WorldWideScience

Sample records for coal ash agglomeration

  1. The research and development of pressurized ash agglomerating fluidized bed coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Fang Yitian; Wu Jinhu; Chen Hanshi [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    1999-11-01

    Coal gasification tests in a pressurized ash agglomeration fluidized bed coal gasifier were carried out. The effects of pressure and temperature on the gasification capacity, carbon conversion, carbon content in discharged ash and gas composition were investigated. Gasification capacity was shown to be in direct proportion to operation pressure. Tests of hot gas dedusting using a moving granular bed were also carried out. 3 refs., 6 figs., 2 tabs.

  2. Advanced physical fine coal cleaning spherical agglomeration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  3. Agglomeration of coal fines for premium fuel application

    International Nuclear Information System (INIS)

    Atalay, A.; Zaman, M.D.

    1992-01-01

    This paper reports on fine coal in liquid suspension, which can be agglomerated in a number of ways. One of the oldest procedures involves the addition of electrolyte to the suspension to cause a reduction in the zeta potential and allow colliding particles to agglomerate. A second method involves the use of polymeric flocculants to bridge between particles. Both of these technologies are being used in the wastewater treatment plants for removal of fine waste particles from contaminated water. A third method involves the addition of a second immiscible liquid preferentially to wet the particles and cause adhesion by capillary interfacial forces. While the bonding forces in the first two methods are small and result in rather weak and voluminous agglomerates, the third method is postulated to produce more dense and much stronger agglomerates. In the case of fine coals, the carbonaceous constituents can be agglomerated and recovered from the aqueous suspension with many different coagulants. Inorganic or ash-forming constituents are also agglomerated along with the fine coal particles. As the froth floatation, agglomeration using coal and colloidal dust to effect a separation. Froth floatation, however, becomes less effective where extremely fine particles of cal must be treated or if there is considerable clay-size particle present. In contrast, there appears to be virtually no lower limit on the particle size suitable for agglomeration uses

  4. Coal gold agglomeration: an innovative approach to the recovery of gold in environmentally sensitive areas

    Energy Technology Data Exchange (ETDEWEB)

    Wall, N.C.; Hughes-Narborough, C.; Willey, G. [Davy (Stockton) Ltd., Stockton-on-Tees (United Kingdom)

    1994-11-01

    Coal Gold Agglomeration (CGA) was developed by BP Minerals and involves the selective recovery of oleophilic gold particles from an aqueous slurry into coal-oil agglomerates. These agglomerates are allowed to build up to a high gold loading and are then separated from the slurry. The loaded agglomerates are burned and the gold is finally recovered from the ash residue by dissolution and precipitation or by direct smelting. 6 figs.

  5. Development of clean coal and clean soil technologies using advanced agglomeration technologies

    International Nuclear Information System (INIS)

    Ignasiak, B.; Pawlak, W.; Szymocha, K.; Marr, J.

    1990-04-01

    The specific objectives of the bituminous coal program were to explore and evaluate the application of advanced agglomeration technology for: (1)desulphurization of bituminous coals to sulphur content acceptable within the current EPA SO 2 emission guidelines; (2) deashing of bituminous coals to ash content of less than 10 percent; and (3)increasing the calorific value of bituminous coals to above 13,000 Btu/lb. (VC)

  6. Softening behaviour of brown coal ashes. Influence of ash components and gas atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hegermann, R; Huettinger, K J [Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Chemische Technik

    1990-03-01

    The softening behaviour of brown coal ashes during gasification is important for three reasons: (1) Formation of large agglomerates, (2) inactivation of catalytically active ash components, (3) encapsulation of parts of the coal. The softening behaviour of the ashes was studied with a high temperature dilatometer at ambient pressure in various atmospheres (air, CO{sub 2}, Ar/H{sub 2}O, Ar, H{sub 2}/H{sub 2}O, H{sub 2}) using a push-rod with a conical tip. The heating rate was 5 Kmin{sup -1}, the final temperature 1000deg C, the residence time 1 h. (orig.).

  7. Rheology of fly ashes from coal and biomass co-combustion

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming

    2010-01-01

    The presence of large amounts of alkali metals, chlorine and sulphur in most biomass fuels - compared to coal - can create serious ash-related problems such as deposition, agglomeration and/or corrosion. This paper discusses the viscosity characteristics of fly ash from the co-combustion of various...... coal/biomass blends in a pilot scale pf-boiler. The produced data provide information on the melting of the ash and its flow characteristics, as a function of temperature, which may be used to modify the temperature profile of the boiler in order to avoid slagging. Straw co-firing lowers the ash...... viscosity leading to higher stickiness of the ash particles. Wood co-firing has only minor effects, due to the composition of wood ash and the low percentage of wood in the coal/biomass blend....

  8. Effect of a Dispersant Agent in Fine Coal Recovery from Washery Tailings by Oil Agglomeration (Preliminary Study)

    Science.gov (United States)

    Yasar, Özüm; Uslu, Tuncay

    2017-12-01

    Among the fine coal cleaning methods, the oil agglomeration process has important advantages such as high process recovery, more clean product, simple dewatering stage. Several coal agglomeration studies have been undertaken recently and effects of different variables on the process performance have been investigated. However, unlike flotation studies, most of the previous agglomeration studies have not used dispersing agents to minimize slime coating effects of clays. In this study, agglomeration process was applied for recovery of fine coals from coal washery tailings containing remarkable amount of fine coal. Negative effect of fine clays during recovery was tried to be eliminated by using dispersing agent instead of de-sliming. Although ash reductions over 90 % were achieved, performance remained below expectations in terms of combustible matter recovery. However, this study is a preliminary one. It is considered that more satisfied results will be obtained in the next studies by changing the variables such as solid ratio, oil dosage, dispersant type and dosage.

  9. Effects of gas conditions on ASH induced agglomeration

    DEFF Research Database (Denmark)

    Ma, T.; Fan, C. G.; Hao, L. F.

    2016-01-01

    Agglomeration is a serious problem for gasification and combustion of biomass in fluidized bed. Agglomeration characteristics may be affected by gas condition, but the literature is quite vague in this regard. This study focuses on the effects of gasification and combustion condition...... on agglomeration tendency with two types of biomass ash, including rice straw and wheat straw ash. The agglomerates are analyzed by SEM-EDS for morphology and elemental composition. Defluidization temperature (Td) in those two types of gas conditions is quite different. Tdin gasification condition is much lower...

  10. Modeling and Prediction of Coal Ash Fusion Temperature based on BP Neural Network

    Directory of Open Access Journals (Sweden)

    Miao Suzhen

    2016-01-01

    Full Text Available Coal ash is the residual generated from combustion of coal. The ash fusion temperature (AFT of coal gives detail information on the suitability of a coal source for gasification procedures, and specifically to which extent ash agglomeration or clinkering is likely to occur within the gasifier. To investigate the contribution of oxides in coal ash to AFT, data of coal ash chemical compositions and Softening Temperature (ST in different regions of China were collected in this work and a BP neural network model was established by XD-APC PLATFORM. In the BP model, the inputs were the ash compositions and the output was the ST. In addition, the ash fusion temperature prediction model was obtained by industrial data and the model was generalized by different industrial data. Compared to empirical formulas, the BP neural network obtained better results. By different tests, the best result and the best configurations for the model were obtained: hidden layer nodes of the BP network was setted as three, the component contents (SiO2, Al2O3, Fe2O3, CaO, MgO were used as inputs and ST was used as output of the model.

  11. Coal beneficiation by gas agglomeration

    Science.gov (United States)

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  12. Use of coal-oil agglomerates for particulate gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Calvez, J.P.S.; Kim, M.J.; Wong, P.L.M.; Tran, T. [University of New South Wales, Sydney, NSW (Australia). School of Chemical Engineering and Industrial Chemistry

    1998-09-01

    The underlying principles by which gold is recovered by coal-oil agglomerates was investigated. The effects of various parameters such as oil:coal ratios, agglomerate:ore ratios, pH and coal particle size on gold recovery were evaluated using synthetic gold bearing samples, bituminous coal, and diesel oil and kerosene. The effects of sulfides on gold recovery and the depth of gold particle penetration within the agglomerates were also investigated. Results showed that gold recovery was increased by increasing agglomerate:ore ratio, decreasing oil:coal ratio and decreasing coal particle size. There was no significant difference in gold recoveries at pH range of 4-12 and at up to 5% sulfides in the feed.

  13. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  14. Study on surface morphology and physicochemical properties of raw and activated South African coal and coal fly ash

    Science.gov (United States)

    Mishra, S. B.; Langwenya, S. P.; Mamba, B. B.; Balakrishnan, M.

    South African coal and coal fly ash were selected as the raw materials to be used for study of their morphology and physicochemical properties and their respective activated carbons for adsorption applications. Coal and fly ash were individually steam activated at a temperature range of 550-1000 °C for 1 h in a muffle furnace using cylindrical stainless steel containers. Scanning electron micrographs revealed a change in surface morphology with more mineral matter available on the surface of the coal particles due to increased devolatilization. However, in the case of fly ash, the macerals coalesced to form agglomerates and the presence of unburnt carbon constituted pores of diameter between 50 and 100 nm. The BET surface area of coal improved significantly from 5.31 to 52.12 m 2/g whereas in case of fly ash the surface area of the raw sample which was originally 0.59 m 2/g and upon activation increased only up to 2.04 m 2/g. The chemical composition of the fly ash confirmed that silica was the major component which was approximately 60% by weight fraction. The impact of this study was to highlight the importance of using raw materials such as coal and a waste product, in the form of coal ash, in order to produce affordable activated carbon that can be used in drinking water treatment. This would therefore ensure that the quality of water supplied to communities for drinking is not contaminated especially by toxic organic compounds.

  15. Free gold recovery by coal-oil agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Kotze, W.; Petersen, F.W. [Cape Technikon Cape Town (South Africa). Dept. of Chemical Engineering

    2000-02-01

    The gold mining industry has mainly relied upon the use of highly polluting chemicals, such as mercury and cyanide to recover gold from its ores. The Coal Gold Agglomeration (CGA) process was developed some years ago and has the advantage in that gold is recovered by a procedure which has little or no negative impact on the environment. A gold ore containing liberated gold particles is contacted with coal-oil agglomerates, whereby the gold is recovered into the coal/oil phase. Laboratory scale batch tests were performed on an artificial mixture gold slurry and gold recoveries of up to 85% were found under optimized conditions. By recycling the coal/oil phase, it was found that the gold loading onto the agglomerates was increased. Tests performed on an industrial ore yielded slightly lower gold recoveries, and X-ray Diffraction (XRD) analysis on the coal/oil phase showed that minerals other than gold were recovered into this phase. A comparative study was conducted whereby the CGA process was compared to mercury amalgamation. Gold recoveries obtained through amalgamation were 15% lower than by the agglomeration process, which indicates that this process can be considered favourably as an alternative to amalgamation. 16 refs., 2 figs., 6 tabs.

  16. Development of a fluidized bed agglomeration modeling methodology to include particle-level heterogeneities in ash chemistry and granular physics

    Science.gov (United States)

    Khadilkar, Aditi B.

    The utility of fluidized bed reactors for combustion and gasification can be enhanced if operational issues such as agglomeration are mitigated. The monetary and efficiency losses could be avoided through a mechanistic understanding of the agglomeration process and prediction of operational conditions that promote agglomeration. Pilot-scale experimentation prior to operation for each specific condition can be cumbersome and expensive. So the development of a mathematical model would aid predictions. With this motivation, the study comprised of the following model development stages- 1) development of an agglomeration modeling methodology based on binary particle collisions, 2) study of heterogeneities in ash chemical composition and gaseous atmosphere, 3) computation of a distribution of particle collision frequencies based on granular physics for a poly-disperse particle size distribution, 4) combining the ash chemistry and granular physics inputs to obtain agglomerate growth probabilities and 5) validation of the modeling methodology. The modeling methodology comprised of testing every binary particle collision in the system for sticking, based on the extent of dissipation of the particles' kinetic energy through viscous dissipation by slag-liquid (molten ash) covering the particles. In the modeling methodology developed in this study, thermodynamic equilibrium calculations are used to estimate the amount of slag-liquid in the system, and the changes in particle collision frequencies are accounted for by continuously tracking the number density of the various particle sizes. In this study, the heterogeneities in chemical composition of fuel ash were studied by separating the bulk fuel into particle classes that are rich in specific minerals. FactSage simulations were performed on two bituminous coals and an anthracite to understand the effect of particle-level heterogeneities on agglomeration. The mineral matter behavior of these constituent classes was studied

  17. Bioleaching of trace metals from coal ash using local isolate from coal ash ponds

    Directory of Open Access Journals (Sweden)

    Pangayao Denvert

    2018-01-01

    Full Text Available Bioleaching of chromium, copper, manganese and zinc from coal ash were investigated using isolates from coal ash ponds particularly Psuedomonas spp. Six (6 different coal ash ponds were examined however, after initial screening Psuedomonas spp. were only present in three (3 coal ash ponds. Among the three coal ash ponds, results showed that eight (8 putative Pseudomonas spp. isolates were present that were identified using the Polymerase Chain Reaction (PCR. Using the eight putative Pseudomonas spp. for bioleaching at optimum conditions and 15 days, the pH value ranges from 8.26 to 8.84 which was basic in nature. Moreover, the maximum metal leached were 8.04% Cr, 12.05% Cu, 4.34% Mn and 10.63% Zn.

  18. Effect of Heterogeneity in Coal Ash Chemical Composition on the Onset of Conditions Favorable for Agglomeration in Fluid Beds

    Directory of Open Access Journals (Sweden)

    Aditi B. Khadilkar

    2015-11-01

    Full Text Available Ash agglomeration issues that arise due to the sticking of slag-wetted, colliding particles have been creating operational difficulties and monetary losses for the fluidized bed combustion (FBC industry. Difficulties have been experienced in the detection of slag-liquid at the low operating temperatures in fluidized bed combustors (FBCs and predicting the agglomeration behavior of fuel. This study aims to study the effect of heterogeneity in ash composition on the detection of slag-liquid in FBCs. It quantifies the slag-liquid amounts at the particle-level, under oxidizing environments, by dividing the bulk fuel into density classes. FactSage™ thermodynamic simulations of each of the particle classes, along with experimental validation of the trends with thermo-mechanical analysis (TMA and high temperature X-ray diffraction (HT-XRD were performed. The results obtained can be used to estimate the stickiness of particles in the development of ash agglomeration models based on particle collisions. The study of these particle classes shows that particle classes with specific minerals can form low temperature eutectics and lead to onset of slag-liquid formation at temperatures below those predicted by bulk analysis alone. Comparison of the differences in slag-liquid formation tendencies under reducing and oxidizing environments is also presented.

  19. Measuring ash content of coal

    International Nuclear Information System (INIS)

    Clayton, C.G.; Wormald, M.R.

    1980-01-01

    An apparatus for measuring the ash content of coal is claimed. It comprises a means for irradiating a known quantity of coal in a transport container with a known dose of neutrons, a means for detecting γ-rays having a predetermined energy emitted by the irradiated coal, the γ-rays being indicative of the presence of an ash-forming element in the coal, a means for producing a signal related to the intensity of the γ-ray emission and a means responsive to the signal to provide an indication of the concentration of the ash-forming element in the coal

  20. Exploring evaluation to influence the quality of pulverized coal fly ash. Co-firing of biomass in a pulverized coal plant or mixing of biomass ashes with pulverized coal fly ash; Verkennende evaluatie kwaliteitsbeinvloeding poederkoolvliegas. Bijstoken van biomassa in een poederkoolcentrale of bijmenging van biomassa-assen met poederkoolvliegas

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sloot, H.A.; Cnubben, P.A.J.P [ECN Schoon Fossiel, Petten (Netherlands)

    2000-08-01

    In this literature survey the consequences of co-firing of biomass and mixing of biomass ash with coal fly ash on the coal fly ash quality is evaluated. Biomass ash considered in this context is produced by gasification, pyrolysis or combustion in a fluidized bed. The irregular shape of biomass ash obtained from gasification, pyrolysis or combustion has a negative influence on the water demand in concrete applications of the coal fly ash resulting from mixing biomass ash and coal fly ash. In case of co-firing, high concentrations of elements capable of lowering the ash melting point (e.g., Ca and Mg) may lead to more ash agglomeration. This leads to a less favourable particle size distribution of the coal fly ash, which has a negative impact on the water demand in cement bound applications. Gasification, pyrolysis and combustion may lead to significant unburnt carbon levels (>10%). The unburnt carbon generally absorbs water and thus has a negative influence on the water demand in cement-bound applications. The contribution of biomass ash to the composition of coal fly ash will not be significantly different, whether the biomass is co-fired or whether the biomass ash is mixed off-line with coal fly ash. The limit values for Cl, SO4 and soluble salts can form a limitation for the use of coal fly ash containing biomass for cement-bound applications. As side effects of biomass co-firing, the level of constituents such as Na, K, Ca and Mg may lead to slagging and fouling of the boiler. In addition, a higher emission of flue gas contaminants As, Hg, F, Cl and Br may be anticipated in case more contaminated biomass streams are applied. This may also lead to a higher contamination level of gypsum produced from flue gas cleaning residues. Relatively clean biomass streams (clean wood, cacao shells, etc.) will hardly lead to critical levels of elements from a leaching point of view. More contaminated streams, such as sewage sludge, used and preserved wood, petcoke and RDF

  1. Process for agglomerating fine coal

    Energy Technology Data Exchange (ETDEWEB)

    Austin, L J; Misbach, P

    1976-06-24

    The invention concerns a process for agglomerating black coal in mud or powder form in the presence of a mineral oil product dispersed in water. During this process, the nutty slack is added to a portion - approximately 5 - 15% of its weight in the case of anhydrous coal - of a bitumen emulsion and thoroughly mixed. The emulsion should contain mineral oil bitumen with a penetration value 25/sup 0/ less than 5, or a Conradson value of over 35. In a further finishing process the emulsion contains alkaline naphthenate.

  2. Application of Coal Ash to Postmine Land for Prevention of Soil Erosion in Coal Mine in Indonesia: Utilization of Fly Ash and Bottom Ash

    Directory of Open Access Journals (Sweden)

    Shinji Matsumoto

    2016-01-01

    Full Text Available The increase in the number of coal-fired power plants with the increase in coal production and its consumption has caused the problem of the treatment of a large amount of coal ash in Indonesia. In the past studies, coal ash was applied to postmine land with the aim of improving soil conditions for plant growth; however, heavy rain in the tropical climate may cause soil erosion with the change in soil conditions. This study presents the effects of application of coal ash to postmine land on soil erosion by performing the artificial rainfall test as well as physical testing. The results indicate that the risk of soil erosion can be reduced significantly by applying the coal ash which consists of more than 85% of sand to topsoil in the postmine land at the mixing ratio of over 30%. Additionally, they reveal that not only fine fractions but also microporous structures in coal ash enhance water retention capacity by retaining water in the structure, leading to the prevention of soil erosion. Thus, the risk of soil erosion can be reduced by applying coal ash to topsoil in consideration of soil composition and microporous structure of coal ash.

  3. Ash related bed agglomeration during fluidized bed combustion, further development of the classification method based on CCSEM; CCSEM-luokitusmenetelmaen jatkokehittaeminen tuhkan aiheuttaman agglomeroitumisen tutkimisessa leiju- ja kiertopetipoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, R; Patrikainen, T; Heikkinen, R; Tiainen, M; Virtanen, M [Oulu Univ. (Finland). Inst. of Chemistry

    1997-10-01

    The scope of this project is to use the information and experience gained from the development of classification method to predict ash related problems like bed agglomeration during fluidised combustion. If boilers have to be shut down due to slagging or agglomeration of the bed material may cause significant economic losses for the entire energy production chain. Mineral classification methods based on the scanning electron microscopy are commonly used for coal ash investigation. In this work different biomass, peat, and peat-wood ash, fluidised-bed materials, and bed agglomerates were analysed with SEM-EDS combined with automatic image analysis software. The properties of ash particles are different depending on the fuel type. If biomass like wood or bark are added to peat the resulting ash has different properties. Due to the low mineral content in the original peat and to the fact that the majority of inorganic material is bound to the organic matrix, the classification has turned out to be less informative than was hoped. However, good results are obtained the by use of quasiternary diagrams. With these diagrams the distribution of particle composition is easily illustrated and thus meaningful prediction can be made of the slagging and agglomerating properties of ash. The content of ten different elements are determined for each particle by SEM-EDS combined with Link AIA software. The composition of the diagram corners can be varied Freely within these ten elements. (orig.)

  4. Geochemistry of coals, coal ashes and combustion wastes from coal-fired power stations

    International Nuclear Information System (INIS)

    Vassilev, S.V.; Vassileva, C.G.

    1997-01-01

    Contents, concentration trends, and modes of occurrence of 67 elements in coals, coal ashes, and combustion wastes at eleven Bulgarian thermoelectric power stations (TPS) were studied. A number of trace elements in coal and coal ash have concentrations greater than their respective worldwide average contents (Clarke values). Trace elements are concentrated mainly in the heavy accessory minerals and organic matter in coal. In decreasing order of significance, the trace elements in coal may occur as: element-organic compounds; impurities in the mineral matter; major components in the mineral matter; major and impurity components in the inorganic amorphous matter; and elements in the fluid constituent. A number of trace elements in the waste products, similar to coal ashes, exceed known Clarke contents. Trace elements are mainly enriched in non-magnetic, heavy and fine-grained fractions of fly ash. They are commonly present as impurities in the glass phases, and are included in the crystalline components. Their accessory crystalline phases, element-organic compounds, liquid and gas forms, are of subordinate importance. Some elements from the chalcophile, lithophile and siderophile groups may release into the atmosphere during coal burning. For others, the combustion process appears to be a powerful factor causing their relative enrichment in the fly ash and rarely in the bottom ash and slag. 65 refs., 1 fig., 11 tabs

  5. Automated Manufacture of Fertilizing Agglomerates from Burnt Wood Ash

    Energy Technology Data Exchange (ETDEWEB)

    Svantesson, Thomas

    2002-12-01

    In Sweden, extensive research is conducted to find alternative sources of energy that should partly replace the electric power production from nuclear power. With the ambition to create a sustainable system for producing energy, the use of renewable energy is expected to grow further and biofuels are expected to account for a significant part of this increase. However, when biofuels are burned or gasified, ash appears as a by-product. In order to overcome the problems related to deposition in land fills, the idea is to transform the ashes into a product - agglomerates - that easily could be recycled back to the forest grounds; as a fertilizer, or as a tool to reduce the acidification in the forest soil at the spreading area. This work considers the control of a transformation process, which transforms wood ash produced at a district heating plant into fertilizing agglomerates. A robust machine, built to comply with the industrial requirements for continuous operation, has been developed and is controlled by an industrial control system in order to enable an automated manufacture.

  6. Natural radioactivity level in coal and ash collected from Baoji coal-fired power plant

    International Nuclear Information System (INIS)

    Jia Xiaodan; Lu Xinwei

    2006-01-01

    Specific activities of natural radionuclides 226 Ra, 232 Th and 40 K were assessed in coal (3 samples), fly ash (17 samples) and bottom ash (6 samples) collected from Baoji coal-fired power plant. This paper analyzed the characteristics of 226 Ra, 232 Th and 40 K contents in bottom ash and fly ash, and studied the concentration factors of these radionuclides in ash in relation to those in coal. The level of natural radionuclides 226 Ra, 232 Th and 40 K of coal collected from Baoji coal-fired power plant are in the range of radionuclides contents of Chinese coal. The natural radioactivity level of fly ash collected from Baoji coal-fired power plant is close to Beijing and Shanghai coal-fired power plants. The paper farther assessed the possibility of fly ash of Baoji coal-fired power plant used as building materials according to the state standard. The results show that there are 29% samples exceeding the state limit when fly ash used as building materials. So the usage of fly ash in building material should be controlled. (authors)

  7. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash

    Directory of Open Access Journals (Sweden)

    Martin Ernesto Kalaw

    2016-07-01

    Full Text Available Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC, which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1 their technical properties are comparable if not better; (2 they can be produced from industrial wastes; and (3 within reasonable constraints, their production requires less energy and emits significantly less CO2. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA and coal bottom ash (CBA, and rice hull ash (RHA. The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF for elemental and X-ray diffraction (XRD for mineralogical composition. The raw materials’ thermal stability and loss on ignition (LOI were determined using thermogravimetric analysis (TGA and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR

  8. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash.

