WorldWideScience

Sample records for coal bulk analysis

  1. Bulk analysis of coal

    International Nuclear Information System (INIS)

    Sowerby, B.D.

    1982-01-01

    Nuclear techniques used in the coal industry to determine specific energy, ash and moisture are outlined. Ash analysis by radioisotope X-ray techniques include a single X-ray measurement using a transmission or backscatter geometry and techniques with compensation for iron variations. Neutron techniques can be used to measure the concentration of some specific elements in coal. The measurement of specific energy, ash and moisture then depends on the correlation of the particular parameter with the measured elemental composition. Carbon can be determined by a combination of a measurement of 4.43 MeV 12 C gamma-rays from neutron inelastic scattering with a separate 60 Co gamma-ray scattering measurement. Sulphur meters are based on the measurement of 5.42 MeV neutron capture of gamma rays

  2. ANFO bulk loading in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gajjar, A.

    1987-08-01

    With India's total coal production projected to increase from 152 to 237 million tons by 1990, net additional production from new mines must be more because of substantial depletion in existing mines. This article discusses the best possible application of explosive techniques in open-cast coal mines to economize production cost. The most energy-efficient and safest explosive is ANFO (ammonium nitrate, fuel oil); however, manual charging by INFO is not possible. Therefore, the solution is the application of bulk-loading systems of ANFO for giant mining operations. Cost of blasting per ton of coal production in India is in the range of Rs 25. Thus, the author suggests it will be the responsibility of mining engineers to see that the ANFO based bulk-loading system is implemented and the cost of production per ton reduced to Rs 19.50.

  3. On-line nuclear analysis of coal (Nucoalyzer)

    International Nuclear Information System (INIS)

    Brown, D.R.; Gozani, T.; Bozorgmanesh, H.

    1980-01-01

    Control of quality in the coal process stream is increasingly important in both coal preparation facilities and coal fire power plants. Traditional wet chemistry methods of monitoring coal composition are incapable of providing anything approaching real-time analysis of coal. Typically, small samples of the coal stream are laboratory analyzed and the results made available between a day to a week later. By this time the coal is through the process stream, often already burned and no control is possible. The need of real-time analysis of bulk quantities of the coal has long been recognized and this need motivated Science Applications, Inc. to develop, since 1975, a continuous on-line nuclear analyzer of coal (or CONAC). Over the last three years a prototype of this instrument has undergone extensive testing using 200 pound bulk samples of a wide variety of US coal types. The Nucoalyzer has proven capable of measuring the abundances of all the important elemental constituents of coal along with the ash and calorific value. In the past year the first instrument has been installed and undergone testing at Detroit Edison's Monroe Coal blending facility, where it will control the blending of high and low sulfur coal to meet EPA emission regulations

  4. On-line and bulk analysis for the resource industries

    International Nuclear Information System (INIS)

    Lim, C.S.; Sowerby, B.D.; Tickner, J.R.; Madsen, I.C.

    2001-01-01

    Nuclear techniques are the basis of many CSIRO on-line and bulk analysis systems that are now widely used in the mineral and energy industries. The continuous analysis and rapid response of these systems have led to improved control of mining, processing and blending operations. This paper reviews recent developments in neutron, gamma-ray and X-ray techniques for on-line and bulk analysis by CSIRO Minerals including neutron techniques for the on-conveyor belt determination of the composition of cement raw meal, the on-line analysis of composition in pyrometallurgical applications, the on-conveyor belt determination of ash in coal, and the rapid and accurate determination of gold in bulk laboratory samples. The paper also discusses a new gamma-ray technique for the on-line determination of ash in coal and the application of X-ray diffraction techniques for the on-line determination of mineralogy in the cement industry

  5. Nuclear techniques for the on-line bulk analysis of carbon in coal-fired power stations.

    Science.gov (United States)

    Sowerby, B D

    2009-09-01

    Carbon trading schemes usually require large emitters of CO(2), such as coal-fired power stations, to monitor, report and be audited on their CO(2) emissions. The emission price provides a significant additional incentive for power stations to improve efficiency. In the present paper, previous work on the bulk determination of carbon in coal is reviewed and assessed. The most favourable method is that based on neutron inelastic scattering. The potential role of on-line carbon analysers in improving boiler efficiency and in carbon accounting is discussed.

  6. Coal lumps vs. electrons: How do Chinese bulk energy transport decisions affect the global steam coal market?

    International Nuclear Information System (INIS)

    Paulus, Moritz; Trüby, Johannes

    2011-01-01

    This paper demonstrates the ways in which different Chinese bulk energy transport strategies affect the future steam coal market in China and in the rest of the world. An increase in Chinese demand for steam coal will lead to a growing need for additional domestic infrastructure as production hubs and demand centers are spatially separated, and domestic transport costs could influence the future Chinese steam coal supply mix. If domestic transport capacity is available only at elevated costs, Chinese power generators could turn to the global trade markets and further increase steam coal imports. Increased Chinese imports could then yield significant changes in steam coal market economics on a global scale. This effect is analyzed in China, where coal is mainly transported by railway, and in another setting where coal energy is transported as electricity. For this purpose, a spatial equilibrium model for the global steam coal market has been developed. One major finding is that if coal is converted into electricity early in the supply chain, worldwide marginal costs of supply are lower than if coal is transported via railway. Furthermore, China's dependence on international imports is significantly reduced in this context. Allocation of welfare changes particularly in favor of Chinese consumers while rents of international producers decrease.

  7. A new type of rapid and simple coal and other bulk commodities inventory system based on two-dimensional laser scanner

    Science.gov (United States)

    Liang, Qianqian; Xu, Wenhai; Ma, Qisheng; Yang, Deshan; Zhang, Wang; Fu, Ying

    2016-10-01

    The acceleration of large coal base construction needs the modern management technology of heap storage as a guarantee. And the inventory of coal and other bulk commodities is an important aspect in the modern management technology of heap storage. Therefore, a rapid, accurate and simple method to measure the volume and quality of coal heaps for scientific management, economic benefit evaluation and storage evaluation of heap storage is very important which has a significant application value. In this paper, we introduce the structural features, working principle and application status of a new type portable heap bulk inventory system. Actual measurements have been carried out in the coal base located in Huanghua port, Tianjin and Qinhuangdao. The measurement results indicate that the system can measure the volume of bulk commodities efficiently, quickly and accurately, and it has extensive application prospects.

  8. The impacts of coal refuse/fly ash bulk bends on water quality and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Stewar, B.R.; Daniels, W.L. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-09-01

    There is considerable interest in the beneficial reuse of coal fly ash as a soil amendment on coal refuse piles. One method of application would be to blend the coal refuse and the fly ash before deposition in a refuse pile. A field experiment was initiated to measure the effects of bulk blending fly ash with coal refuse on water quality and plant growth parameters. Fly ash (class F) from three sources were used in the experiment. Two of the fly ashes were acidic and the third was alkaline. Trenches were excavated in a coal refuse pile to a depth of 2 m and the refuse was blended with fly ash and then returned to the trench. In other plots the ash was applied as a surface amendment. A treatment of a bulk blend of 5% (w/w) rock phosphate was also included in the experiment. Large volume lysimeters were installed in some trenches to collect the leachates. The fly ash treatments appear to improve the quality of the leachates when compared to the leachates from the untreated plots. The fly ash amended treatments have lower leachate concentrations of Fe and Al. Initially the fly ash treatments showed high levels of leachate B, however those levels have decreased with time. Millet (Setaria italica) yields from the first year of the experiment were highest n the alkaline fly ash and rock phosphate blended plots. In the second growing season, the two bulk blends with alkaline fly ash had the highest yields. In the third growing season all treatments had higher yield levels than the untreated control plots. The positive effects of the fly ash on leachate quality were attributed to the alkalinity of the ash, and the increase in yield was attributed to the increases in water holding capacity due to fly ash treatments.

  9. Modelling and analysis of global coal markets

    International Nuclear Information System (INIS)

    Trueby, Johannes

    2013-01-01

    International Steam Coal Trade. In this paper, we analyse steam coal market equilibria in the years 2006 and 2008 by testing for two possible market structure scenarios: perfect competition and an oligopoly setup with major exporters competing in quantities. The assumed oligopoly scenario cannot explain market equilibria for any year. While we find that the competitive model simulates market equilibria well in 2006, the competitive model is not able to reproduce real market outcomes in 2008. The analysis shows that not all available supply capacity was utilised in 2008. We conclude that either unknown capacity bottlenecks or more sophisticated non-competitive strategies were the cause for the high prices in 2008. Chapter 4 builds upon the findings of the analysis in chapter 3 and adds a more detailed representation of domestic markets. The corresponding essay is titled Nations as Strategic Players in Global Commodity Markets: Evidence from World Coal Trade. In this chapter we explore the hypothesis that export policies and trade patterns of national players in the steam coal market are consistent with non-competitive market behaviour. We test this hypothesis by developing a static equilibrium model which is able to model coal producing nations as strategic players. We explicitly account for integrated seaborne trade and domestic markets. The global steam coal market is simulated under several imperfect market structure setups. We find that trade and prices of a China - Indonesia duopoly fits the real market outcome best and that real Chinese export quotas in 2008 were consistent with simulated exports under a Cournot-Nash strategy. Chapter 5 looks at the long-term effect of Chinese energy system planning decisions. The time horizon is 2006 to 2030. The analysis in this chapter combines a dynamic equilibrium model with the scenario analysis technique. The corresponding essay is titled Coal Lumps vs. Electrons: How Do Chinese Bulk Energy Transport Decisions Affect the Global

  10. Modelling and analysis of global coal markets

    Energy Technology Data Exchange (ETDEWEB)

    Trueby, Johannes

    2013-01-17

    International Steam Coal Trade. In this paper, we analyse steam coal market equilibria in the years 2006 and 2008 by testing for two possible market structure scenarios: perfect competition and an oligopoly setup with major exporters competing in quantities. The assumed oligopoly scenario cannot explain market equilibria for any year. While we find that the competitive model simulates market equilibria well in 2006, the competitive model is not able to reproduce real market outcomes in 2008. The analysis shows that not all available supply capacity was utilised in 2008. We conclude that either unknown capacity bottlenecks or more sophisticated non-competitive strategies were the cause for the high prices in 2008. Chapter 4 builds upon the findings of the analysis in chapter 3 and adds a more detailed representation of domestic markets. The corresponding essay is titled Nations as Strategic Players in Global Commodity Markets: Evidence from World Coal Trade. In this chapter we explore the hypothesis that export policies and trade patterns of national players in the steam coal market are consistent with non-competitive market behaviour. We test this hypothesis by developing a static equilibrium model which is able to model coal producing nations as strategic players. We explicitly account for integrated seaborne trade and domestic markets. The global steam coal market is simulated under several imperfect market structure setups. We find that trade and prices of a China - Indonesia duopoly fits the real market outcome best and that real Chinese export quotas in 2008 were consistent with simulated exports under a Cournot-Nash strategy. Chapter 5 looks at the long-term effect of Chinese energy system planning decisions. The time horizon is 2006 to 2030. The analysis in this chapter combines a dynamic equilibrium model with the scenario analysis technique. The corresponding essay is titled Coal Lumps vs. Electrons: How Do Chinese Bulk Energy Transport Decisions Affect the Global

  11. Burnout prediction using advance image analysis coal characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Edward Lester; Dave Watts; Michael Cloke [University of Nottingham, Nottingham (United Kingdom). School of Chemical Environmental and Mining Engineering

    2003-07-01

    The link between petrographic composition and burnout has been investigated previously by the authors. However, these predictions were based on 'bulk' properties of the coal, including the proportion of each maceral or the reflectance of the macerals in the whole sample. Combustion studies relating burnout with microlithotype analysis, or similar, remain less common partly because the technique is more complex than maceral analysis. Despite this, it is likely that any burnout prediction based on petrographic characteristics will become more accurate if it includes information about the maceral associations and the size of each particle. Chars from 13 coals, 106-125 micron size fractions, were prepared using a Drop Tube Furnace (DTF) at 1300{degree}C and 200 millisecond and 1% Oxygen. These chars were then refired in the DTF at 1300{degree}C 5% oxygen and residence times of 200, 400 and 600 milliseconds. The progressive burnout of each char was compared with the characteristics of the initial coals. This paper presents an extension of previous studies in that it relates combustion behaviour to coals that have been characterized on a particle by particle basis using advanced image analysis techniques. 13 refs., 7 figs.

  12. Bulk - Samples gamma-rays activation analysis (PGNAA) with Isotopic Neutron Sources

    International Nuclear Information System (INIS)

    HASSAN, A.M.

    2009-01-01

    An overview is given on research towards the Prompt Gamma-ray Neutron Activation Analysis (PGNAA) of bulk-samples. Some aspects in bulk-sample PGNAA are discussed, where irradiation by isotopic neutron sources is used mostly for in-situ or on-line analysis. The research was carried out in a comparative and/or qualitative way or by using a prior knowledge about the sample material. Sometimes we need to use the assumption that the mass fractions of all determined elements add up to 1. The sensitivity curves are also used for some elements in such complex samples, just to estimate the exact percentage concentration values. The uses of 252 Cf, 241 Arn/Be and 239 Pu/Be isotopic neutron sources for elemental investigation of: hematite, ilmenite, coal, petroleum, edible oils, phosphates and pollutant lake water samples have been mentioned.

  13. Application of automated image analysis to coal petrography

    Science.gov (United States)

    Chao, E.C.T.; Minkin, J.A.; Thompson, C.L.

    1982-01-01

    content M. The volume percentage of each component present is indicated by a subscript. For example, a lithologic unit was determined megascopically to have the composition (V)13(I)1(S)1(X1)83(X2)2. After microscopic analysis of the mixed phases, this composition was expressed as (V)13(I)1(S)1(V63E19I14M4)83(V67E11I13M9)2. Finally, these data were combined in a description of the bulk composition as V67E16I13M3S1. An AIAS can also analyze textural characteristics and can be used for quick and reliable determination of rank (reflectance). Our AIAS is completely software based and incorporates a television (TV) camera that has optimum response characteristics in the range of reflectance less than 5%, making it particularly suitable for coal studies. Analysis of the digitized signal from the TV camera is controlled by a microprocessor having a resolution of 64 gray levels between full illumination and dark current. The processed image is reconverted for display on a TV monitor screen, on which selection of phases or features to be analyzed is readily controlled and edited by the operator through use of a lightpen. We expect that automated image analysis, because it can rapidly provide a large amount of pertinent information, will play a major role in the advancement of coal petrography. ?? 1982.

  14. Clean coal technology. Coal utilisation by-products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-08-15

    The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

  15. Utilization of neutrons in nuclear data measurements and bulk sample analysis

    International Nuclear Information System (INIS)

    Jonah, S. A.

    1995-01-01

    Experimental investigations were carried out with neutrons in the fields of neutron data measurements and bulk sample analysis based on the interactions of neutron interactions required in the investigations together with some salient features of the sources employed are enumerated. Excitation cross section curves and isomeric cross section ratio of 58 Ni(n,p) 58 Co m , g reaction over the neutron energy range of between 5 and 15 MeV were determined using the activation analysis technique in combination with high-resolution gamma spectroscopy. Characteristics of the incident neutrons produced via the D-T reaction of a neutron generator and D-D reaction of a cyclotron were determined experimentally to account for the contributing effects of background neutrons especially in the 5-13 MeV neutron energy range where existing data are scanty and rather discrepant. The measured data agree well with calculated data using nuclear models but deviate significantly from the recommended data based on existing literature data. The measured δ act and δ m /δ g data made it possible to determine the cross section curve for 58 Ni(n,p) 58 Co m reaction. Furthermore the flux density distributions of thermal and primary fast neutrons in different configurations of bulk samples consisting of water, graphite and coal together with the attenuation characteristics were determined by the activation analysis and pulse height response spectrometry techniques. From the results obtained, an experimental geometry has been proposed for on-line elemental analysis of coal and other minerals. Similarly the total hydrogen content and 0+C/H atomic ratio in household and motor oils as well as crude oil samples of different origins were measured by an improved experimental arrangement based on the thermal neutron reflection technique. A detection limit of 0.12 w % was obtained for hydrogen indicating the possible adaptation of this technique for quality control of petroleum products

  16. Analysis of mineral phases in coal utilizing factor analysis

    International Nuclear Information System (INIS)

    Roscoe, B.A.; Hopke, P.K.

    1982-01-01

    The mineral phase inclusions of coal are discussed. The contribution of these to a coal sample are determined utilizing several techniques. Neutron activation analysis in conjunction with coal washability studies have produced some information on the general trends of elemental variation in the mineral phases. These results have been enhanced by the use of various statistical techniques. The target transformation factor analysis is specifically discussed and shown to be able to produce elemental profiles of the mineral phases in coal. A data set consisting of physically fractionated coal samples was generated. These samples were analyzed by neutron activation analysis and then their elemental concentrations examined using TTFA. Information concerning the mineral phases in coal can thus be acquired from factor analysis even with limited data. Additional data may permit the resolution of additional mineral phases as well as refinement of theose already identified

  17. Prompt nuclear coal analysis ups profits

    International Nuclear Information System (INIS)

    Barker, D.

    1982-01-01

    To maximise profitability it is essential that products should comply with specification, while ensuring that mining procedures are designed to optimise fully the exploitation of coal reserves. For the producer to realise maximum profits, it is necessary to produce a consistently satisfactory product, while utilising the lowest possible quality of reserves. For the potential need for on-stream analysis, a comprehensive research program, produced several unique systems. The Nucoalyzer CONAC has been developed to analyse continuously a coal sample stream of up to 13 t/h. On-stream analysis is also particularly appropriate as a means of controlling a coal beneficiation plant, especially where coal have a high middling content. Major coal users such as thermal power stations and Synfuel processes can also realise substantial economic benefits through the use of on-stream analysis. On-stream analysis can again significantly reduce operating costs, as it offers the possibility of controlling the level of sulphur in the coal feed. The analytical principle employed in the various Nucoalyzer system is based on Prompt Neutron Activation Analysis

  18. Analysis of arsenic and some other elements in coal fly ash by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ohki, Akira; Nakajima, Tsunenori; Sakaguchi, Yuka; Iwashita, Akira; Takanashi, Hirokazu

    2005-01-01

    Surface characterization of coal fly ash (CFA) was carried out by use of X-ray photoelectron spectroscopy (XPS), especially focusing on the occurrence of As. A peak in the XPS spectrum of CFA was assigned to oxide forms of As(3d). The molar ratios of Al, As, Ca, Fe, and S normalized to Si were obtained from XPS analysis (MR-X). Also, the molar ratios of those elements were calculated from bulk analysis (total element concentration in CFA) (MR-B). The MR-X/MR-B ratio of As was much higher than those of other elements, suggesting that As is highly enriched on the surface of CFA. When eight CFA samples were analyzed, there was an approximate relationship between the MR-X values and MR-B values for As. The leaching of elements from CFA was examined by XPS analysis and by bulk analysis. The leaching tests using EDTA and HNO 3 resulted in a great decrease in the As(3d) peak area; the %leaching of As obtained by XPS analysis was almost equal to that by bulk analysis

  19. Survey of trace elements in coals and coal-related materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Ruch, R.R.; Cahill, R.A.; Frost, J.K.; Camp, L.R.; Gluskoter, H.J.

    1977-01-01

    Utilizing primarily instrumental neutron activation analysis and other analytical methods such as neutron-activation analysis with radiochemical separation, emission spectrochemical analysis, atomic absorption spectroscopy, X-ray fluorescence analysis, ion-selective electrode analysis, and American Society for Testing of Materials procedures (ASTM), as many as 61 elements were quantitatively surveyed in 170 U.S. whole coals, 70 washed coals, and 40 bench samples. Data on areal and vertical distributions in various regions were obtained along with extensive information on the mode of occurence of various elements in the coal matrix itself. Efforts have been made to attain the maximal accuracy and precision possible for a wide variety of elements in the inhomogeneous coal matrix. (T.G.)

  20. Australia's export coal industry: a project of the Coal Australia Promotion Program. 2. ed.

    International Nuclear Information System (INIS)

    1995-01-01

    This booklet presents an overview of the Australian coal industry, emphasises the advantages of using Australian coal and outlines government policies, both Commonwealth and State, which impact on coal mine development, mine ownership and coal exports. It also provides information on the operations and products of each producer supplying coal and coke to export markets and gives contact details for each. The emphasis is on black coal, but information on coal briquettes and coke is also provided. Basic information on the rail networks used for the haulage of export coal and on each of the bulk coal loading terminals is also included.(Author). 3 figs., photos

  1. Application of multivariate analysis to investigate the trace element contamination in top soil of coal mining district in Jorong, South Kalimantan, Indonesia

    Science.gov (United States)

    Pujiwati, Arie; Nakamura, K.; Watanabe, N.; Komai, T.

    2018-02-01

    Multivariate analysis is applied to investigate geochemistry of several trace elements in top soils and their relation with the contamination source as the influence of coal mines in Jorong, South Kalimantan. Total concentration of Cd, V, Co, Ni, Cr, Zn, As, Pb, Sb, Cu and Ba was determined in 20 soil samples by the bulk analysis. Pearson correlation is applied to specify the linear correlation among the elements. Principal Component Analysis (PCA) and Cluster Analysis (CA) were applied to observe the classification of trace elements and contamination sources. The results suggest that contamination loading is contributed by Cr, Cu, Ni, Zn, As, and Pb. The elemental loading mostly affects the non-coal mining area, for instances the area near settlement and agricultural land use. Moreover, the contamination source is classified into the areas that are influenced by the coal mining activity, the agricultural types, and the river mixing zone. Multivariate analysis could elucidate the elemental loading and the contamination sources of trace elements in the vicinity of coal mine area.

  2. The application of the coal grain analysis method to coal liberation studies

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, G.; Firth, B.; Adair, B. [CSIRO Earth Science & Resource Engineering Brisbane, Qld. (Australia)

    2011-07-01

    Emerging coal markets such as the use of coal for conversion to liquid fuels and its use in fuels cells and as coal water slurries in diesel engines require coal products with different coal quality specifications than those applicable to traditional coal markets of coke making and conventional power generation. As well as quantifying coals in terms of their chemical and physical properties, detailed knowledge of the mineral inclusions within the coal particles is required to identify coals that are suited to economically produce the low-ash value coals required for these markets. After mining and processing, some particles can consist of essentially pure components of a single maceral or mineral phase whilst others are composite particles that are comprised of varying amounts of macerals and minerals. The proportion of particles that are present as pure components or as composites will be a function of the characteristics of the coal and the particle size. In general, it is considered that size reduction will result in liberation and hence increased yield. The amount of liberation that occurs during crushing or grinding a coal is however coal specific. Particle characterization information provided by an optical microscopic-imaging method, Coal Grain Analysis, was used to identify coals that might benefit from additional crushing to improve recovery of clean coal by new density separation techniques and by flotation. As expected, the results of these studies suggest that the degree of liberation that is obtained is coal specific, and, hence, yield improvements are also coal specific. Hence a quantitative method of investigating this issue is required.

  3. Comparison Analysis of Coal Biodesulfurization and Coal's Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    Science.gov (United States)

    Hong, Fen-Fen; He, Huan; Liu, Jin-Yan; Tao, Xiu-Xiang; Zheng, Lei; Zhao, Yi-Dong

    2013-01-01

    Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal's pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal's pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal's pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32%) and jarosite (18.99%) were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34%) and elemental sulfur (50.72%) but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process. PMID:24288464

  4. Activation analysis of coal with the help of a microtron

    International Nuclear Information System (INIS)

    Sodnom, N.; Gehrbish, Sh.

    1989-01-01

    Activation analysis techniques using microtron bremsstrahlung and photoneutrons have been developed for the multielemental analysis of coal. Analysis data for coals from 17 mines of Mongolia are presented. The chlorine content of coal and the distribution of elements in coal burning products are determined. Control experiments were performed at the reactors IBR-2 and ARGUS. The results of the gamma activation analysis are compared with neutron activation and X-ray fluorescence analyses data. It is shown that the microtron irradiation techniques employed provide a satisfactory multielemental basis for the analysis of coal. (author)

  5. Coal conversion processes and analysis methodologies for synthetic fuels production. [technology assessment and economic analysis of reactor design for coal gasification

    Science.gov (United States)

    1979-01-01

    Information to identify viable coal gasification and utilization technologies is presented. Analysis capabilities required to support design and implementation of coal based synthetic fuels complexes are identified. The potential market in the Southeast United States for coal based synthetic fuels is investigated. A requirements analysis to identify the types of modeling and analysis capabilities required to conduct and monitor coal gasification project designs is discussed. Models and methodologies to satisfy these requirements are identified and evaluated, and recommendations are developed. Requirements for development of technology and data needed to improve gasification feasibility and economies are examined.

  6. Analysis of coal by neutron activation

    International Nuclear Information System (INIS)

    Burtner, D.R.

    1983-01-01

    The development of a thermal-neutron activation analysis procedure for determining elemental concentrations in whole coal samples, and the goal of combining this technique with other nuclear methods for determining a total mass balance in these and similar complex materials, is described. Problems of applying a fast-neutron activation analysis method for nitrogen are discussed, as well as an efficient procedure for drying and packaging coal samples. A thermal-neutron activation analysis (TNAA) procedure was developed for determining up to 27 elements in coal samples from the US, China, Nigeria, and Brazil. The comparator form of TNAA was applied, using a unique multielement standard, which contained 48 elements. The difference in net photopeak counts between sample and standard, due to γ-ray attenuation, was reduced by preparing this standard in an organic matrix, which simulates the composition and physical structure of the coal material. The simultaneous irradiation of several aliquots of this standard enabled high precision and accuracy to be attained. An accurate value for oxygen, determined by fast-neutron activation analysis, is used to correct for this effect in the nitrogen determination method

  7. Humberside gears up for coal

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-23

    Hull is set to be come the hub of National Power's imports of coal into the region, with the imminent opening of Hull Bulk Handling's terminal. Immingham is widely viewed as a lost opportunity for the generators, following the failure of the Glandford site but its handling capacity should increase this year. The future for the existing Immingham Bulk Terminal, currently leased to British Steel is undetermined. Options currently open to National Power and PowerGen for transport of coal inland from Humberside by barge are discussed. 3 figs.

  8. On-stream analysis of coal by prompt neutron activation analysis

    International Nuclear Information System (INIS)

    Barker, D.

    1981-01-01

    The need for rapid continuous on-stream analysis of coal was recognised in 1975. Analytical systems capable of determining some of the most important compositional properties of coal have been developed. The research programme has produced a series of analysers suitable for on-stream, batch, slurry and laboratory analytical determination of coal. This series of analysers is marketed under the name of 'Nucoalyzer'. The Nucoalyzer - CONAC (Continuous On-line Nuclear Analyzer for Coal) offers real-time, continuous determination of calorific value, percentage ash, percentage moisture, percentage sulphur, boiler fouling and slagging indices. The CONAC model is described in this article. The analytical principle employed in the various Nucoalyzer systems is based on prompt neutron activation analysis

  9. Semi-automated petrographic assessment of coal by coal grain analysis

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, G.; Jenkins, B.; Ofori, P.; Ferguson, K. [CSIRO Exploration and Mining, Pullenvale, Qld. (Australia)

    2007-04-15

    A new classification method, coal grain analysis, which uses optical imaging techniques for the microscopic characterisation of the individual grains present in coal samples is discussed. This differs from other coal petrography imaging methods in that a mask is used to remove the pixels of mounting resin to obtain compositional information of the maceral (vitrinite, inertinite and liptinite) and mineral abundances on each individual grain within each image. Experiments were conducted to establish the density of individual constituents in order to enable the density of each grain to be determined and the results reported on a mass basis. The grains were sorted into eight grain classes of liberated (single component) and composite grains. By analysing all streams (feed, concentrate and tailings) of the flotation circuit at a coal washing plant, the flotation response of the individual grain classes was tracked. This has implications for flotation process diagnostics and optimisation.

  10. Palynology in coal systems analysis-The key to floras, climate, and stratigraphy of coal-forming environments

    Science.gov (United States)

    Nichols, D.J.

    2005-01-01

    Palynology can be effectively used in coal systems analysis to understand the nature of ancient coal-forming peat mires. Pollen and spores preserved in coal effectively reveal the floristic composition of mires, which differed substantially through geologic time, and contribute to determination of depositional environment and paleo- climate. Such applications are most effective when integrated with paleobotanical and coal-petrographic data. Examples of previous studies of Miocene, Carboniferous, and Paleogene coal beds illustrate the methods and results. Palynological age determinations and correlations of deposits are also important in coal systems analysis to establish stratigraphic setting. Application to studies of coalbed methane generation shows potential because certain kinds of pollen are associated with gas-prone lithotypes. ??2005 Geological Society of America.

  11. Quantitative applications of gamma densitometry in the coal industry: a critique

    International Nuclear Information System (INIS)

    Shea, P.; Sher, R.; Gozani, T.

    1982-01-01

    This paper discusses the use of gamma densitometry to quantitatively assay bulk samples of coal on a continuous basis. Devices using these principles to determine mass flows are on the market, and work is progressing in several countries on instruments to determine ash content. The theoretical limits of applicability and inherent assumptions of these techniques are discussed, primarily as applied to dry bulk coal, but with some discussion of the more complicated problems of slurried coal. Gamma rays are generated by sources, usually a single radioactive element. These have several advantages over XRF, the main one being that no power is required to generate gammas. However, there are a limited number of gamma sources with useful energies, long enough half-lives to be economically useful, and clean spectra (that is, relatively few energies emitted by the source in question). Gamma densitometry measurements by single and multiple-energy transmission and backscatter measurements are discussed. A general formalism for analyzing multiple-energy systems is presented. While multi-energy systems can, in principle, pick out as many groups of elements as energies used, the matrices involved are ill-conditioned and thus require accurate measures of count rate (i.e., long counting times or high source intensities) to achieve acceptable errors. Changes in coal composition and profile of coal on a belt were also seen to be important sources of error. Transmission measurements are more amenable to analysis than backscatter, which are essentially transmission measurements made on a distributed source. In addition, transmission measurements are not restricted to low energy gamma sources, and can survey the entire bulk of coal rather than just the upper portion. The special problems of slurried coal measurements are briefly discussed

  12. Study of the correlation between the coal calorific value and coal ash content using X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Bolortuya, D.; Zuzaan, P.; Gustova, M.V.; Maslov, O.D.

    2013-01-01

    In this paper we have studied the possibility of determining the chemical elements in coal samples using X-ray fluorescence analysis and have found a relationship between the coal calorific value and its ash content with the coal moisture accounting. The amount of coal ash can be determined by the content of the basic chemical elements, such as Si, Sr, Fe, and Ca. It was concluded that the calorific value of coal can be estimated from the ash content in coal without the calorimetric measurements. These correlation coefficients were calculated for several coal mines in Mongolia. The results are in good agreement with the results of chemical analysis

  13. New approach for coal analysis

    Energy Technology Data Exchange (ETDEWEB)

    1985-05-01

    The paper describes current progress of coal analysis and the existing problems. It focuses on the current major tasks of coal analysis, namely, to achieve three goals and to finish five tasks. Specific measures are mentioned, strengthening leadership and improvement of management, correct handling of three relations, i.e. relations between local and overall interests, between quantity and quality, and between rewards and punishments. The weak links should be improved i.e. the organization, the quality of the staff and the testing facilities should be improved. Finally, the paper says that improvement must be dependent on the progress of science and technology.

  14. Thermodynamic analysis and conceptual design for partial coal gasification air preheating coal-fired combined cycle

    Science.gov (United States)

    Xu, Yue; Wu, Yining; Deng, Shimin; Wei, Shirang

    2004-02-01

    The partial coal gasification air pre-heating coal-fired combined cycle (PGACC) is a cleaning coal power system, which integrates the coal gasification technology, circulating fluidized bed technology, and combined cycle technology. It has high efficiency and simple construction, and is a new selection of the cleaning coal power systems. A thermodynamic analysis of the PGACC is carried out. The effects of coal gasifying rate, pre-heating air temperature, and coal gas temperature on the performances of the power system are studied. In order to repower the power plant rated 100 MW by using the PGACC, a conceptual design is suggested. The computational results show that the PGACC is feasible for modernizing the old steam power plants and building the new cleaning power plants.

  15. Proximate Analysis of Coal

    Science.gov (United States)

    Donahue, Craig J.; Rais, Elizabeth A.

    2009-01-01

    This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter,…

  16. Pollution extents of organic substances from a coal gangue dump of Jiulong Coal Mine, China

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.Z.; Fan, J.S.; Qin, P.; Niu, H.Y. [Hebei University of Engineering, Handan (China)

    2009-02-15

    This paper addresses the distribution and occurrence of harmful organic substances in coal gangue dump from Jiulong Coal Mine and its influence on the environment. The samples were taken from the coal gangue dump and coal waste water stream and analyzed by organic geochemical methods. The results indicate that the coal gangues contain abundant harmful organic substances like polycyclic aromatic hydrocarbons. The TOC and sulfur contents of the samples are much higher than those of the background sample except Sample JL7. The contents of organic bulk parameters are relatively high. Ten carcinogenic PAHs were identified and these harmful organic substances have influenced the surrounding area. Along the waste water stream, organic substances pollute at least 1,800 m far from the coal gangue dump.

  17. Dynamic Game Analysis of Coal Electricity Market Involving Multi-Interests

    Directory of Open Access Journals (Sweden)

    Yu Xiaobao

    2016-01-01

    Full Text Available The coal consumption of China reached 2.75 billion tons of standard coal in 2013, which accounted for 67.5% of total energy consumption and more than 50% of global coal consumption. Therefore, the impact of coal price is huge on coal market and even energy market in China. As a large consumer of coal, thermal power enterprise has a strong sensitivity to coal price. In order to balance the rising cost of enterprises due to coal price, we need to analyze the interests of multiple stakeholders. Firstly, this paper combined the Nash equilibrium and cobweb model and proposed the characteristics in different cobweb model. Then, for coal, power, and energy companies, the dynamic game analysis model is constructed. This model gives a game analysis in four scenarios and quantifies the decision of each stakeholder in different coal prices. Finally, the impact figure of different coal prices on each stakeholder has been drawn. The impacts of different coal or thermal power prices on different markets have been put forward, so relevant policy recommendations have been proposed combined with the cobweb model.

  18. Nuclear techniques in the coal industry. Proceedings of a final research co-ordination meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    With the aim of promoting advanced research and facilitating a more extensive application of nuclear techniques for environmental protection in the exploration and exploitation of coal, the IAEA established the present co-ordinated research programme (CRP) in 1989. This report includes an assessment of the current status and trends in nuclear techniques in the coal industry and the results obtained by the participants at the CRP. Proceedings of the final CRP on ``Nuclear Techniques in Exploration and Exploitation of Coal: On-line and Bulk Analysis and Evaluation of Potential Environmental Pollutants in Coal and Coke``, was held in Krakow, Poland, from 9 to 12 May 1994. Refs, figs, tabs.

  19. Micro-scale grain-size analysis and magnetic properties of coal-fired power plant fly ash and its relevance for environmental magnetic pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Blaha, U.; Sapkota, B.; Appel, E.; Stanjek, H.; Rosler, W. [University of Tubingen, Tubingen (Germany). Inst. of Geoscience

    2008-11-15

    Two fly ash samples from a black coal-fired power plant (Bexbach, Germany) were investigated for their magnetic properties, particle structure, grain-size distribution and chemical composition. Grain-size distribution was determined on bulk samples and on magnetic extracts. Magnetic susceptibility of different grain-size fractions was analyzed with respect to the according amount of fractions, high- and low-temperature dependence of magnetic susceptibility and thermal demagnetization of IRM identified magnetite and hematite as magnetic phases. Magnetic spherules were quantitatively extracted from bulk fly ash samples and examined using SEM/EDX analysis. Particle morphology and grain-size analysis on the magnetically extracted material were studied. Individual spherule types were identified and internal structures of selected polished particles were investigated by SEM and EDX analyses. Main element contents of the internal structures which consist of 'magnetite' crystals and 'glassy' matrix were systematically determined and statistically assessed. The chemical data of the micro-scale structures in the magnetic spherules were compared with XRF data from bulk material, revealing the relative element distribution in composed magnetic spherules. Comparison of the bulk sample grain-size (0.5-300 {mu}m) and grain-size spectra from magnetic extracts (1-186.5 {mu}m) shows that strongly magnetic particles mainly occur in the fine fractions of < 63 {mu}m. This study comprises a comprehensive characterization of coal-fired power plant fly ash, using magnetic, chemical, and microscopic methods. The results can serve as reference data for a variety of environmental magnetic studies.

  20. Poland - seaborne bulk trade hampered by rising transport costs

    Energy Technology Data Exchange (ETDEWEB)

    Beechener, J

    1991-12-01

    The article considers trade development in major dry bulk commodities, coal, cement, iron ore and grains. Aspects covered for coal are production and exports. All coal mines in Poland are state owned. Coal production has fallen from an annual output in excess of 190 mta in the late 1980s, to under 150 mt in 1990. Output for 1991 is forecast at around 142 mt. Exports have also declined from 36 mtce in the late 1980s to an estimated 20 mt in 1991. Various factors are cited for the changing fortunes of Poland's coal industry but the most significant is the introduction of market forces to a previously centrally planned economy. Topics discussed for coal include: restructuring the coal industry for privatisation; eliminating subsidies; and export destinations. 5 tabs., 6 photos.

  1. Characterisation of South African coals using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Hart, R.J.

    1985-01-01

    This report includes the establishment of the major minor and trace element compositions of South African coals with the aim of characterising the different coal seams within a basin, defining regions of similar compositions and obtaining an overall view of the geochemistry of coals in this country. The results of 40 coal samples analysed by neutron activation analysis

  2. Economics of coal conversion processing. Advances in coal gasification: support research. Advances in coal gasification: process development and analysis

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The fall meeting of the American Chemical Society, Division of Fuel Chemistry, was held at Miami Beach, Florida, September 10-15, 1978. Papers involved the economics of coal conversion processing and advances in coal gasification, especially support research and process development and analysis. Fourteen papers have been entered individually into EDB and ERA; three papers had been entered previously from other sources. (LTN)

  3. Electricity privatisation and the Scottish coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P.

    1988-09-01

    In the run up to the privatisation of the electricity supply industry in Scotland, the South of Scotland Electricity Board (SSEB) is involved in a battle for power with British Coal's Scottish area over the price of its coal, the bulk of which has been purchased by the SSEB in recent years. The SSEB has been trying to persuade British Coal to bring its prices down to those currently available on the world market. This would require a reduction of some 30%. The SSEB has backed up its requests by threatening to import more foreign coal if British Coal refuses to comply.

  4. Analysis on safety production in coal mines Henan Province

    Institute of Scientific and Technical Information of China (English)

    KONG Liu-an; ZHANG Wen-yong

    2006-01-01

    Based on the rigorous situation of safety production in coal mines, the paper analyzed the statistical data of recent accidents indexes in Henan's coal mines. Using investigation and comparison analysis methods, a specified analysis on mining conditions, technical facility level, safety input and vocational quality of workers in Henan's coal mines was conducted. The result indicates that there have been existing such main safety production problems as weak safety management, low-level facilities, inadequate safety input and poor vocational quality and so on. Finally it proposes such reference solutions as to establish and perfect coal mining supervision and management system, to increase safety investment into techniques and facilities and to strengthen workers' safety education and introduction of more high-level professional talents.

  5. ASTM clustering for improving coal analysis by near-infrared spectroscopy.

    Science.gov (United States)

    Andrés, J M; Bona, M T

    2006-11-15

    Multivariate analysis techniques have been applied to near-infrared (NIR) spectra coals to investigate the relationship between nine coal properties (moisture (%), ash (%), volatile matter (%), fixed carbon (%), heating value (kcal/kg), carbon (%), hydrogen (%), nitrogen (%) and sulphur (%)) and the corresponding predictor variables. In this work, a whole set of coal samples was grouped into six more homogeneous clusters following the ASTM reference method for classification prior to the application of calibration methods to each coal set. The results obtained showed a considerable improvement of the error determination compared with the calibration for the whole sample set. For some groups, the established calibrations approached the quality required by the ASTM/ISO norms for laboratory analysis. To predict property values for a new coal sample it is necessary the assignation of that sample to its respective group. Thus, the discrimination and classification ability of coal samples by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) in the NIR range was also studied by applying Soft Independent Modelling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) techniques. Modelling of the groups by SIMCA led to overlapping models that cannot discriminate for unique classification. On the other hand, the application of Linear Discriminant Analysis improved the classification of the samples but not enough to be satisfactory for every group considered.

  6. Coal belt options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-03-15

    Whether moving coal long distances overland or short distances in-plant, belt conveyors will always be in demand. The article reports on recent systems developments and applications by Beumer, Horizon Conveyor Equipment, Conveyor Dynamics, Doppelmayr Transport Technology, Enclosed Bulk Systems, ContiTech and Bateman Engineered Technologies. 2 photos.

  7. US coal industry seeks export markets

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    Problems encountered in the expansion of the USA export market for coal are discussed, including: lack of port facilities to handle bulk coal shipments; inadequate rail facilities and the already high costs; and delays caused by complex legislation. Solutions to the problem of ports are suggested, and also the advantages of coal export expansion with respect to industry as a whole and unemployment. Details of projects on the Canton Railroad and the terminal in Baltimore are given. Views of the American Association of Port Authorities on navigation are expressed.

  8. Fast neutron activation analysis of Kalewa (Myanmar) coal

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Naing, W [Yangon Univ. (Myanmar). Dept. of Chemistry

    1994-06-01

    Aluminium, silicon, copper, iron, magnesium and sulfur in Kalewa (Myanmar) coal were determined by fast neutron activation analysis. For activation a KAMAN A-710 Neutron Generator was used. Kalewa coal was found to be low in sulfur and relatively rich in iron. (author) 2 refs.; 1 fig.; 1 tab.

  9. Fast neutron activation analysis of Kalewa (Myanmar) coal

    International Nuclear Information System (INIS)

    Myint, U.; Naing, W.

    1994-01-01

    Aluminium, silicon, copper, iron, magnesium and sulfur in Kalewa (Myanmar) coal were determined by fast neutron activation analysis. For activation a KAMAN A-710 Neutron Generator was used. Kalewa coal was found to be low in sulfur and relatively rich in iron. (author) 2 refs.; 1 fig.; 1 tab

  10. Analysis of thermal coal pricing and the coal price distortion in China from the perspective of market forces

    International Nuclear Information System (INIS)

    Cui, Herui; Wei, Pengbang

    2017-01-01

    The price of thermal coal has always been the focus of the debate between coal mining industry and electric power industry. The thermal coal price is always lower than other same quality coal, and this phenomenon of thermal coal price distortion has been existing in China for a long time. The distortion coal price can not reflect the external cost and the resource scarcity of coal, which could result in environment deteriorating and inefficient resource allocation. This paper studied the phenomenon of thermal coal price distortion through economic theoretical modeling and empirical cointegration analysis from the perspective of market forces. The results show that thermal coal price is determined by electricity price, the prediction elasticity of a electricity enterprise, price elasticity of demand of electricity, the input prediction elasticity of a electricity enterprise and the price elasticity of supply of thermal coal. The main reason of coal price distortion is the unbalance market force of coal industry and thermal coal generation industry. The distortion rate of coal price is positively related to the market force of electric power industry and negatively related to the industrial concentration of coal industry. - Highlights: • This paper studied thermal coal pricing and the coal price distortion in China. • The main reason of coal price distortion is the unbalance market force. • Thermal coal price is also influenced by electricity price and price elasticity of demand of electricity. • The distortion rate of coal price is negatively related to the industrial concentration of coal industry.

  11. Flotation process diagnostics and modelling by coal grain analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ofori, P; O' Brien, G.; Firth, B.; Jenkins, B. [CSIRO Energy Technology, Brisbane, Qld. (Australia)

    2006-05-15

    In coal flotation, particles of different components of the coal such as maceral groups and mineral matter and their associations have different hydrophobicities and therefore different flotation responses. By using a new coal grain analysis method for characterising individual grains, more detailed flotation performance analysis and modelling approaches have been developed. The method involves the use of microscopic imaging techniques to obtain estimates of size, compositional and density information on individual grains of fine coal. The density and composition partitioning of coal processed through different flotation systems provides an avenue to pinpoint the actual cause of poor process performance so that corrective action may be initiated. The information on grain size, density and composition is being used as input data to develop more detailed flotation process models to provide better predictions of process performance for both mechanical and column flotation devices. A number of approaches may be taken to flotation modelling such as the probability approach and the kinetic model approach or a combination of the two. In the work reported here, a simple probability approach has been taken, which will be further refined in due course. The use of grain data to map the responses of different types of coal grains through various fine coal cleaning processes provided a more advanced diagnostic capability for fine coal cleaning circuits. This enabled flotation performance curves analogous to partition curves for density separators to be produced for flotation devices.

  12. Energy analysis of the coal fuel cycle: Community health and resource change in an Appalachian coal county

    International Nuclear Information System (INIS)

    Watson, A.P.

    1982-01-01

    In spite of steadily expanding coal development in this decade in the USA, there has been little systematic assessment of occupational and public health implications of increased production in specific regions of the USA. Preliminary analysis of a prototype Appalachian area is presented. Anderson County, Tennessee, the prototype area chosen for evaluation, lies in the Upper East Tennessee Coalfield. This county is uniquely suited for study since every process of the coal fuel cycle (extraction, transport, combustion, power production and waste disposal) takes place within the county boundary. By extensive exploitation of both surface and underground methods of extraction, this county has maintained a leading position in Tennessee's coal production for several years. Concepts of energy analysis and systematized data presentation were used to convert information gathered from diverse sources into comparable energy units (kcal). Concepts and methodology implemented in the analysis can be applied most appropriately to existing conditions in other counties of the Appalachian Coal Basin. Findings are presented for calendar year 1978. For the year of study, the major energy loss to the county was depletion of the coal resource base by use of inefficient mining techniques (a loss of 10.5x10 12 kcal fuel equivalents). Another loss is to community health, which is depleted by lost productivity of, and compensation payments to, victims of mining accidents and occupational disease such as 'black lung' (15x10 9 kcal). Another countywide depletion process is roadbed and bridge deterioration caused by large volumes of heavy coal-haul vehicular traffic (10x10 9 kcal). These losses are being borne mainly by residents of the Appalachian host region, with little systematic compensation by consumers of the coal resource. It is expected that these losses will increase in magnitude as national coal use increases. (author)

  13. PROBLEMS AND METHODOLOGY OF THE PETROLOGIC ANALYSIS OF COAL FACIES.

    Science.gov (United States)

    Chao, Edward C.T.

    1983-01-01

    This condensed synthesis gives a broad outline of the methodology of coal facies analysis, procedures for constructing sedimentation and geochemical formation curves, and micro- and macrostratigraphic analysis. The hypothetical coal bed profile has a 3-fold cycle of material characteristics. Based on studies of other similar profiles of the same coal bed, and on field studies of the sedimentary rock types and their facies interpretation, one can assume that the 3-fold subdivision is of regional significance.

  14. Recommended procedures and techniques for the petrographic description of bituminous coals

    Science.gov (United States)

    Chao, E.C.T.; Minkin, J.A.; Thompson, C.L.

    1982-01-01

    Modern coal petrology requires rapid and precise description of great numbers of coal core or bench samples in order to acquire the information required to understand and predict vertical and lateral variation of coal quality for correlation with coal-bed thickness, depositional environment, suitability for technological uses, etc. Procedures for coal description vary in accordance with the objectives of the description. To achieve our aim of acquiring the maximum amount of quantitative information within the shortest period of time, we have adopted a combined megascopic-microscopic procedure. Megascopic analysis is used to identify the distinctive lithologies present, and microscopic analysis is required only to describe representative examples of the mixed lithologies observed. This procedure greatly decreases the number of microscopic analyses needed for adequate description of a sample. For quantitative megascopic description of coal microlithotypes, microlithotype assemblages, and lithotypes, we use (V) for vitrite or vitrain, (E) for liptite, (I) for inertite or fusain, (M) for mineral layers or lenses other than iron sulfide, (S) for iron sulfide, and (X1), (X2), etc. for mixed lithologies. Microscopic description is expressed in terms of V representing the vitrinite maceral group, E the exinite group, I the inertinite group, and M mineral components. volume percentages are expressed as subscripts. Thus (V)20(V80E10I5M5)80 indicates a lithotype or assemblage of microlithotypes consisting of 20 vol. % vitrite and 80% of a mixed lithology having a modal maceral composition V80E10I5M5. This bulk composition can alternatively be recalculated and described as V84E8I4M4. To generate these quantitative data rapidly and accurately, we utilize an automated image analysis system (AIAS). Plots of VEIM data on easily constructed ternary diagrams provide readily comprehended illustrations of the range of modal composition of the lithologic units making up a given coal

  15. Properties of sorbents from brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Straka, P.; Buchtele, J. [Academy of Sciences of the Czech Republic, Prague (Czech Republic)

    2000-07-01

    The surface and sorptional properties of carbonaceous materials prepared from brown coal and their relation to minerals content and coal bulk density as technologically important parameters of starting coal were described. Chars were prepared from brown coal of North Bohemian Brown Coal District and activated with CO{sub 2} in a large-scale laboratory unit. Their surface and sorptive properties were investigated. It was found that mineral matter/ash content favourably affects the mesoporosity development in chars/activated chars as the sorption capacity increased with increasing ash content in chars. No influence of ash content on the macroporosity was observed. With the activated chars, both the inner surface and sorption capacity showed the maximum in the burn-off range of 41-64%. Optimization of the process is discussed.

  16. Advanced Coal Wind Hybrid: Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

    2008-11-28

    Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW

  17. Comparative assessment of coal tars obtained from 10 former manufactured gas plant sites in the eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.G.; Gupta, L.; Kim, T.H.; Moo-Young, H.K.; Coleman, A.J. [Lehigh University, Bethlehem, PA (United States). Dept. of Civil & Environmental Engineering

    2006-11-15

    A comparative analysis was performed on eleven coal tars obtained from former manufactured gas plant sites in the eastern United States. Bulk properties analyzed included percent ash, Karl Fisher water content, viscosity and average molecular weight. Chemical properties included monocyclic- and polycyclic-aromatic hydrocarbon (PAH) concentrations, alkylated aromatic concentrations, and concentrations of aliphatic and aromatic fractions. It was found that there was at least an order-of-magnitude variation in all properties measured between the eleven coal tars. Additionally, two coal tars obtained from the same manufactured gas plant site had very different properties, highlighting that there can be wide variations in coal tar properties from different samples obtained from the same site. Similarities were also observed between the coal tars. The relative chemical distributions were similar for all coal tars, and the coal tars predominantly consisted of PAHs, with naphthalene being the single-most prevalent compound. The C{sub 9-22} aromatic fraction, an indicator of all PAHs up to a molecular weight of approximately 276 g mole{sup -1}, showed a strong power-law relationship with the coal tar average molecular weight (MWct). And the concentrations of individual PAHs decreased linearly as MWct increased up to ca. 1000 g mole{sup -1}, above which they remained low and variable. Implications of these properties and their variation with MWct on groundwater quality are discussed. Ultimately, while these similarities do allow generalities to be made about coal tars, the wide range of coal tar bulk and chemical properties reported here highlights the complex nature of coal tars.

  18. Trends and outlook of coal energy in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Zainal Abidin Husin (Tenaga Nasional Berhad, Kuala Lumpur (Malaysia). Fuel and Materials Management Dept.)

    1993-03-01

    Current energy policy in Malaysia is directed towards development of natural gas resources although there is a strategy to diversify energy sources to gas, hydro, coal and oil. By the year 2000, however, coal could emerge as a major energy source. The author advocates the need for a policy direction for the coal industry - for exploration, mine planning, mixing methods, transport and regulations to ensure occupational health and safety. Malaysia has abundant coal resources but most are in Sarawak and Sabah whereas the bulk of energy demand is in the Peninsula Malaysia. A table defines known coal resources in Malaysia and a map shows their location. To ensure successful development of the coal industry, technologies must be developed to meet environmental requirements and global market competition. Several emerging technologies are mentioned: production of process-derived fuel and coal-derived liquid from sub-bituminous coal, coal liquefaction, manufacture of coal water mixture, coal beneficiation, and fluidised bed combustion. 1 fig., 1 tab.

  19. Monte Carlo calculations and neutron spectrometry in quantitative prompt gamma neutron activation analysis (PGNAA) of bulk samples using an isotopic neutron source

    International Nuclear Information System (INIS)

    Spyrou, N.M.; Awotwi-Pratt, J.B.; Williams, A.M.

    2004-01-01

    An activation analysis facility based on an isotopic neutron source (185 GBq 241 Am/Be) which can perform both prompt and cyclic activation analysis on bulk samples, has been used for more than 20 years in many applications including 'in vivo' activation analysis and the determination of the composition of bio-environmental samples, such as, landfill waste and coal. Although the comparator method is often employed, because of the variety in shape, size and elemental composition of these bulk samples, it is often difficult and time consuming to construct appropriate comparator samples for reference. One of the obvious problems is the distribution and energy of the neutron flux in these bulk and comparator samples. In recent years, it was attempted to adopt the absolute method based on a monostandard and to make calculations using a Monte Carlo code (MCNP4C2) to explore this further. In particular, a model of the irradiation facility has been made using the MCNP4C2 code in order to investigate the factors contributing to the quantitative determination of the elemental concentrations through prompt gamma neutron activation analysis (PGNAA) and most importantly, to estimate how the neutron energy spectrum and neutron dose vary with penetration depth into the sample. This simulation is compared against the scattered and transmitted neutron energy spectra that are experimentally and empirically determined using a portable neutron spectrometry system. (author)

  20. Application of nuclear techniques for analysis of Vietnamese coal and embedding rocks

    International Nuclear Information System (INIS)

    Vo Dac Bang; Pham Van Duong; Nguyen Thanh Binh; Le Tien Quan; Nguyen Manh Hung; Nguyen Thi Hong; Vu Hoang Lam

    1995-01-01

    In the paper the result of elemental analysis by Nuclear Techniques of Coal and Embedded rocks samples from Vietnamese Quang Ninh and Thai Nguyen basins were presented. Methods used were: Neutron activation Analysis at Dalat Reactor, low counting with HP-Ge and NaJ detectors and X-ray fluorescent analysis with planar Si (Si) detector. Mean concentrations of 19 elements in coal and 9 in rocks were determined. Correlation between concentrations of elements were found. It appears that the correlation between ash content and U, K, Th, concentrations was poor for Quang Ninh antracitecoal. Correlation coefficient was found to be 0,63 for ash range 0-40%. Content of Th in anthracite Quang Ninh coal was much higher than reported in literature for subbituminous, bituminous and lignite coals, while Thai Nguyen fat coal contains considerable amount of Cu, Pb, Zn. Obtained data were useful for evaluation of potential hazard for environment from using coal as fuel for coal fired power plants, for estimation of possibility of using nuclear technique in coal industry in Vietnam. They could be used also for geochemical investigations. The simple of-line coal ash gauge basing on attenuation of soft gamma radiation from Fe-55 was also described. (author). 6 refs, 3 figs, 8 tabs

  1. Elemental analysis of coal by proton-induced x-ray emission analysis

    International Nuclear Information System (INIS)

    Cronch, S.M.; Ehmann, W.D.; Laumer, H.W.; Gabbard, F.

    1976-01-01

    Proton-induced x-ray emission was used to determine elemental concentrations in solid coal samples. The coal samples were irradiated with 2.5 to 5.5 MeV protons. Concentrations were determined from characteristic x-ray yields taking into account matrix absorption. The precision is shown by replicate analysis and the accuracy by comparison with results obtained by other laboratories using different techniques

  2. SYSTEM ANALYSIS OF NUCLEAR-ASSISTED SYNGAS PRODUCTION FROM COAL

    International Nuclear Information System (INIS)

    E. A. Harvego; M. G. McKellar; J. E. O'Brien

    2008-01-01

    A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 66.1% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency

  3. System Analysis of Nuclear-Assisted Syngas Production from Coal

    International Nuclear Information System (INIS)

    Harvego, E.A.; McKellar, M.G.; O'Brien, J.E.

    2009-01-01

    A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

  4. An analytical model of the mechanical properties of bulk coal under confined stress

    Science.gov (United States)

    Wang, G.X.; Wang, Z.T.; Rudolph, V.; Massarotto, P.; Finley, R.J.

    2007-01-01

    This paper presents the development of an analytical model which can be used to relate the structural parameters of coal to its mechanical properties such as elastic modulus and Poisson's ratio under a confined stress condition. This model is developed primarily to support process modeling of coalbed methane (CBM) or CO2-enhanced CBM (ECBM) recovery from coal seam. It applied an innovative approach by which stresses acting on and strains occurring in coal are successively combined in rectangular coordinates, leading to the aggregated mechanical constants. These mechanical properties represent important information for improving CBM/ECBM simulations and incorporating within these considerations of directional permeability. The model, consisting of constitutive equations which implement a mechanically consistent stress-strains correlation, can be used as a generalized tool to study the mechanical and fluid behaviors of coal composites. An example using the model to predict the stress-strain correlation of coal under triaxial confined stress by accounting for the elastic and brittle (non-elastic) deformations is discussed. The result shows a good agreement between the prediction and the experimental measurement. ?? 2007 Elsevier Ltd. All rights reserved.

  5. Bulk handling benefits from ICT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    The efficiency and accuracy of bulk handling is being improved by the range of management information systems and services available today. As part of the program to extend Richards Bay Coal Terminal, Siemens is installing a manufacturing execution system which coordinates and monitors all movements of raw materials. The article also reports recent developments by AXSMarine, SunGuard Energy, Fuelworx and Railworx in providing integrated tools for tracking, managing and optimising solid/liquid fuels and rail car maintenance activities. QMASTOR Ltd. has secured a contract with Anglo Coal Australia to provide its Pit to Port.net{reg_sign} and iFuse{reg_sign} software systems across all their Australians sites, to include pit-to-product stockpile management. 2 figs.

  6. Combating wear in bulk solids handling plants

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    A total of five papers presented at a seminar on problems of wear caused by abrasive effects of materials in bulk handling. Topics of papers cover the designer viewpoint, practical experience from the steel, coal, cement and quarry industries to create an awareness of possible solutions.

  7. Coal stream composition analysis for process control using prompt neutron activation analysis

    International Nuclear Information System (INIS)

    Gozani, T.; Reynolds, G.; Elias, E.; Maung, T.; Bozorgmanesh, H.; Orphan, V.

    1977-01-01

    In this paper we describe early results of a series of laboratory experiments and computer modeling studies designed to provide realistic accuracy limits for the determination of the elemental concentration in coal using prompt neutron activation analysis. The results provide guidance for optimizing the technique for monitoring the quality of coal which is being input to an electric power generating plant. The reported work was performed as the initial phase of an ongoing program to develop a prototype on-line coal analyzer based on the PNAA technique for power plant application

  8. Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions.

    Science.gov (United States)

    Sun, Ruoyu; Sonke, Jeroen E; Heimbürger, Lars-Eric; Belkin, Harvey E; Liu, Guijian; Shome, Debasish; Cukrowska, Ewa; Liousse, Catherine; Pokrovsky, Oleg S; Streets, David G

    2014-07-01

    Mercury (Hg) emissions from coal combustion contribute approximately half of anthropogenic Hg emissions to the atmosphere. With the implementation of the first legally binding UNEP treaty aimed at reducing anthropogenic Hg emissions, the identification and traceability of Hg emissions from different countries/regions are critically important. Here, we present a comprehensive world coal Hg stable isotope database including 108 new coal samples from major coal-producing deposits in South Africa, China, Europe, India, Indonesia, Mongolia, former USSR, and the U.S. A 4.7‰ range in δ(202)Hg (-3.9 to 0.8‰) and a 1‰ range in Δ(199)Hg (-0.6 to 0.4‰) are observed. Fourteen (p coal Hg emissions tracing. A revised coal combustion Hg isotope fractionation model is presented, and suggests that gaseous elemental coal Hg emissions are enriched in the heavier Hg isotopes relative to oxidized forms of emitted Hg. The model explains to first order the published δ(202)Hg observations on near-field Hg deposition from a power plant and global scale atmospheric gaseous Hg. Yet, model uncertainties appear too large at present to permit straightforward Hg isotope source identification of atmospheric forms of Hg. Finally, global historical (1850-2008) coal Hg isotope emission curves were modeled and indicate modern-day mean δ(202)Hg and Δ(199)Hg values for bulk coal emissions of -1.2 ± 0.5‰ (1SD) and 0.05 ± 0.06‰ (1SD).

  9. Study of coal oxidation by charged particle activation analysis

    International Nuclear Information System (INIS)

    Schlyer, D.J.; Wolf, A.P.

    1980-01-01

    It has been possible, using the technique of changed particle activation analysis, to follow the time course of the oxidation of coal exposed to air. The kinetics have been studied and seem to be consistent with a rapid initial uptake of oxygen containing molecules followed by slow diffusion into the surface of the coal particles. In this latter regard a study has been undertaken to study the depth profile of the oxygen into the coal particle surface. The depth of penetration of the activating particle is determined by the incident energy and therefore, by comparison to the appropriate standards, the depth profile may be determined either by varying the incident energy or by varying the particle size. Both approaches have been used and give consistent results. The depth to which a significant amount of oxygen penetrates varies from about 3 μm for very high rank coals to about 20 μm for low rank coals. This diffusion depth seems to be related to the porosity of the coals. A model for the low temperature air oxidation of coal has been developed to explain the results from the above mentioned experiments

  10. Trace elements of coal, coal ashes and fly ashes by activation analysis with shor-lived nuclides

    International Nuclear Information System (INIS)

    Boeck, H.; Sarac, I.; Grass, F.

    1981-01-01

    On irradiation with neutrons, some of the interesting trace elements in coal, coal ash and fly ash produce short-lived nuclides which may be determined - together with some of the matrix elements - by activation analysis. This enables the characterization of samples. To find out the distribution of elements in the gaseous or aerosol exhaust of fossil-fired power plants, the authors simulated the combustion in a quartz apparatus containing a cold trap, using the combustion temperature (780 deg C) employed for the standard ash determination. High Se values were found in the cold trap deposits of black coal from Poland. Halogens were also found in the deposits. (authors)

  11. Trace elemental composition of Nigerian coal measured by neutron activation analysis

    International Nuclear Information System (INIS)

    Ndiokwere, Ch.L.; Guinn, V.P.; Burtner, D.

