Attempt to identify and differentiate the treated gem stone from natural counterpart. • 3D structural and surface elemental analysis of the natural gem stone. - Abstract: The change in surface compositional and bulk structural characteristics of the natural ruby stone, before and after heat treatment with lead oxide has been analyzed using two advance characterization techniques like: X-ray micro CT scan (μ-CT) and electron probe micro analyzer (EPMA). The analytical correlation between these two techniques in identification as well as in depth study of the ores and minerals before and after processing has been presented. Also, we describe the aesthetic enhancement of a low quality defective ruby stone by lead oxide filling and the sequential analysis of this ruby stone before and after treatment using these two advanced techniques to identify and to confirm the change in its aesthetic value. The cracks healing and pores filling by the metal oxide on the surface of the ruby have been analyzed using μ-CT and EPMA. Moreover, in this work we describe the advance characterization of the repaired gem stones especially ruby stones. This work will light up the path for in-depth understanding of diffusion mechanism and abstract information of impurity particles inside the minerals. Based on these observations, EPMA and micro CT are shown to be powerful tools for the identification as well as research in gem stones.

  7. Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

    2006-11-27

    from converting plants with once-through cooling to wet towers or indirect-dry towers. Five locations--Delaware River Basin (Philadelphia), Michigan/Great Lakes (Detroit), Ohio River Valley (Indianapolis), South (Atlanta), and Southwest (Yuma)--were modeled using an ASPEN simulator model. The model evaluated the performance and energy penalty for hypothetical 400-MW coal-fired plants that were retrofitted from using once-through cooling systems to wet- and dry-recirculating systems. The modeling was initially done to simulate the hottest time of the year using temperature input values that are exceeded only 1 percent of the time between June through September at each modeled location. These are the same temperature inputs commonly used by cooling tower designers to ensure that towers perform properly under most climatic conditions.

  8. X-Ray Computed Tomography Analysis of Sajau Coal, Berau Basin, Indonesia: 3D Imaging of Cleat and Microcleat Characteristics

    Directory of Open Access Journals (Sweden)

    Ahmad Helman Hamdani

    2015-01-01

    Full Text Available The Pliocene Sajau coals of the Berau Basin area have a moderately to highly developed cleat system. Mostly the cleat fractures are well developed in both bright and dull bands, and these cleats are generally inclined or perpendicular to the bedding planes of the seam. The presence of cleat networks/fractures in coal seam is the important point in coalbed methane prospect. The 3D X-ray computed tomography (CT technique was performed to identify cleats characteristics in the Sajau coal seams, such as the direction of coal cleats, geometry of cleat, and cleats mineralization. By CT scan imaging technique two different types of natural fractures observed in Sajau coals have been identified, that is, face cleats and butt cleats. This technique also identified the direction of face cleats and butt cleats as shown in the resulting 3D images. Based on the images, face cleats show a NNE-SSW direction while butt cleats have a NW-SE direction. The crosscutting relationship indicated that NNE-SSW cleats were formed earlier than NW-SE cleats. The procedure also identified the types of minerals that filled the cleats apertures. Based on their density, the minerals are categorized as follows: very high density minerals (pyrite, high density minerals (anastase, and low density minerals (kaolinite, calcite were identified filling the cleats aperture.

  9. Multivariate Chemometric Assisted Analysis of Metformin Hydrochloride, Gliclazide and Pioglitazone Hydrochloride in Bulk Drug and Dosage Forms

    Directory of Open Access Journals (Sweden)

    Vipin Saini

    2013-02-01

    Full Text Available Purpose: In this work a numerical method, based on the use of spectrophotometric data coupled to partial least squares (PLS regression and net analyte preprocessing combined with classical least square (NAP/CLS multivariate calibration, is reported for the simultaneous determination of metformin hydrochloride (MET, gliclazide (GLZ and pioglitazone hydrochloride (PIO in synthetic samples and combined commercial tablets. Methods: Spectra of MET, GLZ and PIO were recorded at concentrations within their linear ranges (5-25 μg/ml, 0.5-8 μg/ml and 0.5-3 μg/ml respectively and were used to compute a total of 25 synthetic mixtures involving 15 calibration and 10 validation sets between wavelength range of 200 and 400 nm in 0.1N HCl. The suitability of the models was decided on the basis of root mean square error (RMSE values of calibration and validation data. Results: The analytical performances of these chemometric methods were characterized by relative prediction errors and recovery studies (% and were compared with each other. These two methods were successfully applied to pharmaceutical formulation, tablet, with no interference with excipients as indicated by the recovery study results. Mean recoveries of the commercial formulation set together with the figures of merit (calibration sensitivity, selectivity, limit of detection, limit of quantification etc. were estimated. Conclusion: The proposed methods are simple, rapid and can be easily used as an alternative analysis tool in the quality control of drugs and formulation.

  10. A Validated New Gradient Stability-Indicating LC Method for the Analysis of Doripenem in Bulk and Injection Formulation

    Directory of Open Access Journals (Sweden)

    Singaram Kathirvel

    2013-01-01

    Full Text Available A sensitive, precise, specific, linear, and stability-indicating gradient HPLC method was developed for the estimation of doripenem in active pharmaceutical ingredient (API and in injectable preparations. Chromatographic separation was achieved on C18 stationary phase with a mobile phase gradient consisting of acetonitrile, methanol, and pH 5.2 phosphate buffer. The mobile phase flow rate was 0.8 mL/min, and the eluted compounds were monitored at 210 nm. The method is linear over the range of 0.335 to 76.129 µg/mL. The correlation coefficient was found to be 0.999. The numbers of theoretical plates and tailing factor for doripenem were 53021 and 0.9, respectively. Doripenem was subjected to the International Conference on Harmonization (ICH prescribed hydrolytic (acid, base, and neutral, oxidative, photolytic, and thermal stress conditions. Among all the above-mentioned conditions, the drug was found to be stable under photolytic degradation. Peak homogeneity data for doripenem in the chromatograms from the stressed samples obtained by use of the photodiode array detector demonstrated the specificity of the method for analysis of doripenem in presence of the degradation products. The performance of the method was validated according to the present ICH guidelines for specificity, limit of detection, limit of quantification, linearity, accuracy, precision, and robustness.

  11. Fracture behavior analysis of EuBaCuO superconducting ring bulk reinforced by a stainless steel ring during field-cooled magnetization

    Science.gov (United States)

    Takahashi, K.; Fujishiro, H.; Naito, T.; Yanagi, Y.; Itoh, Y.; Nakamura, T.

    2017-11-01

    We have magnetized the EuBaCuO ring bulk reinforced by a stainless steel ring during field-cooled magnetization (FCM) at 50 K under the magnetic fields from 6.3, 7.3 or 8.3 T, in which the ring bulk was broken at the intermediate step of FCM from 8.3 T. To discuss the fracture behavior of the bulk, we have performed the numerical simulation using a three dimensional finite element method for the bulk with realistic superconducting characteristics, and obtained both the electromagnetic hoop stress, {{σ }θ }{{FCM}}, during FCM and thermal hoop stress, {{σ }θ }{{cool}}, under cooling from 300 to 50 K. The difference of the thermal contraction coefficient between the bulk and the stainless steel ring caused an inhomogeneous {{σ }θ }{{cool}} profile with a tensile stress at the outermost edge on the bulk surface under cooling process. The maximum of the total hoop stress, {{σ }θ }{{total}} (={{σ }θ }{{FCM}}+{{σ }θ }{{cool}}), was estimated to be +50 MPa and +59 MPa during FCM from 7.3 T and 8.3 T, respectively. These results suggest that the actual fracture strength of the present ring bulk is between 50 and 59 MPa. The {{σ }θ }{{total}} value should be reduced as low as possible in the whole area of the bulk to avoid the fracture behavior during FCM.

  12. Preliminary experimental studies of waste coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Su, S.; Jin, Y.G.; Yu, X.X.; Worrall, R. [CSIRO, Brisbane, QLD (Australia). Advanced Coal Technology

    2013-07-01

    Coal mining is one of Australia's most important industries. It was estimated that coal washery rejects from black coal mining was approximately 1.82 billion tonnes from 1960 to 2009 in Australia, and is projected to produce another one billion tonnes by 2018 at the current production rate. To ensure sustainability of the Australian coal industry, we have explored a new potential pathway to create value from the coal waste through production of liquid fuels or power generation using produced syngas from waste coal gasification. Consequently, environmental and community impacts of the solid waste could be minimized. However, the development of an effective waste coal gasification process is a key to the new pathway. An Australian mine site with a large reserve of waste coal was selected for the study, where raw waste coal samples including coarse rejects and tailings were collected. After investigating the initial raw waste coal samples, float/sink testing was conducted to achieve a desired ash target for laboratory-scale steam gasification testing and performance evaluation. The preliminary gasification test results show that carbon conversions of waste coal gradually increase as the reaction proceeds, which indicates that waste coal can be gasified by a steam gasification process. However, the carbon conversion rates are relatively low, only reaching to 20-30%. Furthermore, the reactivity of waste coal samples with a variety of ash contents under N{sub 2}/air atmosphere have been studied by a home-made thermogravimetric analysis (TGA) apparatus that can make the sample reach the reaction temperature instantly.

  13. The slurryability of Chinese coals and the role of macerals

    Energy Technology Data Exchange (ETDEWEB)

    Shuquan, Z.; Zuna, W.; Shouzheng, R.; Ximing, H. [China University of Mining and Technology, Haidian, BJ (China). Beijing Graduate School

    1995-08-01

    The slurry forming characteristics of 17 coals are evaluated under controlled particle size distribution, packing efficiency, and other conditions. The coals were collected from different Chinese mines and cover a broad range of coalification, from lignite to anthracite. The solid concentration of each coal is measured by plotting apparent viscosity against the solid coal concentration. The slurryability index is related to coal characteristics by regression analysis. Coal oxygen content is the most relevant parameter, with inherent moisture, mineral matter, and inertinite content also relevant. 12 refs., 3 figs., 7 tabs.

  14. COAL Conference Poster

    OpenAIRE

    Brown, Taylor Alexander; McGibbney, Lewis John

    2017-01-01

    COAL Conference Poster This archive contains the COAL conference poster for the AGU Fall Meeting 2017 by Taylor Alexander Brown. The Inkscape SVG source is available at https://github.com/capstone-coal/coal-conference-poster/ under the Creative Commons Attribution-ShareAlike 4.0 International license.

  15. Prediction of coal grindability based on petrography, proximate and ultimate analysis using neural networks and particle swarm optimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Modarres, Hamid Reza; Kor, Mohammad; Abkhoshk, Emad; Alfi, Alireza; Lower, James C.

    2009-06-15

    In recent years, use of artificial neural networks have increased for estimation of Hardgrove grindability index (HGI) of coals. For training of the neural networks, gradient descent methods such as Backpropagaition (BP) method are used frequently. However they originally showed good performance in some non-linearly separable problems, but have a very slow convergence and can get stuck in local minima. In this paper, to overcome the lack of gradient descent methods, a novel particle swarm optimization and artificial neural network was employed for predicting the HGI of Kentucky coals by featuring eight coal parameters. The proposed approach also compared with two kinds of artificial neural network (generalized regression neural network and back propagation neural network). Results indicate that the neural networks - particle swarm optimization method gave the most accurate HGI prediction.

  16. Interfacial analysis of the ex-situ reinforced phase of a laser spot welded Zr-based bulk metallic glass composite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huei-Sen, E-mail: huei@isu.edu.tw [Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 84001, Taiwan (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, 81148, Kaohsiung, Taiwan (China); Chen, Hou-Guang [Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 84001, Taiwan (China); Jang, Jason Shian-Ching [Institute of Materials Science and Engineering and Department of Mechanical Engineering, National Central University, Chung-Li 32001, Taiwan (China); Lin, Dong-Yih [Department of Chemical and Materials Engineering, National University of Kaohsiung, 81148, Kaohsiung, Taiwan (China); Gu, Jhen-Wang [Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 84001, Taiwan (China)

    2013-12-15

    To study the interfacial reaction of the ex-situ reinforced phase (Ta) of a Zr-based ((Zr{sub 48}Cu{sub 36}Al{sub 8}Ag{sub 8})Si{sub 0.75} + Ta{sub 5}) bulk metallic glass composite after laser spot welding, the interfacial regions of the reinforced phases located at specific zones in the welds including the parent material, weld fusion zone and heat affected zone were investigated. Specimen preparation from the specific zones for transmission electron microscopy analysis was performed using the focused ion beam technique. The test results showed that the reinforced phases in the parent material, weld fusion zone and heat affected zone were all covered by an interfacial layer. From microstructure analysis, and referring to the phase diagram, it was clear that the thin layers are an intermetallic compound ZrCu phase. However, due to their different formation processes, those layers show the different morphologies or thicknesses. - Highlights: • An ex-situ Zr-based BMG composite was laser spot welded. • The interfacial regions of the RPs located at PM, WFZ and HAZ were investigated. • The RPs in the PM, WFZ and HAZ were all covered by a ZrCu interfacial layer. • Due to different formation processes, those layers show the different morphology.

  17. Critical Damage Analysis of WC-Co Tip of Conical Pick due to Coal Excavation in Mines

    Directory of Open Access Journals (Sweden)

    Saurabh Dewangan

    2015-01-01

    Full Text Available WC-Co based tools are widely used in the field of coal and rock excavation because of their unique combination of strength, hardness, and resistance to abrasive wear. Conical pick is one of the coal cutting tools. The tip of the pick is made of WC-Co material. As coal and rock are heterogeneous elements, they pose various constraints during excavation. As a result the tools wear out during the process. Other parameters like cutting techniques, tool orientation, and environmental conditions also affect the tool significantly. The wearing phenomenon greatly reduces the service life of the tools and thereby cuts down the production rate. To prevent such wearing process, it is important to investigate the different wear mechanisms in WC-Co. Simultaneously, there has to be an ongoing endeavour for the development of better quality WC-Co. This paper focuses on different wear mechanisms in a conical pick which has been used in a continuous miner machine for coal cutting. The worn out surface has been observed by using FE-SEM (field emission scanning electron microscopy and EDS (energy dispersive X-ray spectroscopy. The mechanisms, namely, coal/rock intermixing, cracking and crushing of WC grains, and adhesion of rock particles, have been predominantly investigated in this study. A little indication of corrosive decay in the WC grain has also been reported. The EDS has detected material concentration in a selected area or point of the worn-out surface. The spectrograph confirms the presence of coal/rock materials. Elements such as W, C, Ca, K, O, and Co have been mainly found in different concentrations at different positions.

  18. Rapid pyrolysis of Serbian soft brown coals

    Energy Technology Data Exchange (ETDEWEB)

    Goran G. Jankes; Olga Cvetkovic; Nebojsa M. Milovanovic; Marko Ercegovaci Ercegovac; Miroljub Adzic; Mirjana Stamenic [University of Belgrade, Belgrade (Serbia). Faculty of Mechanical Engineering

    2009-07-01

    Soft brown coals of the open coal fields of Kolubara and Kostolac are the main domestic energy sources of Serbia. This paper presents the results of investigations on rapid devolatilization of these two coals which have covered kinetics of devolatilization (based on total volatile yield), forms of sulphur and petrographic analysis of coal and char. Experiments of devolatilization were performed in inert gas (N{sub 2}) at atmospheric pressure and in batch-type hot-wire screen reactor. The mass-loss values of both coals at selected final reaction temperatures (300-900{sup o}C) and retention times (3-28 s) were obtained. Anthony and Howard's kinetic model was applied over two temperature ranges (300-500 and 700-900{sup o}C). The types of sulphur as monosulphide, sulphate, pyritic, and organic sulphur were determined for chars and original coals. Strong transformation of pyrite was evident even at low temperatures (300{sup o}C). Devolatilization of all types of sulphur has started over 600 and at 900{sup o}C the content of sulphur in char remained only 66% of total sulphur in original coal. Microscopic investigations were carried out on samples prepared for reflected light measurements. The petrographic analysis included: the ratio of unchanged and changed coal, maceral types, the share of cenospheres, isotropic mixed carbonized grains, mixed grains, small fragments, clay, and pyrite. The change of the structure of devolatilized coal was also observed. 20 refs., 10 figs., 6 tabs.

  19. Rapid pyrolysis of Serbian soft brown coals

    Directory of Open Access Journals (Sweden)

    Jankes Goran

    2009-01-01

    Full Text Available Soft brown coals of the open coal fields of Kolubara and Kostolac are the main domestic energy sources of Serbia. This paper presents the results of investigations on rapid devolatilization of these two coals which have covered kinetics of devolatilization (based on total volatile yield, forms of sulphur and petrographic analysis of coal and char. Experiments of devolatilization were performed in inert gas (N2 at atmospheric pressure and in batch-type hot-wire screen reactor. The mass-loss values of both coals at selected final reaction temperatures (300-900°C and retention times (3-28 s were obtained. Anthony and Howard's kinetic model was applied over two temperature ranges (300-500 and 700-900°C. The types of sulphur as monosulphide, sulphate, pyritic, and organic sulphur were determined for chars and original coals. Strong transformation of pyrite was evident even at low temperatures (300°C. Devolatilization of all types of sulphur has started over 600 and at 900°C the content of sulphur in char remained only 66% of total sulphur in original coal. Microscopic investigations were carried out on samples prepared for reflected light measurements. The petrographic analysis included: the ratio of unchanged and changed coal, maceral types, the share of cenosferes, isotropic mixed carbonized grains, mixed grains, small fragments, clay, and pyrite. The change of the structure of devolatilized coal was also observed.

  20. Recommended procedures and techniques for the petrographic description of bituminous coals

    Science.gov (United States)

    Chao, E.C.T.; Minkin, J.A.; Thompson, C.L.