    Science.gov (United States)

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-07-15

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO₂. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials' thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning

  9. Experimental study of acoustic agglomeration and fragmentation on coal-fired ash

    Science.gov (United States)

    Shen, Guoqing; Huang, Xiaoyu; He, Chunlong; Zhang, Shiping; An, Liansuo; Wang, Liang; Chen, Yanqiao; Li, Yongsheng

    2018-02-01

    As the major part of air pollution, inhalable particles, especially fine particles are doing great harm to human body due to smaller particle size and absorption of hazardous components. However, the removal efficiency of current particles filtering devices is low. Acoustic agglomeration is considered as a very effective pretreatment technique for removing particles. Fine particles collide, agglomerate and grow up in the sound field and the fine particles can be removed by conventional particles devices easily. In this paper, the agglomeration and fragmentation of 3 different kinds of particles with different size distributions are studied experimentally in the sound field. It is found that there exists an optimal frequency at 1200 Hz for different particles. The agglomeration efficiency of inhalable particles increases with SPL increasing for the unimodal particles with particle diameter less than 10 μm. For the bimodal particles, the optimal SPLs are 115 and 120 dB with the agglomeration efficiencies of 25% and 55%. A considerable effectiveness of agglomeration could only be obtained in a narrow SPL range and it decreases significantly over the range for the particles fragmentation.

  10. Relation of ash composition to the uses of coal

    Energy Technology Data Exchange (ETDEWEB)

    Fieldner, A C; Selvig, W A

    1926-02-01

    The effects of coal ash and ash components on the utilization of coal for coke and gas production, steam generation, water gas production, smithing, and domestic uses were described in a review of literature. Calcite, gypsum, and pyrite which occur in high amounts in coal, increase the ash fusibility of the coal and render it unsuitable for many industrial and domestic uses. As a rule, coal ash of high Si content and low Fe content would not be readily fusible. High amounts of ash in coal also have the effect of reducing the heating value of the coal.

  11. Coal ash parameters by neutron activation

    International Nuclear Information System (INIS)

    Chrusciel, Edward; Chau, N.D.; Niewodniczanski, J.W.

    1994-01-01

    The coal parameters, ash content and ash slagging index, may be strongly related to the chemical composition of mineral impurities in coal. Based on this assumption the authors have examined the feasibility of neutron activation techniques, both as a laboratory and a well logging method, by recording induced γ-rays in the two energy intervals with the help of a scintillation γ-ray spectrometer. Results from the Upper Silesiab Coal Basin have shown that the method can be used to evaluate the ash content and ash fusion temperature, both in the laboratory and in well logging; the corresponding mean standard deviations being 1.5 wt% and 35 o C; and 3 wt% and 45 o C respectively. (author)

  12. Ash transformation during co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    2007-01-01

    Co-firing straw with coal in pulverized fuel boilers can cause problems related to fly ash utilization, deposit formation, corrosion and SCR catalyst deactivation due to the high contents of Cl and K in the ash. To investigate the interaction between coal and straw ash and the effect of coal...... quality on fly ash and deposit properties, straw was co-fired with three kinds of coal in an entrained flow reactor. The compositions of the produced ashes were compared to the available literature data to find suitable scaling parameters that can be used to predict the composition of ash from straw...... and coal co-firing. Reasonable agreement in fly ash compositions regarding total K and fraction of water soluble K was obtained between co-firing in an entrained flow reactor and full-scale plants. Capture of potassium and subsequent release of HCl can be achieved by sulphation with SO2 and more...

  13. Trace elements of coal, coal ashes and fly ashes by activation analysis with shor-lived nuclides

    International Nuclear Information System (INIS)

    Boeck, H.; Sarac, I.; Grass, F.

    1981-01-01

    On irradiation with neutrons, some of the interesting trace elements in coal, coal ash and fly ash produce short-lived nuclides which may be determined - together with some of the matrix elements - by activation analysis. This enables the characterization of samples. To find out the distribution of elements in the gaseous or aerosol exhaust of fossil-fired power plants, the authors simulated the combustion in a quartz apparatus containing a cold trap, using the combustion temperature (780 deg C) employed for the standard ash determination. High Se values were found in the cold trap deposits of black coal from Poland. Halogens were also found in the deposits. (authors)

  14. Size distribution of rare earth elements in coal ash

    Science.gov (United States)

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  15. Distribution of trace elements in Western Canadian coal ashes

    Energy Technology Data Exchange (ETDEWEB)

    Kronberg, B I; Brown, J R; Fyfe, W S; Peirce, M; Winder, C G

    1981-01-01

    Concentrations of 52 minor elements in coal ash were determined using spark source mass spectroscopy. Hg levels in raw coal were investigated by cold vapour atomic absorption spectrophotometry. The concentration of elements are compared to other available data and to levels in the Earth's crust. F levels in coal ash exceed 500/sub g-1/ and may be greater than 1 wt% om raw coal. Approximately half the elements (B, S, Ni, Zn, Ga, Se, Sr, Y, Mo, Sn, Sb, I, Ba, Pr, Nd, Sm, Eu, Ho, Hf, Pt, Hg, Pb, Tl, Bi, U) investigated are enriched in the coal ash with respect to the Earth's crust. The ranges in minor element concentrations in coal ash and coal from different global regions are very similar.

  16. Geochemistry of Coal Ash in the Equatorial Wet Disposal System Environment

    OpenAIRE

    Kolay P. K.; Singh H.

    2013-01-01

    The coal utilization in thermal power plants in Malaysia has increased significantly which produces an enormous amount of coal combustion by-product (CCBP) or coal ash and poses severe disposal problem. As each coal ash is distinct, this study presents the geochemistry of the coal ash, in particular fly ash, produced from the combustion of local coal from Kuching Sarawak, Malaysia. The geochemical composition of the ash showed a high amount of silica, alumina, iron oxides and alkalies which w...

  17. Carbon-enriched coal fly ash as a precursor of activated carbons for SO2 removal.

    Science.gov (United States)

    Izquierdo, M T; Rubio, B

    2008-06-30

    Carbon-enriched coal fly ash was evaluated in this work as a low-cost adsorbent for SO2 removal from stack gases. The unburned carbon in coal fly ash was concentrated by mechanical sieving and vegetal oil agglomeration. The carbon concentrates were activated with steam at 900 degrees C in order to develop porosity onto the samples. The performance of these samples in the SO2 abatement was tested in the following conditions: 100 degrees C, 1000 ppmv SO2, 5% O2, 6% water vapor. A good SO2 removal capacity was shown by some of the studied samples that can be related to their textural properties. Cycles of SO2 adsorption/regeneration were carried out in order to evaluate the possibility of thermal regeneration and re-use of these carbons. Regeneration of the exhausted carbons was carried out at 400 degrees C of temperature and a flow of 25 ml/min of Ar. After each cycle, the SO2 removal capacity of the sample decreases.

  18. Clay formation and metal fixation during weathering of coal fly ash

    International Nuclear Information System (INIS)

    Zevenbergen, C.; Bradley, J.P.; Reeuwijk, L.P. Van; Shyam, A.K.; Hjelmar, O.; Comans, R.N.J.

    1999-01-01

    The enormous and worldwide production of coal fly ash cannot be durably isolated from the weathering cycle, and the weathering characteristics of fly ash must be known to understand the long-term environmental impact. The authors studied the weathering of two coal fly ashes and compared them with published data from weathered volcanic ash, it's closest natural analogue. Both types of ash contain abundant aluminosilicate glass, which alters to noncrystalline clay. However, this study reveals that the kinetics of coal fly ash weathering are more rapid than those of volcanic ash because the higher pH of fresh coal fly ash promotes rapid dissolution of the glass. After about 10 years of weathering, the noncrystalline clay content of coal fly ash is higher than that of 250-year-old volcanic ash. The observed rapid clay formation together with heavy metal fixation imply that the long-term environmental impact of coal fly ash disposal may be less severe and the benefits more pronounced than predicted from previous studies on unweathered ash. Their findings suggest that isolating coal fly ash from the weathering cycle may be counterproductive because, in the long-term under conditions of free drainage, fly ash is converted into fertile soil capable of supporting agriculture

  19. Encapsulation of hazardous wastes into agglomerates

    International Nuclear Information System (INIS)

    Guloy, A.

    1992-01-01

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising

  20. Coal ash artificial reef demonstration

    International Nuclear Information System (INIS)

    Livingston, R.J.; Brendel, G.F.; Bruzek, D.A.

    1991-01-01

    This experimental project evaluated the use of coal ash to construct artificial reefs. An artificial reef consisting of approximately 33 tons of cement-stabilized coal ash blocks was constructed in approximately 20 feet of water in the Gulf of Mexico approximately 9.3 miles west of Cedar Key, Florida. The project objectives were: (1) demonstrate that a durable coal ash/cement block can be manufactured by commercial block-making machines for use in artificial reefs, and (2) evaluate the possibility that a physically stable and environmentally acceptable coal ash/cement block reef can be constructed as a means of expanding recreational and commercial fisheries. The reef was constructed in February 1988 and biological surveys were made at monthly intervals from May 1988 to April 1989. The project provided information regarding: Development of an optimum design mix, block production and reef construction, chemical composition of block leachate, biological colonization of the reef, potential concentration of metals in the food web associated with the reef, acute bioassays (96-hour LC 50 ). The Cedar Key reef was found to be a habitat that was associated with a relatively rich assemblage of plants and animals. The reef did not appear to be a major source of heavy metals to species at various levels of biological organization. GAI Consultants, Inc (GAI) of Monroeville, Pennsylvania was the prime consultant for the project. The biological monitoring surveys and evaluations were performed by Environmental Planning and Analysis, Inc. of Tallahassee, Florida. The chemical analyses of biological organisms and bioassay elutriates were performed by Savannah Laboratories of Tallahassee, Florida. Florida Power Corporation of St. Petersburg, Florida sponsored the project and supplied ash from their Crystal River Energy Complex

  1. Effect of ash components on the ignition and burnout of high ash coals

    Energy Technology Data Exchange (ETDEWEB)

    Feng, B.; Yan, R.; Zheng, C.G. [Huazhong University of Science and Technology, Wuhan (China). National Laboratory of Coal Combustion

    1998-11-01

    The effect of the ash components on the ignition and burnout of four Chinese high ash coals were studied by thermogravimetric analysis. To investigate the influence of the ash components, comparative experiments were carried out with original, deashed and impregnated coals. Eleven types of ash components, such as SiO{sub 2}, CaCO{sub 3}, MgO, Na{sub 2}CO{sub 3}, K{sub 2}CO{sub 3}, Al{sub 2}O{sub 3}, TiO{sub 2}, Fe{sub 2}O{sub 3}, FeS{sub 2}, NH{sub 4}Fe(SO{sub 4}){sub 2}{center_dot}12H{sub 2}O and FeSO{sub 4},(NH{sub 4}){center_dot}6H{sub 2}O were used in the present study. It was found that most of the ash components have negative effects. The strong influence of some ash components suggests that the combustion characteristics of high ash coal may be determined by the ash composition. 5 refs., 2 figs., 2 tabs.

  2. Volcanic ash in feed coal and its influence on coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Brownfield, I.K.; Hower, J.C.; Stricker, G.D.; O' Connor, J.T.

    2000-07-01

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana Utility to determine the physical and chemical properties of feed coal and coal combustion products (CCPs) from a coal-fired power plant. The plant utilizes a low-sulfur (.23--.47 weight percent S) coal from the Powder River Basin, Wyoming. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis of feed coal samples identified two mineral suites. A primary suite (not authigenic) consisting of quartz (detrital and volcanic beta-form grains), biotite, and minor zircon and a secondary authigenic mineral suite containing calcite, alumino-phosphates (crandallite and gorceixite), kaolinite, quartz, anatase, barite, and pyrite. The authigenic minerals are attributed to air-fall and reworked volcanic ash that was deposited in peat-forming mires. The Powder River Basin feed coals contain higher amounts of Ba, Ca, Mg, Na, Sr, and P compared to other analyzed eastern coals. These elements are associated with alumino-phosphate, biotite, calcite, and clay minerals. The element associations are indicative of coal that incorporated volcanic ash during deposition. XRD analysis of CCPs revealed a predominance of glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals in the fly ash; and quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite in the bottom ash. Microprobe and SEM analysis of fly ash samples revealed quartz, zircon, monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, and rounded grains of wollastonite with periclase. The abundant Ca and Mg mineral phases in the fly ashes are related to the presence of carbonate, clay, and phosphate minerals in the feed coal. The Ca- and Mg-rich mineral phases in the CCPs can be attributed to volcanic minerals deposited in the

  3. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  4. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Creelman, R.A.; Gupta, R.P. [University of Newcastle, Newcastle, NSW (Australia). CRC for Black Coal Utilisation

    1998-07-01

    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degree}C. The temperature corresponding to the rapid rate of shrinkage correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined using a scanning electron microscope (SEM) to identify the associated chemical and physical changes. The progressive changes in the range of chemical composition (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenisation, viscosity and ash fusion mechanisms. Alternate ash fusion temperatures based on different levels of shrinkage have also been suggested to characterise the ash deposition tendency of the coals. 13 refs., 9 figs.

  5. CO2 uptake capacity of coal fly ash

    DEFF Research Database (Denmark)

    Mazzella, Alessandro; Errico, Massimiliano; Spiga, Daniela

    2016-01-01

    Coal ashes are normally considered as a waste obtained by the coal combustion in thermal power plants. Their utilization inside the site where are produced represents an important example of sustainable process integration. The present study was performed to evaluate the application of a gas......-solid carbonation treatment on coal fly ash in order to assess the potential of the process in terms of sequestration of CO2 as well as its influence on the leaching behavior of metals and soluble salts. Laboratory tests, performed under different pressure and temperature conditions, showed that in the pressure......% corresponding to a maximum carbonation efficiency of 74%, estimated on the basis of the initial CaO content. The high degree of ash carbonation achieved in the present research, which was conducted under mild conditions, without add of water and without stirring, showed the potential use of coal fly ash in CO2...

  6. Classification of pulverized coal ash

    International Nuclear Information System (INIS)

    Van der Sloot, H.A.; Van der Hoek, E.E.; De Groot, G.J.; Comans, R.N.J.

    1992-09-01

    The leachability of fifty different pulverized coal ashes from utilities in the Netherlands, Federal Republic of Germany and Belgium has been studied. Five different ashes were analyzed according to the complete standard leaching test and the results were published earlier. The examination of a wide variety of ashes under a wide range of pH and Liquid to Solid ratio (LS) conditions creates the possibility of identifying systematic trends in fly ash leaching behaviour and to identify the mechanisms controlling release. 16 figs., 2 tabs., 3 app., 25 refs

  7. Geopolymer obtained from coal ash

    International Nuclear Information System (INIS)

    Conte, V.; Bissari, E.S.; Uggioni, E.; Bernardin, A.M.

    2011-01-01

    Geopolymers are three-dimensional alumino silicates that can be rapidly formed at low temperature from naturally occurring aluminosilicates with a structure similar to zeolites. In this work coal ash (Tractebel Energy) was used as source of aluminosilicate according a full factorial design in eight formulations with three factors (hydroxide type and concentration and temperature) and two-levels. The ash was dried and hydroxide was added according type and concentration. The geopolymer was poured into cylindrical molds, cured (14 days) and subjected to compression test. The coal ash from power plants belongs to the Si-Al system and thus can easily form geopolymers. The compression tests showed that it is possible to obtain samples with strength comparable to conventional Portland cement. As a result, temperature and molarity are the main factors affecting the compressive strength of the obtained geopolymer. (author)

  8. Determining the ash content of coal flotation tailings using an MPOF optical ash meter

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, T; Sliwa, J

    1982-01-01

    The block layout, a description of the design and principles of operation of an automatic optical, continuous action MPOF type ash meter are presented. The difference in the optical properties of coal and rock is used in the ash meter. The identification of the ash content is conducted on the basis of the spectral characteristics of reflection of a finely dispersed aqueous coal and rock suspension.

  9. Strength and Compaction Analysis of Sand-Bentonite-Coal Ash Mixes

    Science.gov (United States)

    Sobti, Jaskiran; Singh, Sanjay Kumar

    2017-08-01

    This paper deals with the strength and compaction characteristics of sand-bentonite-coal ash mixes prepared by varying percentages of sand, bentonite and coal ash to be used in cutoff walls and as a liner or cover material in landfills. The maximum dry density (MDD) and optimum moisture content (OMC) of sand-bentonite mixes and sand-bentonite-coal ash mixes were determined by conducting the standard proctor test. Also, the strength and stiffness characteristics of soil mixes were furnished using unconfined compressive strength test. The results of the study reveal influence of varying percentages of coal ash and bentonite on the compaction characteristics of the sand-bentonite-coal ash mixes. Also, validation of a statistical analysis of the correlations between maximum dry density (MDD), optimum moisture content (OMC) and Specific Gravity (G) was done using the experimental results. The experimental results obtained for sand-bentonite, sand-bentonite-ash and coal ash-bentonite mixes very well satisfied the statistical relations between MDD, OMC and G with a maximum error in the estimate of MDD being within ±1 kN/m3. The coefficient of determination (R2) ranged from 0.95 to 0.967 in case of sand-bentonite-ash mixes. However, for sand-bentonite mixes, the R2 values are low and varied from 0.48 to 0.56.

  10. Prevention of trace and major element leaching from coal combustion products by hydrothermally-treated coal ash

    Energy Technology Data Exchange (ETDEWEB)

    Adnadjevic, B.; Popovic, A.; Mikasinovic, B. [University of Belgrade, Belgrade (Serbia). Dept. of Chemistry

    2009-07-01

    The most important structural components of coal ash obtained by coal combustion in 'Nikola Tesla A' power plant located near Belgrade (Serbia) are amorphous alumosilicate, alpha-quartz, and mullite. The phase composition of coal ash can be altered to obtain zeolite type NaA that crystallizes in a narrow crystallization field (SiO{sub 2}/Al{sub 2}O{sub 3}; Na{sub 2}O/SiO{sub 2}; H{sub 2}O/Na{sub 2}O ratios). Basic properties (crystallization degree, chemical composition, the energy of activation) of obtained zeolites were established. Coal ash extracts treated with obtained ion-exchange material showed that zeolites obtained from coal ash were able to reduce the amounts of iron, chromium, nickel, zinc, copper, lead, and manganese in ash extracts, thus proving its potential in preventing pollution from dump effluent waters.

  11. Supplying Fe from molten coal ash to revive kelp community

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K.; Yamamoto, M.; Sadakata, M. [University of Tokyo, Tokyo (Japan)

    2006-02-15

    The phenomenon of a kelp-dominated community changing to a crust-dominated community, which is called 'barren-ground', is progressing in the world, and causing serious social problems in coastal areas. Among several suggested causes of 'barren-ground', we focused on the lack of Fe in seawater. Kelp needs more than 200 nM of Fe to keep its community. However there are the areas where the concentration of Fe is less than 1 nM, and the lack of Fe leads to the 'barren-ground.' Coal ash is one of the appropriate materials to compensate the lack of Fe for the kelp growth, because the coal ash is a waste from the coal combustion process and contains more than 5 wt% of Fe. The rate of Fe elution from coal fly ash to water can be increased by 20 times after melting in Ar atmosphere, because 39 wt% of the Fe(III) of coal fly ash was reduced to Fe(II). Additionally molten ash from the IGCC (integrated coal gasification combined cycle) furnace in a reducing atmosphere and one from a melting furnace pilot plant in an oxidizing atmosphere were examined. Each molten ash was classified into two groups; cooled rapidly with water and cooled slowly without water. The flux of Fe elution from rapidly cooled IGCC molten ash was the highest; 9.4 x 10{sup -6} g m{sup -2} d{sup -1}. It was noted that the coal ash melted in a reducing atmosphere could elute Fe effectively, and the dissolution of the molten ash itself controlled the rate of Fe elution in the case of rapidly cooled molten ash.

  12. Investigation of the possibility of binding fly ash particles by elemental sulphur

    Directory of Open Access Journals (Sweden)

    Vidojković V.

    2006-01-01

    Full Text Available Thermal power plants in Serbia use lignite for electrical power production The secondary product of coal combustion is fly ash in the amount of 17%. Fly ash causes the pollution of air, water and soil, and also cause many human, especially lung diseases. Secondary sulphur is a product of crude oil refining. The aim of this study was to investigate the use of sulphur as a bonding material in ultra fine particle agglomeration (smaller than 63 μm in fly ash. The agglomeration should make the ash particles larger and heavy enough to fall without flying fractions. The experiments showed that during the homogenization of the ashes and sulphur from 150 to 170 °C in a reactor with intensive mixing, an amount of 15% sulphur was sufficient to bond particles and cause agglomeration without visible flying fractions.

  13. Coal combustion by-product quality at two stoker boilers: Coal source vs. fly ash collection system design

    Energy Technology Data Exchange (ETDEWEB)

    Mardon, Sarah M. [Kentucky Department for Environmental Protection, Division of Water, Frankfort, KY 40601 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); O' Keefe, Jennifer M.K. [Morehead State University, Department of Physical Sciences, Morehead, KY 40351 (United States); Marks, Maria N. [Environmental Consulting Services, Lexington, KY 40508 (United States); Hedges, Daniel H. [University of Kentucky, Department of Earth and Environmental Sciences, Lexington, KY 40506 (United States)

    2008-09-15

    Fly ashes from two stoker boilers burning Pennsylvanian Eastern Kentucky high volatile A bituminous coal blends were examined for their petrology and chemistry. The source coals have similar trace element contents. One of the ash collection systems was retrofitted with a baghouse (fabric filter) system, collecting a finer fly ash at a cooler flue gas temperature than the plant that has not been reconfigured. The baghouse ash has a markedly higher trace element content than the coarser fly ash from the other plant. The enhanced trace element content is most notable in the As concentration, reaching nearly 9000 ppm (ash basis) for one of the collection units. Differences in the ash chemistry are not due to any substantial differences in the coal source, even though the coal sources were from different counties and from different coal beds, but rather to the improved pollution control system in the steam plant with the higher trace element contents. (author)

  14. Natural Radionuclides in Slag/Ash Pile from Coal-Fired Power Plant Plomin

    International Nuclear Information System (INIS)

    Barisic, D.; Lulic, S.; Marovic, G.; Sencar, J.

    2001-01-01

    Full text: The coal slag/ash pile contains about one million tons of different (bottom ash, filter ash, gypsum) waste material deposited in vicinity of Plomin coal-fired power plant. Activities of 40 K, 228 Ra, 226 Ra and 238 U in materials deposited on slag/ash pile as well as in used coals were occasionally measured during past more than two and half decades of Plomin coal-fired plant operation. The radionuclides content in deposited bottom and filter ash material are related with radionuclide activities and mineral matter fraction in coals used. Up to the middle of nineties, the majority of coal used was anthracite from Istrian local mines. In that period, deposited waste material was characterised with relatively high 226 Ra and 238 U activities while potassium and thorium content was very low. When Istrian coal has been completely substituted with imported coal, uranium series radionuclide concentrations in deposited waste materials decreased significantly. Meanwhile, potassium and thorium activities in slag/ash pile material increased. It seems that slag/ash pile material generated in the last several years of Plomin coal-fired power plant operation could be generally used in cement industry without any special restriction. (author)

  15. Utilization of coal ash/coal combustion products for mine reclamation

    International Nuclear Information System (INIS)

    Dolence, R.C.; Giovannitti, E.