    1983-01-01

    The instrumental neutron activation analysis (INAA) technique has been used to determine 17 major, minor and trace elements in samples of the three major sources of Nigerian coal. The NBS Standard Reference Material, Coal SRM 1632, was also analyzed, for the purpose of verifying the accuracy of the method. The concentrations of the major elements determined for the Nigerian coal were found to be much lower than the mean values of those reported for coal samples from other parts of the world. (author)

  12. Thermo-optical properties of residential coals and combustion aerosols

    Science.gov (United States)

    Pintér, Máté; Ajtai, Tibor; Kiss-Albert, Gergely; Kiss, Diána; Utry, Noémi; Janovszky, Patrik; Palásti, Dávid; Smausz, Tomi; Kohut, Attila; Hopp, Béla; Galbács, Gábor; Kukovecz, Ákos; Kónya, Zoltán; Szabó, Gábor; Bozóki, Zoltán

    2018-04-01

    In this study, we present the inherent optical properties of carbonaceous aerosols generated from various coals (hard through bituminous to lignite) and their correlation with the thermochemical and energetic properties of the bulk coal samples. The nanoablation method provided a unique opportunity for the comprehensive investigation of the generated particles under well controlled laboratory circumstances. First, the wavelength dependent radiative features (optical absorption and scattering) and the size distribution (SD) of the generated particulate matter were measured in-situ in aerosol phase using in-house developed and customised state-of-the-art instrumentation. We also investigated the morphology and microstructure of the generated particles using Transmission Electron Microscopy (TEM) and Electron Diffraction (ED). The absorption spectra of the measured samples (quantified by Absorption Angström Exponent (AAE)) were observed to be distinctive. The correlation between the thermochemical features of bulk coal samples (fixed carbon (FC) to volatile matter (VM) ratio and calorific value (CV)) and the AAE of aerosol assembly were found to be (r2 = 0.97 and r2 = 0.97) respectively. Lignite was off the fitted curves in both cases most probably due to its high optically inactive volatile material content. Although more samples are necessary to be investigated to draw statistically relevant conclusion, the revealed correlation between CV and Single Scattering Albedo (SSA) implies that climatic impact of coal combusted aerosol could depend on the thermal and energetic properties of the bulk material.

  13. A spatial analysis of China's coal flow

    International Nuclear Information System (INIS)

    Mou Dunguo; Li Zhi

    2012-01-01

    The characteristics of China's energy structure and the distribution of its coal resources make coal transportation a very important component of the energy system; moreover, coal transportation acts as a bottleneck for the Chinese economy. To insure the security of the coal supply, China has begun to build regional strategic coal reserves at some locations, but transportation is still the fundamental way to guaranty supply security. Here, we study China's coal transportation quantitatively with a linear programming method that analyses the direction and volume of China's coal flows with the prerequisite that each province's supply and demand balance is guaranteed. First, we analyse the optimal coal transportation for the status quo coal supply and demand given the bottleneck effects that the Daqin Railway has on China's coal flow; second, we analyse the influence of future shifts in the coal supply zone in the future, finding that China's coal flows will also change, which will pressure China to construct railways and ports; and finally, we analyse the possibility of exploiting Yangtze River capacity for coal transportation. We conclude the paper with suggestions for enhancing China's coal transportation security. - Highlights: ► We use linear programming to study China's coal transportation. ► First, analyse the optimal coal flow under the status quo condition. ► Second, analyse influences of coal supply zone shifts to Neimeng and Xinjiang. ► Third, analyse the influence of using Yangtze River for coal transportation. ► At last, we give suggestions about infrastructure construction to guaranty China's long-run coal supply security.

  14. High resolution gamma-ray spectroscopy applied to bulk sample analysis

    International Nuclear Information System (INIS)

    Kosanke, K.L.; Koch, C.D.; Wilson, R.D.

    1980-01-01

    A high resolution Ge(Li) gamma-ray spectrometer has been installed and made operational for use in routine bulk sample analysis by the Bendix Field Engineering Corporation (BFEC) geochemical analysis department. The Ge(Li) spectrometer provides bulk sample analyses for potassium, uranium, and thorium that are superior to those obtained by the BFEC sodium iodide spectrometer. The near term analysis scheme permits a direct assay for uranium that corrects for bulk sample self-absorption effects and is independent of the uranium/radium disequilibrium condition of the sample. A more complete analysis scheme has been developed that fully utilizes the gamma-ray data provided by the Ge(Li) spectrometer and that more properly accounts for the sample self-absorption effect. This new analysis scheme should be implemented on the BFEC Ge(Li) spectrometer at the earliest date

  15. Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis.

    Science.gov (United States)

    Ferrara, Francesca; Orsini, Alessandro; Plaisant, Alberto; Pettinau, Alberto

    2014-11-01

    With the aim to support the experimental tests in a gasification pilot plant, the thermal decomposition of coal, biomass and their mixtures has been carried out through a thermogravimetric analysis (TGA) and a simplified kinetic analysis. The TGA of pure fuels indicates the low reactivity of South African coal and the relatively high reactivity of Sardinian Sulcis coal during pyrolysis. Among the tested fuels, biomass (stone pine wood chips) is the most reactive one. These results fully confirm those obtained during the experimental tests in the gasification pilot plant. As for the fuel blends, the analysis shows that the synergic effects between the considered coals and biomass are negligible when they are co-pyrolyzed. The results of the analysis confirm that TGA could be very useful to generally predict the gasification performance and to optimize the experimental campaigns in pilot-scale gasification plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Thermal analysis and kinetics of coal during oxy-fuel combustion

    Science.gov (United States)

    Kosowska-Golachowska, Monika

    2017-08-01

    The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied using non-isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870°C in both N2 and CO2 atmospheres, while further mass loss occurred in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Replacement of N2 in the combustion environment by CO2 delayed the combustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.

  17. Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires

    Science.gov (United States)

    Sun, Jielun; Brady, T.A.; Rood, M.J.; Lehmann, C.M.; Rostam-Abadi, M.; Lizzio, A.A.

    1997-01-01

    Activated carbons for natural gas storage were produced from Illinois bituminous coals (IBC-102 and IBC-106) and scrap tires by physical activation with steam or CO2 and by chemical activation with KOH, H3PO4, or ZnCl2. The products were characterized for N2-BET area, micropore volume, bulk density, pore size distribution, and volumetric methane storage capacity (Vm/Vs). Vm/Vs values for Illinois coal-derived carbons ranged from 54 to 83 cm3/cm3, which are 35-55% of a target value of 150 cm3/cm3. Both granular and pelletized carbons made with preoxidized Illinois coal gave higher micropore volumes and larger Vm/Vs values than those made without preoxidation. This confirmed that preoxidation is a desirable step in the production of carbons from caking materials. Pelletization of preoxidized IBC-106 coal, followed by steam activation, resulted in the highest Vm/Vs value. With roughly the same micropore volume, pelletization alone increased Vm/Vs of coal carbon by 10%. Tire-derived carbons had Vm/Vs values ranging from 44 to 53 cm3/cm3, lower than those of coal carbons due to their lower bulk densities. Pelletization of the tire carbons increased bulk density up to 160%. However, this increase was offset by a decrease in micropore volume of the pelletized materials, presumably due to the pellet binder. As a result, Vm/Vs values were about the same for granular and pelletized tire carbons. Compared with coal carbons, tire carbons had a higher percentage of mesopores and macropores.

  18. The mechanism of coking pressure generation I: Effect of high volatile matter coking coal, semi-anthracite and coke breeze on coking pressure and plastic coal layer permeability

    Energy Technology Data Exchange (ETDEWEB)

    Seiji Nomura; Merrick Mahoney; Koichi Fukuda; Kenji Kato; Anthony Le Bas; Sid McGuire [Nippon Steel Corporation, Chiba (Japan). Environment and Process Technology Center

    2010-07-15

    One of the most important aspects of the cokemaking process is to control and restrain the coking pressure since excessive coking pressure tends to lead to operational problems and oven wall damage. Therefore, in order to understand the mechanism of coking pressure generation, the permeability of the plastic coal layer and the coking pressure for the same single coal and the same blended coal were measured and the relationship between them was investigated. Then the 'inert' (pressure modifier) effect of organic additives such as high volatile matter coking coal, semi-anthracite and coke breeze was studied. The coking pressure peak for box charging with more uniform bulk density distribution was higher than that for top charging. It was found that the coking pressure peaks measured at different institutions (NSC and BHPBilliton) by box charging are nearly the same. The addition of high volatile matter coking coal, semi-anthracite and coke breeze to a low volatile matter, high coking pressure coal greatly increased the plastic layer permeability in laboratory experiments and correspondingly decreased the coking pressure. It was found that, high volatile matter coking coal decreases the coking pressure more than semi-anthracite at the same plastic coal layer permeability, which indicates that the coking pressure depends not only on plastic coal layer permeability but also on other factors. Coking pressure is also affected by the contraction behavior of the coke layer near the oven walls and a large contraction decreases the coal bulk density in the oven center and hence the internal gas pressure in the plastic layer. The effect of contraction on coking pressure needs to be investigated further. 33 refs., 18 figs., 5 tabs.

  19. Carbon and oxygen isotopic composition of coal and carbon dioxide derived from laboratory coal combustion: A preliminary study

    Science.gov (United States)

    Warwick, Peter D.; Ruppert, Leslie F.

    2016-01-01

    The concentration of carbon dioxide (CO2) in the atmosphere has dramatically increased from the start of the industrial revolution in the mid-1700s to present levels exceeding 400 ppm. Carbon dioxide derived from fossil fuel combustion is a greenhouse gas and a major contributor to on-going climate change. Carbon and oxygen stable isotope geochemistry is a useful tool to help model and predict the contributions of anthropogenic sources of CO2 in the global carbon cycle. Surprisingly few studies have addressed the carbon and oxygen isotopic composition of CO2 derived from coal combustion. The goal of this study is to document the relationships between the carbon and oxygen isotope signatures of coal and signatures of the CO2 produced from laboratory coal combustion in atmospheric conditions.Six coal samples were selected that represent various geologic ages (Carboniferous to Tertiary) and coal ranks (lignite to bituminous). Duplicate splits of the six coal samples were ignited and partially combusted in the laboratory at atmospheric conditions. The resulting coal-combustion gases were collected and the molecular composition of the collected gases and isotopic analyses of δ13C of CO2, δ13C of CH4, and δ18O of CO2 were analysed by a commercial laboratory. Splits (~ 1 g) of the un-combusted dried ground coal samples were analyzed for δ13C and δ18O by the U.S. Geological Survey Reston Stable Isotope Laboratory.The major findings of this preliminary work indicate that the isotopic signatures of δ13C (relative to the Vienna Pee Dee Belemnite scale, VPDB) of CO2 resulting from coal combustion are similar to the δ13CVPDB signature of the bulk coal (− 28.46 to − 23.86 ‰) and are not similar to atmospheric δ13CVPDB of CO2 (~ − 8 ‰, see http://www.esrl.noaa.gov/gmd/outreach/isotopes/c13tellsus.html). The δ18O values of bulk coal are strongly correlated to the coal dry ash yields and appear to have little or no influence on the δ18O values of CO2

  20. Gc/ms analysis of coal tar composition produced from coal

    African Journals Online (AJOL)

    Coal pyrolysis is one of the significant approaches for the comprehensive utilization ... planigraphy-GC/MS; therefore a satisfactory analytical result obtained, which .... Among the aliphatic group of the coal tar, the proportion of alkene is larger ...

  1. Application status of on-line nuclear techniques in analysis of coal quality

    International Nuclear Information System (INIS)

    Cai Shaohui

    1993-01-01

    Nuclear techniques are favourable for continuous on-line analysis, because they are fast, non-intrusive. They can be used in the adverse circumstances in coal industry. The paper reviews the application status of on-line nuclear techniques in analysis of coal quality and economic benefits derived from such techniques in developed countries

  2. Coal 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    ACR's Coal 1992, the successor to the ACR Coal Marketing Manual, contains a comprehensive set of data on many aspects of the Australian coal industry for several years leading up to 1992. Tables and text give details of coal production and consumption in New South Wales, Queensland and other states. Statistics of the Australian export industry are complemented by those of South Africa, USA, New Zealand, Canada, Indonesia, China, Colombia, Poland and ex-USSR. Also listed are prices of Australian coking and non-coking coal, Australian coal stocks (and those of other major countries), loading port capacities, freight rates and coal quality requirements (analysis of coals by brand and supplier). A listing of Australian coal exporting companies is provided. A description of the spot Coal Screen Dealing System is given. World hard coal imports are listed by country and coal imports by major Asian countries tabulated. A forecast of demand by coal type and country up to the year 2000 is included.

  3. Using proximate analysis to characterize airborne dust generation from bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Page, S.J.; Organiscak, J.A.

    2005-11-01

    Prolonged exposure to airborne respirable coal dust is responsible for coal workers pneumoconiosis (CWP), commonly called black lung. Health research studies have identified that the prevalence and severity of CWP are directly related to both the amount of dust exposure and the coal rank. The amount of airborne respirable dust (ARD) smaller than 10 micrometers generated from breakage of different coals varies widely. To investigate the cause, researchers for the National Institute for Occupational Safety and Health (NIOSH) have conducted experiments to identify the causes of airborne respirable dust liberation. Laboratory crushing experiments were conducted on a range of low to high volatile bituminous coals from eight mines. The results indicate that the proximate analysis of a coal sample can provide a very good indicator of the potential for a dust problem. For application to the coal mining, processing, and utilization industries, data from 977 US coal seams compiled by the Department of Energy (DoE) has been used to calculate this dust generation potential from an equation based on the NIOSH measured data. A simple procedure for this calculation is provided. 1 fig.

  4. Material balance in coal. 2. Oxygen determination and stoichiometry of 33 coals

    International Nuclear Information System (INIS)

    Volborth, A.; Miller, G.E.; Garner, C.K.; Jerabek, P.A.

    1977-01-01

    The chemical analysis of coal can be supplemented by the determination of oxygen in high and low temperature ash, in coal as received and in coal dried at 105 0 C. The rapid method utilizes fast-neutron activation. The reaction 16 O(n,p) 16 N and counting of the 6.1 and 7.1 MeV gammas of 7.3 second half-life are used. A specially designed dual transfer and simultaneous counting system gives very accurate results. Oxygen in 33 coals ranging from lignite to low volatile bituminous coal is determined and compared with ''oxygen by difference.'' Considerable discrepancies are observed. Better stoichiometric results are obtained if oxygen in coal ash, in wet coal and in the dried coal is determined. This permits the estimation of the true material balances using data of the ultimate and the proximate coal analysis. The oxygen determination provides the coal chemist with an accurate basis and can be used to rank coal. The summation of the percent of carbon, nitrogen, hydrogen, sulfur, and oxygen becomes more meaningful and some errors can be detected and the state of completeness of coal analysis thus evaluated. Total sulfur can be estimated and oxidation effects during drying can be detected. These affect the moisture determination. It appears that after more data are collected, the interpretation of solid fuel analyses may be facilitated and will be stoichiometrically more meaningful. It is shown that it may be possible to simplify the present time-consuming methods of coal analysis

  5. SWOT analysis for safer carriage of bulk liquid chemicals in tankers.

    Science.gov (United States)

    Arslan, Ozcan; Er, Ismail Deha

    2008-06-15

    The application of strengths, weaknesses, opportunities and threats (SWOT) analysis to formulation of strategy concerned with the safe carriage of bulk liquid chemicals in maritime tankers was examined in this study. A qualitative investigation using SWOT analysis has been implemented successfully for ships that are designed to carry liquid chemicals in bulk. The originality of this study lies in the use of SWOT analysis as a management tool to formulate strategic action plans for ship management companies, ship masters and officers for the carriage of dangerous goods in bulk. With this transportation-based SWOT analysis, efforts were made to explore the ways and means of converting possible threats into opportunities, and changing weaknesses into strengths; and strategic plans of action were developed for safer tanker operation.

  6. Analysis of hard coal quality for narrow size fraction under 20 mm

    Science.gov (United States)

    Niedoba, Tomasz; Pięta, Paulina

    2018-01-01

    The paper presents the results of an analysis of hard coal quality diversion in narrow size fraction by using taxonomic methods. Raw material samples were collected in selected mines of Upper Silesian Industrial Region and they were classified according to the Polish classification as types 31, 34.2 and 35. Then, each size fraction was characterized in terms of the following properties: density, ash content, calorific content, volatile content, total sulfur content and analytical moisture. As a result of the analysis it can be stated that the best quality in the entire range of the tested size fractions was the 34.2 coking coal type. At the same time, in terms of price parameters, high quality of raw material characterised the following size fractions: 0-6.3 mm of 31 energetic coal type and 0-3.15 mm of 35 coking coal type. The methods of grouping (Ward's method) and agglomeration (k-means method) have shown that the size fraction below 10 mm was characterized by higher quality in all the analyzed hard coal types. However, the selected taxonomic methods do not make it possible to identify individual size fraction or hard coal types based on chosen parameters.

  7. Bulk analysis using nuclear techniques

    International Nuclear Information System (INIS)

    Borsaru, M.; Holmes, R.J.; Mathew, P.J.

    1983-01-01

    Bulk analysis techniques developed for the mining industry are reviewed. Using penetrating neutron and #betta#-radiations, measurements are obtained directly from a large volume of sample (3-30 kg) #betta#-techniques were used to determine the grade of iron ore and to detect shale on conveyor belts. Thermal neutron irradiation was developed for the simultaneous determination of iron and aluminium in iron ore on a conveyor belt. Thermal-neutron activation analysis includes the determination of alumina in bauxite, and manganese and alumina in manganese ore. Fast neutron activation analysis is used to determine silicon in iron ores, and alumina and silica in bauxite. Fast and thermal neutron activation has been used to determine the soil in shredded sugar cane. (U.K.)

  8. Panorama 2010: World coal resources

    International Nuclear Information System (INIS)

    Bessereau, G.; Saniere, A.

    2010-01-01

    At a time when the international community must face the key challenges posed by global warming as well as sustainability in general and many of our fellow citizens have come to look unfavorably upon fossil energies, the world is still heavily dependent on these energies to cover growing global energy demand. With proved reserves equivalent to more than 120 years at the present rate of extraction, with a better worldwide geographical distribution than petroleum, coal seems like an especially secure energy. While the renewable energies are showing rapid growth but still only represent a small proportion of the world energy mix, coal was the energy whose consumption grew at the fastest rate and for the sixth consecutive year. This gives cause for concern when one realizes that coal is also the most environmentally harmful energy at local level (its extraction generates pollution) and globally (its combustion emits CO 2 ). So how is it possible to reconcile the apparently irreconcilable, especially when, in some countries, coal represents the bulk of the energy resources? Since it is impossible to do without coal, the solution is to develop new 'clean coal' technologies, among which the capture and storage of CO 2 looks like a promising pathway. In the process, it will be necessary to overcome major technical, economic and social challenges. (author)

  9. Comparative Study of Coal and Biomass Co-Combustion With Coal Burning Separately Through Emissions Analysis

    OpenAIRE

    Mohammad Siddique; Suhail Ahmed Soomro; Aziza Aftab; Zahid Naeem Qaisrani; Abdul Sattar Jatoi; Asadullah; Ghulamullah Khan; Ehsanullah Kakar

    2016-01-01

    Appropriate eco-friendly methods to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal & coal-biomass co-combustion on the gaseous emissions. Different biomass' were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves. Various ratios of coal and biomass were used to investigate the combustion behavior of coal-biomass blends and their ...

  10. Extraction of Coal and Gangue Geometric Features with Multifractal Detrending Fluctuation Analysis

    Directory of Open Access Journals (Sweden)

    Kai Liu

    2018-03-01

    Full Text Available The separation of coal and gangue is an important process of the coal preparation technology. The conventional way of manual selection and separation of gangue from the raw coal can be replaced by computer vision technology. In the literature, research on image recognition and classification of coal and gangue is mainly based on the grayscale and texture features of the coal and gangue. However, there are few studies on characteristics of coal and gangue from the perspective of their outline differences. Therefore, the multifractal detrended fluctuation analysis (MFDFA method is introduced in this paper to extract the geometric features of coal and gangue. Firstly, the outline curves of coal and gangue in polar coordinates are detected and achieved along the centroid, thereby the multifractal characteristics of the series are analyzed and compared. Subsequently, the modified local singular spectrum widths Δ h of the outline curve series are extracted as the characteristic variables of the coal and gangue for pattern recognition. Finally, the extracted geometric features by MFDFA combined with the grayscale and texture features of the images are compared with other methods, indicating that the recognition rate of coal gangue images can be increased by introducing the geometric features.

  11. Thermal dynamic analysis of sulfur removal from coal by electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Gao, J.; Meng, F. [Qinghua University, Beijing (China). Dept. of Thermal Engineering

    2002-06-01

    The electrolytic reactions about sulfur removal from coal were studied by using chemical thermal dynamic analysis. According to the thermodynamical data, the Gibbs free energy value of the electrolytic reactions of pyritic and organic sulfur removal from coal is higher than zero. So, these electrolytic reactions are not spontaneous chemical reactions. In order to carry out desulfurisation by electrolysis, a certain voltage is necessary and important. Because theoretic decomposition voltage of pyrite and some parts of organic sulfur model compound is not very high, electrolysis reactions are easily to be carried out by using electrolysis technology. Mn ion and Fe ion are added into electrolysis solutions to accelerate the desulfurisation reaction. The electrolytic decomposition of coal is discussed. Because the theoretical decomposition voltage of some organic model compound is not high, the coal decomposition might happen. 17 refs., 4 tabs.

  12. Comparative Study of Coal and Biomass Co-Combustion With Coal Burning Separately Through Emissions Analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Siddique

    2016-06-01

    Full Text Available Appropriate eco-friendly methods to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal & coal-biomass co-combustion on the gaseous emissions. Different biomass' were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves. Various ratios of coal and biomass were used to investigate the combustion behavior of coal-biomass blends and their emissions. The study revealed that the ratio of 80:20 of coal (lignite-cow dung and 100% banana tree leaves emits less emissions of CO, CO2, NOx and SO2 as compared to 100% coal. Maximum amount of CO emissions were 1510.5 ppm for banana tree waste and minimum amount obtained for lakhra coal and cow dung manure (70:30 of 684.667 ppm. Maximum percentage of SO2 (345.33 ppm was released from blend of lakhra coal and tree leaves (90:10 and minimum amount of SO2 present in samples is in lakhra coal-banana tree waste (80:20. The maximum amount of NO obtained for banana tree waste were 68 ppm whereas maximum amount of NOx was liberated from lakhra coal-tree leaves (60:40 and minimum amount from cow dung manure (30.83 ppm. The study concludes that utilization of biomass with coal could make remedial action against environment pollution.

  13. Interaction and the structures of coal

    Science.gov (United States)

    Opaprakasit, Pakorn

    solvents, which in turn enhances the coal extraction yield. Finally, the evidence for the presence of a glass transition temperature in coal was examined. The results from Differential Scanning Calorimetry showed that no transition similar to the Tg can be observed in bulk coal or its low-molecular weight fraction, pyridine soluble extracted material, at a temperature near 110°C. In contrast, an irreversible transition that is due to water evaporation has been found. Thermomechanical measurements, which are very sensitive to the presence of a Tg in synthetic polymers, also provided no evidence for a Tg below temperatures where chemical reactions occur. Additionally, the results from Thermomechanical Analysis showed an expansion in size when the coal was heated to 300°C, which is associated with a "caking" process. The degree of expansion during this "caking" process is about five times greater in the direction perpendicular to the bedding plane than the parallel, indicating an accommodation of anisotropic strain relaxation, which was generated in the direction perpendicular to the bedding plane during the coalification process.

  14. Problems with the quantitative spectroscopic analysis of oxygen rich Czech coals

    Energy Technology Data Exchange (ETDEWEB)

    Pavlikova, H.; Machovic, V.; Cerny, J. [Inst. of Chemical Technology, Prague (Czechoslovakia); Sebestova, E. [Inst. of Rock Structure and Mechanics, Prague (Czechoslovakia)

    1995-12-01

    Solid state NMR and FTIR spectroscopies are two main methods used for the structural analysis of coals and their various products. Obtaining quantitative parameters from coals, such as arornaticity (f{sub a}) by the above mentioned methods can be a rather difficult task. Coal samples of various rank were chosen for the quantitative NMR, FTIR and EPR analyses. The aromaticity was obtained by the FTIR, {sup 13}C CP/MAS and SP/MAS NMR experiments. The content of radicals and saturation characteristics of coals were measured by EPR spectroscopy. The following problems have been discussed: 1. The relationship between the amount of free radicals (N{sub g}) and f{sub a} by NMR. 2. The f{sub a} obtained by solid state NMR and FTIR spectroscopies. 3. The differences between the f{sub a} measured by CP and SP/NMR experiments. 4. The relationship between the content of oxygen groups and the saturation responses of coals. The reliability of our results was checked by measuring the structural parameters of Argonne premium coals.

  15. Prospects for coal and clean coal technology in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This report examines the current energy outlook for the Philippines in regard not only to coal but also other energy resources. The history of the power sector, current state of play and future plans to meet the increasing energy demand from a growing population are discussed. There is also analysis of the trends for coal demand and production, imports and exports of coal and the types of coal-fired power stations that have been built. This includes examination of the legislation involving coal and the promotion of clean coal technologies.

  16. Econometric Analysis of Bulk Shipping: implications for investment strategies and financial decision-making

    NARCIS (Netherlands)

    S. Tsolakis

    2005-01-01

    textabstractThis thesis provides an econometric analysis of the bulk shipping markets and the implications for shipping investment and financial decision making. Chapter 1 sets the scene by providing a historic analysis of bulk shipping markets over the last 55 years. From this analysis, four

  17. Comparative study of coal and biomass co-combustion with coal burning separately through emissions analysis

    International Nuclear Information System (INIS)

    Siddique, M.; Asadullah, A.; Khan, G.; Soomro, S.A.

    2016-01-01

    Appropriate eco-friendly methos to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal and coal biomass co-combustion on the gaseous emissions. Different biomass were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves Various ratios of coal and biomass were used to investigate the combustion behavior of coal cow dung and 100% banana tree leaves emits less emission of CO, CO/sub 2/, NOx and SO/sub 2/ as compared to 100% coal, Maximum amount of CO emission were 1510.5 ppm for bannana tree waste and minimum amount obtained for lakhra coal and cow dung manure (70:30) of 684.667 leaves (90:10) and minimum amount of SO/sub 2/ present in samples is in lakhra coal-banana tree waste (80:20). The maximum amount of NO obtained for banana tree waste were 68 ppm whereas amount from cow dung manure (30.83 ppm). The study concludes that utilization of biomass with coal could make remedial action against environment pollution. (author)

  18. US export coal in the 1990s - price, volume and quality

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, J

    1991-08-01

    This report examines the following: current US coal exports; the domestic steam coal market and the domestic coking coal market; transport of export coal; reserves, production and productivity; and export markets for US coal. The report concluded that from the mid-1990s, buyers of the leading US coal export brands will face steadily rising prices as a result of fundamental shifts in the US domestic market affecting those regions supplying the bulk of the country's exports. The coals at the forefront of these price rises will be low-sulphur steam coal and high-volatile coking coal. Districts 8 and 7, the region that produces most of these types of coal, will be called upon to expand production by 50 m short tons per year by the end of the decade. However, there will be little scope for further productivity gains and because of this, and the need for significant capital investment, mining costs will rise. Inland freight rates will also rise as barge companies and railroads seek to cover investments. 53 figs., 66 tabs.

  19. Waterberg coal characteristics and SO2 minimum emissions standards in South African power plants.

    Science.gov (United States)

    Makgato, Stanford S; Chirwa, Evans M Nkhalambayausi

    2017-10-01

    Key characteristics of coal samples from the supply stock to the newly commissioned South African National Power Utility's (Eskom's) Medupi Power Station - which receives its supply coal from the Waterberg coalfield in Lephalale (Limpopo Province, South Africa) - were evaluated. Conventional coal characterisation such as proximate and ultimate analysis as well as determination of sulphur forms in coal samples were carried out following the ASTM and ISO standards. Coal was classified as medium sulphur coal when the sulphur content was detected in the range 1.15-1.49 wt.% with pyritic sulphur (≥0.51 wt.%) and organic sulphur (≥0.49 wt.%) accounted for the bulk of the total sulphur in coal. Maceral analyses of coal showed that vitrinite was the dominant maceral (up to 51.8 vol.%), whereas inertinite, liptinite, reactive semifusinite and visible minerals occurred in proportions of 22.6 vol.%, 2.9 vol.%, 5.3 vol.% and 17.5 vol.%, respectively. Theoretical calculations were developed and used to predict the resultant SO 2 emissions from the combustion of the Waterberg coal in a typical power plant. The sulphur content requirements to comply with the minimum emissions standards of 3500 mg/Nm 3 and 500 mg/Nm 3 were found to be ≤1.37 wt.% and ≤0.20 wt.%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Refining and end use study of coal liquids II - linear programming analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, C.; Tam, S.

    1995-12-31

    A DOE-funded study is underway to determine the optimum refinery processing schemes for producing transportation fuels that will meet CAAA regulations from direct and indirect coal liquids. The study consists of three major parts: pilot plant testing of critical upgrading processes, linear programming analysis of different processing schemes, and engine emission testing of final products. Currently, fractions of a direct coal liquid produced form bituminous coal are being tested in sequence of pilot plant upgrading processes. This work is discussed in a separate paper. The linear programming model, which is the subject of this paper, has been completed for the petroleum refinery and is being modified to handle coal liquids based on the pilot plant test results. Preliminary coal liquid evaluation studies indicate that, if a refinery expansion scenario is adopted, then the marginal value of the coal liquid (over the base petroleum crude) is $3-4/bbl.

  1. Nuclear techniques for bulk and surface analysis of materials

    International Nuclear Information System (INIS)

    D'Agostino, M.D.; Kamykowski, E.A.; Kuehne, F.J.; Padawer, G.M.; Schneid, E.J.; Schulte, R.L.; Stauber, M.C.; Swanson, F.R.

    1978-01-01

    A review is presented summarizing several nondestructive bulk and surface analysis nuclear techniques developed in the Grumman Research Laboratories. Bulk analysis techniques include 14-MeV-neutron activation analysis and accelerator-based neutron radiography. The surface analysis techniques include resonant and non-resonant nuclear microprobes for the depth profile analysis of light elements (H, He, Li, Be, C, N, O and F) in the surface of materials. Emphasis is placed on the description and discussion of the unique nuclear microprobe analytical capacibilities of immediate importance to a number of current problems facing materials specialists. The resolution and contrast of neutron radiography was illustrated with an operating heat pipe system. The figure shows that the neutron radiograph has a resolution of better than 0.04 cm with sufficient contrast to indicate Freon 21 on the inner capillaries of the heat pipe and pooling of the liquid at the bottom. (T.G.)

  2. A X-ray diffraction analysis on graphene layers of Assam coal

    Energy Technology Data Exchange (ETDEWEB)

    Saikia, B.K.; Boruah, R.K.; Gogoi, P.K. [CSIR, Jorhat (India)

    2009-01-15

    The so-called turbostatic structure of carbons in coal with randomly oriented stacking of the lamellae (graphene) produces intense peaks, which are the dominant features in its X-ray diffraction profiles. The diffractogram may be conveniently divided into two regions of reciprocal space, the medium S region (1 < S < 3 {angstrom}) and a high S region (S > 3 {angstrom}) where S = 4 {pi} {lambda} {sup -1}sin{theta}. To better understand the molecular level structure of high sulphur Assam coal, two coal samples (Tirap-1 and Tirap-2) from Tirap colliery of Makum coalfield, Assam (India) has been interpreted in this study by using the X-ray diffraction profiles. Random layered (graphene) structural parameters of these coals were determined by using X-ray diffraction technique, which showed that the L{sub a} and L{sub c} are 64.99 angstrom and 22.63 angstrom for Tirap-2 and 55.54 angstrom and 23.80 angstrom for that of Tirap-1 coals respectively. The position of {gamma} band was found to be at 4.34 {angstrom} and 4.13 angstrom for Tirap-2 and Tirap-1 coals respectively. The number of layers and average number of carbon atoms (N) per aromatic graphene were found to be 21 and 8 for both the coal samples. Proximate, ultimate and ash analysis of the two coal samples were also carried out in this investigation.

  3. Analysis of coals and biomass pyrolysis using the distributed activation energy model.

    Science.gov (United States)

    Li, Zhengqi; Liu, Chunlong; Chen, Zhichao; Qian, Juan; Zhao, Wei; Zhu, Qunyi

    2009-01-01

    The thermal decomposition of coals and biomass was studied using thermogravimetric analysis with the distributed activation energy model. The integral method resulted in Datong bituminous coal conversions of 3-73% at activation energies of 100-486 kJ/mol. The corresponding frequency factors were e(19.5)-e(59.0)s(-1). Jindongnan lean coal conversions were 8-52% at activation energies of 100-462 kJ/mol. Their corresponding frequency factors were e(13.0)-e(55.8)s(-1). The conversion of corn-stalk skins were 1-84% at activation energies of 62-169 kJ/mol with frequency factors of e(10.8)-e(26.5)s(-1). Datong bituminous coal, Jindongnan lean coal and corn-stalk skins had approximate Gaussian distribution functions with linear ln k(0) to E relationships.

  4. X-ray structural analysis of some Indian coals

    International Nuclear Information System (INIS)

    Binoy K Saikia, B.K.

    2009-01-01

    Coal is one of the most abundant energy resources and has the capability to meet future energy needs with high reliability. The use of coal as an energy source and as a source of organic chemicals feedstock may become more important in the future. It is physically and chemically a heterogeneous and carbonaceous rock which consists of organic and inorganic materials. Assam coal has been, and continuous to be, a valuable energy source, especially for the various industry in India and for liquefactions of coal. The basic chemical structure of coal that has been widely accepted today was built up from the synthesis of results obtained from X-ray diffraction data. The present paper reports a comparative investigation of coals from different collieries/areas of Makum coal field, Assam viz. Ledo, Tikak, Baragolai, Tipong and Tirap collieries Makum coal field, Assam with the help of X-ray diffraction (XRD). The X-ray diffraction patterns indicate that the coals are amorphous in nature. The present XRD method includes the evaluation of Function of Radial Distribution of Atoms (FRDA) and structural interpretations of the coals from their Radial Distribution Function (RDF) plots after proper corrections for air scatter, absorption by sample and polarization. The curve intensity profiles in FRDA clearly show quite regular molecular packets for these coals. The first maxima in the FRDA curves was obtained at r= 0.4 Amstrong for Ledo, Baragolai and Tipong coals whereas for Tikak coal it was observed at r= 0.5 Amstrong. The first maximum in the pair distribution function plots, G (r) of Ledo, Tikak, and Tipong coals was obtained at r=0.15 nm whereas for Baragolai and Tirap coals it was observed at r=0.14 nm and r=0.12 nm respectively, which relates to the C=C (aliphatic/aromatic) bonds in coal matrix. The Assam coal samples from Ledo, Tikak, Baragolai, Tipong and Tirap collieries of Makum coalfield have almost the same RDF inter-atomic distances except slight differences. This

  5. Firing a sub-bituminous coal in pulverized coal boilers configured for bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    N. Spitz; R. Saveliev; M. Perelman; E. Korytni; B. Chudnovsky; A. Talanker; E. Bar-Ziv [Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2008-07-15

    It is important to adapt utility boilers to sub-bituminous coals to take advantage of their environmental benefits while limiting operation risks. We discuss the performance impact that Adaro, an Indonesian sub-bituminous coal with high moisture content, has on opposite-wall and tangentially-fired utility boilers which were designed for bituminous coals. Numerical simulations were made with GLACIER, a computational-fluid-dynamic code, to depict combustion behavior. The predictions were verified with full-scale test results. For analysis of the operational parameters for firing Adaro coal in both boilers, we used EXPERT system, an on-line supervision system developed by Israel Electric Corporation. It was concluded that firing Adaro coal, compared to a typical bituminous coal, lowers NOx and SO{sub 2} emissions, lowers LOI content and improves fouling behavior but can cause load limitation which impacts flexible operation. 21 refs., 7 figs., 3 tabs.

  6. Predicted coal production trends in Kentucky: The results of available coal resources, coal quality demands, and regulatory factors

    International Nuclear Information System (INIS)

    Watson, W.D.

    1993-01-01

    Many factors affect the viability of regional coal production markets including (1) coal quality and recoverable tonnage, (2) coal mining cost, (3) the regional and time varying patterns of coal demand growth, (4) regulations and other institutional constraints that affect coal demand and utilization, and (5) the regional array of coal transport modes and rates. This analysis integrates these factors into an assessment of coal production prospects (separately) for eastern and western Kentucky coal producing counties for the decade of the 90's. The integration indicates that eastern Kentucky coal production will peak and begin to decline by the end of the decade whereas western Kentucky coal production will continue to grow. No single factor explains these trends. There is plenty of available minable coal. The combination of changes in environmental regulations, some increase in coal mining costs, and the mining-out of low sulfur reserves are the main factors that account for the production trends

  7. Off-line image analysis for froth flotation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Citir, C.; Aktas, Z.; Berber, R. [Ankara University, Ankara (Turkey). Faculty of Engineering

    2004-05-15

    Froth flotation is an effective process for separating sulphur and fine minerals from coal. Such pre-cleaning of coal is necessary in order to reduce the environmental and operational problems in power plants. The separation depends very much on particle surface properties, and the selectivity can be improved by addition of a reagent. Image analysis can be used to determine the amount of reagent, by using the relation between surface properties and froth bubble sizes. This work reports some improvements in the efficiency of the image analysis, and in determination of bubble diameter distribution towards developing froth-based flotation models. Ultimate benefit of the technique would allow a pre-determined reagent addition profile to be identified for controlling the separation process.

  8. COAL OF THE FUTURE (Supply Prospects for Thermal Coal by 2030-2050)

    OpenAIRE

    2007-01-01

    The report, produced by Messrs. Energy Edge Ltd. (the U.K.) for the JRC Institute for Energy, aims at making a techno-economic analysis of novel extraction technologies for coal and their potential contribution to the global coal supply. These novel extraction technologies include: advanced coal mapping techniques, improved underground coal mining, underground coal gasification and utilisation of coalmine methane gas.

  9. Process for heating coal-oil slurries

    Science.gov (United States)

    Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

  10. Strength and Compaction Analysis of Sand-Bentonite-Coal Ash Mixes

    Science.gov (United States)

    Sobti, Jaskiran; Singh, Sanjay Kumar

    2017-08-01

    This paper deals with the strength and compaction characteristics of sand-bentonite-coal ash mixes prepared by varying percentages of sand, bentonite and coal ash to be used in cutoff walls and as a liner or cover material in landfills. The maximum dry density (MDD) and optimum moisture content (OMC) of sand-bentonite mixes and sand-bentonite-coal ash mixes were determined by conducting the standard proctor test. Also, the strength and stiffness characteristics of soil mixes were furnished using unconfined compressive strength test. The results of the study reveal influence of varying percentages of coal ash and bentonite on the compaction characteristics of the sand-bentonite-coal ash mixes. Also, validation of a statistical analysis of the correlations between maximum dry density (MDD), optimum moisture content (OMC) and Specific Gravity (G) was done using the experimental results. The experimental results obtained for sand-bentonite, sand-bentonite-ash and coal ash-bentonite mixes very well satisfied the statistical relations between MDD, OMC and G with a maximum error in the estimate of MDD being within ±1 kN/m3. The coefficient of determination (R2) ranged from 0.95 to 0.967 in case of sand-bentonite-ash mixes. However, for sand-bentonite mixes, the R2 values are low and varied from 0.48 to 0.56.

  11. A global coal production forecast with multi-Hubbert cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Patzek, Tadeusz W. [Department of Petroleum and Geosystems Engineering, The University of Texas, Austin, TX 78712 (United States); Croft, Gregory D. [Department of Civil and Environmental Engineering, The University of California, Berkeley, Davis Hall, CA 94720 (United States)

    2010-08-15

    Based on economic and policy considerations that appear to be unconstrained by geophysics, the Intergovernmental Panel on Climate Change (IPCC) generated forty carbon production and emissions scenarios. In this paper, we develop a base-case scenario for global coal production based on the physical multi-cycle Hubbert analysis of historical production data. Areas with large resources but little production history, such as Alaska and the Russian Far East, are treated as sensitivities on top of this base-case, producing an additional 125 Gt of coal. The value of this approach is that it provides a reality check on the magnitude of carbon emissions in a business-as-usual (BAU) scenario. The resulting base-case is significantly below 36 of the 40 carbon emission scenarios from the IPCC. The global peak of coal production from existing coalfields is predicted to occur close to the year 2011. The peak coal production rate is 160 EJ/y, and the peak carbon emissions from coal burning are 4.0 Gt C (15 Gt CO{sub 2}) per year. After 2011, the production rates of coal and CO{sub 2} decline, reaching 1990 levels by the year 2037, and reaching 50% of the peak value in the year 2047. It is unlikely that future mines will reverse the trend predicted in this BAU scenario. (author)

  12. Coal at the crossroads

    International Nuclear Information System (INIS)

    Scaroni, A.W.; Davis, A.; Schobert, H.; Gordon, R.L.; Ramani, R.V.; Frantz, R.L.

    1992-01-01

    Worldwide coal reserves are very large but coal suffers from an image of being an environmentally unfriendly and inconvenient fuel. Aspects discussed in the article include: coal's poor image; techniques for coal analysis, in particular instrumented techniques; developments in clean coal technology e.g. coal liquefaction, fluidized bed combustion, co-generation and fuel slurries; the environmental impact of mining and land reclamation; and health aspects. It is considered that coal's future depends on overcoming its poor image. 6 photos

  13. A scanning electron microscope method for automated, quantitative analysis of mineral matter in coal

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Ward, C.R. [R.A. Creelman and Associates, Epping, NSW (Australia)

    1996-07-01

    Quantitative mineralogical analysis has been carried out in a series of nine coal samples from Australia, South Africa and China using a newly-developed automated image analysis system coupled to a scanning electron microscopy. The image analysis system (QEM{asterisk}SEM) gathers X-ray spectra and backscattered electron data from a number of points on a conventional grain-mount polished section under the SEM, and interprets the data from each point in mineralogical terms. The cumulative data in each case was integrated to provide a volumetric modal analysis of the species present in the coal samples, expressed as percentages of the respective coals` mineral matter. Comparison was made of the QEM{asterisk}SEM results to data obtained from the same samples using other methods of quantitative mineralogical analysis, namely X-ray diffraction of the low-temperature oxygen-plasma ash and normative calculation from the (high-temperature) ash analysis and carbonate CO{sub 2} data. Good agreement was obtained from all three methods for quartz in the coals, and also for most of the iron-bearing minerals. The correlation between results from the different methods was less strong, however, for individual clay minerals, or for minerals such as calcite, dolomite and phosphate species that made up only relatively small proportions of the mineral matter. The image analysis approach, using the electron microscope for mineralogical studies, has significant potential as a supplement to optical microscopy in quantitative coal characterisation. 36 refs., 3 figs., 4 tabs.

  14. Mercury in coals and fly ashes from Republika and Bobov dol thermoelectric power plants

    Science.gov (United States)

    Kostova, I.; Vassileva, C.; Hower, J.; Mastalerz, Maria; Vassilev, S.; Nikolova, N.

    2011-01-01

    Feed coal and y ash samples were collected at Republika and Bobov Dol thermoelectric power plants (TPPs). The y ashes (FAs) were collected fromthree rows of the hot-side electrostatic precipitators (ESPs) array. Each sam- ple was wet-screened at 100, 200, 325 and 500 mesh. The coals and y ashes were characterized with regard to their petrological and chemical composition (including mercury content) and to their surface area properties. The calculated enrichment factor (EF) shows that the Hg concentrations in the bulk coal samples from Republika and Bobov Dol TPPs are 2.19 and 1.41, respectively. In some coal size fractions the EF can be up to 4 times higher than the Clarke value. The calculated EF for fly ashes shows that the Hg concentrations in the bulk samples studied are lower (between 0.03 and 0.32) than the Clarke value. The most enriched in Hg are the fly ashes from the 3rd ESP row of Republika TPP. The Hg distribution in bulk FAs taken from dierent rows of the electrostatic precipitators of both TPPs studied shows well established tendency of gradual increase in the Hg content from the 1st to the 2nd and 3rd ESP rows. The correlation between Hg content and surface area, mesopore and micropore volume of y ashes was also done in the present investigation.

  15. GC/MS analysis of coal tar composition produced from coal pyrolysis

    African Journals Online (AJOL)

    Coal tar is a significant product generated from coal pyrolysis. A detailed analytical study on its composition and chemical structure will be of great advantage to its further processing and utilization. Using a combined method of planigraphy-gas chromatograph/mass spectroscopy (GC/MS), this work presents a composition ...

  16. Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry

    Science.gov (United States)

    Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.

    1990-01-01

    X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.

  17. Formation and retention of methane in coal

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  18. Non-matrix corrected organic sulfur determination by energy dispersive X-ray spectroscopy for western Kentucky coals and residues

    International Nuclear Information System (INIS)

    Clark, C.P.; Freeman, G.B.; Hower, J.C.

    1984-01-01

    A method for non-matrix corrected organic sulfur analysis by energy dispersive X-ray spectroscopy has been developed using petroleum coke standards. Typically, electron beam microanalysis is a rapid, nondestructive analytical technique to quantitatively measure organic sulfur in coal. The results show good correlation to ASTM values for numerous well characterized coals with a wide range in total and pyritic sulfur content. This direct analysis is capable of reducing error commonly associated with the present ASTM method which relies on an indirect measure of organic sulfur by difference. The precision of the organic sulfur values determined in the present study is comparable to that obtained by ZAF matrix corrected microanalysis. The energy dispersive microanalysis is capable of measuring micro as well as bulk organic sulfur levels

  19. Coal information 1995

    International Nuclear Information System (INIS)

    1996-01-01

    This volume is a comprehensive reference book on current world coal market trends and long-term prospects to 2010. It contains an in-depth analysis of the 1995 international coal market covering prices, demand, trade, supply and production capacity as well as over 450 pages of country specific statistics on OECD and key non-OECD coal producing and consuming countries. The book also includes a summary of environmental policies on climate change and on coal-related air quality issues as well as essential facts on coal-fired power stations in coal-importing regions, on coal ports world-wide and on emission standards for coal-fired boilers in OECD countries. Coal Information is one of a series of annual IEA statistical publications on major energy sources; other reports are Oil and Gas Information and Electricity Information. Coal Information 1995 is published in July 1996. (author)

  20. Cofiring of rice straw and coal in a coal-fired utility boiler: thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Raphael Guardini; Bazzo, Edson [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Mechanical Engineering], Emails: miyake@labcet.ufsc.br, ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia, Capivari de Baixo, SC (Brazil)], E-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    Cofiring combustion of biomass and coal is a near-term, low cost alternative for reduction fossil greenhouse gas emissions in coal fired power plants. Recent reviews identified over 288 applications in over 16 countries with promising results for different coal and biomass combinations. In Brazil, there is no previous experience of cofiring biomass and coal, resulting in new challenges to fuel handling and boiler operation. A first experience is now proposed into an existing coal power plant, using rice straw as biomass fuel. A thermodynamic model was developed in order to predict operating and emissions data, which should be used in cofiring system design. For 10% of biomass input, the total CO{sub 2} emission is expected to slightly increase. However, considering only the coal CO{sub 2} emission, it is expected to decrease in about 10%. Also, the corresponding SO{sub 2} emission decreases in about 8%. (author)

  1. Coal Price Forecasting and Structural Analysis in China

    Directory of Open Access Journals (Sweden)

    Xiaopeng Guo

    2016-01-01

    Full Text Available Coal plays an important role in China’s energy structure and its price has been continuously decreasing since the second half of 2012. Constant low price of coal affected the profits of coal enterprises and the coal use of its downstream firms; the precision of coal price provides a reference for these enterprises making their management strategy. Based on the historical data of coal price and related factors such as port stocks, sales volume, futures prices, Producer Price Index (PPI, and crude oil price rate from November 2013 to June 2016, this study aims to forecast coal price using vector autoregression (VAR model and portray the dynamic correlations between coal price and variables by the impulse response function and variance decomposition. Comparing predicted and actual values, the root mean square error (RMSE was small which indicated good precision of this model. Thus this short period prediction can help these enterprises make the right business decisions.

  2. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  3. Why do electricity utilities cooperate with coal suppliers? A theoretical and empirical analysis from China

    International Nuclear Information System (INIS)

    Zhao Xiaoli; Lyon, Thomas P.; Wang Feng; Song Cui

    2012-01-01

    The asymmetry of Chinese coal and electricity pricing reforms leads to serious conflict between coal suppliers and electricity utilities. Electricity utilities experience significant losses as a result of conflict: severe coal price fluctuations, and uncertainty in the quantity and quality of coal supplies. This paper explores whether establishing cooperative relationships between coal suppliers and electricity utilities can resolve conflicts. We begin with a discussion of the history of coal and electricity pricing reforms, and then conduct a theoretical analysis of relational contracting to provide a new perspective on the drivers behind the establishment of cooperative relationships between the two parties. Finally, we empirically investigate the role of cooperative relationships and the establishment of mine-mouth power plants on the performance of electricity utilities. The results show that relational contracting between electricity utilities and coal suppliers improves the market performance of electricity utilities; meanwhile, the transportation cost savings derived from mine-mouth power plants are of importance in improving the performance of electricity utilities. - Highlights: ► We discuss the history of coal and electricity pricing reforms. ► The roots of conflicts between electricity and coal firms are presented. ► We conduct a theoretical analysis of relational contracting. ► The role of mine-mouth power plants on the performance of power firms is examined.

  4. Coal yearbook 1993

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This book is the first coal yearbook published by ATIC (France). In a first chapter, economical context of coal worldwide market is analyzed: comparative evaluations on coal exports and imports, coal industry, prices, production in USA, Australia, South Africa, China, former USSR, Poland, Colombia, Venezuela and Indonesia are given. The second chapter describes the french energy context: national coal production, imports, sectorial analysis, maritime transport. The third chapter describes briefly the technologies of clean coal and energy saving developed by Charbonnages de France: fossil-fuel power plants with combined cycles and cogeneration, fluidized beds for the recovery of coal residues, recycling of agricultural wastes (sugar cane wastes) in thermal power plant, coal desulfurization for air pollution abatement. In the last chapter, statistical data on coal, natural gas and crude oil are offered: world production, world imports, world exports, french imports, deliveries to France, coal balance, french consumption of primary energy, power generation by fuel type

  5. Thermogravimetric analysis in the characterization of colombian coals used in the production of coke

    International Nuclear Information System (INIS)

    Guerrero, Camilo; Salamanca, Monica E; Diaz, Jose de J

    2010-01-01

    Five types of coal from the states of Cundinamarca, Boyaca and Norte de Santander (Colombia) were characterized by proximate, ultimate, rheological, petrographic, calorific and thermogravimetric analysis. The parameters used, especially the ones which determine the rheological properties show that the studied coals and its blends could produce good quality coke. It was observed the inverse relationship between the volatile matter content and the mean vitrinite reflectance, relationship which is attributed to the increase of the aromaticity in the molecular structure of the coal as a consequence of the rank increase. The parameters derived from the thermogravimetric analysis, maximum velocity of de-volatilization and the temperature of maximum velocity of de-volatilization and the media reflectance of the vitrinite showed good correlations. Also was observed an interesting correlation between the velocity of de-volatilization and maximum fluidity. This shows that the thermogravimetric analysis can be a useful tool to characterize in a quick way coals used for metallurgical coke production.

  6. Materials, process, product analysis of coal process technology. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, J. C.; Roig, R. W.; Loridan, A.; Leggett, N. E.; Capell, R. G.; Humpstone, C. C.; Mudry, R. N.; Ayres, E.

    1976-02-01

    The purpose of materials-process-product analysis is a systematic evaluation of alternative manufacturing processes--in this case processes for converting coal into energy and material products that can supplement or replace petroleum-based products. The methodological steps in the analysis include: Definition of functional operations that enter into coal conversion processes, and modeling of alternative, competing methods to accomplish these functions; compilation of all feasible conversion processes that can be assembled from combinations of competing methods for the functional operations; systematic, iterative evaluation of all feasible conversion processes under a variety of economic situations, environmental constraints, and projected technological advances; and aggregative assessments (economic and environmental) of various industrial development scenarios. An integral part of the present project is additional development of the existing computer model to include: A data base for coal-related materials and coal conversion processes; and an algorithmic structure that facilitates the iterative, systematic evaluations in response to exogenously specified variables, such as tax policy, environmental limitations, and changes in process technology and costs. As an analytical tool, the analysis is intended to satisfy the needs of an analyst working at the process selection level, for example, with respect to the allocation of RDandD funds to competing technologies.

  7. Integrated analysis software for bulk power system stability

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T; Nagao, T; Takahashi, K [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1994-12-31

    This paper presents Central Research Inst.of Electric Power Industry - CRIEPI`s - own developed three softwares for bulk power network analysis and the user support system which arranges tremendous data necessary for these softwares with easy and high reliability. (author) 3 refs., 7 figs., 2 tabs.

  8. South Blackwater Coal`s maintenance program

    Energy Technology Data Exchange (ETDEWEB)

    Nash, J. [South Blackwater Coal Limited, Blackwater, Qld. (Australia)

    1998-09-01

    The South Blackwater operation consists of two opencut mining areas and two underground mines (Laleham and Kenmure) near Blackwater in central Queensland, all of which supply coal to a central coal preparation plant. South Blackwater Coal Ltd. recently developed a maintenance improvement programme, described in this article. The programme involved implementation systems of key performance indicators (KPIs), benchmaking, condition monitoring, work planning and control, failure analysis and maintenance audit. Some improvements became almost immediately apparent, others were quite gradual. Major results included: improved availability (and reliability) of all opencast fleets, improvements in rear dump availability; reduced maintenance man-hours for opencast fleets; and increased availability of the coal handling and preparation plant. The paper is an edited version of that presented at the `Maintenance in mining conference` 16-19 March 1998, held in Bali, Indonesia. 4 figs., 2 photos.

  9. Electrochemical corrosion behavior of carbon steel with bulk coating holidays

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With epoxy coal tar as the coating material, the electrochemical corrosion behavior of Q235 with different kinds of bulk coating holidays has been investigated with EIS (Electrochemical Impedance Spectroscopy) in a 3.5vol% NaCl aqueous solution.The area ratio of bulk coating holiday to total coating area of steel is 4.91%. The experimental results showed that at free corrosionpotential, the corrosion of carbon steel with disbonded coating holiday is heavier than that with broken holiday and disbonded & broken holiday with time; Moreover, the effectiveness of Cathodic Protection (CP) of carbon steel with broken holiday is better than that with disbonded holiday and disbonded & broken holiday on CP potential -850 mV (vs CSE). Further analysis indicated that the two main reasons for corrosion are electrolyte solution slowly penetrating the coating, and crevice corrosion at steel/coating interface near holidays. The ratio of impedance amplitude (Z) of different frequency to minimum frequency is defined as K value. The change rate of K with frequency is related to the type of coating holiday.

  10. Innovative Extraction Method for a Coal Seam with a Thick Rock-Parting for Supporting Coal Mine Sustainability

    Directory of Open Access Journals (Sweden)

    Meng Li

    2017-10-01

    Full Text Available As thick rock partings delay the efficient mining of coal seams and constrain the sustainable development of coal mines, an innovative extraction method for a coal seam with thick rock parting was proposed. The coal seams were divided into different sub-zones according to the thickness of rock parting and then the sub-zones were mined by separately using three mining schemes involving full-seam mining, combined mining using backfill and caving (CMBC, and reducing height mining. Afterwards, the study introduced the basic mechanism and key devices for the CMBC and analysed the working state of the backfill support in detail. Moreover, the method for calculating the length of the backfill zone was proposed to design the length of backfill zone and the influences of four factors (including bulking coefficient of rock parting on the length of the backfill zone were also explored. By taking the No. 22203 panel, Buertai mine, Inner Mongolia, China as an example, the mined coal resource by using the CMBC extraction method will increase by 1.83 × 106 tons and the recovery ratio will rise from 56.2% to 92.4% compared with mining of the 2-2 upper coal seam alone. Moreover, by applying CMBC, a series of environmental and ecological problems caused by rock parting is reduced, which can improve the environment in mined areas. The research can provide technological guidance for mining panels of a coal seam with a thick rock parting and the disposal thereof under similar conditions.

  11. In situ analysis of coal by scintillation gamma-ray spectrometry in deep boreholes

    International Nuclear Information System (INIS)

    Chrusciel, E.; Kopec, M.; Niewodniczanski, J.; Palka, K.W.; Kaczmarski, S.M.; Wojda, F.

    1987-01-01

    Neutron-gamma and gamma-gamma spectrometric loggings have been used for evaluation of coal seams. Interpretation of the logging curves was based on the method of spectrometric parameters i.e. the ratios of gamma-ray intensities recorded within two energy intervals, which depended strongly on a given parameter of coal, while the influence of other parameters is reduced. The boundaries of energy intervals were chosen by multiple correlation analysis of the results of point measurements and results of coal samples assessments. These energy intervals are later used in continuous borehole logging. Some of the coal parameters can be determined by both logging methods, other by one method only. The logging tools are described and examples of the determination of carbon, sulphur, iron, calcium, ash content, calorific value, density and moisture of coal are given. The agreement with the results of laboratory analyses seems quite satisfactory, especially when the calibration procedure was made for the same part of a coal basin. 13 refs., 6 figs., 5 tabs. (author)

  12. Method of gamma transmission analysis for controlling the hydraulic transport of raw coal

    International Nuclear Information System (INIS)

    Pepelnik, R.; Boessow, E.; Fanger, H.U.

    1978-01-01

    The capacity of the methods for measuring gamma absorption developed at GKSS to be used for the analysis of conweyer flows of water/coal/refuse mixtures has been studied. As only the absorption properties of the refuse are essentially different from those of water the refuce is detected with higher accuracy than the coal. In this way the sensitivity of the gamma transmission analysis method agrees with the fact that in coal mining the critical mining parameters are influenced by refuse. The results of the investigations indicate that for measuring times of about 10 sec, accounting for realisitic variations of the chemism of the refuse, the volume shares can be determined with an accuracy of about +- 4.7 V/O of coal and about +- . 5 V/O of refuse. The measuring arrangement for the drift velocity is capable to record also the size and the number of the refuse lumps. The methods described therefore are well suited for controlling an optimal conveying operation. (orig.) [de

  13. Interactions of coal gangue and pine sawdust during combustion of their blends studied using differential thermogravimetric analysis.

    Science.gov (United States)

    Zhang, Yuanyuan; Zhang, Zhezi; Zhu, Mingming; Cheng, Fangqin; Zhang, Dongke

    2016-08-01

    The interactions between coal gangue and pine sawdust during the combustion process were studied using thermogravimetric analysis. The effect of the blending ratio, oxygen concentration and heating rate on the weight loss (TG) and differential thermogravimetric (TGA) profiles was examined. The TG and DTG curves of the blends were not additives of those of the individual materials, suggesting that interactions between coal gangue and pine sawdust had occurred during the combustion, especially in the temperature range of 400-600°C. Kinetic analysis confirmed that the combustion of coal gangue, pine sawdust and their blends was chemical reaction controlled. Further analysis revealed that the interactions between coal gangue and pine sawdust were primarily due to thermal effects rather than structural changes, with the thermal inertia of coal gangue dominating over the behaviour of the blends. The interactions decreased with decreasing the coal gangue ratio in the blend, oxygen concentration and heating rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Analysis of Index Gases of Coal Spontaneous Combustion Using Fourier Transform Infrared Spectrometer

    Directory of Open Access Journals (Sweden)

    Xiaojun Tang

    2014-01-01

    Full Text Available Analysis of the index gases of coal for the prevention of spontaneous combustion is of great importance for the enhancement of coal mine safety. In this work, Fourier Transform Infrared Spectrometer (FTIRS is presented to be used to analyze the index gases of coal in real time to monitor spontaneous combustion conditions. Both the instrument parameters and the analysis method are introduced at first by combining characteristics of the absorption spectra of the target analyte with the analysis requirements. Next, more than ten sets of the gas mixture containing ten components (CH4, C2H6, C3H8, iso-C4H10, n-C4H10, C2H4, C3H6, C2H2, CO, and CO2 are included and analyzed with a Spectrum Two FTIRS made by Perkin Elmer. The testing results show that the detection limit of most analytes is less than 2×10-6. All the detection limits meet the monitoring requirements of coal spontaneous combustion in China, which means that FTIRS may be an ideal instrument and the analysis method used in this paper is sufficient for spontaneous combustion gas monitoring on-line and even in situ, since FTIRS has many advantages such as fast analysis, being maintenance-free, and good safety.

  15. Determination of oxygen in coals by activation analysis with 14 MeV neutrons

    International Nuclear Information System (INIS)

    Arbildo, A.; Espinosa, R; Poma, C.; Eyzaguirre, J.; Hinostroza, H.

    1989-01-01

    A method for non-destructive oxygen determination in coals was developed. It is based on O-16(n,p)N-16 nuclear reaction with 14 MeV neutrons produced in an AID-J 25 neutron generator. This analysis was possible because of the interface development to control the whole irradiation process and subsequent measures of N-16 produced activity from a microcomputer this method was additionally automated by the software development to treat the recorded spectrum in a multiscalimeter analyser. It is described our computer programs and it is shown the results for coal samples from different origins. It is estimated the organic carbon coal in samples from the oxygen analysis. And it is suggested a correlatian between such content and volatile material. Irradiating, decreasing and counting time added up 45 seconds, giving a fast analysis and obtaining accuracy between 1 and 3

  16. In situ analysis of coal from single electrode resistance, self-potential and gamma-ray logs

    International Nuclear Information System (INIS)

    Kayal, J.R.