    1982-01-01

    Modern coal petrology requires rapid and precise description of great numbers of coal core or bench samples in order to acquire the information required to understand and predict vertical and lateral variation of coal quality for correlation with coal-bed thickness, depositional environment, suitability for technological uses, etc. Procedures for coal description vary in accordance with the objectives of the description. To achieve our aim of acquiring the maximum amount of quantitative information within the shortest period of time, we have adopted a combined megascopic-microscopic procedure. Megascopic analysis is used to identify the distinctive lithologies present, and microscopic analysis is required only to describe representative examples of the mixed lithologies observed. This procedure greatly decreases the number of microscopic analyses needed for adequate description of a sample. For quantitative megascopic description of coal microlithotypes, microlithotype assemblages, and lithotypes, we use (V) for vitrite or vitrain, (E) for liptite, (I) for inertite or fusain, (M) for mineral layers or lenses other than iron sulfide, (S) for iron sulfide, and (X1), (X2), etc. for mixed lithologies. Microscopic description is expressed in terms of V representing the vitrinite maceral group, E the exinite group, I the inertinite group, and M mineral components. volume percentages are expressed as subscripts. Thus (V)20(V80E10I5M5)80 indicates a lithotype or assemblage of microlithotypes consisting of 20 vol. % vitrite and 80% of a mixed lithology having a modal maceral composition V80E10I5M5. This bulk composition can alternatively be recalculated and described as V84E8I4M4. To generate these quantitative data rapidly and accurately, we utilize an automated image analysis system (AIAS). Plots of VEIM data on easily constructed ternary diagrams provide readily comprehended illustrations of the range of modal composition of the lithologic units making up a given coal

  1. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

    2001-03-31

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives.

  2. A geographical information system-based analysis of cancer mortality and population exposure to coal mining activities in West Virginia, United States of America

    Directory of Open Access Journals (Sweden)

    Michael Hendryx

    2010-05-01

    Full Text Available Cancer incidence and mortality rates are high in West Virginia compared to the rest of the United States of America. Previous research has suggested that exposure to activities of the coal mining industry may contribute to elevated cancer mortality, although exposure measures have been limited. This study tests alternative specifications of exposure to mining activity to determine whether a measure based on location of mines, processing plants, coal slurry impoundments and underground slurry injection sites relative to population levels is superior to a previously-reported measure of exposure based on tons mined at the county level, in the prediction of age-adjusted cancer mortality rates. To this end, we utilize two geographical information system (GIS techniques – exploratory spatial data analysis and inverse distance mapping – to construct new statistical analyses. Total, respiratory and “other” age-adjusted cancer mortality rates in West Virginia were found to be more highly associated with the GIS-exposure measure than the tonnage measure, before and after statistical control for smoking rates. The superior performance of the GIS measure, based on where people in the state live relative to mining activity, suggests that activities of the industry contribute to cancer mortality. Further confirmation of observed phenomena is necessary with person-level studies, but the results add to the body of evidence that coal mining poses environmental risks to population health in West Virginia.

  3. Method development for the determination of bromine in coal using high-resolution continuum source graphite furnace molecular absorption spectrometry and direct solid sample analysis

    Science.gov (United States)

    Pereira, Éderson R.; Castilho, Ivan N. B.; Welz, Bernhard; Gois, Jefferson S.; Borges, Daniel L. G.; Carasek, Eduardo; de Andrade, Jailson B.

    2014-06-01

    This work reports a simple approach for Br determination in coal using direct solid sample analysis in a graphite tube furnace and high-resolution continuum source molecular absorption spectrometry. The molecular absorbance of the calcium mono-bromide (CaBr) molecule has been measured using the rotational line at 625.315 nm. Different chemical modifiers (zirconium, ruthenium, palladium and a mixture of palladium and magnesium nitrates) have been evaluated in order to increase the sensitivity of the CaBr absorption, and Zr showed the best overall performance. The pyrolysis and vaporization temperatures were 800 °C and 2200 °C, respectively. Accuracy and precision of the method have been evaluated using certified coal reference materials (BCR 181, BCR 182, NIST 1630a, and NIST 1632b) with good agreement (between 98 and 103%) with the informed values for Br. The detection limit was around 4 ng Br, which corresponds to about 1.5 μg g- 1 Br in coal, based on a sample mass of 3 mg. In addition, the results were in agreement with those obtained using electrothermal vaporization inductively coupled plasma mass spectrometry, based on a Student t-test at a 95% confidence level. A mechanism for the formation of the CaBr molecule is proposed, which might be considered for other diatomic molecules as well.

  4. Comparative Evaluation of Phase 1 Results from the Energy Conversion Alternatives Study (ECAS). [coal utilization for electric power plants feasibility analysis

    Science.gov (United States)

    1976-01-01

    Ten advanced energy conversion systems for central-station, based-load electric power generation using coal and coal-derived fuels which were studied by NASA are presented. Various contractors were selected by competitive bidding to study these systems. A comparative evaluation is provided of the contractor results on both a system-by-system and an overall basis. Ground rules specified by NASA, such as coal specifications, fuel costs, labor costs, method of cost comparison, escalation and interest during construction, fixed charges, emission standards, and environmental conditions, are presented. Each system discussion includes the potential advantages of the system, the scope of each contractor's analysis, typical schematics of systems, comparison of cost of electricity and efficiency for each contractor, identification and reconciliation of differences, identification of future improvements, and discussion of outside comments. Considerations common to all systems, such as materials and furnaces, are also discussed. Results of selected in-house analyses are presented, in addition to contractor data. The results for all systems are then compared.

  5. Heat transport in bulk/nanoporous/bulk silicon devices

    Energy Technology Data Exchange (ETDEWEB)

    Criado-Sancho, M. [Departamento de Ciencias y Técnicas Físicoquimicas, Facultad de Ciencias, UNED, Senda del Rey 9, 20040 Madrid (Spain); Jou, D., E-mail: David.Jou@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)

    2013-02-04

    We study heat transport in bulk/nanoporous/bulk silicon devices; we show that, despite bulk/nanoporous devices may act as thermal rectifiers, the non-linear aspects of their joint thermal conductance are not strong enough to lead to a negative differential thermal resistance, necessary to allow bulk/nanoporous/bulk Si devices to act as thermal transistors. Furthermore, we explicitly study the effective thermal conductivity of the mentioned devices for several temperatures, geometries, porosities, and pore size.

  6. Coal precursors for carbon molecular sieves (CMS): Appendices A through L. Final report, October 1, 1994--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, O.C.; Sparks, C.R.; McKinney, M.L. [Tennessee Univ., Knoxville, TN (United States). Dept. of Geological Sciences; Fuller, E.L. Jr.; Rogers, M.R. [Oak Ridge National Lab., TN (United States)

    1996-03-31

    The data for each coal sample used in this study are included in a separate appendix. The information for each coal is presented in the following order: coal sample data (literature); coal sample data (measured); thermogravimetric data; mass spectroscopy data; mercury intrusion pore analysis; quantachrome gas sorption analysis (BET) using nitrogen (raw whole coal sample); quantachrome gas sorption analysis (BET) using nitrogen (activated whole coal sample; and plot of FTIR (DRIS) information absorbance vs wavenumbers).

  7. Toward Identification of Black Lemma and Pericarp Gene Blp1 in Barley Combining Bulked Segregant Analysis and Specific-Locus Amplified Fragment Sequencing

    Directory of Open Access Journals (Sweden)

    Qiaojun Jia

    2017-08-01

    Full Text Available Black barley is caused by phytomelanin synthesized in lemma and/or pericarp and the trait is controlled by one dominant gene Blp1. The gene is mapped on chromosome 1H by molecular markers, but it is yet to be isolated. Specific-locus amplified fragment sequencing (SLAF-seq is an effective method for large-scale de novo single nucleotide polymorphism (SNP discovery and genotyping. In the present study, SLAF-seq with bulked segregant analysis (BSA was employed to obtain sufficient markers to fine mapping Blp1 gene in an F2 population derived from Hatiexi No.1 × Zhe5819. Based on SNP screening criteria, a total of 77,542 polymorphic SNPs met the requirements for association analysis. Combining two association analysis methods, the overlapped region with a size of 32.41 Mb on chromosome 1H was obtained as the candidate region of Blp1 gene. According to SLAF-seq data, markers were developed in the target region and were used for mapping the Blp1 gene. Linkage analysis showed that Blp1 co-segregated with HZSNP34 and HZSNP36, and was delimited by two markers (HZSNP35 and HZSNP39 spanning 8.1 cM in 172 homozygous yellow grain F2 plants of Hatiexi No.1 × Zhe5819. More polymorphic markers were screened in the reduced target region and were used to genotype the population. As a result, Blp1 was delimited within a 1.66 Mb on chromosome 1H by the upstream marker HZSNP63 and the downstream marker HZSNP59. Our results demonstrated the utility of SLAF-seq-BSA approach to identify the candidate region and discover polymorphic markers at the specific targeted genomic region.

  8. "Understanding" cosmological bulk viscosity

    OpenAIRE

    Zimdahl, Winfried

    1996-01-01

    A universe consisting of two interacting perfect fluids with the same 4-velocity is considered. A heuristic mean free time argument is used to show that the system as a whole cannot be perfect as well but neccessarily implies a nonvanishing bulk viscosity. A new formula for the latter is derived and compared with corresponding results of radiative hydrodynamics.

  9. Bulk chemicals from biomass

    NARCIS (Netherlands)

    Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2008-01-01

    Given the current robust forces driving sustainable production, and available biomass conversion technologies, biomass-based routes are expected to make a significant impact on the production of bulk chemicals within 10 years, and a huge impact within 20-30 years. In the Port of Rotterdam there is a

  10. Composition, peat-forming vegetation and kerogen paraffinicity of Cenozoic coals: Relationship to variations in the petroleum generation potential (Hydrogen Index)

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H.I.; Lindstroem, S.; Nytoft, H.P.; Rosenberg, P. [Geological Survey of Denmark and Greenland (GEUS), Oester Voldgade 10, DK-1350 Copenhagen (Denmark)

    2009-04-01

    Coals with similar thermal maturity and from the same deposit normally show a considerable range in petroleum generation potential as measured by the Hydrogen Index (HI). This variation may partly be related to variations in plant input to the precursor mires and organic matter preservation. It is widely accepted that some Cenozoic coals and coaly sediments have the potential to generate oil, which is related to the coal's paraffinicity. Coal paraffinicity is not readily reflected in the bulk HI. In this paper, the relationships between measured HI and coal composition, coal kerogen paraffinicity and floral input have been investigated in detail for three sets of coals from Colombia/Venezuela, Indonesia, and Vietnam. The samples in each coal set are largely of iso-rank. The petroleum generation potential was determined by Rock-Eval pyrolysis. Reflected light microscopy was used to analyse the organic matter (maceral) composition and the thermal maturity was determined by vitrinite reflectance (VR) measurements. The botanical affinity of pollen and spores was analysed by palynology. Coal kerogen paraffinicity was determined by ruthenium tetroxide-catalysed oxidation (RTCO) followed by chain length analysis and quantification (mg/g TOC) of the liberated aliphatic chains. The coals are dominated by huminite, in particular detrohuminite. Only the Vietnamese coals are rich in microscopically visible liptinite. The pollen and spores suggest that the coals were derived principally from complex angiosperm mire vegetations, with subordinate proportions of ferns that generally grew in a subtropical to tropical climate. Measured HI values vary considerably, but for the majority of the coals the values lie between approximately 200 mg HC/g TOC and 300 mg HC/g TOC. Aliphatics yielding monocarboxylic acids dominate in the coal kerogen, whereas aliphatics yielding dicarboxylic acids are secondary. However, the dicarboxylic acids show that cross-linking long-chain aliphatics

  11. Coal data: A reference

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  12. Evaluation of the effect of macerals on coal permeability in Tazareh and Parvadeh mines

    Directory of Open Access Journals (Sweden)

    Farhang Sereshki

    2016-08-01

    Full Text Available In recent decades, the subject of gas emission in underground coal mines in many countries is an important subject. Many factors affect in gas emissions in coal seams. Geological and physical structures of coal are affecting on gas emissions'. Also, composition and mineralization of coal, affect in coal permeability for different gases. In this study, the relationship between maceral composition and coal permeability in Tazareh and Parvadeh mines has been studied. Accordingly, a laboratory studies to investigate the relationship between coal composition and coal permeability was done. In coal samples, with MFORR equipment the permeability test was done. With microscopic analysis, the maceral contents of coal such as Inertinite and Vitrinite have been measured. Accordingly, many coal samples of Parvadeh and Tazareh coal mines have the pyrite as the dominant mineral matter. Parvadeh coal samples has the average percentage of Vitrinite equal 81.34% and 10.52% Inertinite. Also, in the Tazareh coal samples in Eastern Alborz coal mines, the average percentage of Vitrinite is 69.31% and inertinite is 22.47%. The average percentage of Pyrite content in Parvadeh coal samples in Tabas coal mines is 2.38% and in the Tazareh coal samples in Eastern Alborz coal mines is 2.62%.  The permeability test results have been shown, which, with increase of Inertinite contents, the permeability of coal is increasing. Also, test results have been shown, there was a reduction in the coal permeability with increasing of mineral contents and carbonate contents of the coal. So, the coal permeability in Tabas coal samples is more than Eastern Alborz coal samples.

  13. Hydrogen from coal cost estimation guidebook

    Science.gov (United States)

    Billings, R. E.

    1981-01-01

    In an effort to establish baseline information whereby specific projects can be evaluated, a current set of parameters which are typical of coal gasification applications was developed. Using these parameters a computer model allows researchers to interrelate cost components in a sensitivity analysis. The results make possible an approximate estimation of hydrogen energy economics from coal, under a variety of circumstances.

  14. Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants

    Science.gov (United States)

    Krylov, D. A.; Sidorova, G. P.

    2013-04-01

    This paper presents an analysis of published data on the content of radioactive nuclides in coals originating from various coal deposits, and in ash and slag wastes produced at coal-fired thermal power plants, as well as in fly ash emitted from thermal power plants into the atmosphere. Problems related to the use of coals with an elevated content of natural radionuclides (NRNs) and methods of their solution implemented at the Urtuyskoe coalfield are dealt with. Data on the analysis of Transbaikal coals for the NRN content, as well as weighted mean content of uranium and thorium in coals from the Siberian Region, are given. In order to reduce irradiation of plant personnel and the population of the areas where coal producers and coal-fired thermal power plants are located, it is necessary to organize very careful control of the NRN content in both coals and products of their combustion that are released into the environment. To solve the problem related to the control of radioactivity, the centralized approach and creation of a proper normative base are needed. Experience gained in developing the Urtuyskoe coalfield shows that it is possible to create an efficient system of coal quality control with respect to the radiation hygiene factor and provide protection of the environment and health of the population.

  15. A LEED analysis of the clean surfaces of α-Fe(2)O(3)(0001) and α-Cr(2)O(3)(0001) bulk single crystals.

    Science.gov (United States)

    Lübbe, Maike; Moritz, Wolfgang

    2009-04-01

    We analyzed the (0001) surface structures of hematite and chromia bulk single crystals by low energy electron diffraction (LEED). The hematite crystal was annealed in an O(2) atmosphere, p(O(2))≈3 × 10(-8) mbar, for several hours. The chromia crystal was sputtered with Ar(+) ions, E = 1 keV, and afterward heated up to 900 °C for 5 min under ultra-high-vacuum (UHV) conditions. I(V)-curve data sets of 12 symmetrically independent diffraction spots were measured at room temperature in the energy range E = 150-500 eV. Charging effects hindered measurements at lower energies. Our analysis of the hematite single crystal surface indicates that it is terminated by a single iron layer which is occupied at ≈50%. Relaxation effects along the c-axis are quite large and involve several iron double layers. For the chromia surface the results indicate that termination with a single Cr seems not to hold. Most probably the surface is terminated by two partially occupied Cr sites or chromyl groups. Relaxations in deeper layers are small in contrast to α-Fe(2)O(3)(0001).

  16. Characterization of Malaysian coals for carbon dioxide sequestration

    Science.gov (United States)

    Abunowara, M.; Bustam, M. A.; Sufian, S.; Eldemerdash, U.

    2016-06-01

    Coal samples from Mukah-Balingian and Merit-Pila coal mines were characterized with ultimate, approximate, petrographic analysis, FT-IR spectra patterns, FESEM images and BET measurements to obtain information on the chemical composition and chemical structure in the samples. Two coal samples were obtained from Merit-Pila coal mine namely sample1 (S1) and sample2 (S2). The other two coal samples were obtained from Mukah-Balingian coal mine namely sample3 (S3) and sample4 (S4), Sarawak, Malaysia. The results of ultimate analysis show that coal S1 has the highest carbon percentage by 54.47%, the highest hydrogen percentage by 10.56% and the lowest sulfur percentage by 0.19% and the coal S4 has the highest moisture content by 31.5%. The coal S1 has the highest fixed carbon percentage by 42.6%. The coal S4 has BET surface area by 2.39 m2/g and Langmuir surface area by 3.0684 m2/g respectively. Fourier-Transform Infrared (FT-IR) spectroscopy analysis of all coal samples shows a presence of oxygen containing functional groups which considered are as active sites on coal surface. The oxygen functional groups are mainly carboxyl (-COOH), hydroxyl (-OH), alkyl (-CH, -CH2, -CH3), aliphatic (C-O-C stretching associated with -OH), amino (-NH stretching vibrations), (-NH stretching vibrations), aromatic (C=C), vinylic (C=C) and clay minerals. In all FE-SEM images of coal samples matrix, it can be seen that there are luminous and as non luminous features which refer to the existence of various minerals types distributed in the coal organic matrix. The bright luminosity is due to the presence of sodium, potassium or aluminium. According to petrographic analysis, all coal sample samples are range in vitrinite reflectance from 0.38% to 56% (VRr) are sub-bituminous coals.

  17. SOME CHARACTERISTICS OF THE "KONGORA" - TOMISLAVGRAD COAL FIELD (WEST HERZEGOVINA

    Directory of Open Access Journals (Sweden)

    Stanislav Živković

    1997-12-01

    Full Text Available According to it's energy potential »Kongora« coal field is very important source of energy. Coal strech, spreading and laying and proportion between coal and barren give good presumption for a rentabile surface exploitation. The coal analyses, specially analysis of sulphur content showed, that content of harm component on the update technology level is in permissible limits, and exploitation in thermal power plants will not destroy environment (the paper is published in Croatian.