    1997-01-01

    Society's demand for an inexpensive fuel, combined with ignorance of the long term impacts, has left numerous scars on the Pennsylvania landscape. There are over 250,000 acres of abandoned surface mines with dangerous highwalls and water filled pits. About 2,400 miles of streams do not meet water quality standards because of drainage from abandoned mines. There are uncounted households without an adequate water supply due to past mining practices. Mine fires and mine subsidence plague many Pennsylvania communities. The estimated cost to reclaim these past scars is over $15 billion. The beneficial use of coal ash in Pennsylvania for mine reclamation and mine drainage pollution abatement projects increased during the past ten years. The increase is primarily due to procedural and regulatory changes by the Department of Environmental Protection (DEP). Prior to 1986, DEP required a mining permit and a separate waste disposal permit for the use of coal ash in backfilling and reclaiming a surface mine site. In order to eliminate the dual permitting requirements and promote mine reclamation, procedural changes now allow a single permit which authorize both mining and the use of coal ash in reclaiming active and abandoned pits. The actual ash placement, however, must be conducted in accordance with the technical specifications in the solid waste regulations

  16. Monitor of ash content of coal with X-ray source

    International Nuclear Information System (INIS)

    Wawrzonek, L.

    1983-01-01

    The coal ash monitor is used on-line to measure the ash content of raw, washed and blended coals. The instrument consists of a presentation unit and electronic unit. In the presentation unit a compact layer of coal is formed and there is also a radiation measuring system. A plutonium 238 source is used and the backscattered X-rays are detected by a proportional counter. The count rate is processed in the electronic unit and displayed as the ash percentage in the coal. A wide range of Polish coals was analysed. The monitor was tested in a power plant over the period of one year. The ash content in the coal analysed was in the range 5 to 50%. The gauge readings were compared with the pyrolysis results. An accuracy of 3.2% (95% confidence limit) was reached. These results were not corrected for the free moisture content which varied in the range 5 to 15 %. (author)

  17. On-conveyor belt determination of ash in coal

    International Nuclear Information System (INIS)

    Sowerby, B.; Lim, C.S.; Abernethy, D.A.; Liu, Y.; Maguire, P.A.

    1997-01-01

    A laboratory feasibility study has been carried out on new and advanced neutron and gamma-ray analysis systems for the direct on-conveyor belt analysis of ash in coal without the need for sample by-lines. Such an analysis system could deliver the combined advantages of a direct on-conveyor configuration with new and accurate analysis techniques. An industry survey of 18 coal companies carried out in early 1996 indicated that accurate on-belt ash analysis is of the highest priority. Subsequent laboratory work has focussed on the investigation of methods with the potential for improving the accuracy of ash content measurement relative to existing on-belt ash analysers, the most widely-used of which are based on dual energy gamma-ray transmission (DUET), which is sensitive to variations in ash composition. The current work indicates that on-belt neutron/gamma-ray techniques combined with advanced spectral analysis techniques show promise for development into an on-belt ash analysis system which is significantly less sensitive to composition changes than DUET and which analyses a much larger proportion of coal on the belt, thus eliminating some key sources of analysis error

  18. Ultrafine ash aerosols from coal combustion: Characterization and health effects

    Energy Technology Data Exchange (ETDEWEB)

    William P. Linak; Jong-Ik Yoo; Shirley J. Wasson; Weiyan Zhu; Jost O.L. Wendt; Frank E. Huggins; Yuanzhi Chen; Naresh Shah; Gerald P. Huffman; M. Ian Gilmour [US Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Laboratory

    2007-07-01

    Ultrafine coal fly-ash particles withdiameters less than 0.5 {mu}m typically comprise less than 1% of the total fly-ash mass. This paper reports research focused on both characterization and health effects of primary ultrafine coal ash aerosols alone. Ultrafine, fine, and coarse ash particles were segregated and collected from a coal burned in a 20 kW laboratory combustor and two additional coals burned in an externally heated drop tube furnace. Extracted samples from both combustors were characterized by transmission electron microscopy (TEM), wavelength dispersive X-ray fluorescence(WD-XRF) spectroscopy, Moessbauer spectroscopy, and X-ray absorption fine structure (XAFS) spectroscopy. Pulmonary inflammation was characterized by albumin concentrations in mouse lung lavage fluid after instillation of collected particles in saline solutions and a single direct inhalation exposure. Results indicate that coal ultrafine ash sometimes contains significant amounts of carbon, probably soot originating from coal tar volatiles, depending on coal type and combustion device. Surprisingly, XAFS results revealed the presence of chromium and thiophenic sulfur in the ultrafine ash particles. The instillation results suggested potential lung injury, the severity of which could be correlated with the carbon (soot) content of the ultrafines. This increased toxicity is consistent with theories in which the presence of carbon mediates transition metal (i.e., Fe) complexes, as revealed in this work by TEM and XAFS spectroscopy, promoting reactive oxygenspecies, oxidation-reduction cycling, and oxidative stress. 24 refs., 7 figs.

  19. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    In this literature report is provided a status for the present knowledge level on ash properties when co-firing coal and biomass. The fly ash formed in boilers using co-firing of coal and straw do have a large influence on ash deposit formation, boiler corrosion, fly ash utilization and operation...

  20. Identification and quantification of radionuclides in coal ash. Final report

    International Nuclear Information System (INIS)

    Alleman, J.E.; Clikeman, F.M.; Skronski, T.

    1998-01-01

    One of the important environmental issues raised recently in regard to coal ash reuse for highway construction purposes (e.g., embankment development) is that of worker, and public, exposure to radiation which might possibly be emitted by these types of residues. This research project subsequently addressed the associated issue of radiation emission by coal ash residuals generated within the State of Indiana, covering both fly ash and bottom ash materials. Samples were obtained at sixteen different coal-fired power generating facilities within Indiana and subjected to quantitative analysis of their associated gamma-ray emission levels. After identifying the responsible radionuclides, a conservative approximation was then developed for the worst-case potential occupational exposure with construction employees working on this type of high-volume, coal ash embankment. In turn, these potential emissions levels were compared to those of other traditional construction materials and other common sources

  1. Damage cost of the Dan River coal ash spill

    International Nuclear Information System (INIS)

    Dennis Lemly, A.

    2015-01-01

    The recent coal ash spill on the Dan River in North Carolina, USA has caused several negative effects on the environment and the public. In this analysis, I report a monetized value for these effects after the first 6 months following the spill. The combined cost of ecological damage, recreational impacts, effects on human health and consumptive use, and esthetic value losses totals $295,485,000. Because the environmental impact and associated economic costs of riverine coal ash spills can be long-term, on the order of years or even decades, this 6-month assessment should be viewed as a short-term preview. The total cumulative damage cost from the Dan River coal ash spill could go much higher. - Highlights: • Six-month post-spill damage cost exceeded $295,000,000. • Components of cost include ecological, recreational, human health, property, and aesthetic values. • Attempts by the electric utility to “clean” the river left over 95% of coal ash behind. • Long-term impacts will likely drive the total damage cost much higher. - Damage costs of the Dan River coal ash spill are extensive and growing. The 6-month cost of that spill is valued at $295,485,000, and the long-term total cost is likely to rise substantially

  2. Preliminary Beneficiation and Washability Studies on Ghouzlou's Low-Ash Coal Sample

    Directory of Open Access Journals (Sweden)

    Ataallah Bahrami

    2017-12-01

    Full Text Available In the present research work, a low-ash coal, from Ghouzlou deposit in Iran, with an average ash content of 12% was subjected to some beneficiation experiments such as heavy media separation and flotation. Sieve analysis showed that 62.3% of the coal sample with the size of +2 mm had around 7.3% ash contents. Also, heavy media tests carried out on five size fractions revealed that by setting the separation density at 1.4 g/cm3 for the coarse fraction (+1 mm, a 5% ash product with more than 70% coal recovery was obtainable. Samples with lower ash content (5% based on the Mayer curves to produce a 5% coal product. Moreover, flotation tests on -1 mm fraction could reduce the ash content from more 13.2% to 10.4%.

  3. Fly ash aggregates. Vliegaskunstgrind

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    A study has been carried out into artificial aggregates made from fly ash, 'fly ash aggregates'. Attention has been drawn to the production of fly ash aggregates in the Netherlands as a way to obviate the need of disposal of fly ash. Typical process steps for the manufacturing of fly ash aggregates are the agglomeration and the bonding of fly ash particles. Agglomeration techniques are subdivided into agitation and compaction, bonding methods into sintering, hydrothermal and 'cold' bonding. In sintering no bonding agent is used. The fly ash particles are more or less welded together. Sintering in general is performed at a temperature higher than 900 deg C. In hydrothermal processes lime reacts with fly ash to a crystalline hydrate at temperatures between 100 and 250 deg C at saturated steam pressure. As a lime source not only lime as such, but also portland cement can be used. Cold bonding processes rely on reaction of fly ash with lime or cement at temperatures between 0 and 100 deg C. The pozzolanic properties of fly ash are used. Where cement is applied, this bonding agent itself contributes also to the strength development of the artificial aggregate. Besides the use of lime and cement, several processes are known which make use of lime containing wastes such as spray dry absorption desulfurization residues or fluid bed coal combustion residues. (In Dutch)

  4. Cast-concrete products made with FBC ash and wet-collected coal-ash

    Energy Technology Data Exchange (ETDEWEB)

    Naik, T.R.; Kraus, R.N.; Chun, Y.M.; Botha, F.D. [University of Wisconsin, Milwaukee, WI (United States)

    2005-12-01

    Cast-concrete hollow blocks, solid blocks, and paving stones were produced at a manufacturing plant by replacing up to 45% (by mass) of portland cement with fluidized bed combustion (FBC) coal ash and up to 9% of natural aggregates with wet-collected, low-lime, coarse coal-ash (WA). Cast-concrete product specimens of all three types exceeded the compressive strength requirements of ASTM from early ages, with the exception of one paving-stone mixture, which fell short of the requirement by less than 10%. The cast-concrete products made by replacing up to 40% of cement with FBC ash were equivalent in strength (89-113% of control) to the products without ash. The abrasion resistance of paving stones was equivalent for up to 34% FBC ash content. Partial replacement of aggregates with WA decreased strength of the products. The resistance of hollow blocks and paving stones to freezing and thawing decreased appreciably with increasing ash contents. The cast-concrete products could be used indoors in regions where freezing and thawing is a concern, and outdoors in a moderate climate.

  5. Radioactivity of coals and fly ashes

    International Nuclear Information System (INIS)

    Papastefanou, C.

    2008-01-01

    The level and the behavior of the naturally occurring primordial radionuclides 238 U, 226 Ra, 210 Pb, 232 Th, 228 Ra and 40 K in coals and fly ashes are described. The activity concentrations of the examined coals and originated from coal mines in Greece ranged from 117 to 435 Bq x kg -1 for 238 U, from 44 to 255 Bq x kg -1 for 226 Ra, from 59 to 205 Bq x kg -1 for 210 Pb, from 9 to 41 Bq x kg -1 for 228 Ra and from 59 to 227 Bq x kg -1 for 40 K. These levels are comparable to those appeared in coals of different countries worldwide. The activity concentrations of the examined fly ashes and produced in coal-fired power plants in Greece ranged from 263 to 950 Bq x kg -1 for 238 U, from 142 to 605 Bq x kg -1 for 226 Ra, from 133 to 428 Bq x kg -1 for 210 Pb, from 27 to 68 Bq x kg -1 for 228 Ra and from 204 to 382 Bq x kg -1 for 40 K. The results showed that there is an enrichment of the radionuclides in fly ash relative to the input coal during the combustion process. The enrichment factors (EF) ranged from 0.60 to 0.76 for 238 U, from 0.69 to 1.07 for 226 Ra, from 0.57 to 0.75 for 210 Pb, from 0.86 to 1.11 for 228 Ra and from 0.95 to 1.10 for 40 K. (author)

  6. Whole-coal versus ash basis in coal geochemistry: a mathematical approach to consistent interpretations

    Science.gov (United States)

    Geboy, Nicholas J.; Engle, Mark A.; Hower, James C.

    2013-01-01

    Several standard methods require coal to be ashed prior to geochemical analysis. Researchers, however, are commonly interested in the compositional nature of the whole-coal, not its ash. Coal geochemical data for any given sample can, therefore, be reported in the ash basis on which it is analyzed or the whole-coal basis to which the ash basis data are back calculated. Basic univariate (mean, variance, distribution, etc.) and bivariate (correlation coefficients, etc.) measures of the same suite of samples can be very different depending which reporting basis the researcher uses. These differences are not real, but an artifact resulting from the compositional nature of most geochemical data. The technical term for this artifact is subcompositional incoherence. Since compositional data are forced to a constant sum, such as 100% or 1,000,000 ppm, they possess curvilinear properties which make the Euclidean principles on which most statistical tests rely inappropriate, leading to erroneous results. Applying the isometric logratio (ilr) transformation to compositional data allows them to be represented in Euclidean space and evaluated using traditional tests without fear of producing mathematically inconsistent results. When applied to coal geochemical data, the issues related to differences between the two reporting bases are resolved as demonstrated in this paper using major oxide and trace metal data from the Pennsylvanian-age Pond Creek coal of eastern Kentucky, USA. Following ilr transformation, univariate statistics, such as mean and variance, still differ between the ash basis and whole-coal basis, but in predictable and calculated manners. Further, the stability between two different components, a bivariate measure, is identical, regardless of the reporting basis. The application of ilr transformations addresses both the erroneous results of Euclidean-based measurements on compositional data as well as the inconsistencies observed on coal geochemical data

  7. Micostructural and mechanical properties of geopolymers synthesised from three coal fly ashes from South Africa

    CSIR Research Space (South Africa)

    Dludlu, MK

    2017-01-01

    Full Text Available In this study, coal fly ashes (CFAs) from three different boiler sites in South Africa, Eskom (E coal fly ash), George Mukhari Academic Hospital (GMH coal fly ash), and KarboChem (KBC coal fly ash), were used to produce geopolymers. The coal fly...

  8. Study of the correlation between the coal calorific value and coal ash content using X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Bolortuya, D.; Zuzaan, P.; Gustova, M.V.; Maslov, O.D.

    2013-01-01

    In this paper we have studied the possibility of determining the chemical elements in coal samples using X-ray fluorescence analysis and have found a relationship between the coal calorific value and its ash content with the coal moisture accounting. The amount of coal ash can be determined by the content of the basic chemical elements, such as Si, Sr, Fe, and Ca. It was concluded that the calorific value of coal can be estimated from the ash content in coal without the calorimetric measurements. These correlation coefficients were calculated for several coal mines in Mongolia. The results are in good agreement with the results of chemical analysis

  9. On stream ash analysis of coal based on its natural gamma-ray activity

    International Nuclear Information System (INIS)

    Mathew, P.J.

    1986-01-01

    A novel method based on the natural gamma-ray activity of coal has been developed for the on-stream determination of ash. The accuracy of the method has been verified by measuring the natural gamma-ray activity and ash content of coal samples from a number of locations in New Zealand and Australia. The rms differences between % ash by ignition and % ash by the gamma-ray method ranged from 0.65% ash for coal samples from a Queensland mine to 1.6% ash for samples from a southern New South Wales mine. The rms errors include those to geovariance, and due to sampling and sample analysis by conventional means. The error in ash measurement by the gamma-ray method can therefore be reduced by substantially eliminating these errors. A prototype ash analyser was also developed and field-tested at the Huntly East mine. In a four-week test, the prototype gauge was used to determine the ash content of run-of-mine (rom) coal below 20% ash to within +- 1.7% ash. Laboratory studies of coal samples collected during the field test of the prototype gave an error of 0.8% ash for coal samples below 20% ash content. A higher error was observed in the field test compared with laboratory data, and the difference is attributed to errors in sampling from the conveyor belt

  10. Assessing dynamics of ash content formation in coal at a working face in mines

    Energy Technology Data Exchange (ETDEWEB)

    Maidukov, G L; Lobkin, V M

    1983-05-01

    Factors which influence ash content in coal mined at a working face are analyzed: ash content in coal, stability of rock layers surrounding a coal seam, mechanical and physical properties of the direct roof. A mathematical model of ash content formation at a working face is described. On the basis of the model a computer program has been constructed. The program is used for calculating the mean value of ash content in coal and the standardized deviation. The program considers all causes of ash fluctuation in coal such as mining conditions, coal seam thickness, fluctuations in coal seam thickness, mechanical and physical properties of rocks surrounding a coal seam, particularly in the direct roof, mining systems, narrow or wide web shearer loaders, powered supports, hydraulic props, timber friction props with timber roof bars or with steel roof bars. A classification of rocks considering roof stability used by the program is described. A scheme of the program is given. Examples of using the program for forecasting ash content in coal and ash content fluctuations in Donbass mines are evaluated. (In Russian)

  11. Coal ash monitoring equipment

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, C G; Wormald, M R

    1978-10-02

    The monitoring equipment is used to determine the remainder from combustion (ash slack) of coal in wagons designed for power stations. Next to the rails, a neutron source (252 Cf, 241 Am/Be) is situated, which irradiates the coal with neutrons at a known dose, which produces the reaction 27 Al (n ..gamma..) Al 28. The aluminium content is a measure of the remainder. The 1.78 MeV energy is measured downstream of the rail with a detector. The neutron source can only act in the working position of a loaded wagon.

  12. Analysis of radioactivity in coal, cinders, fly ash and discharges from the stack

    International Nuclear Information System (INIS)

    Meide, A.

    1985-01-01

    Gamma measurements of coal samples originating from several supplying countries proved that the South African coal has about double U-238 and Ra-226 concentration and about treble Th-232 concentration compared to coal from the other countries. Gamma measurements of coal, cinders and fly ash samples from five coal-fueled plants indicate somewhat higher concentrations of Th-232 in cinders and U-238 and Th-232 in fly ashes than those described in literature. The ratio Po-210/Pb-210 was about 2 for fly ash particulates <35μ. A positive correlation between ash percentage and radioactivity of coal might be assumed. (EG)

  13. Elemental characterization of coal ash and its leachates using sequential extraction techniques

    International Nuclear Information System (INIS)

    Landsberger, S.; Cerbus, J.F.; Larson, S.

    1995-01-01

    Over 50 million tons of coal ash are produced annually in North America. Technological improvements in air pollution control have decreased stack emissions but have also increased contaminant concentrations in the ash of coal-fired boiler applications. The leaching of heavy metals and other elements during regulatory tests may cause coal ash to be classified as hazardous waste, complicating land disposal. The hazardous nature of coal ash remains unclear because current toxicity tests fail to effectively characterize the elemental distribution and chemical solubility of trace metals in the landfill environment. Leaching characteristics of ash samples can be investigated with various laboratory extraction procedures in association with multi-elemental analytical techniques (e.g., neutron activation analysis and inductively coupled plasma - atomic emission spectroscopy). Such methods provide more thorough analyses of coal ash leaching dynamics than the regulatory assessments can demonstrate. Regulatory elements including Ag, As, Ba, Cd, Cr, Hg, Pb, and Se were shown to remain in largely insoluble forms while elements such as B and S leached at higher levels. Experimental results may assist operators of coal-fired boiler industries in selecting coal types and disposal options to curtail the leaching of potentially toxic inorganic contaminants. (author) 12 refs.; 4 figs.; 3 tabs

  14. Transformations and affinities for sulfur of Chinese Shenmu coal ash in a pulverized coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.; Zhou, J.H.; Liu, J.Z.; Cao, X.Y.; Cen, K.F. [Zhejiang University, Hangzhou (China)

    2009-07-01

    The self-desulfurization efficiency of Shenmu coal with a high initial Ca/S molar ratio of 2.02 was measured in a 1,025 t/h pulverized coal-fired boiler. It increases from 29% to 32% when the power capacity decreases from 100% to 70%. About 60% of the mineral matter and calcium element fed into the furnace is retained in the fly ash, while less than 10% is retained in the bottom ash. About 70% of the sulfur element fed into the furnace is emitted as SO{sub 2} in the flue gas, while less than 10% is retained in the fly ash and less than 1% is retained in the bottom ash. The mineralogical compositions of feed coal, fly ash, and bottom ash were obtained by X-ray diffraction analysis. It is found that the initial amorphous phase content is 91.17% and the initial CaCO{sub 3} phase content is 2.07% in Shenmu coal. The vitreous phase and sulfation product CaSO{sub 4} contents are, respectively, 70.47% and 3.36% in the fly ash obtained at full capacity, while the retained CaCO{sub 3} and CaO contents are, respectively, 4.73% and 2.15%. However, the vitreous phase content is only 25.68% and no CaSO{sub 4} is detected in the bottom ash obtained at full capacity. When the power capacity decreases from 100% to 70%, the vitreous phase content in fly ash decreases from 70.47% to 67.41% and that in bottom ash increases from 25.68% to 28.10%.

  15. Manufacturing of ashless coal by using solvent de-ashing technology

    Energy Technology Data Exchange (ETDEWEB)

    Sang-Do Kim; Kwang-Jae Woo; Soon-Kwan Jeong; Young-Jun Rhim; Si-Huyn Lee [Korea Institute of Energy Research, Daejeon (Republic of Korea). Clean Energy Research Center

    2007-07-01

    Maintenance of a high oil value has an influence to energy crisis and national security in South Korea which does not have energy resources. The coals which have characterized by the abundant reserves and the inexpensive price can be said to be the alternative energy source. Hyper-coal process, which has been developed in Japan since 1999, is a new effective process to produce a clean coal by using the solvent de-ashing technology. When coal is extracted with organic solvent, only the organic portion of coal is dissolved in the solvents. That is possible to apply the low rank coal. This study was performed to produce ashless coal by using the solvent de-ashing technology. The experiment was conducted in the batch(or semi-batch) type reactor with two solvents such as NMP(N-methyl-2-pyrrolidinone) and 1-MN(1-methylnaphthalene) and various coals such as Kideko coal, Roto South coal and Sunhwa coal at 200-400{sup o}C. As a result of the test, extraction yield of coals was more than 60% on daf. Ash concentration which contains the extracted coal was 0.11-1.0wt%. The heat value was increased from 5,400 kcal/kg to 7,920 kcal/kg in the Roto South coal. 10 refs., 4 figs., 2 tabs.

  16. On-line nuclear ash gauge for coal based on gamma-ray transmission techniques

    International Nuclear Information System (INIS)

    Rizk, R.A.M.; El-Kateb, A.H.; Abdul-Kader, A.M.

    1999-01-01

    Developments and applications of on-line nuclear gauges in the coal industry are highly requested. A nuclear ash gauge for coal, based on γ-ray transmission techniques is developed. Single and dual energy γ-ray beams are used to determine the ash content of coal. The percentage ash content as a function of the γ-ray intensities transmitted through coal samples is measured and sensitivity curves are obtained. An empirical formulation relating the ash content values to the γ-ray intensities is derived. Preliminary results show that both single and dual energy γ-ray transmission techniques can be used to give a rapid on-line estimation of the ash concentration values in coal with low cost and reasonable accuracy, but the dual one is much preferable. (author)

  17. Mineral conversion and microstructure change in the melting process of Shenmu coal ash

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jianguo; Deng Furong; Zhao Hong; Cen Kefa [Zhejiang University, Hangzhou (China). State Key Laboratory of Clean Energy Utilization

    2007-05-15

    China has rich reserves of Shenmu coal, which has the typical characteristic of low-melting-point ash. If used in the pulverized-coal boiler of a power plant, Shenmu coal would cause serious slagging. In order to solve the slagging problem of Shenmu coal, the melting mechanism of Shenmu coal ash was studied. One of the Shenmu coals - Wenjialiang coal - was selected for the study. Using thermogravimetry-differential scanning colorimetry (TG-DSC) methods, the change of the coal ash's physicochemistry with temperature was studied. The typical temperature points in the melting process were obtained. Ash samples of the different temperature points were prepared in a high-temperature furnace with parameters similar to those used in the TG-DSC test, and were then cooled quickly in water. Later, the ash samples were analyzed using X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) methods in detail. Wenjialiang coal ash started to melt at 980{sup o}C. The ash was found to melt to a great extent at 1200{sup o}C and formed a multiform microstructure. At 1260{sup o}C, it was found to melt into a dense body with many pores, and formed a piece of vitreous body at 1340{sup o}C. Anorthite and gehlenite are the intermediate products that exist between 980 and 1340{sup o}C. They may be the main cause of the ash having low melting points, so that they could convert into a eutectic at low temperatures.