    1981-01-01

    Single electrode resistance, self-potential and gamma-ray logging have been carried out in North Karanpura, West Bokaro and Jharia coalfields of Gondwana basin in Eastern India. Correlation of these geophysical logs is found to be very useful in locating the coal beds, determining their accurate depths and thickness and approximate quality. Coal seams have been detected as very high resistive formations compared to sandstone/shale which are interbedded in the coal basin. High or low self-potential values are obtained against the coal beds depending on the borehole fluid conditions. Burnt coals (Jhama) are characterised as highly conductive beds. Gamma ray logs have been effectively used alongwith electrical logs for correlation and identification of coal seams. Further analysis of gamma-ray log data determines a linear relationship with ash content of coal. (author)

  17. Ultravitrinite coals from Chukotka

    Energy Technology Data Exchange (ETDEWEB)

    Lapo, A.V.; Letushova, I.A.

    1979-03-01

    Chemical and petrographic analysis was conducted on coals from the Anadyrya and Bukhti Ugol'noi deposits. Characteristics of the most prevalent type of vitrinite coals in both regions are presented here. Anadyrya coals belong to a transitional phase between brown coal and long flame. Ultravitrinite coals predominate. Gas coals from Bukti Ugol'noi have a higher carbon content than Anadyrya coals. They also have a higher hydrogen content and yield of initial resin. In several cases there was also a higher yield of volatile substances. Chukotka coals are characterized by a 10 percent higher initial resin yield than equally coalified Donetsk coals, other indicators were equal to those of Donetsk coals. Because of this, Chukotka coals are suitable for fuel in power plants and as raw materials in the chemical industry. (15 refs.) (In Russian)

  18. The Comparative Analysis of the Efficiency of Coal Liquefaction Technologies

    Directory of Open Access Journals (Sweden)

    Rudyka Viktor I.

    2017-12-01

    Full Text Available Organization of production of synthetic liquid fuels (SLF in Ukraine becomes an especially topical and at the same time complex scientific and applied task, taking into consideration criteria of the techno-ecological and economic rationality. The article presents a methodical approach to the comparative analysis of efficiency of the main methods and technologies for the synthetic liquid fuels production and a carried out testing, the results of which allowed to conclude that the most rational is the technology of indirect coal liquefaction based on coal thermal plasma gasification.

  19. Dust prevention in bulk material transportation and handling

    Science.gov (United States)

    Kirichenko, A. V.; Kuznetsov, A. L.; Pogodin, V. A.

    2017-10-01

    The environmental problem of territory and atmosphere pollution caused by transportation and handling of dust-generating bulk cargo materials is quite common for the whole world. The reducing of weight of fine class coal caused by air blowing reaches the level of 0.5-0.6 t per railcar over the 500 km transportation distance, which is equal to the loss of 1 % of the total weight. The studies showed that all over the country in the process of the railroad transportation, the industry loses 3-5 metric tonnes of coal annually. There are several common tactical measurers to prevent dust formation: treating the dust-producing materials at dispatch point with special liquid solutions; watering the stacks and open handling points of materials; frequent dust removing and working area cleaning. Recently there appeared several new radical measures for pollution prevention in export of ore and coal materials via sea port terminals, specifically: wind-dust protection screens, the container cargo handling system of delivery materials to the hold of the vessels. The article focuses on the discussion of these measures.

  20. Coal world market

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    A brief analysis of major tendencies in the world market of coal is presented. It is pointed out that recent years, by and large, were favourable for the development of the world coal industry. Prices for coal (both for power-grade and coking one) in 1995 after many years of depressive state increased by nearly 20 % and reached a maximum of the last decade. International coal trading continues to grow and the tendency may persist in the mext two years

  1. Coal preparation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The acid rain control legislation has prompted the Department of Energy (DOE) to seek new technology using the Clean Coal Technology program solicitation. The main goal of the program is to reduce SO 2 emissions below 9 Mt/a (10 million stpy) and NO x emission below 5.4 Mt/a (6 million stpy) by the year 2000. This would be accomplished by using precombustion, combustion, post combustion and conversion technology. Utilities are considering installing new scrubbers, switching fuel or possibly deep clean. However, the time required to implement the control technology is short. Due to the legislation, about 110 plants will have to adopt one of the approaches. This paper reports that in characterization of coal, Ames Laboratory used a scanning electron microscope- based, automated image analysis (SEM-AIA) technique to identify coal and mineral matter association. Various forms of organic sulfur were identified using peroxyacetic acid oxidation of coal. This was followed by subsequent microscopic, GC-MS, and HRMS analysis by Southern Illinois University. In ultrafine grinding of coal, it was reported by the Mining and Mineral Institute of Alabama that silica sand or flint shot used less energy compared to steel ball mills

  2. Analysis of some potential social effects of four coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Walker, C.A.; Gould, L.C.

    1980-09-01

    This is an analysis of the potential social impacts of four coal technologies: conventional combustion, fluidized-bed combustion, liquifaction, and gasification. Because of their flexibility, and the abundance and relatively low costs of coal, the potential benefits of these technologies would seem to outweigh their potential social costs, both in the intermediate and long term. Nevertheless, the social costs of a coal industry are far more obscure and hard to quantify than the benefits. In general, however, it maybe expected that those technologies that can be deployed most quickly, that provide fuels that can substitute most easily for oil and natural gas, that are the cheapest, and that are the most thermally efficient will minimize social costs most in the intermediate term, while technologies that can guide energy infrastructure changes to become the most compatable with the fuels that will be most easily derived from inexhaustible sources (electricity and hydrogen) will minimize social costs most in the long run. An industry structured to favor eastern over western coal and plant sites in moderate sized communities, which could easily adapt to inexhaustible energy technologies (nuclear or solar) in the future, would be favored in either time period.

  3. The accident analysis of mobile mine machinery in Indian opencast coal mines.

    Science.gov (United States)

    Kumar, R; Ghosh, A K

    2014-01-01

    This paper presents the analysis of large mining machinery related accidents in Indian opencast coal mines. The trends of coal production, share of mining methods in production, machinery deployment in open cast mines, size and population of machinery, accidents due to machinery, types and causes of accidents have been analysed from the year 1995 to 2008. The scrutiny of accidents during this period reveals that most of the responsible factors are machine reversal, haul road design, human fault, operator's fault, machine fault, visibility and dump design. Considering the types of machines, namely, dumpers, excavators, dozers and loaders together the maximum number of fatal accidents has been caused by operator's faults and human faults jointly during the period from 1995 to 2008. The novel finding of this analysis is that large machines with state-of-the-art safety system did not reduce the fatal accidents in Indian opencast coal mines.

  4. Comparison Analysis of Coal Biodesulfurization and Coal’s Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Fen-Fen Hong

    2013-01-01

    Full Text Available Acidithiobacillus ferrooxidans (A. ferrooxidans was applied in coal biodesulfurization and coal’s pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal’s pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal’s pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32% and jarosite (18.99% were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34% and elemental sulfur (50.72% but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process.

  5. Qualitative analysis of coal combusted in boilers of the thermal power plants in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Đurić Slavko N.

    2012-01-01

    Full Text Available In this paper we have looked into the qualitative analysis of coals in Bosnia and Herzegovina (B-H. The analysis includes the following characteristics: moisture (W, ash (A, combustible matter (Vg and lower heating value (Hd. From the statistic parameters we have determined: absolute range (R, arithmetic mean (X, standard deviation (S and variations coefficient (Cv. It has been shown that the coal characteristics (W, A, Vg, Hd have normal distribution. The analysis show that there are considerable deviations of ash characteristics: moisture (36.23%, ash (34.21%, combustible matter (16.15% and lower heating value (25.16% from the mean value which is shown by the variations coefficient (Cv. Large oscilations of mass portions: W, A, Vg and Hd around the mean value can adversely influence the function of a boiler plant and an electric filter plant in thermal power plants in B-H in which the mentioned types of coal burn. Large ash oscilations (34.21% around the mean value point out to the inability of application of dry procedures of desulphurisation of smoke gasses (FGD due to the additional quantity of ash. It has been shown that the characteristics of Bosnian types of coal do not deviate a lot from the characteristics of coal in the surrounding countries (coals of Serbia and Monte Negro. The results can be used in analysis of coal combustion in thermal power plants, optimisation of electrical-filtre, reduction of SO2 in smoke gas and other practical problems.

  6. A process for briquetting coal with the production of briquets with high resistance to crushing

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M; Ito, S; Nakagava, K

    1983-02-08

    Finely ground coal is mixed with a binder with a softening point of greater than or equal to 30 degrees and with heavy coal tar products, the mixture is molded with the formation of briquets in a two roller press. The mixing is conducted in heated steam or waste gases from a horizontal, helical mixer. The coal is subsequently irrigated by the melted binder and heavy coal tar products. The heavy coal tar products are a bottom residue formed by condensation of volatile products in a gas stream from coking which contains particles of coal and coke. Briquets with a point compression strength of 50 plus or minus 4 kilograms per sq. cur. and a bulk tensity of 1.17 grams per cubic centimeter are produced from a mixture which contains 6 percent binder, 80 percent coal and 20 percent heavy coal tar products.

  7. In-situ elemental analysis of coal by neutron activation

    International Nuclear Information System (INIS)

    Mikesell, J.L.; Senftle, F.E.; Tanner, A.B.

    1986-01-01

    The U.S. Geological Survey (USGS) has worked to develop neutron techniques for the borehole measurement of the elemental composition of ores since 1969, and first demonstrated a borehole ultimate analysis of coal in 1977. Borehole measurements such as these permit real-time evaluation of coal quality without the expense of coring or the delays associated with laboratory analyses. Two technological innovations make such measurements possible: the availability, from Savannah River Operations Office, DOE, of small californium-252 (/sup 252/Cf) fission neutron sources, and the development, by USGS and Princeton Gamma-Techn, of the melting-cryogen-cooled high-purity germanium borehole gamma-ray detector. A technique of relating mass fractions to measured gamma-ray intensities, which eliminates the need for detailed knowledge of the geometry of the neutron distribution, is used to calculate elemental compositions without resorting to the test pits or computer borehole modeling. In coal, all of the major constituents (C, H, N, S, Si, Al, Fe, Ti) except oxygen can be determined quantitatively by thermal neutron capture gamma-ray spectroscopy

  8. Analysis of polynuclear aromatic hydrocarbons from coal fly ash

    International Nuclear Information System (INIS)

    Purushothama, S.; Pan, W.-P.; Riley, J.T.; Lloyd, W.G.

    1998-01-01

    The objective of this work is to compare various extraction and quantification techniques for the determination of adsorbed polynuclear aromatic hydrocarbons (PAHs) on coal ash. Aliquots of a 'clean' fly ash from coal combustion doped with four PAHs have been extracted, using three solvents, three methods and three GC/MS programs. Factorial analysis shows solvent to extert the greatest primary effect: CH 2 Cl 2 > toluene much-gt o-xylene. Highest recoveries were obtained using the reflux slurry extraction procedure with CH 2 Cl 2 and a relatively fast (20 degree C/min) temperature ramp to 310 degree C. With both CH 2 Cl 2 and toluene solvents, ultrasonic assisted extraction affords the best repeatability

  9. An analysis of China's coal supply and its impact on China's future economic growth

    International Nuclear Information System (INIS)

    Wang, Jianliang; Feng, Lianyong; Tverberg, Gail E.

    2013-01-01

    Many people believe that China's economic growth can continue almost indefinitely. For a manufacturing-based economy such as China's to continue to grow, it needs an adequate supply of inexpensive energy. To date, this energy growth has primarily come from coal, but China's indigenous coal supplies are now falling short of the amount needed to support this growth. In this situation, the status of China's future coal supply will be very important for China's future economic development. Our analysis shows that China's ultimate recoverable coal reserves equal 223.6×10 9 MT, and its production will peak between 2025 and 2030, with peak production of approximately 3.9×10 9 MT. The extent to which China can import coal in the future is uncertain. With rising coal demand, this combination is likely to create a significant challenge to China's future economic development. - Highlights: ► We analyze an issue of prime importance for the future of China's economy. ► The decline in coal supply will present a challenge to China's economic growth. ► Rising coal price will also have an adverse impact on economic growth

  10. Evaluation of coal bed methane potential of coal seams of Sawang ...

    Indian Academy of Sciences (India)

    This analysis shows that the maximum methane gas adsorbed in the coal sample CG-81 is 17 m3/t (Std. daf), at maximum pressure of 5.92 MPa ... vast coal reserves are ideal reservoirs for the gen- eration and accumulation of CBM. ... of gases in coal seams, such as, compression as free gas in the pore spaces, condensed ...

  11. Characterization of Candiota (South Brazil) coal and combustion by-product

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Marcal [Faculty of Chemistry, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga 6681 Predio 12B, 90619-900 Porto Alegre-RS (Brazil); Querol, Xavier [Institute of Earth Sciences ' Jaume Almera' , CSIC, c/Marti i Franques s/n, E-08028 Barcelona (Spain)

    2004-10-22

    Elemental composition and mineralogy of a high ash feed coal (ash: 49.7 wt.%), and its bottom and fly ash from a Brazilian power plant (Presidente Medici Power Plant or UTPM-446 MW) was determined using ICP-MS, ICP-AES, X-ray diffraction (XRD) and scanning electron micrography (SEM). Most trace elements in coal fall in the usual range determined for world coals. However, concentrations of some elements were higher than the expected for coals, including Cs, Rb and heavy rare earth elements (REEs). This might be due to the high content of detrital minerals of the studied coal, given that these elements are usually associated with clay minerals. Elements were classified into three groups based on the analysis of trace element concentrations in fly and bottom ashes, and enrichments or depletions of these concentrations in relation to the coal: Group I (volatile elements with subsequent condensation): As, B, Bi, Cd, Ga, Ge, Mo, Pb, S, Sb, Sn, Tl and Zn; Group II (no volatile elements enriched in bottom ash vs. fly ash): Ca, Fe, Mn, P, Ti and Zr; Group III (low volatile elements with no partitioning between fly and bottom ashes): Al, Ba, Be, Co, Cr, Cs, Hf, K, Li, Mg, Na, Ni, Rb, Sr, Th, U, W, Y and most of REE. The mass balance for trace elements obtained demonstrated that the volatile emission of the trace elements studied is very low. According to the leachable proportion obtained, the elements may be classified as follows: B (40-50%)>Mo>Cu>Ge=Li=Zn=As>, Ni, Sb, Tl, U>Ba, Cd, Sr, V (0.3-2%). For the other elements studied, the leachable fraction is in most cases <1% of the bulk content.

  12. Coal background paper. Coal demand

    International Nuclear Information System (INIS)

    1997-01-01

    Statistical data are presented on coal demands in IEA and OECD member countries and in other countries. Coal coaking and coaking coal consumption data are tabulated, and IEA secretariat's coal demand projections are summarized. Coal supply and production data by countries are given. Finally, coal trade data are presented, broken down for hard coal, steam coal, coking coal (imports and export). (R.P.)

  13. Recent advances in the use of synchrotron radiation for the analysis of coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    Two major coal combustion problems are the formation and build-up of slag deposits on heat transfer surfaces and the production and control of toxic species in coal combustion emissions. The use of synchrotron radiation for the analysis of coal combustion products can play a role in the better understanding of both these phenomena. An understanding of the chemical composition of such slags under boiler operating conditions and as a function of the mineral composition of various coals is one ultimate goal of this program. The principal constituents in the ash of many coals are the oxides of Si, Al, Fe, Ca, K, S, and Na. The analytical method required must be able to determine the functional forms of all these elements both in coal and in coal ash at elevated temperatures. One unique way of conducting these analyses is by x-ray spectroscopy.

  14. Nigerian coal analysis by PIXE and HEBS techniques

    International Nuclear Information System (INIS)

    Olabanji, S.O.

    1989-05-01

    PIXE and HEBS techniques were employed for the measurement of the concentrations of the major, minor and trace elements in Nigerian coal samples from a major deposit. The samples were irradiated with 2.55 MeV protons from the 3 MeV tandem accelerator (NEC 3 UDH) in Lund. The PIXE results are reported and compared with an earlier work on Nigerian coal using FNAA and INAA analytical techniques while the HEBS results are compared with ASTM previous results. The results corroborate the assertion that Nigerian coals are of weak and noncoking grades with low sulphur (0.82-0.99%) and relatively high hydrogen (4.49-5.16%) contents. The motivation for this work is partly due to the projected usage of coal as metallurgical feedstocks and as fuel, and partly because of the genuine concern about the concomitant environmental effects of the increased burning of coal. The knowledge of the concentration of all elements is important for the characterization of coal and the determination and control of its products. Economic parameters such as the ash contents and calorific values are associated with the concentrations of coal's constituents. (author). 11 refs, 1 fig., 4 tabs

  15. Coal handling equipment - making the right choices in a competitive market

    Energy Technology Data Exchange (ETDEWEB)

    Dodds-Ely, L.

    2009-02-15

    Liebherr is a dominant crane supplier for coal-handling in Kalimantan, the main coal producing area of Indonesia. Since the delivery of the first heavy-duty, high-performance CBG from-rope grab cranes to Pulau Laut Coal Terminal and Balikpapan Coal Terminal ten years ago the number of fixed cargo cranes (FCC) operating on jetties and quaysides alone in Kalimantan has risen to no fewer than ten further orders in the pipeline, confirming the high quality and reliability of Liebherr's producers and the company's excellent reputation in the coal-handling business. The Liebherr CBG heavy-duty high-performance four-rope grab cranes are specially designed for continuous operation and ensure rapid and efficient turnover of all types of bulk cargo. With maximum lifting capacities of 30 tonnes at an outreach of 28 metres, each of the Balikpapan cranes achievers an hourly turnover of approximately ,000 tonnes. The article describes the key characteristics of the crane and its additional optimal features. 2 photos.

  16. CoalVal-A coal resource valuation program

    Science.gov (United States)

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  17. Cofiring of biofuels in coal fired boilers: Results of case study analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tillman, D.A. [Ebasco Environmental, Sacramento, CA (United States); Hughes, E. [Electric Power Research Institute, Palo Alto, CA (United States); Gold, B.A. [TVA, Chattanooga, TN (United States)

    1993-12-31

    Ebasco Environmental and Reaction Engineering, under contract to EPRI, performed a case study analysis of cofiring biomass in coal-fired boilers of the Tennessee Valley Authority (TVA). The study was also sponsored by DOE. This analysis included evaluating wood fuel receiving, preparation, and combustion in pulverized coal (PC) boilers and cyclone furnaces and an assessment of converting wood into pyrolysis oil or low Btu gas for use in a new combined cycle combustion turbine (CCCT) installation. Cofiring wood in existing coal-fired boilers has the most immediate potential for increasing the utilization of biofuels in electricity generation. Cofiring biofuels with coal can potentially generate significant benefits for utilities including: (1) reducing emissions of SO{sub 2} and NO{sub x}; (2) reducing the net emissions of CO{sub 2}; (3) potentially reducing the fuel cost to the utility depending upon local conditions and considering biomass is potentially exempt from the proposed Btu tax and may get a 1.5 cent/kWh credit for energy generated by wood combustion; (4) supporting local industrial forest industry; and (5) providing a long term market for the development of a biofuel supply and delivery industry. Potential benefits are reviewed in the context of cofiring biofuel at a rate of 15% heat input to the boiler, and compares this cofiring strategy and others previously tested or developed by other utilities. Other issues discussed include: (1) wood fuel specifications as a function of firing method; (2) wood fuel receiving and preparation system requirements; (3) combustion system requirements for cofiring biofuels with coal; (4) combustion impacts of firing biofuels with coal; (5) system engineering issues; (6) the economics of cofiring biofuel with coal. The Allen, TN 330 MW(e) cyclone boiler and Kingston, TN 135 MW(e) Boiler {number_sign}1, a tangentially fired PC unit, case studies are then summarized in the paper, highlighting the cofiring opportunities.

  18. Prediction of coal response to froth flotation based on coal analysis using regression and artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Jorjani, E.; Poorali, H.A.; Sam, A.; Chelgani, S.C.; Mesroghli, S.; Shayestehfar, M.R. [Islam Azad University, Tehran (Iran). Dept. of Mining Engineering

    2009-10-15

    In this paper, the combustible value (i.e. 100-Ash) and combustible recovery of coal flotation concentrate were predicted by regression and artificial neural network based on proximate and group macerals analysis. The regression method shows that the relationships between (a) in (ash), volatile matter and moisture (b) in (ash), in (liptinite), fusinite and vitrinite with combustible value can achieve the correlation coefficients (R{sup 2}) of 0.8 and 0.79, respectively. In addition, the input sets of (c) ash, volatile matter and moisture (d) ash, liptinite and fusinite can predict the combustible recovery with the correlation coefficients of 0.84 and 0.63, respectively. Feed-forward artificial neural network with 6-8-12-11-2-1 arrangement for moisture, ash and volatile matter input set was capable to estimate both combustible value and combustible recovery with correlation of 0.95. It was shown that the proposed neural network model could accurately reproduce all the effects of proximate and group macerals analysis on coal flotation system.

  19. Research of coal flash hydropyrolysis. I. Chemical type analysis of nitrogen in coal and semi-coke

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.; Ni, Y.; Tang, L.; Zheng, Z.; Zhu, Z. [East China University of Science and Technology, Shanghai (China)

    2001-04-01

    Using XPS analyses the chemical types of nitrogen of ten different types of Chinese coals and their semi-cokes from flash hydropyrolysis (FHP) are studied. The results shows that XPS can effectively determined the chemical types of nitrogen in coal and semi-coke. Peak of XPS located in 398.8 ({plus_minus}0.1) eV and 400.2 ({plus_minus}0.1) eV, which corresponds to pyrrole and pyridine. The nitrogen types are different in coals but mainly are pyrrole and pyridine, and often the pyrrole is more than pyridine. The nitrogen type in coals from FHP is the same as in coal. In FHP, the relative content of pyrrole increases and pyridine reduces. Therefore, it was put forward that flash hydropyrolysis is a new important clean-coal technique and has notable effect of denitrogenation.

  20. Coal handling system structural analysis for modifications or plant life extension

    International Nuclear Information System (INIS)

    Dufault, A.; Weider, F.; Doyle, P.

    1989-01-01

    One neglected aspect of plant modification or life extension is the extent to which previous projects may have affected the integrity of existing structures. During the course of a project to backfit fire protection facilities to existing coal handling systems, it was found that past modifications had added loads to existing coal handling structures which exceeded the available design margin. This paper describes the studies that discovered the original problem areas, as well as the detailed analysis and design considerations used to repair these structures

  1. MCNP simulation of the influence of the external moisture on low calorific value in the coal quality analysis by neutron

    International Nuclear Information System (INIS)

    Liu Dekun; Zhang Hongyu; Zhang Lihong; Dong Huan; Gu Deshan

    2012-01-01

    An important index in assessment of coal quality is low calorific value. Using neutron to analysis coal quality, the more the coal moisture content, especially the increasing of external moisture will reduce the low calorific value. The principle of coal quality analysis by neutron prompt Gamma-ray is introduced. The influence of the gamma count of the carbon element peak with increasing external moisture in coal samples was simulated using MCNP code. And discussed the reasons how external moisture content influence the calorific value. Simulation results indicate that with the increasing of external moisture in the coal samples, the gamma count of the carbon element peak dwindling, and the low calorific value reducing. The conclusion is : using neutrons method to analysis coal quality, the more external moisture content, the larger error of the measurement results of the carbon element, and will influence the calculation accuracy of the low calorific value. (authors)

  2. Dynamic analysis of bulk-fill composites: Effect of food-simulating liquids.

    Science.gov (United States)

    Eweis, Ahmed Hesham; Yap, Adrian U-Jin; Yahya, Noor Azlin

    2017-10-01

    This study investigated the effect of food simulating liquids on visco-elastic properties of bulk-fill restoratives using dynamic mechanical analysis. One conventional composite (Filtek Z350 [FZ]), two bulk-fill composites (Filtek Bulk-fill [FB] and Tetric N Ceram [TN]) and a bulk-fill giomer (Beautifil-Bulk Restorative [BB]) were evaluated. Specimens (12 × 2 × 2mm) were fabricated using customized stainless steel molds. The specimens were light-cured, removed from their molds, finished, measured and randomly divided into six groups. The groups (n = 10) were conditioned in the following mediums for 7 days at 37°C: air (control), artificial saliva (SAGF), distilled water, 0.02N citric acid, heptane, 50% ethanol-water solution. Specimens were assessed using dynamic mechanical testing in flexural three-point bending mode and their respective mediums at 37°C and a frequency range of 0.1-10Hz. The distance between the supports were fixed at 10mm and an axial load of 5N was employed. Data for elastic modulus, viscous modulus and loss tangent were subjected to ANOVA/Tukey's tests at significance level p food-simulating liquids on the visco-elastic properties of bulk-fill composites was material and medium dependent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Formation and retention of methane in coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  4. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA).

    Science.gov (United States)

    Idris, Siti Shawalliah; Rahman, Norazah Abd; Ismail, Khudzir

    2012-11-01

    The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Measurement of particulate concentrations produced during bulk material handling at the Tarragona harbor

    Energy Technology Data Exchange (ETDEWEB)

    Artinano, B.; Gomez-Moreno, F.J.; Pujadas, M.; Moreno, N.; Alastuey, A.; Querol, X.; Martin, F.; Guerra, A.; Luaces, J.A.; Basora, J. [CIEMAT, Madrid (Spain)

    2007-09-15

    Bulk material handling can be a significant source of particles in harbor areas. The atmospheric impact of a number of loading/unloading activities of diverse raw materials has been assessed from continuous measurements of ambient particle concentrations recorded close to the emission sources. Two experimental campaigns have been carried out in the Tarragona port to document the impact of specific handling operations and bulk materials. Dusty bulk materials such as silica-manganese powder, tapioca, coal, clinker and lucerne were dealt with during the experiments. The highest impacts on ambient particle concentrations were recorded during handling of clinker. For this material and silica-manganese powder, high concentrations were recorded in the fine grain size ({lt}2.5 {mu}m). The lowest impacts on particulate matter concentrations were recorded during handling of tapioca and lucerne, mainly in the coarse grain size (2-5-10 {mu} m). The effectiveness of several emission abatement measures, such as ground watering to diminish coal particle resuspension, was demonstrated to reduce ambient concentrations by up to two orders of magnitude. The importance of other good practices in specific handling operations, such as controlling the height of the shovel discharge, was also evidenced by these experiments. The results obtained can be further utilized as a useful experimental database for emission factor estimations.

  6. Stress analysis of longwall top coal caving

    Energy Technology Data Exchange (ETDEWEB)

    Alehossein, H.; Poulsen, B.A. [CSIRO Exploration & Mining, Brisbane, Qld. (Australia)

    2010-01-15

    Longwall top coal caving (LTCC) is a relatively new method of mining thick coal seams that is currently achieving high productivity and efficiency. The technique is similar to traditional longwall mining in that a cutting head slices coal from the lower section of the coal seam onto a conveyor belt installed in front of the hydraulic support near the cutting face. In modern LTCC an additional rear conveyor belt is located behind the support, to which the flow of the caved coal from the upper part of the seam can be controlled by a moveable flipper attached to the canopy of the support. The mining method relies on the fracturing of the top coal by the front abutment pressure to achieve satisfactory caving into the rear conveyor. This paper develops a yield and caveability criterion based on in situ conditions in the top coal in advance of the mining face (yield) and behind the supports (caveability). Yielding and caving effects are combined into one single number called caving number (CN), which is the multiplication result of caving factor (CF) and yield factor (YF). Analytical derivations are based on in situ stress conditions, Mohr-Coulomb and/or Hoek-Brown rock failure criteria and an on-associated elastoplastic strain softening material behaviour. The yield and caveability criteria are in agreement with results from both numerical studies and mine data. The caving number is normalised to mining conditions of a reference Chinese mine (LMX mine) and is used to assess LTCC performance at fourteen other Chinese working longwalls that have had varying success with the LTCC technology. As a predictive model, results of this analytical/numerical study are useful to assess the potential success of caving in new LTCC operations and in different mining conditions.

  7. Fast neutron activation analysis and radioisotope X-ray fluorescence study on KALEWA and NAMMA coal

    Energy Technology Data Exchange (ETDEWEB)

    Naing-Win, [Arts and Science University, Yangon (Myanmar)

    1981-07-01

    Kalewa coal was studied with Fast Neutron Activation Analysis (FNAA) technique, employing KAMAN A-710 neutron generator and HP(Ge) detector coupled to ``Canberra`` series 30 MCA. Sequential irradiation and dual aluminium foil monitoring method was employed. Simultaneous multielement analysis was carried out. Namma Coal was studied with radioisotope X-ray Fluorescence (XRF) technique, employing Co-57 exciter source and HP(Ge) detector coupled to ``Canberra`` series 40 MCA. In both FNAA and XRF study, the results obtained were compared to that obtained with Atomic Absorption Spectrophotometry (AAS) technique. Finally, the results were reviewed together with those obtained from similar work on coal with FNAA and XRF techniques. (author).

  8. Fast neutron activation analysis and radioisotope X-ray fluorescence study on KALEWA and NAMMA coal

    International Nuclear Information System (INIS)

    Naing-Win

    1981-07-01

    Kalewa coal was studied with Fast Neutron Activation Analysis (FNAA) technique, employing KAMAN A-710 neutron generator and HP(Ge) detector coupled to ''Canberra'' series 30 MCA. Sequential irradiation and dual aluminium foil monitoring method was employed. Simultaneous multielement analysis was carried out. Namma Coal was studied with radioisotope X-ray Fluorescence (XRF) technique, employing Co-57 exciter source and HP(Ge) detector coupled to ''Canberra'' series 40 MCA. In both FNAA and XRF study, the results obtained were compared to that obtained with Atomic Absorption Spectrophotometry (AAS) technique. Finally, the results were reviewed together with those obtained from similar work on coal with FNAA and XRF techniques. (author)

  9. Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants

    Science.gov (United States)

    Krylov, D. A.; Sidorova, G. P.

    2013-04-01

    This paper presents an analysis of published data on the content of radioactive nuclides in coals originating from various coal deposits, and in ash and slag wastes produced at coal-fired thermal power plants, as well as in fly ash emitted from thermal power plants into the atmosphere. Problems related to the use of coals with an elevated content of natural radionuclides (NRNs) and methods of their solution implemented at the Urtuyskoe coalfield are dealt with. Data on the analysis of Transbaikal coals for the NRN content, as well as weighted mean content of uranium and thorium in coals from the Siberian Region, are given. In order to reduce irradiation of plant personnel and the population of the areas where coal producers and coal-fired thermal power plants are located, it is necessary to organize very careful control of the NRN content in both coals and products of their combustion that are released into the environment. To solve the problem related to the control of radioactivity, the centralized approach and creation of a proper normative base are needed. Experience gained in developing the Urtuyskoe coalfield shows that it is possible to create an efficient system of coal quality control with respect to the radiation hygiene factor and provide protection of the environment and health of the population.

  10. Supply constraints : Australia and Canada coal industry face logistics and capacity challenges

    International Nuclear Information System (INIS)

    Borsato, J.

    2010-01-01

    Australia and Canada are benefiting from a global increase in coal consumption, but face challenges regarding coal and coal export capacity. Coal is Australia's biggest export commodity, accounting for over 50 percent of world coking coal exports, with almost 75 percent of those exports destined for Asian markets, primarily Japan. However, the number of ships delayed at Australian ports hit a record of 223 bulk carriers in early 2010. Compared to Canada, Australia faces greater logistical issues getting coal into port and onto ships at its 9 loading terminals. Two of Canada's 3 major shipping terminals, Westshore and Neptune, have some additional capacity. Its third terminal, Ridley Island, has considerable potential to carry more coal. With 98 percent of all coal moved by rail in Australia, rail issues also hinder growth. A national approach to planning freight transport on both roads and rail is being developed. While infrastructure issues remain the single greatest barrier to export growth for Australia's coal sector, Canada's most immediate issues pertain to mine permitting and mine-site expansion. In 2009, Canada exported 28 million tonnes of coal, 90 percent of it metallurgical. With approximately 70 million tonnes of annual production, mostly in British Columbia and Alberta, coal remains the number one commodity in Canada carried by rails and shipped from ports. 1 fig.

  11. Characterization of the CO2 fluid adsorption in coal as a function of pressure using neutron scattering techniques (SANS and USANS)

    Science.gov (United States)

    Melnichenko, Y.B.; Radlinski, A.P.; Mastalerz, Maria; Cheng, G.; Rupp, J.

    2009-01-01

    Small angle neutron scattering techniques have been applied to investigate the phase behavior of CO2 injected into coal and possible changes in the coal pore structure that may result from this injection. Three coals were selected for this study: the Seelyville coal from the Illinois Basin (Ro = 0.53%), Baralaba coal from the Bowen Basin (Ro = 0.67%), and Bulli 4 coal from the Sydney Basin (Ro = 1.42%). The coals were selected from different depths to represent the range of the underground CO2 conditions (from subcritical to supercritical) which may be realized in the deep subsurface environment. The experiments were conducted in a high pressure cell and CO2 was injected under a range of pressure conditions, including those corresponding to in-situ hydrostatic subsurface conditions for each coal. Our experiments indicate that the porous matrix of all coals remains essentially unchanged after exposure to CO2 at pressures up to 200??bar (1??bar = 105??Pa). Each coal responds differently to the CO2 exposure and this response appears to be different in pores of various sizes within the same coal. For the Seelyville coal at reservoir conditions (16????C, 50??bar), CO2 condenses from a gas into liquid, which leads to increased average fluid density in the pores (??pore) with sizes (r) 1 ?? 105 ??? r ??? 1 ?? 104???? (??pore ??? 0.489??g/cm3) as well as in small pores with size between 30 and 300???? (??pore ??? 0.671??g/cm3). These values are by a factor of three to four higher than the density of bulk CO2 (??CO2) under similar thermodynamic conditions (??CO2 ??? 0.15??g/cm3). At the same time, in the intermediate size pores with r ??? 1000???? the average fluid density is similar to the density of bulk fluid, which indicates that adsorption does not occur in these pores. At in situ conditions for the Baralaba coal (35 OC, 100??bar), the average fluid density of CO2 in all pores is lower than that of the bulk fluid (??pore / ??CO2 ??? 0.6). Neutron scattering from the

  12. Determination of Uranium and Thorium in Brazilian coals by epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Bernedo, L.F.B.

    1981-08-01

    An experimental technique for the determination of uranium and thorium in coal by epithermal neutron activation was developed and systemized. Seventeen different coal samples, six copper monitors for neutron flux corrections and three NBS standard coal samples were irradiated together in a cadmium cylinder. Uranium and thorium were determined by measuring the 239 N sub(p) and 233 P sub(a) activities respectively, being both produced in (n,γ) reactions and subsequent β - decay. The 239 N sub(p) was measured by counting the 106.4 KeV γ-ray in a LEPS detector and the 233 P sub(a) by counting the 311.8 KeV γ-ray, but in a Ge(Li) detector. A 4096 multichannel analizer and a PDP-11 computer complemented the basic measuring equipment. An average precision of 3% was obtained in the analysis of seventeen coal samples coming from different strata and heights of Charqueadas and Morungava mines in Rio Grande do Sul State. The sensitivity of the method is around 100 ppb. This technique will allow determinations of up to twenty elements, besides uranium and thorium, and it can be applied in routine analysis. (Author) [pt

  13. Direct atomic spectrometric analysis by slurry atomisation: Pt. 7. Analysis of coal using inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ebdon, Les; Foulkes, M E; Parry, H G.M.; Tye, C T

    1988-09-01

    The application of slurry atomisation - inductively coupled plasma mass spectrometry (ICP-MS) to major, minor and trace element determination in coals has been investigated. Eight certified reference material (CRM) coals have been ground by the bottle and bead method and analysed using both rapid scan semi-quantitative analysis, employing a single rhodium internal standard, and full quantitative analysis using simple aqueous standards for calibration. The semi-quantitative mode, which determines the concentration using the mass-response curve for 68 elements against the single internal standard, produced values which were within a factor of two of the certified reference value, in most instances. The full quantitative determination gave excellent agreement with the certified reference material coals for a large number of elemental constituents. The results from the determination of 16 elements of interest are discussed including the effects of polyatomic interferents and isotope sensitivity.

  14. Neutron activation analysis of bulk samples from Chinese ancient porcelain to provenance research

    International Nuclear Information System (INIS)

    Jian Zhu; Wentao Hao; Jianming Zhen; Tongxiu Zhen; Glascock, M.D.

    2013-01-01

    Neutron activation analysis (NAA) is an important technique to determine the provenance of ancient ceramics. The most common technique used for preparing ancient samples for NAA is to grind them into a powder and then encapsulate them before neutron irradiation. Unfortunately, ceramic materials are typically very hard making it a challenge to grind them into a powder. In this study we utilize bulk porcelain samples cut from ancient shards. The bulk samples are irradiated by neutrons alongside samples that have been conventionally ground into a powder. The NAA for both the bulk samples and powders are compared and shown to provide equivalent information regarding their chemical composition. Also, the multivariate statistical have been employed to the analysis data for check the consistency. The findings suggest that NAA results are less dependent on the state of the porcelain sample, and thus bulk samples cut from shards may be used to effectively determine their provenance. (author)

  15. Online analysis of coal on a conveyor belt by use of machine vision and kernel methods

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, C.; Jemwa, G.T.; van Dyk, J.C.; Keyser, M.J.; van Heerden, J.H.P. [University of Stellenbosch, Stellenbosch (South Africa). Dept. of Process Engineering

    2010-07-01

    The objective of this project is to explore the use of image analysis to quantify the amount of fines (6mm) present for different coal samples under conditions simulating the coal on conveyor belts similar to those being used by Sasol for gasification purposes. Quantification of the fines will be deemed particularly successful, if the fines mass fraction, as determined by sieve analysis, is possible to be predicted with an error of less than 10%. In this article, kernel-based methods to estimate particle size ranges on a pilot-scale conveyor belt as well as edge detection algorithms are considered. Preliminary results have shown that the fines fraction in the coal on the conveyor belt could be estimated with a median error of approximately 24.1%. This analysis was based on a relatively small number of sieve samples (18 in total) and needs to be validated by more samples. More samples would also facilitate better calibration and may lead to improved estimates of the sieve fines fractions. Similarly, better results may also be possible by using different approaches to image acquisition and analysis. Most of the error in the fines estimates can be attributed to sampling and to fines that were randomly obscured by the top layer (of larger particles) of coal on the belt. Sampling errors occurred as a result of some breakage of the coal between the sieve analyses and the acquisition of the images. The percentage of the fines obscured by the top layer of the coal probably caused most of the variation in the estimated mass of fines, but this needs to be validated experimentally. Preliminary studies have indicated that some variation in the lighting conditions have a small influence on the reliability of the estimates of the coal fines fractions and that consistent lighting conditions are more important than optimal lighting conditions.

  16. Use of image analysis on the prediction of coal burnout performance in a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    R. Barranco; M. Cloke; E. Lester [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, SChEME

    2003-07-01

    An experimental investigation in a drop-tube furnace (DTF) into the combustion burnout performance of some South American coals was carried out. The coal samples, mainly from Colombia, were crushed and screened into three size fractions: 53-75 {mu}m, 106-125 {mu}m, and 150-180 {mu}m. These samples were characterised by standard tests along with a specially developed image analysis technique (grey-scale histogram). Pyrolysis of these samples was performed at a temperature of 1300{sup o}C, in a 1% of oxygen in nitrogen atmosphere for 200 ms. The chars obtained were then re-fired in the same apparatus, at the same temperature, at various residence times, in an atmosphere containing 5% of oxygen in nitrogen. The changes in the characteristics of the chars produced were assessed using a number of different techniques including intrinsic reactivity test and automatic char analysis. Despite the fact that all the coals used in this study were vitrinite-rich, variations in char morphology were evident. This demonstrated that it was impossible to assign any one char type to a single maceral group. It was apparent that vitrinite generates a wide range of char types depending upon the rank of the parent coal and on the maceral associations within the coal. In addition, a reactivity parameter, derived from the grey-scale histogram obtained by image analysis of the coal, was found to be important in the prediction of coal combustion behaviour. Some properties of the re-fired chars were compared with morphology and intrinsic reactivity data of the pyrolysed chars. The results showed that the poor burnout of one of the coals was clearly due to the formation of some particular chars during pyrolysis. This confirms the usefulness of high temperature pyrolysis chars as a predictor of burnout performance. 18 refs., 8 figs., 2 tabs.

  17. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  18. Data base for the analysis of compositional characteristics of coal seams and macerals. Final report - Part 10. Variability in the inorganic content of United States' coals: a multivariate statistical study

    Energy Technology Data Exchange (ETDEWEB)

    Glick, D.C.; Davis, A.

    1984-07-01

    The multivariate statistical techniques of correlation coefficients, factor analysis, and cluster analysis, implemented by computer programs, can be used to process a large data set and produce a summary of relationships between variables and between samples. These techniques were used to find relationships for data on the inorganic constituents of US coals. Three hundred thirty-five whole-seam channel samples from six US coal provinces were analyzed for inorganic variables. After consideration of the attributes of data expressed on ash basis and whole-coal basis, it was decided to perform complete statistical analyses on both data sets. Thirty variables expressed on whole-coal basis and twenty-six variables expressed on ash basis were used. For each inorganic variable, a frequency distribution histogram and a set of summary statistics was produced. These were subdivided to reveal the manner in which concentrations of inorganic constituents vary between coal provinces and between coal regions. Data collected on 124 samples from three stratigraphic groups (Pottsville, Monongahela, Allegheny) in the Appalachian region were studied using analysis of variance to determine degree of variability between stratigraphic levels. Most variables showed differences in mean values between the three groups. 193 references, 71 figures, 54 tables.

  19. Improvements to methods for assisted discharge of coal and ash from storage

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, B.; Richards, D.G. [CRE Group Ltd., Stoke Orchard (United Kingdom)

    1999-03-01

    The project studied the effects of vibration on coal in storage and assessed the effect of changes in vibration parameters, with respect to changes in physical properties of coal, to the flow of material through the storage system. An effective technique was developed for the measurement of transmission of vibration through coal residing in storage vessels, at a variety of scales ranging from laboratory scale to large industrial plant. Significant parameters affecting vibration transmission were impact position (discharge was favoured by application near the outlet), and bulk density of the stored material. Use was made of computer-based discrete element modelling (DEM) techniques for studying vibrations. 27 refs., 62 figs., 13 tabs., 1 app.

  20. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    Science.gov (United States)

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J.P.; Ritter, Daniel J.; McIntosh, Jennifer C.; Clark, Arthur C.; Ruppert, Leslie F.; Cunningham, Alfred B.; Vinson, David S.; Orem, William H.; Fields, Matthew W.

    2016-01-01

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulic conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112 to 120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ13C values (−67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO3−, or SO42−. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situbacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  1. Mass spectrometric and chemometric studies of thermoplastic properties of coals. 1. Chemometry of conventional, solvent swelling and extraction data of coals

    Energy Technology Data Exchange (ETDEWEB)

    Marzec, A.; Czajkowska, S.; Moszynski, J.; Schulten, H.-R. (Polish Academy of Sciences, Gliwice (Poland). Inst. of Coal Chemistry)

    Twenty-seven coals from Carboniferous seams in Poland were studied with the aim to find links between thermoplastic properties and chemical characteristics of the coals. Three sets of data were obtained for all the coals: (1) thermoplastic properties measured using the Gieseler plastometer; (2) yields of pyridine extractables and swelling measurements for pyridine residues; (3) ultimate, proximate, and petrographic analyses. The three data sets were evaluated using chemometric techniques with the purpose of looking for significant correlations between all the data. Temperature of softening is a linear regression of pyridine extractables and hydrogen content in coals as well as of swelling data. Temperatures of maximum fluidity and resolidification are correlated with each other and with oxygen, exinite, and moisture contents of the coals as well as with the swelling data. It has been concluded that temperature of softening is a colligative property and indicates a phase transition resulting in an increase of thermal induced mobility of coal material; the energy demand of the transition is dependent on contents of bulk components of coal system that were specified in this study. Temperatures of maximum fluidity and resolidification appear to have the same chemical background; i.e. the temperatures depend on the content of the same structural units or components. However, the means of chemical characterization of coal material used in this study were not capable of identifying them. Volatile matter and petrographic composition showed rather limited value as predictive means for some (T{sub F(max)} and T{sub R}) and no predictive value for the other thermoplastic properties. 20 refs., 1 fig., 5 tabs.

  2. Volcanic ash in feed coal and its influence on coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Brownfield, I.K.; Hower, J.C.; Stricker, G.D.; O' Connor, J.T.

    2000-07-01

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana Utility to determine the physical and chemical properties of feed coal and coal combustion products (CCPs) from a coal-fired power plant. The plant utilizes a low-sulfur (.23--.47 weight percent S) coal from the Powder River Basin, Wyoming. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis of feed coal samples identified two mineral suites. A primary suite (not authigenic) consisting of quartz (detrital and volcanic beta-form grains), biotite, and minor zircon and a secondary authigenic mineral suite containing calcite, alumino-phosphates (crandallite and gorceixite), kaolinite, quartz, anatase, barite, and pyrite. The authigenic minerals are attributed to air-fall and reworked volcanic ash that was deposited in peat-forming mires. The Powder River Basin feed coals contain higher amounts of Ba, Ca, Mg, Na, Sr, and P compared to other analyzed eastern coals. These elements are associated with alumino-phosphate, biotite, calcite, and clay minerals. The element associations are indicative of coal that incorporated volcanic ash during deposition. XRD analysis of CCPs revealed a predominance of glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals in the fly ash; and quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite in the bottom ash. Microprobe and SEM analysis of fly ash samples revealed quartz, zircon, monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, and rounded grains of wollastonite with periclase. The abundant Ca and Mg mineral phases in the fly ashes are related to the presence of carbonate, clay, and phosphate minerals in the feed coal. The Ca- and Mg-rich mineral phases in the CCPs can be attributed to volcanic minerals deposited in the

  3. The migration law of overlay rock and coal in deeply inclined coal seam with fully mechanized top coal caving.

    Science.gov (United States)

    Liu, Jian; Chen, Shan-Le; Wang, Hua-Jun; Li, Yu-Cheng; Geng, Xiaowei

    2015-07-01

    In a mine area, some environment geotechnics problems always occure, induced by mined-out region such as the subsidence and cracks at ground level, deformation and destruction of buildings, landslides destruction of water resources and the ecological environment. In order to research the migration of surrounding rock and coal in steeply inclined super high seams which used fully mechanized top coal caving, a working face of a certain mine was made as an example, analyzed the migration law of the overlay rock and coal under different caving ratio of fully mechanized top coal caving with numerical simulation analysis. The results suggest that the laws of overlay rock deformation caused by deeply inclined coal seam were different from horizontal coal seam. On the inclined direction, with an increase of dip angle and caving ratio, the vertical displacement of overlay rock and coal became greater, the asymmetric phenomenon of vertical displacement became obvious. On the trend direction, active region and transition region in goaf became smaller along with the increase of mining and caving ratio. On the contrary, the stable region area became greater. Therefore, there was an essential difference between the mechanism of surface movement deformation with deeply inclined coal seam and that with horizontal coal seam.

  4. Determination of oxygen and nitrogen in coal by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Hamrin, C.E. Jr.; Johannes, A.H.; James, W.D. Jr.; Sun, G.H.; Ehmann, W.D.

    1979-01-01

    The purpose of this study was to measure oxygen and nitrogen in coals using instrumental neutron activation analysis. For six U.S. coals total oxygen ranged from 9.4 to 28.7% and total nitrogen varied from 0.72 to 1.61%. To obtain values of organic oxygen and nitrogen either a low-temperature-ashing (LTA) method or an acid-treatment (AT) method was suitable for bituminous coals. The mean difference of the experimentally determined values (Osub(dmmf))sub(LTA) - (Osub(dmmf))sub(AT) = -0.82, s = 0.51, [dmmf = dry, mineral-matter-free basis], was found to be statistically significant at the 95% confidence level, but the comparable difference for nitrogen was not. By the LTA method oxygen and nitrogen on the dmmf basis for bituminous coals showed no statistically significant difference with calculated dmmf values. Nitrogen was detected in all the LTAs varying from 0.38 to 1.67%. Formation of insoluble CaF 2 in the acid-treatment method caused an interference in the nitrogen determination due to the 19 F (n, 2n) 18 F reaction but was correctable. In addition, recoil proton reactions on C and O leading to the formation of 13 N must be accounted for in all nitrogen determinations in the coal matrix. (author)

  5. NMR imaging: A 'chemical' microscope for coal analysis

    International Nuclear Information System (INIS)

    French, D.C.; Dieckman, S.L.; Gopalsami, N.; Botto, R.E.

    1991-01-01

    This paper presents a new three-dimensional (3-D) nuclear magnetic resonance (NMR) imaging technique for spatially mapping proton distributions in whole coals and solvent-swollen coal samples. The technique is based on a 3-D back-projection protocol for data acquisition, and a reconstruction technique based on 3-D Radon transform inversion. In principle, the 3-D methodology provides higher spatial resolution of solid materials than is possible with conventional slice-selection protocols. The applicability of 3-D NMR imaging has been demonstrated by mapping the maceral phases in Utah Blind Canyon (APCS number-sign 6) coal and the distribution of mobile phases in Utah coal swollen with deuterated and protic pyridine. 7 refs., 5 figs

  6. Characteristic analysis of methane-gas generation by oxidizing heat of stored coal and hold ventilation control; Sekitan unpansen ni okeru sanka hatsunetsu ni yoru methane gas hassei to sonai kankyo seigyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fukuchi, N; Nakashima, T [Kyushu Univ., Fukuoka (Japan); Kudo, S

    1999-12-31

    A demand of coal shows the tendency in the increase worldwide, with this, the marine transportation of the coal gradually increases, and the collier has also enlarged. The traffic pattern of coal is mainly the bulk transportation. In this transportation system, by the oxidation exothermic reaction of the coal, methane gas is produced, simultaneously the coal quality such as coking property or heat quantity is decreased and sometimes spontaneous ignition is caused. Therefore, it is necessary to equip with a ventilator to control the concentration of methane gas and to avoid the self heating of the coal. In this study, the quantity of methane-gas produced by heating coal using an electric furnace was measured and the experiment to investigate the temperature dependency of the methane-gas generated from the coal was conducted. By using the result of the measurement, the quantity of methane-gas produced from the coal stored in the hold of a coal cargo was estimated. And, the mathematical analyses on the changing degree depend on the times of a temperature in the hold under navigation, a concentration of oxygen and a concentration of methane-gas, were conducted. 11 refs., 19 figs., 2 tabs.

  7. ANALYSIS ON CONFLICTS OF CHINA’S COAL TAX REFORM

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-01-01

    Full Text Available This paper investigates the conflicts which are resulted from coal tax reform in China from economic and public policy perspectives. An analytical framework involving actors, values, interests and institution has been applied. China’s central government eagers to achieve fiscal revenue increase, environmental protection and energy conversation goals by a good governance of coal system. As a traditional and feasible policy instrument, taxation is regarded for dealing with energy issues in politics and governance. However, coal tax reform proposal has induced many controversies in China. The causes of that include value conflicts of all actors, competing interests of all parties and institutional barriers of economic, politics and legislation. Therefore, the government cannot regulate coal issues only through taxation. The case reveals that good governance on coal cannot be achieved only by economic tools as coal system contains so high stake and involves so many players.

  8. Strontium isotope study of coal utilization by-products interacting with environmental waters.

    Science.gov (United States)

    Spivak-Birndorf, Lev J; Stewart, Brian W; Capo, Rosemary C; Chapman, Elizabeth C; Schroeder, Karl T; Brubaker, Tonya M

    2012-01-01

    Sequential leaching experiments on coal utilization by-products (CUB) were coupled with chemical and strontium (Sr) isotopic analyses to better understand the influence of coal type and combustion processes on CUB properties and the release of elements during interaction with environmental waters during disposal. Class C fly ash tended to release the highest quantity of minor and trace elements-including alkaline earth elements, sodium, chromium, copper, manganese, lead, titanium, and zinc-during sequential extraction, with bottom ash yielding the lowest. Strontium isotope ratios ((87)Sr/(86)Sr) in bulk-CUB samples (total dissolution of CUB) are generally higher in class F ash than in class C ash. Bulk-CUB ratios appear to be controlled by the geologic source of the mineral matter in the feed coal, and by Sr added during desulfurization treatments. Leachates of the CUB generally have Sr isotope ratios that are different than the bulk value, demonstrating that Sr was not isotopically homogenized during combustion. Variations in the Sr isotopic composition of CUB leachates were correlated with mobility of several major and trace elements; the data suggest that arsenic and lead are held in phases that contain the more radiogenic (high-(87)Sr/(86)Sr) component. A changing Sr isotope ratio of CUB-interacting waters in a disposal environment could forecast the release of certain strongly bound elements of environmental concern. This study lays the groundwork for the application of Sr isotopes as an environmental tracer for CUB-water interaction. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Multi - party Game Analysis of Coal Industry and Industry Regulation Policy Optimization

    Science.gov (United States)

    Jiang, Tianqi

    2018-01-01

    In the face of the frequent occurrence of coal mine safety accidents, this paper analyses the relationship between central and local governments, coal mining enterprises and miners from the perspective of multi - group game. In the actual production, the decision of one of the three groups can affect the game strategy of the other of the three, so we should assume the corresponding game order. In this order, the game analysis of the income and decision of the three is carried out, and the game decision of the government, the enterprise and the workers is obtained through the establishment of the benefit matrix and so on. And then on the existing system to optimize the coal industry regulation proposed practical recommendations to reduce the frequency of industry safety accidents, optimize the industry production environment.

  10. Preliminary studies on the observation of oxygen-18 exchange in coal by Fourier Transform Infrared spectroscopy, investigations in the use of FTIR for coal ultimate analysis, and a fast pneumatic transfer system for 0-18 determination by neutron activation analysis

    International Nuclear Information System (INIS)

    DeKeyser, C.F. Jr.

    1984-01-01

    Use of isotope exchange kinetics for functional group determination in coal is investigated. Net exchange kinetics determined by time dependent Neutron Activation Analysis measurements (NAA) would be related to individual functional group exchange kinetics determined by Fourier Transform Infrared (FTIR) spectroscopy measurements. The work described herein can be grouped into three categories: 1) work relating to the FTIR spectroscopy of coal, 2) work relating to oxygen exchange in coal, and 3) work relating to measurements of O-18 by NAA. Methods are discussed for preparing IR observable samples of coal and ash, obtaining FTIR spectra of these samples, and reducing the spectral data to numerical form. Also included in this category is an investigation into the use of IR spectroscopic methods for the ultimate analysis of coals. An initial attempt at the observation of oxygen exchange in coal is described which includes two exchange schemes and the FTIR spectroscopic observation of their end products. A facile exchange between O-18 water and O-16 in coal was attempted with and without catalysts. Also, the design and construction of a fast pneumatic transfer system for the determination of O-18 is described

  11. Field trial of a pair production gauge for the on-line determination of ash in coal on a conveyor belt

    International Nuclear Information System (INIS)

    Millen, M.J.; Sowerby, B.D.; Rafter, P.T.; Ellis, W.K.; Gravitis, V.L.; Howells, E.; McLennan, T.D.; Muldoon, L.J.

    1984-01-01

    The ash content of coal can be determined by a method based on pair production. Coal is irradiated with high energy γ-rays and the resulting 0.511 MeV annihilation and Compton scattered γ-rays are measured. The pair production (PP) technique has been previously proved in the laboratory on static bulk samples and in the field on high-throughput sample by-lines. In the present paper, a plant test to assess the PP gauge for direct on-line conveyor belt analysis is described. This test was undertaken on the recirculating coal facility at the pilot plant coal washery at the BHP Steel Works, Newcastle, New South Wales. Seven Hunter Valley coals with ash in the range 7.5-33 wt% were circulated around the conveyor loop, and scanned by both PP and low energy γ-ray transmission (LET) gauges. Samples were measured on-belt as a function of sample depth, compaction, moisture and particle size. The mass per unit area of coal on the belt was varied in the range 40-210 kg m -2 . The r.m.s. deviation between PP gauge ash and chemical laboratory ash was 1.07 wt% ash for 370 individual on-belt measurements on coal of mass per unit area greater than 60 kg m -2 ad 0.45 wt% ash for the mean ash of each sample. (author)

  12. Washability of Australian coals

    Energy Technology Data Exchange (ETDEWEB)

    Whitmore, R L

    1979-06-01

    Australian coals tend to be young in geological age and high in ash by world standards; preparation of the coal before marketing is almost universal. On the basis of float and sink data from 39 locations in the eastern Australian coalfields, the coals are place in four categories representing increasing difficulty in their washability characteristics. These seem to be related neither to the geological age nor the geographical position of the deposit and Hunter Valley coals, for example, span all categories. The influence of crushing on the washability of Australian coals is briefly considered and from limited data it is concluded to be appreciably smaller than for British or North American coals. A strategy for the float and sink analysis of Australian coals is proposed and the influence of washability characteristics on current trends in the selection of separating processes for coking and steaming products is discussed.

  13. Determination of 30 elements in coal and fly ash by thermal and epithermal neutron-activation analysis

    International Nuclear Information System (INIS)

    Rowe, J.J.; Steinnes, E.

    1977-01-01

    Thirty elements are determined in coal and fly ash by instrumental neutron-activation analysis using both thermal and epithermal irradiation. Gamma-ray spectra were recorded 7 and 20 days after the irradiations. The procedure is applicable to the routine analysis of coals and fly ash. Epithermal irradiation was found preferable for the determination of Ni, Zn, As, Se, Br, Rb, Sr, Mo, Sb, Cs, Ba, Sm, Tb, Hf, Ta, W, Th and U, whereas thermal irradiation was best for Sc, Cr, Fe, Co, La, Ce, Nd, Eu, Yb and Lu. Results for SRM 1632 (coal) and SRM 1633 (fly ash) agree with those of other investigators. (author)

  14. Nuclear techniques for analysis of coal for calorific value, ash and moisture

    International Nuclear Information System (INIS)

    Dains, Margaret

    1976-03-01

    This bibliography includes references on nuclear techniques for analysis of coal for calorific value, ash and moisture content. As the search was directed particularly towards measurement of the ash content of coal using x- and gamma-ray methods, references covering only β-ray techniques have been placed in a separate section. References from Chemical Abstracts prior vol.62 (1965) do not cite the language of the original article. The language of the original has been given for all other articles not in English. (author)

  15. International Coal Report's coal year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McCloskey, G [ed.

    1991-05-31

    Following introductory articles on factors affecting trade in coal and developments in the freight market, tables are given for coal exports and coal imports for major countries worldwide for 1989 and 1990. Figures are also included for coal consumption in Canada and the Eastern bloc,, power station consumption in Japan, coal supply and demand in the UK, electric utility coal consumption and stocks in the USA, coal production in Australia, Canada and USA by state, and world hard coal production. A final section gives electricity production and hard coal deliveries in the EEC, sales of imported and local coal and world production of pig iron and steel.

  16. Critical Analysis of Underground Coal Gasification Models. Part II: Kinetic and Computational Fluid Dynamics Models

    Directory of Open Access Journals (Sweden)

    Alina Żogała

    2014-01-01

    Originality/value: This paper presents state of art in the field of coal gasification modeling using kinetic and computational fluid dynamics approach. The paper also presents own comparative analysis (concerned with mathematical formulation, input data and parameters, basic assumptions, obtained results etc. of the most important models of underground coal gasification.

  17. Possibilities of increasing coal charge density by adding fuel oil

    Directory of Open Access Journals (Sweden)

    M. Fröhlichová

    2010-01-01

    Full Text Available The requirement of all coke-making facilities is to achieve the highest possible production of high quality coke from a chamber. It can be achieved by filling the effective capacity of the chamber with the highest possible amount of coal. One of the possibilities of meeting this requirement is to increase the charge density in the coke chamber. In case of a coke battery operating on bulk coal there are many methods to increase the charge density including the use of wetting agents in the charge. This article presents the results of the laboratory experiments aiming at the increase of the charge density using fuel oil as a wetting agent. The experiments were carried out by means of the Pitin’s device using 3 coal charges with various granularity composition and moisture content of 7, 8, 9 and 10 %.

  18. Characterization of Malaysian coals for carbon dioxide sequestration

    Science.gov (United States)

    Abunowara, M.; Bustam, M. A.; Sufian, S.; Eldemerdash, U.

    2016-06-01

    Coal samples from Mukah-Balingian and Merit-Pila coal mines were characterized with ultimate, approximate, petrographic analysis, FT-IR spectra patterns, FESEM images and BET measurements to obtain information on the chemical composition and chemical structure in the samples. Two coal samples were obtained from Merit-Pila coal mine namely sample1 (S1) and sample2 (S2). The other two coal samples were obtained from Mukah-Balingian coal mine namely sample3 (S3) and sample4 (S4), Sarawak, Malaysia. The results of ultimate analysis show that coal S1 has the highest carbon percentage by 54.47%, the highest hydrogen percentage by 10.56% and the lowest sulfur percentage by 0.19% and the coal S4 has the highest moisture content by 31.5%. The coal S1 has the highest fixed carbon percentage by 42.6%. The coal S4 has BET surface area by 2.39 m2/g and Langmuir surface area by 3.0684 m2/g respectively. Fourier-Transform Infrared (FT-IR) spectroscopy analysis of all coal samples shows a presence of oxygen containing functional groups which considered are as active sites on coal surface. The oxygen functional groups are mainly carboxyl (-COOH), hydroxyl (-OH), alkyl (-CH, -CH2, -CH3), aliphatic (C-O-C stretching associated with -OH), amino (-NH stretching vibrations), (-NH stretching vibrations), aromatic (C=C), vinylic (C=C) and clay minerals. In all FE-SEM images of coal samples matrix, it can be seen that there are luminous and as non luminous features which refer to the existence of various minerals types distributed in the coal organic matrix. The bright luminosity is due to the presence of sodium, potassium or aluminium. According to petrographic analysis, all coal sample samples are range in vitrinite reflectance from 0.38% to 56% (VRr) are sub-bituminous coals.