  18. Online X-ray Fluorescence (XRF) Analysis of Heavy Metals in Pulverized Coal on a Conveyor Belt.

    Science.gov (United States)

    Yan, Zhang; XinLei, Zhang; WenBao, Jia; Qing, Shan; YongSheng, Ling; DaQian, Hei; Da, Chen

    2016-02-01

    Heavy metals in haze episode will continue to threaten the quality of public health around the world. In order to decrease the emission of heavy metals produced from coal burning, an online X-ray fluorescence (XRF) analyzer system, consisting of an XRF analyzer with data acquisition software and a laser rangefinder, was developed to carry out the measurement of heavy metals in pulverized coal. The XRF analyzer was mounted on a sled, which can effectively smooth the surface of pulverized coal and reduce the impact of surface roughness during online measurement. The laser rangefinder was mounted over the sled for measuring the distance between a pulverized coal sample and the analyzer. Several heavy metals and other elements in pulverized coal were online measured by the XRF analyzer directly above a conveyor belt. The limits of detection for Hg, Pb, Cr, Ti, Fe, and Ca by the analyzer were 44 ± 2, 34 ± 2, 17 ± 3, 41 ± 4, 19 ± 3, and 65 ± 2 mg·kg(-1), respectively. The relative standard deviation (%RSD) for the elements mentioned was less than 7.74%. By comparison with the results by inductively-coupled plasma mass spectrometry (ICP-MS), relative deviation (%D) of the online XRF analyzer was less than 10% for Cr, Ti, and Ca, in the range of 0.8-24.26% for Fe, and greater than 20% for Hg and Pb. © The Author(s) 2016.

  19. Influence of geotechnical factors on gas flow experienced in a UK longwall coal mine panel

    Energy Technology Data Exchange (ETDEWEB)

    Whittles, D.N.; Lowndes, I.S.; Kingman, S.W.; Yates, C.; Jobling, S. [University of Nottingham, Nottingham (United Kingdom). Nottingham Mining & Minerals Centre

    2006-04-15

    Methane drainage has become an integral part of modern coal mining operations when gas emissions cannot be practically dealt with using conventional ventilation methods alone. Boreholes are often drilled above and below the caving zone and connected to a drainage range located along the return gate. This paper describes the construction and analysis of the results obtained from the two- and three-dimensional geomechanical and gas flow models experienced around an active deep UK longwall coal production panel. The models constructed using the commercial FLAC codes were undertaken to provide information to the ventilation engineers at the mine on the likely gas sources and gas flow paths into the face line areas and gate roads. This information allows for the correct design of the orientation, length and support of the boreholes to maximise gas capture. The paper describes the method adopted to derive the relevant rock mass parameters and the laboratory tests conducted to obtain the stress-dependent permeability of coal measure rock strata. A functional relationship is proposed whereby the intrinsic bulk permeability of a sheared coal measure rock may be predicted from the confining stress. A detailed discussion of the geomechanical modelling methodology and the derivation of the strata permeabilities and gas flow modelling adopted is presented. The output of the models is described and used to interpret the major potential gas sources and pathway into the workings.

  20. Analysis of Structure and Composition of Bacterial Core Communities in Mature Drinking Water Biofilms and Bulk Water of a Citywide Network in Germany

    Science.gov (United States)

    Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid

    2012-01-01

    The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity. PMID:22389373

  1. Analysis of structure and composition of bacterial core communities in mature drinking water biofilms and bulk water of a citywide network in Germany.

    Science.gov (United States)

    Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid; Höfle, Manfred G

    2012-05-01

    The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity.

  2. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    symplasmic pathway from mesophyll to sieve elements. Crucial for the driving force is the question where water enters the pre-phloem pathway. Surprisingly, the role of PD in water movement has not been addressed so far appropriately. Modeling of assimilate and water fluxes indicates that in symplasmic...... the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since...... is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...

  3. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...... the concentration gradient or bulk flow along a pressure gradient. The driving force seems to depend on the mode of phloem loading. In a majority of plant species phloem loading is a thermodynamically active process, involving the activity of membrane transporters in the sieve-element companion cell complex. Since...... assimilate movement includes an apoplasmic step, this mode is called apoplasmic loading. Well established is also the polymer-trap loading mode, where the phloem-transport sugars are raffinose-family oligomers in herbaceous plants. Also this mode depends on the investment of energy, here for sugar...

  4. Micromegas in a bulk

    CERN Document Server

    Giomataris, Ioanis; Andriamonje, Samuel A; Aune, S; Charpak, Georges; Colas, P; Giganon, Arnaud; Rebourgeard, P C; Salin, P; Rebourgeard, Ph.

    2006-01-01

    In this paper we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the PCB (Printed Circuit Board) technology is employed to produce the entire sensitive detector. Such fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it extremely attractive for several applications ranging from particle physics and astrophysics to medicine

  5. Micromegas in a bulk

    Energy Technology Data Exchange (ETDEWEB)

    Giomataris, I. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France)]. E-mail: ioa@hep.saclay.cea.fr; De Oliveira, R. [CERN, Geneva (Switzerland); Andriamonje, S. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Aune, S. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Charpak, G. [CERN, Geneva (Switzerland); Colas, P. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Fanourakis, G. [Institute of Nuclear Physcis, NCSR Demokritos, Aghia Paraskevi 15310 (Greece); Ferrer, E. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Giganon, A. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Rebourgeard, Ph. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France); Salin, P. [DAPNIA, CEA Saclay, F91191 Gif sur Yvette CEDEX (France)

    2006-05-10

    In this paper, we present a novel way to manufacture the bulk Micromegas detector. A simple process based on the Printed Circuit Board (PCB) technology is employed to produce the entire sensitive detector. Such a fabrication process could be extended to very large area detectors made by the industry. The low cost fabrication together with the robustness of the electrode materials will make it attractive for several applications ranging from particle physics and astrophysics to medicine.

  6. Demographic variables in coal miners’ safety attitude

    Science.gov (United States)

    Yin, Wen-wen; Wu, Xiang; Ci, Hui-Peng; Qin, Shu-Qi; Liu, Jia-Long

    2017-03-01

    To change unsafe behavior through adjusting people’s safety attitudes has become an important measure to prevent accidents. Demographic variables, as influential factors of safety attitude, are fundamental and essential for the research. This research does a questionnaire survey among coal mine industry workers, and makes variance analysis and correlation analysis of the results in light of age, length of working years, educational level and experiences of accidents. The results show that the coal miners’ age, length of working years and accident experiences correlate lowly with safety attitudes, and those older coal miners with longer working years have better safety attitude, as coal miners without experiences of accident do.However, educational level has nothing to do with the safety attitude. Therefore, during the process of safety management, coal miners with different demographic characteristics should be put more attention to.

  7. Delivered costs of Western coal shipped on the Great Lakes versus Eastern coal for Eastern Great Lakes hinterland utility plants. With appendices on relative cost impacts of coal scrubbing and on other Western coal transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, K.M.

    1979-02-01

    This report analyzes the present and projected delivered cost competitiveness of Great Lakes shipped, low sulfur Western coal with low and high sulfur Eastern coal at Eastern Great Lakes hinterland utility plants. Its findings are based upon detailed data acquired from appropriate transportation firms and four eastern utility companies which use or have studied using the appropriate coal types. Two appendices provide: (1) a tentative, preliminary analysis of this competition with additional costs required by likely EPA scrubbing (sulfur removal) requirements, and (2) background information on other Western coal transport systems. Briefly, the findings of this report are that if Western coal is shipped via the Great Lakes to utility plants in the eastern Great Lakes hinterlands (i.e., inland from ports up to 200 miles): currently, based upon delivered costs only, it cannot compete with any type of Eastern coal; by 1989, with favorable interim Western versus Eastern cost escalation rate advantages on minemouth coal and transportation costs, Western coal delivered costs can begin competing with those of Eastern low sulfur, but not high sulfur coal; by 1999, with favorable relative cost escalation rate advantages, Western coal's delivered costs can become substantially less expensive than Eastern low sulfur coal's, and just begin to be competitive with Eastern high sulfur coal's; extremely high Eastern rail costs due to port area system characteristics are the main cost factor driving Western coal delivered costs to uneconomic levels.

  8. Economic assessment of utilizing protective properties of level coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtin, A.F.; Batmanov, Yu.K.; Gainutdinov, I.A.

    1982-12-01

    Increasing mining depth negatively influences mining efficiency and safety. At depths to 600 m 10% of coal comes from seams prone to rock bursts. At depths exceeding 600 m proportion of coal from seams prone to rock bursts increases to 40%. Investigations carried out in Ukrainian coal mines show that coal losses (due to rock burst hazard) in level seams mined by a longwall system amount to 4.6 Mt per year. Cost of rock burst prevention and repairs after rock bursts amounts to 12 million rubles per year. About 68% of coal from level coal seams comes from long coal pillars mined by a longwall system. In level coal seams prone to rock bursts this proportion is 40% lower (proportion of longwall mining is reduced due to increased rock burst hazards). Only 10% of coal seams prone to rock bursts are mined using a system of stress relaxation by cutting another overlying or underlying coal seam (utilizing protective properties of a coal seam). A method for economic analysis of protective properties of coal seams in seam groups is described. Using the method the optimum order of mining coal seams in a seam group is determined. Examples of the method's use are analyzed. (3 refs.) (In Russian)

  9. Safety during handling of coal, coal dust, coke and coke dust. Sicherheit beim Umgang mit Kohlen und Kohlenstaeuben sowie mit Koksen und Koksstaeuben

    Energy Technology Data Exchange (ETDEWEB)

    Kohlschmidt, J.; Hoeppner, K.; May, M.; Schmieder, L.

    1985-01-01

    This paper reviews fire and explosion prevention measures for transport, storage and combustion of brown coal and black coal. The fire and explosion hazard of coal and coke dust is characterized; various examples of hazardous situations in handling coal and coke are presented. Safety requirements for the design of coal and coke handling equipment according to GDR standard TGL 30634/02 are further noted. Safe storage of bulk coal in open-air facilities as well as safe transportation and bunker storage of fuel dust are described. Safety requirements for manually operated coal combustion equipment and for pneumatic fuel-feeding systems of steam generators are also outlined. Fire fighting methods to be employed in case of fires or suspected smoldering fires are listed briefly. (11 refs.)

  10. Coal desulfurization process

    Science.gov (United States)

    Hsu, G. C.; Gavalas, G. R.; Ganguli, P. S.; Kalfayan, S. H.

    1978-01-01

    A method for chlorinolysis of coal is an organic solvent at a moderate temperautre and atmospheric pressure has been proven to be effective in removing sulfur, particularly the organic sulfur, from coal. Chlorine gas is bubbled through a slurry of moist coal in chlorinated solvent. The chlorinated coal is separated, hydrolyzed and the dechlorinated. Preliminary results of treating a high sulfutr (4.77%S) bituminous coal show that up to 70% organic sulfur, 90% hyritic sulfur and 76% total sulfur can be removed. The treated coal is dechlorinated by heating at 500 C. The presence of moisture helps to remove organic sulfur.

  11. WATER- AND COAL GASIFICATION

    Directory of Open Access Journals (Sweden)

    N. S. Nazarov

    2006-01-01

    Full Text Available According to the results of gas analysis it has been established that water- and coal gasification is rather satisfactorily described by three thermo-chemical equations. One of these equations is basic and independent and the other two equations depend on the first one.The proposed process scheme makes it possible to explain the known data and also permits to carry out the gasification process and obtain high-quality hydrogen carbon-monoxide which is applicable for practical use.

  12. Clean coal : DOE should prepare a comprehensive analysis of the relative costs, benefits, and risks of a range of options for FutureGen

    Science.gov (United States)

    2009-03-11

    According to various energy experts, for the foreseeable future, because coal is abundant and relatively inexpensive, it will remain a significant fuel for the generation of electric power in the United States and the world. However, coal-fired power...

  13. Selected Black-Coal Mine Waste Dumps in the Ostrava-Karviná Region: An Analysis of Their Potential Use

    Science.gov (United States)

    Niemiec, Dominik; Duraj, Miloš; Cheng, Xianfeng; Marschalko, Marian; Kubáč, Jan

    2017-12-01

    The paper aims to analyse the options for the use of selected black-coal mine waste dump bodies in the Ostrava-Karviná Region. In the Czech Republic there are approximately 70 mine waste dumps, out of which 50 are located in the Ostrava-Karviná Coal District. The issue is highly topical, particularly in the region, because the dump bodies significantly affect the landscape character of the Ostrava-Karviná Region and pose ecological risks. In such cases, their redevelopment and land reclamation are not easy either from the environmental or economic points of view. It is clear that the redevelopment of such geological environment is difficult, and it is vital to make the right decisions as for what purposes the mine waste dumps should be used. Next, it is important to take into account all the economic and environmental aspects of the locality in question.

  14. Coal technology program. Progress report, May 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-07-01

    Two successful operability tests with sustained operation of the bench-scale hydrocarbonizer were achieved with Illinois No. 6 coal diluted with char. Several activities in the area of nondestructive testing of coatings are reviewed. Failure analysis activities included examination of several components from the solvent refined coal plants at Wilsonville, Alabama, and Tacoma, Washington. In the gas-fired potassium boiler project, all of the design work were completed except for several of the instrument and control drawings. In the design studies of a coal-fired alkali metal vapor topping cycle, the first phase of a cycle analysis and the design and analysis of a metal vapor turbine were completed. A report entitled ''Critical Component Test Facility--Advance Planning for Test Modules'' presents the planning study for the conceptual design of component test modules on a nonsite-specific basis. Engineering studies, project evaluation and process and program analysis of coal conversion processes were continued. A report on the landfill storage of solid wastes from coal conversion is being finalized. In the coal-fueled MIUS project, a series of successful tests of the coal feeding system and a report on the analysis of 500-hr fire-side corrosion tests in a fluidized bed combustor were completed.

  15. International perspectives on coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  16. Analysis of Analytical Models Developed under the Uniaxial Strain Condition for Predicting Coal Permeability during Primary Depletion

    Directory of Open Access Journals (Sweden)

    Chuanming Li

    2017-11-01

    Full Text Available The stress-dependent permeability of coal during coalbed methane production has been extensively studied both experimentally and theoretically. However, how permeability changes as a function of stress variation is somewhat unclear to date, and currently used analytical models fail to accurately predict permeability evolution with gas depletion. Considering that the role played by changes in in situ stress in permeability evolution is critical, a comprehensive theoretical study was first conducted, through which it was found that coal permeability is determined by mean effective stress. Moreover, the influence of matrix shrinkage on cleat deformation and then coal permeability was overestimated by currently used models, leading to inaccuracy of the predicted permeability. By taking both mean effective stress and the influence of matrix shrinkage on cleat deformation into account, a new permeability model was developed under the uniaxial strain condition in order to precisely estimate permeability evolution during gas depletion. An in-depth investigation and comparison among four commonly-used permeability models, the Palmer and Mansoori (P&M model, Improved P&M model, Shi and Durucan (S&D model, and Cui and Bustin (C&B model, was then conducted. It was experimentally verified that a good match can be achieved between the lab data and the results predicted by the proposed model. Permeability variation of coalbed reservoirs associated with gas depletion is a consequence of two opposing effects: mechanical compaction and matrix shrinkage. In comparison, it was found that the coefficients of these two effects incorporated in those four models have a significant impact on permeability variation; and the accuracy of the values of initial cleat porosity and cleat compressibility, the bridges connecting permeability, and those two effects in analytical models, is extremely critical to permeability estimations. This study can shed light on improving the

  17. Co-Evolution Analysis on Coal-Power Industries Cluster Ecosystem Based on the Lotka-Volterra Model: A Case Study of China

    OpenAIRE

    Herui, Cui; XU, PENG; Yuqi, Zhao

    2015-01-01

    This contradiction caused by differences in coal-electricity industry market forces is “market for coal, plans for electricity". The traditional coal and power enterprises cause serious pollution problems and ecological problems in the production process, restricting the sustainable socio-economic development. The coal-electricity industry cluster ecosystem forms may effectively mediate organizations conflict existing in the development of industrial clusters, improving resource utilization, ...

  18. A Bulk Segregant Gene Expression Analysis of a Peach Population Reveals Components of the Underlying Mechanism of the Fruit Cold Response

    Science.gov (United States)

    Pons, Clara; Martí, Cristina; Forment, Javier; Crisosto, Carlos H.; Dandekar, Abhaya M.; Granell, Antonio

    2014-01-01

    Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better

  19. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  20. Coal Production 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  1. Coal worker's pneumoconiosis

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000130.htm Coal worker's pneumoconiosis To use the sharing features on this page, please enable JavaScript. Coal worker's pneumoconiosis (CWP) is a lung disease that ...