  18. The Influence of Particle Size, Fluidization Velocity, and Fuel Type on Ash-Induced Agglomeration in Biomass Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Gatternig, Bernhard, E-mail: bernhard.gatternig@cbi.uni-erlangen.de; Karl, Jürgen [Chair of Energy Process Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Nuremberg (Germany)

    2014-11-19

    Agglomeration of the bed material is one of the main obstacles for biomass utilization in fluidized bed combustors. Especially, high-potential fuels such as fast growing energy crops or biogeneous residues are affected because of their high content of alkaline metals. Despite ongoing research efforts, the knowledge base on what fuels are affected is still limited. This paper describes the design and installation of two lab-scale reactors for the experimental determination of agglomeration temperatures. The reactor concept and measurement method were developed under consideration of experiences from existing test rigs published in literature. Preliminary tests confirmed a reproducibility of ±5°C for both new reactors. The results of an extended measurement campaign (156 test runs of 25 fuel species at a wide range of the operational parameters “bed particle size,” “gas velocity,” and “bed ash accumulation”), based on “design of experiment” (DoE) criteria, showed high-agglomeration tendencies for residues (e.g., dried distillery grains, corn cobs) while woody energy crops (e.g., willow, alder) exhibited very stable combustion behavior. The operating parameters influenced the agglomeration behavior to a lesser degree than different ash compositions of fuel species tested. An interpolation within the DoE factor space allowed for a subsequent comparison of our results with experiments reported in literature. Good agreement was reached for fuels of comparable ash composition considering the interpolation errors of ±32°C on average.

  19. Respiratory and reproductive characteristics of eastern mosquitofish (Gambusia holbrooki) inhabiting a coal ash settling basin

    Energy Technology Data Exchange (ETDEWEB)

    Staub, B.P.; Hopkins, W.A.; Novak, J.; Congdon, J.D. [University of Georgia, Aiken, SC (United States). Savannah River Ecology Lab.

    2004-01-01

    Coal fly ash and effluent from coal ash settling basins negatively affects metabolism and reproduction in a variety of organisms, including a number of fish species. Some species, most notably the eastern mosquitofish (Gambusia holbrooki), are known to maintain viable populations in areas contaminated by coal ash. While eastern mosquitofish are present in these systems, their degree of tolerance to coal ash has not been investigated using sublethal metrics of exposure. It is possible that eastern mosquitofish persist in habitats affected by coal ash, but experience significant costs such as changes in metabolism and fecundity. Thus, we investigated the effects of coal ash on standard metabolic rate and reproduction of eastern mosquitofish inhabiting a coal-ash contaminated settling basin. Standard metabolic rates of mosquitofish from the ash contaminated site and a reference site were not significantly different. Despite elevated contaminant concentrations in ash basin females (selenium, arsenic, copper, and cadmium) and their offspring (selenium), brood sizes and offspring viability did not differ between clutches collected from ash basin and reference site females. Our data provide further evidence of the high degree of tolerance of eastern mosquitofish to exposure to aquatic coal ash disposal generated by power plants. However, the basis for such tolerance to ash remains unclear. Further investigations are required to determine whether such tolerance is a result of species-specific characteristics or population characteristics due to local adaptation.

  20. Empirical prediction of ash deposition propensities in coal-fired utilities

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.

    1997-01-01

    This report contain an outline of some of the ash chemistry indices utilized in the EPREDEPO (Empirical PREdiction of DEPOsition) PC-program, version 1.0 (DEPO10), developed by Flemming Frandsen, The CHEC Research Programme, at the Department of Chemical Engineering, Technical University of Denmark. DEPO10 is a 1st generation FTN77 Fortran PC-programme designed to empirically predict ash deposition propensities in coal-fired utility boilers. Expectational data (empirical basis) from an EPRI-sponsored survey of ash deposition experiences at coal-fired utility boilers, performed by Battelle, have been tested for use on Danish coal chemistry - boiler operational conditions, in this study. (au) 31 refs.

  1. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): An introduction of occupational health hazards

    International Nuclear Information System (INIS)

    Oliveira, Marcos L.S.; Marostega, Fabiane; Taffarel, Silvio R.; Saikia, Binoy K.; Waanders, Frans B.; DaBoit, Kátia; Baruah, Bimala P.

    2014-01-01

    Coal derived nano-particles has been received much concern recently around the world for their adverse effects on human health and the environment during their utilization. In this investigation the mineral matter present in some industrially important Indian coals and their ash samples are addressed. Coal and fly ash samples from the coal-based captive power plant in Meghalaya (India) were collected for different characterization and nano-mineralogy studies. An integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS analysis, and Mössbauer spectroscopy were used to know their extent of risks to the human health when present in coal and fly ash. The study has revealed that the coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals in lesser quantities were found to be present in the coal fly ash. Fly ash carbons were present as chars. Indian coal fly ash also found to contain nanominerals and ultrafine particles. The coal-fired power plants are observed to be the largest anthropogenic source of Hg emitted to the atmosphere and expected to increase its production in near future years. The Multi Walled Carbon Nano-Tubes (MWCNTs) are detected in our fly ashes, which contains residual carbonaceous matter responsible for the Hg capture/encapsulation. This detailed investigation on the inter-relationship between the minerals present in the samples and their ash components will also be useful for fulfilling the clean coal technology principles. - Highlights: • We research changes in the level of ultrafine and nanoparticles about coal–ash quality. • Increasing dates will increase human health quality in this Indian coal area. • Welfare effects depend on ex-ante or ex-post assumptions about

  2. Effect of coal blending on the leaching characteristics of arsenic and selenium in fly ash from fluidized bed coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, F.; Yamada, N.; Sato, A.; Ninomiya, Yoshihiko [Chubu Univ., Aichi (Japan). Dept. of Applied Chemistry; Zhang, L. [Monash Univ., Clayton, VIC (Australia). Dept. of Chemical Engineering

    2013-07-01

    The capture ability of fly ash to arsenic (As) and selenium (Se) was investigated through the combustion of two single bituminous coals A and B and their mixture (blending ratio of 1:1, wt/wt) in a lab-scale fluidized bed reactor. The leaching characteristics of As and Se in corresponding fly ash were also conducted according to Japanese Industrial Standard (JIS). Speciation of As and Se during fly ash leaching test were predicted from the perspective of thermodynamic equilibrium. The results indicate that, combustion of coal B, containing abundant calcium, possesses a higher capture ability of As and Se than that of coal A through possible chemical reaction between As/Se with CaO. Leaching behavior of As and Se from fly ash is strongly dependent on the pH of the leachate. Free calcium in fly ash generates an alkaline leachate during leaching test and subsequently reduces As and Se leaching, which cause the leaching ratio of As and Se in fly ash derived from the combustion of coal B was much lower, relative to that in coal A. Combustion of blending coal promotes the overall capture ability of the fly ash to As/Se and reduces their leaching from fly ash through the synergy of free CaO between this two kind of fly ash.

  3. Evaluation of heavy metal leaching from coal ash-versus conventional concrete monoliths and debris.

    Science.gov (United States)

    Gwenzi, Willis; Mupatsi, Nyarai M

    2016-03-01

    Application of coal ash in construction materials is constrained by the potential risk of heavy metal leaching. Limited information is available on the comparative heavy metal leaching from coal ash-versus conventional concrete. The current study compared total and leached heavy metal concentrations in unbound coal ash, cement and sand; and investigated the effect of initial leachant pH on heavy metal leaching from coal-ash versus conventional concrete monoliths and their debris. Total Pb, Mn and Zn in coal ash were lower than or similar to that of other materials, while Cu and Fe showed the opposite trend. Leached concentrations of Zn, Pb, Mn, Cu and Fe in unbound coal ash, its concrete and debris were comparable and in some cases even lower than that for conventional concrete. In all cases, leached concentrations accounted for just leaching data showed that leaching was dominated by diffusion. Overall, the risk of Zn, Pb, Mn, Cu and Fe leaching from coal ash and its concrete was minimal and comparable to that of conventional concrete, a finding in contrast to widely held public perceptions and earlier results reported in other regions such as India. In the current study the coal ash, and its concrete and debris had highly alkaline pH indicative of high acid neutralizing and pH buffering capacity, which account for the stabilization of Zn, Pb, Mn, Cu and Fe. Based on the low risk of Zn, Pb, Mn, Cu and Fe leaching from the coal ash imply that such coal ash can be incorporated in construction materials such as concrete without adverse impacts on public and environmental health from these constituents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Norm in coal, fly ash and cement

    International Nuclear Information System (INIS)

    Kant, K.; Upadhyay, S.B.; Sharma, G.S.

    2006-01-01

    Coal is technologically important materials being used for power generation and its cinder (fly ash) is used in manufacturing of bricks, sheets, cement, land filling etc. 222 Rn (radon) and its daughters are the most important radioactive and potentially hazardous elements, which are released in the environment from the naturally occurring radioactive material (NORM) present in coal, fly ash and cement. Thus it is very important to carry out radioactivity measurements in coal, fly ash and cement from the health and hygiene point of view. Samples of coal and fly ash from different thermal power stations in northern India and various fly ash using establishments and commercially available cement samples (O.P.C. and P.P.C.) were collected and analyzed for radon concentration and exhalation rates. For the measurements, alpha sensitive LR-115 type II plastic track detectors were used. The radon concentration varied from 147 Bq/m 3 to 443 Bq/m 3 , the radium concentration varied from 1.5 to 4.5 Bq/kg and radon exhalation rate varied from 11.8 mBq.kg -1 .h -1 to 35.7 mBq.kg -1 .h -1 for mass exhalation rate and from 104.5 mBq.m -2 .h -1 to 314.8 mBq.m -2 .h -1 for surface exhalation rate in coal samples. The radon concentration varied from 214 Bq/m 3 to 590 Bq/m 3 , the radium concentration varied from 1.0 to 2.7 Bq/kg and radon exhalation rate varied from 7.8 mBq.kg -1 .h -1 to 21.6 mBq.kg -1 .h -1 for mass exhalation rate and from 138 mBq m -2 h -1 to 380.6 mBq.m -2 .h -1 for surface exhalation rate in fly ash samples. The radon concentration varied from 157.62 Bq/m 3 to 1810.48 Bq/m 3 , the radium concentration varied from 0.76 Bq/kg to 8.73 Bq/kg and radon exhalation rate varied from 6.07 mBq.kg -1 .hr -1 to 69.81 mBq.kg -1 .hr -1 for mass exhalation rate and from 107.10 mBq.m -2 .hr -1 to 1230.21 mBq.m -2 .hr -1 for surface exhalation rate in different cement samples. The values were found higher in P.P.C. samples than in O.P.C. samples. (authors)

  5. Phosphorite ash in coal of certain beds of the Orzeskich (Zaleskich) layers. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, J

    1982-01-01

    In ashes from coals of the Orzeskich (Zaleskich) layers, the variable content of P/sub 2/O/sub 5/ (0.4-1.15%) rises in an inverse proportion to the ash content of the coal. Chemical and mineral compositions of the ash in the coals of two levels of the mine ''Manifest Liptsovy'' are presented. The coal which yields phosphorite ash belongs to the type G. The phosphorus is mainly fruits and seeds of swamp plants. The smaller part of the phosphorus is formed by influx of terrigenous and volcanic material, as well as hydrothermal solutions.

  6. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS; TOPICAL

    International Nuclear Information System (INIS)

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-01-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems

  7. Production of low ash coal by thermal extraction with N-methyl-2-pyrrolidinone

    Energy Technology Data Exchange (ETDEWEB)

    Do Kim, S.; Woo, K.J.; Jeong, S.K.; Rhim, Y.J.; Lee, S.H. [Korean Institute for Energy Research, Taejon (Republic of Korea). Clean Coal Technological Research Center

    2008-07-15

    Present study was conducted for the purpose of producing low ash coal from LRC (low rank coals) such as lignite and sub-bituminous coal through thermal extraction using polar solvent. Extraction from bituminous coal was also investigated for comparison. NMP as a polar solvent was used. The ratio of coal to solvent was adjusted as 1:10. Experimental conditions were established which include the extraction temperature of 200-430{sup o}C, initial applied pressure of 1-20 bar and extraction time of 0.5-2 hr were used. Extraction yield and ash content of extracted and residual coal were measured. The extraction yield increased with the increase of extraction temperature, and the ash content of extracted coal decreased below 0.4% at 400{sup o}C from the raw coal samples that have the ash contents of 4-6%. According to the analysis of experiments results, fixed carbon and calorific value increased, and H/C and O/C decreased.

  8. Reducing Heavy Metal Element from Coal Bottom Ash by Using Citric Acid Leaching Treatment

    Directory of Open Access Journals (Sweden)

    Yahya Ahmad Asyari

    2017-01-01

    Full Text Available Coal ash is the residue that is produced during coal combustion for instance fly ash, bottom ash or boiler slag which was primarily produced from the combustion of coal. With growth in coal burning power station, huge amount of coal bottom ash (CBA considered as hazardous material which are normally disposed in an on-site disposal system without any commercialization purpose. Previous researchers have studied the extraction of silica from agricultural wastes such as palm ash and rice husk ash (RHA and CBA by using leaching treatment method. In this study, the weaker acid, citric acid solution was used to replace the strong acid in leaching treatment process. Result showed that the heavy metal content such as Copper (Cu, Zinc (Zn and Lead (Pb can be decrease. Meanwhile the silica can be extracted up to 44% from coal bottom ash using citric acid leaching treatment under the optimum reaction time of 60 minutes with solution temperature of 60°C and concentration of citric acid more than 2%.

  9. Natural radioactivity of coal and fly ash at the Nikola Tesla B TPP

    Directory of Open Access Journals (Sweden)

    Kisić Dragica M.

    2013-01-01

    Full Text Available Serbian thermal power plants (TPPs produce siliceous fly ash from lignite in the quantity of approximately 6 million tons per year. The potential market for the use of fly ash is operational, but for the time being, only used by cement producers. Fly ash radioactivity could be one of the major points of concern when larger use of fly ash is planned, particularly in the Serbian construction industry. Radioactivity measurements have been conducted regularly for decades. This paper presents the results of a ten-year fly ash radioactivity measurements at the Nikola Tesla B TPP located in Obrenovac. In addition, the paper compares the natural radionuclides coal content data combusted by the Nikola Tesla B TPP boilers coming from the Kolubara Basin and ash created during coal combustion. Fly ash created in the Nikola Tesla TPPs boilers is characterised by the increased concentration of the natural radionuclides content compared to coal. This is the so-called technologically enhanced natural radioactivity (Technologically Enhanced Occurring Radioactive Material - TENORM of industrial waste, whereas the average specific activities: 232Th in coal amount to 25.2 Bq/kg, and in fly ash and coal 84.2 Bq/kg and 238U 38.3 Bq/kg, respectively. Following the obtained natural radionuclides content results it may be concluded that the Nikola Tesla B TPP ash may be disposed into the environment. Ash may be used also in the construction industry (civil engineering. In building construction applications, ash share as the additive to other building materials depends from its physical and chemical characteristics, as well as from the radionuclides activity: 266Ra, 232Th and 40K. Unlike the thermal power plants regularly (once a year testing the specific natural radionuclides activity in the combusted coal and boiler fly ash, Electric Power Industry of Serbia has not performed large-scale investigations of the natural radionuclides content in coal within the Kolubara

  10. Uranium content of coal ashes from Southern Brazil coal fueled power stations, by the fission track registration technique

    International Nuclear Information System (INIS)

    Morales, R.K.

    1981-01-01

    The feasibility of the application of the fission track registration technique for the determination of uranium in coal ashes was shown. The wet method was employed using as detector the Makrofol KG=10 μm, manufactured by Bayer. The coal ashes were originated from coal-fueled power stations localized in Southern Brazil. The results obtained ranged from 10 to 27 mg U/kg. Since the total error variation was from 18,4% to 23,8%, the method used was considered excellent. The determination of the uranium content in coal ashes is of considerable interest in environmental control in power stations, in their vicinity and wherever these ashes are used or stored. The technique used is the work proved to be very appropriate for the purpose aimed at. (Author) [pt

  11. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  12. Utilizing Coal Ash and Humic Substances as Soil Ameliorant on Reclaimed Post-Mining Land

    Directory of Open Access Journals (Sweden)

    Ade Mariyam Oklima

    2014-09-01

    Full Text Available Coal ash and humic substances can be used as soil ameliorant in the reclamation of formerly mined land. Due to its high pH and nutrients content, coal ash can be used to improve the chemical properties of the soil, such as increasing of pH, and increasing the levels of nutrients availability in the soil. Humic substances may also be used to complement, as they can increase the release of nutrients from the coal ash. Thus, the objective of this study was to assess the influence of coal ash and humic substances on soil chemical characteristics, nutrient absorption, and plant growth. This study was conducted in two locations - in a nursery area, involving two treatment factors: coal ash at different dosages (0, 200, and 400 g polybag-1, and humic material also at varying dosages (0, 0.04, and 0.08 g C polybag-1; and in a post-mining field using similar treatments: coal ash dosage (0, 2.5, and 5.0 kg planting-1 hole and humic material dosage (0, 0.56, and 1.12 g C planting hole-1. The results showed that coal ash and humic materials significantly increased the soil pH, available P, and exchangeable K, Ca and Mg. Coal ash also contained a number of heavy metals but in quantities that are far below the limits set by both Indonesian Government Regulation and the US Environmental Protection Agency (USEPA. The above soil amelioration effects mean that. applicaton of coal ash and humic substances can significantly increase the growth of Jabon trees in the reclaimed post-mining land.

  13. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M; Skrifvars, B J; Backman, R; Lauren, T; Uusikartano, T; Malm, H; Stenstroem, P; Vesterkvist, M [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). During 1996 the work has focused on identifying bed agglomeration mechanisms and analysing bed agglomerates in both full scale and lab scale FB reactors, as well as comparing how well the compression strength based sintering test can predict bed agglomeration in an FB furnace. (orig.)

  14. Trace and major element pollution originating from coal ash suspension and transport processes

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, A.; Djordjevic, D.; Polic, P. [University of Belgrade, Belgrade (Yugoslavia). Faculty of Science, Dept. of Chemistry

    2001-07-01

    Coal ash obtained from Nikola Tesla A power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. It is concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  15. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.

    Science.gov (United States)

    He, Jingfeng; Duan, Chenlong; Lei, Mingzhe; Zhu, Xuemei

    2016-01-01

    The secondary release of mercury from coal fly ash is a negative by-product from coal-fired power plants, and requires effective control to reduce environmental pollution. Analysing particle size distribution and composition of the coal fly ash produced by different mercury removing technologies indicates that the particles are generally less than 0.5 mm in size and are composed mainly of SiO2, Al2O3, and Fe2O3. The relationships between mercury concentration in the coal fly ash, its particle size, and loss of ignition were studied using different mercury removing approaches. The research indicates that the coal fly ash's mercury levels are significantly higher after injecting activated carbon or brominating activated carbon when compared to regular cooperating-pollution control technology. This is particularly true for particle size ranges of >0.125, 0.075-0.125, and 0.05-0.075 mm. Leaching experiments revealed the secondary release of mercury in discarded coal fly ash. The concentration of mercury in the coal fly ash increases as the quantity of injecting activated carbon or brominating activated carbon increases. The leached concentrations of mercury increase as the particle size of the coal fly ash increases. Therefore, the secondary release of mercury can be controlled by adding suitable activated carbon or brominating activated carbon when disposing of coal fly ash. Adding CaBr2 before coal combustion in the boiler also helps control the secondary release of mercury, by increasing the Hg(2+) concentration in the leachate. This work provides a theoretical foundation for controlling and removing mercury in coal fly ash disposal.

  16. Fouling deposition characteristic by variation of coal particle size and deposition temperature in DTF (Drop Tube Furnace)

    Energy Technology Data Exchange (ETDEWEB)

    Namkung, Hueon; Jeon, Youngshin; Kim, Hyungtaek [Ajou Univ., Suwon (Korea, Republic of). Div. of Energy Systems Research; Xu, Li-hua [IAE, Suwon (Korea, Republic of). Plant Engineering Center

    2013-07-01

    One of the major operation obstacles in gasification process is ash deposition phenomenon. In this investigation, experiment was carried out to examine coal fouling characteristics using a laminar DTF (Drop Tube Furnace) with variation of operating condition such as different coal size, and probe surface temperature. Four different samples of pulverized coal were injected into DTF under various conditions. The ash particles are deposited on probe by impacting and agglomerating action. Fouling grains are made of eutectic compound, which is made by reacting with acid minerals and alkali minerals, in EPMA (Electron Probe Micro-Analysis). And agglomeration area of fouling at top layer is wide more than it of middle and bottom layer. The major mineral factors of fouling phenomenon are Fe, Ca, and Mg. The deposition quantity of fouling increases with increasing particle size, high alkali mineral (Fe, Ca, and Mg) contents, and ash deposition temperature.

  17. Synthesis of geopolymer from biomass-coal ash blends

    Science.gov (United States)

    Samadhi, Tjokorde Walmiki; Wulandari, Winny; Prasetyo, Muhammad Iqbal; Fernando, Muhammad Rizki; Purbasari, Aprilina

    2017-09-01

    Geopolymer is an environmentally attractive Portland cement substitute, owing to its lower carbon footprint and its ability to consume various aluminosilicate waste materials as its precursors. This work describes the development of geopolymer formulation based on biomass-coal ash blends, which is predicted to be the prevalent type of waste when biomass-based thermal energy production becomes mainstream in Indonesia. The ash blends contain an ASTM Class F coal fly ash (FA), rice husk ash (RHA), and coconut shell ash (CSA). A mixture of Na2SiO3 and concentrated KOH is used as the activator solution. A preliminary experiment identified the appropriate activator/ash mass ratio to be 2.0, while the activator Na2SiO3/KOH ratio varies from 0.8 to 2.0 with increasing ash blend Si/Al ratio. Both non-blended FA and CSA are able to produce geopolymer mortars with 7-day compressive strength exceeding the Indonesian national SNI 15-2049-2004 standard minimum value of 2.0 MPa stipulated for Portland cement mortars. Ash blends have to be formulated with a maximum RHA content of approximately 50 %-mass to yield satisfactory 7-day strength. No optimum ash blend composition is identified within the simplex ternary ash blend compositional region. The strength decreases with Si/Al ratio of the ash blends due to increasing amount of unreacted silicate raw materials at the end of the geopolymer hardening period. Overall, it is confirmed that CSA and blended RHA are feasible raw materials for geopolymer production..