  19. The application of a coupled artificial neural network and fault tree analysis model to predict coal and gas outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Ruilin, Zhang [School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454003, PR (China); Lowndes, Ian S. [Process and Environmental Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2010-11-01

    This paper proposes the use of a coupled fault tree analysis (FTA) and artificial neural network (ANN) model to improve the prediction of the potential risk of coal and gas outburst events during the underground mining of thick and deep Chinese coal seams. The model developed has been used to investigate the gas emission characteristics and the geological conditions that exist within the Huaibei coal mining region, Anhui province, China. The coal seams in this region exhibit a high incidence of coal and gas outbursts. An analysis of the results obtained from an initial application of an FTA model, identified eight dominant model parameters related to the gas content or geological conditions of the coal seams, which characterize the potential risk of in situ coal and gas outbursts. The eight dominant model parameters identified by the FTA method were subsequently used as input variables to an ANN model. The results produced by the ANN model were used to develop a qualitative risk index to characterize the potential risk level of occurrence of coal and gas outburst events. Four different potential risk alarm levels were defined: SAFE, POTENTIAL, HIGH and STRONG. Solutions to the prediction model were obtained using a combination of quantitative and qualitative data including the gas content or gas pressure and the geological and geotechnical conditions of coal seams. The application of this combined solution method identified more explicit and accurate model relationships between the in situ geological conditions and the potential risk of coal and gas outbursts. An analysis of the model solutions concluded that the coupled FTA and ANN model may offer a reliable alternative method to forecast the potential risk of coal and gas outbursts. (author)

  20. Gamma self-shielding correction factors calculation for aqueous bulk sample analysis by PGNAA technique

    International Nuclear Information System (INIS)

    Nasrabadi, M.N.; Mohammadi, A.; Jalali, M.

    2009-01-01

    In this paper bulk sample prompt gamma neutron activation analysis (BSPGNAA) was applied to aqueous sample analysis using a relative method. For elemental analysis of an unknown bulk sample, gamma self-shielding coefficient was required. Gamma self-shielding coefficient of unknown samples was estimated by an experimental method and also by MCNP code calculation. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the gamma self-shielding within the sample volume is required.

  1. Fast neutron activation analysis of fossil fuels and liquefaction products

    International Nuclear Information System (INIS)

    Ehmann, W.D.; Khalil, S.R.; Koppenaal, D.W.

    1982-01-01

    The problems associated with neutron absorption/thermalization, gamma-ray self-absorption, and variable irradiation and counting geometries associated with the composition, densities and physical states of the samples and standards of fossil fuels are considered. Two sets of liquid organic reagent primary standards and several solid standards are selected and evaluated for use in the determiation of oxygen and nitrogen in coals, coal conversion liquids, and residual solids. Analyses of a number of coals, conversion products and NBS reference standards are presented. Problems associated with selecting a reproducible pre-analysis drying procedure for oxygen determinations in coal and discussed. It is suggested that a brief freeze-drying procedure may result in minimal matrix alternation and yield reproducible values for bulk oxygen contents of coals

  2. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Steven S. C. [Univ. of Akron, OH (United States)

    2014-08-31

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of building a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH4 can interact with CO2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels

  3. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  4. On stream ash analysis of coal based on its natural gamma-ray activity

    International Nuclear Information System (INIS)

    Mathew, P.J.

    1986-01-01

    A novel method based on the natural gamma-ray activity of coal has been developed for the on-stream determination of ash. The accuracy of the method has been verified by measuring the natural gamma-ray activity and ash content of coal samples from a number of locations in New Zealand and Australia. The rms differences between % ash by ignition and % ash by the gamma-ray method ranged from 0.65% ash for coal samples from a Queensland mine to 1.6% ash for samples from a southern New South Wales mine. The rms errors include those to geovariance, and due to sampling and sample analysis by conventional means. The error in ash measurement by the gamma-ray method can therefore be reduced by substantially eliminating these errors. A prototype ash analyser was also developed and field-tested at the Huntly East mine. In a four-week test, the prototype gauge was used to determine the ash content of run-of-mine (rom) coal below 20% ash to within +- 1.7% ash. Laboratory studies of coal samples collected during the field test of the prototype gave an error of 0.8% ash for coal samples below 20% ash content. A higher error was observed in the field test compared with laboratory data, and the difference is attributed to errors in sampling from the conveyor belt

  5. National Coal Quality Inventory (NACQI)

    Energy Technology Data Exchange (ETDEWEB)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  6. Cooling Effect Analysis of Suppressing Coal Spontaneous Ignition with Heat Pipe

    Science.gov (United States)

    Zhang, Yaping; Zhang, Shuanwei; Wang, Jianguo; Hao, Gaihong

    2018-05-01

    Suppression of spontaneous ignition of coal stockpiles was an important issue for safe utilization of coal. The large thermal energy from coal spontaneous ignition can be viewed as the latent energy source to further utilize for saving energy purpose. Heat pipe was the more promising way to diffuse effectively concentrated energy of the coal stockpile, so that retarding coal spontaneous combustion was therefore highly desirable. The cooling mechanism of the coal with heat pipe was pursued. Based on the research result, the thermal energy can be transported from the coal seam to the surface continuously with the use of heat pipe. Once installed the heat pipes will work automatically as long as the coal oxidation reaction was happened. The experiment was indicated that it can significantly spread the high temperature of the coal pile.

  7. NMR of mercury in porous coal and silica gel

    International Nuclear Information System (INIS)

    Kasperovich, V.S.; Charnaya, E.V.; Tien, C.; Wur, C.S.

    2003-01-01

    Temperature dependences of the integral intensity and NMR signals Knight shift in 199 Hg nuclei are measured for liquid and solid mercury introduced into the porous coal and silica gel. The decrease in the crystallization completion temperature and small temperature hysteresis (from 4 up to 9 K) between melting and crystallization are identified. Mercury melting temperature in pores coincided with melting temperature of the bulk mercury. NMR signal from crystalline mercury under conditions of limited geometry was observed for the first time. It is ascertained that Knight shift for mercury in the pores both in liquid and crystalline phases is lesser than for the bulk mercury [ru

  8. Environmental assessment and nano-mineralogical characterization of coal, overburden and sediment from Indian coal mining acid drainage

    Directory of Open Access Journals (Sweden)

    Madhulika Dutta

    2017-11-01

    Full Text Available The deterioration of environmental conditions is the major contributory factor to poor health and quality of life that hinders sustainable development in any region. Coal mining is one of the major industries that contribute to the economy of a country but it also impacts the environment. The chemical parameters of the coal, overburden, soil and sediments along with the coal mine drainage (CMD were investigated in order to understand the overall environmental impact from high sulphur coal mining at northeastern coalfield (India. It was found that the total sulphur content of the coal is noticeably high compared to the overburden (OB and soil. The volatile matter of the coal is sufficiently high against the high ash content of the soil and overburden. The water samples have a High Electrical Conductivity (EC and high Total Dissolve Solid (TDS. Lower values of pH, indicate the dissolution of minerals present in the coal as well as other minerals in the mine rejects/overburden. The chemical and nano-mineralogical composition of coal, soil and overburden samples was studied using a High Resolution-Transmission Electron Microscopy (HR-TEM, Energy Dispersive Spectroscopy (EDS, Selected-Area Diffraction (SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS, X-ray diffraction (XRD, Fourier Transform Infrared Spectroscopy (FTIR, Raman and Ion-Chromatographic analysis, and Mössbauer spectroscopy. From different geochemical analysis it has been found that the mine water sample from Ledo colliery has the lowest pH value of 3.30, Tirap colliery samples have the highest electrical conductivity value of 5.40 ms cm−1. Both Ledo and Tirap coals have total sulphur contents within the range 3–3.50%. The coal mine water from Tirap colliery (TW-15B has high values of Mg2+ (450 ppm, and Br− (227.17 ppm. XRD analysis revealed the presence of minerals including quartz and hematite in the coals. Mineral analysis of coal mine overburden (OB indicates

  9. Chemometric Study of Trace Elements in Hard Coals of the Upper Silesian Coal Basin, Poland

    Science.gov (United States)

    Rompalski, Przemysław; Cybulski, Krzysztof; Chećko, Jarosław

    2014-01-01

    The objective of the study was the analysis of trace elements contents in coals of the Upper Silesian Coal Basin (USCB), which may pose a potential threat to the environment when emitted from coal processing systems. Productive carbon overburden in central and southern zones of the USCB is composed mostly of insulating tertiary formations of a thickness from a few m to 1,100 m, and is represented by Miocene and Pliocene formations. In the data study the geological conditions of the coal seams of particular zones of the USCB were taken into account and the hierarchical clustering analysis was applied, which enabled the exploration of the dissimilarities between coal samples of various zones of the USCB in terms of basic physical and chemical parameters and trace elements contents. Coals of the northern and eastern zones of the USCB are characterized by high average Hg and low average Ba, Cr, and Ni contents, whereas coals of southern and western zones are unique due to high average concentrations of Ba, Co, Cu, Ni, and V. Coals of the central part of the USCB are characterized by the highest average concentration of Mn and the lowest average concentrations of As, Cd, Pb, V, and Zn. PMID:24967424

  10. Bulk density estimation using a 3-dimensional image acquisition and analysis system

    Directory of Open Access Journals (Sweden)

    Heyduk Adam

    2016-01-01

    Full Text Available The paper presents a concept of dynamic bulk density estimation of a particulate matter stream using a 3-d image analysis system and a conveyor belt scale. A method of image acquisition should be adjusted to the type of scale. The paper presents some laboratory results of static bulk density measurements using the MS Kinect time-of-flight camera and OpenCV/Matlab software. Measurements were made for several different size classes.

  11. Distributed activation energy model for kinetic analysis of multi-stage hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Li, W.; Wang, N.; Li, B. [Chinese Academy of Sciences, Taiyuan (China). Inst. of Coal Chemistry

    2003-07-01

    Based on the new analysis of distributed activation energy model, a bicentral distribution model was introduced to the analysis of multi-stage hydropyrolysis of coal. The hydropyrolysis for linear temperature programming with and without holding stage were mathematically described and the corresponding kinetic expressions were achieved. Based on the kinetics, the hydropyrolysis (HyPr) and multi-stage hydropyrolysis (MHyPr) of Xundian brown coal was simulated. The results shows that both Mo catalyst and 2-stage holding can lower the apparent activation energy of hydropyrolysis and make activation energy distribution become narrow. Besides, there exists an optimum Mo loading of 0.2% for HyPy of Xundian lignite. 10 refs.

  12. Alaska Regional Energy Resources Planning Project. Phase 2: coal, hydroelectric and energy alternatives. Volume I. Beluga Coal District Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, G.; Lane, D.; Edblom, G.

    1980-01-01

    This volume deals with the problems and procedures inherent in the development of the Beluga Coal District. Socio-economic implications of the development and management alternatives are discussed. A review of permits and approvals necessary for the initial development of Beluga Coal Field is presented. Major land tenure issues in the Beluga Coal District as well as existing transportation routes and proposed routes and sites are discussed. The various coal technologies which might be employed at Beluga are described. Transportation options and associated costs of transporting coal from the mine site area to a connecting point with a major, longer distance transportation made and of transporting coal both within and outside (exportation) the state are discussed. Some environmental issues involved in the development of the Beluga Coal Field are presented. (DMC)

  13. A Combined Raman Spectroscopic and Thermogravimetric Analysis Study on Oxidation of Coal with Different Ranks

    Directory of Open Access Journals (Sweden)

    Weiqing Zhang

    2015-01-01

    Full Text Available Raman spectroscopy and nonisothermal thermogravimetric analysis (TGA measurements have been reported for different rank coals (lignite, bituminous coal, and anthracite and the relationship between the measurements was examined. It was found that the Raman spectra parameters can be used to characterize structure changes in the different rank coals, such as the band area ratios based on the curve-fitted results. Higher ranked coal was found to have higher values of IGR/IAll and IG+GR/IAll but lower values of ID/I(G+GR, IDL/I(G+GR, IS+SL/I(G+GR, and I(GL+GL'/I(G+GR. The oxidation properties of the coal samples were characterized by the reactivity indexes Tig, T20%, and Tmax from TGA data which were found to correlate well with the band area ratios of IGR/IAll, IG+GR/IAll, and IS+SL/I(G+GR. Based on these correlations, the Raman band area ratios were found to correlate with the oxidation activity of coal providing additional structural information which can be used to understand the changes in the TGA measurements.

  14. Technical report on NEDO-conducted Western US steam coal (for power generation and boiler) survey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    The New Energy and Industrial Technology Development Organization (NEDO) conducted studies covering Wyoming, Utah, Colorado, New Mexico, and North Dakota, all in the West. Illinois and Gulf-Texas are also included. The bituminous coal of Utah and Colorado is given the highest priority as coal to be exported to Japan. It is feared, however, that the price of the bituminous coal from these areas may soar if demand increases. As for sub-bituminous coal, its price is far more stable because its reserves are basically limitless. The sub-bituminous coal, however, is not expected to be imported to Japan in the very near future because it is low in calorific power and fails to meet the conditions prerequisite to Japan's boiler fuel. Illinois can receive large orders but its coal contains more sulfur than the Western coal and a longer distance has to be covered for its transportation. As for transportation to the West Cost, freight cars are available and the port capacity can be enlarged dependent on the magnitude of demand for coal. Loading a deep draft bulk ship off shore with coarse coal slurry by pipeline is an attractive scheme. (NEDO)

  15. Technical report on NEDO-conducted Western US steam coal (for power generation and boiler) survey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    The New Energy and Industrial Technology Development Organization (NEDO) conducted studies covering Wyoming, Utah, Colorado, New Mexico, and North Dakota, all in the West. Illinois and Gulf-Texas are also included. The bituminous coal of Utah and Colorado is given the highest priority as coal to be exported to Japan. It is feared, however, that the price of the bituminous coal from these areas may soar if demand increases. As for sub-bituminous coal, its price is far more stable because its reserves are basically limitless. The sub-bituminous coal, however, is not expected to be imported to Japan in the very near future because it is low in calorific power and fails to meet the conditions prerequisite to Japan's boiler fuel. Illinois can receive large orders but its coal contains more sulfur than the Western coal and a longer distance has to be covered for its transportation. As for transportation to the West Cost, freight cars are available and the port capacity can be enlarged dependent on the magnitude of demand for coal. Loading a deep draft bulk ship off shore with coarse coal slurry by pipeline is an attractive scheme. (NEDO)

  16. Analysis of the use of waste heat obtained from coal-fired units in Organic Rankine Cycles and for brown coal drying

    International Nuclear Information System (INIS)

    Łukowicz, Henryk; Kochaniewicz, Andrzej

    2012-01-01

    The ever-increasing restrictions on greenhouse gas emissions have created a need for new energy technologies. One way to meet these new requirements is to optimise the efficiency of power units. This paper presents two energy technologies that, if used, will increase the efficiency of electricity generation. One of the most effective ways to improve the efficiency of brown coal-fired units is by drying the coal that is fed into the boiler. Here, we describe a technology that uses the waste heat obtained from exhaust gases. This paper also presents an analysis of the feasibility of and potential for using waste heat obtained from exhaust gases to feed Organic Rankine Cycles (ORCs). Several low-temperature working fluids were considered, which were selected based on properties that were best suited for these types of cycles. The impact of these working fluids on the efficiency and capacity of the ORC was also examined. The calculations for ORCs fed with waste heat obtained from exhaust gases from hard coal- and brown coal-fired boilers were compared. -- Highlights: ► We describe a technology that uses the waste heat obtained from exhaust gases. ► The impact of using different working fluids with a low boiling point is examined. ► We describe integrating the ORC with the power unit. ► The use of waste heat from boiler exhaust gases to dry brown coal is proposed. ► We demonstrate a possible increase in power unit efficiency.

  17. Recent developments in nucleonic control systems and on-stream analysers for the mineral and coal industries

    International Nuclear Information System (INIS)

    Mathew, P.J.

    1994-01-01

    Some recent developments in industrial nuclear gauging in Australia are briefly reviewed. Quality control, process control and automation in the mineral and coal industries are based on measurements of the composition and flows of critical process stream. Australia's vast mineral wealth and its importance to the national economy has resulted in CSIRO (Commonwealth Scientific and Industrial Research Organisation) successfully developing and commercializing a variety of nucleonic gauges to meet the needs of the mineral and coal industries. These include gauges for on-line determination of the ash content of coal on conveyor belts, the ash content of solids of weight fraction of coal in slurries, on-stream determination of iron, alumina and manganese in iron ore, bulk analysis of raw feed limestone in the cement industry, and gauges for the measurement of level, moisture, and interfaces. A variety of gauges based on natural radioactivity have also been developed. Instruments based on natural gamma radiation are relatively inexpensive, and free of artificial radiation sources. An on-stream analyser based on natural gamma ray activity has been developed for monitoring the soil content of sugar cane. Significant benefits accrued to industry in using nucleonic gauges are briefly discussed. (author). 18 refs., 8 figs

  18. Multi-element neutron activation analysis of Brazilian coal samples

    International Nuclear Information System (INIS)

    Atalla, L.T.; Requejo, C.S.

    1982-09-01

    The elements U, Th, La, Ce, Nd, Sm, Eu, Dy, Tb, Yb, Lu, Sc, Ta, Hf, Co, Ni, Cr, Mo, Ti, V, W, In, Ga, Mn, Ba, Sr, Mg, Rb, Cs, K, Cl, Br, As, Sb, Au, Ca, Al and Fe were determined in coal samples by instrumental neutron activation analysis, by using both thermal and epithermal neutron irradiations. The irradiation times were 10 minutes and 8 or 16 hours in a position where the thermal neutron flux was about 10 12 n.cm - 2 .s - 1 and 72 non-consecutive hours for epithermal irradiation at a flux of about 10 11 n.Cm - 2 .s - 1 . After the instrumental analysis of the above mentioned elements, Zn and Se were determined with chemical separation. The relative standard deviation of, at least, 4 determinations was about + - 10% for the majority of the results. The coal samples analysed were supplied by: Cia. Estadual da Tecnologia e Saneamento Basico (CETESB-SP), Cia. de Pesquisas e Lavras Minerais (COPELMI-RS), Cia. Carbonifera Urussunga (SC), Cia. Carbonifera Prospera (SC), Cia. Carbonifera Treviso (SC), Cia. Nacional de Mineracao de Carvao do Barro Branco (SC) and Comissao Nacional de Energia Nuclear (CNEN-RJ). (Author) [pt

  19. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  20. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.

    Science.gov (United States)

    Ancora, Maria Pia; Zhang, Lei; Wang, Shuxiao; Schreifels, Jeremy; Hao, Jiming

    2015-07-01

    Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF+WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments. Copyright © 2015. Published by Elsevier B.V.

  1. Study on feasible technical potential of coal to electricity in china

    Science.gov (United States)

    Jia, Dexiang; Tan, Xiandong

    2017-01-01

    The control of bulk coal is one of the important work of air pollution control in China’s future. Existing research mainly focuses on the adaptability, economy, construction and renovation plan, and operation optimization of specific energy substitution utilization, and lacks the strategy research of long-term layout of energy substitution utilization in large area. This paper puts forward a technical potential prediction method of coal to electricity based on the thermal equivalent method, which is based on the characteristics of regional coal consumption, and combined with the trend of adaptability and economy of energy substitution utilization. Also, the paper calculates the comprehensive benefit of coal to electricity according to the varieties of energy consumption and pollutant emission level of unit energy consumption in China’s future. The research result shows that the development technical potential of coal to electricity in China is huge, about 1.8 trillion kWh, including distributed electric heating, heat pump and electric heating boiler, mainly located in North China, East China, and Northeast China. The implementation of coal to electricity has remarkable comprehensive benefits in energy conservation and emission reduction, and improvement of energy consumption safety level. Case study shows the rationality of the proposed method.

  2. Novel technique for coal pyrolysis and hydrogenation production analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pfefferle, L.D.

    1990-01-01

    The overall objective of this study is to establish vacuum ultraviolet photoionization-MS and VUV pulsed EI-MS as useful tools for a simpler and more accurate direct mass spectrometric measurement of a broad range of hydrocarbon compounds in complex mixtures for ultimate application to the study of the kinetics of coal hydrogenation and pyrolysis processes. The VUV-MS technique allows ionization of a broad range of species with minimal fragmentation. Many compounds of interest can be detected with the 118 nm wavelength, but additional compound selectivity is achievable by tuning the wavelength of the photo-ionization source in the VUV. Resonant four wave mixing techniques in Hg vapor will allow near continuous tuning from about 126 to 106 nm. This technique would facilitate the scientific investigation of coal upgrading processes such as pyrolysis and hydrogenation by allowing accurate direct analysis of both stable and intermediate reaction products.

  3. Nanometre-sized pores in coal: Variations between coal basins and coal origin

    Science.gov (United States)

    Sakurovs, Richard; Koval, Lukas; Grigore, Mihaela; Sokolava, Anna; Ruppert, Leslie F.; Melnichenko, Yuri B.

    2018-01-01

    We have used small angle neutron scattering (SANS) to investigate the differences in methane and hexane penetration in pores in bituminous coal samples from the U.S., Canada, South Africa, and China, and maceral concentrates from Australian coals. This work is an extension of previous work that showed consistent differences between the extent of penetration by methane into 10–20 nm size pores in inertinite in bituminous coals from Australia, North America and Poland.In this study we have confirmed that there are differences in the response of inertinite to methane and hexane penetration in coals sourced from different coal basins. Inertinite in Permian Australian coals generally has relatively high numbers of pores in the 2.5–250 nm size range and the pores are highly penetrable by methane and hexane; coals sourced from Western Canada had similar penetrability to these Australian coals. However, the penetrability of methane and hexane into inertinite from the Australian Illawarra Coal Measures (also Permian) is substantially less than that of the other Australian coals; there are about 80% fewer 12 nm pores in Illawarra inertinite compared to the other Australian coals examined. The inertinite in coals sourced from South Africa and China had accessibility intermediate between the Illawarra coals and the other Australian coals.The extent of hexane penetration was 10–20% less than CD4 penetration into the same coal and this difference was most pronounced in the 5–50 nm pore size range. Hexane and methane penetrability into the coals showed similar trends with inertinite content.The observed variations in inertinite porosity between coals from different coal regions and coal basins may explain why previous studies differ in their observations of the relationships between gas sorption behavior, permeability, porosity, and maceral composition. These variations are not simply a demarcation between Northern and Southern Hemisphere coals.

  4. Use of nuclear techniques for coal analysis in exploration, mining and processing

    International Nuclear Information System (INIS)

    Clayton, C.G.; Wormald, M.R.

    1982-01-01

    Nuclear techniques have a long history of application in the coal industry, during exploration and especially during coal preparation, for the measurement of ash content. The preferred techniques are based on X- and gamma-ray scattering and borehole logging, and on-line equipment incorporating these techniques are now in world-wide routine use. However, gamma-ray techniques are mainly restricted to density measurement and X-ray techniques are principally used for ash determinations. They have a limited range and when used on-line some size reduction of the coal is usually required and a full elemental analysis is not possible. In particular, X- and gamma-ray techniques are insensitive to the principal elements in the combustible component and to many of the important elements in the mineral fraction. Neutron techniques on the other hand have a range which is compatible with on-line requirements and all elements in the combustible component and virtually all elements in the mineral component can be observed. A complete elemental analysis of coal then allows the ash content and the calorific value to be determined on-line. This paper surveys the various nuclear techniques now in use and gives particular attention to the present state of development of neutron methods and to their advantages and limitations. Although it is shown that considerable further development and operational experience are still required, equipment now being introduced has a performance which matches many of the identified requirements and an early improvement in specification can be anticipated

  5. Coal: an economic source of energy

    International Nuclear Information System (INIS)

    Ali, I.; Ali, M.M.

    2001-01-01

    Coal, in spite its abundance availability in Pakistan, is a neglected source of energy. Its role as fuel is not more than five percent for the last four decades. Some of the coal, mined, in used as space heating in cold areas of Pakistan but more than 90% is being used in brick kilns. There are 185 billion tonnes of coal reserves in the country and hardly 3 million tonnes of coal is, annually, mined. Lakhra coal field is, presently, major source of coal and is considered the largest productive/operative coal field of Pakistan. It is cheaper coal compared to other coals available in Pakistan. As an average analysis of colas of the country, it shows that most of the coals are lignitic in nature with high ash and sulfur content. The energy potential is roughly the same but the cost/ton of coal is quite different. It may be due to methods of mining. There should be some criteria for fixing the cost of the coal. It should be based on energy potential of unit mass of coal. (author)

  6. Monitoring coal conversion processes by IR-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hobert, H.; Kempe, J.; Stephanowitz, H. (Friedrich-Schiller-Universitaet, Jena (German Democratic Republic))

    1990-01-01

    Explains application of infrared spectroscopy combined with multivariate data analysis by an on-line computer system for assessing coal quality and suitability of brown coal for conversion processes. Coal samples were pelletized under addition of KBr and analyzed using an IRF 180 Fourier transform spectrometer in the spectral range of 400 to 2,000 cm{sup -1}. Components of spectra are presented; the oil yield from coal hydrogenation is calculated by regression analysis. Covariance spectra of carbon, organic hydrogen and sulfur are shown. It is concluded that the field of application for the method includes industrial coal liquefaction, gasification as well as briquetting and coking. 8 refs.

  7. An innovative concept for maximizing the use of coal and nuclear energy for co-generation applications

    International Nuclear Information System (INIS)

    Choong, P.T.S.

    1995-01-01

    Despite the abundance in coal reserves in the world, coal fired power plants are not the desirable long-term solution to the energy shortage in most nations, because of environmental and transportation difficulties. However, nuclear power is inherently inefficient due to low temperature operations. The prudent solution to world's energy crisis should address both the immediate need for electricity and the long-term need for an environmentally sound energy system capable of providing low cost electricity and district heating energy utilizing mainly indigenous energy resources (coal, uranium, and thorium). The new energy utilization system has to be environment friendly. A conceptual solution plan is the subject matter of this presentation. The concept calls for an innovative integration of coal gasification, gas turbine, steam turbine and an intermediate bulk coolant heating nuclear power technologies. The output of the nuclear heated coolant is to cool the syngas output which is to drive the high temperature gas turbine generator. The waste heat from the gas turbine is recovered to drive the steam turbine. The exhaust steam from the steam turbine is used for district heating. The siting of the nuclear power plant is to be near the coal mines and water resources. Bulk of the electricity output is transmitted via HVDC lines to far away population centers. Excess coal gas from the gasification plant is to be piped to surrounding districts to drive remote combined cycle power plants. The thermal efficiency of power cycle can be over 50%. The overall energy utilization efficiency can be as high as 85% when district heating effect included. An example of INCTES (Integrated Nuclear/Coal Total Energy System) for China power/energy infra structure is briefly touched upon

  8. Aspects of combustion behaviour of coals from some New Zealand lignite-coal regions determined by thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Benfell, K.E.; Beamish, B.B.; Rodgers, K.A. [University of Newcastle, Callaghan, NSW (Australia). Dept. of Geology

    1997-08-25

    The papers describes how thermogravimetric analysis of five Late Cretaceous and Cenozoic New Zealand lignites demonstrate that their combustion behaviour is distinct from that of subbituminous coals and may be characterised by peak temperature of 377-416{degree}C, maximum rate of combustion of 25-31 wt% min{sup -1}, and temperature of char burnout 421-497{degree}C. These parameters reflect variation in thermal behaviour associated with both the organic and inorganic constituents of the coal. The information obtained is additional to that provided by proximate analysis; the latter is insufficient to predict the combustion behaviour of the coals relative to one another. A post-combustion thermal event is seen among the lignites as in other low-rank coals combusting below 600{degree}C, which appears to be related to the organic sulphur content of the coal.

  9. A convenient method for the quantitative determination of elemental sulfur in coal by HPLC analysis of perchloroethylene extracts

    Science.gov (United States)

    Buchanan, D.H.; Coombs, K.J.; Murphy, P.M.; Chaven, C.

    1993-01-01

    A convenient method for the quantitative determination of elemental sulfur in coal is described. Elemental sulfur is extracted from the coal with hot perchloroethylene (PCE) (tetrachloroethene, C2Cl4) and quantitatively determined by HPLC analysis on a C18 reverse-phase column using UV detection. Calibration solutions were prepared from sublimed sulfur. Results of quantitative HPLC analyses agreed with those of a chemical/spectroscopic analysis. The HPLC method was found to be linear over the concentration range of 6 ?? 10-4 to 2 ?? 10-2 g/L. The lower detection limit was 4 ?? 10-4 g/L, which for a coal sample of 20 g is equivalent to 0.0006% by weight of coal. Since elemental sulfur is known to react slowly with hydrocarbons at the temperature of boiling PCE, standard solutions of sulfur in PCE were heated with coals from the Argonne Premium Coal Sample program. Pseudo-first-order uptake of sulfur by the coals was observed over several weeks of heating. For the Illinois No. 6 premium coal, the rate constant for sulfur uptake was 9.7 ?? 10-7 s-1, too small for retrograde reactions between solubilized sulfur and coal to cause a significant loss in elemental sulfur isolated during the analytical extraction. No elemental sulfur was produced when the following pure compounds were heated to reflux in PCE for up to 1 week: benzyl sulfide, octyl sulfide, thiane, thiophene, benzothiophene, dibenzothiophene, sulfuric acid, or ferrous sulfate. A sluury of mineral pyrite in PCE contained elemental sulfur which increased in concentration with heating time. ?? 1993 American Chemical Society.

  10. The production of activated carbon from nigerian mineral coal via steam activation

    International Nuclear Information System (INIS)

    Nwosu, F.O.; Owolabi, B.I.O.; Adebowale, O.

    2010-01-01

    Activated carbon was produced from Okpara sub-bituminous coal and Ogwashi brown lignite coal of Nigeria through steam activation at 900 degree C and 960 degree C each for 30 min and 60 min. Okpara and Ogwashi precursor coals had carbon content of 67.41 and 64.47%, respectively, whereas the bulk density and the ash content were 0.59 - 0.68 g/mL and 2.56-9.91%, respectively. The former exhibited up to 901.0 mg/g iodine number and Brunauer Emmett Teller (BET) surface area of 604 m/sup 2/g while the latter, iodine number of 998.0 mg/g and 669 m/sup 2/g BET surface area. Both showed adequate porosity indicative of their potential for utilization for commercial production of active carbons. (author)

  11. Energy rent and public policy: an analysis of the Canadian coal industry

    International Nuclear Information System (INIS)

    Gunton, Thomas

    2004-01-01

    This paper analyses issues in resource rent through a case study of the Canadian coal industry. A model of the coal industry is constructed to estimate the magnitude of rent and distribution of coal rent between government and industry over the 30-year period from 1970 to 2000. Disaggregation of results by coal sector shows that rent varied widely, with one sector generating substantial rent and other sectors incurring large losses. The pattern of development of the coal sector followed what can be termed a 'rent dissipation cycle' in which the generation of rent in the profitable sector created excessively optimistic expectations that encouraged new entrants to dissipate rent by developing uneconomic capacity. The analysis also shows that the system used to collect rent was ineffective. The public owner collected only one-third of the rent on the profitable mines and collected royalty revenue from the unprofitable mines even though no rent was generated. The case study illustrates that improvements in private sector planning based on a better appreciation of resource market fundamentals, elimination of government subsidies that encourage uneconomic expansion and more effective rent collection are all needed to avoid rent dissipation and increase the benefits of energy development in producing jurisdictions. The study also illustrates that estimates of rent in the resource sector should disaggregate results by sector and make adjustments for market imperfections to accurately assess the magnitude of potential rent

  12. A Combined Raman Spectroscopic and Thermogravimetric Analysis Study on Oxidation of Coal with Different Ranks.

    Science.gov (United States)

    Zhang, Weiqing; Jiang, Shuguang; Hardacre, Christopher; Goodrich, Peter; Wang, Kai; Shao, Hao; Wu, Zhengyan

    2015-01-01

    Raman spectroscopy and nonisothermal thermogravimetric analysis (TGA) measurements have been reported for different rank coals (lignite, bituminous coal, and anthracite) and the relationship between the measurements was examined. It was found that the Raman spectra parameters can be used to characterize structure changes in the different rank coals, such as the band area ratios based on the curve-fitted results. Higher ranked coal was found to have higher values of I GR/I All and I (G + GR)/I All but lower values of I D/I (G+GR), I DL/I (G+GR), I (S + SL)/I (G+GR), and I (GL+GL')/I (G+GR). The oxidation properties of the coal samples were characterized by the reactivity indexes T ig, T 20%, and T max from TGA data which were found to correlate well with the band area ratios of I GR/I All, I (G + GR)/I All, and I (S + SL)/I (G+GR). Based on these correlations, the Raman band area ratios were found to correlate with the oxidation activity of coal providing additional structural information which can be used to understand the changes in the TGA measurements.

  13. A Monte Carlo Library Least Square approach in the Neutron Inelastic-scattering and Thermal-capture Analysis (NISTA) process in bulk coal samples

    Science.gov (United States)

    Reyhancan, Iskender Atilla; Ebrahimi, Alborz; Çolak, Üner; Erduran, M. Nizamettin; Angin, Nergis

    2017-01-01

    A new Monte-Carlo Library Least Square (MCLLS) approach for treating non-linear radiation analysis problem in Neutron Inelastic-scattering and Thermal-capture Analysis (NISTA) was developed. 14 MeV neutrons were produced by a neutron generator via the 3H (2H , n) 4He reaction. The prompt gamma ray spectra from bulk samples of seven different materials were measured by a Bismuth Germanate (BGO) gamma detection system. Polyethylene was used as neutron moderator along with iron and lead as neutron and gamma ray shielding, respectively. The gamma detection system was equipped with a list mode data acquisition system which streams spectroscopy data directly to the computer, event-by-event. A GEANT4 simulation toolkit was used for generating the single-element libraries of all the elements of interest. These libraries were then used in a Linear Library Least Square (LLLS) approach with an unknown experimental sample spectrum to fit it with the calculated elemental libraries. GEANT4 simulation results were also used for the selection of the neutron shielding material.

  14. Continuous bulk unloader versus grab unloader: a comparison of ship unloading systems

    Energy Technology Data Exchange (ETDEWEB)

    Sepling, M

    1985-02-01

    Most of the major bulk cargoes (coal, ores, phosphate, limestone, etc.) have poor flow characteristics and are, generally speaking, difficult to handle and unload. Grab- type cranes (either portal or gantry) have hitherto been the traditional means of unloading these cargoes because of their excellent digging/grabbing performance. However they do possess a number of serious disadvantages, such as low efficiency, which limit their economic viability for some operations. Increasing interest has developed, therefore, in alternative continuous unloading methods. The KONE Corporation, Finland, has developed its own bucket wheel continuous unloader, and installed both a grab unloader and a continuous unloader at the Enstedvaerket coal transshipment centre near Aabenraa in Denmark; both systems are described and the operational benefits of each are compared and contrasted.

  15. Bulk Materials Analysis Using High-Energy Positron Beams

    International Nuclear Information System (INIS)

    Glade, S C; Asoka-Kumar, P; Nieh, T G; Sterne, P A; Wirth, B D; Dauskardt, R H; Flores, K M; Suh, D; Odette, G.R.

    2002-01-01

    This article reviews some recent materials analysis results using high-energy positron beams at Lawrence Livermore National Laboratory. We are combining positron lifetime and orbital electron momentum spectroscopic methods to provide electron number densities and electron momentum distributions around positron annihilation sites. Topics covered include: correlation of positron annihilation characteristics with structural and mechanical properties of bulk metallic glasses, compositional studies of embrittling features in nuclear reactor pressure vessel steel, pore characterization in Zeolites, and positron annihilation characteristics in alkali halides

  16. Studies on the effect of coal particle size on biodepyritization of high sulfur coal in batch bioreactor

    Directory of Open Access Journals (Sweden)

    Singh Sradhanjali

    2015-03-01

    Full Text Available The moderate thermophilic mix culture bacteria were used to depyritize the Illinois coal of varying particle sizes (-100 μm, 100-200 μm, +200 μm. Mineral libration analysis showed the presence of pyrite along with other minerals in coal. Microbial depyritization of coal was carried out in stirred tank batch reactors in presence of an iron-free 9K medium. The results indicate that microbial depyritization of coal using moderate thermophiles is an efficient process. Moreover, particle size of coal is an important parameter which affects the efficiency of microbial depyritization process. At the end of the experiment, a maximum of 75% pyrite and 66% of pyritic sulphur were removed from the median particle size. The XRD analysis showed the absence of pyrite mineral in the treated coal sample. A good mass balance was also obtained with net loss of mass ranging from 5-9% showing the feasibility of the process for large scale applications.

  17. Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process

    International Nuclear Information System (INIS)

    Xu Gang; Yang Yongping; Lu Shiyuan; Li Le; Song Xiaona

    2011-01-01

    In China, coal-fired power plants are the main supplier of electricity, as well as the largest consumer of coal and water resources and the biggest emitter of SO x , NO x , and greenhouse gases (GHGs). Therefore, it is important to establish a scientific, reasonable, and feasible comprehensive evaluation system for coal-fired power plants to guide them in achieving multi-optimisation of their thermal, environmental, and economic performance. This paper proposes a novel comprehensive evaluation method, which is based on a combination of the grey relational analysis (GRA) and the analytic hierarchy process (AHP), to assess the multi-objective performance of power plants. Unlike the traditional evaluation method that uses coal consumption as a basic indicator, the proposed evaluation method also takes water consumption and pollutant emissions as indicators. On the basis of the proposed evaluation method, a case study on typical 600 MW coal-fired power plants is carried out to determine the relevancy rules among factors including the coal consumption, water consumption, pollutant, and GHG emissions of power plants. This research offers new ideas and methods for the comprehensive performance evaluation of complex energy utilisation systems, and is beneficial to the synthesised consideration of resources, economy, and environment factors in system optimising and policy making. - Research highlights: → We proposed a comprehensive evaluation method for coal-fired power plants. → The method is based on the grey relational analysis (GRA). → The method also introduces the idea of the analytic hierarchy process (AHP). → The method can assess thermal, economic and environmental performance. → The method can play an active role in guiding power plants' improvements.

  18. Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process

    Energy Technology Data Exchange (ETDEWEB)

    Xu Gang, E-mail: xg2008@ncepu.edu.c [Key Lab of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206 (China); Yang Yongping, E-mail: yyp@ncepu.edu.c [Key Lab of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206 (China); Lu Shiyuan; Li Le [Key Lab of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206 (China); Song Xiaona [Electromechanical Practice Center, Beijing Information Science and Technology University, Beijing (China)

    2011-05-15

    In China, coal-fired power plants are the main supplier of electricity, as well as the largest consumer of coal and water resources and the biggest emitter of SO{sub x}, NO{sub x}, and greenhouse gases (GHGs). Therefore, it is important to establish a scientific, reasonable, and feasible comprehensive evaluation system for coal-fired power plants to guide them in achieving multi-optimisation of their thermal, environmental, and economic performance. This paper proposes a novel comprehensive evaluation method, which is based on a combination of the grey relational analysis (GRA) and the analytic hierarchy process (AHP), to assess the multi-objective performance of power plants. Unlike the traditional evaluation method that uses coal consumption as a basic indicator, the proposed evaluation method also takes water consumption and pollutant emissions as indicators. On the basis of the proposed evaluation method, a case study on typical 600 MW coal-fired power plants is carried out to determine the relevancy rules among factors including the coal consumption, water consumption, pollutant, and GHG emissions of power plants. This research offers new ideas and methods for the comprehensive performance evaluation of complex energy utilisation systems, and is beneficial to the synthesised consideration of resources, economy, and environment factors in system optimising and policy making. - Research highlights: {yields} We proposed a comprehensive evaluation method for coal-fired power plants. {yields} The method is based on the grey relational analysis (GRA). {yields} The method also introduces the idea of the analytic hierarchy process (AHP). {yields} The method can assess thermal, economic and environmental performance. {yields} The method can play an active role in guiding power plants' improvements.

  19. A contribution to problems of clean transport of bulk materials

    Directory of Open Access Journals (Sweden)

    Fedora Jaroslav

    1996-03-01

    Full Text Available The lecture analyses the problem of development of the pipe conveyor with a rubber belt, the facitities of its application in the practice and environmental aspects resulting from its application. The pipe conveyor is a new perspective transport system. It enables ransporting bulk materials (coal, crushed, rock, coke, plant ash, fertilisers, limestones, time in a specific operations (power plants, heating plants.cellulose, salt, sugar, wheat and other materials with a minimum effect on the environment. The transported material is enclosed in the pipeline so that there is no escape of dust, smell or of the transported material itself. The lecture is aimed at: - the short description of the operating principle and design of the pipe conveyor which was developed in the firm Matador Púchov in cooperation with the firm TEDO, - the analysis of experiencie in working some pipe conveyors which were under operation for a certain

  20. Investigation on characterization of Ereen coal deposit

    OpenAIRE

    S. Jargalmaa; B. Purevsuren; Ya. Davaajav; B. Avid; B. Bat-Ulzii; B. Ochirhuyag

    2016-01-01

    The Ereen coal deposit is located 360 km west from Ulaanbaatar and 95 km from Bulgan town. The coal reserve of this deposit is approximately 345.2 million tons. The Ereen coal is used directly for the Erdenet power plant for producing of electricity and heat. The utilization of this coal for gas and liquid product using gasification and pyrolysis is now being considered. The proximate and ultimate analysis show that the Ereen coal is low rank D mark hard coal, which corresponds to subbitumino...

  1. An intelligent hybrid system for surface coal mine safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lilic, N.; Obradovic, I.; Cvjetic, A. [University of Belgrade, Belgrade (Serbia)

    2010-06-15

    Analysis of safety in surface coal mines represents a very complex process. Published studies on mine safety analysis are usually based on research related to accidents statistics and hazard identification with risk assessment within the mining industry. Discussion in this paper is focused on the application of AI methods in the analysis of safety in mining environment. Complexity of the subject matter requires a high level of expert knowledge and great experience. The solution was found in the creation of a hybrid system PROTECTOR, whose knowledge base represents a formalization of the expert knowledge in the mine safety field. The main goal of the system is the estimation of mining environment as one of the significant components of general safety state in a mine. This global goal is subdivided into a hierarchical structure of subgoals where each subgoal can be viewed as the estimation of a set of parameters (gas, dust, climate, noise, vibration, illumination, geotechnical hazard) which determine the general mine safety state and category of hazard in mining environment. Both the hybrid nature of the system and the possibilities it offers are illustrated through a case study using field data related to an existing Serbian surface coal mine.

  2. Measurement of reflectance of coal macerals: its automation and significance

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.

    1978-06-01

    A prime objective of the Pennsylvania State University's DOE program is the characterization of 1,300 samples of U.S. coals. Reflectance determination plays a major role in meeting this objective, because it is used as an accurate rank index both to select coals for testing and to investigate property-behavior interrelationships using the Penn State/DOE Coal Data Base. Reflectances of coal macerals are related to their refractive and absorptive indices by the Beer equation; the refractive index of the medium and the wavelength of light need to be specified. Determinations usually are made in immersion oil at 546 nm. Properties of vitrinite make it the most suitable maceral for these measurements, but the variety of vitrinite selected may depend upon the intended application. Vitrinite reflectance is considered to be dependent upon the degree of aromatization of its structural units. Although some of the earlier investigators believed that the reflectance of coals increased in a discontinuous, stepped manner as their rank increased, the bulk of assembled data suggests that the change is continuous. Some recent results indicate that there may be more than one coalification track for coals with different geological histories, resulting in displacement from the general trend. Several techniques have been employed to determine the optical properties of coal constituents. Usual comparative method involves the use of a microscope photometer to compare the intensity of light reflected by particles within a polished pellet of coal to that of a glass or synthetic mineral standard. Because coal is anisotropic it is common to measure either maximum reflectance in polarized light or random reflectance in non-polarized light. Various eqipment modifications and accessories have been used to improve the ease of measuring maximum reflectance.

  3. Nuclear assay of coal. Volume 6. Mass flow devices for coal handling

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The mass of coal entering the boiler per unit time is an essential parameter for determinig the total rate of heat input. The mass flow rate of coal on a conveyor belt is generally determined as a product of the instantaneous mass of material on a short section of the belt and the belt velocity. Belt loading could be measured by conventional transducers incorporating mechanical or electromechanical weighers or by gamma-ray attenuation gauge. This report reviews the state of the art in mass flow devices for coal handling. The various methods are compared and commented upon. Special design issues are discussed relative to incorporating a mass flow measuring device in a Continuous On-Line Nuclear Analysis of Coal (CONAC) system

  4. Prospecting for coal in China with remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Ke-long Tan; Yu-qing Wan; Sun-xin Sun; Gui-bao Bao; Jing-shui Kuang [Aerophotogrammetry and Remote Sensing Center of China Coal, Xi' an (China)

    2008-12-15

    In China it is important to explore coal prospecting by taking advantage of modern remote sensing and geographic information system technologies. Given a theoretical basis for coal prospecting by remote sensing, the methodologies and existing problems are demonstrated systematically by summarizing past practices of coal prospecting with remote sensing. A new theory of coal prospecting with remote sensing is proposed. In uncovered areas, coal resources can be prospected by direct interpretation. In coal bearing strata of developed areas covered by thin Quaternary strata or vegetation, prospecting for coal can be carried out by indirect interpretation of geomorphology and vegetation. For deeply buried underground deposits, coal prospecting can rely on tectonic structures, interpretation and analysis of new tectonic clues and regularity of coal formation and preservation controlled by tectonic structures. By applying newly hyper-spectral, multi-polarization, multi-angle, multi-temporal and multi-resolution remote sensing data and carrying out integrated analysis of geographic attributes, ground attributes, geophysical exploration results, geochemical exploration results, geological drilling results and remote sensing data by GIS tools, coal geology resources and mineralogical regularities can be explored and coal resource information can be acquired with some confidence. 12 refs., 4 figs., 3 tabs.

  5. Analytical applications of atomic spectroscopy, with particular reference to inductively coupled plasma emission analysis of coal and fly ash

    International Nuclear Information System (INIS)

    Pougnet, M.A.B.

    1983-08-01

    This thesis outlines the analytical applications of atomic emission and absorption spectroscopy to a variety of materials. Special attention was directed to the analysis of coal and coal ashes. A simple slurry sampling technique was developed and used to determine V, Ni, Co, Mo and Mn in the National Bureau of Standards Standard Reference Materials (NBS-SRM) coals 1632a and 1635 by furnace atomic absorption spectroscopy (FAAS). Coal and fly ash were analysed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The determination of B, Be, Li, C, K and other trace elements by ICP-AES was investigated. Analytical methods were developed for the analysis of coal, fly ash and water samples. Fusion with sodium carbonate and a digestion bomb dissolution method were compared for the determination of boron in a South African boron-rich mineral (Kornerupine). Eight elements were determined in 10 industrial water samples from a power plant. Ca, Mg, Si and B were determined by ICP-AES and V, Ni, Co and Mo by FAAS. Various problems encountered during the course of the work and interferences in ICP-AES analysis are discussed. Some recommendations concerning method development and routine analysis by this technique are suggested

  6. Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process

    International Nuclear Information System (INIS)

    Xiang, Dong; Qian, Yu; Man, Yi; Yang, Siyu

    2014-01-01

    Highlights: • Present the opportunities and challenges of coal-to-olefins (CTO) development. • Conduct a techno-economic analysis on CTO compared with oil-to-olefins (OTO). • Suggest approaches for improving energy efficiency and economic performance of CTO. • Analyze effects of plant scale, feedstock price, CO 2 tax on CTO and OTO. - Abstract: Olefins are one of the most important oil derivatives widely used in industry. To reduce the dependence of olefins industry on oil, China is increasing the production of olefins from alternative energy resources, especially from coal. This study is concerned with the opportunities and obstacles of coal-to-olefins development, and focuses on making an overall techno-economic analysis of a coal-to-olefins plant with the capacity of 0.7 Mt/a olefins. Comparison is made with a 1.5 Mt/a oil-to-olefins plant based on three criteria including energy efficiency, capital investment, and product cost. It was found that the coal-based olefins process show prominent advantage in product cost because of the low price of its feedstock. However, it suffers from the limitations of higher capital investment, lower energy efficiency, and higher emissions. The effects of production scale, raw material price, and carbon tax were varied for the two production routes, and thus the operational regions were found for the coal-to-olefins process to be competitive

  7. Analysis of ecological environment impact of coal exploitation and utilization

    Science.gov (United States)

    Zhang, Baoliu; Luo, Hong; Lv, Lianhong; Wang, Jian; Zhang, Baoshi

    2018-02-01

    Based on the theory of life cycle assessment, the ecological and environmental impacts of coal mining, processing, utilization and transportation will be analyzed, with analysing the status of china’s coal exploitation and utilization as the basis, it will find out the ecological and environmental impact in the development and utilization of coal, mainly consist of ecological impact including land damage, water resource destructionand biodiversity loss, etc., while the environmental impact include air, water, solid waste pollutions. Finally with a summary of the ecological and environmental problems, to propose solutionsand countermeasures to promote the rational development and consumption of coal, as well as to reduce the impact of coal production and consumption on the ecological environment, finally to achieve the coordinated development of energy and the environment.

  8. COAL CONVERSION WASTEWATER TREATMENT BY CATALYTIC OXIDATION IN SUPERCRITICAL WATER; FINAL

    International Nuclear Information System (INIS)

    Phillip E. Savage

    1999-01-01

    Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, we examined the oxidation of phenol over a commercial catalyst and over bulk MnO(sub 2), bulk TiO(sub 2), and CuO supported on Al(sub 2) O(sub 3). We used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which we can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO(sub 2) yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that we could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, we performed experiments with bulk transition metal oxides. The bulk MnO(sub 2) and TiO(sub 2) catalysts enhance both the phenol disappearance and CO(sub 2) formation rates during SCWO. MnO(sub 2) does not affect the selectivity to CO(sub 2), or to the phenol dimers at a given phenol conversion. However, the selectivities to CO(sub 2) are increased and the selectivities to phenol dimers are decreased in the presence of TiO(sub 2) , which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the rate of formation of

  9. Improving the stability of coal slurries: Quarterly progress report for the period Sep. 15, 1986-Dec. 15, 1986. [Adsorption of gum tragacanth on coal particles

    Energy Technology Data Exchange (ETDEWEB)

    Fogler, H.S.

    1986-01-01

    The last quarterly progress report focused on the adsorption study of the polystyrene latex spheres with gum tragacanth (GT), and the adsorption mechanism was found to be hydrophobic rather than electrostatic. Also, the effect of the amount of GT adsorbed, the bulk concentration of GT, incubation time and pH on the stability factor was examined, and the results indicated that the conformation of GT on the surface of latex spheres plays an important role in the stabilization. This report presents the results of the coal-water slurries, mainly focusing on the adsorption study of GT by changing pH and ionic strength. It was found from the experiment in which the ionic strength was changed that the adsorption of GT on the coal particles is hindered by the coulombic repulsion between GT and coal. In addition, the experiment in which pH was changed also indicated that the adsorption mechanism is electrostatic in nature. 7 refs., 2 figs.

  10. Exergetic and environmental analysis of a pulverized coal power plant

    International Nuclear Information System (INIS)

    Restrepo, Álvaro; Miyake, Raphael; Kleveston, Fábio; Bazzo, Edson

    2012-01-01

    This paper presents the results of exergetic and environmental analysis of a typical pulverized coal power plant located in Brazil. The goal was to quantify both the exergy destruction and the environmental impact associated with a thermal power plant. The problem boundary consists of the entire coal delivery route, including mining and beneficiation, transport, pre-burning processes and the power plant. The used data were obtained mainly from field measurements taken in all system processes, from mining to the power plant. The study focused only on the operation period. Previous works have shown that the construction and decommissioning periods contribute less than 1% of the environmental impact. The exergetic analysis was based on the second law of thermodynamics while the environmental analysis was based on life cycle assessment (LCA) using SimaPro 7.2, focussing on the climate change and acidification impact categories. The CO 2 -eq emission was 1300 kg per MWh. The highest degree of environmental impact occurred during the combustion process. The exergetic and environmental analysis provides a tool to evaluate irreversibilities and the environmental impact, identifying the most significant stages and equipment of the entire power generation process. -- Highlights: ► Exergetic and environmental analysis of a typical Brazilian PC power plant. ► Environmental impact associated with the mining, transport and thermal power plant. ► Life cycle assessment used for environmental analysis. ► Acidification impact category evaluated using Eco-indicator 99. ► Climate change impact evaluation using (Global Warming Potential) GWP 100a.

  11. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  12. Use of thermal neutron reflection method for chemical analysis of bulk samples

    International Nuclear Information System (INIS)

    Papp, A.; Csikai, J.

    2014-01-01

    Microscopic, σ β , and macroscopic, Σ β , reflection cross-sections of thermal neutrons averaged over bulk samples as a function of thickness (z) are given. The σ β values are additive even for bulk samples in the z=0.5–8 cm interval and so the σ βmol (z) function could be given for hydrogenous substances, including some illicit drugs, explosives and hiding materials of ∼1000 cm 3 dimensions. The calculated excess counts agree with the measured R(z) values. For the identification of concealed objects and chemical analysis of bulky samples, different neutron methods need to be used simultaneously. - Highlights: • Check the proposed analytical expression for the description of the flux. • Determination of the reflection cross-sections averaged over bulk samples. • Data rendered to estimate the excess counts for various materials

  13. Use of thermal neutron reflection method for chemical analysis of bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Papp, A., E-mail: papppa@atomki.hu [Institute of Nuclear Research of the Hungarian Academy of Sciences, (ATOMKI), 4001 Debrecen, Pf. 51 (Hungary); Csikai, J. [Institute of Nuclear Research of the Hungarian Academy of Sciences, (ATOMKI), 4001 Debrecen, Pf. 51 (Hungary); Institute of Experimental Physics, University Debrecen (IEP), 4010 Debrecen-10, Pf. 105 (Hungary)

    2014-09-11

    Microscopic, σ{sub β}, and macroscopic, Σ{sub β}, reflection cross-sections of thermal neutrons averaged over bulk samples as a function of thickness (z) are given. The σ{sub β} values are additive even for bulk samples in the z=0.5–8 cm interval and so the σ{sub βmol}(z) function could be given for hydrogenous substances, including some illicit drugs, explosives and hiding materials of ∼1000 cm{sup 3} dimensions. The calculated excess counts agree with the measured R(z) values. For the identification of concealed objects and chemical analysis of bulky samples, different neutron methods need to be used simultaneously. - Highlights: • Check the proposed analytical expression for the description of the flux. • Determination of the reflection cross-sections averaged over bulk samples. • Data rendered to estimate the excess counts for various materials.

  14. Integrated petrographic and geochemical study of coal and gas shales from the Sabinas and Chihuahua basins, North of Mexico: estimation of methane gas resources

    International Nuclear Information System (INIS)

    De La O Burrola, Francisco

    2013-01-01

    This comprehensive characterization study was performed using organic petrology and geochemistry conducted in the Sabinas basin and Chihuahua in northern Mexico. This information allowed a numerical modeling of gas formation, considering the thermal subsidence of coal and carbonaceous shales. The objectives of this thesis are: - Establish a characterization methodology for the studied rocks - Estimate potential gas generator and its regional distribution - Estimate the methane gas resources For the development of this project, we conducted an intensive campaign representative sampling of coal, carbonaceous shales and coal gas 'in situ'. For the Sabinas basin were studied 97 samples and 114 samples in the basin of Chihuahua. The analyses carried out that were used on the samples analyzed allowed to characterize the kerogen and gas. The methodology used to cross petrographic and geochemical information to analyze the petroleum system by numerical modeling. Analyses were: Petrographic, reflectance %Ro, elemental analysis and immediate, Rock Eval6 R (Bulk rock), isotopic analysis, δ 13 C, δD, (coal gas), scanning electron microscopy, image analysis and analysis of macerals fluid inclusions. The analyzes that were used on the samples allowed to characterize the sample, the kerogen and gas. The methodology used to cross petrographic and geochemical information for analyze the oil system by numerical modeling. Analyses were: Petrographic, reflectance %Ro, elemental analysis and immediate, Rock Eval6 R (Bulk rock), isotopic analysis, δ 13 C, δD, (coal gas), scanning electron microscopy, image analysis and analysis of macerals fluid inclusions A computer program was constructed to cross the information with the analysis of samples of artificial maturation experiments in the laboratory. This approach allowed estimation of methane gas resources generated by coal and carbonaceous shales. The main results obtained for Sabinas Basin were: - The kerogen of the

  15. Coal geopolitics

    International Nuclear Information System (INIS)

    Giraud, P.N.; Suissa, A.; Coiffard, J.; Cretin, D.

    1991-01-01

    This book divided into seven chapters, describes coal economic cycle. Chapter one: coals definition; the principle characteristics and properties (origin, calorific power, international classification...) Chapter two: the international coal cycle: coal mining, exploration, coal reserves estimation, coal handling coal industry and environmental impacts. Chapter three: the world coal reserves. Chapter four: the consumptions, productions and trade. Chapter five: the international coal market (exporting mining companies; importing companies; distributors and spot market operators) chapter six: the international coal trade chapter seven: the coal price formation. 234 refs.; 94 figs. and tabs [fr

  16. Development of coal petrography applied in technical processes at the Bergbau-Forschung/DMT during the last 50 years

    International Nuclear Information System (INIS)

    Steller, Monika; Arendt, Paul; Kuehl, Helmut

    2006-01-01

    The paper deals with the activities of the Bergbau-Forschung Coal Petrography Laboratory in Essen (Germany), which, under the influence of Marie-Therese Mackowsky, developed into a stronghold of the industrial application of coal petrology. In 1979, the formerly independent Section for Mineralogy and Petrology was merged with the Chemistry Section. This synergy has widened the research limits and resulted in higher efficiency of projects being carried out within both units. Since 1990, after transforming Bergbau-Forschung into DMT GmbH, a worldwide competition within hard coal and hard coal-based coke markets, together with the switch of the industry towards alternative energy sources, have significantly lowered the importance of the domestic coal mining industry. This in turn resulted in reduction of coal research programs. However, it is stressed that, in spite of transformations of the applied coal petrology experienced during the past 50 years, some achievements are still as applicable as ever. Among them, the method of predicting coke strength using maceral analysis and coal types, published by Mackowsky and Simonis [Mackowsky, M.-Th., Simonis, W., 1969. Die Kennzeichnung von Kokskohlen fur die mathematische Beschreibung der Hochtemperaturverkokung im Horizontalkammerofen bei Schuttbetrieb durch Ergebnisse mikroskopischer Analysen. Gluckauf-Forschungshefte 30, 25-27], is still in use today. The second part of this paper presents some examples of coal petrography applications, which are still important in carbonization processes. Mackowsky discovered that the pyrolytic components were influencing the coke homogeneity in coke ovens and affected coke quality parameters such as CRI and CSR. These highly graphitic layers and lenses prevent gasification of the inner zones of coke lumps, thus lowering the reactivity of metallurgical coke. Moreover, it also seems possible to predict wall load and maximum internal gas pressure as to prevent coke ovens from damage

  17. Development of coal petrography applied in technical processes at the Bergbau-Forschung/DMT during the last 50 years

    Energy Technology Data Exchange (ETDEWEB)

    Steller, Monika; Arendt, Paul; Kuehl, Helmut [Deutsche Montan Technologie GmbH ? Mining Service Division?Essen (Germany)

    2006-06-06

    The paper deals with the activities of the Bergbau-Forschung Coal Petrography Laboratory in Essen (Germany), which, under the influence of Marie-Therese Mackowsky, developed into a stronghold of the industrial application of coal petrology. In 1979, the formerly independent Section for Mineralogy and Petrology was merged with the Chemistry Section. This synergy has widened the research limits and resulted in higher efficiency of projects being carried out within both units. Since 1990, after transforming Bergbau-Forschung into DMT GmbH, a worldwide competition within hard coal and hard coal-based coke markets, together with the switch of the industry towards alternative energy sources, have significantly lowered the importance of the domestic coal mining industry. This in turn resulted in reduction of coal research programs. However, it is stressed that, in spite of transformations of the applied coal petrology experienced during the past 50 years, some achievements are still as applicable as ever. Among them, the method of predicting coke strength using maceral analysis and coal types, published by Mackowsky and Simonis [Mackowsky, M.-Th., Simonis, W., 1969. Die Kennzeichnung von Kokskohlen fur die mathematische Beschreibung der Hochtemperaturverkokung im Horizontalkammerofen bei Schuttbetrieb durch Ergebnisse mikroskopischer Analysen. Gluckauf-Forschungshefte 30, 25-27], is still in use today. The second part of this paper presents some examples of coal petrography applications, which are still important in carbonization processes. Mackowsky discovered that the pyrolytic components were influencing the coke homogeneity in coke ovens and affected coke quality parameters such as CRI and CSR. These highly graphitic layers and lenses prevent gasification of the inner zones of coke lumps, thus lowering the reactivity of metallurgical coke. Moreover, it also seems possible to predict wall load and maximum internal gas pressure as to prevent coke ovens from damage

  18. Feasibility analysis of nuclear–coal hybrid energy systems from the perspective of low-carbon development

    International Nuclear Information System (INIS)

    Chen, QianQian; Tang, ZhiYong; Lei, Yang; Sun, YuHan; Jiang, MianHeng

    2015-01-01

    Highlights: • We report a nuclear–coal hybrid energy systems. • We address the high-carbon energy resource integrating with a low-carbon energy resource. • We establish a systematic techno-economic model. • Improving both energy and carbon efficiency. • A significantly lower CO 2 emission intensity is achieved by the system. - Abstract: Global energy consumption is expected to increase significantly due to the growth of the economy and population. The utilization of fossil resource, especially coal, will likely be constrained by carbon dioxide emissions, known to be the principal contributor to climate change. Therefore, the world is facing the challenge of how to utilize fossil resource without a large carbon footprint. In the present work, a nuclear–coal hybrid energy system is proposed as a potential solution to the aforementioned challenge. A high-carbon energy such as coal is integrated effectively with a low-carbon energy such as nuclear in a flexible and optimized manner, which is able to generate the chemicals and fuels with low carbon dioxide emissions. The nuclear–coal hybrid energy system is presented in this paper for the detailed analysis. In this case, the carbon resource required by the fuel syntheses and chemical production processes is mainly provided by coal while the hydrogen resource is derived from nuclear energy. Such integration can not only lead to a good balance between carbon and hydrogen, but also improve both energy and carbon efficiencies. More importantly, a significantly lower CO 2 emission intensity is achieved. A systematic techno-economic model is established, and a scenario analysis is carried out on the hybrid system to assess the economic competitiveness based on the considerations of various types of externalities. It is found that with the rising carbon tax and coal price as well as the decreasing cost of nuclear energy, the hybrid energy system will become more and more economically competitive with the

  19. Analysis of antitrust activity in the coal industry: 1964--1974

    Energy Technology Data Exchange (ETDEWEB)

    Hinson, W.R.