  2. Elemental properties of coal slag and measured airborne exposures at two coal slag processing facilities.

    Science.gov (United States)

    Mugford, Christopher; Boylstein, Randy; Gibbs, Jenna L

    2017-05-01

    In 1974, the National Institute for Occupational Safety and Health recommended a ban on the use of silica sand abrasives containing >1% silica due to the risk of silicosis. This gave rise to substitutes including coal slag. An Occupational Safety and Health Administration investigation in 2010 uncovered a case cluster of suspected pneumoconiosis in four former workers at a coal slag processing facility in Illinois, possibly attributable to occupational exposure to coal slag dust. This article presents the results from a National Institute for Occupational Safety and Health industrial hygiene survey at the same coal slag processing facility and a second facility. The industrial hygiene survey consisted of the collection of: (a) bulk samples of unprocessed coal slag, finished granule product, and settled dust for metals and silica; (b) full-shift area air samples for dust, metals, and crystalline silica; and (c) full-shift personal air samples for dust, metals, and crystalline silica. Bulk samples consisted mainly of iron, manganese, titanium, and vanadium. Some samples had detectable levels of arsenic, beryllium, cadmium, and cobalt. Unprocessed coal slags from Illinois and Kentucky contained 0.43-0.48% (4,300-4,800 mg/kg) silica. Full-shift area air samples identified elevated total dust levels in the screen (2-38 mg/m3) and bag house (21 mg/m3) areas. Full-shift area air samples identified beryllium, chromium, cobalt, copper, iron, nickel, manganese, and vanadium. Overall, personal air samples for total and respirable dust (0.1-6.6 mg/m3 total; and 0.1-0.4 mg/m3 respirable) were lower than area air samples. All full-shift personal air samples for metals and silica were below published occupational exposure limits. All bulk samples of finished product granules contained less than 1% silica, supporting the claim coal slag may present less risk for silicosis than silica sand. We note that the results presented here are solely from two coal slag processing

  3. A Fisher’s Criterion-Based Linear Discriminant Analysis for Predicting the Critical Values of Coal and Gas Outbursts Using the Initial Gas Flow in a Borehole

    Directory of Open Access Journals (Sweden)

    Xiaowei Li

    2017-01-01

    Full Text Available The risk of coal and gas outbursts can be predicted using a method that is linear and continuous and based on the initial gas flow in the borehole (IGFB; this method is significantly superior to the traditional point prediction method. Acquiring accurate critical values is the key to ensuring accurate predictions. Based on ideal rock cross-cut coal uncovering model, the IGFB measurement device was developed. The present study measured the data of the initial gas flow over 3 min in a 1 m long borehole with a diameter of 42 mm in the laboratory. A total of 48 sets of data were obtained. These data were fuzzy and chaotic. Fisher’s discrimination method was able to transform these spatial data, which were multidimensional due to the factors influencing the IGFB, into a one-dimensional function and determine its critical value. Then, by processing the data into a normal distribution, the critical values of the outbursts were analyzed using linear discriminant analysis with Fisher’s criterion. The weak and strong outbursts had critical values of 36.63 L and 80.85 L, respectively, and the accuracy of the back-discriminant analysis for the weak and strong outbursts was 94.74% and 92.86%, respectively. Eight outburst tests were simulated in the laboratory, the reverse verification accuracy was 100%, and the accuracy of the critical value was verified.

  4. PETROGRAPHY AND APPLICATION OF THE RIETVELD METHOD TO THE QUANTITATIVE ANALYSIS OF PHASES OF NATURAL CLINKER GENERATED BY COAL SPONTANEOUS COMBUSTION

    Directory of Open Access Journals (Sweden)

    Pinilla A. Jesús Andelfo

    2010-06-01

    Full Text Available

    Fine-grained and mainly reddish color, compact and slightly breccious and vesicular pyrometamorphic rocks (natural clinker are associated to the spontaneous combustion of coal seams of the Cerrejón Formation exploited by Carbones del Cerrejón Limited in La Guajira Peninsula (Caribbean Region of Colombia. These rocks constitute remaining inorganic materials derived from claystones, mudstones and sandstones originally associated with the coal and are essentially a complex mixture of various amorphous and crystalline inorganic constituents. In this paper, a petrographic characterization of natural clinker, aswell as the application of the X-ray diffraction (Rietveld method by mean of quantitative analysis of its mineral phases were carried out. The RIQAS program was used for the refinement of X ray powder diffraction profiles, analyzing the importance of using the correct isostructural models for each of the existing phases, which were obtained from the Inorganic Crystal Structure Database (ICSD. The results obtained in this investigation show that the Rietveld method can be used as a powerful tool in the quantitative analysis of phases in polycrystalline samples, which has been a traditional problem in geology.

  5. Coal production 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  6. Solid state 13C NMR analysis of shales and coals from Laramide Basins. Final report, March 1, 1995--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miknis, F.P.; Jiao, Z.S.; Zhao, Hanqing; Surdam, R.C.

    1998-12-31

    This Western Research Institute (WRI) jointly sponsored research (JSR) project augmented and complemented research conducted by the University of Wyoming Institute For Energy Research for the Gas Research Institute. The project, {open_quotes}A New Innovative Exploitation Strategy for Gas Accumulations Within Pressure Compartments,{close_quotes} was a continuation of a project funded by the GRI Pressure Compartmentalization Program that began in 1990. That project, {open_quotes}Analysis of Pressure Chambers and Seals in the Powder River Basin, Wyoming and Montana,{close_quotes} characterized a new class of hydrocarbon traps, the discovery of which can provide an impetus to revitalize the domestic petroleum industry. In support of the UW Institute For Energy Research`s program on pressure compartmentalization, solid-state {sup 13}C NMR measurements were made on sets of shales and coals from different Laramide basins in North America. NMR measurements were made on samples taken from different formations and depths of burial in the Alberta, Bighorn, Denver, San Juan, Washakie, and Wind River basins. The carbon aromaticity determined by NMR was shown to increase with depth of burial and increased maturation. In general, the NMR data were in agreement with other maturational indicators, such as vitrinite reflectance, illite/smectite ratio, and production indices. NMR measurements were also obtained on residues from hydrous pyrolysis experiments on Almond and Lance Formation coals from the Washakie Basin. These data were used in conjunction with mass and elemental balance data to obtain information about the extent of carbon aromatization that occurs during artificial maturation. The data indicated that 41 and 50% of the original aliphatic carbon in the Almond and Lance coals, respectively, aromatized during hydrous pyrolysis.

  7. Surface composition of silica particles embedded in an Australian bituminous coal.

    Science.gov (United States)

    Gong, B; Pigram, P J; Lamb, R N

    1999-07-01

    The composition and structure of the surface layers of a series of silica particles (10-20 microns across), embedded in a bituminous coal from the Whybrow seam, Sydney Basin, Australia, have been characterized in situ using time-of-flight secondary ion mass spectrometry (TOFSIMS), ion imaging, and depth profiling. The silica particles investigated are typically encased in a multilayered shell, the composition of which differs from average composition of both the silica and the bulk coal. The analysis directly demonstrates the presence of a silanol-rich (Si-OH) interfacial layer 3 nm in thickness. This silanol-rich region separates the bulk silica and a complex non-silica layer encasing the particles. The interfacial region also shows significant lithium enrichment (approximately fivefold over bulk) which implies diffusion and precipitation of lithium-containing species during the authigenetic formation of the surface layers of the silica grains. The outer layer encasing the silica particles is 10 nm in thickness and is composed of clays and carbonates, and, in some cases, includes organic material. The elemental constituents of this layer include aluminium, sodium, potassium, magnesium, iron, and lesser amounts of titanium and copper. The variation in the aluminium concentration from the outermost surface to the deeper layers is less than that of other non-silica species. A relatively high amount of calcium is found associated with the silica bulk. Although only non-respirable-sized silica particles are examined in this work, the methods of analysis developed have potential in providing an insight into the surface composition of respirable particles and in further studies of the surface bioavailability of silica species.

  8. Analysis of the AlGaN/GaN vertical bulk current on Si, sapphire, and free-standing GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Tomas, A.; Fontsere, A.; Llobet, J. [IMB-CNM-CSIC, Campus UAB, 08193 Bellaterra, Barcelona, CAT (Spain); Placidi, M. [IREC, Jardins Dones de Negre 1, 08930 Sant Adria de Besos, Barcelona (Spain); Rennesson, S.; Chenot, S.; Moreno, J. C.; Cordier, Y. [CRHEA-CNRS, Rue Bernard Gregory, Sophia Antipolis, 06560 Valbonne (France); Baron, N. [CRHEA-CNRS, Rue Bernard Gregory, Sophia Antipolis, 06560 Valbonne (France); PICOGIGA International, Pl M. Rebuffat, Courtaboeuf 7, 91140 Villejust (France)

    2013-05-07

    The vertical bulk (drain-bulk) current (I{sub db}) properties of analogous AlGaN/GaN hetero-structures molecular beam epitaxially grown on silicon, sapphire, and free-standing GaN (FS-GaN) have been evaluated in this paper. The experimental I{sub db} (25-300 Degree-Sign C) have been well reproduced with physical models based on a combination of Poole-Frenkel (trap assisted) and hopping (resistive) conduction mechanisms. The thermal activation energies (E{sub a}), the (soft or destructive) vertical breakdown voltage (V{sub B}), and the effect of inverting the drain-bulk polarity have also been comparatively investigated. GaN-on-FS-GaN appears to adhere to the resistive mechanism (E{sub a} = 0.35 eV at T = 25-300 Degree-Sign C; V{sub B} = 840 V), GaN-on-sapphire follows the trap assisted mechanism (E{sub a} = 2.5 eV at T > 265 Degree-Sign C; V{sub B} > 1100 V), and the GaN-on-Si is well reproduced with a combination of the two mechanisms (E{sub a} = 0.35 eV at T > 150 Degree-Sign C; V{sub B} = 420 V). Finally, the relationship between the vertical bulk current and the lateral AlGaN/GaN transistor leakage current is explored.

  9. Lake and bulk sampling chemistry, NADP, and IMPROVE air quality data analysis on the Bridger-Teton National Forest (USFS Region 4)

    Science.gov (United States)

    Jill Grenon; Terry Svalberg; Ted Porwoll; Mark Story

    2010-01-01

    Air quality monitoring data from several programs in and around the Bridger-Teton (B-T) National Forest - National Atmospheric Deposition Program (NADP), longterm lake monitoring, long-term bulk precipitation monitoring (both snow and rain), and Interagency Monitoring of Protected Visual Environments (IMPROVE) - were analyzed in this report. Trends were analyzed using...

  10. Optimal lay-out design for coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    Oberrisser, H. [Voest-Alpine Materials Handling GmbH and Co KG, Zeltweg (Austria)

    2006-07-01

    This article reviews current 'state of the art' concepts regarding lay-out and equipment for coal terminals. It groups these ideas into a workable set of guidelines for the coal mine or stockyard operator. The article concludes with four appropriate cases. The selection of the best suitable layout of the stockpile and equipment for coal storage and coal terminals is determined by a number of important criteria. A detailed analysis of process relevant requirements as well as an economic and ecological evaluation will result either in a conventional longitudinal or in a circular coal pile layout. (orig.)

  11. PROBLEMS OF DEVELOPMENT OF THE RUSSIAN COAL MARKET

    Directory of Open Access Journals (Sweden)

    Peter A. Apukhtin

    2014-01-01

    Full Text Available Russian coal market currently has acomplicated and diverse structure, itssuccessful operation depends on thebalanced development of all its components. In general, coal is not lost greatvalue in the fuel and energy balance(FEB and the Russian economy. Thearticle analyzes the development of theRussian coal market, as well as the role, place and prospects of Russia in the worldcoal market. The analysis of structuralchanges in production and consumptionof coal by type was conducted, as well asproblems and prospects of development ofthe various segments of coal market havebeen identified.

  12. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  13. Benefit-cost framework for analysis of trace element emissions from coal-fired power plants. [103 references

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    The major conclusions of this report may be summarized in the following four points: (1) It is probable that atmospheric emissions of trace elements from Southwestern coal-fired power plants will not cause major problems over the next 20 years. But monitoring for trace element build-up (especially mercury, selenium, and arsenic) in the mountains of southern Colorado, Navajo Reservoir, and other local hot spots would be an important and desirable step. (2) It appears that damage from trace elements in disposed ash is more likely than damage from atmospheric trace element emissions. But whether damage from disposed ash will actually occur is highly uncertain. We recommend that additional research be conducted on the entire range of issues surrounding ash disposal. (3) In the area of legislation and regulation, there may be some need for review of regulations concerning trace element atmospheric emissions. Present regulation of ash disposal is very likely to need revision and extension. (4) Future research on the environmental problems of coal-fired power plants should place emphasis on atmospheric emissions of sulfur and nitrogen oxides; consequent problems of acid precipitation also need exploration. Environmental research on coal-fired power plants does not need to exclude other problems. But issues surrounding sulfur emissions, nitrogen emissions, sulfate transformations, and acid precipitation appear to merit major emphasis. Perhaps the most important aspect of the preceding list of conclusions is that more questions are raised than are answered. As work on the subject proceeded, it became apparent that an important task was to point future research in the right direction.

  14. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko

    2015-03-01

    (calcite and siderite directly contribute CO2 when they decompose during coal combustion. Variations in the maceral content can also influence CO2 emissions; high inertinite contents increase CO2 emissions. Sulphur in coal reduces EF(CO2. Fuel analysis is very important when estimating greenhouse gas emissions and emission factors. In this preliminary study, based on the results of the fuel analysis, CO2 emission factors for coals and peat from Livno, B&H have been calculated. EF(CO2 is defined as the amount of carbon dioxide emission per unit net calorific values of the fuel. Net calorific value (the lower heating value corresponds to the heat produced by combustion where total water in the combustion products exists as water vapour. The EF(CO2 obtained for sub-bituminous coal, lignite and peat were: 98.7, 109.5, and 147.9 t TJ−1, respectively, which correspond to the following net calorific values: 20.6, 11.5 and 3.6 MJ kg−1. The heating value is generally known to increase with the increase in carbon content (this parameter is connected with the degree of coalification, coal age. The other indispensable parameters are hydrogen, which has a positive effect on the net calorific value, and oxygen and water which impact the net calorific value negatively. The differences in net calorific values can be explained in part by the difference of total moisture content among the different fuel types. The CO2 emission factors calculated in this study were compared with those of IPCC. A significant difference was observed for peat (39.5 %, followed by lignite (8.2 % and sub-bituminous coal (4.3 %.

  15. Analysis of Porous Structure Parameters of Biomass Chars Versus Bituminous Coal and Lignite Carbonized at High Pressure and Temperature—A Chemometric Study

    Directory of Open Access Journals (Sweden)

    Adam Smoliński

    2017-09-01

    Full Text Available The characteristics of the porous structure of carbonized materials affect their physical properties, such as density or strength, their sorption capacity, and their reactivity in thermochemical processing, determining both their applicability as fuels or sorbents and their efficiency in various processes. The porous structure of chars is shaped by the combined effects of physical and chemical properties of a carbonaceous material and the operating parameters applied in the carbonization process. In the study presented, the experimental dataset covering parameters of various fuels, ranging from biomass through lignite to bituminous coal, and chars produced at 1273 K and under the pressure of 1, 2, 3, and 4 MPa was analyzed with the application of the advanced method of data exploration. The principal component analysis showed that the sample of the highest coal rank was characterized by lower values of parameters reflecting the development of the porous structure of chars. A negative correlation was also observed between the carbon content in a fuel and the evolution of the porous structure of chars at high pressure. The highest total pore volume of chars produced under 1 and 3 MPa and the highest micropore surface area under 3 MPa were reported for a carbonized fuel sample of the highest moisture content.

  16. Analysis and improvement of Brinkman lattice Boltzmann schemes: bulk, boundary, interface. Similarity and distinctness with finite elements in heterogeneous porous media.

    Science.gov (United States)

    Ginzburg, Irina; Silva, Goncalo; Talon, Laurent

    2015-02-01

    This work focuses on the numerical solution of the Stokes-Brinkman equation for a voxel-type porous-media grid, resolved by one to eight spacings per permeability contrast of 1 to 10 orders in magnitude. It is first analytically demonstrated that the lattice Boltzmann method (LBM) and the linear-finite-element method (FEM) both suffer from the viscosity correction induced by the linear variation of the resistance with the velocity. This numerical artefact may lead to an apparent negative viscosity in low-permeable blocks, inducing spurious velocity oscillations. The two-relaxation-times (TRT) LBM may control this effect thanks to free-tunable two-rates combination Λ. Moreover, the Brinkman-force-based BF-TRT schemes may maintain the nondimensional Darcy group and produce viscosity-independent permeability provided that the spatial distribution of Λ is fixed independently of the kinematic viscosity. Such a property is lost not only in the BF-BGK scheme but also by "partial bounce-back" TRT gray models, as shown in this work. Further, we propose a consistent and improved IBF-TRT model which vanishes viscosity correction via simple specific adjusting of the viscous-mode relaxation rate to local permeability value. This prevents the model from velocity fluctuations and, in parallel, improves for effective permeability measurements, from porous channel to multidimensions. The framework of our exact analysis employs a symbolic approach developed for both LBM and FEM in single and stratified, unconfined, and bounded channels. It shows that even with similar bulk discretization, BF, IBF, and FEM may manifest quite different velocity profiles on the coarse grids due to their intrinsic contrasts in the setting of interface continuity and no-slip conditions. While FEM enforces them on the grid vertexes, the LBM prescribes them implicitly. We derive effective LBM continuity conditions and show that the heterogeneous viscosity correction impacts them, a property also shared

  17. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Teissie, J.; Bourgogne, D. de; Bautin, F. [TotalFinaElf, La Defense, 92 - Courbevoie (France)

    2001-12-15

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  18. Dutch ports add value to their coal service

    Energy Technology Data Exchange (ETDEWEB)

    Burg, J. van der (Rotterdam Port Management, Rotterdam (Netherlands))

    1994-12-01

    Amsterdam has become one of the most important coal ports in Europe in the last five years, partly because of ease of access to the Amsterdam-Rhine canal and the Rhine-Main-Danube canal. With the opening of Amsterdam Coal Processing (ACP) in January 1995, on a 5-hectare site neighbouring the multi bulk terminal of OBA, and the plans of an English group to start up a coal briquette factory in the port area, Amsterdam now offers everything in the field of coal handling and processing. Rotterdam has built up a healthy competitive position in the transhipment of dry bulk cargo. This is largely attributable to the successful way in which Rotterdam has responded to continuing developments. Good infrastructural and superstructural facilities, enabling all types of ship to be handled, give Rotterdam a cost advantage over rival ports. In addition, upscaling in maritime shipping and good hinterland connections for inland shipping have resulted in favourable logistics costs. Finally, Rotterdam has good distribution facilities and it also has an extensive range of processing facilities for agri-bulk and coal.