  18. Characterization of Coal Quality Based On Ash Content From M2 Coal-Seam Group, Muara Enim Formation, South Sumatra Basin

    Directory of Open Access Journals (Sweden)

    Frillia Putri Nasution

    2017-09-01

    Full Text Available Muara Enim Formation is well known as coal-bearing formation in South Sumatra Basin. As coal-bearing formation, this formation was subjects of many integrated study. Muara Enim Formation can be divided into four coal-seam group, M1, M2, M3, and M4. The M2 group comprising of Petai (C, Suban (B, Lower Mangus (A2, and Upper Mangus (A1. Depositional environments of Group M2 is transitional lower delta plain with sub-depositional are crevasse splay and distributary channel. The differentiation of both sub-depositional environments can be caused the quality of coal deposit. One of quality aspects is ash content. This research conducted hopefully can give better understanding of relationship between depositional environments to ash content. Group M2 on research area were found only Seam C, Seam B, and Seam A2, that has distribution from north to central so long as 1400 m. Coal-seam thickness C ranged between 3.25-9.25 m, Seam B range 7.54-13.43 m, and Seam C range 1.53-8.37 m, where all of coal-seams thickening on the central part and thinning-splitting to northern part and southern part. The ash content is formed from burning coal residue material. Ash contents on coal seam caused by organic and inorganic compound which resulted from mixing modified material on surrounded when transportation, sedimentation, and coalification process. There are 27 sample, consists of 9 sample from Seam C, 8 sample from Seam B, and 10 sample from Seam A2. Space grid of sampling is 100-150 m. Ash content influenced by many factors, but in research area, main factor is existence of inorganic parting. Average ash content of Seam C is 6,04%, Seam B is 5,05%, and Seam A2 is 3,8%. Low ash content influenced by settle environment with minor detrital material. High ash content caused by oxidation and erosional process when coalification process. Ash content on coal in research area originated from detritus material carried by channel system into brackish area or originated

  19. Trace and major element pollution originating from coal ash suspension and transport processes.

    Science.gov (United States)

    Popovic, A; Djordjevic, D; Polic, P

    2001-04-01

    Coal ash obtained by coal combustion in the "Nikola Tesla A" power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. Considering concentrations of seven trace elements as well as five major elements in extracts from a total of 12 samples, it can be concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  20. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES; FINAL

    International Nuclear Information System (INIS)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-01-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO(sub x)). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process

  1. Quantum chemistry calculation and experimental study on coal ash fusion characteristics of coal blend

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yushuang; Zhang Zhong-xiao; Wu Xiao-jiang; Li Jie; Guang Rong-qing; Yan Bo [University of Shanghai for Science and Technology, Shanghai (China). Department of Power Engineering

    2009-07-01

    The coal ash fusion characteristics of high fusibility coal blending with two low fusibility coals respectively were studied. The data were analyzed using quantum chemistry methods and experiment from micro-and macro-molecular structures. The results show that Ca{sup 2+}, as the electron acceptor, easily enters into the lattice of mullite, causing a transition from mullite to anorthite. Mullite is much more stable than anorthite. Ca{sup 2+} of anorthite occupies the larger cavities with the (SiO{sub 4}){sup 4-} tetrahedral or (AlO{sub 4}){sup 5-} tetrahedral rings respectively. Ca atom linked O weakens Si-O bond, leading ash fusion point to reduce effectively. The chemistry, reactivity sites and bond-formation characteristics of minerals can well explain the reaction mechanism refractory minerals and flux ash melting process at high temperature. The results of experiment are agreed with the theory analysis by using ternary phase diagrams and quantitative calculation. 27 refs., 9 figs., 3 tabs.

  2. Environmentally friendly use of non-coal ashes in Sweden.

    Science.gov (United States)

    Ribbing, C

    2007-01-01

    The Swedish Thermal Engineering Research Institute (Värmeforsk) initiated an applied research program "Environmentally friendly use of non-coal ashes", in 2002. The program aims at increasing knowledge on the by-products of energy production and their application. The goal of formulating technical and environmental guidelines and assessments is a major point of the program, which is supported by about forty authorities and private organisations. The programme has been divided into four areas: recycling of ashes to forests, geotechnical applications, use in landfilling, and environmental aspects and chemistry. Among all results obtained, the following progress is shown: *Evidence for the positive effects of spreading ashes on forest growth. *A proposal for environmental guidelines on the utilisation of ashes in construction. *A handbook for using non-coal fly ashes in unpaved roads. *Technical and environmental assessments of MSWI bottom ashes in road construction. *Development of the use of ashes with municipal wastewater sludge as a cover for landfills and mine tailings. *Use of ashes from bio-fuels in concrete and replacement of cement in stoop mining. *A method to classify those by-products from combustion that have mirror entries in the EWC as a hazardous or non-hazardous compound. The Ash Programme has also made it possible to increase knowledge on ashes as valuable materials, on quality assurance and on markets for recovered materials.

  3. Promoting effect of various biomass ashes on the steam gasification of low-rank coal

    International Nuclear Information System (INIS)

    Rizkiana, Jenny; Guan, Guoqing; Widayatno, Wahyu Bambang; Hao, Xiaogang; Li, Xiumin; Huang, Wei; Abudula, Abuliti

    2014-01-01

    Highlights: • Biomass ash was utilized to promote gasification of low rank coal. • Promoting effect of biomass ash highly depended on AAEM content in the ash. • Stability of the ash could be improved by maintaining AAEM amount in the ash. • Different biomass ash could have completely different catalytic activity. - Abstract: Application of biomass ash as a catalyst to improve gasification rate is a promising way for the effective utilization of waste ash as well as for the reduction of cost. Investigation on the catalytic activity of biomass ash to the gasification of low rank coal was performed in details in the present study. Ashes from 3 kinds of biomass, i.e. brown seaweed/BS, eel grass/EG, and rice straw/RS, were separately mixed with coal sample and gasified in a fixed bed downdraft reactor using steam as the gasifying agent. BS and EG ashes enhanced the gas production rate greater than RS ash. Higher catalytic activity of BS or EG ash was mainly attributed to the higher content of alkali and alkaline earth metal (AAEM) and lower content of silica in it. Higher content of silica in the RS ash was identified to have inhibiting effect for the steam gasification of coal. Stable catalytic activity was remained when the amount of AAEM in the regenerated ash was maintained as that of the original one

  4. Main characteristics of the radioactive enrichment in ashes produced in coal-fired power stations

    International Nuclear Information System (INIS)

    Baeza, Antonio; Corbacho, Jose A.; Cancio, David; Robles, Beatriz; Mora, Juan C.

    2008-01-01

    Under contract with the Spain's 'Nuclear Safety Council', a study is being conducted of the nation's largest nominal output coal-fired power stations. Its purpose is to assess the radiological impact on workers and local populations due to this source of NORM activity. One of the aspects of particular interest is the study of the radioactive enrichment in the combustion wastes relative to the different coals used as fuel (usually local bituminous coal or lignite, or imported coal). These wastes consist of fly ash (mostly fine particles collected in electrostatic precipitators), and bottom ash (larger in size, and collected wet or dry in hoppers below the boilers). In general terms, the enrichment factors measured were between 2 and 18 for the radionuclides 40 K, 226 Ra, 232 Th, and 210 Po. The magnitude of this enrichment factor depended mainly on the ash content of each coal, and hence on the type of coal used as fuel and the specific operation cycle in the different power stations. For the radionuclides 40 K, 226 Ra, and 232 Th, the enrichment was relatively similar in value in the fly and bottom ashes produced by the different types of coal used in the power stations studied. For 210 Po, however, as was expected, the enrichment was much greater in the fly ash than in the bottom ash for each coal analyzed. (author)

  5. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    International Nuclear Information System (INIS)

    1997-01-01

    Bechtel, together with Amax Research and Development Center (Amax R ampersand D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications, (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at

  6. Fresh Properties and Flexural Strength of Self-Compacting Concrete Integrating Coal Bottom Ash

    Directory of Open Access Journals (Sweden)

    Jamaluddin Norwati

    2016-01-01

    Full Text Available This paper presents the effect of using coal bottom ash as a partial replacement of fine aggregates in self-compacting concrete (SCC on its fresh properties and flexural strength. A comparison between SCC with various replacements of fine aggregates with coal bottom ash showed that SCC obtained flexural strength decrease on increase of water cement ratio from 0.35 to 0.45. The natural sand was replaced with coal bottom ash up to 30% volumetrically. The fresh properties were investigated by slump flow, T500 spread time, L-box test and sieve segregation resistance in order to evaluate its self-compatibility by compared to control samples embed with natural sand. The results revealed that the flowability and passing ability of SCC mixtures are decreased with higher content of coal bottom ash replacement. The results also showed that the flexural strength is affected by the presence of coal bottom ash in the concrete. In addition, the water cement ratios are influence significantly with higher binder content in concrete.

  7. Trophic structure and metal bioaccumulation differences in multiple fish species exposed to coal ash-associated metals

    Energy Technology Data Exchange (ETDEWEB)

    Otter, Ryan [Middle Tennessee State University; Bailey, Frank [Middle Tennessee State University; Fortner, Allison M [ORNL; Adams, Marshall [ORNL

    2012-01-01

    On December 22, 2008 a dike containing coal fly ash from the Tennessee Valley Authority Kingston Fossil Plant near Kingston Tennessee USA failed and resulted in the largest coal ash spill in U.S. history. Coal ash, the by-product of coal combustion, is known to contain multiple contaminants of concern, including arsenic and selenium. The purpose of this study was to investigate the bioaccumulation of arsenic and selenium and to identify possible differences in trophic dynamics in feral fish at various sites in the vicinity of the Kingston coal ash spill. Elevated levels of arsenic and selenium were observed in various tissues of largemouth bass, white crappie, bluegill and redear sunfish from sites associated with the Kingston coal ash spill. Highest concentrations of selenium were found in redear sunfish with liver concentrations as high as 24.83 mg/kg dry weight and ovary concentrations up to 10.40 mg/kg dry weight at coal ash-associated sites. To help explain the elevated selenium levels observed in redear sunfish, investigations into the gut pH and trophic dynamics of redear sunfish and bluegill were conducted which demonstrated a large difference in the gut physiology between these two species. Redear sunfish stomach and intestinal pH was found to be 1.1 and 0.16 pH units higher than in bluegill, respectively. In addition, fish from coal ash-associated sites showed enrichment of 15N & 13C compared to no ash sites, indicating differences in food web dynamics between sites. These results imply the incorporation of coal ash-associated compounds into local food webs and/or a shift in diet at ash sites compared to the no ash reference sites. Based on these results, further investigation into a broader food web at ash-associated sites is warranted.

  8. Hazards from radioactivity of fly ash of Greek coal power plants (CPP)

    International Nuclear Information System (INIS)

    Papastefanou, C.; Charalambous, S.

    1980-01-01

    Fly ash and fine dispersion releases from coal combustion in Greek coal power plants were studied. Concentrations in the fly ash up to 20 pCi/g and 10 pCi/g were measured for 238 U and 226 Ra respectively (not in secular equilibrium). Risk from the fly ash derives from its escape in particulate form or fine dispersion and from its use as a substitute for cement in concrete. The new data indicate that coal power plants discharge relatively larger quantities of radioactive material into the atmosphere than nuclear power plants of comparable size, during normal operation. (H.K.)

  9. Impact of coal fly ash addition on ash transformation and deposition in a full-scale wood suspension-firing boiler

    DEFF Research Database (Denmark)

    Wu, Hao; Bashir, Muhammad Shafique; Jensen, Peter Arendt

    2013-01-01

    Ash transformation and deposition during pulverized wood combustion in a full-scale power plant boiler of 800 MWth were studied with and without the addition of coal fly ash. The transient ash deposition behavior was characterized by using an advanced deposit probe system at two boiler locations...... constant after a few hours. The formed deposits, especially those at the location with low flue gas temperatures, contained a considerable amount of K2SO4, KCl, and KOH/K2CO3. With the addition of a large amount (about 4 times of the mass flow of wood ash) of coal fly ash to the boiler, these alkali...

  10. Hierarchical zeolites from class F coal fly ash

    Science.gov (United States)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  11. Phase transformations in synthesis technologies and sorption properties of zeolites from coal fly ash

    Directory of Open Access Journals (Sweden)

    О. Б. Котова

    2016-08-01

    Full Text Available Coal fly ash is generated in the course of combustion of coal at thermal power plants. Environmental problems increase sharply without disposing that industrial waste. Technologies were tested of hydrothermal synthesis of zeolites from fly ash forming during combustion of coal at thermal power plants of the Pechora coal basin and dependences were identified of the experiment conditions on physical and chemical properties of the end product. It is demonstrated that synthesizing zeolites from fly ash is the first stage of forming ceramic materials (ceramic membranes, which defines the fundamental character (importance of that area of studies. It was for the first time that sorption and structural characteristics and cation-exchange properties of fly ash from the Pechora basin coals were studied with respect to, Ba2+ and Sr2+.

  12. Determination of ash content of coal by mass absorption coefficient measurements at two X-ray energies

    International Nuclear Information System (INIS)

    Fookes, R.A.; Gravitis, V.L.; Watt, J.S.

    1977-01-01

    A method for determining the ash content of coal is proposed. It involves measurements proportional to mass absorption coefficients of coal at two X-ray energies. These measurements can be made using X-ray transmission or scatter techniques. Calculations based on transmission of narrow beams of X-rays have shown that ash can be determined to about 1wt%(1 sigma) in coal of widely varying ash content and composition. Experimentally, ash content was determined to 0.67wt% by transmission techniques and 1.0wt% by backscatter techniques in coal samples from the Bulli seam, NSW, Australia, having ash in the range 11-34wt%. For samples with a much wider range of coal composition (7-53wt% ash and 0-25wt% iron in the ash), ash content was determined by backscatter measurements to 1.62wt%. The method produced ash determinations at least as accurate as those produced by the established technique which compensates for variation in iron content of the ash by X-ray fluorescence analysis for iron. Compared with the established technique, it has the advantage of averaging analysis over much larger volumes of coal, but the disadvantage that much more precise measurements of X-ray intensities are required. (author)

  13. Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants

    Science.gov (United States)

    Krylov, D. A.; Sidorova, G. P.

    2013-04-01

    This paper presents an analysis of published data on the content of radioactive nuclides in coals originating from various coal deposits, and in ash and slag wastes produced at coal-fired thermal power plants, as well as in fly ash emitted from thermal power plants into the atmosphere. Problems related to the use of coals with an elevated content of natural radionuclides (NRNs) and methods of their solution implemented at the Urtuyskoe coalfield are dealt with. Data on the analysis of Transbaikal coals for the NRN content, as well as weighted mean content of uranium and thorium in coals from the Siberian Region, are given. In order to reduce irradiation of plant personnel and the population of the areas where coal producers and coal-fired thermal power plants are located, it is necessary to organize very careful control of the NRN content in both coals and products of their combustion that are released into the environment. To solve the problem related to the control of radioactivity, the centralized approach and creation of a proper normative base are needed. Experience gained in developing the Urtuyskoe coalfield shows that it is possible to create an efficient system of coal quality control with respect to the radiation hygiene factor and provide protection of the environment and health of the population.

  14. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.; Wall, T.F.; Creelman, R.A.; Gupta, R. [Univ. of Newcastle, Callaghan (Australia)

    1996-12-31

    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degrees}C. The temperatures corresponding to the rapid rate of shrinkage are shown to correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined with an SEM to identify the associated chemical and physical changes. The progressive changes in the range of chemical analysis (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenization, viscosity and ash fusion mechanisms.

  15. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Creelman, R.A.; Gupta, R.; Gupta, S. [Univ. of Newcastle (Australia)

    1996-10-01

    A mechanistic study is detailed in which coal ash is heated with the shrinkage and electrical resistance measured continuously up to a temperature of 1600{degrees}C. The temperatures corresponding to rapid rates of shrinkage are shown to correspond to the formation of eutectics identified on phase diagrams. Samples where therefore heated to these temperatures, cooled rapidly and examined with an SEM to identify the associated chemical and physical changes. The progressive changes in the range of chemical analysis (from SEM), the extent of undissolved ash particles and porosity are then quantified and related to the shrinkage events and standard ash fusion temperatures.

  16. JV Task 6 - Coal Ash Resources Research Consortium Research

    Energy Technology Data Exchange (ETDEWEB)

    Debra Pflughoeft-Hassett; Tera Buckley; Bruce Dockter; Kurt Eylands; David Hassett; Loreal Heebink; Erick Zacher

    2008-04-01

    The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of coal combustion by-products (CCBs). CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCB utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program (JSRP), which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCB performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 1998 to 2007 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCBs. CARRC topical reports were prepared on several completed tasks. Specific CARRC 1998B2007 accomplishments included: (1) Development of several ASTM International Standard Guides for CCB utilization applications. (2) Organization and presentation of training courses for CCB professionals and teachers. (3) Development of online resources including the Coal Ash Resource Center, Ash from Biomass in Coal (ABC) of cocombustion ash characteristics, and the Buyer's Guide to Coal-Ash Containing Products. In addition

  17. Determination of ash-forming elements in lignite coal

    International Nuclear Information System (INIS)

    Wischnewski, C.; Werner, G.; Vogt, J.; Just, G.

    1990-01-01

    The most important methods are discussed suitable for the determination of ash-forming elements in coal. In this connection questions of the concentrations of elements in lignites, of the sample preparation, and of the selection of methods for the determination of ash-forming elements are addressed. Advantages and disadvantages of different analysis techniques are shown using concrete examples. (author)

  18. Development of bricks with incorporation of coal ash and sludge from water treatment plant

    International Nuclear Information System (INIS)

    Silva, Mauro Valerio da

    2011-01-01

    Sludge from treatment water Brazilian plant station are, frequently, disposed and launched directly in the water bodies, causing a negative impact in the environment. Also, coal ashes is produced by burning of coal in coal-fired power stations and is the industrial solid waste most generated in southern Brazil: approximately 4 million tons/y. The efficient disposal of coal ashes is an issue due to its massive volume and harmful risks to the environment. The aim of this work was study the feasibility of incorporating these two industrial wastes in a mass used in the manufacture of ecological bricks. Samples of fly ashes from a cyclone filter from a coal-fired power plant located at Figueira County in Parana State, Brazil and waterworks sludge of Terra Preta County in Sao Paulo State, Brazil, were used in the study. Fly ash-sludge and fly ash-sludge-soil-cement bricks were molded and tested, according to the Brazilians Standards. The materials were characterized by physical-chemical analysis, X-ray diffraction, thermal analysis, morphological analysis, Fourier transform infrared spectroscopy and granulometric analysis. The results indicate that the waterworks sludge and coal ashes have potential to be used on manufacturing soil-cement pressed bricks according to the of Brazilians Standards NBR 10836/94. (author)

  19. Determination of radioactive trace elements in ashes and fly-ashes from Brazilian coal-fired power plants

    International Nuclear Information System (INIS)

    Bellido, L.F.; de Castro Arezzo, B.

    1984-01-01

    The aim of this work was to apply a epithermal neutron activation technique to determine the uranium and thorium content in coal ashes and fly ashes from Brazilian coal-fired thermoelectric plants and to evaluate the contribution of these elements and their descendents to the environmental radioactivity. Brazil has adopted as short term policy the use of alcohol and coal as alternative sources of energy. With regard to coal, large deposits of this mineral are found in southern states but the serious problem of its utilization is the risk of environmental contamination which can reach dangerous levels because the industrial plants burn several million tons per year. Uranium and thorium contents, determined experimentally, are extrapolated for annual coal consumption and their amounts and the activity of the radium isotopes descendents released to the atmosphere are calculated. The significance of these values and problems in environmental pollution are discussed

  20. Proceedings, volume 20, The Institute for Briquetting and Agglomeration, September 1987

    Energy Technology Data Exchange (ETDEWEB)

    Roth, D.L. (ed.)

    1988-01-01

    32 papers are presented covering aspects of briquetting, pelletizing and agglomeration of various materials, including coal, plastics, flue gas gypsum and fertilizers. Papers on coal included the start-up of the Petrofina coal briquetting plant (UK), coal and refuse agglomeration by extrusion, coal dust reduction, agglomeration of Brazilian coal fines, use of coal and briquetting in ancient Chinese metallurgy, cooking briquettes from lignites in developing nations, use of coal-dolomite pellets to eliminate sulphur emissions, extruded coal capsule flow characteristics, and oil agglomeration as a catalyst loading method in coal liquefaction.

  1. Medical screening after a coal fly ash spill in Roane County, Tennessee.

    Science.gov (United States)

    Nichols, Gregory P; Cragle, Donna L; Benitez, John G

    2014-08-01

    To assess the health of community residents following a coal fly ash spill at the Tennessee Valley Authority Kingston Fossil Plant in Harriman, Tennessee, on December 22, 2008. A uniform health assessment was developed by epidemiologists at Oak Ridge Associated Universities and medical toxicologists at Vanderbilt University Medical Center. Residents who believed that their health may have been affected by the coal fly ash spill were invited to participate in the medical screening program. Among the 214 individuals who participated in the screening program, the most commonly reported symptoms were related to upper airway irritation. No evidence of heavy metal toxicity was found. This is the first report, to our knowledge, regarding the comprehensive health evaluation of a community after a coal fly ash spill. Because this evaluation was voluntary, the majority of residents screened represented those with a high percentage of symptoms and concerns about the potential for toxic exposure. Based on known toxicity of the constituents present in the coal fly ash, health complaints did not appear to be related to the fly ash. This screening model could be used to assess immediate or baseline toxicity concerns after other disasters.

  2. Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes.

    Science.gov (United States)

    Taggart, Ross K; Hower, James C; Dwyer, Gary S; Hsu-Kim, Heileen

    2016-06-07

    Rare earth elements (REEs) are critical and strategic materials in the defense, energy, electronics, and automotive industries. The reclamation of REEs from coal combustion fly ash has been proposed as a way to supplement REE mining. However, the typical REE contents in coal fly ash, particularly in the United States, have not been comprehensively documented or compared among the major types of coal feedstocks that determine fly ash composition. The objective of this study was to characterize a broad selection of U.S. fly ashes of varied geological origin in order to rank their potential for REE recovery. The total and nitric acid-extractable REE content for more than 100 ash samples were correlated with characteristics such as the major element content and coal basin to elucidate trends in REE enrichment. Average total REE content (defined as the sum of the lanthanides, yttrium, and scandium) for ashes derived from Appalachian sources was 591 mg kg(-1) and significantly greater than in ashes from Illinois and Powder River basin coals (403 and 337 mg kg(-1), respectively). The fraction of critical REEs (Nd, Eu, Tb, Dy, Y, and Er) in the fly ashes was 34-38% of the total and considerably higher than in conventional ores (typically less than 15%). Powder River Basin ashes had the highest extractable REE content, with 70% of the total REE recovered by heated nitric acid digestion. This is likely due to the higher calcium content of Powder River Basin ashes, which enhances their solubility in nitric acid. Sc, Nd, and Dy were the major contributors to the total REE value in fly ash, based on their contents and recent market prices. Overall, this study shows that coal fly ash production could provide a substantial domestic supply of REEs, but the feasibility of recovery depends on the development of extraction technologies that could be tailored to the major mineral content and origins of the feed coal for the ash.

  3. Pelletization of fine coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  4. Is coal ash and slag any useful or unloaded wastes?

    International Nuclear Information System (INIS)

    Botezatu, E.; Grecea, C.; Iacob, O.

    2002-01-01

    It is well known that all types of coal, like most materials found in nature, contain trace quantities of the naturally occurring primordial radionuclides (uranium and thorium families and potassium-40). Therefore, the combustion of coal results in partitioning of radionuclides included in the non-combustible mineral matter, between the bottom ash and fly ash, and in the release into the environment of large amounts of coal ash. Emissions from thermal power stations in gaseous and particulate form contain radioisotopes arising from the uranium and thorium series as well as from 4 0K . They are discharged into the environment causing changes in the natural radiation background and radiation exposures to the population. The continued releases of these materials to environment may result in a buildup in the air, water and soil of the radionuclides, particularly radium-226. There will be an increase of the basic radiation rate in the neighborhood area of these plants and consequently relatively higher exposure of the local population to radiation. Coal burning is, therefore, one of the sources of technologically enhanced exposure to humans from natural radionuclides (1,2,3,4,5,6). Coal based thermal power plants constitute about 35% of quantum of energy supply in Romania. In view of the importance of coal for energy supply in Romania, we were interested in knowing possible uses of the resulting wastes and minimize the following harmful consequences of coal burning

  5. Use of coal ash in production of concrete containing contaminated sand

    International Nuclear Information System (INIS)

    Ezeldin, A.S.