    1974-01-01

    During this period antitrust activity by the government in the coal industry was of a token nature and did not prevent (1) large investments in coal and uranium by large oil companies, nor (2) concentration with industry by large companies buying out small companies. A major result was the buying up of coal reserves, which were thus unavailable to small companies and hindered them from competing. Neither the government nor public utility companies did much to deter these developments and the results of the few court suits that were brought were not effective in discouraging the process. In fact, the widespread acceptance of nolo contendere pleas by the judicial system could make it profitable for a coal company to violate the antitrust laws. Several recommendations are made: (1) for more vigorous antitrust activity (with nonacceptance of nolo contendere pleas); (2) nationalisation of coal reserves (with bidding for reserves to be mined by competing companies); (3) a reporting system for ownership of coal reserves; and (4) encouragement of electric utilities to file private suit when anticompetitive behavior is suspected. (LTN)

  20. Create a Consortium and Develop Premium Carbon Products from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Frank Rusinko; John Andresen; Jennifer E. Hill; Harold H. Schobert; Bruce G. Miller

    2006-01-01

    The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuel industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the

  1. Composition, peat-forming vegetation and kerogen paraffinicity of Cenozoic coals: Relationship to variations in the petroleum generation potential (Hydrogen Index)

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H.I.; Lindstroem, S.; Nytoft, H.P.; Rosenberg, P. [Geological Survey of Denmark and Greenland (GEUS), Oester Voldgade 10, DK-1350 Copenhagen (Denmark)

    2009-04-01

    Coals with similar thermal maturity and from the same deposit normally show a considerable range in petroleum generation potential as measured by the Hydrogen Index (HI). This variation may partly be related to variations in plant input to the precursor mires and organic matter preservation. It is widely accepted that some Cenozoic coals and coaly sediments have the potential to generate oil, which is related to the coal's paraffinicity. Coal paraffinicity is not readily reflected in the bulk HI. In this paper, the relationships between measured HI and coal composition, coal kerogen paraffinicity and floral input have been investigated in detail for three sets of coals from Colombia/Venezuela, Indonesia, and Vietnam. The samples in each coal set are largely of iso-rank. The petroleum generation potential was determined by Rock-Eval pyrolysis. Reflected light microscopy was used to analyse the organic matter (maceral) composition and the thermal maturity was determined by vitrinite reflectance (VR) measurements. The botanical affinity of pollen and spores was analysed by palynology. Coal kerogen paraffinicity was determined by ruthenium tetroxide-catalysed oxidation (RTCO) followed by chain length analysis and quantification (mg/g TOC) of the liberated aliphatic chains. The coals are dominated by huminite, in particular detrohuminite. Only the Vietnamese coals are rich in microscopically visible liptinite. The pollen and spores suggest that the coals were derived principally from complex angiosperm mire vegetations, with subordinate proportions of ferns that generally grew in a subtropical to tropical climate. Measured HI values vary considerably, but for the majority of the coals the values lie between approximately 200 mg HC/g TOC and 300 mg HC/g TOC. Aliphatics yielding monocarboxylic acids dominate in the coal kerogen, whereas aliphatics yielding dicarboxylic acids are secondary. However, the dicarboxylic acids show that cross-linking long-chain aliphatics

  2. Influence of metal additives on pyrolysis behavior of bituminous coal by TG-FTIR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wenjuan; Fang, Mengxiang; Cen, Jianmeng; Li, Chao; Luo, Zhongyang; Cen, Kefa [Zhejiang Univ., Hangzhou (China). State Key Lab. of Clean Energy Utilization

    2013-07-01

    To study the catalytic effects of alkali, alkaline earth and transition metal additives on coal pyrolysis behavior, bituminous coal loaded NaCl, KCl, CaCl{sub 2}, MgCl{sub 2}, FeCl{sub 3} and NiCl{sub 2} was respectively investigated using Thermogravimetry and Fourier Transform Infrared Spectroscopy (TG-FTIR). Results indicated that the maximum mass loss rate decreased under the metal additives in the primary pyrolysis stage. The total mass loss of pyrolysis was reduced in metals catalyzed pyrolysis except for Na loaded sample. Kinetic analysis was taken for all samples adopting the method of Coats-Redfern. Activation energy of raw coal in the primary pyrolysis stage was 92.15vkJ.mol{sup -1}, which was lowered to 44.59-73.42 kJ.mol{sup -1} under metal additives. The orders of catalytic effect for this bituminous coal were Mg > Fe > Ca > Ni > K > Na according to their activation energies. Several investigated volatiles including CH{sub 4}, CO{sub 2}, CO, toluene, phenol and formic acid were identified from FTIR spectra. The yields of CH{sub 4}, CO{sub 2}, toluene, phenol and formic acid were decreased, but the evolution of CO was increased. The presence of metals in the coal samples have been involved in a repeated bond-forming and bond-breaking process, which greatly hindered the release of tars during pyrolysis as the tar precursors were connected to coal/char matrix and were thermally cracked, becoming a part of char.

  3. Trace elemental analysis of bituminous coals using the Heidelberg proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J R; Kneis, H; Martin, B; Nobiling, R; Traxel, K [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.); Heidelberg Univ. (Germany, F.R.). Physikalisches Inst.); Chao, E C.T.; Minkin, J A [Geological Survey, Reston, VA (USA)

    1981-03-01

    Trace elements in coal can occur as components of either the organic constituents (macerals) or the inorganic constituents (minerals). Studies of the concentrations and distribution of the trace elements are vital to understanding the geochemical milieu in which the coal was formed and in evaluating the attempts to recover rare but technologically valuable metals. In addition, information on the trace element concentrations is important in predicting the environmental impact of burning particular coals, as many countries move toward greater utilization of coal reserves for energy production. Traditionally, the optical and the electron microscopes and more recently the electron microprobe have been used in studying the components of coal. The proton-induced X-ray emission (PIXE) microprobe offers a new complementary approach with an order of magnitude or more better minimum detection limit. We present the first measurements with a PIXE microprobe of the trace element concentrations of bituminous coal samples. Elemental analyses of the coal macerals-vitrinite, exinite, and inertinite - are discussed for three coal samples from the Eastern U.S.A., three samples from the Western U.S.A., and one sample from the Peoples Republic of China.

  4. Review of a Proposed Quarterly Coal Publication

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This Review of a Proposed Quartery Coal Publication contains findings and recommendations regarding the content of a new summary Energy Information Administration (EIA) coal and coke publication entitled The Quarterly Coal Review (QCR). It is divided into five sections: results of interviews with selected EIA data users; identification of major functions of the coal and coke industries; analysis of coal and coke data collection activities; evaluation of issues conerning data presentation including recommendations for the content of the proposed QCR; and comparison of the proposed QCR with other EIA publications. Major findings and recommendations are as follows: (1) User interviews indicate a definite need for a compehensive publication that would support analyses and examine economic, supply and demand trends in the coal industry; (2) the organization of the publication should reflect the natural order of activities of the coal and coke industries. Based on an analysis of the industries, these functions are: production, stocks, imports, exports, distribution, and consumption; (3) current EIA coal and coke surveys collect sufficient data to provide a summary of the coal and coke industries on a quarterly basis; (4) coal and coke data should be presented separately. Coke data could be presented as an appendix; (5) three geographic aggregations are recommended in the QCR. These are: US total, coal producing districts, and state; (6) coal consumption data should be consolidated into four major consumer categories: electric utilities, coke plants, other industrial, and residential commercial; (7) several EIA publications could be eliminated by the proposed QCR.

  5. The analysis of coal-and coke ashes by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Coutinho, C.A.; Prates, H.T.; Pereira, C.P.

    1977-01-01

    In order to provide better conditions for the control of the chemical composition of the load in the USIMINAS blast furnaces, a method of analysis for sodium, potassium, iron, aluminium, calcium, magnesium and maganese in coal-and coke ash by atomic absorption spectrophotometry was developed. The precision of the calibration curves and the reproducibility of the results are given, together with an estimate of the speed compared with conventional methods of chemical analysis [pt

  6. Control effect of fracture on hard coal cracking in a fully mechanized longwall top coal caving face

    Energy Technology Data Exchange (ETDEWEB)

    Jin-ping Wei; Zhong-hua Li; Pei-miao Sang; Shang-qiang Chen [Henan Polytechnic University, Jiaozuo (China). School of Energy Science and Engineering

    2009-03-15

    Through theoretical analysis, simulation test and practice, the law of a fracture's influence on hard top coal press cracking was studied. The study focused on the relation between fracture and coal strength, top coal caving ability and work face layout. Based on the investigation of the fracture system, the control of press cracking was achieved by matching working face to fracture orientation to improve top-coal caving ability and recovery. The matching principle was pointed out: the top-coal caving working face should be perpendicular to or obliquely cross the primary fracture at a large angle, and cross the secondary fracture at a small angle. The rational match can increase the recovery ratio of top-coal and avoid rib spalling. The application of control technology on hard top coal press cracking was introduced at the longwall top-coal caving face. 10 refs., 2 figs., 1 tab.

  7. A study on the abundance of quartz in thermal coals of India and its relation to abrasion index: Development of predictive model for abrasion

    Energy Technology Data Exchange (ETDEWEB)

    Bandopadhyay, A.K. [Central Institute of Mining and Fuel Research Digwadih Campus, P.O.-FRI, Dhanbad-828108, Jharkhand (India)

    2010-10-01

    The quartz content of each of the 61 thermal coals used in power stations in India has been determined using Fourier Transform Infra-Red (FTIR) Spectroscopy. It has been observed that quartz is abundant in the thermal coals and its proportion varies from 5 to 20% by wt. The abrasion index (AI), a measure of abrasion caused by coals, has been determined for each coal according to the procedure laid down in Indian Standard IS: 9949-1986. The data generated on abrasion together with ash and quartz percentages of the coals studied have been subjected to regression and correlation analysis. Positive correlations have been found between AI and quartz content and between AI and ash yield, but the correlation between AI and ash (A) and quartz (Q) percentages has been observed to be the most significant (R{sup 2} = 0.86). The linear regression model AI = 1.00A + 1.35Q thus developed has the ability to predict AI of the thermal coals within {+-} 10 mg/kg at 95.5% confidence level. Results of application of the model to predicting abrasion of a limited number of foreign coals with different origins have been found to be encouraging. Integration of other variables like the size and the shape of the abrading particles along with other physical properties of coal, like the bulk density and the grindability, with the model, in addition to the variables already considered, has been suggested for improved prediction. (author)

  8. Analysis of the relationship between the coal properties and their liquefaction characteristics by using the coal data base; Tanshu data base ni yoru tanshitsu to ekika tokusei no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kanbayashi, Y.; Okada, K. [Coal Mining Research Center, Tokyo (Japan)

    1996-10-28

    The relationship between coal properties and liquefaction or gasification characteristics was analyzed by using the analysis and test results and liquefaction characteristics in the coal data base. On liquefaction reaction, the close relation between an oil yield and coal constituent composition or a coal rank is well-known. Various multivariable regression analyses were conducted by using 6 factors as variables such as calorific value, volatile component, O/C and H/C atomic ratios, exinite+vitrinite content and vitrinite reflectance, and liquefaction characteristics as variate. On liquefaction characteristics, the oil yield of dehydrated and deashed coals, asphaltene yield, hydrogen consumption, produced water and gas quantities, and oil+asphaltene yield were predicted. The theoretical gasification efficiency of each specimen was calculated to evaluate the liquefaction reaction obtained. As a result, the oil yield increased with H/C atomic ratio, while the theoretical gasification efficiency increased with O/C atomic ratio. 5 figs., 1 tab.

  9. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2007-09-01

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  10. Mice housed on coal dust-contaminated sand: A model to evaluate the impacts of coal mining on health

    Energy Technology Data Exchange (ETDEWEB)

    Caballero-Gallardo, Karina, E-mail: kcaballerog@unicartagena.edu.co; Olivero-Verbel, Jesus, E-mail: joliverov@unicartagena.edu.co

    2016-03-01

    Coal dust is the most important air pollutant in coal mining in regards to producing deleterious health effects. It permeates the surrounding environment threatening public health. The aim of this study was to evaluate the toxic effects associated with exposure to sand contaminated with coal dust particles below 38 μm in diameter, obtained from a mineral sample collected in the largest coal mine in South America, La Loma, Cesar, Colombia. Sterilized sand was spiked with coal dust to obtain concentrations ranging from zero to 4% coal dust. To model natural exposure, mice were housed for eight weeks in boxes containing this mixture as bedding after which, they were euthanized and blood and tissue samples were collected. Real time PCR analysis revealed an increase in Cyp1A1 mRNA for living on sand with coal dust concentrations greater than 2% compared to mice living on sand without coal dust. Unexpectedly, for mice on coal dust-polluted sand, Sod1, Scd1 and Nqo1 hepatic mRNA were downregulated. The Comet assay in peripheral blood cells and the micronucleus test in blood smears, showed a significant potential genotoxic effect only at the highest coal dust concentration. Histopathological analysis revealed vascular congestion and peribronchial inflammation in the lungs. A dose–response relationship for the presence of hepatic steatosis, vacuolization and nuclei enlargements was observed in the exposed animals. The data suggest living on a soil polluted with coal dust induces molecular, cellular and histopathological changes in mice. Accordingly, the proposed model can be used to identify deleterious effects of exposure to coal dust deposited in soils that may pose health risks for surrounding wildlife populations. - Highlights: • Mice were exposed to coal dust-contaminated sand. • mRNA Markers for PAH exposure, lipid metabolism and oxidative stress increased. • ALT activity in plasma increased at the highest exposure to coal dust. • Liver tissues of exposed

  11. Continuous online nuclear analyzer of coal

    International Nuclear Information System (INIS)

    Rogers, R.S.C.; Bozorgmanesh, H.; Gozani, T.; Brown, T.

    1980-01-01

    Since CONAC is a relatively new concept in coal quality measurement, the present paper concentrates primarily on instrument development. The basic principles of elemental composition, moisture content and Btu measurements are described and typical measurement results presented. Then, since CONAC is under development specifically for quality control purposes, its advantages and potential applications in the coal circuit are discussed. The CONAC development work showed principles of CONAC operation (PNAA, moisture and Btu determinations) to be powerful and versatile tools for the analysis of coal; CONAC-type instrumentation is being developed for batch, laboratory usage. Such a device will enable a user to perform rapid coal sample analyses in a nondestructive fashion, leaving samples intact for further evaluation. It is felt that a batch laboratory, CONAC-type device will be of great use in the mining industry where the analysis of borehole samples are important in the evaluation of coal reserves and in the planning of mining operations

  12. Certification of the contents (mass fraction) of carbon, hydrogen, nitrogen, chlorine, arsenic, cadmium, manganese, mercury, lead, selenium, vanadium and zinc in three coals. Gas coal CRM No. 180; Coking coal CRM No. 181; Steam coal CRM No. 182

    Energy Technology Data Exchange (ETDEWEB)

    Griepink, B; Colinet, E; Wilkinson, H C

    1986-01-01

    The report first describes the preparation of three coal reference materials: Gas coal (BCR No. 180), Coking coal (BCR No. 181) and Steam coal (BCR No. 182). It deals further with the homogeneity and stability tests for major, minor and trace components. The contents (mass fractions) of the elements: C, H, N, Cl, As, Cd, Mn, Hg, Pb, Se, V and Zn are certified. The analytical techniques used in the certification are summarised. All the individual results are given and recommendations for analysis are made.

  13. Experiments and Modelling of Coal Devolatilization

    Institute of Scientific and Technical Information of China (English)

    QiuKuanrong; LiuQianxin

    1994-01-01

    The coal devolatilization process of different coals was studied by means of thermogravimetric analysis method.The experimental results and the kinetic parameters of devolatilization.K and E,have been obtained. A mathematical model for coal devolatiliztion has been proposed.and the model is simple and practical.The predictions of the model are shown to be in agreement with experimental results.

  14. Environmental impacts of coal mine and thermal power plant to the surroundings of Barapukuria, Dinajpur, Bangladesh.

    Science.gov (United States)

    Hossain, Md Nazir; Paul, Shitangsu Kumar; Hasan, Md Muyeed

    2015-04-01

    The study was carried out to analyse the environmental impacts of coal mine and coal-based thermal power plant to the surrounding environment of Barapukuria, Dinajpur. The analyses of coal, water, soil and fly ash were carried out using standard sample testing methods. This study found that coal mining industry and coal-based thermal power plant have brought some environmental and socio-economic challenges to the adjacent areas such as soil, water and air pollution, subsidence of agricultural land and livelihood insecurity of inhabitants. The pH values, heavy metal, organic carbon and exchangeable cations of coal water treated in the farmland soil suggest that coal mining deteriorated the surrounding water and soil quality. The SO4(2-) concentration in water samples was beyond the range of World Health Organisation standard. Some physico-chemical properties such as pH, conductivity, moisture content, bulk density, unburned carbon content, specific gravity, water holding capacity, liquid and plastic limit were investigated on coal fly ash of Barapukuria thermal power plant. Air quality data provided by the Barapukuria Coal Mining Company Limited were contradictory with the result of interview with the miners and local inhabitants. However, coal potentially contributes to the development of economy of Bangladesh but coal mining deteriorates the environment by polluting air, water and soil. In general, this study includes comprehensive baseline data for decision makers to evaluate the feasibility of coal power industry at Barapukuria and the coalmine itself.

  15. Damage evolution analysis of coal samples under cyclic loading based on single-link cluster method

    Science.gov (United States)

    Zhang, Zhibo; Wang, Enyuan; Li, Nan; Li, Xuelong; Wang, Xiaoran; Li, Zhonghui

    2018-05-01

    In this paper, the acoustic emission (AE) response of coal samples under cyclic loading is measured. The results show that there is good positive relation between AE parameters and stress. The AE signal of coal samples under cyclic loading exhibits an obvious Kaiser Effect. The single-link cluster (SLC) method is applied to analyze the spatial evolution characteristics of AE events and the damage evolution process of coal samples. It is found that a subset scale of the SLC structure becomes smaller and smaller when the number of cyclic loading increases, and there is a negative linear relationship between the subset scale and the degree of damage. The spatial correlation length ξ of an SLC structure is calculated. The results show that ξ fluctuates around a certain value from the second cyclic loading process to the fifth cyclic loading process, but spatial correlation length ξ clearly increases in the sixth loading process. Based on the criterion of microcrack density, the coal sample failure process is the transformation from small-scale damage to large-scale damage, which is the reason for changes in the spatial correlation length. Through a systematic analysis, the SLC method is an effective method to research the damage evolution process of coal samples under cyclic loading, and will provide important reference values for studying coal bursts.

  16. Characterization of Coal Porosity for Naturally Tectonically Stressed Coals in Huaibei Coal Field, China

    Science.gov (United States)

    Li, Xiaoshi; Hou, Quanlin; Li, Zhuo; Wei, Mingming

    2014-01-01

    The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship between S and V turns from a positive correlation to a negative correlation when S > 4 m2/g, with pore sizes coal. The nanopore structure (coal. PMID:25126601

  17. Sequence stratigraphic analysis and the origins of Tertiary brown coal lithotypes, Latrobe Valley, Gippsland Basin, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Holdgate, G R; Kershaw, A P; Sluiter, I R.K. [Monash University, Clayton, Vic. (Australia). Dept. of Earth Sciences

    1995-11-01

    Sequence analysis methods have been applied to the onshore Gippsland Basin and to the Latrobe Valley Group coal measures. In the east of the Latrobe Valley evidence for marine transgressions into the coal measures are recorded in most of the interseam sediment splits by the presence of contained foraminifer and dinoflagellates. To the west these splits pinch out into continuous coal. However, they can be followed westwards as enhanced organic sulphur levels along sharply defined boundaries between light coal lithotypes below and dark coal lithotypes above. The dark lithotype immediately overlying each of these boundaries contains the highest sulphur value and warmer climate pollen assemblages. Colorimeter and lithotype logging supports an upwards lightening cyclicity to coal colour at 12-20 m intervals through the approx. 100 m thick seams, with cycle boundaries defined at sharp planar to undulating surfaces. The lightening upward lithotype cycles together with their unique boundary conditions are interpreted as parasequences and parasequence boundaries respectively. Each major coal seam can comprise up to five parasequences and is interpreted to represent deposition during an outbuilding high stand systems tract at one of several maximum periods of Tertiary coastal onlap. Stratigraphic correlation of the sequence boundaries identified in the coal measures to the internationally dated marine Seaspray Group, provides a basis for chronostratigraphic correlation of the coal successions to the coastal onlap charts of Haq et al (1989). It appears that each major seam is confined to high standards of third order eustatic cycles. It follows that the lithotype cycles that comprise each seam are related to fourth order eustatic cycles. 49 refs., 11 figs., 1 tab.

  18. Influence of the co-firing on the leaching of trace pollutants from coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Maria Izquierdo; Natalia Moreno; Oriol Font; Xavier Querol; Esther Alvarez; Diano Antenucci; Henk Nugteren; Yolanda Luna; Constantino Fernandez-Pereira [Institute of Earth Sciences ' Jaume Almera' (CSIC), Barcelona (Spain)

    2008-08-15

    The (co)-firing of low-cost alternative fuels is expected to increase in the forthcoming years in the EU because of the economic and environmental benefits provided by this technology. This study deals with the impact of the different coal/waste fuel ratio of the feed blend on the mineralogy, the chemical composition and especially on the leaching properties of fly ash. Different blends of coal, petroleum coke, sewage sludge, wood pellets, coal tailings and other minor biomass fuels were tested in PCC (pulverised coal combustion) and FBC (fluidized bed combustion) power plants. The co-firing of the studied blends did not drastically modify the mineralogy, bulk composition or the overall leaching of the fly ash obtained. This suggests that the co-firing process using the alternative fuels studied does not entail significant limitations in the re-use or management strategies of fly ash. 34 refs., 4 figs., 3 tabs.

  19. Mice housed on coal dust-contaminated sand: A model to evaluate the impacts of coal mining on health.

    Science.gov (United States)

    Caballero-Gallardo, Karina; Olivero-Verbel, Jesus

    2016-03-01

    Coal dust is the most important air pollutant in coal mining in regards to producing deleterious health effects. It permeates the surrounding environment threatening public health. The aim of this study was to evaluate the toxic effects associated with exposure to sand contaminated with coal dust particles below 38 μm in diameter, obtained from a mineral sample collected in the largest coal mine in South America, La Loma, Cesar, Colombia. Sterilized sand was spiked with coal dust to obtain concentrations ranging from zero to 4% coal dust. To model natural exposure, mice were housed for eight weeks in boxes containing this mixture as bedding after which, they were euthanized and blood and tissue samples were collected. Real time PCR analysis revealed an increase in Cyp1A1 mRNA for living on sand with coal dust concentrations greater than 2% compared to mice living on sand without coal dust. Unexpectedly, for mice on coal dust-polluted sand, Sod1, Scd1 and Nqo1 hepatic mRNA were downregulated. The Comet assay in peripheral blood cells and the micronucleus test in blood smears, showed a significant potential genotoxic effect only at the highest coal dust concentration. Histopathological analysis revealed vascular congestion and peribronchial inflammation in the lungs. A dose-response relationship for the presence of hepatic steatosis, vacuolization and nuclei enlargements was observed in the exposed animals. The data suggest living on a soil polluted with coal dust induces molecular, cellular and histopathological changes in mice. Accordingly, the proposed model can be used to identify deleterious effects of exposure to coal dust deposited in soils that may pose health risks for surrounding wildlife populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Nuclear assay of coal. Volume 7. Coal rheology and its impact on nuclear assay. Final report

    International Nuclear Information System (INIS)

    Hogg, R.; Luckie, P.; Gozani, T.

    1979-01-01

    A number of possible techniques for introducing coal to a continuous on-line nuclear analysis of coal (CONAC) system have been evaluated, including flow methods and nonflow methods. A modified flat-belt feeder system was recommended. The success of such a coal-presentation technique would rely on proper entry to the feed hopper, shape of the withdrawal opening from the feed hopper, and a slow belt speed to minimize demixing

  1. Elemental analysis of coal by tandem laser induced breakdown spectroscopy and laser ablation inductively coupled plasma time of flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Meirong [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Oropeza, Dayana [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Chirinos, José [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1041a (Venezuela, Bolivarian Republic of); González, Jhanis J. [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Lu, Jidong [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); Mao, Xianglei [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Russo, Richard E., E-mail: RERusso@lbl.gov [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2015-07-01

    The capabilities and analytical benefits of combined LIBS and LA-ICP-MS were evaluated for the analysis of coal samples. The ablation system consisted of a Nd:YAG laser operated 213 nm. A Czerny-turner spectrograph with ICCD detector and time-of-flight based mass spectrometer were utilized for LIBS and ICP-MS detection, respectively. This tandem approach allows simultaneous determination of major and minor elements (C, Si, Ca, Al, Mg), and trace elements (V, Ba, Pb, U, etc.) in the coal samples. The research focused on calibration strategies, specifically the use of univariate and multivariate data analysis on analytical performance. Partial least square regression (PLSR) was shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The correlation between measurements from these two techniques demonstrated that mass spectral data combined with LIBS emission measurements by PLSR improved the accuracy and precision for quantitative analysis of trace elements in coal. - Highlights: • Tandem LIBS LA-ICP-MS • Simultaneous determination of major and minor elements and trace elements in the coal samples. • Extended Dynamic Range • Correlation between LIBS with LA-ICP-MS demonstrated improved the accuracy and precision for quantitative analysis of coal.

  2. Elemental analysis of coal by tandem laser induced breakdown spectroscopy and laser ablation inductively coupled plasma time of flight mass spectrometry

    International Nuclear Information System (INIS)

    Dong, Meirong; Oropeza, Dayana; Chirinos, José; González, Jhanis J.; Lu, Jidong; Mao, Xianglei; Russo, Richard E.

    2015-01-01

    The capabilities and analytical benefits of combined LIBS and LA-ICP-MS were evaluated for the analysis of coal samples. The ablation system consisted of a Nd:YAG laser operated 213 nm. A Czerny-turner spectrograph with ICCD detector and time-of-flight based mass spectrometer were utilized for LIBS and ICP-MS detection, respectively. This tandem approach allows simultaneous determination of major and minor elements (C, Si, Ca, Al, Mg), and trace elements (V, Ba, Pb, U, etc.) in the coal samples. The research focused on calibration strategies, specifically the use of univariate and multivariate data analysis on analytical performance. Partial least square regression (PLSR) was shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The correlation between measurements from these two techniques demonstrated that mass spectral data combined with LIBS emission measurements by PLSR improved the accuracy and precision for quantitative analysis of trace elements in coal. - Highlights: • Tandem LIBS LA-ICP-MS • Simultaneous determination of major and minor elements and trace elements in the coal samples. • Extended Dynamic Range • Correlation between LIBS with LA-ICP-MS demonstrated improved the accuracy and precision for quantitative analysis of coal

  3. Coal upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, S. [IEA Clean Coal Centre, London (United Kingdom)

    2009-10-15

    This report examines current technologies and those likely to be used to produce cleaner coal and coal products, principally for use in power generation and metallurgical applications. Consideration is also given to coal production in the leading coal producing countries, both with developed and developing industries. A range of technologies are considered. These include the coal-based liquid fuel called coal water mixture (CWM) that may compete with diesel, the production of ultra-clean coal (UCC) and coal liquefaction which competes with oil and its products. Technologies for upgrading coal are considered, especially for low rank coals (LRC), since these have the potential to fill the gap generated by the increasing demand for coal that cannot be met by higher quality coals. Potential advantages and downsides of coal upgrading are outlined. Taking into account the environmental benefits of reduced pollution achieved through cleaner coal and reduced transport costs, as well as other positive aspects such as a predictable product leading to better boiler design, the advantages appear to be significant. The drying of low rank coals improves the energy productively released during combustion and may also be used as an adjunct or as part of other coal processing procedures. Coal washing technologies vary in different countries and the implications of this are outlined. Dry separation technologies, such as dry jigging and electrostatic separation, are also described. The demonstration of new technologies is key to their further development and demonstrations of various clean coal technologies are considered. A number of approaches to briquetting and pelletising are available and their use varies from country to country. Finally, developments in upgrading low rank coals are described in the leading coal producing countries. This is an area that is developing rapidly and in which there are significant corporate and state players. 81 refs., 32 figs., 3 tabs.

  4. Demographic variables in coal miners’ safety attitude

    Science.gov (United States)

    Yin, Wen-wen; Wu, Xiang; Ci, Hui-Peng; Qin, Shu-Qi; Liu, Jia-Long

    2017-03-01

    To change unsafe behavior through adjusting people’s safety attitudes has become an important measure to prevent accidents. Demographic variables, as influential factors of safety attitude, are fundamental and essential for the research. This research does a questionnaire survey among coal mine industry workers, and makes variance analysis and correlation analysis of the results in light of age, length of working years, educational level and experiences of accidents. The results show that the coal miners’ age, length of working years and accident experiences correlate lowly with safety attitudes, and those older coal miners with longer working years have better safety attitude, as coal miners without experiences of accident do.However, educational level has nothing to do with the safety attitude. Therefore, during the process of safety management, coal miners with different demographic characteristics should be put more attention to.

  5. Thermal behaviour and microanalysis of coal subbituminus

    Science.gov (United States)

    Heriyanti; Prendika, W.; Ashyar, R.; Sutrisno

    2018-04-01

    Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) is used to study the thermal behaviour of sub-bituminous coal. The DSC experiment was performed in air atmosphere up to 125 °C at a heating rate of 25 °C min1. The DSC curve showed that the distinct transitional stages in the coal samples studied. Thermal heating temperature intervals, peak and dissociation energy of the coal samples were also determined. The XRD analysis was used to evaluate the diffraction pattern and crystal structure of the compounds in the coal sample at various temperatures (25-350 °C). The XRD analysis of various temperatures obtained compounds from the coal sample, dominated by quartz (SiO2) and corundum (Al2O3). The increase in temperature of the thermal treatment showed a better crystal formation.

  6. Coal and nuclear electricity fuels

    International Nuclear Information System (INIS)

    Rahnama, F.

    1982-06-01

    Comparative economic analysis is used to contrast the economic advantages of nuclear and coal-fired electric generating stations for Canadian regions. A simplified cash flow method is used with present value techniques to yield a single levelized total unit energy cost over the lifetime of a generating station. Sensitivity analysis illustrates the effects of significant changes in some of the cost data. The analysis indicates that in Quebec, Ontario, Manitoba and British Columbia nuclear energy is less costly than coal for electric power generation. In the base case scenario the nuclear advantage is 24 percent in Quebec, 29 percent in Ontario, 34 percent in Manitoba, and 16 percent in British Columbia. Total unit energy cost is sensitive to variations in both capital and fuel costs for both nuclear and coal-fuelled power stations, but are not very sensitive to operating and maintenance costs

  7. Comparative analysis of print media coverage of nuclear power and coal issues

    International Nuclear Information System (INIS)

    Nealey, S.M.; Rankin, W.L.; Montano, D.E.

    1978-10-01

    Nuclear power has been a more important topic than has coal for the print media, and has received somewhat different treatment. Compared to the number of coal articles, almost twice as many nuclear power articles were printed from 1972 through 1976. Also, while the number of nuclear power articles increased somewhat steadily from 1972 through 1976, the number of coal articles peaked in 1974 and has decreased since. The newspapers sampled gave more prominence to nuclear articles in terms of article type and article location. Also, nuclear articles were more often issue-oriented compared to coal articles. Coal articles were most often about coal mining, labor force concerns, and regulations controls. Nuclear power articles, on the other hand, were mostly about reactor operation. The main issues discussed in the coal articles pertained most to political decisions affecting coal use, to strikes, and to health and safety. The main nuclear issues pertained to economics, to health and safety, and to political decisions. Newspapers handled nuclear power articles in a more polarized manner compared to coal articles which were handled in a more neutral manner. Magazine articles were significantly more antinuclear than anticoal. Some qualifications about these conclusions are included

  8. Environmental and safety aspects. The best of 'powder handling and processing' 1989 - 1997. 'Bulk solids handling' 1992 - 1997 (H/2000)

    Energy Technology Data Exchange (ETDEWEB)

    Woehlbier, R.H. (ed.)

    2000-07-01

    The book contains articles published either during 1992-1997 in ''bulk solids handling'' or during 1989-1997 in ''powder handling and processing''. Main topics are aspects of safety and environmental protection in bulk solids handling: dusts, hazardous powders, prevention and mitigation of dust explosions, powdered coal handling, dedusting, filters, electrostatic precipitation, materials recovery, occupational safety.(uke)

  9. Co-combustion of anthracite coal and wood pellets: Thermodynamic analysis, combustion efficiency, pollutant emissions and ash slagging.

    Science.gov (United States)

    Guo, Feihong; Zhong, Zhaoping

    2018-08-01

    This work presents studies on the co-combustion of anthracite coal and wood pellets in fluidized bed. Prior to the fluidized bed combustion, thermogravimetric analysis are performed to investigate the thermodynamic behavior of coal and wood pellets. The results show that the thermal decomposition of blends is divided into four stages. The co-firing of coal and wood pellets can promote the combustion reaction and reduce the emission of gaseous pollutants, such as SO 2 and NO. It is important to choose the proportion of wood pellets during co-combustion due to the low combustion efficiency caused by large pellets with poor fluidization. Wood pellets can inhibit the volatilization of trace elements, especially for Cr, Ni and V. In addition, the slagging ratio of wood pellets ash is reduced by co-firing with coal. The research on combustion of coal and wood pellets is of great significance in engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. High rate spectroscopy for on-line nuclear coal analyzer (Nucoalyzer)

    International Nuclear Information System (INIS)

    McQuaid, J.H.; Brown, D.R.; Gozani, T.; Bozorgmanesh, H.

    1980-01-01

    A high count rate, time-variant Ge(Li) spectrometer has been developed for on-line coal analysis. The analyzer is being fabricated for use in a power generating station. Prompt neutron activation of coal samples is the basis of analysis, with 252 Cf as the source for irradiation. The spectroscopy system allows counting rates up to 150 k counts per second without significant loss in energy resolution or peak shape. The high data throughput allows the coal analyzer to be used for on-line process control. The coal analyzer will be discussed, with emphasis on the high-rate signal processing system. Results of analysis of coal samples will be presented

  11. Log evaluation of sub-bituminous coals in Magallanes, Chile

    International Nuclear Information System (INIS)

    Weltz, L.S.

    1976-01-01

    In coal exploration a drilling program is normally used for coal inquest through core analysis, with a high cost and operating time. However, in many cases, there is poor cores recovery due to operating procedures and/or formation conditions which leads to the determination of parameters non-representative of the coal seam. The cost and operating time can be minimized through the use of logs which also represent a continuous and in situ sampling. In the case of sub-bituminous coals, the analysis through logs is more complex due to the high content of clay, which masks the presence of water. This paper describes the analysis of sub-bituminous coals in Magallanes-Chile. The main coal seam components are: coal, clay, secondary quartz and water. An interpretation system using the density log, gamma ray, sonic and microlog, based on rho/sub B/-GR and rho/sub B/--Δ/sub T/ cross plots, permits to know the weight percentages of the following elements: total carbon, ash, moisture, which form the main local coal parameters. Empirical relationships permit us to obtain also the heating value and an estimate strength index to elastic-dynamic forces. The results obtained agree within 3 percent with the Laboratory cores analysis. The method is processed through a sequence of simple computer programs for IBM-360

  12. Finite element analysis and simulation of rheological properties of bulk molding compound (BMC)

    Science.gov (United States)

    Ergin, M. Fatih; Aydin, Ismail

    2013-12-01

    Bulk molding compound (BMC) is one of the important composite materials with various engineering applications. BMC is a thermoset plastic resin blend of various inert fillers, fiber reinforcements, catalysts, stabilizers and pigments that form a viscous, molding compound. Depending on the end-use application, bulk molding compounds are formulated to achieve close dimensional control, flame and scratch resistance, electrical insulation, corrosion and stain resistance, superior mechanical properties, low shrink and color stability. Its excellent flow characteristics, dielectric properties, and flame resistance make this thermoset material well-suited to a wide variety of applications requiring precision in detail and dimensions as well as high performance. When a BMC is used for these purposes, the rheological behavior and properties of the BMC is the main concern. In this paper, finite element analysis of rheological properties of bulk molding composite material was studied. For this purpose, standard samples of composite material were obtained by means of uniaxial hot pressing. 3 point flexural tests were then carried out by using a universal testing machine. Finite element analyses were then performed with defined material properties within a specific constitutive material behavior. Experimental and numerical results were then compared. Good correlation between the numerical simulation and the experimental results was obtained. It was expected with this study that effects of various process parameters and boundary conditions on the rheological behavior of bulk molding compounds could be determined by means of numerical analysis without detailed experimental work.

  13. FT-IR and XRD analysis of coal from Makum coalfield of Assam

    Indian Academy of Sciences (India)

    iliary fuels, such as natural gas or imported coals to satisfy the coal quality requirement for ther- mal power generation, particularly from the emis- sion point of view. Since mineral matter affects almost all aspects of coal utilization, the accep- tance of coal for industrial application depends critically on both organic and ...

  14. Analysis of waste coal from the enterprises of Kemerovo region as raw materials for production of ceramic materials

    Science.gov (United States)

    Stolboushkin, A. Yu; Akst, D. V.; Fomina, O. A.; Ivanov, A. I.; Syromyasov, V. A.

    2017-09-01

    The analysis of waste coal from mining enterprises of Kemerovo region as raw materials for production of building ceramics is given. The results of studies of material, chemical and mineralogical compositions of waste coal from Abashevskaya processing plant (Novokuznetsk) are presented. It was established that the chemical composition of waste coal refers to aluminosilicate raw materials with a high content of alumina and coloring oxides, the residual carbon content in the wastes is 12-25 %. According to the granulometric composition the waste coal is basically a sandy-dusty fraction with a small amount of clay particles (1-3 %). Additional grinding of coal waste and the introduction of a clay additive in an amount of up to 30 % are recommended. The results of the study of the mineral composition of waste coal are presented. Clay minerals are represented in the descending order by hydromuscovite, montmorillonite and kaolinite, minerals-impurities consist of quartz, feldspar fine-dispersed carbonates. The results of the investigation of ceramic-technological properties of waste coal, which belong to the group of moderately plastic low-melting raw materials, are given. As a result of a comprehensive study it was been established that with chemical, granulometric and mineralogical compositions waste coal with the reduced residual carbon can be used in the production of ceramic bricks.

  15. Bio-coal briquettes using low-grade coal

    Science.gov (United States)

    Estiaty, L. M.; Fatimah, D.; Widodo

    2018-02-01

    The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.

  16. Coal

    International Nuclear Information System (INIS)

    Teissie, J.; Bourgogne, D. de; Bautin, F.

    2001-12-01

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  17. Coal forming conditions for coal seams and coal measures of the Heshan Group Upper Permian Series in Guangxi Province (part 1)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.

    1980-10-01

    Coal forming conditions for the coal measures of the Heshan Group are discussed based on the analysis of the historical background and paleogeographical environment of the Permian in Guangxi Province. The roof, floor, and partings of the seams are composed of algal micritic limestone, therefore affirming that the central part of Guangxi Province in the late Permian was a typical epi-continental sea. The compensative deposit of algea on the carbonate platform in very shallow water created the conditions for the occurrence of the peat swamp and established the supra-tidal swampy facies. The environment for the accumulation of the major coal seams are analyzed. (In Chinese)

  18. Nuclear assay of coal. Volume 6. Mass flow devices for coal handling. Final report

    International Nuclear Information System (INIS)

    Gozani, T.; Elias, E.; Bevan, R.

    1980-04-01

    The mass of coal entering the boiler per unit time is an essential parameter for determining the total rate of heat input. The mass flow rate of coal on a conveyor belt is generally determined as a product of the instantaneous mass of material on a short section of the belt and the belt velocity. Belt loading could be measured by conventional transducers incorporating mechanical or electromechanical weighers or by gamma-ray attenuation gauge. This report reviews the state of the art in mass flow devices for coal handling. The various methods are compared and commented upon. Special design issues are discussed relative to incorporating a mass flow measuring device in a Continuous On-Line Nuclear Analysis of Coal (CONAC) system

  19. Coking coal outlook from a coal producer's perspective

    International Nuclear Information System (INIS)

    Thrasher, E.

    2008-01-01

    Australian mine production is recovering from massive flooding while Canadian coal shipments are limited by mine and rail capacity. Polish, Czech, and Russian coking coal shipments have been reduced and United States coking coal shipments are reaching their maximum capacity. On the demand side, the Chinese government has increased export taxes on metallurgical coal, coking coal, and thermal coal. Customers seem to be purchasing in waves and steel prices are declining. This presentation addressed the global outlook for coal as well as the challenges ahead in terms of supply and demand. Supply challenges include regulatory uncertainty; environmental permitting; labor; and geology of remaining reserves. Demand challenges include global economic uncertainty; foreign exchange values; the effect of customers making direct investments in mining operations; and freight rates. Consolidation of the coal industry continued and several examples were provided. The presentation also discussed other topics such as coking coal production issues; delayed mining permits and environmental issues; coking coal contract negotiations; and stock values of coking coal producers in the United States. It was concluded that consolidation will continue throughout the natural resource sector. tabs., figs

  20. Trace elements and As speciation analysis of fly ash samples from an Indonesian coal power plant by means of neutron activation analysis and synchrotron based techniques

    International Nuclear Information System (INIS)

    Muhayatun Santoso; Diah Dwiana Lestiani; Endah Damastuti; Syukria Kurniawat; Bennett, J.W.; Juan Jose Leani; Mateusz Czyzycki; Alessandro Migliori; Germanos Karydas, Andreas

    2016-01-01

    The elemental characterization of coal fly ash samples is required to estimate the coal burning emissions into the environment and to assess the potential impact into the biosphere. Fly ash samples collected from a coal fired power plant in center Java, Indonesia were characterized by instrumental neutron activation analysis at two different facilities (BATAN, ANSTO) and synchrotron based techniques at Elettra Italy. Assessment of thirty (30) elements and an investigation of the potential toxicity of As species in coal fly ash were presented. The results obtained are discussed and compared with those reported from other regions of the world. (author)

  1. Neutron activation analysis for sulphur in coal samples and moisture content by gamma-ray transmission

    International Nuclear Information System (INIS)

    Selvi, S.

    1993-01-01

    A neutron activation analysis method is described for the determination of sulphur in coal samples by analysing the beta spectrum emitted from 32 P and 33 P following the reactions 32 S(n, p) 32 P and 33 S(n, p) 33 P using 252 Cf as a source of neutrons. The transmission of the combined gamma-rays emitted from three 137 Cs and three 241 Am sources is used to measure the water content of the coal samples. (author)

  2. Exergetic analysis of a steam power plant using coal and rice straw in a co-firing process

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, Alvaro; Miyake, Raphael Guardini; Bazzo, Edson [Federal University of Santa Catarina (UFSC), Dept. of Mechanical Engineering, Florianopolis, SC (Brazil)], e-mails: arestrep@labcet.ufsc.br, miyake@labcet.ufsc.br, ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia S.A., Capivari de Baixo, SC (Brazil). U.O. Usina Termeletrica Jorge Lacerda C.], e-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    This paper presents an exergetic analysis concerning an existing 50 M We steam power plant, which operates with pulverized coal from Santa Catarina- Brazil. In this power plant, a co-firing rice straw is proposed, replacing up to 10% of the pulverized coal in energy basis required for the boiler. Rice straw has been widely regarded as an important source for bio-ethanol, animal feedstock and organic chemicals. The use of rice straw as energy source for electricity generation in a co-firing process with low rank coal represents a new application as well as a new challenge to overcome. Considering both scenarios, the change in the second law efficiency, exergy destruction, influence of the auxiliary equipment and the greenhouse gases emissions such as CO{sub 2} and SO{sub 2} were considered for analysis. (author)

  3. Rapid pyrolysis of Serbian soft brown coals

    Directory of Open Access Journals (Sweden)

    Jankes Goran

    2009-01-01

    Full Text Available Soft brown coals of the open coal fields of Kolubara and Kostolac are the main domestic energy sources of Serbia. This paper presents the results of investigations on rapid devolatilization of these two coals which have covered kinetics of devolatilization (based on total volatile yield, forms of sulphur and petrographic analysis of coal and char. Experiments of devolatilization were performed in inert gas (N2 at atmospheric pressure and in batch-type hot-wire screen reactor. The mass-loss values of both coals at selected final reaction temperatures (300-900°C and retention times (3-28 s were obtained. Anthony and Howard's kinetic model was applied over two temperature ranges (300-500 and 700-900°C. The types of sulphur as monosulphide, sulphate, pyritic, and organic sulphur were determined for chars and original coals. Strong transformation of pyrite was evident even at low temperatures (300°C. Devolatilization of all types of sulphur has started over 600 and at 900°C the content of sulphur in char remained only 66% of total sulphur in original coal. Microscopic investigations were carried out on samples prepared for reflected light measurements. The petrographic analysis included: the ratio of unchanged and changed coal, maceral types, the share of cenosferes, isotropic mixed carbonized grains, mixed grains, small fragments, clay, and pyrite. The change of the structure of devolatilized coal was also observed.

  4. Coal contract cost reduction through resale of coal

    International Nuclear Information System (INIS)

    Simon, R.

    1990-01-01

    The weak coal market of the 1980's has enabled utilities and other users of coal to enjoy stable or falling prices for coal supplies. Falling prices for coal stimulated the renegotiation of numerous coal contracts in recent years, as buyers look to take advantage of lower fuel prices available in the marketplace. This paper examines the use of coal resale transactions as a means of reducing fuel costs, and analyzes the benefits and risks associated with such transactions

  5. Contributions to the prompt neutron activation analysis of industrially used coals and zinc roasting products

    International Nuclear Information System (INIS)

    Dammermann, H.

    1982-01-01

    The construction of an irradiation plant for calibration measurement by means of prompt neutron activation analysis is described. A 5.84 μg and 16.3 μg Cf-252 source serve as neutron sources. Tests have shown an inner centred arrangement to offer the best solution for sources of this strength. The use of the PNAA method for determining sulphur, iron and chloride content in brown coal was tested and calibration curves drawn. The sulphur content of the coal briquettes tested was found to be 0.27% S, the iron content amounting to 0.21% Fe and chloride to 0.06%. These values correlate closely with values obtained from wet chemical industrial analysis. (WI)

  6. Development of direct observation aparatus of coal carbonization process by x-ray computerized tomography method

    International Nuclear Information System (INIS)

    Sakawa, Mitsuhiro; Shiraishi, Katsuhiko; Sakurai, Yoshihisa; Shimomura, Yasuto

    1987-01-01

    Coke production by chamber ovens has a long history and efforts are being continued to make the manufacturing process efficient and to preserve the environment. In this production by this method, however, it is hardly possible to obtain direct information during coal carbonization. Since the elements that compose coal and coke are carbon, hydrogen, oxygen, etc. and are similar to those of the human body, authors has developed a coke oven that permits the direct observation of the coal carbonization process using a soft X-ray computerized tomography (CT) apparatus used in medical treatment. The following phenomena can be observed as images by the coke oven for the CT method : 1) Changes in the bulk density of charge coal (including the difference in the water content), 2) Width of the plastic layer and movement of the plastic layer in the coke oven chamber, 3) Expansion and shrinkage of the charge in the coke oven chamber, 4) Initiation and growth of cracks. (author)

  7. Investigation of trace elements in coal

    International Nuclear Information System (INIS)

    Gluskoter, H.J.; Cahil, R.A.; Miller, W.G.; Ruch, R.R.; Shimp, N.F.

    1976-01-01

    A variety of coal samples is currently being extensively analyzed for constituents, including many trace elements, at the Illinois State Geological Survey. The samples include whole coals, washed coals, and bench samples. Among the many determinations made on each sample are analyses for approximately 60 elements, almost twice the number of elements previously determined. The increase is in part the result of the addition of instrumental neutron activation analysis (INAA) equipment to the laboratory. Twenty-five samples of Herrin (No. 6) Coal that had been analyzed previously were subjected to INAA analysis and were found to include Ba, Ce, Cs, Dy, Eu, Au, Hf, I, In, La, Lu, Rb, Sm, Sc, Ag, Sr, Ta, Tb, Th, W, U, and Yb, none of which were reported by previous techniques. These elements generally are present in very small amounts and, with the exception of barium, exhibit no wide range in concentration. The rare earth elements are among those having the narrowest ranges. Wide variations in element content have been observed in bench sets of coals (samples of vertical segments of the coal seam). Many elements, notably germanium, are concentrated at the top and/or bottom of the seam, the high concentrations of Ge being found there in all four bench sets analyzed to date

  8. Analysis of briquetting process of sewage sludge with coal to combustion process

    Directory of Open Access Journals (Sweden)

    Kosturkiewicz Bogdan

    2016-01-01

    Full Text Available Energy recovery from sewage sludge can be achieved by several thermal technologies, but before those processes sewage sludge requires special pretreatment. The paper presents the investigation of the sewage sludge with coal briquettes as a fuel for combustion process. Research is conducted at Department of Manufacturing Systems and Department of Thermal Engineering and Environmental Protection, AGH University of Science and Technology to develop a technology of briquette preparation. The obtained results showed possibility of briquetting of municipal sewage sludge with coal in roll presses, equipped with asymmetric thickening gravity feed system. The following properties were determined for the obtained briquettes: density, drop strength and compressive strength. Based on physical and chemical analysis of prepared briquettes it was confirmed that briquettes have good fuel properties to combustion process. Thermal behaviour of studied sewage sludge and prepared mixture was investigated by thermogravimetric analysis (TG. For the thermo gravimetric analysis (TG the samples were heated in an alumina crucible from an ambient temperature up to 1000 °C at a constant rates: 10 °C/min, 40 °C/min and 100 °C/min in a 40 ml/min flow of air.

  9. Comparative life cycle analysis of cement made with coal vs hazardous waste as fuel

    International Nuclear Information System (INIS)

    Kelly, K.E.; Beeh, J.

    1994-01-01

    The purpose of this life cycle analysis (LCA) is to compare the life cycle of cement made with coal, the standard fuel used in a cement kiln, versus cement made with hazardous waste-derived fuels. The intent of the study is to determine whether the use of hazardous waste as a fuel in the production of cement could result in an increase in detrimental effects to either health or environment. Those evaluated for potential adverse effect include cement kiln workers, waste transporters, and consumers using the final product for private use. The LCA stages included all the processes involved with cement, including raw materials acquisition, transportation, manufacturing, packaging, distribution, use, recycling, and disposal. The overall conclusions of the LCA are that use of waste fuels instead of coal to make cement: (1) does not increase, and may reduce, the concentration of contaminants in the cement product due to the reduction or elimination of the use of coal; (2) reduces or eliminates use of non-renewable fossil fuels, such as coal, as well as the environmental damage and impacts associated with coal mining; (3) provides a more environmentally beneficial means of destroying many types of wastes than alternative treatment methods, including incineration, thus decreasing the need for waste treatment facilities and capacity; (4) decreases overall emissions during transportation but may increase the overall consequences of accidents or spills; (5) results in cement product which may be packaged, transported, distributed and used in the same manner as cement product made with coal; (6) lowers the cost of cement production; and (7) overall appears to result in less health and environmental impacts

  10. Characteristics of Malaysian coals with their pyrolysis and gasification behaviour

    International Nuclear Information System (INIS)

    Nor Fadzilah Othman; Mohd Hariffin Bosrooh; Kamsani Abdul Majid

    2010-01-01

    This study was conducted since comprehensive study on the gasification behaviour of Malaysian coals is still lacking. Coals were characterised using heating value determination, proximate analysis, ultimate analysis and ash analysis. Pyrolysis process was investigated using thermogravimetric analyser. While, atmospheric bubbling fluidized bed gasifier was used to investigate the gasification behaviour. Three Malaysian coals, Merit Pila, Mukah Balingian, Silantek; and Australian coal, Hunter Valley coals were used in this study. Thermal degradation of four coal samples were performed, which involved weight loss profile and derivative thermogravimetric (DTG) curves. The kinetic parameters, such as maximum reactivity value, R max , Activation Energy, E a and Arrhenius constant, ln R o for each coal were determined using Arrhenius Equation. Merit Pila coal shows the highest maximum reactivity among other Malaysian coals. E a is the highest for Merit Pila coal (166.81kJmol -1 ) followed with Mukah Balingian (101.15 kJmol -1 ), Hunter Valley (96.45 kJmol -1 ) and Silantek (75.23 kJmol -1 ) coals. This finding indicates direct correlation of lower rank coal with higher E a . Merit Pila coal was studied in detail using atmospheric bubbling fluidized bed gasifier. Different variables such as equivalence ratio (ER) and gasifying agents were used. The highest H 2 proportion (38.3 mol.%) in the producer gas was reached at 715 degree Celsius and ER=0.277 where the maximization of LHV pg (5.56 MJ/Nm 3 ) was also detected. ER and addition of steam had shown significant contributions to the producer gas compositions and LHV pg . (author)

  11. Comparative analysis of large biomass & coal co-utilization units

    NARCIS (Netherlands)

    Liszka, M.; Nowak, G.; Ptasinski, K.J.; Favrat, D.; Marechal, F.

    2010-01-01

    The co-utilization of coal and biomass in large power units is considered in many countries (e.g. Poland) as fast and effective way of increasing renewable energy share in the fuel mix. Such a method of biomass use is especially suitable for power systems where solid fuels (hard coal, lignite) are

  12. A data envelopment analysis for energy efficiency of coal-fired power units in China

    International Nuclear Information System (INIS)

    Song, Chenxi; Li, Mingjia; Zhang, Fan; He, Ya-Ling; Tao, Wen-Quan

    2015-01-01

    Highlights: • Two kinds of energy efficiency (EE) indices are analyzed and compared. • The influence degrees of different uncontrollable factors on EE are compared. • The influence of load factor on special EE is 82.6% larger than capacity factor. • The influence of cooling method on special EE is 90.32% larger than steam pressure. • The generalized EE indicator is more recommended by the authors. - Abstract: In this article, the non-parametric data envelopment analysis method (DEA) is employed to evaluate energy efficiency (EE) of 34 coal-fired power units in China. Input-oriented CCR (Charnes, Cooper and Rhodes) model is used for EE analysis. Two efficiency indices, generalized EE and special EE are defined and analyzed. The generalized EE is calculated based on four input parameters: coal consumption, oil consumption, water consumption and auxiliary power consumption by power units. The special EE is only based on two input parameters: coal consumption and auxiliary power consumption. Relations between these two EE indices and non-comparable factors including quality of coal, load factor, capacity factor, parameters of main steam and cooling method are studied. Comparison between EE evaluation results of the two indices is conducted. Results show that these two kinds of EE are more sensitive to the load factor than the capacity factor. The influence of the cooling method on EE is larger than that of main steam parameter. The influence of non-comparable factors on the special EE is stronger than that on the generalized EE

  13. Technology assessment of various coal-fuel options

    International Nuclear Information System (INIS)

    Coenen, R.; Findling, B.; Klein-Vielhauer, S.; Nieke, E.; Paschen, H.; Tangen, H.; Wintzer, D.

    1991-01-01

    The technology assessment (TA) study of coal-based fuels presented in this report was performed for the Federal Ministry for Research and Technology. Its goal was to support decision-making of the Federal Ministry for Research and Technology in the field of coal conversion. Various technical options of coal liquefaction have been analyzed on the basis of hard coal as well as lignite -- direct liquefaction of coal (hydrogenation) and different possibilities of indirect liquefaction, that is the production of fuels (methanol, gasoline) by processing products of coal gasification. The TA study takes into consideration the entire technology chain from coal mining via coal conversion to the utilization of coal-based fuels in road transport. The analysis focuses on costs of the various options, overall economic effects, which include effects on employment and public budgets, and on environmental consequences compared to the use of liquid fuels derived from oil. Furthermore, requirements of infrastructure and other problems of the introduction of coal-based fuels as well as prospects for the export of technologies of direct and indirect coal liquefaction have been analyzed in the study. 14 figs., 10 tabs

  14. Investigation on characterization of Ereen coal deposit

    Directory of Open Access Journals (Sweden)

    S. Jargalmaa

    2016-03-01

    Full Text Available The Ereen coal deposit is located 360 km west from Ulaanbaatar and 95 km from Bulgan town. The coal reserve of this deposit is approximately 345.2 million tons. The Ereen coal is used directly for the Erdenet power plant for producing of electricity and heat. The utilization of this coal for gas and liquid product using gasification and pyrolysis is now being considered. The proximate and ultimate analysis show that the Ereen coal is low rank D mark hard coal, which corresponds to subbituminous coal. The SEM images of initial coal sample have compact solid pieces. The SEM image of carbonized and activated carbon samples are hard material with high developed macro porosity structure. The SEM images of hard residue after thermal dissolution in autoclave characterizes hard pieces with micro porous structure in comparison with activated carbon sample. The results of the thermal dissolution of Ereen coal in tetralin with constant weight ratio between coal and tetralin (1:1.8 at the 450ºC show that 38% of liquid product can be obtained by thermal decomposition of the COM (coal organic matter.Mongolian Journal of Chemistry 16 (42, 2015, 18-21

  15. Characterization and supply of coal based fuels

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  16. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

    1997-12-31

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  17. Australian Coal Company Risk Factors: Coal and Oil Prices

    OpenAIRE

    M. Zahid Hasan; Ronald A. Ratti

    2014-01-01

    Examination of panel data on listed coal companies on the Australian exchange over January 1999 to February 2010 suggests that market return, interest rate premium, foreign exchange rate risk, and coal price returns are statistically significant in determining the excess return on coal companies’ stock. Coal price return and oil price return increases have statistically significant positive effects on coal company stock returns. A one per cent rise in coal price raises coal company returns ...

  18. Activated carbons from Mongolian coals by thermal treatment

    Directory of Open Access Journals (Sweden)

    A Ariunaa

    2014-09-01

    Full Text Available Mongolian different rank coals were used as raw material to prepare activatedcarbons by physical activation method. The coal derived carbons were oxidized with nitric acid in order to introduce surface oxygen groups. The ultimate elemental analysis, scanning electron microscopy, surface area, pore size distribution analysis and selective neutralization method were used to characterize the surface properties of activated carbons, oxidizedcarbons and raw coals. The effect of coal grade on the adsorption properties of the carbons were studied. It was concluded that Naryn sukhait bituminous coal could be serve as suitable raw material for production of activated carbons for removal of heavy metal ions from solution.DOI: http://dx.doi.org/10.5564/mjc.v12i0.174 Mongolian Journal of Chemistry Vol.12 2011: 60-64

  19. Coal Tar and Coal-Tar Pitch

    Science.gov (United States)

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  20. Characterization of Egyptian coal from Sinai using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Eissa, N.A.; Abdel Meguid, M.M.; Deriu, A.; Albanese, G.

    1983-08-01

    The presence of iron bearing minerals in coal makes the Moessbauer Spectroscopy (MS) extremely useful for characterization of coals from different localities. In this paper the MS has been applied to characterize Egyptian coal from Sinai (Maghara). The chemical analysis of this coal is given. The MS results showed that pyritic sulphur (pyrite and marcasite) is the only bearing mineral in Egyptian coal. A review is given for the iron bearing minerals in coals from different countries measured by MS. (author)

  1. Coal summit II

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Various papers were presented on world coal trade. Papers include: Poland as a producer and exporter of coal; the dynamics of world coal trade; Cerrejon coal production perspectives; present state of the Australian coal industry; present state of the EC coal market and future prospects; prospects of US coal exports to Europe; forecast of Italian coal supply and demand through 1990; statistics from coal transportation outlook; status of world coal ports.

  2. Relationships between coal-quality and organic-geochemical parameters: A case study of the Hafik coal deposits (Sivas Basin, Turkey)

    Energy Technology Data Exchange (ETDEWEB)

    Erik, N. Yalcin; Sancar, S. [Cumhuriyet University, Department of Geological Engineering, Sivas (Turkey)

    2010-09-01

    This study provides coal-quality, organic-petrographic and organic-geochemical data on Tertiary subbituminous coal of the Hafik area, northwestern part of the Sivas Basin, Turkey. Coal-petrological studies along with proximate and ultimate analyses were undertaken to determine the organic-petrographic characteristics of the Hafik coals. Huminite reflectances were found to be between 0.38 and 0.48% (corresponding to an organic-material-rich and coal layers), values characteristic of low maturity. This parameter shows a good correlation with calorific values (average 21,060 kJ/kg) and average T{sub max} (422 C) mineral-matter diagenesis, indicating immaturity. The studied coals and organic material underwent only low-grade transformation, a consequence of low lithostatic pressure. Therefore, the Hafik coals are actually subbituminous in rank. Rock-Eval analysis results show types II/III and III kerogens. The organic fraction of the coals is mostly comprised of humic-group macerals (gelinites), with small percentages derived from the inertinite and liptinite groups. In this study, organic-petrographic, organic-geochemical and coal quality data were compared. The Hafik deposit is a high-ash, high-sulfur coal. The mineral matter of the coals is comprised mainly of calcite and clay minerals. (author)

  3. Analysis of radioactivity concentration in naturally occurring radioactive materials used in coal-fired plants in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Geom; Kim, Si Young; Ji, Seung Woo; Park, Il; Kim, Min Jun; Kim, Kwang Pyo [Dept. of Nuclear Engineering, Kyung Hee University, Yongin (Korea, Republic of)

    2017-02-15

    Coals and coal ashes, raw materials and by-products, in coal-fired power plants contain naturally occurring radioactive materials (NORM). They may give rise to internal exposure to workers due to inhalation of airborne particulates containing radioactive materials. It is necessary to characterize radioactivity concentrations of the materials for assessment of radiation dose to the workers. The objective of the present study was to analyze radioactivity concentrations of coals and by-products at four coal-fired plants in Korea. High purity germanium detector was employed for analysis of uranium series, thorium series, and potassium 40 in the materials. Radioactivity concentrations of {sup 226}Ra, {sup 228}Ra, and {sup 40}K were 2⁓53 Bq kg{sup -1}, 3⁓64 Bq kg{sup -1}, and 14⁓431 Bq kg{sup -1} respectively in coal samples. For coal ashes, the radioactivity concentrations were 77⁓133 Bq kg{sup -1}, 77⁓105 Bq kg{sup -1}, and 252⁓372 Bq kg{sup -1} in fly ash samples and 54⁓91 Bq kg{sup -1}, 46⁓83 Bq kg{sup -1}, and 205⁓462 Bq kg{sup -1} in bottom ash samples. For flue gas desulfurization (FGD) gypsum, the radioactivity concentrations were 3⁓5 Bq kg{sup -1}, 2⁓3 Bq kg{sup -1}, and 22⁓47 Bq kg{sup -1}. Radioactivity was enhanced in coal ash compared with coal due to combustion of organic matters in the coal. Radioactivity enhancement factors for {sup 226}Ra, {sup 228}Ra, and {sup 40}K were 2.1⁓11.3, 2.0⁓13.1, and 1.4⁓7.4 for fly ash and 2.0⁓9.2, 2.0⁓10.0, 1.9⁓7.7 for bottom ash. The database established in this study can be used as basic data for internal dose assessment of workers at coal-fred power plants. In addition, the findings can be used as a basic data for development of safety standard and guide of Natural Radiation Safety Management Act.