  19. Coal to gas substitution using coal?!

    Science.gov (United States)

    Kempka, Thomas; Schlüter, Ralph

    2010-05-01

    Substitution of carbon-intensive coal with less carbon-intensive natural gas for energy production is discussed as one main pillar targeting reduction of antrophogenic greenhouse gas emissions by means of climate change mitigation. Other pillars are energy efficiency, renewable energies, carbon capture and storage as well as further development of nuclear energy. Taking into account innovative clean coal technologies such as UCG-CCS (underground coal gasification with carbon capture and storage), in which coal deposits are developed using directional drilling technologies and subsequently converted into a synthesis gas of high calorific value, the coupled conceptual approach can provide a synergetic technology for coal utilization and mitigation of carbon emissions. This study aims at the evaluation of UCǴ s carbon mitigation potentials and the review of the economical boundary conditions. The analytical models applied within this study are based on data available from world-wide UCG projects and extensive laboratory studies. In summary, scenarios considering costs and carbon storage potentials are economically feasible and thus competitive with less carbon-intensive energy generation technologies such as natural gas. Thus, coal to gas substitution can be one of the coal based options.

  20. Environmental impacts of coal mine and thermal power plant to the surroundings of Barapukuria, Dinajpur, Bangladesh.

    Science.gov (United States)

    Hossain, Md Nazir; Paul, Shitangsu Kumar; Hasan, Md Muyeed

    2015-04-01

    The study was carried out to analyse the environmental impacts of coal mine and coal-based thermal power plant to the surrounding environment of Barapukuria, Dinajpur. The analyses of coal, water, soil and fly ash were carried out using standard sample testing methods. This study found that coal mining industry and coal-based thermal power plant have brought some environmental and socio-economic challenges to the adjacent areas such as soil, water and air pollution, subsidence of agricultural land and livelihood insecurity of inhabitants. The pH values, heavy metal, organic carbon and exchangeable cations of coal water treated in the farmland soil suggest that coal mining deteriorated the surrounding water and soil quality. The SO4(2-) concentration in water samples was beyond the range of World Health Organisation standard. Some physico-chemical properties such as pH, conductivity, moisture content, bulk density, unburned carbon content, specific gravity, water holding capacity, liquid and plastic limit were investigated on coal fly ash of Barapukuria thermal power plant. Air quality data provided by the Barapukuria Coal Mining Company Limited were contradictory with the result of interview with the miners and local inhabitants. However, coal potentially contributes to the development of economy of Bangladesh but coal mining deteriorates the environment by polluting air, water and soil. In general, this study includes comprehensive baseline data for decision makers to evaluate the feasibility of coal power industry at Barapukuria and the coalmine itself.

  1. Analysis of occupational health hazards and associated risks in fuzzy environment: a case research in an Indian underground coal mine.

    Science.gov (United States)

    Samantra, Chitrasen; Datta, Saurav; Mahapatra, Siba Sankar

    2017-09-01

    This paper presents a unique hierarchical structure on various occupational health hazards including physical, chemical, biological, ergonomic and psychosocial hazards, and associated adverse consequences in relation to an underground coal mine. The study proposes a systematic health hazard risk assessment methodology for estimating extent of hazard risk using three important measuring parameters: consequence of exposure, period of exposure and probability of exposure. An improved decision making method using fuzzy set theory has been attempted herein for converting linguistic data into numeric risk ratings. The concept of 'centre of area' method for generalized triangular fuzzy numbers has been explored to quantify the 'degree of hazard risk' in terms of crisp ratings. Finally, a logical framework for categorizing health hazards into different risk levels has been constructed on the basis of distinguished ranges of evaluated risk ratings (crisp). Subsequently, an action requirement plan has been suggested, which could provide guideline to the managers for successfully managing health hazard risks in the context of underground coal mining exercise.

  2. Assessing market structures in resource markets. An empirical analysis of the market for metallurgical coal using various equilibrium models

    Energy Technology Data Exchange (ETDEWEB)

    Lorenczik, Stefan; Panke, Timo [Koeln Univ. (Germany). Inst. of Energy Economics

    2015-05-15

    The prevalent market structures found in many resource markets consist of a high concentration on the supply side and a low demand elasticity. Market results are therefore frequently assumed to be an outcome of strategic interaction between producers. Common models to investigate the market outcomes and underlying market structures are games representing competitive markets, strategic Cournot competition and Stackelberg structures taking into account a dominant player acting first followed by one or more followers. Besides analysing a previously neglected scenario of the latter kind, we add to the literature by expanding the application of mathematical models by applying an Equilibrium Problem with Equilibrium Constraints (EPEC), which is used to model multi-leader-follower games, to a spatial market. We apply our model by investigating the prevalent market setting in the international market for metallurgical coal between 2008 and 2010, whose market structure provides arguments for a wide variety of market structures. Using different statistical measures and comparing model with actual market outcomes, we find that two previously neglected settings perform best: First, a setting in which the four largest metallurgical coal exporting firms compete against each other as Stackelberg leaders, while the remainders act as Cournot followers. Second, a setting with BHPB acting as sole Stackelberg leader.

  3. Purification processes for coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, D.K.; Primack, H.S.

    1977-01-01

    It is apparent from the discussion that many routes can be taken to achieve acid-gas removal and sulfur recovery from coal gas. The selection of the optimum purification system is a major task. The type of coal, type of gasifier and the upstream processing all strongly influence the selection. Several generalizations can be made: (1) The cost of the purification sections of a high-Btu gas plant is significant--perhaps 10 to 30% of the capital cost of the coal conversion facility. (2) The cost of purifying gas produced from high-sulfur coal feed is more expensive than the cost for purifying gas produced from low-sulfur coal. (3) The choice of an acid-gas removal system will often be a function of system pressure. The economical choice will usually be: (a) amine-based systems at atmospheric pressure; (b) hot-carbonate systems at moderate pressure or (c) physical-solvent systems at higher pressure. (4) For a high-Btu, high-sulfur case: (a) A selective acid-gas removal system with a Claus plant is probably more economical than a non-selective acid-gas system with liquid oxidation of the H/sub 2/S in the regenerator off-gas. (b) Even moderately selective systems can produce an H/sub 2/S-rich gas suitable for a Claus plant. The CO/sub 2/-rich gas may or may not require further sulfur removal, depending on the selectivity. (5) For a high-Btu, low-sulfur case: (a) The hot carbonate and tertiary amine systems may not be sufficiently selective to produce a gas suitable for feed to a Claus process while a physical solvent system may be. Therefore, the physical solvent system may be expected to be more economical. (b) The regenerated gas from the bulk CO/sub 2/ removal system following a selective physical solvent system may require further sulfur removal, depending upon the sulfur level in the initial feedstock and the selectivity of the system selected.

  4. Modeling of the process of coal grinding

    Directory of Open Access Journals (Sweden)

    T. Wyleciał

    2013-04-01

    Full Text Available The use of coal in the steel industry, similarly as in the whole national economy, is often preceded by its pre-treatment. Coal is mined in the form of big solids, but, being in such a form, it can’t be combusted, sintered, or gasified. Therefore, it needs to be appropriately grinding. In the paper results of the numerical prediction of the grain size distribution of the grinding coals are presented. The numerical computations were performed and then they were compared with grain size analysis results.

  5. Coal Moisture Estimation in Power Plant Mills

    DEFF Research Database (Denmark)

    Andersen, Palle; Bendtsen, Jan Dimon; Pedersen, Tom S.

    2009-01-01

    Knowledge of moisture content in raw coal feed to a power plant coal mill is of importance for efficient operation of the mill. The moisture is commonly measured approximately once a day using offline chemical analysis methods; however, it would be advantageous for the dynamic operation...... of the plant if an on-line estimate were available. In this paper we such propose an on-line estimator (an extended Kalman filter) that uses only existing measurements. The scheme is tested on actual coal mill data collected during a one-month operating period, and it is found that the daily measured moisture...

  6. Quantitative analysis of sulfur forms of coal and the pyrolysis behavior of sulfur compounds; Sekitanchu no io kagobutsu no keitaibetsu gan`yuryo no teiryo to sono netsubunkai kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Mae, K.; Miura, K.; Shimada, M. [Kyoto University, Kyoto (Japan). Faculty of Engineering

    1996-10-28

    As part of the studies on coal utilization basics, considerations were given on quantification of sulfur forms of coal and the pyrolysis behavior of sulfur compounds. With the temperature raising oxidation method, a thermo-balance was connected directly to a mass analyzer, and the coal temperature was raised at a rate of 5{degree}C per minute and gasified. Peak division was performed on SO2 and COS production to derive sulfur forms of coal. Using the slow-speed pyrolysis method, production rates of H2S, COS, SO2 and mercaptans were measured at a temperature raising rate of 20{degree}C per minute. Sulfur content in char was also measured. With the quick pyrolysis method, a Curie point pyrolyzer was connected directly to a gas chromatograph, by which secondary reaction is suppressed, and initial pyrolytic behavior can be tracked. All kinds of coals produce a considerable amount of SO2 in the slow-speed pyrolysis, but very little in the quick pyrolysis. Instead, H2S and mercaptans are produced. Sulfur compound producing mechanisms vary depending on the temperature raising rates. By using a parallel primary reaction model, analysis was made on reactions of H2S production based on different activation energies, such as those generated from pyrite decomposition and organic sulfur decomposition. The analytic result agreed also with that from the temperature raising oxidation method. 4 refs., 6 figs., 1 tab.

  7. Microfabricated Bulk Piezoelectric Transformers

    Science.gov (United States)

    Barham, Oliver M.

    Piezoelectric voltage transformers (PTs) can be used to transform an input voltage into a different, required output voltage needed in electronic and electro- mechanical systems, among other varied uses. On the macro scale, they have been commercialized in electronics powering consumer laptop liquid crystal displays, and compete with an older, more prevalent technology, inductive electromagnetic volt- age transformers (EMTs). The present work investigates PTs on smaller size scales that are currently in the academic research sphere, with an eye towards applications including micro-robotics and other small-scale electronic and electromechanical sys- tems. PTs and EMTs are compared on the basis of power and energy density, with PTs trending towards higher values of power and energy density, comparatively, indicating their suitability for small-scale systems. Among PT topologies, bulk disc-type PTs, operating in their fundamental radial extension mode, and free-free beam PTs, operating in their fundamental length extensional mode, are good can- didates for microfabrication and are considered here. Analytical modeling based on the Extended Hamilton Method is used to predict device performance and integrate mechanical tethering as a boundary condition. This model differs from previous PT models in that the electric enthalpy is used to derive constituent equations of motion with Hamilton's Method, and therefore this approach is also more generally applica- ble to other piezoelectric systems outside of the present work. Prototype devices are microfabricated using a two mask process consisting of traditional photolithography combined with micropowder blasting, and are tested with various output electri- cal loads. 4mm diameter tethered disc PTs on the order of .002cm. 3 , two orders smaller than the bulk PT literature, had the followingperformance: a prototype with electrode area ratio (input area / output area) = 1 had peak gain of 2.3 (+/- 0.1), efficiency of 33 (+/- 0

  8. Chemometric Study of Trace Elements in Hard Coals of the Upper Silesian Coal Basin, Poland

    Science.gov (United States)

    Rompalski, Przemysław; Cybulski, Krzysztof; Chećko, Jarosław

    2014-01-01

    The objective of the study was the analysis of trace elements contents in coals of the Upper Silesian Coal Basin (USCB), which may pose a potential threat to the environment when emitted from coal processing systems. Productive carbon overburden in central and southern zones of the USCB is composed mostly of insulating tertiary formations of a thickness from a few m to 1,100 m, and is represented by Miocene and Pliocene formations. In the data study the geological conditions of the coal seams of particular zones of the USCB were taken into account and the hierarchical clustering analysis was applied, which enabled the exploration of the dissimilarities between coal samples of various zones of the USCB in terms of basic physical and chemical parameters and trace elements contents. Coals of the northern and eastern zones of the USCB are characterized by high average Hg and low average Ba, Cr, and Ni contents, whereas coals of southern and western zones are unique due to high average concentrations of Ba, Co, Cu, Ni, and V. Coals of the central part of the USCB are characterized by the highest average concentration of Mn and the lowest average concentrations of As, Cd, Pb, V, and Zn. PMID:24967424

  9. The geology and coal petrology of a Pleistocene lignite profile at Horemi mine, Megalopolis Basin, Peloponnese (southern Greece)

    Energy Technology Data Exchange (ETDEWEB)

    Sakorafa, K.; Michailidis, K. [Universita degli Studi di Roma `La Sapienza`, Rome (Italy). Dipt. di Scienze della Terra

    1997-01-01

    The present study describes the geology, coal petrology and geochemistry of a Pleistocene coal-bearing succession at Horemi mine, Megalopolis Basin (southern Greece). Within a 45-m interval 9 coals seams are exposed, ranging in thickness from 20 cm to 10 m. Reflectance measured on the maceral-type eu-ulminite B range between 0.24 and 0.31% mean R{sub random}. This indicates a coalification stage in the transition zone between peat and lignite rank of the ASTM classification for the Horemi coals. Petrographic studies demonstrated the immature nature of these coals and the low degree of compaction during diagenesis. Compositionally, the Horemi coals are characterized by low amounts (53. vol%) of the inertinite group macerals, moderate amounts (11.9 vol%) of liptinte group macerals and very high amounts (82.8 vol%) of the huminite group macerals (on average and mineral-matter-free basis). Within the latter group densinite, attrinite and ulminite make up the bulk of the samples. Results from proximate and ultimate analysis gave on average 53.7% bed moisture, and 37.3% ash, 45.8% volatiles and 18.1% fixed carbon (d.b.). Calorific value determinations vary between 1805 and 5470 kcal/kg. Mineral matter is high, varying within the range 20.8-51.9 vol%. Identifiable mineral constituents include quartz, anhydrite, illite, feldspars, calcite, gypsum and chlorite, and minor amounts of barite and pyrite. Reflectance obtained from ulminite were found to be negatively correlated with volatile matter, whereas there is a trend for a positive correlation of them with calorific values. The predominance of humodertrinite (attrinite and densinite) macerals type and the low amount of inertinite suggest a formation of the Pleistocene peats in marsh/fen-type swamps in a probably lower delta plain depositional setting. 37 refs., 9 figs., 2 tabs.

  10. Coal sector profile

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  11. An accurate algorithm for estimation of coal reserves based on support vector machine

    Energy Technology Data Exchange (ETDEWEB)

    Deng, X.; Liu, W.; Wang, R. [Wuhan University, Wuhan (China). School of Geology and Geomatics

    2008-09-15

    In an effort to improve the limitations of the present methods of estimating coal reserves an accurate algorithm is presented based on the support vector machine model. By building a thick coal and bulk density model from knowledge of drilling data and eliminating the outer points according to the relation between points and polygons, coal reserves were accurately calculated by summing up all the reserves of a small grid. Two examples for different types of coal mine are given and three-dimensional mineral distribution maps are plotted. The examples validate the reliability and advantages of the method proposed. 9 refs., 1 fig., 1 tab.

  12. Design of coal processing plants in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, J.C. [James C. Donnelly and Associates, Wangi Wangi, New South Wales (Australia); Hoare, I.C. [CSIRO, North Ryde, New South Wales (Australia). Div. of Coal and Energy Technology

    1997-12-31

    Planning of a new plant involves investigation of many factors both technical and economic. A wide range of preparation processes and equipment is on offer, but the nature of the coal to be treated and the product specifications usually dictate process selection. Simple or moderately difficult separation can be achieved with jigs, spirals or water washing cyclones. Coal which is difficult to treat, or which has to be separated at partition density lower than 1.5, is normally washed in a heavy medium process. In large plants it is usual to separate the coal into large, small and fine fractions and beneficiate each fraction in a circuit designed to suit the particle size handled. A good deal of information is required to enable design to proceed. It includes: sizing analyses on each coal type; comprehensive washability analysis on each size fraction of each coal type; froth flotation, oil agglomeration and filtration tests; flocculation and sedimentation tests on tailings; site survey plans and geotechnical reports; analysis of ground water and mine water likely to be used in the coal preparation process; compaction tests on rejects and tailings for design of reject emplacements. Basic decisions include plant capacity, hours to be worked each week, the number of products required and specifications for these. The sizes of raw coal and clean coal stockpiles must be determined and the degree of unmanned automation to be adopted for coal handling and selection of stockyard machines. When all these decisions are made, a block type Process Flow Sheet should be prepared in accordance with standard formats as set down by ISO-924 and ISO-561 or AS-1414. This sets out the basic processes and solids flow rates.

  13. Effects of coal leachates on fish spermatogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, R.C

    1987-01-01

    The use of coal as a fuel source for power plants often involves the storage of coal on the plant site. Coal stored in this manner is subject to leaching by rain or groundwater, and the leachates may seep into surface waters. Coal leachates were examined for toxic effects on fish spermatogenesis. Nonbreeding mummichogs, Fundulus heteroclitus, were induced to enter breeding condition in the laboratory by exposure to 20{degree}C and a photoperiod of 16L:8D for 6 weeks. During this 6-weeks period, mummichogs were dosed in static exposure tanks with water extracts of coal (leachates). Chi-square analysis and Z test of proportions revealed a significant reduction in sperm production by fish exposed to some, but not all, coal leachates. This reduction was as much as 40-fold and occurred in a dose-dependent manner. Ordinarily, nonbreeding mummichogs collected immediately after the breeding season will not enter breeding condition in response to 16L:8D and 20{degree}C. Exposure of these photo-insensitive mummichogs to coal leachates under long photoperiod conditions for 8 weeks resulted in a significant increase in sperm production. Analysis of weekly sperm production by mummichogs from six field populations, either adjacent to or 2 miles upstream from coal-fired power plants, did not reveal significant differences during the breeding season. However, this sperm production was less than 1/10 that of a mummichog field population sampled concomitantly at the Chesapeake Bay Institute. The reduced sperm levels could not be related to reproductive toxin(s) contained in coal leachate. 13 refs., 1 figs., 3 tabs.

  14. Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine.