    1991-01-01

    There are between 2 to 3.5 million underground storage tanks located throughout the nation. Most of these tanks, which store oils and gasolines, are leaking making them one of the primary sources of soil contamination. Adding coal ash or cement to contaminated soil has been used to obtain stationary and inert wastecrete. By using this procedure, stabilization (limiting the solubility and mobility of the contaminants) and solidification (producing a solid waste block) of contaminated soils are successfully achieved. This paper investigates another re-use option of coal ash and contaminated soils. An experimental study evaluating the effectiveness of using coal ash with oil contaminated sand in concrete production is presented. A control mix made of clean sand was designed to yield 500 psi of compressive strength. Sand, artificially contaminated with 3% by weight of motor oil, was used as clean sand replacement. Six concrete mixtures were tested in compression and flexure. The six mixtures were obtained by increasing the ratio of contaminated sand to clean sand, namely; 10%, 20% and 40% and by introducing coal ash to the concrete mixture, namely; 20% of the cement weight. The test results indicate that the inclusion of oil contaminated sand in concrete reduces the compressive and flexural strengths. However, this decrease in strength is compensated by introducing coal ash in the mixture. Regaining that strength offers the possibility of using such concrete as a construction material in special structural applications. More research is required to establish better understanding of that composite and suggest feasible applications

  6. Coal ash fusion temperatures - new characterization techniques and implications for slagging and fouling

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Creelman, R.A.; Gupta, R.P.; Gupta, S.K.; Coin, C.; Lowe, A. [University of Newcastle, Newcastle, NSW (Australia). CRC for Black Coal Utilisation

    1998-09-01

    The ash fusion test (AFT) is the accepted test for the propensity of coal ash to slag in the furnace. The well-documented shortcomings of this technique for estimating the fusion temperature of coal ash are its subjective nature and poor accuracy. Alternative measurements based on the shrinkage and electrical conductivity of heating samples are therefore examined here with laboratory ash prepared at about 800{degree}C in crucibles, as well as combustion ash samples from power stations. Sensitive shrinkage measurements indicate temperatures of rapid change which correspond to the formation of liquid phases that can be identified on ternary phase diagrams. The existence and extent of formation of these phases, as quantified by the magnitude of `peaks` in the test, provide alternative ash fusion temperatures. The peaks from laboratory ashes and corresponding combustion ashes derived from the same coals show clear differences which may be related to the evaporation of potassium during combustion and the reactions of the mineral residues to form combustion ash. A preliminary evaluation of data from nine power stations indicates that shrinkage measurements can provide an alternative approach to characterizing slagging. 15 refs., 9 figs., 2 tabs.

  7. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH

    Energy Technology Data Exchange (ETDEWEB)

    Komonweeraket, Kanokwan [Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706 (United States); Cetin, Bora, E-mail: bora.cetin@sdsmt.edu [College of Engineering, University of Georgia, Athens, GA 30602 (United States); Benson, Craig H., E-mail: chbenson@wisc.edu [Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706 (United States); Aydilek, Ahmet H., E-mail: aydilek@umd.edu [Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742 (United States); Edil, Tuncer B., E-mail: edil@engr.wisc.edu [Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706 (United States)

    2015-04-15

    Highlights: • The impact of pH on the leaching of elements and metals from fly ash mixed soils. • Generally Ca, Cd, Mg, and Sr follows a cationic leaching pattern. • The leaching of As and Se shows an oxyanionic leaching pattern. • The leaching behavior of elements does not change based on material type. • Different fly ash types show different abilities in immobilizing trace elements. - Abstract: Leaching behaviors of Arsenic (As), Barium (Ba), Calcium (Ca), Cadmium (Cd), Magnesium (Mg), Selenium (Se), and Strontium (Sr) from soil alone, coal fly ash alone, and soil-coal fly ash mixtures, were studied at a pH range of 2–14 via pH-dependent leaching tests. Seven different types of soils and coal fly ashes were tested. Results of this study indicated that Ca, Cd, Mg, and Sr showed cationic leaching pattern while As and Se generally follows an oxyanionic leaching pattern. On the other hand, leaching of Ba presented amphoteric-like leaching pattern but less pH-dependent. In spite of different types and composition of soil and coal fly ash investigated, the study reveals the similarity in leaching behavior as a function of pH for a given element from soil, coal fly ash, and soil-coal fly ash mixtures. The similarity is most likely due to similar controlling mechanisms (e.g., solubility, sorption, and solid-solution formation) and similar controlling factors (e.g., leachate pH and redox conditions). This offers the opportunity to transfer knowledge of coal fly ash that has been extensively characterized and studied to soil stabilized with coal fly ash. It is speculated that unburned carbon in off-specification coal fly ashes may provide sorption sites for Cd resulting in a reduction in concentration of these elements in leachate from soil-coal fly ash mixture. Class C fly ash provides sufficient CaO to initiate the pozzolanic reaction yielding hydrated cement products that oxyanions, including As and Se, can be incorporated into.

  8. A Comprehensive Review on the Properties of Coal Bottom Ash in Concrete as Sound Absorption Material

    OpenAIRE

    Ramzi Hannan Nurul Izzati Raihan; Shahidan Shahiron; Ali Noorwirdawati; Maarof Mohamad Zulkhairi

    2017-01-01

    The government is currently implementing policies to increase the usage of coal as fuel for electricity generation. At the same time, the dependency on gas will be reduced. In addition, coal power plants in Malaysia produce large amounts of industrial waste such as bottom ash which is collected in impoundment ponds (ash pond). However, millions of tons of coal ash (bottom ash) waste are collected in ponds near power plant stations. Since bottom ash has been classified as hazardous material th...

  9. Application of hydrothermally crystallized coal ashes for waste water treatment, 2

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yasuhiko; Kakimoto, Kohji; Ogawa, Hiroaki; Tomari, Masao; Sakamoto, Eiji; Asahara, Teruzo

    1986-11-01

    To provide an application of combustion coal ash, hydrothermal reaction of fly ash (FA) and clinker ash (CA) is performed and an investigation is carried out to determine the capability of the P type zeolite produced from these ashes to adsorb heavy metal ions. Hydrothermal reaction of FA and CA at 95 - 100 deg C is conducted with various concentrations of sodium hydroxide for various reaction times. Both types of ash are found to easily undergo crystallization to form P type zeolite (PZ) and hydroxy sodalite (HS) when treated with a sodium hydroxide solution (sodium hydroxide/coal ash = 10 v/w) for 18 hours. The FA-PZ and CA-PZ produced by the hydrothermal treatment have degrees of crystallinity in the range of 40 - 60 percent. It is seen that the degree of crystallinity gradually increases with increasing treatment time. The crystallinity of hydrothermally treated coal ash is also shown to have good correlation with the base substitution capacity and the maximum adsorption of ammonium ion. Furthermore, they are shown to effectively adsorb metal ions, in particular those of lead, cadmium and strontium. It is suggested that they may serve as an enrichment agent for low-level radioactive nuclides produced in nuclear power plants. They also seem to have the possibility of serving as a metal elution preventive for industrial wastes of some special types. (Nogami, K.).

  10. Optimization of hydrogen and syngas production from PKS gasification by using coal bottom ash.

    Science.gov (United States)

    Shahbaz, Muhammad; Yusup, Suzana; Inayat, Abrar; Patrick, David Onoja; Pratama, Angga; Ammar, Muhamamd

    2017-10-01

    Catalytic steam gasification of palm kernel shell is investigated to optimize operating parameters for hydrogen and syngas production using TGA-MS setup. RSM is used for experimental design and evaluating the effect of temperature, particle size, CaO/biomass ratio, and coal bottom ash wt% on hydrogen and syngas. Hydrogen production appears highly sensitive to all factors, especially temperature and coal bottom ash wt%. In case of syngas, the order of parametric influence is: CaO/biomass>coal bottom ash wt%>temperature>particle size. The significant catalytic effect of coal bottom ash is due to the presence of Fe 2 O 3 , MgO, Al 2 O 3 , and CaO. A temperature of 692°C, coal bottom ash wt% of 0.07, CaO/biomass of 1.42, and particle size of 0.75mm are the optimum conditions for augmented yield of hydrogen and syngas. The production of hydrogen and syngas is 1.5% higher in the pilot scale gasifier as compared to TGA-MS setup. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Melting Behavior of ashes from the co-combustion of coal and straw

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming

    2007-01-01

    . The use of straw as a co-firing feedstock in traditional coal-fired plants is associated with operational problems, such as deposition, agglomeration, and/or corrosion, mainly because of the higher amounts of alkali metals and chlorine in straw compared to coal. This may lead to unscheduled shutdowns...

  12. The impacts of coal refuse/fly ash bulk bends on water quality and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Stewar, B.R.; Daniels, W.L. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-09-01

    There is considerable interest in the beneficial reuse of coal fly ash as a soil amendment on coal refuse piles. One method of application would be to blend the coal refuse and the fly ash before deposition in a refuse pile. A field experiment was initiated to measure the effects of bulk blending fly ash with coal refuse on water quality and plant growth parameters. Fly ash (class F) from three sources were used in the experiment. Two of the fly ashes were acidic and the third was alkaline. Trenches were excavated in a coal refuse pile to a depth of 2 m and the refuse was blended with fly ash and then returned to the trench. In other plots the ash was applied as a surface amendment. A treatment of a bulk blend of 5% (w/w) rock phosphate was also included in the experiment. Large volume lysimeters were installed in some trenches to collect the leachates. The fly ash treatments appear to improve the quality of the leachates when compared to the leachates from the untreated plots. The fly ash amended treatments have lower leachate concentrations of Fe and Al. Initially the fly ash treatments showed high levels of leachate B, however those levels have decreased with time. Millet (Setaria italica) yields from the first year of the experiment were highest n the alkaline fly ash and rock phosphate blended plots. In the second growing season, the two bulk blends with alkaline fly ash had the highest yields. In the third growing season all treatments had higher yield levels than the untreated control plots. The positive effects of the fly ash on leachate quality were attributed to the alkalinity of the ash, and the increase in yield was attributed to the increases in water holding capacity due to fly ash treatments.

  13. Changes in growth characters and nutrient acquisition of guava (psidium guajava l.) in response to coal ash

    International Nuclear Information System (INIS)

    Swain, S.C.; Padhi, S.K.

    2012-01-01

    Coal ash management would remain a great concern all over the world. Several studies proposed that there is an ample scope for safe utilization of coal ash as a soil ameliorant that may improve physical, chemical and biological properties of the soil and is a source of readily available plant micro and macro nutrient. With this concept a pot culture experiment was carried out in the eastern ghat high land zone of Odisha, India under open condition in the nursery. Different levels of coal ash and soil mixture were used in different combinations to check their effect on the physio-morphological and biochemical parameters of guava. The study on the effect of varying levels of coal ash on guava revealed that the combination of 50:50 and 25:75 coal ash and soil mixture increased the seed germination, seedling characteristics, biomass, vegetative growth and chlorophyll content of the seedlings. The increase in growth traits was attributed to increase in nutrient acquisition of plants grown under above combinations. On contrary 100% coal ash in the growing medium reduced seed germination, seedling vigour, growth and biomass per plant. The leaf nutrient status of N, P, K, Ca, Mg, S and the micro nutrients Zn, Mn, B, Mo, Fe and Cu were found to be higher in the treatments having higher proportion of coal ash in the growing medium than other treatments and the lowest was recorded in control ( no coal ash). The findings suggest that application of coal ash in certain proportion is beneficial in terms of growth parameters and nutrient acquisition in guava. (author)

  14. The heterogeneous nature of mineral matter, fly-ash and deposits

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Pohl, J.H.; Devir, G.P.; Su, S. [R.A. Creelman and Associates, Epping, NSW (Australia)

    2000-07-01

    This paper reports on a series of slagging studies investigating the heterogeneous nature of mineral matter, fly ash and deposits, and how this heterogeneity affects deposition. The data come from low temperature ashing (LTA) of pulverised coal, fly ash from boilers, and deposits from pilot-scale furnaces and boilers. The paper presents optical and scanning electron (SEM) micrographs, electron microprobe analysis (EMPA) and energy dispersive x-ray analysis (EDXRA) of mineral matter, individual fly ash particles, and localised regions of deposits. During combustion, the included mineral matter is transformed into fly ash, melts and partially adheres to the char surface, and may form agglomerated masses. Excluded mineral matter has little chance of encountering another ash particle and agglomerating in the gas phase, but can react with other particles in the wall deposits. Certain fly ash particles adhere to the wall where they can combine with other fly ash particles. Analyses of molten regions of deposits have shown, so far, four mineral phase fields to be responsible for forming difficult deposits with melting points below deposit surface temperatures of 1200 to 1350{sup o}C. These mineral fields include iron cordierite, albite and its silica undersaturated equivalent nepheline, anorthite, and compounds with ratios of Ca to P of 2.3-2.5.

  15. Effect of coal ash on growth and metal uptake by some selected ectomycorrhizal fungi in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ray, P.; Reddy, U.G.; Lapeyrie, F.; Adholeya, A. [Energy & Resources Institute, New Delhi (India)

    2005-07-01

    Six isolates of ectomycorrhizal fungi namely, Laccaria fraterna (EM-1083), Pisolithus tinctorius (EM-1081), Pisolithus tinctorius (EM-1290), Pisolithus tinctorius (EM-1293), Scleroderma verucosurn (EM-1283), and Scleroderma cepa (EM-1233), were grown on three variants of coal ash, namely electrostatically precipitated (ESP) ash, pond ash, and bottom ash moistened with Modified Melin-Norkans (MMN) medium in vitro. The colony diameter reflected the growth of the isolates on the coal ash. Metal accumulation in the mycelia was assayed by atomic absorption spectrophotometry. Six metals, namely aluminum, cadmium, chromium, iron, lead, and nickel were selected on the basis of their abundance in coal ash and toxicity potential for the present work. Growth of vegetative mycelium on fly ash variants and metal accumulation data indicated that Pisolithus tinctorius (EM-1290) was the most tolerant among the isolates tested for most of the metals. Since this isolate is known to be mycorrhizal with Eucalyptus, it could be used for the reclamation of coal ash over burdened sites.

  16. Contribution of Ash Content Related to Methane Adsorption Behaviors of Bituminous Coals

    Directory of Open Access Journals (Sweden)

    Yanyan Feng

    2014-01-01

    Full Text Available Methane adsorption isotherms on coals with varying ash contents were investigated. The textural properties were characterized by N2 adsorption/desorption isotherm at 77 K, and methane adsorption characteristics were measured at pressures up to 4.0 MPa at 298 K, 313 K, and 328 K, respectively. The Dubinin-Astakhov model and the Polanyi potential theory were employed to fit the experimental data. As a result, ash content correlated strongly to methane adsorption capacity. Over the ash range studied, 9.35% to 21.24%, the average increase in methane adsorption capacity was 0.021 mmol/g for each 1.0% rise in ash content. With the increasing ash content range of 21.24%~43.47%, a reduction in the maximum adsorption capacities of coals was observed. In addition, there was a positive correlation between the saturated adsorption capacity and the specific surface area and micropore volume of samples. Further, this study presented the heat of adsorption, the isosteric heat of adsorption, and the adsorbed phase specific heat capacity for methane adsorption on various coals. Employing the proposed thermodynamic approaches, the thermodynamic maps of the adsorption processes of coalbed methane were conducive to the understanding of the coal and gas simultaneous extraction.

  17. Bioextraction of copper and zinc from fly ash from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wilczok, T; Cwalina, B; Chrostowska, D

    1986-02-01

    Results are evaluated of investigations carried out by the Institute of Chemistry and Physics of the Silesia Medical Academy in Sosnowiec into feasibility of bacterial leaching for utilization of fly ash from combustion of black coal. Fly ash separated by electrostatic precipitators in the Dolna Odra power plant fired with black coal was used. Copper content in the fly ash on the average was 0.012%, that of zinc was 0.025%. When Thiobacillus ferroxidans, Thiobacillus thiooxidans and bacteria separated from fly ash were used leaching efficiency after 21 days ranged from 69 to 87% in the case of copper and from 48 to 72% in the case of zinc. Origin of bacteria separated from fly ash was unclear. Autochthonous bacteria in the fly ash being leached increased efficiency of bacterial leaching. Effects of autochthonous bacteria were similar to those of the bacterial culture of Thiobacillus ferroxidans and Thiobacillus thiooxidans. Investigation results were shown in a table and 2 diagrams. 19 references.

  18. Process for the production of fuel gas from coal

    Science.gov (United States)

    Patel, Jitendra G.; Sandstrom, William A.; Tarman, Paul B.

    1982-01-01

    An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

  19. Morphological and Strength Properties of Tanjung Bin Coal Ash Mixtures for Applied in Geotechnical Engineering Work

    OpenAIRE

    Awang, Abd. Rahim; Marto, Aminaton; Makhtar, Ahmad Maher

    2012-01-01

    In Malaysia, coal has been used as a raw material to generate electricity since 1988. In the past, most of the wastage of coal burning especially the bottom ash was not managed properly as it was dumped in the waste pond and accumulated drastically.This paper focuses on some properties of coal ash mixtures (fly  ash and bottom ash mixtures) from Tanjung Bin power plant. The characteristics studied were morphological properties, compaction behaviour and strength properties. Strength properties...

  20. Coal ash fusion temperatures -- New characterization techniques, and associations with phase equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Gupta, R.P.; Gupta, S. [Univ. of Newcastle, New South Wales (Australia). Dept. of Chemical Engineering; Creelman, R.A. [R.A. Creelman and Associates, Epping, New South Wales (Australia); Coin, C. [ACIRL Ipswich, Booval, Queensland (Australia); Lowe, A. [Pacific Power, Sydney, New South Wales (Australia)

    1996-12-31

    The well-documented shortcomings of the standard technique for estimating the fusion temperature of coal ash are its subjective nature and poor accuracy. Alternative measurements based on the shrinkage and electrical conductivity of heating samples are therefore examined with laboratory ash prepared at about 800 C in crucibles, as well as combustion ash sampled from power stations. Sensitive shrinkage measurements indicate temperatures of rapid change which correspond to the formation of liquid phases that can be identified on ternary phase diagrams. The existence and extent of formation of these phases, as quantified by the magnitude of peaks in the test, provide alternative ash fusion temperatures. The peaks from laboratory ashes and corresponding combustion ashes derived from the same coals show clear differences which may be related to the evaporation of potassium during combustion and the reactions of the mineral residues to form combustion ash.

  1. Full-scale ash deposition measurements at Avedøre Power Plant unit 2 during suspension-firing of wood with and without coal ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt

    The formation of deposits during suspension-firing of wood at Avedøre Power Plant unit 2 (AVV2) was studied by using an advanced deposit probe system. The tests were conducted both with and without coal ash addition, and at two different locations with flue gas temperatures of 1250-1300 oC and 750...... with a high flue gas temperature of 1250-1300 oC, although the addition of coal fly ash increased the differential deposit formation rate (DDF-rate) and the ash deposition propensity, the deposit removal frequency were considerably increased and the major shedding mechanism was changed from soot...... corrosion. At the location with a low flue gas temperature of 750-800 oC, the addition of coal fly ash reduced the ash deposition propensity and caused the formed deposits being easily removable. Moreover, the KCl and KOH/K2CO3 found in the low-temperature deposits without coal ash addition disappeared when...

  2. A Comprehensive Review on the Properties of Coal Bottom Ash in Concrete as Sound Absorption Material

    Directory of Open Access Journals (Sweden)

    Ramzi Hannan Nurul Izzati Raihan

    2017-01-01

    Full Text Available The government is currently implementing policies to increase the usage of coal as fuel for electricity generation. At the same time, the dependency on gas will be reduced. In addition, coal power plants in Malaysia produce large amounts of industrial waste such as bottom ash which is collected in impoundment ponds (ash pond. However, millions of tons of coal ash (bottom ash waste are collected in ponds near power plant stations. Since bottom ash has been classified as hazardous material that threatens the health and safety of human life, an innovative and sustainable solution has been introduced to reuse or recycle industrial waste such as coal bottom ash in concrete mixtures to create a greener and more sustainable world. Bottom ash has the potential to be used as concrete material to replace fine aggregates, coarse aggregates or both. Hence, this paper provides an overview of previous research which used bottom ash as fine aggregate replacement in conventional concrete. The workability, compressive strength, flexural strength, and sound absorption of bottom ash in concrete are reviewed.

  3. Suspension-firing of wood with coal ash addition: Probe measurements of ash deposit build-up at Avedøre Power Plant (AVV2)

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    This report is about full-scale probe measurements of deposit build-up and removal conducted at the Avedøreværket Unit 2, a 800 MWth suspension boiler, firing wood and natural gas with the addition of coal ash. Coal ash was used as an additive to capture potassium (K) from wood-firing. Investigat...... to the gas phase as HCl(g). Effect of boiler operational parameters on gas emissions has also been investigated.......This report is about full-scale probe measurements of deposit build-up and removal conducted at the Avedøreværket Unit 2, a 800 MWth suspension boiler, firing wood and natural gas with the addition of coal ash. Coal ash was used as an additive to capture potassium (K) from wood...... and boiler load on ash deposition propensity was investigated. Results of ash deposition propensity showed increasing trend with increasing flue gas temperature. Video monitoring revealed that the deposits formed were not sticky and could be easily removed, and even at very high flue gas temperatures (> 1350...

  4. Potassic zeolites from Brazilian coal ash for use as a fertilizer in agriculture.

    Science.gov (United States)

    Flores, Camila Gomes; Schneider, Helena; Marcilio, Nilson Romeu; Ferret, Lizete; Oliveira, João Carlos Pinto

    2017-12-01

    Brazilian coal has an ash content ranging from 30 to 50% by weight. Consequently, its use in coal-fired thermoelectric for power production generates a lot of waste. The construction sector is the largest consumer of coal ash, but it cannot absorb the entire amount generated. Thus, other applications for coal ash should be studied in aim to optimize the use of this industrial waste. This research had as focus to synthesize potassic zeolite from of the coal ash into on potassium fertilizer for the grown wheat plant. In this work, it was used a subbituminous coal from Mina do Leão (RS, Brazil) presenting 48.7% ash content on a dry basis. Concerning the synthesis of potassic zeolite, it was adopted the conventional method of hydrothermal treatment with potassium hydroxide. A schedule of experiments was conducted in order to define the optimum condition of zeolite synthesis that was then used an alkaline solution of 5M KOH with a reaction time of 24h at 150°C. According to this procedure, it was obtained a zeolite with a single crystalline phase, identified through X-ray diffraction as Merlinoite. Subsequently, it was performed a set of tests using potassic zeolite asa fertilizer for plants in a greenhouse. The synthesized potassic zeolite showed a good potential for its use as fertilizer in agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Steam gasification of Bulmer coal in the presence of lignite ash

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A.; Furimsky, E.

    1986-01-01

    Steam gasification of blends prepared from Balmer coal and the ash from combustion of Onakawana lignite was performed in a fixed bed reactor. The blends were prepared by co-slurrying followed by drying. In the presence of 20 wt% ash the gasification rate doubled at 830 and 930 C. Direct blending of coal and lignite resulted in an overall increase in carbon conversion at 830 C but had no effect at 930 C. 5 refs.

  6. Chemometric analysis of alternations in coal ash quality induced by application of different mechano-chemical processing parameters

    Directory of Open Access Journals (Sweden)

    Terzić Anja

    2017-01-01

    Full Text Available The coal fly ash mechano-chemical activation conducted via high energy ultra-centrifugal mill was optimized using mathematical and statistical tools. The aim of the investigation was to accent the merits of alternations in ash processing schemes with a referral regarding the enhancement of the ash reactivity that will lead to its higher volume utilization as a cement replacement in concrete design. The impact of the processing parameters sets (number of rotor revolutions, current intensity, activation period, circumferential rotor speed, mill capacity on the on the product’s quality factors (grain size distribution, average grain size, micronization level, agglomeration tendency, specific surface area was assessed via Response surface method, Standard score analysis and Principal component analysis in order to obtain the most favorable output. Developed models were able to meticulously predict quality parameters in an extensive range of processing parameters. The calculated r2 values were in the range of 0.846-0.999. The optimal ash sample, that reached the Standard Score as high as 0.93, was produced using a set of processing parameters appropriate to experimental sequence with applied 120 μm sieve mesh. The microstructural characteristics were assessed using image-processing values and histogram plots of the activated fly ash SEM images. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. ON 172057, Grant no. III 45008, Grant no. TR 31055 and Grant no. TR 34006

  7. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    The properties of the ash from co-firing of coal and straw have a large influence on boiler operation, flue gas cleaning equipment and appropriate utilization of the fly ash. A study on the fuel composition and local conditions influence on fly ash properties has been done by making entrained flo...