  4. The mineral matter characteristics of some Chinese coal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. [China University of Mining and Technology (China). Dept. of Coal Preparation and Utilization

    1994-12-01

    The mineral matter has been separated from 18 coal samples with a low temperature ashes and analyzed by means of X-ray diffraction method. Based on the results of chemical analysis of the coal ash, with reference to the standard composition of minerals, the content of various mineral phases in the coal ash has been determined. Furthermore, this paper summarizes the mineral matter characteristics of the coal samples and discusses the relationship between the composition of mineral matter in coal and its depositional environment.

  5. Characterising the combustion behaviour of New Zealand coals by thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Benfell, K.E.; Beamish, B.B.; Rodgers, K.A. [University of Auckland, Auckland (New Zealand). Dept. of Geology

    1995-12-31

    Thirty-three New Zealand coals were subjected to thermogravimetric analysis (TG) and derivative thermogravimetric analysis (DTG) to evaluate the techniques` applicability to New Zealand coals. Generally, New Zealand sub-bituminous coals have lower burnout temperatures than bituminous coals. However, local and regional differences occur, where some sub-bituminous coals show both higher and lower char burnout temperatures than may be otherwise expected from their rank and T{sub 6} values (the peak temperature where the rate of weight loss of the sample is the greatest). There is a sizeable variations in the char burnout temperature (T{sub 8}) (465 to 636{degree}C) in coals with volatile matter contents above 40%, whereas coals with lower volatile contents have T{sub 8} values around 646{degree}C. The temperature of char burnout gives a better indication of combustion efficiency than rank or volatile matter content alone. Industrial operators could use this technique to provide an indication of burnout performance before a coal is purchased, assisting evaluation of the coal`s suitability for a particular usage. 10 refs., 4 figs., 3 tabs.

  6. Anatomy of an intruded coal, I: Effect of contact metamorphism on whole-coal geochemistry, Springfield (No. 5) (Pennsylvanian) coal, Illinois Basin

    Energy Technology Data Exchange (ETDEWEB)

    Rimmer, Susan M. [Department of Geology, Southern Illinois University Carbondale, Carbondale, IL 62901 (United States); Yoksoulian, Lois E. [Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506 (United States); Hower, James C. [Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY 40511 (United States)

    2009-08-01

    If time and heating rate are important agents in coal maturation, one might expect to see differences in chemical changes in response to maturation depending on the means of increased rank. Using a suite of samples obtained from an intruded Pennsylvanian-age coal in southern Illinois, we present whole-coal chemical data. Comparing these data to extant geochemical data for coals that have undergone normal burial maturation, we evaluated the hypothesis that if coal alteration occurs rapidly (due to intrusion) rather than gradually (burial maturation), then different relationships are seen in chemical composition (proximate and ultimate analyses) and vitrinite reflectance. The Pennsylvanian-age (Asturian [Westphalian D]) Springfield (No. 5) coal is mined at the Big Ridge Mine, near Eldorado, southern Illinois. This high volatile B bituminous coal was intruded by an ultramafic igneous intrusion during the early Permian. Alteration occurs out to {proportional_to} 1.2 x dike thickness and includes an increase in random vitrinite reflectance (R{sub m}) from levels {proportional_to} 0.7% to over 5.3%, loss of liptinites, and formation of devolatilization vacuoles and fine mosaic texture. Decreases in volatile matter (VM) and increases in fixed carbon (FC) appear to be less than would be expected for the level of reflectance seen within the alteration halo. Carbonate minerals have a major influence on proximate analyses but even following the removal of carbonates, the decrease in VM is still less than would be seen in coals of similar vitrinite reflectance that were altered by normal burial maturation. Carbonate mineralization also contributes to variability in ultimate analysis values approaching the intrusion, particularly for %C and %O. After carbonate removal, data for these coals do not appear to follow the normal burial coalification tracks when plotted on a van Krevelen diagram and on a Seyler chart. These differences suggest that a slightly different maturation

  7. Isotopic and chemical characterization of coal in Pakistan

    International Nuclear Information System (INIS)

    Qureshi, R.M.; Hasany, S.M.; Javed, T.; Sajjad, M.I.; Shah, Z.; Rehman, H.

    1993-11-01

    Stable carbon isotope ratios (delta/sup 13/C PDB) and toxic/trace element concentration levels are determined for Tertiary coal samples collected from seven coal fields in Pakistan. No systematic isotope effects are found in the process of coal liquefaction from peat to Tertiary lignites and sub bituminous coal. Similarly, no age effects are observed during the Tertiary regime. The observed variations in the carbon isotopic composition of coal obtained from 'Sharigh coal field' and the 'Sor-Range/Degari coal field' in Baluchistan are attributed to the depositional environments. More sampling of stable carbon isotope analysis are required to validate these observations. Significant concentrations of toxic elements such as S, Cr, Cd and Pb in Makarwal coal may pose environmental and engineering/operational problems for thermal power plants. (author)

  8. The economics of coal power generation in China

    International Nuclear Information System (INIS)

    Zhao, Changhong; Zhang, Weirong; Wang, Yang; Liu, Qilin; Guo, Jingsheng; Xiong, Minpeng; Yuan, Jiahai

    2017-01-01

    The Chinese government recently released the 13th FYP (five-year plan) power development plan and proposed a capacity installation target of 1100 GW for coal power. Considering the weak demand growth of coal power since 2014, continuous decline in the annual utilisation hour and the coming market competition, such a planning target is unwelcome and could further the economic deterioration of coal power. In this paper, we employ LCOE (levelised cost of electricity) and project evaluation models to conduct a nationwide survey on the economics of coal power. The economic analysis has clearly indicated that the recent boom of coal power investment in China, which is absurd in many perspectives, is largely the aftermath of uncompleted market reform in the power sector. However, the fundamentals of electricity demand and supply are changing at a speed beyond the imagination of power generators and have foreboded a gloomy prospect for coal power. Our study shows that by 2020, with several exceptions, in most provinces the internal rate of return for coal power will drop below the social average return rate or will even be negative. In this regard, the 13th FYP capacity planning target for coal power is economically untenable and requires radical revision. - Highlights: • Conduct a first-of-its-kind nationwide economic analysis for coal power in China. • Distorted price by improper regulation is the root of investment bubble since 2014. • Cost uplift and market competition foretell a gloomy prospect of coal power. • The 1100 GW capacity planning target for coal power should be abandoned.

  9. Dissolved organic matter removal during coal slag additive soil aquifer treatment for secondary effluent recharging: Contribution of aerobic biodegradation.

    Science.gov (United States)

    Wei, Liangliang; Li, Siliang; Noguera, Daniel R; Qin, Kena; Jiang, Junqiu; Zhao, Qingliang; Kong, Xiangjuan; Cui, Fuyi

    2015-06-01

    Recycling wastewater treatment plant (WWTP) effluent at low cost via the soil aquifer treatment (SAT), which has been considered as a renewable approach in regenerating potable and non-potable water, is welcome in arid and semi-arid regions throughout the world. In this study, the effect of a coal slag additive on the bulk removal of the dissolved organic matter (DOM) in WWTP effluent during SAT operation was explored via the matrix configurations of both coal slag layer and natural soil layer. Azide inhibition and XAD-resins fractionation experiments indicated that the appropriate configuration designing of an upper soil layer (25 cm) and a mixture of soil/coal slag underneath would enhance the removal efficiency of adsorption and anaerobic biodegradation to the same level as that of aerobic biodegradation (31.7% vs 32.2%), while it was only 29.4% compared with the aerobic biodegradation during traditional 50 cm soil column operation. The added coal slag would preferentially adsorb the hydrophobic DOM, and those adsorbed organics could be partially biodegraded by the biomass within the SAT systems. Compared with the relatively lower dissolved organic carbon (DOC), ultraviolet light adsorption at 254 nm (UV-254) and trihalomethane formation potential (THMFP) removal rate of the original soil column (42.0%, 32.9%, and 28.0%, respectively), SSL2 and SSL4 columns would enhance the bulk removal efficiency to more than 60%. Moreover, a coal slag additive in the SAT columns could decline the aromatic components (fulvic-like organics and tryptophan-like proteins) significantly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Nuclear vs coal: comparing cost trends

    International Nuclear Information System (INIS)

    Harrer, B.; Nieves, L.

    1981-01-01

    The leading competitors in the new-capacity-addition options, from now to 1990, will be nuclear and coal-fired units. As an alternative viewpoint to the coal vs nuclear economic comparison presented in the October 1981 issue of Electrical World, this study represents an analysis of cost data for generating electricity from the two fuel sources. The economic impacts on nuclear and coal units of varying the levels of several key cost parameters are examined and analyzed. 13 figures

  11. Influence of a modification of the petcoke/coal ratio on the leachability of fly ash and slag produced from a large PCC power plant

    Energy Technology Data Exchange (ETDEWEB)

    Maria Izquierdo; Oriol Font; Natalia Moreno (and others) [CSIC, Barcelona (Spain). Institute of Earth Sciences ' Jaume Almera'

    2007-08-01

    Co-firing of coal with inexpensive secondary fuels such as petroleum coke is expected to increase in the near future in the EU given that it may provide certain economic and environmental benefits with respect to coal combustion. However, changes in the feed fuel composition of power plants may modify the bulk content and the speciation of a number of elements in fly ash and slag. Consequently, leachability of these byproducts also can be modified. This study is focused on identifying the changes in the environmental quality of co-fired fly ash and slag induced by a modification of the petcoke/coal ratio. Petcoke was found to increase the leachable content of V and Mo and to enhance the mobility of S and As. However, with the exception of these elements, the addition of this secondary fuel did not drastically modify the bulk composition or the overall leachability of the resulting fly ash and slag. 30 refs., 3 figs., 2 tabs.

  12. Mapping of Trace Elements in Coal and Ash Research Based on a Bibliometric Analysis Method Spanning 1971–2017

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2018-02-01

    Full Text Available Coal is the most important fossil energy used in China. The environmental impact of trace elements released in coal combustion has become one of the hottest issues in recent years. Based on a software named CiteSpace, and social network analysis (SNA, a bibliometric analysis of research into trace elements in coal and ash field during 1971–2017 is presented with the information of authors, countries, institutions, journals, hot issues and research trends in the present study. The study results indicate that: (1 Shifeng Dai, Robert B Finkelman, Guijian Liu and James C Hower have a large number of publications with great influence. (2 China (29.8% and USA (22.2% have high productivity in total publications. China and the USA correlate closely in the cooperative web system. (3 China University of Mining and Technology and Chinese Academy of Sciences take the leading position in the quantity of publications among all research institutions. (4 Energy and fuels, engineering and environmental science are three disciplines with the most studies in this field. (5 International Journal of Coal Geology, Fuel, Energy and Fuels and Fuel Processing Technology are the top four journals with the most publications in this field. (6 The enrichment origin and modes of occurrence of trace elements are the mainstream research related to trace elements in coal and ash. The environmental problems caused by coal combustion have promoted the development of trace elements in coal research, and human health is getting more and more popular in recent years. The study findings provide a better understanding of features of trace elements in coal and ash research, which could be taken as a reference for future studies in this field.

  13. Coal: the metamorphosis of an industry

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Marie Martin-Amouroux

    2008-07-01

    Coal, a fuel that once dominated the global energy scene, is staging a come-back despite being environmentally dirty. The purpose of the paper is to analyse the return of King Coal to find out whether it is likely to be regain its dominance in the global energy in the future. In analysing the metamorphosis of the coal industry, the paper looks at the historical evolution of the industry and analyses the factors behind the change. The deficiencies of coal's competitors are also analysed. Using a scenario analysis, the future role of coal in the global energy mix is estimated as well. The paper finds that despite the domination of hydrocarbons in the global energy mix, coal has maintained a steady share and in some countries, it remained the main fuel. With the concerns of high-oil prices and peak oil, coal is regaining its domination in the power sector around the world. The industry has reformed and restructured itself to remain competitive. Consequently, it has the possibility of staging a come back as a dominant fuel.

  14. Application of fractal theory to top-coal caving

    International Nuclear Information System (INIS)

    Xie, H.; Zhou, H.W.

    2008-01-01

    The experiences of underground coal mining in China show that coal in a thick hard coal seam with a hard roof, the so-called 'double hard coal seam', is difficult to be excavated by top-coal caving technique. In order to solve the problem, a top-coal weakening technique is proposed in this paper. In the present study, fractal geometry provides a new description of the fracture mechanism for blasting. By means of theoretical analysis of the relationship between the fractal dimension of blasting fragments and the dynamite specific energy, a mechanical model for describing the size distribution of top-coal and the dissipation of blasting energy is proposed. The theoretical results are in agreement with laboratory and in situ test results. Moreover, it is shown that the fractal dimension of coal fragments can be used as an index for optimizing the blasting parameters for a top-coal weakening technique

  15. Mercury distribution in coals influenced by magmatic intrusions, and surface waters from the Huaibei Coal Mining District, Anhui, China

    International Nuclear Information System (INIS)

    Yan, Zhicao; Liu, Guijian; Sun, Ruoyu; Wu, Dun; Wu, Bin; Zhou, Chuncai

    2013-01-01

    Highlights: • Hg concentrations in coal and surface water samples were determined. • Hg is enriched in the Huaibei coals. • Magmatic activities imparted influences on Hg content and distribution. • Hg contents in surface waters are relative low at the present status. - Abstract: The Hg concentrations in 108 samples, comprising 81 coal samples, 1 igneous rock, 2 parting rock samples and 24 water samples from the Huaibei Coal Mining District, China, were determined by cold-vapor atomic fluorescence spectrometry. The abundance and distribution of Hg in different coal mines and coal seams were studied. The weighted average Hg concentration for all coal samples in the Huaibei Coalfield is 0.42 mg/kg, which is about twice that of average Chinese coals. From southwestern to northeastern coalfield, Hg concentration shows a decreasing trend, which is presumably related to magmatic activity and fault structures. The relatively high Hg levels are observed in coal seams Nos. 6, 7 and 10 in the southwestern coal mines. Correlation analysis indicates that Hg in the southwestern and southernmost coals with high Hg concentrations is associated with pyrite. The Hg concentrations in surface waters in the Huaibei Coal Mining District range from 10 to 60 ng/L, and display a decreasing trend with distance from a coal waste pile but are lower than the regulated levels for Hg in drinking water

  16. Petrography and microanalysis of Pennsylvanian coal-ball concretions (Herrin Coal, Illinois Basin, USA): Bearing on fossil plant preservation and coal-ball origins

    Science.gov (United States)

    Siewers, Fredrick D.; Phillips, Tom L.

    2015-11-01

    Petrographic analyses of 25 coal balls from well-studied paleobotanical profiles in the Middle Pennsylvanian Herrin Coal (Westphalian D, Illinois Basin) and five select coal balls from university collections, indicate that Herrin Coal-ball peats were permineralized by fibrous and non-fibrous carbonates. Fibrous carbonates occur in fan-like to spherulitic arrays in many intracellular (within tissue) pores, and are best developed in relatively open extracellular (between plant) pore spaces. Acid etched fibrous carbonates appear white under reflected light and possess a microcrystalline texture attributable to abundant microdolomite. Scanning electron microscopy, X-ray diffraction, and electron microprobe analysis demonstrate that individual fibers have a distinct trigonal prism morphology and are notable for their magnesium content (≈ 9-15 mol% MgCO3). Non-fibrous carbonates fill intercrystalline spaces among fibers and pores within the peat as primary precipitates and neomorphic replacements. In the immediate vicinity of plant cell walls, non-fibrous carbonates cut across fibrous carbonates as a secondary, neomorphic phase attributed to coalification of plant cell walls. Dolomite occurs as diagenetic microdolomite associated with the fibrous carbonate phase, as sparite replacements, and as void-filling cement. Maximum dolomite (50-59 wt.%) is in the top-of-seam coal-ball zone at the Sahara Mine, which is overlain by the marine Anna Shale. Coal-ball formation in the Herrin Coal began with the precipitation of fibrous high magnesium calcite. The trigonal prism morphology of the carbonate fibers suggests rapid precipitation from super-saturated, meteoric pore waters. Carbonate precipitation from marine waters is discounted on the basis of stratigraphic, paleobotanical, and stable isotopic evidence. Most non-fibrous carbonate is attributable to later diagenetic events, including void-fill replacements, recrystallization, and post-depositional fracture fills. Evidence

  17. Investigation on characterization and liquefaction of coals from Tavan tolgoi deposit

    Directory of Open Access Journals (Sweden)

    B Purevsuren

    2014-10-01

    Full Text Available On the basis of proximate, ultimate, petrographic and IR analysis results have been confirmed that the Tavan tolgoi coal is a high-rank G mark stone coal. The results of X-ray fluorescence analysis of coal ash show that the Tavan tolgoi coal is a subbituminous coal. The ash of Tavan tolgoi coal has an acidic character. The results of pyrolysis of Tavan tolgoi coal at different heating temperatures show that a maximum yield - 5.0% of liquid product can be obtained at 700°C. The results of thermal dissolution of Tavan tolgoi coal in tetralin with constant mass ratio between coal and tetralin (1:1.8 at 450°C show that 50.0% of liquid product can be obtained after thermal decomposition of the COM (coal organic matter. DOI: http://dx.doi.org/10.5564/mjc.v14i0.191 Mongolian Journal of Chemistry 14 (40, 2013, p12-19

  18. Analysis of the average poly-cyclic aromatic unit in a meta-anthracite coal using conventional x-ray powder diffraction and intensity separation methods

    International Nuclear Information System (INIS)

    Wertz, D.L.; Bissell, M.

    1994-01-01

    X-ray characterizations of coals and coal products have occurred for many years. Hirsch and Cartz measured the diffraction from several coals over the reciprocal space region from s = 0.12 angstrom -1 to 7.5 angstrom -1 where s = (4π/λ) sinΘ. In these studies, a 9 cm powder camera was used to study the high angle region, and a transmission type focusing camera equipped with a LiF monochromator was used for the low angle measurements. They reported that the height of the graphene peak measured for each coal is proportional to the % carbon in the coals. Hirsch also suggested that the ontyberem anthracite has a lamellar diameter of ca. 16 angstrom corresponding to an aromatic lamellae of ca. C 87 . For coals with lower carbon content, Hirsch proposed much smaller lamellae; C 19 for a coal with 80% carbon, and C 24 for a coal with 89% carbon. The subject coal for this study is a meta-anthracite which was derived from the Portsmouth, RI mine. The Narragansett Basin contains anthracite and meta-anthracite coals of Pennsylvanian Age. The Basin was a techtonically active non-marine coal-forming basin which has been impacted by several tectonic events. Because of the importance placed by coal scientists no correctly characterizing the nature of the micro-level structural cluster(s) in coals and because of improvements in both x-ray experimentation capabilities and computing power, we have measured the x-ray diffraction and scattering produced from irradiation of this meta-anthracite coal which contains about 94% aromatic carbon. The goal of our study is to determine the intra-planar, and where possible, inter-planar structural details of coals. To accomplish this goal we have utilized the methods normally used for the molecular analysis of non-crystalline condensed phases such as liquids, solutions, and amorphous solids. Reported herein are the results obtained from the high angle x-ray analysis of this coal

  19. Analysis of radionuclides in airborne effluents from coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, G.; Chatterjee, B.; Hoetzl, H.; Winkler, R.

    1982-01-01

    In order to assess the level of radioactivity emitted by coal-fired power plants in detail, specific activities of several radionuclides have been measured in samples from a coal-fired and a brown coal-fired plant in the Federal Republic of Germany. Samples measured included coal, brown coal, bottom ash, collected fly ash from the various electrostatic precipitator stages and sieve fractions of collected fly ash as well as samples of escaping fly ash taken from the exhaust stream, all taken simultaneously on three operating days. Nuclides measured were U-238, U-234, Th-232, Th-230, Th-228, Ra-226, Pb-210, Po-210 and K-40. Methods applied included (i) direct gamma spectrometry, (ii) radiochemical separation with subsequent alpha spectrometry and (iii) direct alpha spectrometry. Methods are described and discussed. Finally, annual emission rates of airborne radionuclides are calculated for both plants.

  20. Analysis of radionuclides in airborne effluents from coal-fired power plants

    International Nuclear Information System (INIS)

    Rosner, G.; Chatterjee, B.; Hoetzl, H.; Winkler, R.

    1982-01-01

    In order to assess the level of radioactivity emitted by coal-fired power plants in detail, specific activities of several radionuclides have been measured in samples from a coal-fired and a brown coal-fired plant in the Federal Republic of Germany. Samples measured included coal, brown coal, bottom ash, collected fly ash from the various electrostatic precipitator stages and sieve fractions of collected fly ash as well as samples of escaping fly ash taken from the exhaust stream, all taken simultaneously on three operating days. Nuclides measured were U-238, U-234, Th-232, Th-230, Th-228, Ra-226, Pb-210, Po-210 and K-40. Methods applied included (i) direct gamma spectrometry, (ii) radiochemical separation with subsequent alpha spectrometry and (iii) direct alpha spectrometry. Methods are described and discussed. Finally, annual emission rates of airborne radionuclides are calculated for both plants. (orig.)

  1. Vegetation succession and soil infiltration characteristics under different aged refuse dumps at the Heidaigou opencast coal mine

    Directory of Open Access Journals (Sweden)

    Huang Lei

    2015-07-01

    Full Text Available Vegetation succession and soil infiltration characteristics under five different restoration models of refuse dumps including different-aged revegetated sites (1995, 1998, 2003 and 2005 in the northern, eastern and western open-pit coal mine dump and a reference site with native vegetation, which had never been damaged by coal mining activities on the Heidaigou Open Cut Coal Mine were studied. Changes in the plant species, soil properties and infiltration rates were evaluated at the different refuse dumps. The results indicated that the number of herbaceous species, plant cover, biomass, fine particles, and total N, P and SOM increased significantly with increasing site age. However, the number of shrub species decreased since revegetation, its cover increased from 17% to 41% initially and subsequently decreased to the present level of 4%. The natural vegetation community and the northern refuse dump had the highest cumulative infiltration rates of 3.96 and 2.89 cm s−1 in contrast to the eastern and western refuse dumps and the abandoned land, where the highest cumulative infiltration rates were 1.26, 1.04 and 0.88 cm s−1, respectively. A multiple linear regression analysis indicated that the infiltration rate was primarily determined by the silt percentage, SOM, plant coverage and the variation in soil bulk density. Our results provide new ideas regarding future soil erosion controls and sustainable development at open-pit coal mine refuse dumps.

  2. Behaviors of overlying strata in extra-thick coal seams using top-coal caving method

    Directory of Open Access Journals (Sweden)

    Bin Yu

    2016-04-01

    Full Text Available Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos. 3–5 in Datong coal mine with top-coal caving method, which significantly hampers the mine's normal production. To understand the mechanism of strata failure, this paper presented a structure evolution model with respect to strata behaviors. Then the behaviors of strata overlying the extra-thick coal seams were studied with the combined method of theoretical analysis, physical simulation, and field measurement. The results show that the key strata, which are usually thick-hard strata, play an important role in overlying movement and may influence the mining-induced strata behaviors in the working face using top-coal caving method. The structural model of far-field key strata presents a “masonry beam” type structure when “horizontal O-X” breakage type happens. The rotational motion of the block imposed radial compressive stress on the surrounding rock mass of the roadway. This can induce excessive deformation of roadway near the goaf. Besides, this paper proposed a pre-control technology for the hard roof based on fracture holes and underground roof pre-splitting. It could effectively reduce stress concentration and release the accumulated energy of the strata, when mining underground coal resources with top-coal caving method.

  3. Analysis directory of Canadian commercial coals, Supplement No. 3. [Government sampling and analysis listed by mine and province

    Energy Technology Data Exchange (ETDEWEB)

    Tibbetts, T. E.; Montgomery, W. J.; Faurschou, D. K.

    1978-12-15

    Chemical and physical analyses of thermal and metallurgical coals currently produced by mines in Nova Scotia, New Brunswick, Saskatchewan, Alberta and British Columbia are reported. The evaluations are part of a continuing CANMET project to monitor Canadian commercial coals to assist marketing and resource assessment activities. The coals were sampled by personnel of the Energy Research Labs. Most of the sampling was done during 1976 and 1977. Generally, the samples represent production on a specific day of both mine run and prepared coals sampled independently by CANMET staff at operating mines, coal washeries and delivery points. Coals are identified by the operator and name of mine, seam coalfield, and location. Information is arranged by province and is intended to provide a ready indication of the quality of commercially available Canadian coals. As such, this document complements the coal industry statistics available in other federal and provincial reports.

  4. Coal-92

    International Nuclear Information System (INIS)

    Hillring, B.; Sparre, C.

    1992-11-01

    Swedish consumption of coal and coke during 1991 and trends in technology, environment and market aspects of coal use are reported. Steam coal use in the heating sector was unchanged from 1991, 1.2 Mtons. Reduced consumption in smaller district heating units (due to conversion to biofuels and gas) was compensated by increased use for power generation in cogeneration plants. Coal consumption in industry fell 0.10 Mton to 0.84 Mton due to lower production in one industry branch. Import of steam coal was 1.1 Mton (down 0.5 Mton from 1990) since new rules for strategic reserves allowed a reduction of stocks. During the last five years stocks have been reduced by 2 Mtons. Import of metallurgical coal was 1.6 Mton, unchanged from 1990. The report also gives statistics for the coal using plants in Sweden, on coal R and D, and on emission laws for coal firing. (9 tabs., 2 figs.)

  5. Fossil fuel energy resources of Ethiopia: Coal deposits

    Energy Technology Data Exchange (ETDEWEB)

    Wolela, Ahmed [Department of Petroleum Operations, Ministry of Mines and Energy, Kotebe Branch Office, P. O. Box-486, Addis Ababa (Ethiopia)

    2007-11-22

    The gravity of Ethiopian energy problem has initiated studies to explore various energy resources in Ethiopia, one among this is the exploration for coal resources. Studies confirmed the presence of coal deposits in the country. The coal-bearing sediments are distributed in the Inter-Trappean and Pre-Trap volcanic geological settings, and deposited in fluvio-lacustrine and paludal environments in grabens and half-grabens formed by a NNE-SSW and NNW-SSE fault systems. Most significant coal deposits are found in the Inter-Trappean geological setting. The coal and coal-bearing sediments reach a maximum thickness of 4 m and 300 m, respectively. The best coal deposits were hosted in sandstone-coal-shale and mudstone-coal-shale facies. The coal formations of Ethiopia are quite unique in that they are neither comparable to the coal measures of the Permo-Carboniferous Karroo Formation nor to the Late Devonian-Carboniferous of North America or Northwestern Europe. Proximate analysis and calorific value data indicated that the Ethiopian coals fall under lignite to high volatile bituminous coal, and genetically are classified under humic, sapropelic and mixed coal. Vitrinite reflectance studies confirmed 0.3-0.64% Ro values for the studied coals. Palynology studies confirmed that the Ethiopian coal-bearing sediments range in age from Eocene to Miocene. A total of about 297 Mt of coal reserve registered in the country. The coal reserve of the country can be considered as an important alternative source of energy. (author)

  6. A newer concept of setting up coal refineries in coal utilising industries through environmentally sound clean coal technology of organosuper refining of coals

    International Nuclear Information System (INIS)

    Sharma, D.K.

    1994-01-01

    In order to reduce the losses of premium organic matter of coal and its immense potential energy which is present in the form of stronger interatomic and intramolecular bonding energies, a newer and convenient technique of recovering the premium organic matter from low grade coals by organosuper-refining technique which operates under ambient pressure conditions has been developed. The residual coal obtained can be used as environmentally clean fuel or as a feedstock for the industries based on carbonization and gasification. It is suggested that a beginning be made by setting up coal refineries in coal utilizing industries on the basis of the presently developed new technology of organosuper-refining of coals to recover premium grade organic chemical feed stocks from coals before utilizing coal by techniques such as bubble bed or recirculatory fluidized bed or pulverized coal combustion in thermal power stations, carbonization in steel plants or other carbonization units, gasification in fertilizer industries or in integrated coal gasification combined cycle power generation. Thus, coal refineries may produce value added aromatic chemical feed stocks, formed coke or coke manufacturing; and carbon fillers for polymers. (author). 100 refs., 1 fig

  7. Analysis of radioactivity in coal, cinders, fly ash and discharges from the stack

    International Nuclear Information System (INIS)

    Meide, A.

    1985-01-01

    Gamma measurements of coal samples originating from several supplying countries proved that the South African coal has about double U-238 and Ra-226 concentration and about treble Th-232 concentration compared to coal from the other countries. Gamma measurements of coal, cinders and fly ash samples from five coal-fueled plants indicate somewhat higher concentrations of Th-232 in cinders and U-238 and Th-232 in fly ashes than those described in literature. The ratio Po-210/Pb-210 was about 2 for fly ash particulates <35μ. A positive correlation between ash percentage and radioactivity of coal might be assumed. (EG)

  8. Potential to cofire high-sulfur coal and MSW/RDF in Illinois utility boilers: A survey and analysis

    International Nuclear Information System (INIS)

    South, D.W.

    1993-01-01

    The disposal of refuse is of ever-increasing concern for municipalities and other organizations and agencies throughout the United States. Disposal in landfills is becoming more costly, and new landfills are more difficult to site because of stricter environmental regulations. Mass burning incinerators for municipal solid wastes (MSW) have also met with increased public resistance due to excessive emissions. Nevertheless, increased awareness of the need for alternative disposal techniques has led to a new interest in cofiring MSW with coal. In addition to solid waste concerns, the requirements to reduce SO 2 and NO x emissions from coal-fired utility boilers in the Clean Air Act Amendments of 1990, present an opportunity to cofire MSW/RDF with coal as an emission control measure. These issues were the impetus for a 1992 study (conducted by ANL for the Illinois Clean Coal Institute) to examine the potential to cofire coal with MSW/RDF in Illinois utility boilers. This paper will provide a synopsis of the ANL/ICCI report. It will summarize (1) the combustibility and emission characteristics of high-sulfur coal and MSW/RDF; (2) the facilities firing RDF and/or producing/selling RDF, together with their combustion and emissions experience; (3) the applicable emissions regulations in Illinois; and (4) the analysis of candidate utility boilers in Illinois capable of cofiring, together with the effect on coal consumption and SO 2 and NO x emissions that would result from 20% cofiring with RDF/MSW

  9. Steam versus coking coal and the acid rain program

    International Nuclear Information System (INIS)

    Lange, Ian

    2010-01-01

    The Clean Air Act of 1990 initiated a tradable permit program for emissions of sulfur dioxide from coal-fired power plants. One effect of this policy was a large increase in the consumption of low-sulfur bituminous coal by coal-fired power plants. However, low-sulfur bituminous coal is also the ideal coking coal for steel production. The analysis presented here will attempt to determine how the market responded to the increased consumption of low-sulfur bituminous coal by the electricity generation sector. Was there a decrease in the quality and/or quantity of coking coal consumption or did extraction increase? Most evidence suggests that the market for coking coal was unaffected, even as the extraction and consumption of low-sulfur bituminous coal for electricity generation increased substantially.

  10. Comprehensive evaluation on low-carbon development of coal enterprise groups.

    Science.gov (United States)

    Wang, Bang-Jun; Wu, Yan-Fang; Zhao, Jia-Lu

    2017-12-19

    Scientifically evaluating the level of low-carbon development in terms of theoretical and practical significance is extremely important to coal enterprise groups for implementing national energy-related systems. This assessment can assist in building institutional mechanisms that are conducive for the economic development of coal business cycle and energy conservation as well as promoting the healthy development of coal enterprises to realize coal scientific development and resource utilization. First, by adopting systematic analysis method, this study builds low-carbon development evaluation index system for coal enterprise groups. Second, to determine the weight serving as guideline and criteria of the index, analytic hierarchy process (AHP) is applied using integrated linear weighted sum method to evaluate the level of low-carbon development of coal enterprise groups. Evaluation is also performed by coal enterprise groups, and the process comprises field analysis and evaluation. Finally, industrial policies are proposed regarding the development of low-carbon coal conglomerate strategies and measures. This study aims mainly to guide the low-carbon development of coal enterprise groups, solve the problem of coal mining and the destruction of ecological environment, support the conservation of raw materials and various resources, and achieve the sustainable development of the coal industry.

  11. Area 3, SRC-II coal slurry preheater studies report for the technical data analysis program

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    This report reviews the raw data gathered from the Preheater B test runs at Ft. Lewis, and also the Preheater B results presented in the Solvent Refined Coal (SRC) Process Final Report, Volumes 1 and 2 of Slurry Preheater Design, SRC-II Process and the Ft. Lewis Slurry Preheater Data Analysis, 1 1/2 Inch Coil by Gulf Science and Technology Corporation of Pittsburgh, Pennsylvania. attempts were made to correlate several variables not previously considered with slurry viscosity and thermal conductivity. Only partial success was realized. However, in the process of attempting to correlate these variables an understanding of why some variables could not be correlated was achieved. An attempt was also made, using multiple linear regression, to correlate coal slurry viscosity and thermal conductivity with several independent variables among which were temperature, coal concentration, total solids, coal type, slurry residence time, shear rate, and unit size. The final correlations included some, but not all, of these independent variables. This report is not a stand alone document and should be considered a supplement to work already done. It should be read in conjunction with the reports referenced above.

  12. Economic analysis of coal price-electricity price adjustment in China based on the CGE model

    International Nuclear Information System (INIS)

    He, Y.X.; Zhang, S.L.; Yang, L.Y.; Wang, Y.J.; Wang, J.

    2010-01-01

    In recent years, coal price has risen rapidly, which has also brought a sharp increase in the expenditures of thermal power plants in China. Meantime, the power production price and power retail price have not been adjusted accordingly and a large number of thermal power plants have incurred losses. The power industry is a key industry in the national economy. As such, a thorough analysis and evaluation of the economic influence of the electricity price should be conducted before electricity price adjustment is carried out. This paper analyses the influence of coal price adjustment on the electric power industry, and the influence of electricity price adjustment on the macroeconomy in China based on computable general equilibrium models. The conclusions are as follows: (1) a coal price increase causes a rise in the cost of the electric power industry, but the influence gradually descends with increase in coal price; and (2) an electricity price increase has an adverse influence on the total output, Gross Domestic Product (GDP), and the Consumer Price Index (CPI). Electricity price increases have a contractionary effect on economic development and, consequently, electricity price policy making must consequently consider all factors to minimize their adverse influence.

  13. The European Coal Market: Will Coal Survive the EC's Energy and Climate Policies?

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2012-01-01

    conventional reserves of fossil fuels. Coal contributes to the economic activity and employment in the region. The EU mining industry employs 260,000 workers (direct jobs) and the turnover of the whole coal industry is estimated at Euros 25 billion a year. Coal prices, despite their rising trend in the past few years, are much lower than competing fuels: half the price of natural gas imported in Europe. As coal ensures safe, reliable, affordable and sustainable energy for all, it will be very much needed in the years to come. However, coal is proscribed in a CO 2 -free environment. Its combustion in thermal power plants - its main outlet in Europe - emits twice as much CO 2 as gas plants. Although a lot of R and D work is done to capture CO 2 emissions from coal plants and store it, no zero emission commercial plants have yet started operation. Several CCS projects have been delayed, or even cancelled, in the past few years due to regulatory uncertainties, a lack of funding and public opposition to CO 2 storage. The current European economic crisis and the large sovereign debts have also reduced public funding in CCS projects. The future of coal in Europe is therefore very uncertain. Will CCS development allows it to remain a fuel of choice, given large available reserves at low prices, compared with competing energy sources? Or will coal disappear from the European energy mix? How fast will the decline in European coal production be? This report looks at these issues and highlights some facts, trends and regulation that may affect the supply and demand of coal in the future. The analysis concentrates on steam coal used to generate electricity, since the power generation sector is by far the largest user of coal in Europe. The first part of this report looks at the European coal market region-wide. Chapter 1 describes the EU coal market in the global context. Chapter 2 analyses the significance of the European coal mining industry and its future after the end of state aid

  14. Variability of Mercury Content in Coal Matter From Coal Seams of The Upper Silesia Coal Basin

    Science.gov (United States)

    Wierzchowski, Krzysztof; Chećko, Jarosław; Pyka, Ireneusz

    2017-12-01

    The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called "documentary seam samples", which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.

  15. FY 1989 report on the Coal Kind Committee; 1989 nendo tanshu iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    The paper reported the FY 1989 activities of the Coal Kind Committee. The Coal Kind Committee in this fiscal year was held on July 24, 1989 (1st) and on February 21, 1990 (second), and report/discussion were made about the performance test on liquefaction of Chinese coal, survey of coal kind selection and international standards of coal. As to the performance test on liquefaction of Chinese coal, comparison was made between the results of the re-analysis/detailed analysis of the coal-derived liquids of Liaoning Province and Inner Mongolia in China which were tested at BSU in Beijing in this fiscal year and the results of the liquefaction test of the coal of Gansu Province in China which was made at BSU in Japan and BSU in China, and the discussion was actively made. Relating to the coal kind survey, report was detailedly made on the automatic analysis of maceral. The analysis of coal maceral requires time and skills, and to make it promptly and universally, the points to be cleared up, handling of two kinds of vitrinite, etc. were made clear. About the international standards of coal, the paper reported on the progress of the international conference held in Sidney in November 1988. (NEDO)

  16. Coal blending preparation for non-carbonized coal briquettes

    Science.gov (United States)

    Widodo; Fatimah, D.; Estiaty, L. M.

    2018-02-01

    Referring to the national energy policy targets for the years 2025, the government has launched the use of coal briquettes as an alternative energy replacement for kerosene and firewood. Non-carbonized briquettes in the form of coal briquettes as well as bio-coal briquettes are used in many small-medium industries and households, and are rarely used by large industries. The standard quality of coal briquettes used as raw material for non-carbonized briquettes is a minimum calorific value of 4,400 kcal/kg (adb); total sulfur at a maximum of 1% (adb), and water content at plants), the environment of deposition, and the geological conditions of the surrounding area, so that the coal deposits in each region will be different as well as the amount and also the quality. Therefore, the quantity and the quality of coal in each area are different to be eligible in the making of briquettes to do blending. In addition to the coal blending, it is also necessary to select the right materials in the making of coal briquettes and bio-coal briquettes. The formulation of the right mixture of material in the making of briquettes, can be produced of good quality and environmental friendly.

  17. Power generation from lignite coal in Bulgaria - problems and solutions

    International Nuclear Information System (INIS)

    Batov, S.; Gadjanov, P.; Panchev, T.

    1997-01-01

    The bulk of lignite coal produced in Bulgaria is used as fuel for the thermal power plants (TPP) built in Maritsa East coal field. A small part of it goes to production of briquettes and to fuel the auxiliary power plants of industrial enterprises. The total installed capacity of the power plants in the region of Maritsa East is 2490 MW, and the electric power generated by them is about 30% of the total power generated in the country. It should be noted that these power plants were subjected to a number of rehabilitations aiming to improve their technical and economic parameters. Irrespective of that, however, solution has still to be sought to a number of problems related to utilisation of the low-grade lignite coal for power generation. On the whole, they can be divided in the following groups: Those related to lignite coal mining can be referred to the first group. Lignite coal is mined in comparatively complicated mining and geological conditions characterized mainly by earth creep and deformation. The second group of problems is related to coal quality control. It is a fact of major significance that the quality indices of coal keep changing all the time in uneven steps without any definite laws to govern it. That creates hard problems in the process of coal transportation, crushing and combustion. The next group of problems concerns operation and upgrading of the power generation equipment. That applies especially to the existing boilers which bum low-grade fuel in order to improve their operation in terms of higher thermal efficiency, controllability, reliability, improved environmental indices, etc. An increasingly high importance is attached to environmental impact problems incident to lignite coal utilisation. Abatement of sulphur oxide emissions and dust pollution is a problem solution of which cannot wait. The possibilities for partial solution of the environmental problems through increasing the thermal efficiency of facilities at the thermal Power

  18. Detection of low caloric power of coal by pulse fast-thermal neutron analysis

    International Nuclear Information System (INIS)

    Gu De-shan; Sang Hai-feng; Qiao Shuang; Liu Yu-ren, Liu Lin-mao; Jing Shi-wei; Chinese Academy of Sciences, Changchun

    2004-01-01

    Analysis method and principle of pulse fast-thermal neutron analysis (PFTNA) are introduced. A system for the measurement of low caloric power of coal by PFTNA is also presented. The 14 MeV pulse neutron generator and BGO detector and 4096 MCA were applied in this system. A multiple linear regression method applied to the data solved the interferential problem of multiple elements. The error of low caloric power between chemical analysis and experiment was less than 0.4 MJ/kg. (author)

  19. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko

    2015-03-01

    (calcite and siderite directly contribute CO2 when they decompose during coal combustion. Variations in the maceral content can also influence CO2 emissions; high inertinite contents increase CO2 emissions. Sulphur in coal reduces EF(CO2. Fuel analysis is very important when estimating greenhouse gas emissions and emission factors. In this preliminary study, based on the results of the fuel analysis, CO2 emission factors for coals and peat from Livno, B&H have been calculated. EF(CO2 is defined as the amount of carbon dioxide emission per unit net calorific values of the fuel. Net calorific value (the lower heating value corresponds to the heat produced by combustion where total water in the combustion products exists as water vapour. The EF(CO2 obtained for sub-bituminous coal, lignite and peat were: 98.7, 109.5, and 147.9 t TJ−1, respectively, which correspond to the following net calorific values: 20.6, 11.5 and 3.6 MJ kg−1. The heating value is generally known to increase with the increase in carbon content (this parameter is connected with the degree of coalification, coal age. The other indispensable parameters are hydrogen, which has a positive effect on the net calorific value, and oxygen and water which impact the net calorific value negatively. The differences in net calorific values can be explained in part by the difference of total moisture content among the different fuel types. The CO2 emission factors calculated in this study were compared with those of IPCC. A significant difference was observed for peat (39.5 %, followed by lignite (8.2 % and sub-bituminous coal (4.3 %.

  20. Direct Quantitative Analysis of Arsenic in Coal Fly Ash

    Directory of Open Access Journals (Sweden)

    Sri Hartuti

    2012-01-01

    Full Text Available A rapid, simple method based on graphite furnace atomic absorption spectrometry is described for the direct determination of arsenic in coal fly ash. Solid samples were directly introduced into the atomizer without preliminary treatment. The direct analysis method was not always free of spectral matrix interference, but the stabilization of arsenic by adding palladium nitrate (chemical modifier and the optimization of the parameters in the furnace program (temperature, rate of temperature increase, hold time, and argon gas flow gave good results for the total arsenic determination. The optimal furnace program was determined by analyzing different concentrations of a reference material (NIST1633b, which showed the best linearity for calibration. The optimized parameters for the furnace programs for the ashing and atomization steps were as follows: temperatures of 500–1200 and 2150°C, heating rates of 100 and 500°C s−1, hold times of 90 and 7 s, and medium then maximum and medium argon gas flows, respectively. The calibration plots were linear with a correlation coefficient of 0.9699. This method was validated using arsenic-containing raw coal samples in accordance with the requirements of the mass balance calculation; the distribution rate of As in the fly ashes ranged from 101 to 119%.

  1. Geochemistry of coals, coal ashes and combustion wastes from coal-fired power stations

    International Nuclear Information System (INIS)

    Vassilev, S.V.; Vassileva, C.G.

    1997-01-01

    Contents, concentration trends, and modes of occurrence of 67 elements in coals, coal ashes, and combustion wastes at eleven Bulgarian thermoelectric power stations (TPS) were studied. A number of trace elements in coal and coal ash have concentrations greater than their respective worldwide average contents (Clarke values). Trace elements are concentrated mainly in the heavy accessory minerals and organic matter in coal. In decreasing order of significance, the trace elements in coal may occur as: element-organic compounds; impurities in the mineral matter; major components in the mineral matter; major and impurity components in the inorganic amorphous matter; and elements in the fluid constituent. A number of trace elements in the waste products, similar to coal ashes, exceed known Clarke contents. Trace elements are mainly enriched in non-magnetic, heavy and fine-grained fractions of fly ash. They are commonly present as impurities in the glass phases, and are included in the crystalline components. Their accessory crystalline phases, element-organic compounds, liquid and gas forms, are of subordinate importance. Some elements from the chalcophile, lithophile and siderophile groups may release into the atmosphere during coal burning. For others, the combustion process appears to be a powerful factor causing their relative enrichment in the fly ash and rarely in the bottom ash and slag. 65 refs., 1 fig., 11 tabs

  2. The causes and consequences of blown-up coal dust

    International Nuclear Information System (INIS)

    Vrins, E.L.M.; Van Zuylen, E.J.

    1991-11-01

    The goal of the Dutch National Research Program Coal (NOK), which started in 1983, is to eliminate technical, economic and ecological objections, connected with the large-scale use of coal. The Blown-up Coal Dust program, which is completed in 1991, aimed at problems that arise, due to the dispersion of coal dust in the vicinity of coal storage and transshipment areas. The accumulated knowledge is categorized according to the route the dust itself follows, starting with activities that cause the dust and continuing up to the effects, of which nuisance in the neighborhood is the most important. The successive chapters are: Activities, Emission, Concentration, Deposition, Pollution and Nuisance and other effects. Inventories of available knowledge, models and measuring equipment have been carried out for each part. The models describe the connection between the various stages of the progress of the dust, from cause to consequence. Newly developed measuring equipment was tested in practice. Various analysis techniques were used and evaluated, such as gravimetric, chemical and optical analysis. A specific coal dust analysis technique is not available. 15 figs., 23 tabs., 1 appendix, 263 refs

  3. Analysis of recovered solvents from coal liquefaction in a flowing-solvent reactor by SEC and UV-fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.Y.; Feng, J.; Xie, K.C.; Kandiyoti, R. [Taiyuan University of Technology, Taiyuan (China)

    2005-08-01

    Point of Ayr coal has been extracted using three solvents: tetralin, quinoline and 1-methyl-2-pyrrolidinone (NMP); at two temperatures: 350 {sup o}C and 450{sup o}C, corresponding approximately to before and after the onset of massive covalent bond scission by pyrolysis. These solvents differ in solvent power and the ability to donate hydrogen atoms to stabilize free radicals produced by pyrolysis of the coal. Analysis of the fresh solvents and recovered solvents from coal liquefaction was achieved by size exclusion chromatography and UV-fluorescence spectroscopy. In the blank run, it was testified that the filling material sand and the steel powder did not react with solvent with increasing reaction temperature. The role of hydrogen donation in the tetralin extracts was to increase the proportion of large molecules with increasing extraction temperature. Quinoline and NMP both have the powerful extracting capability to get more materials out of coal with increasing extraction temperature.

  4. Analysis of recovered solvents from coal liquefaction in a flowing-solvent reactor by SEC and UV-fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Wen-Ying Li; Jie Feng; Ke-Chang Xie; R. Kandiyoti [Taiyuan University of Technology, Taiyuan (China). Key Laboratory of Coal Science and Technology for Ministry of Education and Shanxi Province

    2005-08-01

    Point of Ayr coal has been extracted using three solvents: tetralin, quinoline and 1-methyl-2-pyrrolidinone (NMP); at two temperatures: 350{sup o}C and 450{sup o}C, corresponding approximately to before and after the onset of massive covalent bond scission by pyrolysis. These solvents differ in solvent power and the ability to donate hydrogen atoms to stabilize free radicals produced by pyrolysis of the coal. Analysis of the fresh solvents and recovered solvents from coal liquefaction was achieved by size exclusion chromatography and UV-fluorescence spectroscopy. In the blank run, it was testified that the filling material sand and the steel powder did not react with solvent with increasing reaction temperature. The role of hydrogen donation in the tetralin extracts was to increase the proportion of large molecules with increasing extraction temperature. Quinoline and NMP both have the powerful extracting capability to get more materials out of coal with increasing extraction temperature.

  5. New coal

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    Specially dedicated to coal, this edition comprises a series of articles of general interest dealing with the position of the French coalmining industry (interview with M.P. Gardent), the coal market in France, the work of CERCHAR, etc. New techniques, in-situ gasification of deep coal, gasification of coal by nuclear methods, the conversion of coal into petrol, the Emile Huchet power plant of Houilleres du Bassin de Lorraine, etc., are dealt with.

  6. Variations in the stable isotope ratios of specific aromatic and aliphatic hydrocarbons from coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    McRae, C.; Snape, C.E.; Fallick, A.E. [University of Strathclyde, Glasgow (United Kingdom). Dept. of Pure and Applied Chemistry

    1998-07-01

    To establish the scope for applying gas chromatography-isotope ratio mass spectrometry ({sup {delta}-13}C GC-IRMS) to molecular recognition problems in coal utilisation, {sup 13}C/{sup 12}C isotope ratios were determined for n-alkanes and polycyclic aromatic hydrocarbons (PAHs) as a function of coal rank and process conditions. Six coals ranging from a lignite to a low volatile bituminous coal were subjected to chloroform extraction, fixed-bed pyrolysis under hydrogen pressure (hydropyrolysis) and fluidised-bed (flash) pyrolysis. No significant variations in the stable isotope ratios of n-alkanes were evident as a function of either rank or conversion regime. In contrast, the isotope ratios of PAHs show large variations with those for hydropyrolysis (-23 to -25 parts per thousand) being similar to the bulk values of the initial coals and being isotopically heavier (less negative) than their fluidised-bed pyrolysis counterparts by 2-3 parts per thousand. However, the PAHs from fluidised-bed pyrolysis, which resemble closely those obtained from high temperature coal carbonization, are still heavier (by 2-3 parts per thousand) than those from diesel particulates and coal gasification and combustion residues. This provides a firm basis for the source apportionment of airborne PAHs in the proximity of coking plants, particularly with no major variations in the PAH isotope ratios being found as a function of rank.

  7. Industrial use of coal and clean coal technology

    Energy Technology Data Exchange (ETDEWEB)

    Leibson, I; Plante, J J.M.

    1990-06-01

    This report builds upon two reports published in 1988, namely {ital The use of Coal in the Industrial, Commercial, Residential and Transportation Sectors} and {ital Innovative Clean Coal Technology Deployment}, and provides more specific recommendations pertaining to coal use in the US industrial sector. The first chapter addresses industrial boilers which are common to many industrial users. The subsequent nine chapters cover the following: coke, iron and steel industries; aluminium and other metals; glass, brick, ceramic, and gypsum industries; cement and lime industries; pulp and paper industry; food and kindred products; durable goods industry; textile industry; refining and chemical industry. In addition, appendices supporting the contents of the study are provided. Each chapter covers the following topics as applicable: energy overview of the industry sector being discussed; basic processes; foreign experience; impediments to coal use; incentives that could make coal a fuel of choice; current and projected use of clean coal technology; identification of coal technology needs; conclusions; recommendations.

  8. Spectroscopic analysis of coal plasma emission produced by laser ablation

    OpenAIRE

    Vera-Londoño, Liliana Patricia; Pérez-Taborda, Jaime Andrés; Riascos-Landázuri, Henry

    2016-01-01

    An analysis of plasma produced by laser ablation using 1,064 nm of laser radiation from a Q-switched Nd:YAG on coal mineral samples under air ambient, was performed. The emission of molecular band systems such as C2 Swan System , the First Negative System N2 (Band head at 501.53 nm) and different emission lines were investigated using the optical emission spectroscopy technique. The C2 molecular spectra (Swan band) were analyzed to determine vibrational temperature (0.62 eV). The density and ...

  9. Preliminary experimental studies of waste coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Su, S.; Jin, Y.G.; Yu, X.X.; Worrall, R. [CSIRO, Brisbane, QLD (Australia). Advanced Coal Technology

    2013-07-01

    Coal mining is one of Australia's most important industries. It was estimated that coal washery rejects from black coal mining was approximately 1.82 billion tonnes from 1960 to 2009 in Australia, and is projected to produce another one billion tonnes by 2018 at the current production rate. To ensure sustainability of the Australian coal industry, we have explored a new potential pathway to create value from the coal waste through production of liquid fuels or power generation using produced syngas from waste coal gasification. Consequently, environmental and community impacts of the solid waste could be minimized. However, the development of an effective waste coal gasification process is a key to the new pathway. An Australian mine site with a large reserve of waste coal was selected for the study, where raw waste coal samples including coarse rejects and tailings were collected. After investigating the initial raw waste coal samples, float/sink testing was conducted to achieve a desired ash target for laboratory-scale steam gasification testing and performance evaluation. The preliminary gasification test results show that carbon conversions of waste coal gradually increase as the reaction proceeds, which indicates that waste coal can be gasified by a steam gasification process. However, the carbon conversion rates are relatively low, only reaching to 20-30%. Furthermore, the reactivity of waste coal samples with a variety of ash contents under N{sub 2}/air atmosphere have been studied by a home-made thermogravimetric analysis (TGA) apparatus that can make the sample reach the reaction temperature instantly.

  10. Superconductors, analysis and applications, with special reference to the utilisation of bulk (Re)BCO materials

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T.A., E-mail: tac1000@cam.ac.u [University of Cambridge, Department of Engineering, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2010-11-01

    The Electrical Power and Energy Conversion (EPEC) superconductivity group at Cambridge University has been working on the application of superconductivity to large scale devices. This work is taking place over a range of areas which cover FCLs, motors and generators, SMES, accelerator magnets and MRI. The research is underpinned by advanced modelling techniques using both pure Critical State models and E-J models to analyse the behaviour of the superconductors. As part of the device design we are concentrating on the analysis of AC losses in complicated geometries such as are found in motor windings and the magnetisation of bulk superconductors to enable their full potential to be realised. We are interested in the full range of high-temperature superconductors and have measured and predicted the performance of YBCO, MgB{sub 2} and BSCCO at a range of temperatures and in wire, tape and bulk forms. This paper concentrates on recent work which includes: modelling of coils using formulations based on H and A. A critical state model for the analysis of coils in SMES; crossed field effects in bulk superconductors; a magnetic model together with experimental results which explain and describe the method of flux pumping whereby a bulk superconductor can be magnetised to a high flux density using a repeatedly applied field of low flux density and finally a new configuration for MRI magnets

  11. Analysis of participation in the federally mandated coal workers' health-surveillance program

    International Nuclear Information System (INIS)

    Nickolaus, M.E.

    1987-01-01

    The Federal Coal Mine Health and Safety Act of 1969 required that periodic chest radiographs be offered to underground coal miners to protect the miners from the development of Coal Workers' Pneumoconiosis (CWP) and progression of the disease to progressive massive fibrosis (PMF). These examinations are administered by the National Institute for Occupational Safety and Health (NIOSH) through the Coal Workers' Health Surveillance Program (CWHSP). This study developed rates of participation for each of 558 West Virginia underground coal mines who submitted or had NIOSH assigned plans for making chest radiographs available during the third round, July 1978 through December 1980. These rates were analyzed in relation to desired levels of participation and to reinforcing, predisposing and enabling factors presumed to affect rates of participation in disease prevention and surveillance programs

  12. Nuclear assay of coal. Volume 4. Moisture determination in coal: survey of electromagnetic techniques. Final report

    International Nuclear Information System (INIS)

    Bevan, R.; Luckie, P.; Gozani, T.; Brown, D.R.; Bozorgmanesh, H.; Elias, E.

    1979-01-01

    This survey consists of two basic parts. The first consists of a survey of various non-nuclear moisture determination techniques. Three techniques are identified as promising for eventual on-line application with coal; these are the capacitance, microwave attenuation, and nuclear magnetic resonance (NMR) techniques. The second part is devoted to an in-depth analysis of these three techniques and the current extent to which they have been applied to coal. With a given coal type, accuracies of +- 1% absolute in moisture content are achievable with all three techniques. The accuracy of the two electromagnetic techniques has been demonstrated in the laboratory and on-line in coal burning plants, whereas only small samples have been analyzed with NMR. The current shortcoming of the simple electromagnetic techniques is the sensitivity of calibrations to physical parameters and coal type. NMR is currently limited by small sample sizes and non-rugged design. These findings are summarized and a list of manufacturers of moisture analyzers is given in the Appendix

  13. Floating cultivation of marine cyanobacteria using coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M.; Yoshida, E.; Takeyama, H.; Matsunaga, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan). Dept. of Biotetechnology

    2000-07-01

    The aim was to develop improved methodologies for bulk culturing of biotechnologically useful marine cyanobacteria in the open ocean. The viability of using coal fly ash (CFA) blocks as the support medium in a novel floating culture system for marine microalgae was investigated. The marine cyanobacterium Synechococcus sp. NKBC 040607 was found to adhere to floating CFA blocks in liquid culture medium. The marine cyanobacterium Synechococcus sp. NKBG 042902 weakly adhered to floating CFA blocks in BG-11 medium. Increasing the concentration of calcium ion in the culture medium enhanced adherence to CFA blocks.

  14. Analysis on Conflicts of China’s Coal Tax Reform

    OpenAIRE

    Wang, Dong

    2012-01-01

    This paper investigates the conflicts which are resulted from coal tax reform in China from economic and public policy perspectives. An analytical framework involving actors, values, interests and institution has been applied. China’s central government eagers to achieve fiscal revenue increase, environmental protection and energy conversation goals by a good governance of coal system. As a traditional and feasible policy instrument, taxation is regarded for dealing with energy issues in poli...

  15. Thermal analysis evaluation of the reactivity of coal mixtures for injection in the blast furnace

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Ilha Gomes

    2006-03-01

    Full Text Available Pulverized Coal Injection (PCI is an important standard technology replacing coke partially by pulverized coal into the blast furnace that allows a significant reduction of hot metal costs and environmental impact, contributing to a decrease of coke requirements for ironmaking. Coals typically used in this process in Brazil are, at current time, exclusively imported from many countries, although economic important coal-measures occur in the southern part of the country. The Brazilian coals have a low rank, higher contents of inert components, proportioning nocoking properties and an expected high reactivity. Due to these caractheristics, these coals could be used for injection in the blast furnaces in order to decrease the dependency on high cost imported coals. The efficiency in the combustion and the coal reactivity are considered important parameters in the blast furnace, since a larger amount of char (unburned coal causes severe problems to the furnace operation. The aim of the present work is to compare the reactivity of a south Brazilian coal, obtained from Faxinal mine, with two imported coals and the blends of the Brazilian coal with the imported ones. The reactivity of these coals and their blends were evaluated in a thermogravimetric analyzer. In the experiments, various mass ratios of Faxinal coal and the imported coals were used to compose the blends. The gasification reaction with pure CO2 was conducted under isothermal conditions at 1050 °C and atmospheric pressure. The experimental results show the greater reactivity of the Faxinal coal. The additive behavior was confirmed. The blends with a composition of up to 50% Faxinal coal have parameters according to the usual limits used for PCI.

  16. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    Science.gov (United States)

    Post, David

    2017-04-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States, in Australia extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. In Australia, an Independent Expert Scientific Committee (IESC) has been established to provide scientific advice to federal and state government regulators on the impact that coal seam gas and large coal mining developments may have on water resources. This advice is provided to enable decisions to be informed by the best available science about the potential water-related impacts associated with these developments. To support this advice, the Australian Government Department of the Environment has implemented a programme of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment is defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are currently being carried out across large portions of eastern Australia underlain by coal reserves. Further details of the programme and results to date can be found at http://www.bioregionalassessments.gov.au. The bioregional assessment programme has modelled the impacts of coal seam gas development on surface and groundwater resources in three regions of eastern Australia, namely the Clarence-Moreton, Gloucester, and Namoi regions. This presentation will discuss the

  17. Mineralogical and geochemical characterization of the Jurassic coal from Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Baioumy, H.M. [Central Metallurgical Research and Development Institute, Cairo (Egypt)

    2009-06-15

    The Jurassic coal deposit in the Maghara area, Sinai, Egypt contains at least 11 coal seams of lenticular shape. The thickness of the main coal seams ranges from 130 cm to 2 m and are underlain and overlain by thin black shale beds. Mineralogical analysis indicated that this coal is characterized by low mineral matter with traces of quartz in some samples. However, coal ash is made up of quartz with traces of calcite, anhydrite, and hematite. Analysis of coal rank parameters indicated that the Maghara coal can be classified as medium volatile bituminous coal. The high sulfur contents and the relatively high proportion of pyritic sulfur suggest a possible marine transgression after the deposition of precursor peat. This interpretation is supported by the relatively high B contents. The relatively high Ge in the Maghara coal could be attributed to an infiltration of Ge enriched water from the surrounding siliceous sediments probably during diagenesis. The high Au contents were contributed to an Au-rich provenance of the ash contents of this coal. Rare earth elements geochemistry indicated low concentrations of these elements with slight enrichment of light rare earth elements (LREEs), slight negative Eu anomaly, and relatively flat heavy rare earth elements (HREEs) patterns. The low contents of trace and rare earth elements, particularly those with environmental relevance, compared to the usual concentration ranges in worldwide coal gives an advantage for this coal.