    Directory of Open Access Journals (Sweden)

    Jingyu Jiang

    Full Text Available To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index. Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar

  15. The effect of coal bed dewatering and partial oxidation on biogenic methane potential

    Science.gov (United States)

    Jones, Elizabeth J.P.; Harris, Steve H.; Barnhart, Elliott P.; Orem, William H.; Clark, Arthur C.; Corum, Margo D.; Kirshtein, Julie D.; Varonka, Matthew S.; Voytek, Mary A.

    2013-01-01

    Coal formation dewatering at a site in the Powder River Basin was associated with enhanced potential for secondary biogenic methane determined by using a bioassay. We hypothesized that dewatering can stimulate microbial activity and increase the bioavailability of coal. We analyzed one dewatered and two water-saturated coals to examine possible ways in which dewatering influences coal bed natural gas biogenesis by looking at differences with respect to the native coal microbial community, coal-methane organic intermediates, and residual coal oxidation potential. Microbial biomass did not increase in response to dewatering. Small Subunit rRNA sequences retrieved from all coals sampled represented members from genera known to be aerobic, anaerobic and facultatively anaerobic. A Bray Curtis similarity analysis indicated that the microbial communities in water-saturated coals were more similar to each other than to the dewatered coal, suggesting an effect of dewatering. There was a higher incidence of long chain and volatile fatty acid intermediates in incubations of the dewatered coal compared to the water-saturated coals, and this could either be due to differences in microbial enzymatic activities or to chemical oxidation of the coal associated with O2 exposure. Dilute H2O2 treatment of two fractions of structural coal (kerogen and bitumen + kerogen) was used as a proxy for chemical oxidation by O2. The dewatered coal had a low residual oxidation potential compared to the water-saturated coals. Oxidation with 5% H2O2 did increase the bioavailability of structural coal, and the increase in residual oxidation potential in the water saturated coals was approximately equivalent to the higher methanogenic potential measured in the dewatered coal. Evidence from this study supports the idea that coal bed dewatering could stimulate biogenic methanogenesis through partial oxidation of the structural organics in coal once anaerobic conditions are restored.

  16. Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine

    Science.gov (United States)

    Jiang, Jingyu; Cheng, Yuanping; Mou, Junhui; Jin, Kan; Cui, Jie

    2015-01-01

    To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index). Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption) index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar occurrence conditions

  17. Developing bulk exchange spring magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  18. Co-combustion of pulverized coal and solid recovered fuel in an entrained flow reactor- General combustion and ash behavior

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Frandsen, Flemming

    2011-01-01

    of the additives increased the S-retention in ash. Analysis of the bulk composition of fly ash from different experiments indicated that the majority of S and Cl in the fuels were released to gas phase during combustion, whereas the K and Na in the fuels were mainly retained in ash. When co-firing coal and SRF...... propensity in co-combustion was decreased with increasing share of SRF. The addition of NaCl and PVC significantly increased the ash deposition propensity, whereas the addition of ammonium sulphate or kaolinite showed a slight reducing effect. The chlorine content in the deposits generally implied a low...

  19. Synthesis of Bulk Superconducting Magnesium Diboride

    Directory of Open Access Journals (Sweden)

    Margie Olbinado

    2002-06-01

    Full Text Available Bulk polycrystalline superconducting magnesium diboride, MgB2, samples were successfully prepared via a one-step sintering program at 750°C, in pre Argon with a pressure of 1atm. Both electrical resistivity and magnetic susceptibility measurements confirmed the superconductivity of the material at 39K, with a transition width of 5K. The polycrystalline nature, granular morphology, and composition of the sintered bulk material were confirmed using X-ray diffractometry (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX.

  20. Chemical and Pyrolytic Thermogravimetric Characterization of Nigerian Bituminous Coals

    Directory of Open Access Journals (Sweden)

    Nyakuma Bemgba Bevan

    2016-12-01

    Full Text Available The discovery of new coal deposits in Nigeria presents solutions for nation’s energy crises and prospects for socioeconomic growth and sustainable development. Furthermore, the quest for sustainable energy to limit global warming, climate change, and environmental degradation has necessitated the exploration of alternatives using cleaner technologies such as coal pyrolysis. However, a lack of comprehensive data on physico-chemical and thermal properties of Nigerian coals has greatly limited their utilization. Therefore, the physico-chemical properties, rank (classification, and thermal decomposition profiles of two Nigerian bituminous coals – Afuze (AFZ and Shankodi-Jangwa (SKJ – were examined in this study. The results indicate that the coals contain high proportions of C, H, N, S, O and a sufficiently high heating value (HHV for energy conversion. The coal classification revealed that the Afuze (AFZ coal possesses a higher rank, maturity, and coal properties compared to the Shankodi-Jangwa (SKJ coal. A thermal analysis demonstrated that coal pyrolysis in both cases occurred in three stages; drying (30-200 °C, devolatilization (200-600 °C, and char decomposition (600-1000 °C. The results also indicated that pyrolysis at 1000 °C is not sufficient for complete pyrolysis. In general, the thermochemical and pyrolytic fuel properties indicate that the coal from both places can potentially be utilized for future clean energy applications.

  1. An assessment of grindability index of coal

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Ambar Nath [Central Fuel Research Institute, F.R.I., Dist. Dhanbad, Bihar (India)

    2002-04-20

    Grindability index of coal is an important technological parameter to understand the behaviour and assess the relative hardness of coals of varying ranks and grades during comminution. This is usually determined by Hardgrove Grindability Index (HGI), which involves requirement of a costly grinding equipment and accessories not readily available and affordable. Due to heterogeneous character of coals as regards maturity, petrological constituents, mineral impurities, etc. as well as mechanism of comminution render such determination rather difficult, leading to poor reproducibility and repeatability of HGI value, contrary to other analyses for coal characterisation. As such, it often gives misleading results to understand and explain properties emerging from other analyses and testing. In view of such problems, many attempts have been done in the past to develop correlation of HGI with simple analytical composition of coal. In this perspective a fresh attempt in arriving at a more reliable and reproducible correlation with proximate analysis alone is reported. Such an index termed as Statistical Grindability Index (SGI), may be found useful in assessment of coal behaviour not only in crushing and grinding of coal but also its friability vis-a-vis dust emission during comminution.

  2. DEVELOPMENT OF AN ON-LINE COAL WASHABILITY ANALYZER

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Miller; C.L. Lin; G.H. Luttrell; G.T. Adel; Barbara Marin

    2001-06-26

    Washability analysis is the basis for nearly all coal preparation plant separations. Unfortunately, there are no on- line techniques for determining this most fundamental of all coal cleaning information. In light of recent successes at the University of Utah, it now appears possible to determine coal washability on-line through the use of x-ray computed tomography (CT) analysis. The successful development of such a device is critical to the establishment of process control and automated coal blending systems. In this regard, Virginia Tech, Terra Tek Inc., and U.S. coal producers have joined with the University of Utah and to undertake the development of an X-ray CT-based on- line coal washability analyzer with financial assistance from DOE. Each project participant brought special expertise to the project in order to create a new dimension in coal cleaning technology. The project involves development of appropriate software and extensive testing/evaluation of well-characterized coal samples from operating coal preparation plants. Data collected to date suggest that this new technology is capable of serving as a universal analyzer that can not only provide washability analysis, but also particle size distribution analysis, ash analysis, and perhaps pyritic sulfur analysis.

  3. Orchestrating Bulk Data Movement in Grid Environments

    Energy Technology Data Exchange (ETDEWEB)

    Vazhkudai, SS

    2005-01-25

    Data Grids provide a convenient environment for researchers to manage and access massively distributed bulk data by addressing several system and transfer challenges inherent to these environments. This work addresses issues involved in the efficient selection and access of replicated data in Grid environments in the context of the Globus Toolkit{trademark}, building middleware that (1) selects datasets in highly replicated environments, enabling efficient scheduling of data transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads from mirrored sites. These efforts have demonstrated a decentralized data scheduling architecture, a set of forecasting tools that predict bandwidth availability within 15% error and co-allocation architecture, and heuristics that expedites data downloads by up to 2 times.

  4. Study relationship between inorganic and organic coal analysis with gross calorific value by multiple regression and ANFIS

    Science.gov (United States)

    Chelgani, S.C.; Hart, B.; Grady, W.C.; Hower, J.C.

    2011-01-01

    The relationship between maceral content plus mineral matter and gross calorific value (GCV) for a wide range of West Virginia coal samples (from 6518 to 15330 BTU/lb; 15.16 to 35.66MJ/kg) has been investigated by multivariable regression and adaptive neuro-fuzzy inference system (ANFIS). The stepwise least square mathematical method comparison between liptinite, vitrinite, plus mineral matter as input data sets with measured GCV reported a nonlinear correlation coefficient (R2) of 0.83. Using the same data set the correlation between the predicted GCV from the ANFIS model and the actual GCV reported a R2 value of 0.96. It was determined that the GCV-based prediction methods, as used in this article, can provide a reasonable estimation of GCV. Copyright ?? Taylor & Francis Group, LLC.

  5. Thermodynamic analysis of in situ gasification-chemical looping combustion (iG-CLC) of Indian coal.

    Science.gov (United States)

    Suresh, P V; Menon, Kavitha G; Prakash, K S; Prudhvi, S; Anudeep, A

    2016-10-01

    Chemical looping combustion (CLC) is an inherent CO2 capture technology. It is gaining much interest in recent years mainly because of its potential in addressing climate change problems associated with CO2 emissions from power plants. A typical chemical looping combustion unit consists of two reactors-fuel reactor, where oxidation of fuel occurs with the help of oxygen available in the form of metal oxides and, air reactor, where the reduced metal oxides are regenerated by the inflow of air. These oxides are then sent back to the fuel reactor and the cycle continues. The product gas from the fuel reactor contains a concentrated stream of CO2 which can be readily stored in various forms or used for any other applications. This unique feature of inherent CO2 capture makes the technology more promising to combat the global climate changes. Various types of CLC units have been discussed in literature depending on the type of fuel burnt. For solid fuel combustion three main varieties of CLC units exist namely: syngas CLC, in situ gasification-CLC (iG-CLC) and chemical looping with oxygen uncoupling (CLOU). In this paper, theoretical studies on the iG-CLC unit burning Indian coal are presented. Gibbs free energy minimization technique is employed to determine the composition of flue gas and oxygen carrier of an iG-CLC unit using Fe2O3, CuO, and mixed carrier-Fe2O3 and CuO as oxygen carriers. The effect of temperature, suitability of oxygen carriers, and oxygen carrier circulation rate on the performance of a CLC unit for Indian coal are studied and presented. These results are analyzed in order to foresee the operating conditions at which economic and smooth operation of the unit is expected.

  6. Coal, culture and community

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    16 papers are presented with the following titles: the miners; municipalisation and the millenium - Bolton-upon-Dearne Urban District Council 1899-1914; the traditional working class community revisited; the cultural capital of coal mining communities; activities, strike-breakers and coal communities; the limits of protest - media coverage of the Orgreave picket during the miners` strike; in defence of home and hearth? Families, friendships and feminism in mining communities; young people`s attitudes to the police in mining communities; the determinants of productivity growth in the British coal mining industry, 1976-1989; strategic responses to flexibility - a case study in coal; no coal turned in Yorkshire?; the North-South divide in the Central Coalfields; the psychological effects of redundancy and worklessness - a case study from the coalfields; the Dearne Valley initiative; the future under labour: and coal, culture and the community.

  7. Coal tar in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Roelofzen, J.H.J.; Aben, K.K.H.; Van Der Valk, P.G.M.; Van Houtum, J.L.M.; Van De Kerkhof, P.C.M.; Kiemeney, L.A.L.M. [Radboud University Nijmegen Medical Center, Nijmegen (Netherlands). Dept. of Dermatology

    2007-07-01

    Coal tar is one of the oldest treatments for psoriasis and eczema. It has anti-inflammatory, antibacterial, antipruritic and antimitotic effects. The short-term side effects are folliculitis, irritation and contact allergy. Coal tar contains carcinogens. The carcinogenicity of coal tar has been shown in animal studies and studies in occupational settings. There is no clear evidence of an increased risk of skin tumors or internal tumors. Until now, most studies have been fairly small and they did not investigate the risk of coal tar alone, but the risk of coal tar combined with other therapies. New, well-designed, epidemiological studies are necessary to assess the risk of skin tumors and other malignancies after dermatological use of coal tar.

  8. Bulk and compound-specific isotope analysis of long-chain n-alkanes from a 85,000 year sediment core from Lake Peten Petén Itzá, Guatemala

    Science.gov (United States)

    Mays, J.; Brenner, M.; Curtis, J. H.; Curtis, K.; Hodell, D. A.; Correa-Metrio, A.; Escobar, J.; Dutton, A. L.; Zimmerman, A. R.; Guilderson, T. P.

    2013-12-01

    Sediment core PI-6 from Lake Petén Itzá, Guatemala possesses an 85-ka record of climate from lowland Central America. Variations in sediment lithology suggest large, abrupt changes in precipitation during the last glacial and deglacial periods, and into the early Holocene. Study of cores from nearby Lake Quexil demonstrated the utility of using the carbon isotopic composition of leaf wax n-alkanes to infer changes in terrestrial vegetation (Huang et al. 2001). Forty-nine samples were taken from composite Petén Itzá core PI-6 to measure carbon isotopes of bulk organic carbon and long-chain n alkanes. Changes in δ13C values indicate shifts in the relative proportion of C3 to C4 biomass. The record shows largest δ13C variations are associated with Heinrich Events. Carbon isotope values in sediments deposited during the Last Glacial Maximum (LGM) indicate moderate precipitation and little rainfall fluctuation. The deglacial was a period of pronounced climate variability, e.g. the Bölling-Allerod and Younger Dryas. Arid times of the deglacial were inferred from samples with the greatest δ13C values in organic matter, reflecting the largest proportion of C4 plants. Such inferences are supported by stable isotope measurements on ostracod shells and analysis of pollen from the same sample depths in core PI-6. Carbon stable isotope measures on bulk organic carbon and n alkane compounds show similar trends throughout the record and the C:N ratio of Petén Itzá sediments indicates a predominantly allochthonous source for bulk organic matter. Hence, isotope measures on bulk organic carbon (δ13CTOC) in sediments from this lake are sufficient to infer climate-driven shifts in vegetation, making n-alkane extraction and isotope analysis superfluous.

  9. Development of coal gasification and gas cleanup technologies in ICC, CAS[Institute of Coal Chemistry, Chinese Academy of Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yang; Zhang Jianmin; Huang Jiejie; Xu Yifeng; Chen Hanshi; Yang Jinquan; Cao Yan

    2000-07-01

    Coal is major energy resource in China. In 1997, about 75% of industrial and steam fuel, 65% of chemical feedstock raw material and 65% of the domestic fuel requirements came from coal. And according to the predictions, coal will continue to be the major energy source for the next 30{approximately}50 years. However, coal utilization has caused serious environmental problems, especially where the coal is directly burned. It was indicated from national statistics that in 1998, 70% of the total dust suspension, 80% of the SOx and 75% of the NOx in the air were originated from coal combustion. Today there is a need for China to consider how to meet its needs for increased coal utilization in the way that is cost effective, highly efficient and environmentally friendly. Coal gasification is one of the most efficient and clean coal technologies; it provides syngas for China's chemicals production, industrial fuel gas and town gas. However, the technologies used in China are rather out-of-date, although several units of modern entrained gasifiers are in operation for ammonia synthesis. Based on this situation and the process analysis, the Institute of Coal Chemistry, Chinese Academy of Sciences conducted the research and development of fluidized bed coal gasification technologies. And in order to meet the requirement of advanced power generation system, hot gas cleaning is also studied. This paper presents the status and further studies the planning.

  10. Microbial desulfurization of coal

    Science.gov (United States)

    Dastoor, M. N.; Kalvinskas, J. J.

    1978-01-01

    Experiments indicate that several sulfur-oxidizing bacteria strains have been very efficient in desulfurizing coal. Process occurs at room temperature and does not require large capital investments of high energy inputs. Process may expand use of abundant reserves of high-sulfur bituminous coal, which is currently restricted due to environmental pollution. On practical scale, process may be integrated with modern coal-slurry transportation lines.