  8. Low-level radiation in coals utilized and ashes produced at New York State electric utilities

    International Nuclear Information System (INIS)

    Hornibrook, C.

    1981-01-01

    Eight coal-fired power plants in New York State were sampled for coal, fly ash and bottom ash. Samples were analyzed for uranium 238, uranium 235, uranium 234, thorium 232, thorium 230, radium 226, lead 210, polonium 210, radon 222. The leachate of six fly ash samples was analyzed for all of the above except radon 222. Some data on fly ash analysis are included

  9. Solubility and transport of arsenic coal ash

    International Nuclear Information System (INIS)

    Iturbe, R.; Cruickshank, C.; Vega, E.; Silva, A.E.

    1996-01-01

    An experimental method combined with a numerical model allows a comparison of two methods for the disposal of ash that contains arsenic, from the Rio Escondido coal-fired power plant. The calculation yields significant differences in aquifer migration times for the site. The wet disposal method gave 10 years time and the dry method gave 22 years. Experiments were performed on the rate of dissolution of the arsenic from ash samples; and these results indicate a first order kinetics reaction. 8 refs., 8 figs., 8 tabs

  10. Coal Fly Ash Ceramics: Preparation, Characterization, and Use in the Hydrolysis of Sucrose

    Directory of Open Access Journals (Sweden)

    Ricardo Pires dos Santos

    2014-01-01

    Full Text Available Coal ash is a byproduct of mineral coal combustion in thermal power plants. This residue is responsible for many environmental problems because it pollutes soil, water, and air. Thus, it is important to find ways to reuse it. In this study, coal fly ash, obtained from the Presidente Médici Thermal Power Plant, was utilized in the preparation of ceramic supports for the immobilization of the enzyme invertase and subsequent hydrolysis of sucrose. Coal fly ash supports were prepared at several compaction pressures (63.66–318.30 MPa and sintered at 1200°C for 4 h. Mineralogical composition (by X-ray diffraction and surface area were studied. The ceramic prepared with 318.30 MPa presented the highest surface area (35 m2/g and amount of immobilized enzyme per g of support (76.6 mg/g. In assays involving sucrose inversion, it showed a high degree of hydrolysis (around 81% even after nine reuses and 30 days’ storage. Therefore, coal fly ash ceramics were demonstrated to be a promising biotechnological alternative as an immobilization support for the hydrolysis of sucrose.

  11. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    Science.gov (United States)

    Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.

    2011-01-01

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.

  12. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kostova, I.J.; Hower, J.C.; Mastalerz, M.; Vassilev, S.V. [University of Kentucky, Lexington, KY (United States). Center of Applied Energy Research

    2011-01-15

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture.

  13. Physical and Chemical Properties of Coal Bottom Ash (CBA) from Tanjung Bin Power Plant

    Science.gov (United States)

    Izzati Raihan Ramzi, Nurul; Shahidan, Shahiron; Zulkhairi Maarof, Mohamad; Ali, Noorwirdawati

    2016-11-01

    The objective of this study is to determine the physical and chemical characteristics of Coal Bottom Ash (CBA) obtained from Tanjung Bin Power Plant Station and compare them with the characteristics of natural river sand (as a replacement of fine aggregates). Bottom ash is the by-product of coal combustion during the electricity generating process. However, excess bottom ash production due to the high production of electricity in Malaysia has caused several environmental problems. Therefore, several tests have been conducted in order to determine the physical and chemical properties of bottom ash such as specific gravity, density, particle size distribution, Scanning Electron Microscopic (SEM) and X- Ray Fluorescence (XRF) in the attempt to produce sustainable material from waste. The results indicated that the natural fine aggregate and coal bottom ash have very different physical and chemical properties. Bottom ash was classified as Class C ash. The porous structure, angular and rough texture of bottom ash affected its specific gravity and particle density. From the tests, it was found that bottom ash is recommended to be used in concrete as a replacement for fine aggregates.

  14. The geochemistry and bioreactivity of fly-ash from coal-burning power stations

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T.; Wlodarczyk, A.; Koshy, L.; Brown, P.; Longyi, S.; BeruBe, K. [Cardiff University, Cardiff (United Kingdom). School of Earth & Ocean Science

    2009-07-01

    Fly-ash is a byproduct of the combustion of coal in power stations for the generation of electricity. The fly-ash forms from the melting of incombustible minerals found naturally in the coal. The very high coal combustion temperatures result in the formation of microscopic glass particles from which minerals such as quartz, haematite and mullite can later recrystallize. In addition to these minerals, the glassy fly-ash contains a number of leachable metals. Mullite is a well-known material in the ceramics industry and a known respiratory hazard. Macroscopically mullite can be found in a large range of morphologies; however microscopic crystals appear to favour a fibrous habit. Fly-ash is a recognized bioreactive material in rat lung, generating hydroxyl radicals, releasing iron, and causing DNA damage. However, the mechanisms of the bioreactivity are still unclear and the relative contributions of the minerals and leachable metals to that toxicity are not well known.

  15. Partial oxidation of methane to methanol over catalyst ZSM-5 from coal fly ash and rice husk ash

    Directory of Open Access Journals (Sweden)

    Mirda Yanti Fusia

    2017-01-01

    Full Text Available Methane is one of the greenhouse gases that can be converted into liquid fuels such as methanol to retain most of the energy of methane and produce a cleaner environment. The conversion of methane to methanol using ZMS-5 represents a breakthrough in the utilization of methane. However, material sources for zeolite synthesis as catalyst usually are pro-analysis grade materials, which are expensive. Therefore, in this research, coal fly ash and rice husk ash were used as raw materials for mesoporous ZSM-5 zeolite synthesis. First, coal fly ash and rice husk were subjected to pre-treatment to extract silicate (SiO44− and aluminate (AlO45− and impurities separation. The ZSM-5 zeolite was synthesized through hydrothermal treatment using two types of templates. After ZSM-5 was synthesized, it was modified with Cobalt through impregnation method. The catalytic activity of both ZSM-5 and Co/ZSM-5 zeolites as heterogeneous catalysts in partial oxidation of methane were preliminary tested and compared with that commercial one. The result showed that the zeolite catalyst ZSM-5 from fly ash coal and rice husk ash has the potential to be used as catalysts in the partial oxidation of methane to methanol.

  16. Analytical methods relating to mineral matter in coal and ash from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A. [Ultra-Systems Technology Pty. Ltd., Indooroopilly, Qld. (Australia)

    2002-07-01

    The paper begins by describing the minerals that occur in coal, as well as trace elements. The testing methods that are then described include those that are in the main the standard tools for the examination and assessment of minerals in coal and ash. The techniques discussed include optical and beam techniques, X-ray methods and a variety of other useful methods. 12 refs.

  17. Recovery of iron oxide from coal fly ash

    Science.gov (United States)

    Dobbins, Michael S.; Murtha, Marlyn J.

    1983-05-31

    A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

  18. Uranium from Coal Ash: Resource Assessment and Outlook on Production Capacities

    International Nuclear Information System (INIS)

    Monnet, Antoine

    2014-01-01

    Conclusion: Uranium production from coal-ash is technically feasible: in some situations, it could reach commercial development, in such case, fast lead time will be a plus. Technically accessible resources are significant (1.1 to 4.5 MtU). Yet most of those are low grade. Potential reserves don’t exceed 200 ktU (cut-off grade = 200 ppm). • By-product uranium production => constrained production capacities; • Realistic production potential < 700 tU/year; • ~ 1% of current needs. → Coal ash will not be a significant source of uranium for the 21st century – even if production constrains are released (increase in coal consumption

  19. Microwave radiation improves biodiesel yields from waste cooking oil in the presence of modified coal fly ash

    Directory of Open Access Journals (Sweden)

    Yulin Xiang

    2017-11-01

    Full Text Available This paper studied the effects of using modified coal fly ash as a catalyst to convert waste cooking oil (WCO into biodiesel under microwave-strengthened action. Coal fly ash was modified with sodium sulphate and sodium hydroxide, and the obtained catalyst was characterized using FT-IR and X-ray diffraction (XRD. The experimental results showed that the modified coal fly ash catalyst improved biodiesel yields under the microwave-assisted system, and the maximum biodiesel yield from waste cooking oil reached 94.91% at a molar ratio of methanol to WCO of 9.67:1 with 3.99% wt% of modified coal fly ash catalyst (based on oil weight at a 66.20 °C reaction temperature. The reusability of the modified coal fly ash catalyst was excellent, and the conversion yield remained greater than 90% after the catalyst was reused 8 times. The produced biodiesel met the main parameters of the ASTM D-6751 and EN14214 standards. Keywords: Biodiesel, Modified coal fly ash, Microwave assisted system, Waste cooking oil

  20. The leachability of carbon-14-labelled 3,4-benzopyrene from coal ash into aqueous systems

    NARCIS (Netherlands)

    Besemer, A.C.; Kanij, J.

    1984-01-01

    The leachability of polycyclic aromatic hydrocarbons from coal ash into aqueous systems was studied. Carbon-14-labeled 3,4-Benzopyrene (BaP) was deposited on coal fly ash by adsorption from the liquid phase in quantities of about 10 ??g/g ash. After a thermal treatment in air at 120??C for 2 hours

  1. Characterization and environmental evaluation of Atikokan coal fly ash for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Yeheyis, M.B.; Shang, J.Q.; Yanful, E.K. [Western Ontario Univ., London, ON (Canada). Dept. of Civil and Environmental Engineering

    2008-09-15

    Coal fly ash from thermal power generating stations has become a valuable byproduct in various commercial and environmental applications due to its cementitious, alkaline, and pozzolanic properties. It is used as a raw material in cement production, and also as a replacement for cement in concrete production. This study provided physical, chemical, and mineralogical characterizations of fresh and landfilled coal fly ash from a thermal generation station in Ontario. Fly ash behaviour under various environmental conditions was examined. Tests were conducted to characterize fly ash acid neutralization capacity and heavy metal sorption capacity. The study showed that fresh and landfilled fly ash samples showed significant variations in morphology, mineralogy, and chemical composition. X-ray diffraction studies demonstrated that weathering of the fly ash caused the formation of secondary minerals. The study also showed that the heavy metals from both fresh and landfilled fly ash samples were below leachate criteria set by the provincial government. It was concluded that both fresh and landfilled fly ash are suitable for various environmental and engineering applications. 55 refs., 5 tabs., 11 figs.

  2. Radon induced radiological impact of coal, fly ash and cement samples

    International Nuclear Information System (INIS)

    Kant, K.; Chauhan, R.P.; Sharma, G.S.; Chakravarti, S.K.

    2001-01-01

    Coal and its by-product fly ash are technologically important materials being used for power generation and in the manufacture of bricks, sheets, cement, land-filling, etc., respectively. Increased interest in measuring radon concentration in coal, fly ash and cement is due to its health hazards and environmental pollution. As the presence of radon in the environment (indoor and outdoor), soil, ground water, oil and gas deposits contributes the largest fraction of the natural radiation dose to populations, tracking its concentration is thus of paramount importance for radiological protection. Samples of coal and fly ash were collected from different thermal power stations in northern India and cement samples from National Council for Cement and Building Materials, Ballabgarh (Haryana), India and were analysed for radon concentration. For the measurement, alpha sensitive LR-115 type II plastic track detectors were used. Based upon the available data, the annual effective dose and the lifetime fatality risk factors have been calculated. The radon concentration from coal samples varied from 433 ± 28 Bqm -3 to 2086 ± 28 Bqm -3 . The radon concentration from fly ash samples varied from 748 ± 28 Bqm -3 to 1417 ± 111 Bqm -3 and from 158 Bqm -3 to 1810 Bqm -3 in cement samples, with an average of 624 ± 169 Bqm -3 . (author)

  3. Impact of coal and rice husk ash on the quality and chemistry of cement clinker

    International Nuclear Information System (INIS)

    Nawaz, S.; Kanwal, S.; Rahim, U.; Sheikh, N.; Shahzad, K.

    2012-01-01

    Utilization of rice husk as an alternative fuel for coal is of interest due to its availability in huge quantities in Pakistan and also because its combustion is environmental pollution friendly as it generates much less SOX due to its much lower sulphur content (0.1-0.3%) compared to sulphur content in coals, particularly indeginous coals ranging from 0.6-14.8%. The purpose of present study was to examine the impact of co-firing of rice husk and coal on the quality of cement clinker so as to substitute expensive imported coal with the abundantly available cheaper rice husk to reduce the cost of production of the cement. For this investigation raw feed mix (mixture of limestone, clay, bauxite and laterite in predetermined proportions) used for cement manufacture was mixed with predetermined varying proportions of coal ash and rice husk ash and placed inside a muffle furnace at 1200 degree C - 1500 degree C i-e the temperatures prevailing in the industrial cement kilns, for various periods of time to obtain cement clinker. The quality and chemistry of cement clinker thus produced in the laboratory was experimentally studied to ensure the quality of cement clinker that would be obtained by co-firing of rice husk and coal in different proportions in industrial cement kilns as the coal ash and rice husk ash produced during combustion will get mixed with cement clinker in industrial kilns. The results indicated that there was decrease in the Lime Saturation Factor, Free Lime and Tricalcium Silicate (C3S) content and increase in the Dicalcium Silicate (C2S) content by increasing the rice husk ash and decreasing the coal ash proportion in the clinker. (author)

  4. Predicted mineral melt formation by BCURA Coal Sample Bank coals: Variation with atmosphere and comparison with reported ash fusion test data

    Energy Technology Data Exchange (ETDEWEB)

    D. Thompson [University of Sheffield (United Kingdom). Department of Engineering Materials

    2010-08-15

    The thermodynamic equilibrium phases formed under ash fusion test and excess air combustion conditions by 30 coals of the BCURA Coal Sample Bank have been predicted from 1100 to 2000 K using the MTDATA computational suite and the MTOX database for silicate melts and associated phases. Predicted speciation and degree of melting varied widely from coal to coal. Melting under an ash fusion test atmosphere of CO{sub 2}:H{sub 2} 1:1 was essentially the same as under excess air combustion conditions for some coals, and markedly different for others. For those ashes which flowed below the fusion test maximum temperature of 1773 K flow coincided with 75-100% melting in most cases. Flow at low predicted melt formation (46%) for one coal cannot be attributed to any one cause. The difference between predicted fusion behaviours under excess air and fusion test atmospheres becomes greater with decreasing silica and alumina, and increasing iron, calcium and alkali metal content in the coal mineral. 22 refs., 7 figs., 3 tabs.

  5. Ultrasonic coal-wash for de-ashing and de-sulfurization. Experimental investigation and mechanistic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ambedkar, B. [Indian Institute of Technology Madras, Chennai (India). Dept. of Chemical Engineering

    2012-07-01

    This study focuses on the physical aspects of ultrasonic de-ashing and de-sulfurization, such as cavitation, streaming and their combined effects. Ambedkar Balraj proposes an ultrasound-assisted coal particle breakage mechanism and explores aqueous and solvent-based ultrasonic techniques for de-ashing and de-sulfurization. Ambedkar designs a Taguchi L-27 fractional-factorial matrix to assess the individual effects of key process variables. In this volume he also describes process optimization and scale-up strategies. The author provides a mechanism-based model for ultrasonic reagent-based coal de-sulfurization, proposes a flow diagram for ultrasonic methods of high-throughput coal-wash and discusses the benefits of ultrasonic coal-wash. Coal will continue to be a major fuel source for the foreseeable future and this study helps improve its use by minimising ash and sulfur impurities.

  6. Analysis of polynuclear aromatic hydrocarbons from coal fly ash

    International Nuclear Information System (INIS)

    Purushothama, S.; Pan, W.-P.; Riley, J.T.; Lloyd, W.G.

    1998-01-01

    The objective of this work is to compare various extraction and quantification techniques for the determination of adsorbed polynuclear aromatic hydrocarbons (PAHs) on coal ash. Aliquots of a 'clean' fly ash from coal combustion doped with four PAHs have been extracted, using three solvents, three methods and three GC/MS programs. Factorial analysis shows solvent to extert the greatest primary effect: CH 2 Cl 2 > toluene much-gt o-xylene. Highest recoveries were obtained using the reflux slurry extraction procedure with CH 2 Cl 2 and a relatively fast (20 degree C/min) temperature ramp to 310 degree C. With both CH 2 Cl 2 and toluene solvents, ultrasonic assisted extraction affords the best repeatability

  7. Further Investigations on Simultaneous Ultrasonic Coal Flotation

    Directory of Open Access Journals (Sweden)

    Safak Gokhan Ozkan

    2017-09-01

    Full Text Available This study investigates the flotation performance of a representative hard coal slime sample (d80 particle size of minus 0.2 mm obtained from the Prosper-Haniel coal preparation plant located in Bottrop, Germany. Flotation was carried out with a newly designed flotation cell refurbished from an old ultrasonic cleaning bath (2.5 L volume equipped with a single frequency (35 kHz and two different power levels (80–160 W and a sub-aeration-type flotation machine operating at a stable impeller speed (1200 rpm and air rate (2.5 L/min. The reagent combination for conventional and simultaneous ultrasonic coal flotation tests was Ekofol-440 at variable dosages (40–300 g/t with controlling water temperature (20–25 °C at natural pH (6.5–7.0. The batch coal flotation results were analyzed by comparing the combustible recovery (% and separation efficiency (% values, taking mass yield and ash concentrations of the froths and tailings into account. It was found that simultaneous ultrasonic coal flotation increased yield and recovery values of the floated products with lower ash values than the conventional flotation despite using similar reagent dosages. Furthermore, particle size distribution of the ultrasonically treated and untreated coals was measured. Finely distributed coal particles seemed to be agglomerated during the ultrasonic treatment, while ash-forming slimes were removed by hydrodynamic cavitation.

  8. Levels and patterns of polycyclic aromatic hydrocarbons in fly ash generated in Coal-fired power plant

    International Nuclear Information System (INIS)

    Ajmal, P.Y.; Sahu, S.K.; Pandit, G.G.; Shukla, V.K.; Puranik, V.D.

    2005-01-01

    The burning of pulverized coal to produce energy for generation of electricity in thermal power plants results in huge quantity of coal ash of varying properties. Because of the increase in electricity production, the amount of ash produced will increase proportionally. A large percentage of coal fly ash is comprised of relatively inert materials, such as silica and other trace and toxic elements. The coal ash also contain organic constituents of potential environmental concern. So far, very few studies on characterization of organic constituents in fly ash have been reported in the literature. In the present study, the fly ashes generated from the power stations are investigated regarding the distribution of 14 PAHs. The total amount of PAHs in the fly ash samples varied between 45.8 ng/g and 257.7 ng/g. Lower molecular weight (MW) PAHs, were found to be predominant in the fly ash samples. The concentration of Benzo(a)pyrene, which is the most potent carcinogenic PAH was found to vary between 0.8 ng/g to 6.3 ng/g with a mean concentration of 2.5 ng/g. (author)

  9. Staged fluidized-bed coal combustor for boiler retrofit

    International Nuclear Information System (INIS)

    Rehmat, A.; Dorfman, L.; Shibayama, G.; Waibel, R.

    1991-01-01

    The Advanced Staged Fluidized-Bed Coal Combustion System (ASC) is a novel clean coal technology for either coal-fired repowering of existing boilers or for incremental power generation using combined-cycle gas turbines. This new technology combines staged combustion for gaseous emission control, in-situ sulfur capture, and an ash agglomeration/vitrification process for the agglomeration/vitrification of ash and spent sorbent, thus rendering solid waste environmentally benign. The market for ASC is expected to be for clean coal-fired repowering of generating units up to 250 MW, especially for units where space is limited. The expected tightening of the environmental requirements on leachable solids residue by-products could considerably increase the marketability for ASC. ASC consists of modular low-pressure vessels in which coal is partially combusted and gasified using stacked fluidized-bed processes to produce low-to-medium-Btu, high-temperature gas. This relatively clean fuel gas is used to repower/refuel existing pulverized-coal, natural gas, or oil-fired boilers using bottom firing and reburning techniques. The benefits of ASC coal-fired repowering include the ability to repower boilers without obtaining additional space while meeting the more stringent environmental requirements of the future. Low NO x , SO x , and particulate levels are expected while a nonleachable solid residue with trace metal encapsulation is produced. ASC also minimizes boiler modification and life-extension expenditures. Repowered efficiencies can be restored to the initial operating plant efficiency, and the existing boiler capacity can be increased by 10%. Preliminary cost estimates indicate that ASC will have up to a $250/kW capital cost advantage over existing coal-fired repowering options. 4 figs., 4 tabs

  10. Recovery of invertebrate and vertebrate populations in a coal ash stressed drainage system

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, D.S.

    1979-01-01

    The influence of coal-ash basin effluent on the densities of macrobenthic invertebrate and mosquitofish populations in a swamp drainage system was studied for 50 months. The density of the aquatic biota was periodically altered by heavy ash siltation, decreased pH due to fly ash, and by arsenic, copper, selenium and zinc associated with coal ash. Siltation was most influential in decreasing numbers of invertebrates, and lowered pH (from 7.2 to 5.5) more influential in decreasing mosquito fish and retarding recovery of invertebrates. An efficient primary-secondary retaining basin system enabled most invertebrate groups to recover their previous level of abundance.

  11. Partitioning behaviour of natural radionuclides during combustion of coal in thermal power plants

    International Nuclear Information System (INIS)

    Sahu, S.K.; Tiwari, M.; Bhangare, R.C.; Ajmal, P.Y.; Pandit, G.G.

    2014-01-01

    All fossil fuels contain low levels of naturally occurring radioactive substances. The environmental impact of radionuclide-containing waste products from coal combustion is an important issue. These radionuclides vaporize in the hot portions of the coal combustor and then return to the solid phase in cooler downstream zones. Indian coal used in power plants generally has high ash yield (35-45%) and is of low quality. In the burning process of coal, minerals undergo thermal decomposition, fusion, disintegration, and agglomeration. A major portion of elements in the boiler enter into slag or bottom ash, and the rest of the inorganic materials find their way into the flue gas, in fly ash or vapor. Fly and bottom ash are significant sources of exposure to these radionuclides. In the present study, coal and ash samples collected from six thermal power stations were analyzed to determine their natural radioactivity content and the partitioning behavior of these radionuclides was carried out by tracing their activities in fly and bottom ashes. The partitioning of radionuclides is strongly dependent on the size of associated ash particle. Polonium-210 was mostly associated with the finest fraction and showed large variation with particle size whereas 232 Th showed least dependence on the particle size. The high activities of all radionuclides in fly ashes than that of bottom ashes thus may be due to strong affinity of the nuclides towards the finer particle fractions. All the radionuclide distribution favored small particle sizes

  12. Physical and chemical characterization of 50 pulverized coal ashes with respect to partial cement replacement in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sloot, H A; Weijers, E G

    1986-04-01

    Physical and chemical characterization of 50 pulverized coal ashes from Dutch, Belgian and German installations has been carried out to identify the parameters that have to be kept under control, when pulverized coal ashes are to be used as partial cement replacement in concrete. For a good workability of fly ash/cement mortars the particle size and the carbon content are important. By performing a mortar flow test (Heagermann) upon delivery exterme ashes can be easily eliminated. The compressive strength is largely determined by the fineness of the ash (weight fraction below 20 micron). A direct effect of carbon content on strength development is not observed, but a reduction in mortar slow due to carbon leads to loss in strength, while the workability has to be adjusted. Size distribution measurement by optical methods is recommended as the relevant part of the ash size distribution cannot be properly assessed by sieve methods. The net contribution of fly ash to the compressive strength of a fly ash/cement (20/80) mortar exhibits a minimum at 14 days curing, which is common to all 50 ashes studied. Improvements in ash quality as obtained from pulverized-coal fired installations can be achieved by improvements in coal milling and optimizing ash collection. 6 figs., 4 tabs., 19 refs.