  18. The world behind electricity from coal. The dubious origin of coal for Dutch coal-fired power plants

    International Nuclear Information System (INIS)

    2008-01-01

    Five energy companies in the Netherlands want to build additional coal-fired power plants: Essent and Nuon, the German company RWE and E.ON and the Belgian company Electrabel. Coal-fired power plants emit 70 percent more CO2 than gas-fired power plants. Especially because of the threat to the climate Greenpeace believes that no more coal-fired power plants should be built. In this publication Greenpeace explores the pollution, the working conditions and human rights with regard to the exploitation of coal. That has been elaborated for the three countries from which Dutch energy companies import coal: South Africa, Colombia and Indonesia. In addition to information about the origin of coal also insight is given into the coal market (stocks and use), the enormous coal transport and the world trade [nl

  19. Card index of coal user-payers in the system of accounting and analysis of coal marketing

    Energy Technology Data Exchange (ETDEWEB)

    Czapka, D

    1980-01-01

    A card index of coal users-payers was formed on the basis of an existing card file of payers which functions in development of an earlier subsystem of financial accounting of coal users by means of a corresponding reorganization of the available set of data and supplementing it with new data on users. The card index performs a monitor and address function. Checked and refined data are input in subsequent technological cycles of data conversion. The structure of the card file, its functions, realization conditions with output of necessary following results are examined.

  20. Determination of moisture in coal, in the case of discontinuous transport, using condensers

    Energy Technology Data Exchange (ETDEWEB)

    Prieto-Fernandez, Ismael; Luengo-Garcia, Juan-Carlos; Alonso, Manuela [Area Maquinas y Motores Termicos, Universidad de Oviedo, Campus Universitario, 33203 , Asturias Gijon (Spain)

    2002-02-20

    The need for a rapid method of determining the technological characteristics of coal has been increasing in the last decades. The coal industry demands methods of coal analysis on a rapid and reasonably accurate basis. In this report, a non-conventional system for moisture analysis of thermal coal, based on capacitance techniques, is proposed. A device for non-continuous analysis based on this technique is designed and developed. Such device simulates a cylindrical condenser, in which coal acts as the dielectric material. The device is used to measure moisture content in coals. The results from the statistical analyses and conclusions are presented. Also, on-site potential use of capacitance techniques is shown.

  1. The driving factors behind coal demand in China from 1997 to 2012: An empirical study of input-output structural decomposition analysis

    International Nuclear Information System (INIS)

    Wu, Ya; Zhang, Wanying

    2016-01-01

    With the rapid development of economy, especially the constant progress in industrialisation and urbanisation, China's energy consumption has increased annually. Coal consumption, which accounts for about 70% of total energy consumption, is of particular concern. Hence, it is crucial to study the driving factors behind coal demand in China. This work uses an input-output structural decomposition analysis (I-O SDA) model to decompose the increments of coal demand in China from 1997 to 2012 into the sum of the weighted average for eight driving factors from three aspects, including: domestic demand, foreign trade and industrial upgrading. Results show that: during the research period, the demand for coal increases by 153.3%, which is increased by 185.4% and 76.4% respectively due to the driving forces of domestic demand and foreign trade; in addition, industrial upgrading can effectively restrain the growth in coal demand with a contribution rate of −108.6%. On this basis, we mainly studied the driving factors of coal demand in six high energy-consuming industries, namely the electrical power, energy processing, metals, mining, building materials and chemical industries. Finally, we proposed targeted policy suggestions for the realisation of energy conservation and emissions reduction in China. - Highlights: •The driving factors behind coal demand in China from 1997 to 2012 are studied. •An input-output structural decomposition analysis is developed. •A fresh perspective of domestic demand, foreign trade, and industrial upgrading is employed. •The influences of these affecting factors on China's coal demand from six high energy-consuming industries are investigated. •Targeted policy suggestions for energy conservation and emissions reduction are suggested.

  2. Geomechanical Analysis of Underground Coal Gasification Reactor Cool Down for Subsequent CO2 Storage

    Science.gov (United States)

    Sarhosis, Vasilis; Yang, Dongmin; Kempka, Thomas; Sheng, Yong

    2013-04-01

    Underground coal gasification (UCG) is an efficient method for the conversion of conventionally unmineable coal resources into energy and feedstock. If the UCG process is combined with the subsequent storage of process CO2 in the former UCG reactors, a near-zero carbon emission energy source can be realised. This study aims to present the development of a computational model to simulate the cooling process of UCG reactors in abandonment to decrease the initial high temperature of more than 400 °C to a level where extensive CO2 volume expansion due to temperature changes can be significantly reduced during the time of CO2 injection. Furthermore, we predict the cool down temperature conditions with and without water flushing. A state of the art coupled thermal-mechanical model was developed using the finite element software ABAQUS to predict the cavity growth and the resulting surface subsidence. In addition, the multi-physics computational software COMSOL was employed to simulate the cavity cool down process which is of uttermost relevance for CO2 storage in the former UCG reactors. For that purpose, we simulated fluid flow, thermal conduction as well as thermal convection processes between fluid (water and CO2) and solid represented by coal and surrounding rocks. Material properties for rocks and coal were obtained from extant literature sources and geomechanical testings which were carried out on samples derived from a prospective demonstration site in Bulgaria. The analysis of results showed that the numerical models developed allowed for the determination of the UCG reactor growth, roof spalling, surface subsidence and heat propagation during the UCG process and the subsequent CO2 storage. It is anticipated that the results of this study can support optimisation of the preparation procedure for CO2 storage in former UCG reactors. The proposed scheme was discussed so far, but not validated by a coupled numerical analysis and if proved to be applicable it could

  3. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Akihisa Inoue

    2011-04-01

    Full Text Available This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs. In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni and Cu–Zr–Ag–Al–(Nb bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance.

  4. Interaction of organic solvent with a subbituminous coal below pyrolysis temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, D.; Grens, E.A.

    1978-06-01

    The interactions of a subbituminous coal with certain binary organic solvent mixtures have been studied at 250/sup 0/C. Mixtures of pyridine, quinoline, piperidine, tetrahydroquinoline, and ethylenediamine with either toluene or tetralin were contacted with coal in a successive batch, stirred reactor, the extractions being carried to near completion. Two distinct behaviors of extraction yield as a function of composition have been identified. In the majority of the solvent mixtures the extraction yield increases linearly with increasing concentration of the more active solvent. When the active solvent is ethylenediamine, however, the extraction yield increases rapidly when small concentrations of ethylenediamine are used but then levels out close to its maximum value in a 50 to 50 mix. This behavior is an indication that, except in the case of ethylenediamine, the activity of solvent mixtures is a function of bulk solution properties.

  5. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  6. Natural gas storage with activated carbon from a bituminous coal

    Science.gov (United States)

    Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  7. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  8. Thermogravimetric analysis of multi-stage hydropyrolysis of different coals

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Wang, N.; Li, B [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion

    2001-09-01

    Based on the characteristic of hydropyrolysis (HyPy), a multi-stage MHyPy of different coals was investigated using thermogravimetry. The results show that keeping the near peak temperature for some time in HyPy process can obviously increase the conversion rate, which is believed due to the full match between formation rate of free radicals and supply of hydrogen. The fast heating in MHyPy process results in the same conversion rate as that of the slow heating in HyPy process, which leads to the less reaction time and high yield of oil. The effect of MHyPy depends on the coal structure itself and it is notable for the coal with high H/C ratio. This suggests that the external hydrogen promotes the reaction between intrinsic hydrogen and free radicals. The MHyPy improves the removal of sulfur and nitrogen. 5 refs., 7 figs., 2 tabs.

  9. Ge distribution in the Wulantuga high-germanium coal deposit in the Shengli coalfield, Inner Mongolia, northeastern China

    Energy Technology Data Exchange (ETDEWEB)

    Du, Gang [Key Laboratory of Marginal Sea Geology, Chinese Academy of Sciences (China)]|[Coal Geology Bureau of Inner Mongolia, Hohhot, 010051 (China); Zhuang, Xinguo [Institute of Sedimentary Basin and Mineral, Faculty of Earth Resources, China University of Geosciences, Hubei, 430074 (China)]|[State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Hubei, 430074 (China); Querol, Xavier; Izquierdo, Maria; Alastuey, Andres; Moreno, Teresa; Font, Oriol [Institute of Earth Science ' Jaume Almera' , CSIC, C/ LLuis Sole Sabaris s/n, 08028 Barcelona (Spain)

    2009-03-01

    The geological and geochemical controls of the Ge distribution in the Cretaceous Wulantuga high-Germanium coal deposit in the Shengli coal field, Inner Mongolia are investigated. This paper focuses mainly on the spatial distribution of the Ge contents in coal. The high-Ge coals mainly occur in three splits of the 6 coal in the southwestern part of the Shengli coal field. Mean germanium contents in the coal range from 32 to 820 {mu}g/g, with a mean value of 137 {mu}g/g, on a bulk coal basis (mean of 939 coal samples from 75 boreholes in the 6 coal seam) in an area of 2.2 km{sup 2}. The highest Ge content occurs SW of 6 coal seam, close to the margins of the coal basin, decreasing with a fan-shaped trend towards NW, the direction of the coal basin. There is an negative correlation between the mean Ge content and the thickness of the coal seam. Different distribution patterns of Ge content were found in vertical profiles. High Ge concentrations may occur in the middle parts of coal seams, at the bottom and/or the top of thick coal seams and inconspicuous variation. A major organic affinity was determined for Ge, with a special enriched in the banded bright and semibright coal. The high-Ge coals and the coalified wood in the sandstone overlaying the 6-1 coal highly enriched in Ge, As, Sb, W, Cs, Tl, Be, and Hg. The Late Jurassic silicified volcanic rocks in the NW of the Ge coal deposit relatively high enriched in Ge, Ga, Sb, As, Cs, Be, Ge and Hg. The correlation coefficients among the elements enriched showed marked variations at close sites in this deposit, suggesting a possible diagenetic origin of the geochemical anomaly. The main Ge anomaly was attributed to early Cretaceous hydrothermal fluids circulating through the fault systems and porous volcanic rocs, probably from the subjacent granitoid rocks. The fault systems, the porous coarse clastic rocks overlying coal seam and the lithotype of coal played an important role in the transport and trapping of Ge. A

  10. Analysis of Geodynamical Conditions of Region of Burning Coal Dumps Location

    Science.gov (United States)

    Batugin, Andrian; Musina, Valeria; Golovko, Irina

    2017-12-01

    Spontaneous combustion of coal dumps and their impact on the environment of mining regions remain important environmental problem, in spite of the measures that are being taken. The paper presents the hypothesis, which states that the location of coal dumps at the boundaries of geodynamically active crust blocks promotes the appearance of conditions for their combustion. At present geodynamically active crust faults that affect the operating conditions of engineering facilities are observed not only in the areas of tectonic activity, but also on platforms. According to the concept of geodynamical zoning, geodynamically dangerous zones for engineering structures can be not only large, well-developed crust faults, but also just formed fractures that appear as boundaries of geodynamically impacting and hierarchically ordered crust blocks. The purpose of the study is to estimate the linkage of burning dumps to boundaries of geodynamically active crust blocks (geodynamically dangerous zones) for subsequent development of recommendations for reducing environmental hazard. The analysis of 27 coal dumps location was made for one of the Eastern Donbass regions (Russia). Nine of sixteen burning dumps are located in geodynamically dangerous zones, which, taking into account relatively small area occupied by all geodynamically dangerous zones, results that there is a concentration (pcs/km2) of burning dumps, which is 14 times higher than the baseline value. While the probability of accidental obtaining of such a result is extremely low, this can be considered as the evidence of the linkage of burning dumps to geodynamically dangerous zones. Taking into account the stressed state of the rock massif in this region, all geodynamically dangerous zones can be divided into compression and tension zones. The statistic is limited, but nevertheless in tension zones the concentration of burning dumps is 2 times higher than in compression zones. Available results of thermal monitoring of

  11. The clean coal technologies for lignitic coal power generation in Pakistan

    International Nuclear Information System (INIS)

    Mir, S.; Raza, Z.; Aziz-ur-Rehman, A.

    1995-01-01

    Pakistan contains huge reserves of lignitic coals. These are high sulphur, high ash coals. In spite of this unfortunate situation, the heavy demand for energy production, requires the development utilization of these indigenous coal reserves to enhance energy production. The central of the environmental pollution caused by the combustion of these coals has been a major hindrance in their utilization. Recently a substantial reduction in coal combustion emissions have been achieved through the development of clean coal technologies. Pakistan through the transfer and adaptation of the advanced clean coal technologies can utilize incurring the high sulphur coals for energy production without incurring the environmental effects that the developed countries have experienced in the past. The author discusses the recently developed clean coal utilization technologies, their applications economies and feasibility of utilization with specific reference to Pakistan''s coal. (author)

  12. Coal information 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Coal Information (1997 edition) is the latest edition of a publication that has been produced annually by the IEA since 1983. The report is intended to provide both Member countries of the OECD and those employed in all sectors of the coal industry with information on current world coal market trends and long-term prospects. It includes information on coal prices, demand, trade, supply, production capacity, transport, environmental issues (including emission standards for coal-fired boilers), coal ports, coal-fired power stations and coal used in non -OECD countries. Part I of the publication contains a wide ranging review of world coal market developments in 1996 and current prospects to 2010. The review is based on historical data of OECD energy supply and demand, data on other world regions, projections of OECD coal supply, demand and trade and information provided by the CIAB. Part II provides, in tabular and graphical form, a more detailed and comprehensive statistical picture of coal developments and future prospects for coal in the OECD, by region and for individual Member countries. Readers interested in projections are strongly advised to read the notes for individual countries in Principles and Definitions in Part II. Coal statistics for non-OECD countries are presented in Part III of the book. Summary data are available on hard coal supply and end-use statistics for about 40 countries and regions world-wide. Data are based on official national submissions to the United Nations in Geneva and New York, national energy publications, information provided to the IEA Secretariat by national statistical offices as well as other unofficial Secretariat sources. Further information on coal used in non-OECD countries is published annually by the IEA in Energy Statistics and Balances of Non-OECD Countries. Also included in Part III are the Survey of Coal Ports world-wide and the Survey of Coal-fired Power Stations in coal-importing countries

  13. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  14. Coal industry annual 1997

    International Nuclear Information System (INIS)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs

  15. TOXIC SUBSTANCES FROM COAL COMBUSTION-A COMPREHENSIVE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    C.L. Senior; F. Huggins; G.P. Huffman; N. Shah; N. Yap; J.O.L. Wendt; W. Seames; M.R. Ames; A.F. Sarofim; S. Swenson; J.S. Lighty; A. Kolker; R. Finkelman; C.A. Palmer; S.J. Mroczkowski; J.J. Helble; R. Mamani-Paco; R. Sterling; G. Dunham; S. Miller

    2001-06-30

    UU focused on the behavior of trace metals in the combustion zone by studying vaporization from single coal particles. The coals were burned at 1700 K under a series of fuel-rich and oxygen-rich conditions. The data collected in this study will be applied to a model that accounts for the full equilibrium between carbon monoxide and carbon dioxide. The model also considers many other reactions taking place in the combustion zone, and involves the diffusion of gases into the particle and combustion products away from the particle. A comprehensive study has been conducted at UA to investigate the post-combustion partitioning of trace elements during large-scale combustion of pulverized coal combustion. For many coals, there are three distinct particle regions developed by three separate mechanisms: (1) a submicron fume, (2) a micron-sized fragmentation region, and (3) a bulk (>3 {micro}m) fly ash region. The controlling partitioning mechanisms for trace elements may be different in each of the three particle regions. A substantial majority of semi-volatile trace elements (e.g., As, Se, Sb, Cd, Zn, Pb) volatilize during combustion. The most common partitioning mechanism for semi-volatile elements is reaction with active fly ash surface sites. Experiments conducted under this program at UC focused on measuring mercury oxidation under cooling rates representative of the convective section of a coal-fired boiler to determine the extent of homogeneous mercury oxidation under these conditions. In fixed bed studies at EERC, five different test series were planned to evaluate the effects of temperature, mercury concentration, mercury species, stoichiometric ratio of combustion air, and ash source. Ash samples generated at UA and collected from full-scale power plants were evaluated. Extensive work was carried out at UK during this program to develop new methods for identification of mercury species in fly ash and sorbents. We demonstrated the usefulness of XAFS spectroscopy for

  16. Phyto-bioconversion of hard coal in the Cynodon dactylon/coal rhizosphere.

    Science.gov (United States)

    Igbinigie, Eric E; Mutambanengwe, Cecil C Z; Rose, Peter D

    2010-03-01

    Fundamental processes involved in the microbial degradation of coal and its derivatives have been well documented. A mutualistic interaction between plant roots and certain microorganisms to aid growth of plants such as Cynodon dactylon (Bermuda grass) on hard coal dumps has recently been suggested. In the present study coal bioconversion activity of nonmycorrhizal fungi was investigated in the C. dactylon/coal rhizosphere. Fungal growth on 2% Duff-agar, gutation formation on nitric acid treated coal and submerged culture activity in nitrogen-rich and -deficient broth formed part of the screening and selection of the fungi. The selected fungal isolates were confirmed to be found in pristine C. dactylon/coal rhizosphere. To simulate bioconversion, a fungal aliquot of this rhizosphere was used as inoculum for a Perfusate fixed bed bioreactor, packed with coal. The results demonstrate an enhanced coal bioconversion facilitated by low molecular weight organics and the bioconversion of coal may be initiated by an introduction of nitrogen moieties to the coal substrate. These findings suggest a phyto-bioconversion of hard coal involving plant and microbes occurring in the rhizosphere to promote the growth of C. dactylon. An understanding of this relationship can serve as a benchmark for coal dumps rehabilitation as well as for the industrial scale bioprocessing of hard coal.

  17. Slagging behavior of upgraded brown coal and bituminous coal in 145 MW practical coal combustion boiler

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Katsuya; Pak, Haeyang; Takubo, Yoji [Kobe Steel, Ltd, Kobe (Japan). Mechanical Engineering Research Lab.; Tada, Toshiya [Kobe Steel, Ltd, Takasago (Japan). Coal and Energy Technology Dept.; Ueki, Yasuaki [Nagoya Univ. (Japan). Energy Science Div.; Yoshiie, Ryo; Naruse, Ichiro [Nagoya Univ. (Japan). Dept. of Mechanical Science and Engineering

    2013-07-01

    The purpose of this study is to quantitatively evaluate behaviors of ash deposition during combustion of Upgraded Brown Coal (UBC) and bituminous coal in a 145 MW practical coal combustion boiler. A blended coal consisting 20 wt% of the UBC and 80 wt% of the bituminous coal was burned for the combustion tests. Before the actual ash deposition tests, the molten slag fractions of ash calculated by chemical equilibrium calculations under the combustion condition was adopted as one of the indices to estimate the tendency of ash deposition. The calculation results showed that the molten slag fraction for UBC ash reached approximately 90% at 1,523 K. However, that for the blended coal ash became about 50%. These calculation results mean that blending the UBC with a bituminous coal played a role in decreasing the molten slag fraction. Next, the ash deposition tests were conducted, using a practical pulverized coal combustion boiler. A water-cooled stainless-steel tube was inserted in locations at 1,523 K in the boiler to measure the amount of ash deposits. The results showed that the mass of deposited ash for the blended coal increased and shape of the deposited ash particles on the tube became large and spherical. This is because the molten slag fraction in ash for the blended coal at 1,523 K increased and the surface of deposited ash became sticky. However, the mass of the deposited ash for the blended coal did not greatly increase and no slagging problems occurred for 8 days of boiler operation under the present blending conditions. Therefore, appropriate blending of the UBC with a bituminous coal enables the UBC to be used with a low ash melting point without any ash deposition problems in a practical boiler.

  18. Coal use in the People's Republic of China. Volume 1: Environmental impacts

    International Nuclear Information System (INIS)

    Bhatti, N.; Tompkins, M.M.; Simbeck, D.R.

    1994-11-01

    The People's Republic of China (hereafter referred to as China) is the largest producer and consumer of coal in the world. Coal makes up 76% and 74% of China's primary energy consumption and production, respectively. This heavy dependence on coal has come at a high price for China, accounting for a large share of its environmental problems. This report examines the dominance of coal in China's energy balance, its impact on the environment, and the need for technical and financial assistance, specifically for two distinct aspects: the effect of coal use on the environment and the importance of coal to China's economy. The results of the analysis are presented in two volumes. Volume 1 focuses on full fuel cycle coal emissions and the environmental effects of coal consumption. Volume 2 provides a detailed analysis by sector of China's economy and examines the economic impact of constraints on coal use. 51 refs., 19 figs., 15 tabs

  19. Techno-economic analysis and comparison of coal based olefins processes

    International Nuclear Information System (INIS)

    Xiang, Dong; Yang, Siyu; Qian, Yu

    2016-01-01

    Highlights: • The coal based Fischer–Tropsch-to-olefins (CFTO) process is proposed and analyzed. • The CFTO suffers from lower energy efficiency and serious CO 2 emissions. • Approaches for improving techno-economic performance of the CFTO are obtained. - Abstract: Traditional olefins production is heavily dependent on oil. In the background of the scarcity of oil and richness of coal in China, olefins production from coal has been attracting more attention of the chemical process industry. The first coal based methanol-to-olefins (CMTO) plant has been commercialized in China. For shorter process route and lower capital cost, Fischer–Fropsch has been put forward in the last few years. The coal based Fischer–Tropsch-to-olefins (CFTO) process is designed in this paper and then its techno-economic and environmental performance was detailed studied in this paper, in comparison with the CMTO. Results show that at the present olefins selectivity, the CFTO suffers from relative lower energy efficiency and higher CO 2 emissions. In economic aspect, the capital investment and product cost of the CFTO are roughly equivalent to that of the CMTO. Although the conversion route of the CFTO is shorter, its techno-economic performance is still inferior to that of the CMTO. It is also found that increase of olefins selectivity by cracking oil or decrease of CO 2 selectivity by improving catalyst could significantly improve the performance of the CFTO.

  20. A novel method for estimating methane emissions from underground coal mines: The Yanma coal mine, China

    Science.gov (United States)

    Ji, Zhong-Min; Chen, Zhi-Jian; Pan, Jie-Nan; Niu, Qing-He

    2017-12-01

    As the world's largest coal producer and consumer, China accounts for a relatively high proportion of methane emissions from coal mines. Several estimation methods had been established for the coal mine methane (CMM) emission. However, with large regional differences, various reservoir formation types of coalbed methane (CBM) and due to the complicated geological conditions in China, these methods may be deficient or unsuitable for all the mining areas (e.g. Jiaozuo mining area). By combing the CMM emission characteristics and considering the actual situation of methane emissions from underground coal mine, we found that the methane pre-drainage is a crucial reason creating inaccurate evaluating results for most estimation methods. What makes it so essential is the extensive pre-drainage quantity and its irrelevance with annual coal production. Accordingly, the methane releases were divided into two categories: methane pre-drainage and methane release during mining. On this basis, a pioneering method for estimating CMM emissions was proposed. Taking the Yanma coal mine in the Jiaozuo mining area as a study case, the evaluation method of the pre-drainage methane quantity was established after the correlation analysis between the pre-drainage rate and time. Thereafter, the mining activity influence factor (MAIF) was first introduced to reflect the methane release from the coal and rock seams around where affected by mining activity, and the buried depth was adopted as the predictor of the estimation for future methane emissions. It was verified in the six coal mines of Jiaozuo coalfield (2011) that the new estimation method has the minimum errors of 12.11%, 9.23%, 5.77%, -5.20%, -8.75% and 4.92% respectively comparing with other methods. This paper gives a further insight and proposes a more accurate evaluation method for the CMM emissions, especially for the coal seams with low permeability and strong tectonic deformation in methane outburst coal mines.

  1. Dynamic measurement of coal thermal properties and elemental composition of volatile matter during coal pyrolysis

    Directory of Open Access Journals (Sweden)

    Rohan Stanger

    2014-01-01

    Full Text Available A new technique that allows dynamic measurement of thermal properties, expansion and the elemental chemistry of the volatile matter being evolved as coal is pyrolysed is described. The thermal and other properties are measured dynamically as a function of temperature of the coal without the need for equilibration at temperature. In particular, the technique allows for continuous elemental characterisation of tars as they are evolved during pyrolysis and afterwards as a function of boiling point. The technique is demonstrated by measuring the properties of maceral concentrates from a coal. The variation in heats of reaction, thermal conductivity and expansion as a function of maceral composition is described. Combined with the elemental analysis, the results aid in the interpretation of the chemical processes contributing to the physical and thermal behaviour of the coal during pyrolysis. Potential applications in cokemaking studies are discussed.

  2. Progress and performance of on-line analyzers of coal

    International Nuclear Information System (INIS)

    Spencer, C.M.; Brown, D.R.; Gozani, T.; Bozorgmanesh, H.; Bernatowicz, H.; Tassicker, O.J.; Karlson, F.

    1982-01-01

    This paper describes the past year's progress in the laboratory testing of the most comprehensive Nucoalyzer, the CONAC, and the performance of a Nucoalyzer-Sulfurmeter in special field tests. Previous papers and presentations provide more detailed background information. The near real-time analysis provided by a Nucoalyzer can be used in a variety of strategies to optimize efficiency of coal use. Nucoalyzers can be used to monitor coal deliveries and achieve uniformity in coal storage and recovery. In a coal cleaning plant, on-line analysis with a Nucoalyzer can lead to optimum Btu recovery while meeting specifications for the washed coal. A Nucoalyzer can monitor the blending of different coals to maintain a key cosntituent such as sulfur below a specified level, or can predict sulfur dioxide emissions, allowing feed-forward control to gas scrubbers and precipitators. Variability in coal feed to the boiler can lead to gross changes in thermodynamic efficiency in combustion. In addition, fouling and slagging incidents due to poor coal quality cause costly boiler shutdowns and maintenance. Nucoalyzer monitoring of key constituents and Btu in the coal feed allows operators to adjust boiler parameters for increased efficiency. To summarize, the primary advantages of Nucoalyzers relate to their ability to quickly identify changes in coal composition so that adjustments can be made in a timely manner to accommodate these changes in the process being monitored. Nucoalyzers are the only instruments available that can monitor the coal (for ash, Btu, sulfur, etc.) on-line and provide real-time continuous results. One Nucoalyzer is already working in the field, and by the time of the next Symposium we will have had performance reports on two more

  3. Chemical analysis of coal by energy dispersive x-ray fluorescence utilizing artificial standards

    International Nuclear Information System (INIS)

    Wheeler, B.D.

    1982-01-01

    Accurate determinations of the elemental composition of coal by classical methods can be quite difficult and are normally very time consuming. X-ray fluorescence utilizing the powder method, however, has the ability of providing accurate and rapid analyses. Unfortunately, well characterized standards, although available, are not plentiful. In addition, the durability of stability of ground and pelletized coal samples is poor resulting in deterioration with time. As a result, artificial coal standards were prepared from certified geological materials by fusing in lithium tetraborate in percentages approximating expected ash contents and compositions in coal. Since the lithium tetraborate comprises about the same percentage of the standard as does the carbon, hydrogen, and oxygen in coal, the ground and pelletized coal sample can be assayed against the fused calibration curves by compensating for the differences in the mass absorption coefficients of the two matrices. 5 figures, 4 tables

  4. Analysis and study on the membrane method of CO2 removal of coal-fired boilers

    International Nuclear Information System (INIS)

    Fangqin, Li; Henan, Li; Jianxing, Ren; Jiang, Wu; Zhongzhu, Qiu

    2010-01-01

    Carbon dioxide (CO 2 ) is one kind of harmful substances from the burning process of fossil fuel. CO 2 emissions cause serious pollution on atmospheric environment, especially greenhouse effect. In this paper, CO 2 formation mechanism and control methods were researched. Membrane technology was studied to control CO 2 emissions from coal-fired boilers. The relationship between CO 2 removal efficiency and parameters of membrane contactor was analyzed. Through analysis and study, factors affecting on CO 2 removal efficiency were gotten. How to choose the best parameters was known. This would provide theoretical basis for coal-fired utility boilers choosing effective way of CO 2 removal. (author)

  5. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Partnership, Billings, MT (United States)

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stages are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.

  6. Self-scrubbing coal

    International Nuclear Information System (INIS)

    Kindig, J.K.

    1992-01-01

    More than 502 million tons - 65 percent of all coal shipped to utilities in 1990 - were above 1.2 pounds of sulfur dioxide per million Btu. Most of the coal, even though cleaned in conventional coal preparation plants, still does not meet the emission limitation the Clean Air Act Amendments mandate for the year 2000. To cope with this fact, most utilities plan to switch to low sulfur (western U.S. or Central Appalachian) coal or install scrubbers. Both solutions have serous drawbacks. Switching puts local miners out of work and weakens the economy in the utility's service territory. Scrubbing requires a major capital expenditure by the utility. Scrubbers also increase the operating complexity and costs of the generating station and produce yet another environmental problem, scrubber sludge. Employing three new cost-effective technologies developed by Customer Coals International (CCl), most non-compliance coals east of the Mississippi River can be brought into year-2000 compliance. The compliance approach employed, depends upon the characteristics of the raw coal. Three types of raw coal are differentiated, based upon the amount of organic sulfur in the coals and the ease (or difficultly) of liberating the pyrite. They are: Low organic sulfur content and pyrite that liberates easily. Moderate organic sulfur content and pyrite that liberates easily. High organic sulfur content or the pyrite liberates with difficulty. In this paper examples of each type of raw coal are presented below, and the compliance approach employed for each is described. The names of the beneficiated coal products produced from each type of raw coal give above are: Carefree Coal, Self-Scrubbing Coal and Dry-Scrubbing Coal

  7. Whole-coal versus ash basis in coal geochemistry: a mathematical approach to consistent interpretations

    Science.gov (United States)

    Geboy, Nicholas J.; Engle, Mark A.; Hower, James C.

    2013-01-01

    Several standard methods require coal to be ashed prior to geochemical analysis. Researchers, however, are commonly interested in the compositional nature of the whole-coal, not its ash. Coal geochemical data for any given sample can, therefore, be reported in the ash basis on which it is analyzed or the whole-coal basis to which the ash basis data are back calculated. Basic univariate (mean, variance, distribution, etc.) and bivariate (correlation coefficients, etc.) measures of the same suite of samples can be very different depending which reporting basis the researcher uses. These differences are not real, but an artifact resulting from the compositional nature of most geochemical data. The technical term for this artifact is subcompositional incoherence. Since compositional data are forced to a constant sum, such as 100% or 1,000,000 ppm, they possess curvilinear properties which make the Euclidean principles on which most statistical tests rely inappropriate, leading to erroneous results. Applying the isometric logratio (ilr) transformation to compositional data allows them to be represented in Euclidean space and evaluated using traditional tests without fear of producing mathematically inconsistent results. When applied to coal geochemical data, the issues related to differences between the two reporting bases are resolved as demonstrated in this paper using major oxide and trace metal data from the Pennsylvanian-age Pond Creek coal of eastern Kentucky, USA. Following ilr transformation, univariate statistics, such as mean and variance, still differ between the ash basis and whole-coal basis, but in predictable and calculated manners. Further, the stability between two different components, a bivariate measure, is identical, regardless of the reporting basis. The application of ilr transformations addresses both the erroneous results of Euclidean-based measurements on compositional data as well as the inconsistencies observed on coal geochemical data

  8. Modelling the long-run supply of coal

    International Nuclear Information System (INIS)

    Steenblik, R.P.

    1992-01-01

    There are many issues facing policy-makers in the fields of energy and the environment that require knowledge of coal supply and cost. Such questions arise in relation to decisions concerning, for example, the discontinuation of subsidies, or the effects of new environmental laws. The very complexity of these questions makes them suitable for analysis by models. Indeed, models have been used for analysing the behaviour of coal markets and the effects of public policies on them for many years. For estimating short-term responses econometric models are the most suitable. For estimating the supply of coal over the longer term, however - i.e., coal that would come from mines as yet not developed - depletion has to be taken into account. Underlying the normal supply curve relating cost to the rate of production is a curve that increases with cumulative production - what mineral economists refer to as the potential supply curve. To derive such a curve requires at some point in the analysis using process-oriented modelling techniques. Because coal supply curves can convey so succinctly information about the resource's long-run supply potential and costs, they have been influential in several major public debates on energy policy. And, within the coal industry itself, they have proved to be powerful tools for undertaking market research and long-range planning. The purpose of this paper is to describe in brief the various approaches that have been used to model long-run coal supply, to highlight their strengths, and to identify areas in which further progress is needed. (author)

  9. The application of thermoluminescent dosimeters to the measurement of thermal neutron distributions in bulk media

    International Nuclear Information System (INIS)

    Bubb, I.F.; Tang, J.C.N.

    1981-01-01

    The work described was designed to investigate the suitability of measuring neutron flux distributions in bulk media using neutron sensitive thermoluminescent dosimeters, with the initial interest being in wet coal matrices. The phosphors used were 6 LiF and 7 LiF 3.2mmx3.2mmx0.9mm chips. As 7 LiF is sensitive to gamma rays only it was used to correct for the gamma-ray response of 6 LiF

  10. Trace element geochemistry and mineralogy of coal from Samaleswari open cast coal block (S-OCB), Eastern India

    Science.gov (United States)

    Saha, Debasree; Chatterjee, Debashis; Chakravarty, Sanchita; Mazumder, Madhurina

    2018-04-01

    Coal samples of Samaleswari open cast coal block (S-OCB) are high ash (Aad, mean value 35.43%) and low sulphur content (St, on dry basis, mean value 0.91% analysis. The work is further supported by the use of chemical fractionation experiment that reveals the multi mode of occurrence of several environmentally concern and interested trace elements (Sb, As, Be, Cd, Cr, Co, Cu, Pb, Mn, Ni, Zn). Among the analysed trace elements Co, Mn and Zn have major silicate association along with significant carbonate/oxide/monosulfide association. Whereas As, Cd, Cu, Pb and Ni have dominant pyritic association with notable silicate and carbonate/oxide/monosulfide association. The rest three elements (Sb, Be, Cr) have principally organic association with minor silicate and carbonate/oxide/monosulfide association. The stratigraphic variation of organo-mineral matrix content and detrital-authigenic mineral ratio are primarily related to coal rank. Geochemical character of coal also reflects a light towards proper utilisation of S-OCB coal from technical and environmental view point.

  11. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

    2011-09-30

    The U.S. Department of Energy‘s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE‘s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and

  12. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Maghzi, Shawn [General Electric Global Research, Niskayuna, NY (United States); Subramanian, Ramanathan [General Electric Global Research, Niskayuna, NY (United States); Rizeq, George [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); McDermott, John [General Electric Global Research, Niskayuna, NY (United States); Eiteneer, Boris [General Electric Global Research, Niskayuna, NY (United States); Ladd, David [General Electric Global Research, Niskayuna, NY (United States); Vazquez, Arturo [General Electric Global Research, Niskayuna, NY (United States); Anderson, Denise [General Electric Global Research, Niskayuna, NY (United States); Bates, Noel [General Electric Global Research, Niskayuna, NY (United States)

    2011-12-11

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE's bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation

  13. Coal to SNG: Technical progress, modeling and system optimization through exergy analysis

    International Nuclear Information System (INIS)

    Li, Sheng; Ji, Xiaozhou; Zhang, Xiaosong; Gao, Lin; Jin, Hongguang

    2014-01-01

    Highlights: • Technical progresses of coal to SNG technologies are reported. • The entire coal to SNG system is modeled. • Coupling between SNG production and power generation is investigated. • Breakthrough points for further energy saving are determined. • System performance is optimized based on the first and second laws of thermodynamics. - Abstract: For both energy security and CO 2 emission reduction, synthetic natural gas (SNG) production from coal is an important path to implement clean coal technologies in China. In this paper, an overview of the progress of coal to SNG technologies, including the development of catalysts, reactor designs, synthesis processes, and systems integration, is provided. The coal to SNG system is modeled, the coupling between SNG production and power generation is investigated, the breakthrough points for further energy savings are determined, and the system performance is optimized based on the first and the second laws of thermodynamics. From the viewpoint of the first law of thermodynamics, the energy conversion efficiency of coal to SNG system can reach 59.8%. To reduce the plant auxiliary power, the breakthrough points are the development of low-energy-consumption oxygen production technology and gas purification technology or seeking new oxidants for coal gasification instead of oxygen. From the viewpoint of the second law of thermodynamics, the major exergy destruction in a coal to SNG system occurs in the coal gasification unit, SNG synthesis unit and the raw syngas cooling process. How to reduce the exergy destruction in these units is the key to energy savings and system performance enhancement. The conversion ratio of the first SNG synthesis reactor and the split ratio of the recycle gas are key factors that determine the performance of both the SNG synthesis process and the whole plant. A “turning point” phenomenon is observed: when the split ratio is higher than 0.90, the exergy destruction of the SNG

  14. Experimental Research on the Impactive Dynamic Effect of Gas-Pulverized Coal of Coal and Gas Outburst

    Directory of Open Access Journals (Sweden)

    Haitao Sun

    2018-03-01

    Full Text Available Coal and gas outburst is one of the major serious natural disasters during underground coal, and the shock air flow produced by outburst has a huge threat on the mine safety. In order to study the two-phase flow of a mixture of pulverized coal and gas of a mixture of pulverized coal and gas migration properties and its shock effect during the process of coal and gas outburst, the coal samples of the outburst coal seam in Yuyang Coal Mine, Chongqing, China were selected as the experimental subjects. By using the self-developed coal and gas outburst simulation test device, we simulated the law of two-phase flow of a mixture of pulverized coal and gas in the roadway network where outburst happened. The results showed that the air in the roadway around the outburst port is disturbed by the shock wave, where the pressure and temperature are abruptly changed. For the initial gas pressure of 0.35 MPa, the air pressure in different locations of the roadway fluctuated and eventually remain stable, and the overpressure of the outburst shock wave was about 20~35 kPa. The overpressure in the main roadway and the distance from the outburst port showed a decreasing trend. The highest value of temperature in the roadway increased by 0.25 °C and the highest value of gas concentration reached 38.12% during the experiment. With the action of shock air flow, the pulverized coal transportation in the roadway could be roughly divided into three stages, which are the accelerated movement stage, decelerated movement stage and the particle settling stage respectively. Total of 180.7 kg pulverized coal of outburst in this experiment were erupted, and most of them were accumulated in the main roadway. Through the analysis of the law of outburst shock wave propagation, a shock wave propagation model considering gas desorption efficiency was established. The relationships of shock wave overpressure and outburst intensity, gas desorption rate, initial gas pressure, cross

  15. Comparative emissions from Pakistani coals and traditional coals

    Energy Technology Data Exchange (ETDEWEB)

    Du, Y X [Guangzhou Medical College (China). Dept. of Hygiene; Huang, L F [Guangzhou Health and Anti-epidemic Station (China)

    1994-12-31

    Briquette coal has been widely used for domestic cooking and heating in many Chinese cites over the last two decades. To determine whether burning briquette coal contributes significantly to indoor air pollution, a study was performed in cities-of Southern China in which the measured levels of SO{sub 2}, NO{sub x}, TSP, SD, B(a)P in the kitchens of coal burning families were compared with levels obtained in families using gas. Significantly higher contentions of these pollutants, whose peaks correlated with daily cooking episodes, were detected in coal burning families. The levels of TSP and B(a)P were further found to be dependent on cooking methods, with deep frying and stir-frying of meat generating the most indoor TSP and B(a)P. Briquette coal burning was found to be the source of B(a)P contamination in food. A higher incidence of chronic pharyngitis as well as a suppressed salivary bacteriolytic enzyme activity were found in children of coal burning families. Epidemiologic and laboratory studies also show a close association between coal burning and the incidence of lung cancer in females. (author)

  16. Third symposium on coal preparation. NCA/BCR coal conference and Expo IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The third Symposium on Coal preparation, sponsored by the National Coal Association and Bituminous Coal Research, Inc., was held at the Kentucky Fair and Exposition Center, Louisville, Kentucky, October 18-20, 1977. Fourteen papers from the proceedings have been entered individually into EDB and ERA; five additional papers had been entered previously from other sources. Topics covered involved chemical comminution and chemical desulfurization of coal (aimed at reducing sulfur sufficiently with some coals to meet air quality standards without flue gas desulfurization), coal cleaning concepts, removing coal fines and recycling wash water, comparative evaluation of coal preparation methods, coal refuse disposal without polluting the environment, spoil bank reprocessing, noise control in coal preparation plants, etc. (LTN)

  17. Biochemical Removal of HAP Precursors from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Gregory J

    1997-05-12

    Column biooxidation tests with Kentucky coal confirmed results of earlier shake flask tests showing significant removal from the coal of arsenic, selenium, cobalt, manganese, nickel and cadmium. Rates of pyrite biooxidation in Kentucky coal were only slightly more than half the rates found previously for Indiana and Pittsburgh coals. Removal of pyrite from Pittsburgh coal by ferric ion oxidation slows markedly as ferrous ions accumulate in solution, requiring maintenance of high redox potentials in processes designed for removal of pyrite and hazardous air pollutant (HAP) precursors by circulation of ferric solutions through coal. The pyrite oxidation rates obtained in these tests were used by Unifield Engineering to support the conceptual designs for alternative pyrite and HAP precursor bioleaching processes for the phase 2 pilot plant. Thermophilic microorganisms were tested to determine if mercury could be mobilized from coal under elevated growth temperatures. There was no evidence for mercury removal from coal under these conditions. However, the activity of the organisms may have liberated mercury physically. It is also possible that the organisms dissolved mercury and it readsorbed to the clay preferentially. Both of these possibilities are undergoing further testing. The Idaho National Engineering and Environmental Laboratory's (INEEL) slurry column reactor was operated and several batches of feed coal, product coal, waste solids and leach solutions were submitted to LBL for HAP precursor analysis. Results to date indicate significant removal of mercury, arsenic and other HAP precursors in the combined physical-biological process.

  18. Coal Transition in Spain. An historical case study for the project 'Coal Transitions: Research and Dialogue on the Future of Coal'

    International Nuclear Information System (INIS)

    Del Rio, Pablo

    2017-01-01

    This is one of the 6 country case-studies commissioned to collect experience on past coal transitions. The 6 countries are: Czech Republic, the Netherlands, Poland, Spain, UK, USA. Their role in the Coal Transitions project was to provide background information for a Synthesis Report for decision makers, and provide general lessons for national project teams to take into account in developing their coal transitions pathways for the future. Spain has had a long tradition of coal mining at least since the 18. century. However, it is also one of the jurisdictions committing to phase-out of subsidies and implementing it in recent times. This case study discusses the main features of the coal transition in Spain, the factors influencing this transition as well as the policies which both drove it and accompanied their detrimental socioeconomic effects on the workers and regions. The analysis is based on a desktop research of relevant documents, including official communications from the Ministry of Industry (MINETUR) and the European Commission as well as statements of position from the industry association (CARBUNION) and labour unions (UGT and CCOO). Documents on national coal from other institutions (Foundations, NGOs) have also been consulted. Finally, an analysis of articles in the mass media has been carried out. This contains useful statements from different types of stakeholders. A strong reduction in production and employment in the coal industry has been experienced at least in the last two decades in this country. Successive plans by the government have aimed at reducing coal production, early retirement of workers and closing mines. Caught in the middle of the mining coalition on the one hand and EU legislation and public opinion on the other, the government has had to approve drastic measures leading to phase out. On the other hand, it has tried to accompany the phase out with measures which have tried to mitigate the negative impact on the affected zones

  19. Chinese coal supply and future production outlooks

    International Nuclear Information System (INIS)

    Wang, Jianliang; Feng, Lianyong; Davidsson, Simon; Höök, Mikael

    2013-01-01

    China's energy supply is dominated by coal, making projections of future coal production in China important. Recent forecasts suggest that Chinese coal production may reach a peak in 2010–2039 but with widely differing peak production levels. The estimated URR (ultimately recoverable resources) influence these projections significantly, however, widely different URR-values were used due to poor understanding of the various Chinese coal classification schemes. To mitigate these shortcomings, a comprehensive investigation of this system and an analysis of the historical evaluation of resources and reporting issues are performed. A more plausible URR is derived, which indicates that many analysts underestimate volumes available for exploitation. Projections based on the updated URR using a modified curve-fitting model indicate that Chinese coal production could peak as early as 2024 at a maximum annual production of 4.1 Gt. By considering other potential constraints, it can be concluded that peak coal in China appears inevitable and immediate. This event can be expected to have significant impact on the Chinese economy, energy strategies and GHG (greenhouse gas) emissions reduction strategies. - Highlights: • Review of Chinese coal geology and resources/reserves. • Presentation of the Chinese coal classification system. • Forecasting future Chinese coal production using Hubbert curves. • Critical comparison with other forecasts. • Discussions transportation, environmental impact, water consumption, etc

  20. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  1. Coal industry annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993

  2. A STUDY ON THE GRINDABILITY OF SERBIAN COALS

    Directory of Open Access Journals (Sweden)

    Dragoslava D Stojiljković

    2011-01-01

    Full Text Available Thermal power plants in the Republic of Serbia are making considerable efforts and even more considerable investments, not only to maintain electricity production at maximum design levels, but even to additionally increase the power output of existing generating units. Capacities of mills used in pulverized coal preparation are identified as one of the main constraints to achieving maximum mill plant capacity, while coal grindability is seen as one of the factors that directly affect capacities of the coal mills utilized in thermal power plants. The paper presents results of experimental investigation conducted for the purpose of determining Hardgrove grindability index of coal. The investigation was conducted in accordance with ISO 5074 and included analysis of approximately 70 coal samples taken from the open pit mine of Kolubara coal basin. Research results obtained indicate that coal rich in mineral matter and thus, of lower heating value is characterized by higher grindability index. Therefore, analyses presented in the paper suggest that characteristics of solid fuels analyzed in the research investigation conducted are such that the use coals less rich in mineral matter i. e. coals characterized by lower grindability index will cause coal mills to operate at reduced capacity. This fact should be taken into account when considering a potential for electricity production increase.

  3. [Hazard evaluation modeling of particulate matters emitted by coal-fired boilers and case analysis].

    Science.gov (United States)

    Shi, Yan-Ting; Du, Qian; Gao, Jian-Min; Bian, Xin; Wang, Zhi-Pu; Dong, He-Ming; Han, Qiang; Cao, Yang

    2014-02-01

    In order to evaluate the hazard of PM2.5 emitted by various boilers, in this paper, segmentation of particulate matters with sizes of below 2. 5 microm was performed based on their formation mechanisms and hazard level to human beings and environment. Meanwhile, taking into account the mass concentration, number concentration, enrichment factor of Hg, and content of Hg element in different coal ashes, a comprehensive model aimed at evaluating hazard of PM2.5 emitted by coal-fired boilers was established in this paper. Finally, through utilizing filed experimental data of previous literatures, a case analysis of the evaluation model was conducted, and the concept of hazard reduction coefficient was proposed, which can be used to evaluate the performance of dust removers.

  4. Thermodynamic analysis of a coal-based polygeneration system with partial gasification

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Zhang, Guoqiang; Yang, Yongping; Zhai, Dailong; Zhang, Kai; Xu, Gang

    2014-01-01

    This study proposed a polygeneration system based on coal partial gasification, in which methanol and power were generated. This proposed system, comprising chemical and power islands, was designed and its characteristics are analyzed. The commercial software Aspen Plus was used to perform the system analysis. In the case study, the energy and exergy efficiency values of the proposed polygeneration system were 51.16% and 50.58%, which are 2.34% and 2.10%, respectively, higher than that of the reference system. Energy-Utilization Diagram analysis showed that removing composition adjustment and recycling 72.7% of the unreacted gas could reduce the exergy destruction during methanol synthesis by 46.85% and that the char utilized to preheat the compressed air could reduce the exergy destruction during combustion by 10.28%. Sensitivity analysis was also performed. At the same capacity ratio, the energy and exergy efficiency values of the proposed system were 1.30%–2.48% and 1.21%–2.30% higher than that of the reference system, respectively. The range of chemical-to-power capacity ratio in the proposed system was 0.41–1.40, which was narrower than that in the reference system. But the range of 1.04–1.4 was not recommended for the disappearance of energy saving potential in methanol synthesis. - Highlights: • A novel polygeneration system based on coal partial gasification is proposed. • The efficient conversion method for methanol and power is explored. • The exergy destruction in chemical energy conversion processes is decreased. • Thermodynamic performance and system characteristics are analyzed

  5. Rare earth element patterns in nigerian coals

    International Nuclear Information System (INIS)

    Ewa, I.O.B.; Elegba, S.B.

    1996-01-01

    Rare Earth Elements (REE's) retain group coherence in their environment and are therefore useful geochemical markers. We report the pattern of ten REE's (La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Yb, Lu) determined by Instrumental Neutron Activation Analysis (INAA) for coals obtained from eight mines in Nigeria, namely, Okaba, Enugu, Ogbete, Onyeama, Gombe, Lafia, Asaba and Afikpo. Our results show the existence of fractionations with the highest index of 13.19 for Lafia coal, depletion in HREE, negative Eu anomaly for most of the coals, REE patterns that are consistent with chondritic trends; prominent (Eu/Eu * ) cn for Okaba and Gombe coals. Variations in geochemical data observed could suggest strong departures from band metamorphism during the coalification events of the Benue Trough geosynclines, where the coal deposits are all located. (author) 14 refs., 2 figs., 3 tabs

  6. Coal and Energy.

    Science.gov (United States)

    Bryant, Reba; And Others

    This teaching unit explores coal as an energy resource. Goals, student objectives, background information, and activity options are presented for each major section. The sections are: (1) an introduction to coal (which describes how and where coal was formed and explains the types of coal); (2) the mining of coal (including the methods and ways of…

  7. Asia's coal and clean coal technology market potential

    International Nuclear Information System (INIS)

    Johnson, C.J.; Binsheng Li

    1992-01-01

    The Asian region is unique in the world in having the highest economic growth rate, the highest share of coal in total primary energy consumption and the highest growth rate in electricity generation capacity. The outlook for the next two decades is for accelerated efforts to control coal related emissions of particulates and SO 2 and to a lessor extent NO x and CO 2 . Only Japan has widespread use of Clean Coal Technologies (CCTs) however a number of economies have plans to install CCTs in future power plants. Only CCTs for electricity generation are discussed, and are defined for the purpose of this paper as technologies that substantially reduce SO 2 and/or NO x emissions from coal-fired power plants. The main theses of this paper are that major increases in coal consumption will occur over the 1990-2010 period, and this will be caccompanied by major increases in coal related pollution in some Asian economies. Coal fired electricity generation is projected to grow at a high rate of about 6.9 percent per year over the 1990-2010 period. CCTs are projected to account for about 150 GW of new coal-fired capacity over the 1990-2010 period of about one-third of all new coal-fired capacity. A speculative conclusion is that China will account for the largest share of CCT additions over the 1990-2010 period. Both the US and Japan have comparative advantages that might be combined through cooperation and joint ventures to gain a larger share of the evolving CCT market in Asia. 5 refs., 7 figs., 4 tabs

  8. Controlling air toxics through advanced coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L. [Iowa State Univ., Ames, IA (United States)

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  9. Coal - 96

    International Nuclear Information System (INIS)

    Sparre, C.

    1996-09-01

    The report deals mainly with coal consumption, but also gives some information about technology, environmental aspects and markets. Data have been collected by questionnaires or via telephone. The use of steam coal for heating was 0.8 Mtons (down 20% from 1994). Cogeneration plants were the main users. Taxes and environmental reasons cause a reduction of the coal use that will probably continue the next years. Use of steam coal in industry has been constant at a level of 0.7 Mtons. The import of metallurgical coal rests constant at a level of 1.6 Mtons. 1.2 Mtons of coke was produced, and 0.3 Mtons imported. The PFBC-plant at Vaertan, Stockholm used 0.13 Mtons of coal, while some coal fired power plants have been converted to peat and wood fuels. The average price of steam coal imported to Sweden in 1995 was 333 SEK/ton, 6% higher than in 1994. The contract prices for delivery 1996 are about the same as at the end of 1995. All cogeneration plants have some sort of SO 2 removal system, mostly wet-dry. The largest plant, at Vaesteraas, has recently invested in a SCR system for NO x removal. Most other plants are using low NO x burners or SNCR systems, based on ammonia or urea, which reduce the emissions 50 - 70%. Some statistic about the world coal market is also given in the report

  10. NONEQUILIBRIUM SULFUR CAPTURE AND RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    International Nuclear Information System (INIS)

    Dr. Bert Zauderer

    1999-01-01

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. They are deposited on the liquid slag layer on the combustor wall. Due to the low solubility of sulfur in slag, slag must be rapidly drained from the combustor to limit sulfur gas re-evolution. Analysis indicated that slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to perform a series of tests to determine the factors that control the retention of the sulfur in the slag. 36 days of testing on the combustor were completed prior to the end of this reporting period, 12/31/98. This compares with 16 tests required in the original project plan. Combustor tests in early 1997 with high (37%) ash, Indian coal confirmed that high slag mass flow rates of about 500 lb/hr resulted in retention in the slag of up to 20% of the injected sulfur content mineral matter. To further increase the slag flow rate, rice husks, which contain 20% ash, and rice husk char, which contain 70% ash, were co-fired with coal in the combustor. A series of 13 combustor tests were performed in fourth quarter of 1997 and a further 6 tests were performed in January 1998 and in the summer of 1998. The test objective was to achieve slag flow rates between 500 and 1,000 lb/hr. Due to the very low bulk density of rice husk, compared to pulverized coal, almost the entire test effort focused on developing methods for feeding the rice husks into combustor. In the last test of December 1997, a peak mineral matter, injection rate of 592 lb/hr was briefly achieved by injection of coal, rice husk char, gypsum, and limestone into the combustor. However, no significant sulfur concentration was measured in the slag removed from the combustor. The peak injection rate reached with biomass in the 1997 tests was 310 lb/hr with rice husk, and 584 lb/hr with rice husk char

  11. Nuclear techniques for bulk ore analysis and their application to quality control

    International Nuclear Information System (INIS)

    Holmes, R.J.

    1981-01-01

    Bulk analysis techniques developed for the mining industry in which analyses are obtained directly from 3-30kg ore samples or from ore on conveyor belts are outlined. They include the determination of iron in iron ores from backscattered gamma radiation, shale in sedimentary iron ores from natural gamma activity, iron from a thermal-neutron capture reaction, and aluminium from the thermal neutron activation reaction

  12. Swelling behavior of several bituminous coals and their thermally treated coals

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Heng-fu; Cao, Mei-xia; Wang, Zhi-cai [Anhui University of Technology, Maanshan (China). School of Chemistry & Chemical Engineering

    2007-07-01

    The swelling behavior in different solvents of 4 bituminous coals with different ranks and their residues from extraction by CS{sub 2}/NMP mixed solvent (l:1 in volume) were measured. The change in swelling property of the four coals thermally treated at different temperature was observed. The results show that the swelling ratio decreases with increasing rank of coal. For lower rank bituminous coals the swelling ratios in polar solvent are higher than those in non-polar solvent, and this difference decreases with increasing rank. The cross-linking densities of the four residues decrease, and the swelling ratios increase compared with those of raw coals. The swelling ratios of the four thermally treated coals under 150{sup o}C in CS{sub 2} increase, suggesting the decrease in crosslinking density of them. When the thermal treatment temperature increases to 240{sup o}C, the swelling rations of the other three coals in NMP and CS{sub 2} increase again except gas coal, demonstrating the further decrease in crosslinking density. This result is coincident with the extraction yield change in the mixed solvent of the thermally treated coal. For example, the extraction yield of lean coal treated at 240{sup o}C increases from 6.9% to 17.3%. FT-IR results show the removal of oxygen group of the thermally treated coals. This may explain the increase in swelling ratio and extraction yield in the mixed solvent of coal after thermal treatment. The cross-linking density of the thermally treated coal decreases because of the break of hydrogen bonds due to removal of C = 0 and -OH oxygen groups during the thermal treatment, resulting in the increases of swelling ratio and extraction yield in the mixed solvent of thermally treated coal compared with those of raw coal. 15 refs., 3 figs., 6 tabs.

  13. Proceedings of the sixth APEC Coal Flow Seminar. Coal in the new millennium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    The 6th APEC Coal Flow Seminar titled on 'The coal in the new millennium' was held in Korea from March 14 to March 16, 2000, and the proceedings were summed up. In this seminar, as to economies of coal consumption countries and coal supply countries in the APEC region, discussions were made on coal supply/demand, coal price, environmental problems and others. The keynote address was 'Twenty first century coal in the APEC region and Republic of Korea' given by Mr. Gam Yeol Lee from Korea. The main theme of the seminar was 'The status quo for the coal market,' and lectures titled on the following were given from Japan: 'The status quo of coal purchase by the Japanese electric company and its outlook' and 'A perspective of coal fired IPP under environmental constraints and deregulation of electricity.' Lectures from Australia: 'Responding to coal market growth in APEC regions by the Australian coal industry' and 'The coal price impact on coal supply and demand.' Further discussions were made on 'The long-term outlook for coal supply/demand' and 'Economies report on the outlook for coal supply/demand.' (NEDO)

  14. NOx emissions and combustibility characteristics of coal blends

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Arias, B.; Pis, J.J. [CSIC, Instituto Nacional del Carbon, Oviedo (Spain). Dept. of Energy and Environment

    2001-07-01

    In this work, a series of coals with different origin and rank were blended and several aspects of the resultant blends were studied. This included determination of the grindability of individual coals and blends by means of the Hardgrove Grindability Index (HGI), and temperature programmed combustion test, which were carried out in a thermogravimetric analyser (TG) coupled to a quadruple mass spectrometer (MS) for evolved gas analysis. Special attention was paid to the combustibility parameters and the NO emissions during blends combustion. It was found that while some coal blends present interaction between the individual coals, others do not. This behaviour was assumed to be due to the differences in coal structure and functional groups composition. 18 refs., 11 figs., 2 tabs.

  15. The World Coal Quality Inventory: A status report

    Science.gov (United States)

    Tewalt, S.J.; Willett, J.C.; Finkelman, R.B.

    2005-01-01

    National and international policy makers and industry require accurate information on coal, including coal quality data, to make informed decisions regarding international import needs and export opportunities, foreign policy, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. Unfortunately, the information needed is generally proprietary and does not exist in the public domain. The U.S. Geological Survey (USGS), in conjunction with partners in about 60 countries, is developing a digital compilation of worldwide coal quality. The World Coal Quality Inventory (WoCQI) will contain coal quality information for samples obtained from major coal beds in countries having significant coal production, as well as from many countries producing smaller volumes of coal, with an emphasis on coals currently being burned. The information that will be incorporated includes, but is not limited to, proximate and ultimate analyses; sulfur-form data; major, minor, and trace element analysis; and semi-quantitative analyses of minerals, modes of occurrence, and petrography. The coal quality information will eventually be linked to a Geographic Information System (GIS) that shows the coal basins and sample locations along with geologic, land use, transportation, industrial, and cultural information. The WoCQI will be accessible on the USGS web page and new data added periodically. This multi-national collaboration is developing global coal quality data that contain a broad array of technologic, economic, and environmental parameters, which should help to ensure the efficient and environmentally compatible use of global coal resources in the 21st century.

  16. Coal industry annual 1996

    International Nuclear Information System (INIS)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs

  17. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  18. Coal Industry Annual 1995

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995

  19. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  20. Natural radioactivity product from coal burning in PLTU Pacitan

    International Nuclear Information System (INIS)

    Sukirno; Sri Murniasih; Rosidi; Sutanto WW

    2016-01-01

    Monitoring of radioactivity in the coal-fired power plant has been carried out in the CAST-NAA laboratory at 2015. Monitoring includes analysis of soil, water, fly ash, bottom ash and coal. The basic purpose of this work is the investigation of natural radionuclide contents in coal and the actual product samples in the Pacitan power plant as a first step to estimate the radioactive in the vicinity. This paper presents the results of the analysis of radioactivity in samples of coal, fly ash and bottom ash as well as environment samples of soil and water. Ra-226, Th-232, K-40, U-235, U-238, and Pb-210 Natural radionuclides are determined by gamma spectrometry with HPGe detector. Natural radionuclide in fine grain coal, bottom ash and fly ash have concentrations range (162.182 to 0.057) Bq/kg. Radioactivity contained in soil ranges (0.041 to 169.34) Bq/kg, whereas in water ranges (0.003 to 0.045) Bq/L. According Perka BAPETEN. No. 7 of 2013. On Boundary Value Environmental Radioactivity, the results of measurement analysis contained water around the power plant Pacitan still below the limit values allowed by BAPETEN. (author)

  1. A new approach to precious metals recovery from brown coals: Correlation of recovery efficacy with the mechanism of metal-humic interactions

    Science.gov (United States)

    Bratskaya, Svetlana Yu.; Volk, Alexandra S.; Ivanov, Vladimir V.; Ustinov, Alexander Yu.; Barinov, Nikolay N.; Avramenko, Valentin A.

    2009-06-01

    The presence of gold and platinum group elements (PGE) in low-rank brown coals around the world has promoted interest in the industrial exploitation of this alternative source of precious metals. However, due to low efficacy of the methods traditionally used for the processing of mineral ores, there exists a high demand for new strategies of precious metal recovery from refractory carbonaceous materials that could significantly increase the economic potential of gold- and PGE-bearing organic resources. Here we discuss the possibility of gold and PGE recovery from alkaline extracts of brown coals using the difference in colloidal stability of bulk organic matter and its fractions enriched with precious metals. This approach enables one to avoid complete oxidation or combustion of brown coals prior to gold recovery, to minimize organic content in gold concentrate, and to obtain a valuable by-product - humic extracts. Using gold-bearing brown coals from several deposits located in the South Far East of Russia, we show that up to 95% of gold can be transferred to alkaline extracts of humic acids (HA) and up to 85% of this gold can be recovered by centrifugation at pH 4.0-6.0, when only 5-15% of HA precipitated simultaneously. We have shown that the high efficacy of gold recovery can be attributed to the occurrence of fine-dispersed elemental gold particles stabilized by HA, which differ significantly in colloidal stability from the bulk organic matter and, thus, can be separated by centrifugation.