  11. An LCA study of an electricity coal supply chain

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2014-01-01

    Full Text Available Purpose: The aim of this paper is to provide methods to find the emission source and estimate the amount of waste gas emissions in the electricity coal supply chain, establish the model of the environmental impact (burden in the electricity coal supply chain, detect the critical factor which causes significant environmental impact, and then identify the key control direction and reduce amount of environmental pollution in the electricity coal supply chain. Design/methodology/approach: In this context, life cycle inventory and life cycle assessment of China’s electricity coal were established in three difference stages: coal mining, coal transportation, and coal burning. Then the outcomes were analyzed with the aim to reduce waste gases emissions’ environmental impact in the electricity coal supply chain from the perspective of sensitivity analysis. Findings: The results and conclusion are as follow: (1 In terms of total waste gas emissions in electricity coal supply chain, CO2 is emitted in the greatest quantity, accounting for 98-99 wt% of the total waste gas emissions. The vast majority of the CO2, greater than 93%, is emitted from the power plant when the coal is combusted. (2 Other than CO2, the main waste gas is CH4, SO2 and so on. CH4 is mainly emitted from Coal Bed Methane (CBM, so the option is to consider capturing some of the CH4 from underground mines for an alternative use. SO2 is mainly emitted from power plant when the coal is combusted. (3 The environmental burden of coal burning subsystem is greatest, followed by the coal mining subsystem, and finally the coal transportation subsystem. Improving the coal-burning efficiency of coal-fired power plant in electricity coal supply chain is the most effective way to reduce the environmental impact of waste gas emissions. (4 Of the three subsystems examined (coal mining, coal transportation, and coal burning, transportation requires the fewest resources and has the lowest waste gas

  12. Fluidized bed coal desulfurization

    Science.gov (United States)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  13. Pyrolysis of Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2006-07-01

    Full Text Available The paper presents a review of relevant literature on coal pyrolysis.Pyrolysis, as a process technology, has received considerable attention from many researchers because it is an important intermediate stage in coal conversion.Reactions parameters as the temperature, pressure, coal particle size, heating rate, soak time, type of reactor, etc. determine the total carbon conversion and the transport of volatiles and therebythe product distribution. Part of the possible environmental pollutants could be removed by optimising the pyrolysis conditions. Therefore, this process will be subsequently interesting for coal utilization in the future

  14. TOXIC SUBSTANCES FROM COAL COMBUSTION-A COMPREHENSIVE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    C.L. Senior; F. Huggins; G.P. Huffman; N. Shah; N. Yap; J.O.L. Wendt; W. Seames; M.R. Ames; A.F. Sarofim; S. Swenson; J.S. Lighty; A. Kolker; R. Finkelman; C.A. Palmer; S.J. Mroczkowski; J.J. Helble; R. Mamani-Paco; R. Sterling; G. Dunham; S. Miller

    2001-06-30

    UU focused on the behavior of trace metals in the combustion zone by studying vaporization from single coal particles. The coals were burned at 1700 K under a series of fuel-rich and oxygen-rich conditions. The data collected in this study will be applied to a model that accounts for the full equilibrium between carbon monoxide and carbon dioxide. The model also considers many other reactions taking place in the combustion zone, and involves the diffusion of gases into the particle and combustion products away from the particle. A comprehensive study has been conducted at UA to investigate the post-combustion partitioning of trace elements during large-scale combustion of pulverized coal combustion. For many coals, there are three distinct particle regions developed by three separate mechanisms: (1) a submicron fume, (2) a micron-sized fragmentation region, and (3) a bulk (>3 {micro}m) fly ash region. The controlling partitioning mechanisms for trace elements may be different in each of the three particle regions. A substantial majority of semi-volatile trace elements (e.g., As, Se, Sb, Cd, Zn, Pb) volatilize during combustion. The most common partitioning mechanism for semi-volatile elements is reaction with active fly ash surface sites. Experiments conducted under this program at UC focused on measuring mercury oxidation under cooling rates representative of the convective section of a coal-fired boiler to determine the extent of homogeneous mercury oxidation under these conditions. In fixed bed studies at EERC, five different test series were planned to evaluate the effects of temperature, mercury concentration, mercury species, stoichiometric ratio of combustion air, and ash source. Ash samples generated at UA and collected from full-scale power plants were evaluated. Extensive work was carried out at UK during this program to develop new methods for identification of mercury species in fly ash and sorbents. We demonstrated the usefulness of XAFS spectroscopy for

  15. Detecting the effects of coal mining, acid rain, and natural gas extraction in Appalachian basin streams in Pennsylvania (USA) through analysis of barium and sulfate concentrations.

    Science.gov (United States)

    Niu, Xianzeng; Wendt, Anna; Li, Zhenhui; Agarwal, Amal; Xue, Lingzhou; Gonzales, Matthew; Brantley, Susan L

    2017-10-13

    To understand how extraction of different energy sources impacts water resources requires assessment of how water chemistry has changed in comparison with the background values of pristine streams. With such understanding, we can develop better water quality standards and ecological interpretations. However, determination of pristine background chemistry is difficult in areas with heavy human impact. To learn to do this, we compiled a master dataset of sulfate and barium concentrations ([SO4], [Ba]) in Pennsylvania (PA, USA) streams from publically available sources. These elements were chosen because they can represent contamination related to oil/gas and coal, respectively. We applied changepoint analysis (i.e., likelihood ratio test) to identify pristine streams, which we defined as streams with a low variability in concentrations as measured over years. From these pristine streams, we estimated the baseline concentrations for major bedrock types in PA. Overall, we found that 48,471 data values are available for [SO4] from 1904 to 2014 and 3243 data for [Ba] from 1963 to 2014. Statewide [SO4] baseline was estimated to be 15.8 ± 9.6 mg/L, but values range from 12.4 to 26.7 mg/L for different bedrock types. The statewide [Ba] baseline is 27.7 ± 10.6 µg/L and values range from 25.8 to 38.7 µg/L. Results show that most increases in [SO4] from the baseline occurred in areas with intensive coal mining activities, confirming previous studies. Sulfate inputs from acid rain were also documented. Slight increases in [Ba] since 2007 and higher [Ba] in areas with higher densities of gas wells when compared to other areas could document impacts from shale gas development, the prevalence of basin brines, or decreases in acid rain and its coupled effects on [Ba] related to barite solubility. The largest impacts on PA stream [Ba] and [SO4] are related to releases from coal mining or burning rather than oil and gas development.

  16. Cooperative research program in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. (ed.)

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  17. Locality, bulk equations of motion and the conformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Kabat, Daniel [Department of Physics and Astronomy, Lehman College, City University of New York,250 Bedford Park Blvd. W, Bronx NY 10468 (United States); Lifschytz, Gilad [Department of Mathematics, Faculty of Natural Science, University of Haifa,199 Aba Khoushy Ave., Haifa 31905 (Israel)

    2016-10-18

    We develop an approach to construct local bulk operators in a CFT to order 1/N{sup 2}. Since 4-point functions are not fixed by conformal invariance we use the OPE to categorize possible forms for a bulk operator. Using previous results on 3-point functions we construct a local bulk operator in each OPE channel. We then impose the condition that the bulk operators constructed in different channels agree, and hence give rise to a well-defined bulk operator. We refer to this condition as the “bulk bootstrap.” We argue and explicitly show in some examples that the bulk bootstrap leads to some of the same results as the regular conformal bootstrap. In fact the bulk bootstrap provides an easier way to determine some CFT data, since it does not require knowing the form of the conformal blocks. This analysis clarifies previous results on the relation between bulk locality and the bootstrap for theories with a 1/N expansion, and it identifies a simple and direct way in which OPE coefficients and anomalous dimensions determine the bulk equations of motion to order 1/N{sup 2}.

  18. Provenance of coals recovered from the wreck of HMAV Bounty

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, N.; Smith, A.H.V.; Crosdale, P.J. [Australian National Maritime Museum, Sydney, NSW (Australia)

    2008-03-15

    Coal samples from HMAV Bounty were analysed using standard techniques to shed light on their provenance. Petrographic analysis indicated they were Carboniferous, with high vitrinite and liptinite content and a mean random reflectance of vitrinite of 0.99%. Palynological analysis indicated the samples were derived from the Middle Coal Measures, Westphalian B. Combining coal rank (vitrinite reflectance), age, knowledge of seam distributions and coalfield history indicates the most like source to be the Durham Coalfield, possibly the Hutton or Low Main Seams. These coals were mined along the valley of the Wear in the latter part of the 18th century.

  19. Economic effects of western Federal land-use restrictions on U.S. coal markets

    Science.gov (United States)

    Watson, William Downing; Medlin, A.L.; Krohn, K.K.; Brookshire, D.S.; Bernknopf, R.L.

    1991-01-01

    Current regulations on land use in the Western United States affect access to surface minable coal resources. This U.S. Geological Survey study analyzes the long-term effects of Federal land-use restrictions on the national cost of meeting future coal demands. The analysis covers 45 years. The U.S. Bureau of Land Management has determined the environmental, aesthetic, and economic values of western Federal coal lands and has set aside certain areas from surface coal mining to protect other valued land uses, including agricultural, environmental, and aesthetic uses. Although there are benefits to preserving natural areas and to developing areas for other land uses, these restrictions produce long-term national and regional costs that have not been estimated previously. The Dynamic Coal Allocation Model integrates coal supply (coal resource tonnage and coal quality by mining cost for 60 coal supply regions) with coal demand (in 243 regions) for the entire United States. The model makes it possible to evaluate the regional economic impacts of coal supply restrictions wherever they might occur in the national coal market. The main factors that the economic methodology considers are (1) coal mining costs, (2) coal transportation costs, (3) coal flue gas desulfurization costs, (4) coal demand, (5) regulations to control sulfur dioxide discharges, and (6) specific reductions in coal availability occurring as a result of land-use restrictions. The modeling system combines these economic factors with coal deposit quantity and quality information--which is derived from the U.S. Geological Survey's National Coal Resources Data System and the U.S. Department of Energy's Demonstrated Reserve Base--to determine a balance between supply and demand so that coal is delivered at minimum cost.

  20. Coal data base - thesaurus 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The thesaurus contains the vocabulary used to index the Coal Data Base maintained by IEA Coal Research Technical Information Service. The Data Base contains indexed and abstracted references to publicly-available literature covering all aspects of the coal industry. The subject areas covered include: economics and management, reserves and exploration, mining, preparation, transport and handling, coal properties and constitution, processing and conversion, combustion, waste management, environ mental aspects, coal products, and health and safety. The indexing terms are used in the preparation of the annual subject index to Coal Abstracts and should be useful in searching other data bases for material relevant to the coal industry. (Available from IEA Coal Research)

  1. Short communication: investigation of Coxiella burnetii occurrence in dairy sheep flocks by bulk-tank milk analysis and antibody level determination.

    Science.gov (United States)

    García-Pérez, A L; Astobiza, I; Barandika, J F; Atxaerandio, R; Hurtado, A; Juste, R A

    2009-04-01

    To estimate the prevalence of Coxiella burnetii in the dairy sheep population from the Basque Country (northern Spain), a study was carried out combining molecular and serological techniques. First, bulk-tank milk samples from 154 flocks belonging to the Latxa Breed Farmers Association were analyzed by PCR, with 22% of flocks testing positive for C. burnetii. Then, a selection of 34 flocks (7 PCR positive and 17 negative) was investigated for the presence of serum antibodies by ELISA test on 1,011 ewes (approximately 30 ewes per flock). A total of 8.9% of the animals were seropositive, 67.6% of the flocks had at least one seropositive animal, but only in 14.7% of them was seroprevalence greater than 25%. Older ewes showed a significantly greater prevalence (17.5%) compared with yearlings (7.5%) or replacement lambs (1.5%). A marginally significant association was found between seroprevalence and PCR detection of C. burnetii in bulk-tank milk. The widespread distribution of C. burnetii in the region advocates for the implementation of Q fever control strategies and highlights the potential risk of sheep as a reservoir and infection source for other domestic and wildlife species and the human population.

  2. Polish legal regulations considering recovery of secondary materials from coal mining dumping grounds

    Directory of Open Access Journals (Sweden)

    Gawor Łukasz

    2014-12-01

    Full Text Available In the article there is presented temporary situation of coal mining dumping grounds in Poland – their inventarization, localization and environmental impacts. The coal mining dumping grounds in Poland are situated in three coal basins: Upper Silesian Coal Basin, Lower Silesian Coal Basin and Lublin Coal Basin. In all mentioned areas occur ca. 270 coal mining waste dumps, covering surface of over 4400 ha. The main environmental impacts connected with dumping grounds are fire hazards, water pollution and a danger of slope sliding. The question of recovery of coal from disposed wastes with regard to legal regulations is discussed. There are presented technical methods of coal recovery considering environmental protection issues. There is a necessity and technical possibility of recovery of coal from the coal-mining waste dumps. The coal recovery reduces hazards of self-ignition and fires of the dump. It is also economically justified. The analysis of required regulations in legal system in Poland for safe exploitation of secondary materials from coal mining dumps is done. Socio-economic aspects of recovery of coal are discussed. The valid legal regulations in Poland regulate the issues connected with coal mining dumping grounds in a very general way. It is necessary to prepare supplements to the legal provisions or new regulations concerning post-mining dumping grounds.

  3. Coal Producer's Rubber Waste Processing Development

    Science.gov (United States)

    Makarevich, Evgeniya; Papin, Andrey; Nevedrov, Alexander; Cherkasova, Tatyana; Ignatova, Alla

    2017-11-01

    A large amount of rubber-containing waste, the bulk of which are worn automobile tires and conveyor belts, is produced at coal mining and coal processing enterprises using automobile tires, conveyor belts, etc. The volume of waste generated increases every year and reaches enormous proportions. The methods for processing rubber waste can be divided into three categories: grinding, pyrolysis (high and low temperature), and decomposition by means of chemical solvents. One of the known techniques of processing the worn-out tires is their regeneration, aimed at producing the new rubber substitute used in the production of rubber goods. However, the number of worn tires used for the production of regenerate does not exceed 20% of their total quantity. The new method for processing rubber waste through the pyrolysis process is considered in this article. Experimental data on the upgrading of the carbon residue of pyrolysis by the methods of heavy media separation, magnetic and vibroseparation, and thermal processing are presented.

  4. Lung cancer among coal miners, ore miners and quarrymen : smoking-adjusted risk estimates from the synergy pooled analysis of case-control studies

    NARCIS (Netherlands)

    Taeger, Dirk; Pesch, Beate; Kendzia, Benjamin; Behrens, Thomas; Jöckel, Karl-Heinz; Dahmann, Dirk; Siemiatycki, Jack; Kromhout, Hans; Vermeulen, Roel; Peters, Susan; Olsson, Ann; Brüske, Irene; Wichmann, Heinz-Erich; Stücker, Isabelle; Guida, Florence; Tardón, Adonina; Merletti, Franco; Mirabelli, Dario; Richiardi, Lorenzo; Pohlabeln, Hermann; Ahrens, Wolfgang; Landi, Maria Teresa; Caporaso, Neil; Pesatori, Angela Cecilia; Mukeriya, Anush; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Gustavsson, Per; Field, John; Marcus, Michael W; Fabianova, Eleonora; 't Mannetje, Andrea; Pearce, Neil; Rudnai, Peter; Bencko, Vladimir; Janout, Vladimir; Dumitru, Rodica Stanescu; Foretova, Lenka; Forastiere, Francesco; John McLaughlin, John McLaughlin; Paul Demers, Paul Demers; Bas Bueno-de-Mesquita, Bas Bueno-de-Mesquita; Joachim Schüz, Joachim Schüz; Kurt Straif, Kurt Straif; Brüning, Thomas

    2015-01-01

    OBJECTIVES: Working in mines and quarries has been associated with an elevated lung cancer risk but with inconsistent results for coal miners. This study aimed to estimate the smoking-adjusted lung cancer risk among coal miners and compare the risk pattern with lung cancer risks among ore miners and

  5. Sequential solvent extraction for forms of antimony in five selected coals

    Science.gov (United States)

    Qi, C.; Liu, Gaisheng; Kong, Y.; Chou, C.-L.; Wang, R.

    2008-01-01

    Abundance of antimony in bulk samples has been determined in five selected coals, three coals from Huaibei Coalfield, Anhui, China, and two from the Illinois Basin in the United States. The Sb abundance in these samples is in the range of 0.11-0.43 ??g/g. The forms of Sb in coals were studied by sequential solvent extraction. The six forms of Sb are water soluble, ion changeable, organic matter bound, carbonate bound, silicate bound, and sulfide bound. Results of sequential extraction show that silicate-bound Sb is the most abundant form in these coals. Silicate- plus sulfide-bound Sb accounts for more than half of the total Sb in all coals. Bituminous coals are higher in organic matterbound Sb than anthracite and natural coke, indicating that the Sb in the organic matter may be incorporated into silicate and sulfide minerals during metamorphism. ?? 2008 by The University of Chicago. All rights reserved.

  6. An analysis of mass balance and fractional particle size distributions of coal and magnetite in a dense-medium cyclone circuit

    Energy Technology Data Exchange (ETDEWEB)

    Celik, H. [Usak University, Usak (Turkey)

    2009-07-01

    In this study, a complete mass balance of magnetite and coal in the various parts of a dense-medium cyclone (DMC) circuit was determined and fractional size distributions of magnetite and coal were analyzed for the circuit. The DMC overflow product contained 71.34% of the feed coal, whereas 88.35% of the feed magnetite reported to the DMC underflow. The majority of the magnetite (about 86%) was removed by the sieve bends in both the DMC underflow and overflow streams. Sixty-one percent of the raw coal within a size range of 0.50-20.00mm was recovered as clean coal with an average ash content of 15.30%. About 77% of the feed magnetite having a size range of 75-600m was obtained from the underflow of the drain-and-rinse screen belonging to DMC underflow.

  7. Quality of some Nigerian coals as a blending stock in metallurgical ...

    African Journals Online (AJOL)

    30 with imported American and Polish coking coals. Proximate analysis, free swelling index, Ruhr dilatometer and Gieseler plastometer were used in accessing the coking qualities of both the single coals and the blends. The results showed that ...

  8. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    Science.gov (United States)

    Post, David

    2014-05-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States and potentially in Europe, extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus in Australia. The two sources of methane share many of the same characteristics, with hydraulic fracturing generally (but not always) required to extract coal seam gas also. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction and hydraulic fracturing on surface and groundwater resources may be potentially of more concern for coal seam gas than for shale gas. To determine the potential for coal seam gas extraction (and coal mining more generally) to impact on water resources and water-related assets in Australia, the Commonwealth Government has recently established an Independent Expert Scientific Committee (the IESC) to provide advice to Commonwealth and State Government regulators on potential water-related impacts of coal seam gas and large coal mining developments. The IESC has in turn implemented a program of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment can be defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion, with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are now being carried out across large portions of eastern Australia which are underlain by coal reserves. Further details of the program can be found at http://www.environment.gov.au/coal-seam-gas-mining/bioregional-assessments.html. This presentation will provide an overview of the issues related to the impacts of coal seam gas extraction on surface and groundwater resources and water-related assets in Australia. The

  9. COAL USE REPORT

    Science.gov (United States)

    The world's coal reserves have been estimated to be about one exagram accessible with current extraction technology. The energy content has been valued at 290 zettajourles. Using a value of 15 terawatt as the current global energy consumption, the coal supply could global needs f...

  10. Improving coal handling effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Walker, S.

    2003-10-01

    Appropriate coal handling systems are essential for successful coal utilisation. The paper looks at some of the options available, including crushers and hammer mills, wear-resistant liners for chutes and wagons, and dewatering systems. These are individual components within larger systems such as stockyard stacking and reclaiming installations. 5 photos.

  11. Biostimulators from coal

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, L.V.

    1984-04-01

    A report is presented on a meeting of the Bureau of the Scientific Council of the Ministry of Coal Industry of the USSR on chemistry of fossil fuels held on 21-22 November 1983 in Moscow. Papers delivered during the meeting are evaluated. Chemistry of black and brown coal from the USSR was analyzed. Chemical coal properties which are of particular significance for coal use as an agricultural fertilizer (biostimulator of plant growth) were investigated. Brown and black coal with the highest oxidation level used as a fuel by power plants could be used for production of fertilizers with a high content of humic acids. Tests carried out in the USSR in various climatic zones (in the North and in Central Asia) showed that biostimulators from coal improved plant growth, reduced ripening period, increased crops, improved physical properties of soils (prevented moisture losses). Utilizing selected wastes from coal processing for production of biostimulators was also discussed. Methods for coal preparation for biostimulant production (crushing, screening, chemical processing) were evaluated. Prospects of biostimulator use in land reclamation were discussed.

  12. Coal for the world

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-01-15

    With reserves of 7 billion t of coal, Colombia is the world's fourth-largest exporter of bituminous coal and has the potential to grow further. The paper discusses current production and the future potential of the La Guajira reserves with Carbones del Cerrejon Ltd., Colombia. 1 ref.

  13. Biodesulphurisation of coal

    OpenAIRE

    Prayuenyong, P.

    2001-01-01

    The emission of sulphur oxides during the combustion of coal is one of the causes of an environmental problem known as acid rain. Biodesulphurisation technology applied as a method to remove sulphur before coal combustion was investigated in this work. The desulphurisation abilities of three specific bacterial strains including Rhodococcus erythropolis IGTS8, R. erythropolis X309 and Shewanella putrefaciens strain NCIMB 8...

  14. Development of coal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    It is an important issue to expand stable coal supply areas for Japan, especially to assure stable supply of overseas coals. The investigations on geological structures in foreign countries perform surveys on geological structures in overseas coal producing countries and basic feasibility studies. The investigations select areas with greater business risks in coal producing countries and among private business entities. The geological structure investigations were carried out on China, Indonesia and Malaysia and the basic feasibility studies on Indonesia during fiscal 1994. The basic coal resource development investigations refer to the results of previous physical explorations and drilling tests to develop practical exploration technologies for coal resources in foreign countries. The development feasibility studies on overseas coals conduct technological consultation, surface surveys, physical explorations, and trial drilling operations, and provide fund assistance to activities related thereto. Fiscal 1994 has provided fund assistance to two projects in Indonesia and America. Fund loans are provided on investigations for development and import of overseas coals and other related activities. Liability guarantee for development fund is also described.

  15. Electrolysis of coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, K.E.; Tran, T.; Swinkels, D.

    1984-01-01

    The major aims of the project were: to verify early reports of the American workers and demonstrate the feasibility of the concept of electrolysis of coal slurries; investigate reaction mechanisms and the stoichiometry; measure the reducing power and oxidation kinetics of selected Australian coals; investigate some process variables, and demonstrate an electrolysis cell with practical electrode geometry.

  16. An analysis of markets for small-scale, advanced coal-combustion technology in Spain, Italy, and Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Placet, M.; Gerry, P.A.; Kenski, D.M.; Kern, D.M.; Nehring, J.L.; Szpunar, C.B.

    1989-09-01

    This report discusses the examination of potential overseas markets for using small-scale, US-developed, advanced coal-combustion technologies (ACTs). In previous work, member countries of the Organization for Economic Cooperation and Development (OECD) were rated on their potential for using ACTs through a comprehensive screening methodology. The three most promising OECD markets were found to be Spain, Italy, and Turkey. This report provides in-depth analyses of these three selected countries. First, it addresses changes in the European Community with particular reference to the 1992 restructuring and its potential effect on the energy situation in Europe, specifically in the three subject countries. It presents individual country studies that examine demographics, economics, building infrastructures, and energy-related factors. Potential niches for ACTs are explored for each country through regional analyses. Marketing channels, strategies, and the trading environments in each country are also discussed. The information gathered indicates that Turkey is a most promising market, Spain is a fairly promising market, and Italy appears to be a somewhat limited market for US ACTs. 76 refs., 16 figs., 14 tabs.

  17. Thermodynamic Analysis on of Skid-Mounted Coal-bed Methane Liquefaction Device using Cryogenic Turbo-Expander

    Science.gov (United States)

    Chen, Shuangtao; Niu, Lu; Zeng, Qiang; Li, Xiaojiang; Lou, Fang; Chen, Liang; Hou, Yu

    2017-12-01

    Coal-bed methane (CBM) reserves are rich in Sinkiang of China, and liquefaction is a critical step for the CBM exploration and utilization. Different from other CBM gas fields in China, CBM distribution in Sinkiang is widespread but scattered, and the pressure, flow-rate and nitrogen content of CBM feed vary significantly. The skid-mounted liquefaction device is suggested as an efficient and economical way to recover methane. Turbo-expander is one of the most important parts which generates the cooling capacity for the cryogenic liquefaction system. Using turbo-expander, more cooling capacity and higher liquefied fraction can be achieved. In this study, skid-mounted CBM liquefaction processes based on Claude cycle are established. Cryogenic turbo-expander with high expansion ratio is employed to improve the efficiency of CBM liquefaction process. The unit power consumption per liquefaction mole flow-rate for CBM feed gas is used as the object function for process optimization, compressor discharge pressure, flow ratio of feed gas to turbo-expander and nitrogen friction are analyzed, and optimum operation range of the liquefaction processes are obtained.

  18. A novel method for estimating methane emissions from underground coal mines: The Yanma coal mine, China

    Science.gov (United States)

    Ji, Zhong-Min; Chen, Zhi-Jian; Pan, Jie-Nan; Niu, Qing-He

    2017-12-01

    As the world's largest coal producer and consumer, China accounts for a relatively high proportion of methane emissions from coal mines. Several estimation methods had been established for the coal mine methane (CMM) emission. However, with large regional differences, various reservoir formation types of coalbed methane (CBM) and due to the complicated geological conditions in China, these methods may be deficient or unsuitable for all the mining areas (e.g. Jiaozuo mining area). By combing the CMM emission characteristics and considering the actual situation of methane emissions from underground coal mine, we found that the methane pre-drainage is a crucial reason creating inaccurate evaluating results for most estimation methods. What makes it so essential is the extensive pre-drainage quantity and its irrelevance with annual coal production. Accordingly, the methane releases were divided into two categories: methane pre-drainage and methane release during mining. On this basis, a pioneering method for estimating CMM emissions was proposed. Taking the Yanma coal mine in the Jiaozuo mining area as a study case, the evaluation method of the pre-drainage methane quantity was established after the correlation analysis between the pre-drainage rate and time. Thereafter, the mining activity influence factor (MAIF) was first introduced to reflect the methane release from the coal and rock seams around where affected by mining activity, and the buried depth was adopted as the predictor of the estimation for future methane emissions. It was verified in the six coal mines of Jiaozuo coalfield (2011) that the new estimation method has the minimum errors of 12.11%, 9.23%, 5.77%, -5.20%, -8.75% and 4.92% respectively comparing with other methods. This paper gives a further insight and proposes a more accurate evaluation method for the CMM emissions, especially for the coal seams with low permeability and strong tectonic deformation in methane outburst coal mines.

  19. Coal Formation and Geochemistry

    Science.gov (United States)

    Orem, W. H.; Finkelman, R. B.

    2003-12-01

    Coal is one of the most complex and challenging natural materials to analyze and to understand. Unlike most rocks, which consist predominantly of crystalline mineral grains, coal is largely an assemblage of amorphous, degraded plant remains metamorphosed to various degrees and intermixed with a generous sprinkling of minute syngenetic, diagenetic, epigenetic, and detrital mineral grains, and containing within its structure various amounts of water, oils, and gases. Each coal is unique, having been derived from different plant sources over geologic time, having experienty -45ced different thermal histories, and having been exposed to varying geologic processes. This diversity presents a challenge to constructing a coherent picture of coal geochemistry and the processes that influence the chemical composition of coal.Despite the challenge coal presents to geochemists, a thorough understanding of the chemistry and geology of this complex natural substance is essential because of its importance to our society. Coal is, and will remain for sometime, a crucial source of energy for the US and for many other countries (Figure 1). In the USA, more than half of the electricity is generated by coal-fired power plants, and almost 90% of the coal mined in the USA is sold for electricity generation (Pierce et al., 1996). It is also an important source of coke for steel production, chemicals, pharmaceuticals, and even perfumes ( Schobert, 1987). It may also, in some cases, be an economic source of various mineral commodities. The utilization of coal through mining, transport, storage, combustion, and the disposal of the combustion by-products, also presents a challenge to geochemists because of the wide range of environmental and human health problems arising from these activities. The sound and effective use of coal as a natural resource requires a better understanding of the geochemistry of coal, i.e., the chemical and mineralogical characteristics of the coal that control its

  20. Perbandingan tingkat kebocoran mikro resin komposit bulk-filldengan teknik penumpatan oblique incremental dan bulk

    Directory of Open Access Journals (Sweden)

    Dimas Puja Permana

    2016-12-01

    Full Text Available Micoleakage comparison of bulk-fillcomposite beetwen oblique incremental and bulk placement techniques. Resin composite bulk-fill was a new type of resin composite that speed up application process of composite. The concept of bulk-fill composite allows composite to fill at a depth of 4 mm and minimizes polymerization shrinkage. This study aims to determine the comparison of placement techniques (oblique incremental/bulk of bulk-fill composite on microleakage in class I preparations. Thirty two human maxillary premolar were stored in distilled water, then Class I preparations were made with the depth of the cavity which was 4 mm (3 x 3 x 4. The teeth were randomly divided into two groups, group 1 uses oblique incremental placement technique and group 2 with bulk placement technique. Samples were stored in an incubator at a temperature of 37 °C for 24 hours, then it was thermocycled manually, 100 cycles at temperature between 5 °C and 55 °C. Microleakage was measured using a digital microscope with a 100 X magnification in millimeters using a microscope micrometer calibration ruler with 0,1 mm level of accuracy after immersion in 0,3% methylene blue and sectioned using separating disc. The result of this study revealed that in group 1 microleakage range was 1.0 mm - 2.7 mm with an average 1.625 mm, and in group 2 microleakage range was 3.6 mm - 4.0 mm with an average of 3.763 mm. The data were analyzed using T-test. The analysis showed a significant difference between two groups (p <0.05. The conclusion of this study was bulk-fill composite in class I cavities with oblique incremental placement technique produces less microleakage than bulk placement technique.   ABSTRAK Resin komposit bulk-fill adalah resin komposit yang dirancang untuk mempercepat proses aplikasi resin komposit. Konsep bulk-fill memungkinkan resin komposit ditumpat sekaligus 4 mm dan mengalami pengerutan polimerisasi minimal. Penelitian ini bertujuan mengetahui efek teknik

  1. A STUDY ON THE GRINDABILITY OF SERBIAN COALS

    Directory of Open Access Journals (Sweden)

    Dragoslava D Stojiljković

    2011-01-01

    Full Text Available Thermal power plants in the Republic of Serbia are making considerable efforts and even more considerable investments, not only to maintain electricity production at maximum design levels, but even to additionally increase the power output of existing generating units. Capacities of mills used in pulverized coal preparation are identified as one of the main constraints to achieving maximum mill plant capacity, while coal grindability is seen as one of the factors that directly affect capacities of the coal mills utilized in thermal power plants. The paper presents results of experimental investigation conducted for the purpose of determining Hardgrove grindability index of coal. The investigation was conducted in accordance with ISO 5074 and included analysis of approximately 70 coal samples taken from the open pit mine of Kolubara coal basin. Research results obtained indicate that coal rich in mineral matter and thus, of lower heating value is characterized by higher grindability index. Therefore, analyses presented in the paper suggest that characteristics of solid fuels analyzed in the research investigation conducted are such that the use coals less rich in mineral matter i. e. coals characterized by lower grindability index will cause coal mills to operate at reduced capacity. This fact should be taken into account when considering a potential for electricity production increase.

  2. Novel injector techniques for coal-fueled diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Badgley, P.R.

    1992-09-01

    This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  3. Interface Shape and Growth Rate Analysis of Se/GaAs Bulk Crystals Grown in the NASA Crystal Growth Furnace (CGF)

    Science.gov (United States)

    Bly, J. M.; Kaforey, M. L.; Matthiesen, D. H.; Chait, A.

    1997-01-01

    Selenium-doped gallium arsenide, Se/GaAs, bulk crystals have been grown on earth using NASA's crystal growth furnace (CGF) in preparation for microgravity experimentation on the USML-2 spacelab mission. Peltier cooling pulses of 50 ms duration, 2040 A magnitude, and 0.0033 Hz frequency were used to successfully demark the melt-solid interface at known times during the crystal growth process. Post-growth characterization included interface shape measurement, growth rate calculation, and growth rate transient determinations. It was found that the interface shapes were always slightly concave into the solid. The curvature of the seeding interfaces was typically 1.5 mm for the 15 mm diameter samples. This was in agreement with the predicted interface shapes and positions relative to the furnace determined using a numerical model of the sample/ampoule/cartridge assembly (SACA).

  4. Industrial coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The effects of the National Energy Act on the use of coal in US industrial and utility power plants are considered. Innovative methods of using coal in an environmentally acceptable way are discussed: furnace types, fluidized-bed combustion, coal-oil-mixtures, coal firing in kilns and combustion of synthetic gas and liquid fuels. Fuel use in various industries is discussed with trends brought about by uncertain availability and price of natural gas and fuel oils: steel, chemical, cement, pulp and paper, glass and bricks. The symposium on Industrial Coal Utilization was sponsored by the US DOE, Pittsburgh Energy Technology Center, April 3 to 4, 1979. Twenty-one papers have been entered individually into the EDB. (LTN)

  5. Underground Coal Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Deo, M. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Sarofim, A. [Univ. of Utah, Salt Lake City, UT (United States); Gueishen, K. [Univ. of Utah, Salt Lake City, UT (United States); Hradisky, M. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States); Mandalaparty, P. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, H. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  6. Theoretical analysis and numerical calculation of 3D trapped field distribution of single domain SmBCO bulks by Sm+011 TSIG methods

    Science.gov (United States)

    Yang, Wanmin; Yang, Pengtao; Wang, Yanan; Li, Qiang

    2017-09-01

    The lower critical temperature Tc and critical current density Jc are serious weaknesses of SmBCO bulk superconductors fabricated in air for practical applications, because of the Sm3+/Ba2+ solid solution in Sm1+xBa2-xCu3Oy crystals. In this paper, high quality single domain SmBCO bulk samples S1 (ϕ20 mm) and S2 (ϕ32 mm) have been fabricated in air by a new Sm+011 TSIG method. The trapped field of the samples is 0.8 T and 1.15 T at liquid nitrogen temperature for the samples S1 and S2 respectively, which is the strongest trapped field of the SmBCO samples fabricated in air today. The theoretical formula for 3D trapped field distribution have been derived for a cylindrical model with uniformly distributed critical current density Jc based on the Biot Savart law; the cylindrical sample is divided into a series of concentric rings with the same width and thickness, the trapped field of the samples is the summation of magnetic field produced by all the rings, while the magnetic field generated by each ring was worked out by trapezoidal numerical integration based on the Biot Savart law with the critical current density Jc of the samples. It is found that the calculated field of the samples is well in agreement with the experimental results if the reasonable Jc of the samples is adopted. The theoretical calculation result also indicates that the larger the diameter and the thickness of the samples, the stronger the trapped flux density, but the optimal diameter/thickness ratio should be of a reasonable value around one, and it is not so good to fabricated samples with too larger diameter or thickness for practical applications.

  7. Radiation effects in bulk silicon

    Science.gov (United States)

    Claeys, Cor; Vanhellemont, Jan

    1994-01-01

    This paper highlights important aspects related to irradiation effects in bulk silicon. Some basic principles related to the interaction of radiation with material, i.e. ionization and atomic displacement, are briefly reviewed. A physical understanding of radiation effects strongly depends on the availability of appropriate analytical tools. These tools are critically accessed from a silicon bulk viewpoint. More detailed information, related to the properties of the bulk damage and some dedicated application aspects, is given for both electron and proton irradiations. Emphasis is placed on radiation environments encountered during space missions and on their influence on the electrical performance of devices such as memories and image sensors.

  8. Applying Rock Engineering Systems (RES approach to Evaluate and Classify the Coal Spontaneous Combustion Potential in Eastern Alborz Coal Mines

    Directory of Open Access Journals (Sweden)

    Amir Saffari

    2013-12-01

    Full Text Available Subject analysis of the potential of spontaneous combustion in coal layers with analytical and numerical methods has been always considered as a difficult task because of the complexity of the coal behavior and the number of factors influencing it. Empirical methods, due to accounting for certain and specific factors, have not accuracy and efficiency for all positions. The Rock Engineering Systems (RES approach as a systematic method for analyzing and classifying is proposed in engineering projects. The present study is concerned with employing the RES approach to categorize coal spontaneous combustion in coal regions. Using this approach, the interaction of parameters affecting each other in an equal scale on the coal spontaneous combustion was evaluated. The Intrinsic, geological and mining characteristics of coal seams were studied in order to identifying important parameters. Then, the main stages of implementation of the RES method i.e. interaction matrix formation, coding matrix and forming a list category were performed. Later, an index of Coal Spontaneous Combustion Potential (CSCPi was determined to format the mathematical equation. Then, the obtained data related to the intrinsic, geological and mining, and special index were calculated for each layer in the case study (Pashkalat coal region, Iran. So, the study offers a perfect and comprehensive classification of the layers. Finally, by using the event of spontaneous combustion occurred in Pashkalat coal region, an initial validation for this systematic approach in the study area was conducted, which suggested relatively good concordance in Pashkalat coal region.

  9. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  10. Petrographic, mineralogical, and chemical characterization of certain Alaskan coals and washability products. Final report, July 11, 1978-October 11, 1980