  2. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)

    2013-04-01

    The year 2012 benefited from a growth of the consumption of hard coal at the national level as well as at the international level. Worldwide, the hard coal still is the number one energy source for power generation. This leads to an increasing demand for power plant coal. In this year, the conversion of hard coal into electricity also increases in this year. In contrast to this, the demand for coking coal as well as for coke of the steel industry is still declining depending on the market conditions. The enhanced utilization of coal for the domestic power generation is due to the reduction of the nuclear power from a relatively bad year for wind power as well as reduced import prices and low CO{sub 2} prices. Both justify a significant price advantage for coal in comparison to the utilisation of natural gas in power plants. This was mainly due to the price erosion of the inexpensive US coal which partly was replaced by the expansion of shale gas on the domestic market. As a result of this, the inexpensive US coal looked for an outlet for sales in Europe. The domestic hard coal has continued the process of adaptation and phase-out as scheduled. Two further hard coal mines were decommissioned in the year 2012. RAG Aktiengesellschaft (Herne, Federal Republic of Germany) running the hard coal mining in this country begins with the preparations for the activities after the time of mining.

  3. Nuclear assay of coal. Volume 1. Coal composition by prompt neutron activation analysis: basic experiments. Final report

    International Nuclear Information System (INIS)

    Reynolds, G.; Bozorganesh, H.; Elias, E.; Gozani, T.; Maung, T.; Orphan, V.

    1979-01-01

    Using californium-252 as a source of exciting neutrons, prompt gamma photons emitted by elemental nuclei in the coal have been measured using several detectors, including sodium--iodide and germanium--lithium. Several coal types, including bituminous, subbituminous lignite and anthracite were crushed to various top sizes and analyzed carefully be traditional ASTM wet chemistry techniques at two or three different laboratories. The elements (sulfur, hydrogen, carbon, aluminum, silicon, iron, calcium, sodium, nitrogen, and chlorine) were determined by prompt neutron activations and the quantities compared with those of the wet chemical analyses

  4. Coal prices rise

    International Nuclear Information System (INIS)

    McLean, A.

    2001-01-01

    Coking and semi hard coking coal price agreements had been reached, but, strangely enough, the reaching of common ground on semi soft coking coal, ultra low volatile coal and thermal coal seemed some way off. More of this phenomenon later, but suffice to say that, traditionally, the semi soft and thermal coal prices have fallen into place as soon as the hard, or prime, coking coal prices have been determined. The rise and rise of the popularity of the ultra low volatile coals has seen demand for this type of coal grow almost exponentially. Perhaps one of the most interesting facets of the coking coal settlements announced to date is that the deals appear almost to have been preordained. The extraordinary thing is that the preordination has been at the prescience of the sellers. Traditionally, coking coal price fixing has been the prerogative of the Japanese Steel Mills (JSM) cartel (Nippon, NKK, Kawasaki, Kobe and Sumitomo) who presented a united front to a somewhat disorganised force of predominantly Australian and Canadian sellers. However, by the time JFY 2001 had come round, the rules of the game had changed

  5. Maximizing efficiency in the transition to a coal-based economy

    International Nuclear Information System (INIS)

    Brathwaite, J.; Horst, S.; Iacobucci, J.

    2010-01-01

    Energy is the lynchpin of modern society. Since the early 1970s, growing dependence on foreign energy sources, oil in particular, has constrained US independence in foreign policy, and at times, inhibited economic stability and growth. Addressing oil dependence is politically and economically complex. Proposed solutions are multifaceted with various objectives such as energy efficiency and resource substitution. One solution is the partial transition from an oil- to coal-based economy. A number of facts support this solution including vast coal reserves in the US and the relative price stability of coal. However, several roadblocks exist. These include uncertain recoverable reserves and the immaturity of 'clean' coal technologies. This paper provides a first order analysis of the most efficient use of coal assuming the transition from oil to coal is desirable. Scenario analysis indicates two possible transition pathways: (1) bring the transportation sector onto the electric grid and (2) use coal-to-liquid fuels to directly power vehicles. The feasibility of each pathway is examined based on economic and environmental factors, among which are energy availability, affordability and efficiency, and environmental sustainability. Results indicate that partial transition of the transportation sector onto the electric grid offers the more viable solution for coal-based reduction of the US oil dependence.

  6. Health impacts of coal and coal use: Possible solutions

    Science.gov (United States)

    Finkelman, R.B.; Orem, W.; Castranova, V.; Tatu, C.A.; Belkin, H.E.; Zheng, B.; Lerch, H.E.; Maharaj, S.V.; Bates, A.L.

    2002-01-01

    Coal will be a dominant energy source in both developed and developing countries for at least the first half of the 21st century. Environmental problems associated with coal, before mining, during mining, in storage, during combustion, and postcombustion waste products are well known and are being addressed by ongoing research. The connection between potential environmental problems with human health is a fairly new field and requires the cooperation of both the geoscience and medical disciplines. Three research programs that illustrate this collaboration are described and used to present a range of human health problems that are potentially caused by coal. Domestic combustion of coal in China has, in some cases, severely affected human health. Both on a local and regional scale, human health has been adversely affected by coals containing arsenic, fluorine, selenium, and possibly, mercury. Balkan endemic nephropathy (BEN), an irreversible kidney disease of unknown origin, has been related to the proximity of Pliocene lignite deposits. The working hypothesis is that groundwater is leaching toxic organic compounds as it passes through the lignites and that these organics are then ingested by the local population contributing to this health problem. Human disease associated with coal mining mainly results from inhalation of particulate matter during the mining process. The disease is Coal Worker's Pneumoconiosis characterized by coal dust-induced lesions in the gas exchange regions of the lung; the coal worker's "black lung disease". ?? 2002 Elsevier Science B.V. All rights reserved.

  7. Thermodynamic analysis and optimization of IT-SOFC-based integrated coal gasification fuel cell power plants

    NARCIS (Netherlands)

    Romano, M.C.; Campanari, S.; Spallina, V.; Lozza, G.

    2011-01-01

    This work discusses the thermodynamic analysis of integrated gasification fuel cell plants, where a simple cycle gas turbine works in a hybrid cycle with a pressurized intermediate temperature–solid oxide fuel cell (SOFC), integrated with a coal gasification and syngas cleanup island and a bottoming

  8. Feasibility analysis and policy recommendations for the development of the coal based SNG industry in Xinjiang

    International Nuclear Information System (INIS)

    Huo, Jinwei; Yang, Degang; Xia, Fuqiang; Tang, Hong; Zhang, Wenbiao

    2013-01-01

    Based on China's basic national energy conditions of “abundant coal and scarce gas reserve”, the development of the coal based SNG industry is considered to be an effective way to solve the conflict between the supply and demand of natural gas and an important direction in the clean use of coal. Xinjiang is rich in coal resources and is listed by the central government as one of the main bases of the coal based SNG industry. Nearly 70% of the coal based SNG projects are being conducted in Xinjiang, with the goal to take advantage of the lower coal price in Xinjiang to promote the development of the coal based SNG industry. However, the coal based SNG industry is subject to the constraints of pollution, immature technology, poor economic returns, water resources and many other factors. Therefore, the development of the coal based SNG industry should be limited to industrial demonstration. Taking into account China's energy security and environmental governance, once the technology matures, the development prospect of the coal based SNG industry is broad. - Highlights: • Booming in the coal based SNG is not oriented to market, but investment-driven. • Coal based SNG is restricted by pollution, technology, economic and water resources. • The positioning of coal based SNG industry should be industrial demonstration. • The immature technique is the biggest obstacle

  9. Oxidation and carbonisation of coals: a case study of coal fire affected coals from the Wuda coalfield, Inner Mongolia, China

    Science.gov (United States)

    Kus, Jolanta; Meyer, Uwe; Ma, Jianwei; Chen-Brauchler, Dai

    2010-05-01

    At the coalfield of Wuda (Inner Mongolia, PR China) extensive underground coal fires cause widespread thermal and oxidative effects in coal seams. Within phase B of the Coal Fire Research Project of the Sino-German Initiative, methods for innovative fire-extinguishing technologies were investigated in multifaceted research approaches. Extensive investigations of oxidative and thermally affected coal seams in coal fire zone 18 were conducted in 2008 prior to application of new fire-extinguishing methods. We present results from the outcrop of coal seam No. 4 in the fire zone 18. The coal of seam No. 4 is of Early Permian age and belongs stratigraphically to the Shanxi Formation. The unaffected coal displays a high volatile bituminous A rank with a background value of random vitrinite reflectance ranging from 0.90 to 0.96 % Rr. Coal channel samples were coallected at actively extracted coal faces along multiple profiles with surface temperatures ranging from about 50° to 600°C. Microscopic examinations revealed a variety of products of coal exposure to the fire. Within coal samples, a marked rise in vitrinite reflectance from background values to 5.55% Rr (6.00 % Rmax) is encountered. In addition, a number of coal samples showed suppressed vitrinite reflectances ranging between 0.82 to 0.88% Rr. Further, seemingly heat unaffected coal samples display intensive development of oxidations rims at coal grain edges and cracks as well as shrinkage cracks and formation of iron oxides/hydroxides. Instead, thermally affected coal samples with higher coalification grade are further characterised by development of macropores (devolatilisation pores) in vitrinitic streaks, transformation of liptinite to meta-liptinite and micrinite as well as by natural coke particles of mostly porous nature and fine to coarse grained anisotropic mosaic. Coal petrographic investigations confirmed a hypothesis that both, oxidations as well as low temperature carbonisation govern the thermal

  10. COAL DUST EMISSION PROBLEM

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2016-12-01

    Full Text Available Purpose. The article aims to develop 2D numerical models for the prediction of atmospheric pollution during transportation of coal in the railway car, as well as the ways to protect the environment and the areas near to the mainline from the dust emission due to the air injection installation. Methodology. To solve this problem there were developed numerical models based on the use of the equations of motion of an inviscid incompressible fluid and mass transfer. For the numerical integration of the transport equation of the pollutant the implicit alternating-triangular difference scheme was used. For numerical integration of the 2D equation for the velocity potential the method of total approximation was used. The developed numerical models are the basis of established software package. On the basis of the constructed numerical models it was carried out a computational experiment to assess the level of air pollution when transporting bulk cargo by rail when the railway car has the air injection. Findings. 2D numerical models that belong to the class «diagnostic models» were developed. These models take into account the main physical factors affecting the process of dispersion of dust pollution in the atmosphere during transportation of bulk cargo. The developed numerical models make it possible to calculate the dust loss process, taking into account the use of the air injection of the car. They require a small cost of the computer time during practical realization at the low and medium power machines. There were submitted computational calculations to determine pollutant concentrations and the formation of the zone of pollution near the train with bulk cargo in «microscale» scale taking into account the air curtains. Originality. 2D numerical models taking into account the relevant factors influencing the process of dispersion of pollutants in the atmosphere, and the formation of the zone of pollution during transportation of bulk cargo by

  11. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS; FINAL

    International Nuclear Information System (INIS)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO(sub x) in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO(sub x) emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames-particularly under low NO(sub x) conditions. A CO/H(sub 2)/O(sub 2)/N(sub 2) flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state(sup 13)C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  12. Clean coal use in China: Challenges and policy implications

    International Nuclear Information System (INIS)

    Tang, Xu; Snowden, Simon; McLellan, Benjamin C.; Höök, Mikael

    2015-01-01

    Energy consumption in China is currently dominated by coal, a major source of air pollution and carbon emissions. The utilization of clean coal technologies is a likely strategic choice for China at present, however, although there have been many successes in clean coal technologies worldwide, they are not widely used in China. This paper examines the challenges that China faces in the implementation of such clean coal technologies, where the analysis shows that those drivers that have a negative bearing on the utilization of clean coal in China are mainly non-technical factors such as the low legal liability of atmospheric pollution related to coal use, and the lack of laws and mandatory regulations for clean coal use in China. Policies for the development of clean coal technologies are in their early stages in China, and the lack of laws and detailed implementation requirements for clean coal require resolution in order to accelerate China's clean coal developments. Currently, environmental pollution has gained widespread attention from the wider Chinese populace and taking advantage of this opportunity provides a space in which to regain the initiative to raise people’s awareness of clean coal products, and improve enterprises’ enthusiasm for clean coal. - Highlights: • Clean coal is not widely used in China due to many management issues. • Legal liability of pollution related with coal utilization is too low in China. • China is lack of laws and mandatory regulations for clean coal utilization. • It is difficult to accelerate clean coal utilization by incentive subsidies alone.

  13. Mercury emissions from coal combustion in Silesia, analysis using geostatistics

    Science.gov (United States)

    Zasina, Damian; Zawadzki, Jaroslaw

    2015-04-01

    Data provided by the UNEP's report on mercury [1] shows that solid fuel combustion in significant source of mercury emission to air. Silesia, located in southwestern Poland, is notably affected by mercury emission due to being one of the most industrialized Polish regions: the place of coal mining, production of metals, stone mining, mineral quarrying and chemical industry. Moreover, Silesia is the region with high population density. People are exposed to severe risk of mercury emitted from both: industrial and domestic sources (i.e. small household furnaces). Small sources have significant contribution to total emission of mercury. Official and statistical analysis, including prepared for international purposes [2] did not provide data about spatial distribution of the mercury emitted to air, however number of analysis on Polish public power and energy sector had been prepared so far [3; 4]. The distribution of locations exposed for mercury emission from small domestic sources is interesting matter merging information from various sources: statistical, economical and environmental. This paper presents geostatistical approach to distibution of mercury emission from coal combustion. Analysed data organized in 2 independent levels: individual, bottom-up approach derived from national emission reporting system [5; 6] and top down - regional data calculated basing on official statistics [7]. Analysis, that will be presented, will include comparison of spatial distributions of mercury emission using data derived from sources mentioned above. Investigation will include three voivodeships of Poland: Lower Silesian, Opole (voivodeship) and Silesian using selected geostatistical methodologies including ordinary kriging [8]. References [1] UNEP. Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. UNEP Chemicals Branch, Geneva, Switzerland, 2013. [2] NCEM. Poland's Informative Inventory Report 2014. NCEM at the IEP-NRI, 2014. http

  14. Technology of CCS coal utilization (outline of large-size demonstration test for CCS); CCS tan riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Konno, K [Center for Coal Utilization, Japan, Tokyo (Japan); Hironaka, H [Idemitsu Kosan Co. Ltd., Tokyo (Japan)

    1996-09-01

    The coal cartridge system (CCS) is a series of the total system, in which coal is processed centrally at a supply base for each unit of consumer areas, supplied as pulverized coal in bulk units, and coal ash after combustion is recovered and treated. The system is expected of advantages resulted from the centralized production, elimination of handling troubles, and cleanliness. Following a small scale demonstration test, a large demonstration test for practically usable scale has begun in 1990, and completed in fiscal 1995. This paper introduces the CCS and reports the result of the test. In the large demonstration test, a supply station (with manufacturing capability of 200,000 tons a year) was installed in the Aichi refinery of Idemitsu Kosan Co., Ltd., and systematization on quality design and system technologies has been carried out. Long-term continuous operation for five years was achieved (operation time of the supply facilities was about 19,000 hours) without a failure and accident, to which every elemental technology was evaluated highly, and convenience and reliability of the system was verified. 13 figs., 3 tabs.

  15. Proceedings of the sixth APEC Coal Flow Seminar. Coal in the new millennium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    The 6th APEC Coal Flow Seminar titled on 'The coal in the new millennium' was held in Korea from March 14 to March 16, 2000, and the proceedings were summed up. In this seminar, as to economies of coal consumption countries and coal supply countries in the APEC region, discussions were made on coal supply/demand, coal price, environmental problems and others. The keynote address was 'Twenty first century coal in the APEC region and Republic of Korea' given by Mr. Gam Yeol Lee from Korea. The main theme of the seminar was 'The status quo for the coal market,' and lectures titled on the following were given from Japan: 'The status quo of coal purchase by the Japanese electric company and its outlook' and 'A perspective of coal fired IPP under environmental constraints and deregulation of electricity.' Lectures from Australia: 'Responding to coal market growth in APEC regions by the Australian coal industry' and 'The coal price impact on coal supply and demand.' Further discussions were made on 'The long-term outlook for coal supply/demand' and 'Economies report on the outlook for coal supply/demand.' (NEDO)

  16. Coal -98

    International Nuclear Information System (INIS)

    Sparre, C.

    1998-01-01

    The following report deals with the use of coal and coke during 1997. Some information about technic, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from SCB have also been used. The use of steam coal for heating purposes during 1997 was 730 000 tons and about 500 000 tons lower than in 1996. The extremely high figures of 1996 were due to twice the production of electricity because of lack of hydro power. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. Some foreign analysts, however, estimate a doubled use of coal for energy use after 2020 because of the plans to phase out the nuclear power. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. 1997 these figures are 2 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1997 was 1.6 mill tons like the year before. 1.2 mill tons coke were produced. The coke consumption in the industry was 1.5 Mill tons. 0.3 mill tons of coke were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has plans to build a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has taken a fluid bed boiler for different fuels in operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm

  17. Analysis of solvent extracts from coal liquefaction in a flowing solvent reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-Ying; Feng, Jie; Xie, Ke-Chang [Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education and Shanxi Province, No. 79 Yingze West Street, Taiyuan 030024 (China); Kandiyoti, R. [Department of Chemical Engineering and Chemical Technology, Imperial College, University of London, London SW7 2BY (United Kingdom)

    2004-10-15

    Point of Ayr coal has been extracted using three solvents, tetralin, quinoline and 1-methyl-2-pyrrolidinone (NMP) at two temperatures 350 and 450 C, corresponding approximately to before and after the onset of massive covalent bond scission by pyrolysis. The three solvents differ in solvent power and the ability to donate hydrogen atoms to stabilise free radicals produced by pyrolysis of the coal. The extracts were prepared in a flowing solvent reactor to minimise secondary thermal degradation of the primary extracts. Analysis of the pentane-insoluble fractions of the extracts was achieved by size exclusion chromatography, UV-fluorescence spectroscopy in NMP solvent and probe mass. With increasing extraction temperature, the ratio of the amount having big molecular weight to that having small molecular weight in tetralin extracts was increased; the tetralin extract yield increased from 12.8% to 75.9%; in quinoline, increasing extraction temperature did not have an effect on the molecular weight of products but there was a big increase in extract yield. The extracts in NMP showed the enhanced solvent extraction power at both temperatures, with a shift in the ratio of larger molecules to smaller molecules with increasing extraction temperature and with the highest conversion of Point of Ayr coal among these three solvents at both temperatures. Solvent adducts were detected in the tetralin and quinoline extracts by probe mass spectrometry; solvent products were formed from NMP at both temperatures.

  18. Coal marketing manual 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This manual provides information on the international coal market in tabulated format. Statistics are presented for the Australian coal industry, exports, currency movements, world coal production, coal and coke imports and exports. Detailed information is provided on the Australian coal industry including mine specific summaries. Pricing summaries for thermal and coking coal in 1987, coal quality standards and specifications, trends in coal prices and stocks. Imports and exports for World coal and coke, details of shipping, international ports and iron and steel production. An exporters index of Australian and overseas companies with industry and government contacts is included. 15 figs., 67 tabs.

  19. Picobubble column flotation of fine coal

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Tao; Samuel Yu; Xiaohua Zhou; R.Q. Honaker; B.K. Parekh [University of Kentucky, Lexington, KY (United States). Department of Mining Engineering

    2008-01-15

    Froth flotation is widely used in the coal industry to clean -28 mesh (0.6 mm) or -100 mesh (0.15 mm) fine coal. A successful recovery of particles by flotation depends on efficient particle-bubble collision and attachment with minimal subsequent particle detachment from bubble. Flotation is effective in a narrow size range, nominally 10-100 {mu}m, beyond which the flotation efficiency drops sharply. A fundamental analysis has shown that use of picobubbles can significantly improve the flotation recovery of particles by increasing the probability of collision and attachment and reducing the probability of detachment. A specially designed column with a picobubble generator has been developed for enhanced recovery of fine coal particles. Picobubbles were produced based on the hydrodynamic cavitation principle. Experimental results have shown that the use of picobubbles in a 5-cm diameter column flotation increased the combustible recovery of a highly floatable coal by up to 10% and that of a poorly floatable coal by up to 40%, depending on the feed rate, collector dosage, and other flotation conditions. 14 refs.

  20. Coal in Europe: what future?: prospects of the coal industry and impacts study of the Kyoto Protocol

    International Nuclear Information System (INIS)

    Rudianto, E.

    2006-12-01

    From the industrial revolution to the 1960's, coal was massively consumed in Europe and its utilization was constantly raised. In the aftermath of World War II, coal had also an important part in reconstruction of Western Europe's economy. However, since the late 1960's, its demand has been declining. There is a (mis)conception from a number of policy makers that saying coal mining and utilizations in Europe is unnecessary. Therefore in the European Union (EU) Green Paper 2000, coal is described as an 'undesirable' fuel and the production of coal on the basis of economic criteria has no prospect. Furthermore, the commitment to the Kyoto Protocol in reducing greenhouse gases emission has aggravated this view. Faced with this situation, the quest for the future of coal industry (mining and utilization) in the lines of an energy policy is unavoidable. This dissertation did a profound inquiry trying to seek answers for several questions: Does the European Union still need coal? If coal is going to play a part in the EU, where should the EU get the coal from? What should be done to diminish negative environmental impacts of coal mining and utilization? and finally in regard to the CO 2 emission concerns, what will the state of the coal industry in the future in the EU? To enhance the analysis, a system dynamic model, called the Dynamics Coal for Europe (the DCE) was developed. The DCE is an Energy-Economy-Environment model. It synthesizes the perspectives of several disciplines, including geology, technology, economy and environment. It integrates several modules including exploration, production, pricing, demand, import and emission. Finally, the model emphasizes the impact of delays and feed-back in both the physical processes and the information and decision-making processes of the system. The calibration process for the DCE shows that the model reproduces past numbers on the scale well for several variables. Based on the results of this calibration process, it can

  1. Bulk-viscosity-driven asymmetric inflationary universe

    International Nuclear Information System (INIS)

    Waga, I.; Lima, J.A.S.; Portugal, R.

    1987-01-01

    A primordial net bosinic charge is introduced in the context of the bulk-viscosity-driven inflationary models. The analysis is carried through a macroscopic point of view in the framework of the causal thermodynamic theory. The conditions for having exponetial and generalized inflation are obtained. A phenomenological expression for the bulk viscosity coefficient is also derived. (author) [pt

  2. Risk factors for the undermined coal bed mining method

    Energy Technology Data Exchange (ETDEWEB)

    Arad, V. [Petrosani Univ., Petrosani (Romania). Dept. of Mining Engineering; Arad, S. [Petrosani Univ., Petrosani (Romania). Dept of Electrical Engineering

    2009-07-01

    The Romanian mining industry has been in a serious decline and is undergoing ample restructuring. Analyses of reliability and risk are most important during the early stages of a project in guiding the decision as to whether or not to proceed and in helping to establish design criteria. A technical accident occurred in 2008 at the Petrila coal mine involving an explosion during the exploitation of a coal seam. Over time a series of technical accidents, such as explosions and ignitions of methane gas, roof blowing phenomena or self-ignition of coal and hazard combustions have occurred. This paper presented an analysis of factors that led to this accident as well an analysis of factors related to the mining method. Specifically, the paper discussed the geomechanical characteristics of rocks and coal; the geodynamic phenomenon from working face 431; the spontaneous combustion phenomenon; gas accumulation; and the pressure and the height of the undermined coal bed. It was concluded that for the specific conditions encountered in Petrila colliery, the undermined bed height should be between 5 and 7 metres, depending on the geomechanic characteristics of coal and surrounding rocks. 8 refs., 1 tab., 3 figs.

  3. Workability of coal seams in the Upper Silesian Coal Basin

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Fels, M; Soltysik, K

    1978-04-01

    This paper presents results of an investigation on workability of coal seams of stratigraphic groups from 100 to 700 in the: Upper Silesian Coal Basin. Analyzed are 2900 petrographic logs taken in the longwall workings and in narrow openings as well as about 9000 individual samples. Workability of coal seams, floors and partings is determined. Workability is described by the indicator f, (according to the Protodyakonov shatter method) and the indicator U, (compression strength of the unshaped test samples). The mean percentage content of indivi dual petrographic groups of coal as well as the mean workability indicator, f, of coals in the stratigraphic groups of coal seams in Upper Silesia are also determined.

  4. Assessing coal burnout

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, A. [Pacific Power, Sydney, NSW (Australia)

    1999-11-01

    Recent research has allowed a quantitative description of the basic process of burnout for pulverized coals to be made. The Cooperative Research Centre for Black Coal Utilization has built on this work to develop a coal combustion model which will allow plant engineers and coal company representatives to assess their coals for combustion performance. The paper describes the model and its validation and outlines how it is run. 2 figs.

  5. Analysis of gas migration patterns in fractured coal rocks under actual mining conditions

    Directory of Open Access Journals (Sweden)

    Gao Mingzhong

    2017-01-01

    Full Text Available Fracture fields in coal rocks are the main channels for gas seepage, migration, and extraction. The development, evolution, and spatial distribution of fractures in coal rocks directly affect the permeability of the coal rock as well as gas migration and flow. In this work, the Ji-15-14120 mining face at the No. 8 Coal Mine of Pingdingshan Tian’an Coal Mining Co. Ltd., Pingdingshan, China, was selected as the test site to develop a full-parameter fracture observation instrument and a dynamic fracture observation technique. The acquired video information of fractures in the walls of the boreholes was vectorized and converted to planarly expanded images on a computer-aided design platform. Based on the relative spatial distances between the openings of the boreholes, simultaneous planar images of isolated fractures in the walls of the boreholes along the mining direction were obtained from the boreholes located at various distances from the mining face. Using this information, a 3-D fracture network under mining conditions was established. The gas migration pattern was calculated using a COMSOL computation platform. The results showed that between 10 hours and 1 day the fracture network controlled the gas-flow, rather than the coal seam itself. After one day, the migration of gas was completely controlled by the fractures. The presence of fractures in the overlying rock enables the gas in coal seam to migrate more easily to the surrounding rocks or extraction tunnels situated relatively far away from the coal rock. These conclusions provide an important theoretical basis for gas extraction.

  6. Organically bound sulphur in coal: A molecular approach

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Leeuw, J.W. de

    1992-01-01

    A critical review of literature concerning the molecular characterization of low and high molecular weight organosulphur constitutents present in coal as well as a detailed analysis of organic sulphur compounds present in flash evaporates and pyrolysates of a suite of coals ranging in sulphur

  7. Mathematical methods in geometrization of coal field

    Science.gov (United States)

    Shurygin, D. N.; Kalinchenko, V. M.; Tkachev, V. A.; Tretyak, A. Ya

    2017-10-01

    In the work, the approach to increase overall performance of collieries on the basis of an increase in accuracy of geometrization of coal thicknesses is considered. The sequence of stages of mathematical modelling of spatial placing of indicators of a deposit taking into account allocation of homogeneous sites of thickness and an establishment of quantitative interrelations between mountain-geological indicators of coal layers is offered. As a uniform mathematical method for modelling of various interrelations, it is offered to use a method of the group accounting of arguments (MGUA), one of versions of the regressive analysis. This approach can find application during delimitation between geological homogeneous sites of coal thicknesses in the form of a linear discriminant function. By an example of division into districts of a mine field in the conditions of mine “Sadkinsky” (East Donbass), the use of the complex approach for forecasting of zones of the small amplitude of disturbance of a coal layer on the basis of the discriminant analysis and MGUA is shown.

  8. Warm Cleanup of Coal-Derived Syngas: Multicontaminant Removal Process Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Spies, Kurt A.; Rainbolt, James E.; Li, Xiaohong S.; Braunberger, Beau; Li, Liyu; King, David L.; Dagle, Robert A.

    2017-02-15

    Warm cleanup of coal- or biomass-derived syngas requires sorbent and catalytic beds to protect downstream processes and catalysts from fouling. Sulfur is particularly harmful because even parts-per-million amounts are sufficient to poison downstream synthesis catalysts. Zinc oxide (ZnO) is a conventional sorbent for sulfur removal; however, its operational performance using real gasifier-derived syngas and in an integrated warm cleanup process is not well reported. In this paper, we report the optimal temperature for bulk desulfurization to be 450oC, while removal of sulfur to parts-per-billion levels requires a lower temperature of approximately 350oC. Under these conditions, we found that sulfur in the form of both hydrogen sulfide and carbonyl sulfide could be absorbed equally well using ZnO. For long-term operation, sorbent regeneration is desirable to minimize process costs. Over the course of five sulfidation and regeneration cycles, a ZnO bed lost about a third of its initial sulfur capacity, however sorbent capacity stabilized. Here, we also demonstrate, at the bench-scale, a process and materials used for warm cleanup of coal-derived syngas using five operations: 1) Na2CO3 for HCl removal, 2) regenerable ZnO beds for bulk sulfur removal, 3) a second ZnO bed for trace sulfur removal, 4) a Ni-Cu/C sorbent for multi-contaminant inorganic removal, and 5) a Ir-Ni/MgAl2O4 catalyst employed for ammonia decomposition and tar and light hydrocarbon steam reforming. Syngas cleanup was demonstrated through successful long-term performance of a poison-sensitive, Cu-based, water-gas-shift catalyst placed downstream of the cleanup process train. The tar reformer is an important and necessary operation with this particular gasification system; its inclusion was the difference between deactivating the water-gas catalyst with carbon deposition and successful 100-hour testing using 1 LPM of coal-derived syngas.

  9. Sequential solvent extraction for the modes of occurrence of selenium in coals of different ranks from the Huaibei Coalfield, China

    Directory of Open Access Journals (Sweden)

    Wang Lei

    2007-12-01

    Full Text Available Abstract Forms of selenium in bituminous coal, anthracite, and cokeite (natural coke from Huaibei Coalfield, Anhui, China, have been determined by sequential solvent extraction. The selenium content in bulk samples is 4.0, 2.4, and 2.0 μg/g in bituminous coal, anthracite, and cokeite, respectively. The six forms of selenium determined by six-step solvent extraction are water-leachable, ion-exchangeable, organic matter-associated, carbonate-associated, silicate-associated, and sulfide-associated. The predominant forms of selenium in bituminous coal are organic matter-associated (39.0%, sulfide-associated (21.1%, and silicate bound (31.8%; these three forms account for 92% of the total. The organic matter bound-selenium decrease dramatically from bituminous coal (39.0% to anthracite (11.6% and to cokeite (0%, indicating that organic matter bound selenium is converted to other forms during metamorphism of the coal, most likely sulfide-form. The sulfide-associated form increased remarkably from bituminous coal (21.1% to anthracite (50.4% and cokeite (54.5%, indicating the formation of selenium sulfide, possibly in pyrite during the transformation of bituminous coal to anthracite and cokeite. The silicate-associated selenium in bituminous coal (31.8% is much higher than that in anthracite (16.4% and cokeite (15.8%, indicating that silicate-associated selenium is partly converted to sulfide during metamorphism.

  10. Historical costs of coal-fired electricity and implications for the future

    International Nuclear Information System (INIS)

    McNerney, James; Doyne Farmer, J.; Trancik, Jessika E.

    2011-01-01

    We study the cost of coal-fired electricity in the United States between 1882 and 2006 by decomposing it in terms of the price of coal, transportation cost, energy density, thermal efficiency, plant construction cost, interest rate, capacity factor, and operations and maintenance cost. The dominant determinants of cost have been the price of coal and plant construction cost. The price of coal appears to fluctuate more or less randomly while the construction cost follows long-term trends, decreasing from 1902 to 1970, increasing from 1970 to 1990, and leveling off since then. Our analysis emphasizes the importance of using long time series and comparing electricity generation technologies using decomposed total costs, rather than costs of single components like capital. By taking this approach we find that the history of coal-fired electricity suggests there is a fluctuating floor to its future costs, which is determined by coal prices. Even if construction costs resumed a decreasing trend, the cost of coal-based electricity would drop for a while but eventually be determined by the price of coal, which fluctuates while showing no long-term trend. - Research highlights: → 125-year history highlights the dominant determinants of coal-fired electricity costs. → Results suggest a fluctuating floor to future costs, determined by coal prices. → Analysis emphasizes importance of comparing technologies using decomposed total costs.

  11. Computer-aided planning of brown coal seam mining in regard to coal quality

    Energy Technology Data Exchange (ETDEWEB)

    Ciesielski, R.; Lehmann, A.; Rabe, H.; Richter, S.

    1988-09-01

    Discusses features of the geologic SORVER software developed at the Freiberg Fuel Institute, GDR. The program processes geologic data from exploratory wells, petrographic characteristics of a coal seam model, technological mining parameters and coal quality requirements of consumers. Brown coal reserves of coking coal, gasification coal, briquetting coal and steam coal are calculated. Vertical seam profiles and maps of seam horizon isolines can be plotted using the program. Coal quality reserves along the surface of mine benches, mining block widths and lengths for excavators, maximum possible production of individual coal qualities by selective mining, and coal quality losses due to mining procedures are determined. The program is regarded as a means of utilizing deposit reserves more efficiently. 5 refs.

  12. Hospitalization patterns associated with Appalachian coal mining.

    Science.gov (United States)

    Hendryx, Michael; Ahern, Melissa M; Nurkiewicz, Timothy R

    2007-12-01

    The goal of this study was to test whether the volume of coal mining was related to population hospitalization risk for diseases postulated to be sensitive or insensitive to coal mining by-products. The study was a retrospective analysis of 2001 adult hospitalization data (n = 93,952) for West Virginia, Kentucky, and Pennsylvania, merged with county-level coal production figures. Hospitalization data were obtained from the Health Care Utilization Project National Inpatient Sample. Diagnoses postulated to be sensitive to coal mining by-product exposure were contrasted with diagnoses postulated to be insensitive to exposure. Data were analyzed using hierarchical nonlinear models, controlling for patient age, gender, insurance, comorbidities, hospital teaching status, county poverty, and county social capital. Controlling for covariates, the volume of coal mining was significantly related to hospitalization risk for two conditions postulated to be sensitive to exposure: hypertension and chronic obstructive pulmonary disease (COPD). The odds for a COPD hospitalization increased 1% for each 1462 tons of coal, and the odds for a hypertension hospitalization increased 1% for each 1873 tons of coal. Other conditions were not related to mining volume. Exposure to particulates or other pollutants generated by coal mining activities may be linked to increased risk of COPD and hypertension hospitalizations. Limitations in the data likely result in an underestimate of associations.

  13. The comparative analysis of heat transfer efficiency in the conditions of formation of ash deposits in the boiler furnaces, with taking into account the crystallization of slag during combustion of coal and water-coal fuel

    Science.gov (United States)

    Salomatov, V. V.; Kuznetsov, G. V.; Syrodoy, S. V.

    2017-11-01

    The results of the numerical simulation of heat transfer from the combustion products of coal and coal-water fuels (CWF) to the internal environment. The mathematical simulation has been carried out on the sample of the pipe surfaces of the combustion chamber of the boiler unit. The change in the characteristics of heat transfer (change of thermochemical characteristics) in the conditions of formation of the ash deposits have been taken into account. According to the results of the numerical simulation, the comparative analysis of the efficiency of heat transfer has been carried out from the furnace environment to the inside pipe coolant (water, air, or water vapor) from the combustion of coal and coal-water fuels. It has been established that, in the initial period of the boiler unit operation during coal fuel combustion the efficiency of heat transfer from the combustion products of the internal environment is higher than when using CWF. The efficiency of heat transfer in CWF combustion conditions is more at large times (τ≥1.5 hours) of the boiler unit. A significant decrease in heat flux from the combustion products to the inside pipe coolant in the case of coal combustion compared to CWF has been found. It has been proved that this is due primarily to the fact that massive and strong ash deposits are formed during coal combustion.

  14. Greenhouse gas implications of using coal for transportation: Life cycle assessment of coal-to-liquids, plug-in hybrids, and hydrogen pathways

    International Nuclear Information System (INIS)

    Jaramillo, Paulina; Samaras, Constantine; Wakeley, Heather; Meisterling, Kyle

    2009-01-01

    Using coal to produce transportation fuels could improve the energy security of the United States by replacing some of the demand for imported petroleum. Because of concerns regarding climate change and the high greenhouse gas (GHG) emissions associated with conventional coal use, policies to encourage pathways that utilize coal for transportation should seek to reduce GHGs compared to petroleum fuels. This paper compares the GHG emissions of coal-to-liquid (CTL) fuels to the emissions of plug-in hybrid electric vehicles (PHEV) powered with coal-based electricity, and to the emissions of a fuel cell vehicle (FCV) that uses coal-based hydrogen. A life cycle approach is used to account for fuel cycle and use-phase emissions, as well as vehicle cycle and battery manufacturing emissions. This analysis allows policymakers to better identify benefits or disadvantages of an energy future that includes coal as a transportation fuel. We find that PHEVs could reduce vehicle life cycle GHG emissions by up to about one-half when coal with carbon capture and sequestration is used to generate the electricity used by the vehicles. On the other hand, CTL fuels and coal-based hydrogen would likely lead to significantly increased emissions compared to PHEVs and conventional vehicles using petroleum-based fuels.

  15. COAL Conference Poster

    OpenAIRE

    Brown, Taylor Alexander; McGibbney, Lewis John

    2017-01-01

    COAL Conference Poster This archive contains the COAL conference poster for the AGU Fall Meeting 2017 by Taylor Alexander Brown. The Inkscape SVG source is available at https://github.com/capstone-coal/coal-conference-poster/ under the Creative Commons Attribution-ShareAlike 4.0 International license.

  16. Coal characteristics from 'Priskupshtina' deposit and technological parameters for briquetting (Macedonia)

    International Nuclear Information System (INIS)

    Damjanovski, Dragan

    1998-01-01

    The use of small class coal as well as the lack of formed fuel needed for the industry and for the consumer goods has been a long lasting problem, and a challenge for the researchers of the Republic of Macedonia. For that purpose, all-inclusive analysis of the quality of the coals in Macedonia, their reserves and technical characteristics, as well as analysis of the petrographic structure were made. Classification of the deposits and the research for the possibility of making briquettes was done, too. Laboratory investigations in the coal deposit 'Priskupshtina' were carried out. The analysis of the coal briquetting show that the expected results in coordination with the required standards were not obtained. Spatially the results from the coal calorific value, its hardness and atmospheric resistance. Standard methods were used for the researches without connective means and the achieved results were mutually correlated. Technical-economic verification is necessary in the further process. (Author)

  17. Post-test analysis of 20kW molten carbonate fuel cell stack operated on coal gas. Final report, August 1993--February 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    A 20kW carbonate fuel cell stack was operated with coal gas for the first time in the world. The stack was tested for a total of 4,000 hours, of which 3,900 hours of testing was conducted at the Louisiana Gasification Technology Incorporated, Plaquemine, Louisiana outdoor site. The operation was on either natural gas or coal gas and switched several times without any effects, demonstrating duel fuel capabilities. This test was conducted with 9142 kJ/m{sup 3} (245 Btu/cft) coal gas provided by a slipstream from Destec`s entrained flow, slagging, slurry-fed gasifier equipped with a cold gas cleanup subsystem. The stack generated up to 21 kW with this coal gas. Following completion of this test, the stack was brought to Energy Research Corporation (ERC) and a detailed post-test analysis was conducted to identify any effects of coal gas on cell components. This investigation has shown that the direct fuel cell (DFC) can be operated with properly cleaned and humidified coal-as, providing stable performance. The basic C direct fuel cell component materials are stable and display normal stability in presence of the coal gas. No effects of the coal-borne contaminants are apparent. Further cell testing at ERC 1 17, confirmed these findings.

  18. Analysis of material flow in a utillzation technology of low grade manganese ore and sulphur coal complementary

    Science.gov (United States)

    Wang, Bo-Zhi; Deng, Biao; Su, Shi-Jun; Ding, Sang-Lan; Sun, Wei-Yi

    2018-03-01

    Electrolytic manganese is conventionally produced through low-grade manganese ore leaching in SO2, with the combustion of high sulfur coal. Subsequently the coal ash and manganese slag, produced by the combustion of high sulfur coal and preparation of electrolytic manganese, can be used as raw ingredients for the preparation of sulphoaluminate cement. In order to realize the `coal-electricity-sulfur-manganese-building material' system of complementary resource utilization, the conditions of material inflow and outflow in each process were determined using material flow analysis. The material flow models in each unit and process can be obtained by analyzed of material flow for new technology, and the input-output model could be obtained. Through the model, it is possible to obtain the quantity of all the input and output material in the condition of limiting the quantity of a substance. Taking one ton electrolytic manganese as a basis, the quantity of other input material and cements can be determined with the input-output model. The whole system had thusly achieved a cleaner production level. Therefore, the input-output model can be used for guidance in practical production.

  19. Thermal processing of Khoot coal and characterization of obtained solid and liquid products

    Directory of Open Access Journals (Sweden)

    S Batbileg

    2014-12-01

    Full Text Available On 21st January 2015, the abstract of this paper was replaced with the correct abstract.The coal of Khoot deposit have been investigated and determined the technical characteristics, elemental and petrographical maceral compositions. On the basis of proximate, ultimate, petrographic and IR analysis results have been confirmed that the Khoot coal is a sub-bituminous coal. The hard residue after pyrolysis have been activated by heated water steam and determined the iodine and methylene blue adsorption of initial coal and activated carbon samples from pyrolysis hard residue. The porosity structure of initial coal, activated carbon of pyrolysis hard residue and hard residue after thermolysis (thermal dissolution have been determined by SEM analysis. The liquid tar product of thermolysis of Khoot coal was investigated by FTIR, 13C and 1H NMR spectrometric analysis. The results of thermolysis of Khoot coal in tetralin with constant mass ratio between coal and tetralin (1:1.8 at 450°C show that 60.8% of liquid product can be obtained after thermolysis of the coal organic mass.DOI: http://doi.dx.org/10.5564/mjc.v15i0.326 Mongolian Journal of Chemistry 15 (41, 2014, p66-72

  20. SOME CHARACTERISTICS OF THE "KONGORA" - TOMISLAVGRAD COAL FIELD (WEST HERZEGOVINA

    Directory of Open Access Journals (Sweden)

    Stanislav Živković

    1997-12-01

    Full Text Available According to it's energy potential »Kongora« coal field is very important source of energy. Coal strech, spreading and laying and proportion between coal and barren give good presumption for a rentabile surface exploitation. The coal analyses, specially analysis of sulphur content showed, that content of harm component on the update technology level is in permissible limits, and exploitation in thermal power plants will not destroy environment (the paper is published in Croatian.

  1. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  2. Contents and occurrence of cadmium in the coals from Guizhou province, China.

    Science.gov (United States)

    Song, Dangyu; Wang, Mingshi; Zhang, Junying; Zheng, Chuguang

    2008-10-01

    Eleven raw coal samples were collected from Liuzhi, Suicheng, Zunyi, Xingren, Xingyi, and Anlong districts in Guizhou Province, Southwest China. The content of cadmium (Cd) in coal was determined using inductively coupled plasma mass-spectrometry (ICP-MS). Cd contents ranged from 0.146 to 2.74 ppm (whole coal basis), with an average of 1.09 ppm. In comparison with the arithmetic means of Cd in Chinese coal (0.25 ppm), this is much higher. In order to find its occurrence in coal, float-sink analysis and a coal flotation test by progressive release were conducted on two raw coal samples. The content of the Cd and ash yield of the flotation products were determined. The organic matter was removed by low-temperature ashing (LTA). X-ray diffraction (XRD) was used to differentiate the main, minor, and trace minerals in the LTA from different flotation subproducts. Quartz, kaolinite, pyrite, and calcite were found to dominate the mineral matters, with a proportion of anatase, muscovite, and illite. Then quantitative analysis of minerals in LTA was conducted using material analysis using diffraction (MAUD) based on the Rietveld refinement method. Results show that Cd has a strong association with kaolinite.

  3. Contents and occurrence of cadmium in the coals from Guizhou Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Dangyu Song; Mingshi Wang; Junying Zhang; Chuguang Zheng [Henan Polytechnic University, Jiaozuo (China). Institute of Resources and Environment

    2008-10-15

    Eleven raw coal samples were collected from Liuzhi, Suicheng, Zunyi, Xingren, Xingyi, and Anlong districts in Guizhou Province, Southwest China. The content of cadmium (Cd) in coal was determined using inductively coupled plasma mass-spectrometry (ICP-MS). Cd contents ranged from 0.146 to 2.74 ppm (whole coal basis), with an average of 1.09 ppm. In comparison with the arithmetic means of Cd in Chinese coal (0.25 ppm), this is much higher. In order to find its occurrence in coal, float-sink analysis and a coal flotation test by progressive release were conducted on two raw coal samples. The content of the Cd and ash yield of the flotation products were determined. The organic matter was removed by low-temperature ashing (LTA). X-ray diffraction (XRD) was used to differentiate the main, minor, and trace minerals in the LTA from different flotation subproducts. Quartz, kaolinite, pyrite, and calcite were found to dominate the mineral matters, with a proportion of anatase, muscovite, and illite. Then quantitative analysis of minerals in LTA was conducted using material analysis using diffraction (MAUD) based on the Rietveld refinement method. Results show that Cd has a strong association with kaolinite.

  4. Coal Mine Permit Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — ESRI ArcView shapefile depicting New Mexico coal mines permitted under the Surface Mining Control and Reclamation Act of 1977 (SMCRA), by either the NM Mining these...

  5. Analysis of factors determining enterprise value of company merger and acquisition: A case study of coal in Kalimantan, Indonesia

    Science.gov (United States)

    Candra, Ade; Pasasa, Linus A.; Simatupang, Parhimpunan

    2015-09-01

    The main purpose of this paper is looking at the relationship between the factors of technical, financial and legal with enterprise value in mergers and acquisitions of coal companies in Kalimantan, Indonesia over the last 10 years. Data obtained from secondary data sources in the company works and from published data on the internet. The data thus obtained are as many as 46 secondary data with parameters resources, reserves, stripping ratio, calorific value, distance from pit to port, and distance from ports to vessels, production per annum, the cost from pit to port, from port to vessel costs, royalties, coal price and permit status. The data was analysis using structural equation modeling (SEM) to determine the factors that most significant influence enterprise value of coal company in Kalimantan. The result shows that a technical matter is the factor that most affects the value of enterprise in coal merger and acquisition company. Financial aspect is the second factor that affects the enterprise value.

  6. Coal consumption, CO2 emission and economic growth in China: Empirical evidence and policy responses

    International Nuclear Information System (INIS)

    Bloch, Harry; Rafiq, Shuddhasattwa; Salim, Ruhul

    2012-01-01

    This article investigates the relationship between coal consumption and income in China using both supply-side and demand-side frameworks. Cointegration and vector error correction modeling show that there is a unidirectional causality running from coal consumption to output in both the short and long run under the supply-side analysis, while there is also a unidirectional causality running from income to coal consumption in the short and long run under the demand-side analysis. The results also reveal that there is bi-directional causality between coal consumption and pollutant emission both in the short and long run. Hence, it is very difficult for China to pursue a greenhouse gas abatement policy through reducing coal consumption. Switching to greener energy sources might be a possible alternative in the long run. - Highlights: ► Both supply-side and demand-side frameworks are used. ► Unidirectional causality from coal consumption to output in supply-side analysis. ► Unidirectional causality from income to coal consumption in demand-side analysis. ► Bi-directional causality between coal consumption and pollutant emission.

  7. Estimation for origin of coals on biomaker analysis; Jinko sekitan oyobi tennen sekitan no biomaker bunseki ni yoru sekitan kigen busshitsu no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y. [Geological Survey of Japan, Tsukuba (Japan); Sugimoto, Y. [National Institute of Materials and Chemical Research, Tsukuba (Japan); Okada, K. [Coal Mining Research Center, Tokyo (Japan)

    1996-10-28

    In order to study coal production processes, an estimation study was carried out on coal originating materials by using biomaker analysis. Test samples are original coals collected directly from a mine in Hokkaido (not having been subjected cleaning). Mixing and solvent extraction were performed after pulverization, and then tests were given on saturated hydrocarbon components divided by using a silicagel column chromatograph for the present study. It can be known from n-alkane distribution in the coal that low molecular alkane increases with increasing degree of coalification. Artificial coal made by wet-heating Metasequoia leaves contains only little n-alkane. Diterpenoid compound exists in the Taiheiyo and Akabira coals. Tetra-cyclic diterpernoid is contained abundantly in subtropical coniferous trees, serving as a parameter for warm environment. The compound is contained also in the Fushun coal, but not in Indonesian coals. Hopanoid constitution shows very high similarity, but H/C atomic ratio may vary largely even if the coalification is at the same degree. This is likely to be caused from difference in originating materials. Hopanoids are bacteria attributed substances, whose activities are not affected by the originating materials. 2 figs., 1 tab.

  8. What about coal? Interactions between climate policies and the global steam coal market until 2030

    International Nuclear Information System (INIS)

    Haftendorn, C.; Kemfert, C.; Holz, F.

    2012-01-01

    Because of economic growth and a strong increase in global energy demand the demand for fossil fuels and therefore also greenhouse gas emissions are increasing, although climate policy should lead to the opposite effect. The coal market is of special relevance as coal is available in many countries and often the first choice to meet energy demand. In this paper we assess possible interactions between climate policies and the global steam coal market. Possible market adjustments between demand regions through market effects are investigated with a numerical model of the global steam coal market: the “COALMOD-World” model. This equilibrium model computes future trade flows, infrastructure investments and prices until 2030. We investigate three specific designs of climate policy: a unilateral European climate policy, an Indonesian export-limiting policy and a fast-roll out of carbon capture and storage (CCS) in the broader context of climate policy and market constraints. We find that market adjustment effects in the coal market can have significant positive and negative impacts on the effectiveness of climate policies. - Highlights: ► Interactions between climate policy and the global coal market until 2030 modeled. ► Analysis with the numerical model: “COALMOD-World”. ► Unilateral European climate policy partly compensated by market adjustment effects. ► A fast roll-out of CCS can lead to positive market adjustment effects. ► An export restricting supply-side policy generates virtuous market adjustments.

  9. Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shunchun, E-mail: epscyao@scut.edu.cn [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); State Key Laboratory of Pulsed Power Laser Technology, Electronic Engineering Institute, Hefei 230037 (China); Xu, Jialong; Dong, Xuan; Zhang, Bo; Zheng, Jianping [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); Lu, Jidong, E-mail: jdlu@scut.edu.cn [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China)

    2015-08-01

    The on-line measurement of coal is extremely useful for emission control and combustion process optimization in coal-fired plant. Laser-induced breakdown spectroscopy was employed to directly analyze coal particle flow. A set of tapered tubes were proposed for beam-focusing the coal particle flow to different diameters. For optimizing the measurement of coal particle flow, the characteristics of laser-induced plasma, including optical breakdown, the relative standard deviation of repeated measurement, partial breakdown spectra ratio and line intensity, were carefully analyzed. The comparison of the plasma characteristics among coal particle flow with different diameters showed that air breakdown and the random change in plasma position relative to the collection optics could significantly influence on the line intensity and the reproducibility of measurement. It is demonstrated that the tapered tube with a diameter of 5.5 mm was particularly useful to enrich the coal particles in laser focus spot as well as to reduce the influence of air breakdown and random changes of plasma in the experiment. - Highlights: • Tapered tube was designed for beam-focusing the coal particle flow as well as enriching the particles in laser focus spot. • The characteristics of laser-induced plasma of coal particle flow were investigated carefully. • An appropriate diameter of coal particle flow was proven to benefit for improving the performance of LIBS measurement.

  10. Presence and HRCT quantification of bronchiectasis in coal workers

    International Nuclear Information System (INIS)

    Altin, Remzi; Savranlar, Ahmet; Kart, Levent; Mahmutyazicioglu, Kamran; Ozdemir, Huseyin; Akdag, Beyza; Gundogdu, Sadi

    2004-01-01

    Purpose: The purpose of this study was to evaluate the presence of bronchiectasis in coal workers with or without coal worker pneumoconiosis (CWP) and to assess the extent of bronchiectasis, severity of bronchial wall dilatation and thickening by high resolution computed tomography (HRCT). Materials and methods: The retrospective study consisted of HRCT archives of 93 coal workers. The coal workers with previous diagnosis of COPD (six), asthma (one) and tuberculosis (three) were excluded. Five coal workers with progressive massive fibrosis were not included into the study. The resulting patient group consisted of 78 patients (43 CWP; 35 non-CWP). Pneumoconiosis profusions of CWP workers were between p0/1 and p2/2 according to ILO 1980 chest X-ray classification. HRCT examinations of all subjects were evaluated for the presence, extent, dilatation and thickness of bronchiectasis. Analysis of extent, dilatation and thickness were performed according to established criteria. Results: The diagnosis of bronchiectasis was put on 19 of 43 CWP (44.1%) and 7 of 35 non-CWP workers (20.0%). There were statistically significant differences between bronchiectasis positive and negative coal workers with CWP concerning age and exposure duration (P = 0.012 and 0.009, respectively). Then, multiple logistic regression analysis was performed to define exact risk factors. Exposure duration was only found to be related with presence of bronchiectasis [(odds ratio) OR = 1.494, 95% confidence interval 1.168-1.912]. Conclusions: The data from the present study shows that bronchiectasis is frequent and severe in CWP workers than without. Bronchiectasis is influenced by coal dust exposure. Thus, coal dust protection measures must be controlled efficiently to prevent bronchiectasis in coal workers

  11. Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base

    International Nuclear Information System (INIS)

    Croft, Gregory D.; Patzek, Tad W.

    2009-01-01

    By applying the multi-Hubbert curve analysis to coal production in the United States, we demonstrate that anthracite production can be modeled with a single Hubbert curve that extends to the practical end of commercial production of this highest-rank coal. The production of bituminous coal from existing mines is about 80% complete and can be carried out at the current rate for the next 20 years. The production of subbituminous coal from existing mines can be carried out at the current rate for 40-45 years. Significant new investment to extend the existing mines and build new ones would have to commence in 2009 to sustain the current rate of coal production, 1 billion tons per year, in 2029. In view of the existing data, we conclude that there is no spare coal production capacity of the size required for massive coal conversion to liquid transportation fuels. Our analysis is independent of other factors that will prevent large-scale coal liquefaction projects: the inefficiency of the process and either emissions of greenhouse gases or energy cost of sequestration

  12. Gas and coal competition in the EU Power Sector

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2014-06-01

    Despite its many assets, a confluence of factors - including flat electricity demand, rising use of renewable energy sources, falling wholesale electricity market prices, high gas prices relative to coal and low CO 2 prices - has eroded the competitiveness of natural gas in the EU power sector. The share of natural gas in the EU electricity mix has decreased from 23% in 2010 to 20.5% in 2012. By contrast, coal-fired power stations have been operating at high loads, increasing coal demand by the sector. This thorough analysis by CEDIGAZ of gas, coal and CO 2 dynamics in the context of rising renewables is indispensable to understand what is at stake in the EU power sector and how it will affect future European gas demand. Main findings of the report: - Coal is likely to retain its cost advantage into the coming decade: The relationship between coal, gas and CO 2 prices is a key determinant of the competition between gas and coal in the power sector and will remain the main driver of fuel switching. A supply glut on the international coal market (partly because of an inflow of US coal displaced by shale gas) has led to a sharp decline in coal prices while gas prices, still linked to oil prices to a significant degree, have increased by 42% since 2010. At the same time, CO 2 prices have collapsed, reinforcing coal competitiveness. Our analysis of future trends in coal, gas and CO 2 prices suggests that coal competitive advantage may well persist into the coming decade. - But coal renaissance may still be short-lived: Regulations on emissions of local pollutants, i.e. the Large Plant Combustion Directive (LCPD) and the Industrial Emissions Directive (IED) that will succeed it in 2016, will lead to the retirement of old, inefficient coal-fired power plants. Moreover, the rapid development of renewables, which so far had only impacted gas-fired power plants is starting to take its toll on hard coal plants' profitability. This trend is reinforced by regulation at EU or

  13. Promotive study on preparation of basis for foreign coal import. Study on coal renaissance

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, Yoji [Japan Economic Research Institute, Tokyo

    1988-09-16

    This is an interim report on the coal renaissance study carried out in 1987 as a part of the Promotive Study on Preparation of Basis for Foreign Coal Import. The background and ideology of coal renaissance, future aspect of demand for coal, problems pertaining to the expansion of application, and a proposal for the expansion of coal usage are described in order. The role of coal expected as an alternate fuel for petroleum, development of new application fields for coal, conversion to coal, contribution of Japan to the stablization of international coal supply are outlined. Coal renaissance aims, based on technology, at stimulation of coal demand, change in the image of coal, and the utilization of the accumulated abundant knowhow. The aspect of coal demand in 2000, solution and current status of various restricting factors relating to the use of coal in general industry, and the remaining problems are discussed. 6 figures, 10 tables.

  14. ACR coal 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This publication is a comprehensive reference document on production, exports, prices and demand of coal in world markets. A forecast of demand by coal type and country up to the year 2000 is provided. Statistics of the Australian export industry are complemented by those of South Africa, USA, Canada, Indonesia, China, C.I.S. and Colombia. A very comprehensive coal quality specification for nearly all the coal brands exported from Australia, as well as leading non-Australian coal brands, is included.

  15. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Teissie, J.; Bourgogne, D. de; Bautin, F. [TotalFinaElf, La Defense, 92 - Courbevoie (France)

    2001-12-15

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  16. Coal Mines Security System

    OpenAIRE

    Ankita Guhe; Shruti Deshmukh; Bhagyashree Borekar; Apoorva Kailaswar; Milind E.Rane

    2012-01-01

    Geological circumstances of mine seem to be extremely complicated and there are many hidden troubles. Coal is wrongly lifted by the musclemen from coal stocks, coal washeries, coal transfer and loading points and also in the transport routes by malfunctioning the weighing of trucks. CIL —Coal India Ltd is under the control of mafia and a large number of irregularities can be contributed to coal mafia. An Intelligent Coal Mine Security System using data acquisition method utilizes sensor, auto...

  17. A Study of Coal Fire Propagation with Remotely Sensed Thermal Infrared Data

    Directory of Open Access Journals (Sweden)

    Hongyuan Huo

    2015-03-01

    Full Text Available Coal fires are a common and serious problem in most coal-bearing countries. Thus, it is very important to monitor changes in coal fires. Remote sensing provides a useful technique for investigating coal fields at a large scale and for detecting coal fires. In this study, the spreading direction of a coal fire in the Wuda Coal Field (WCF, northwest China, was analyzed using multi-temporal Landsat Thematic Mapper (TM and Enhanced Thematic Mapper (ETM+ thermal infrared (TIR data. Using an automated method and based on the land surface temperatures (LST that were retrieved from these thermal data, coal fires related to thermal anomalies were identified; the locations of these fires were validated using a coal fire map (CFM that was developed via field surveys; and the cross-validation of the results was also carried out using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER thermal infrared images. Based on the results from longtime series of satellite TIR data set, the spreading directions of the coal fires were determined and the coal fire development on the scale of the entire coal field was predicted. The study delineated the spreading direction using the results of the coal fire dynamics analysis, and a coal fire spreading direction map was generated. The results showed that the coal fires primarily spread north or northeast in the central part of the WCF and south or southwest in the southern part of the WCF. In the northern part of the WCF, some coal fires were spreading north, perhaps coinciding with the orientation of the coal belt. Certain coal fires scattered in the northern and southern parts of the WCF were extending in bilateral directions. A quantitative analysis of the coal fires was also performed; the results indicate that the area of the coal fires increased an average of approximately 0.101 km2 per year.

  18. On-conveyor belt determination of ash in coal

    International Nuclear Information System (INIS)

    Sowerby, B.; Lim, C.S.; Abernethy, D.A.; Liu, Y.; Maguire, P.A.

    1997-01-01

    A laboratory feasibility study has been carried out on new and advanced neutron and gamma-ray analysis systems for the direct on-conveyor belt analysis of ash in coal without the need for sample by-lines. Such an analysis system could deliver the combined advantages of a direct on-conveyor configuration with new and accurate analysis techniques. An industry survey of 18 coal companies carried out in early 1996 indicated that accurate on-belt ash analysis is of the highest priority. Subsequent laboratory work has focussed on the investigation of methods with the potential for improving the accuracy of ash content measurement relative to existing on-belt ash analysers, the most widely-used of which are based on dual energy gamma-ray transmission (DUET), which is sensitive to variations in ash composition. The current work indicates that on-belt neutron/gamma-ray techniques combined with advanced spectral analysis techniques show promise for development into an on-belt ash analysis system which is significantly less sensitive to composition changes than DUET and which analyses a much larger proportion of coal on the belt, thus eliminating some key sources of analysis error

  19. Report on the achievements in the Sunshine Project in fiscal 1986. Surveys on coal type selection and surveys on coal types (Data file); 1986 nendo tanshu sentei chosa tanshu chosa seika hokokusho. Data file

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-03-01

    This data file is a data file concerning coal types for liquefaction in the report on the achievements in the surveys on coal type selection and on coal types (JN0040843). Such items of information were filed as existence and production of coals, various kinds of analyses, and test values relative to data for liquefaction tests that have been collected and sent to date. The file consists of two files of a test sample information file related to existence and production of coals and coal mines, and an analysis and test file accommodating the results of different analyses and tests. However, the test sample information files (1) through (6) have not been put into order on such items of information as test samples and sample collection, geography, geology, ground beds, coal beds, coal mines, development and transportation. The analysis and test file contains (7) industrial analyses, (8) element analysis, (9) ash composition, (10) solubility of ash, (11) structure analysis, (12) liquefaction characteristics (standard version), (13) analysis of liquefaction produced gas, (14) distillation characteristics of liquefaction produced oil, (15) liquefaction characteristics (simplified version), (16) analysis of liquefaction produced gas (simplified version), and (17) distillation characteristics of liquefaction produced oil (simplified version). However, the information related to liquefaction test using a tubing reactor in (15) through (17) has not been put into order. (NEDO)

  20. Development of pulse neutron coal analyzer

    International Nuclear Information System (INIS)

    Jing Shiwie; Gu Deshan; Qiao Shuang; Liu Yuren; Liu Linmao; Jing Shiwei

    2005-01-01

    This article introduced the development of pulsed neutron coal analyzer by pulse fast-thermal neutron analysis technology in the Radiation Technology Institute of Northeast Normal University. The 14 MeV pulse neutron generator and bismuth germanate detector and 4096 multichannel analyzer were applied in this system. The multiple linear regression method employed to process data solved the interferential problem of multiple elements. The prototype (model MZ-MKFY) had been applied in Changshan and Jilin power plant for about a year. The results of measuring the main parameters of coal such as low caloric power, whole total water, ash content, volatile content, and sulfur content, with precision acceptable to the coal industry, are presented