  13. The chemical composition of tertiary Indian coal ash and its

    Indian Academy of Sciences (India)

    In Part 1 of the present investigation, 37 representative Eocene coal samples of Meghalaya, India were analyzed and their physico-chemical characteristics and the major oxides and minerals present in ash samples were studied for assessing the genesis of these coals. Various statistical tools were also applied to study ...

  14. Mercury in coals and fly ashes from Republika and Bobov dol thermoelectric power plants

    Science.gov (United States)

    Kostova, I.; Vassileva, C.; Hower, J.; Mastalerz, Maria; Vassilev, S.; Nikolova, N.

    2011-01-01

    Feed coal and y ash samples were collected at Republika and Bobov Dol thermoelectric power plants (TPPs). The y ashes (FAs) were collected fromthree rows of the hot-side electrostatic precipitators (ESPs) array. Each sam- ple was wet-screened at 100, 200, 325 and 500 mesh. The coals and y ashes were characterized with regard to their petrological and chemical composition (including mercury content) and to their surface area properties. The calculated enrichment factor (EF) shows that the Hg concentrations in the bulk coal samples from Republika and Bobov Dol TPPs are 2.19 and 1.41, respectively. In some coal size fractions the EF can be up to 4 times higher than the Clarke value. The calculated EF for fly ashes shows that the Hg concentrations in the bulk samples studied are lower (between 0.03 and 0.32) than the Clarke value. The most enriched in Hg are the fly ashes from the 3rd ESP row of Republika TPP. The Hg distribution in bulk FAs taken from dierent rows of the electrostatic precipitators of both TPPs studied shows well established tendency of gradual increase in the Hg content from the 1st to the 2nd and 3rd ESP rows. The correlation between Hg content and surface area, mesopore and micropore volume of y ashes was also done in the present investigation.

  15. Preparation of sintered foam materials by alkali-activated coal fly ash.

    Science.gov (United States)

    Zhao, Yelong; Ye, Junwei; Lu, Xiaobin; Liu, Mangang; Lin, Yuan; Gong, Weitao; Ning, Guiling

    2010-02-15

    Coal fly ash from coal fired power stations is a potential raw material for the production of ceramic tiles, bricks and blocks. Previous works have demonstrated that coal fly ash consists mainly of glassy spheres that are relatively resistant to reaction. An objective of this research was to investigate the effect of alkali on the preparation process of the foam material. Moreover, the influence of foam dosage on the water absorption, apparent density and compressive strength was evaluated. The experimental results showed that homogenous microstructures of interconnected pores could be obtained by adding 13 wt.% foaming agent at 1050 degrees C, leading to foams presenting water absorption, apparent density and compressive strength values of about 126.5%, 0.414 g/cm(3), 6.76 MPa, respectively.

  16. Mixtures of coal ash and compost as substrates for highbush blueberry

    Energy Technology Data Exchange (ETDEWEB)

    Black, B.L.; Zimmerman, R.H. [ARS, Beltsville, MD (USA). USDA Henry A Wallace Beltsville Agriculture Research Center, Fruit Lab.

    2002-07-01

    Bottom ash from a coal-fired power plant and two composts were tested as components of soil-free media and as soil amendments for growing highbush blueberry (Vaccinium corymbosum L.). Combinations of ash and compost were compared to Berryland sand, and Manor clay loam, and compost amended Manor clay loam. The pH of all treatment media was adjusted to 4.5 with sulfur at the beginning of the experiment. In 1997, plants of 'Bluecrop' and 'Sierra' were planted in 15-dm{sup 3} pots containing the pH-adjusted treatment media. The first substantial crop was harvested in 1999. At the end of the 1999 season, one half of the plants were destructively harvested for growth analysis. The remaining plants were cropped again in 2000. Yield and fruit size data were collected in both seasons, and leaf and fruit samples were collected in 1999 for elemental analysis. The presence of coal ash or composted biosolids in the media had no detrimental effect on leaf or fruit elemental content. Total growth and yield of both cultivars was reduced in clay loam soil compared to Berryland sand, whereas growth and yield of plants in coal ash-compost was similar to or exceeded that of plants in Berryland sand.

  17. Application of dry separative methods for decreasing content the residues unburned coal and separation Fe from black coal flies ash

    Directory of Open Access Journals (Sweden)

    František Kaľavský

    2008-06-01

    Full Text Available Main obstacle using of fly ashes in building, that is its main consumer, is the residue of unburned coal; it is expressed of loss onignition - LOI. In present, the valid STN and EU standard limits the content of LOI to 3 – 5 %, in national conditions maximum 7 %.Application of processing technologies also has to assure utilization of fly ash that provides a possibility of complex utilizationof individual products obtained by modification.By means of corona separation, based on different conductivity of individual fly ash elements, it is possible to separate unburnedcoal particles. The fly ash sample from black coal burning in melting boiler that was deposited on fly ash deposit, content of LOIof dielectric particle 6,45 % at 61 % weight yield was achieved. In the samples taken from dry taking of fly ash the non-conductingproduct contained 7,72 % of LOI at 73 % of weight yield.

  18. Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste

    Directory of Open Access Journals (Sweden)

    Cieślik Ewelina

    2018-01-01

    Full Text Available One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.

  19. Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste

    Science.gov (United States)

    Cieślik, Ewelina; Konieczny, Tomasz; Bobik, Bartłomiej

    2018-01-01

    One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction) were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.

  20. Conversion of different ash content brown coal in fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Osipov, P.; Chernyavskiy, N.; Ryzhkov, A.; Remenuk, A. [Ural Federal Univ., Ekaterinburg (Russian Federation). Dept. of Thermal Power Plants; Dulienko, S. [National Academy of Science of Ukraine, Kiev (Ukraine). Coal Energy Technology Inst.

    2013-07-01

    Available equations used to determine combustion specific rate of coal-derived cokes describe the burning of carbon particles well enough but are not accurate in case of ash-containing coke particles combustion. This study is an attempt to account for the influence of both initial ash content and its increase in the course of carbon conversion in specific rate calculations. The results of experimental study of burn-out dynamics of Volchanskiy field (North Urals) brown coal and its coke with different ash content under conditions of fluidized bed combustion at impulse-type non-gradient reactor RSC-1 and dynamic installation Pyrolysis-M are summarized. Diffusion and heterogeneous (kinetic) components of carbon combustion rate are identified separately by using diffusion and kinetics equation with correction for carbon mass fraction in particles. Burning particle overheating values and heterogeneous combustion rate constants at different temperatures are estimated.

  1. Elemental composition of coal fly ash: Malta coal power station in the Mpumalanga province in South Africa case study using nuclear and related analytical techniques

    International Nuclear Information System (INIS)

    Eze, Ch.P.; Fatoba, O.; Madzivire, G.; Petrik, L.F.; Ostrovnaya, T.M.; Frontas'eva, M.V.; Nechaev, A.N.

    2013-01-01

    Epithermal neutron activation analysis along with ICP-OES, LA ICP-MS, and XRF were used to determine the elemental composition of coal fly ash from the Malta coal power station in the Mpumalanga province of South Africa. A total of 54 major, trace and rare-earth elements were obtained by the four analytical techniques. The results were compared and the discrepancies discussed to show the merits and drawbacks of each of the techniques. It was shown that the elemental content of this particular coal fly ash is of the same order as the NIST standard reference material Coal Fly Ash 1633b

  2. On Mattering: A Coal Ash Flood and the Limits of Environmental Knowledge

    Directory of Open Access Journals (Sweden)

    Hatmaker, Susie

    2014-05-01

    Full Text Available This paper investigates the largest flood of coal ash in United States history as an event at once monumental and insignificant. It traces affective forces generative of both the ash, and its invisibility. In the moment of rupture, the ash flowed out of a large holding pond in a spill of layered sediments – each layer of particulate a temporary resting place for a forceful trajectory of matter spurned into motion elsewhere in space and time. This paper takes up the atemporal matter of this coal ash flood to ask: out of what movements and connections was the ash formed? How did this particular landscape change to accommodate its accumulation? What trajectories flowed into the pond, and what hidden memories sat buried in its mass? Drawing on ethnographic and archival research, this paper weaves together juxtaposed scenes that form (some of the backstory of this event, and invites a reconsideration of the practices of knowledge that helped condition it.

  3. Immersion Freezing of Coal Combustion Ash Particles from the Texas Panhandle

    Science.gov (United States)

    Whiteside, C. L.; Tobo, Y.; Mulamba, O.; Brooks, S. D.; Mirrielees, J.; Hiranuma, N.

    2017-12-01

    Coal combustion aerosol particles contribute to the concentrations of ice-nucleating particles (INPs) in the atmosphere. Especially, immersion freezing can be considered as one of the most important mechanisms for INP formation in supercooled tropospheric clouds that exist at temperatures between 0°C and -38°C. The U.S. contains more than 550 operating coal-burning plants consuming 7.2 x 108 metric tons of coal (in 2016) to generate a total annual electricity of >2 billion MW-h, resulting in the emission of at least 4.9 x 105 metric tons of PM10 (particulate matter smaller than 10 µm in diameter). In Texas alone, 19 combustion plants generate 0.15 billion MW-h electricity and >2.4 x 104 metric tons of PM10. Here we present the immersion freezing behavior of combustion fly ash and bottom ash particles collected in the Texas Panhandle region. Two types of particulate samples, namely electron microscopy on both ash types will also be presented to relate the crystallographic and chemical properties to their ice nucleation abilities.

  4. Recovery of invertebrate and vertebrate populations in a coal ash stressed drainage system

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, D.S.; Larrick, S.R.; Guthrie, R.K.; Davis, E.M.; Sherberger, F.F.

    1979-09-01

    The influence of coal ash effluent on the densities of macrobenthic invertebrate and mosquitofish populations in a swamp drainage system was studied. Samples were collected during a period of 50 mo. Three perturbations in the swamp systemash siltation, low pH, and toxic elementscaused changes in population densities. Siltation from inefficient effluent management caused the greatest drop in invertebrate populations, and pH declines from flyash addition caused the greatest mosquitofish population reductions. Dipterans and odonates were most tolerant to coal ash stress. Invertebrate population recovery was observed on completion of an efficient ash retaining basin. (13 graphs, 28 references, 3 tables)

  5. Bed agglomeration characteristics of palm shell and corncob combustion in fluidized bed

    International Nuclear Information System (INIS)

    Chaivatamaset, Pawin; Sricharoon, Panchan; Tia, Suvit

    2011-01-01

    Bed particle agglomeration was studied experimentally in an atmospheric laboratory scale fluidized bed combustor using quartz sand as bed material. Palm shell and corncob were tested. The objectives of the study were (i) to describe the contributions of the biomass ash properties and the operating conditions on the bed agglomeration tendency in term of the bed defluidization time (t def ) and the extent of potassium accumulation in the bed (K/Bed) and (ii) to further elucidate the ash inorganic behaviors and the governing bed agglomeration mechanisms. Defluidization caused by the bed agglomeration was experienced in all experiments during combustion of these biomasses, as a consequence of the presence of potassium in biomass. The experimental results indicated that biomass ash characteristics were the significant influence on the bed agglomeration. The increasing bed temperature, bed particle size and static bed height and the decreasing fluidizing air velocity enhanced the bed agglomeration tendency. The SEM/EDS analyses on the agglomerates confirmed that the agglomeration was attributed to the formation of potassium silicate liquid enriched on the surface of quartz sand particles in conjunction with the high surface temperature of the burning biomass char particles. Thermodynamic examination based on the phase diagram analysis confirmed that the molten phase formation was responsible for the agglomeration. In this study, the high molten ash fraction resulting from the high potassium content in biomass promoted the agglomeration and thus defluidization. - Highlights: → Palm shell and corncob of Thailand are tested their bed agglomeration behaviors during fluidized bed combustion. → The increase of bed temperature, bed particle size and static bed height and the decrease of air velocity enhance bed agglomeration. → The formation of ash derived potassium silicate melts enriched on sand surface is the key process. → The collision between char and sand

  6. Mineralogical, Microstructural and Thermal Characterization of Coal Fly Ash Produced from Kazakhstani Power Plants

    Science.gov (United States)

    Tauanov, Z.; Abylgazina, L.; Spitas, C.; Itskos, G.; Inglezakis, V.

    2017-09-01

    Coal fly ash (CFA) is a waste by-product of coal combustion. Kazakhstan has vast coal deposits and is major consumer of coal and hence produces huge amounts of CFA annually. The government aims to recycle and effectively utilize this waste by-product. Thus, a detailed study of the physical and chemical properties of material is required as the data available in literature is either outdated or not applicable for recently produced CFA samples. The full mineralogical, microstructural and thermal characterization of three types of coal fly ash (CFA) produced in two large Kazakhstani power plants is reported in this work. The properties of CFAs were compared between samples as well as with published values.

  7. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: A synoptic view

    Energy Technology Data Exchange (ETDEWEB)

    Kronbauer, Marcio A. [Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Metalurgia, Centro de Tecnologia, Av. Bento Gonçalves, 9500, Bairro Agronomia, CEP: 91501-970, Porto Alegre, RS (Brazil); Izquierdo, Maria [School of Applied Sciences, Cranfield University, Bedfordshire MK43 0AL (United Kingdom); Dai, Shifeng [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083 (China); Waanders, Frans B. [School of Chemical and Minerals Engineering, North West University (Potchefstroom campus), Potchefstroom 2531 (South Africa); Wagner, Nicola J. [School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Mastalerz, Maria [Indiana Geological Survey, Indiana University, Bloomington, IN 47405-2208 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); Oliveira, Marcos L.S. [Environmental Science and Nanotechnology Department, Catarinense Institute of Environmental Research and Human Development, IPADHC, Capivari de Baixo, Santa Catarina (Brazil); Taffarel, Silvio R.; Bizani, Delmar [Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); and others

    2013-07-01

    The nano-mineralogy, petrology, and chemistry of coal gasification products have not been studied as extensively as the products of the more widely used pulverized-coal combustion. The solid residues from the gasification of a low- to medium-sulfur, inertinite-rich, volatile A bituminous coal, and a high sulfur, vitrinite-rich, volatile C bituminous coal were investigated. Multifaceted chemical characterization by XRD, Raman spectroscopy, petrology, FE-SEM/EDS, and HR-TEM/SEAD/FFT/EDS provided an in-depth understanding of coal gasification ash-forming processes. The petrology of the residues generally reflected the rank and maceral composition of the feed coals, with the higher rank, high-inertinite coal having anisotropic carbons and inertinite in the residue, and the lower rank coal-derived residue containing isotropic carbons. The feed coal chemistry determines the mineralogy of the non-glass, non-carbon portions of the residues, with the proportions of CaCO{sub 3} versus Al{sub 2}O{sub 3} determining the tendency towards the neoformation of anorthite versus mullite, respectively. Electron beam studies showed the presence of a number of potentially hazardous elements in nanoparticles. Some of the neoformed ultra-fine/nano-minerals found in the coal ashes are the same as those commonly associated with oxidation/transformation of sulfides and sulfates. - Highlights: • Coal waste geochemisty can provide increased environmental information in coal-mining areas. • Oxidation is the major process for mineral transformation in coal ashes. • The electron bean methodology has been applied to investigate neoformed minerals.

  8. Nuclear techniques for analysis of coal for calorific value, ash and moisture

    International Nuclear Information System (INIS)

    Dains, Margaret

    1976-03-01

    This bibliography includes references on nuclear techniques for analysis of coal for calorific value, ash and moisture content. As the search was directed particularly towards measurement of the ash content of coal using x- and gamma-ray methods, references covering only β-ray techniques have been placed in a separate section. References from Chemical Abstracts prior vol.62 (1965) do not cite the language of the original article. The language of the original has been given for all other articles not in English. (author)

  9. Glass Ceramics Composites Fabricated from Coal Fly Ash and Waste Glass

    International Nuclear Information System (INIS)

    Angjusheva, B.; Jovanov, V.; Srebrenkoska, V.; Fidancevska, E.

    2014-01-01

    Great quantities of coal ash are produced in thermal power plants which present a double problem to the society: economical and environmental. This waste is a result of burning of coal at temperatures between 1100-14500C. Fly ash available as fine powder presents a source of important oxides SiO2, Al2O3, Fe2O3, MgO, Na2O, but also consist of small amount of ecologically hazardous oxides such as Cr2O3, NiO, MnO. The combination of the fly ash with waste glass under controlled sintering procedure gave bulk glass-ceramics composite material. The principle of this procedure is presented as a multi barrier concept. Many researches have been conducted the investigations for utilization of fly ash as starting material for various glass–ceramics production. Using waste glass ecologically hazardous components are fixed at the molecular level in the silicate phase and the fabricated new glass-ceramic composites possess significantly higher mechanical properties. The aim of this investigation was to fabricate dense glass ceramic composites using fly ash and waste glass with the potential for its utilization as building material

  10. Groundwater impact studies at three Ontario Hydro coal ash landfills

    International Nuclear Information System (INIS)

    Johnston, H.M.; Vorauer, A.G.; Chan, H.T.

    1992-01-01

    Ontario Hydro has produced on the order of 21 million Mg of coal fly ash over the past 40 years, of which, 80% has gone to various landfill sites in the province of Ontario. Hydrogeologic investigations have been performed in the vicinity of three Ontario Hydro coal ash landfill sites to assess the environmental impact of fly ash landfilling on the local groundwater regime. Two of the waste management facilities are associated with thermal generating stations (Lambton TGS and Nanticoke TGS) and are founded on relatively impermeable clay deposits. The third site, Birchwood Park, is a former sand and gravel pit for which the landfill design did not incorporate the use of a liner material. The rates of groundwater flow through the overburden materials a the three sites vary from less than 1 cm/a at the Lambton TGS site, to between 3.45 cm/a and 115 cm/a at contaminant transport at these sites also varies from being controlled by molecular diffusion to advection. This paper discusses the migration rates of contaminants from fly ash leachate at each of the three sites with implications to landfill containment and design

  11. Reuse of Coconut Shell, Rice Husk, and Coal Ash Blends in Geopolymer Synthesis

    Science.gov (United States)

    Walmiki Samadhi, Tjokorde; Wulandari, Winny; Prasetyo, Muhammad Iqbal; Rizki Fernando, Muhammad

    2017-10-01

    Mixtures of biomass and coal ashes are likely to be produced in increasing volume as biomass-based energy production is gaining importance in Indonesia. This work highlights the reuse of coconut shell ash (CSA), rice husk ash (RHA), and coal fly ash (FA) for geopolymer synthesis by an activator solution containing concentrated KOH and Na2SiO3. Ash blend compositions are varied according to a simplex-centroid mixture experimental design. Activator to ash mass ratios are varied from 0.8 to 2.0, the higher value being applied for ash compositions with higher Si/Al ratio. The impact of ash blend composition on early strength is adequately modeled by an incomplete quadratic mixture model. Overall, the ashes can produce geopolymer mortars with an early strength exceeding the Indonesian SNI 15-2049-2004 standard minimum value of 2.0 MPa. Good workability of the geopolymer is indicated by their initial setting times which are longer than the minimum value of 45 mins. Geopolymers composed predominantly of RHA composition exhibit poor strength and excessive setting time. FTIR spectroscopy confirms the geopolymerization of the ashes by the shift of the Si-O-Si/Al asymmetric stretching vibrational mode. Overall, these results point to the feasibility of geopolymerization as a reuse pathway for biomass combustion waste.

  12. An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea.

    Science.gov (United States)

    Park, Seung Bum; Jang, Young Il; Lee, Jun; Lee, Byung Jae

    2009-07-15

    This study evaluates quality properties and toxicity of coal bottom ash coarse aggregate and analyzes mechanical properties of porous concrete depending on mixing rates of coal bottom ash. As a result, soundness and resistance to abrasion of coal bottom ash coarse aggregate were satisfied according to the standard of coarse aggregate for concrete. To satisfy the standard pertaining to chloride content, the coarse aggregates have to be washed more than twice. In regards to the result of leaching test for coal bottom ash coarse aggregate and porous concrete produced with these coarse aggregates, it was satisfied with the environment criteria. As the mixing rate of coal bottom ash increased, influence of void ratio and permeability coefficient was very little, but compressive and flexural strength decreased. When coal bottom ash was mixed over 40%, strength decreased sharply (compressive strength: by 11.7-27.1%, flexural strength: by maximum 26.4%). Also, as the mixing rate of coal bottom ash increased, it was confirmed that test specimens were destroyed by aggregate fracture more than binder fracture and interface fracture. To utilize coal bottom ash in large quantities, it is thought that an improvement method in regards to strength has to be discussed such as incorporation of reinforcing materials and improvement of aggregate hardness.

  13. Apparatus and method for direct measurement of coal ash sintering and fusion properties at elevated temperatures and pressures

    Science.gov (United States)

    Khan, M. Rashid

    1990-01-01

    A high-pressure microdilatometer is provided for measuring the sintering and fusion properties of various coal ashes under the influence of elevated pressures and temperatures in various atmospheres. Electrical resistivity measurements across a sample of coal ash provide a measurement of the onset of the sintering and fusion of the ash particulates while the contraction of the sample during sintering is measured with a linear variable displacement transducer for detecting the initiation of sintering. These measurements of sintering in coal ash at different pressures provide a mechanism by which deleterious problems due to the sintering and fusion of ash in various combustion systems can be minimized or obviated.

  14. Environmental impacts of the coal ash spill in Kingston, Tennessee: an 18-month survey.

    Science.gov (United States)

    Ruhl, Laura; Vengosh, Avner; Dwyer, Gary S; Hsu-Kim, Heileen; Deonarine, Amrika

    2010-12-15

    An 18 month investigation of the environmental impacts of the Tennessee Valley Authority (TVA) coal ash spill in Kingston, Tennessee combined with leaching experiments on the spilled TVA coal ash have revealed that leachable coal ash contaminants (LCACs), particularly arsenic, selenium, boron, strontium, and barium, have different effects on the quality of impacted environments. While LCACs levels in the downstream river water are relatively low and below the EPA drinking water and ecological thresholds, elevated levels were found in surface water with restricted water exchange and in pore water extracted from the river sediments downstream from the spill. The high concentration of arsenic (up to 2000 μg/L) is associated with some degree of anoxic conditions and predominance of the reduced arsenic species (arsenite) in the pore waters. Laboratory leaching simulations show that the pH and ash/water ratio control the LCACs' abundance and geochemical composition of the impacted water. These results have important implications for the prediction of the fate and migration of LCACs in the environment, particularly for the storage of coal combustion residues (CCRs) in holding ponds and landfills, and any potential CCRs effluents leakage into lakes, rivers, and other aquatic systems.

  15. Natural radioactivity of airbone particulates in coal-ash disposal sites

    International Nuclear Information System (INIS)

    Fukushima, Masanori; Tsukamoto, Masaki

    1984-01-01

    An investigation was made on the actual concentrations of U, Th and Po in air-borne dust and soil around coal power stations, to study the effect of coal-ash disposal site on natural radioactivity of environmental samples. Samples were collected at a coal-ash disposal and its reference places. The results obtained are summaried as follows; (1) Concentrations of U, Th and Po in air-borne dust at the disposal place was nealy equal to those at the reference place. (2) Origin of those α-emitting elements in the dust was successfully deduced, on the basis of correlating concentrations of Sc and Cl elements in the dust. (3) It was inferred that elements of both U and Po in the dust at disposal site came from soil by about 80% and artificial origin such as exhausted gas by remainder. Almost all Th element were from soil. It was therefore concluded that effect of disposal site on radioactivity concentrations of dusts was negligible. (author)

  16. How can we reduce carbon in ash in firing pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, W. (and others)

    1992-12-01

    The article discusses solutions to the problem of reducing carbon in ash in firing pulverized coal. Suggested solutions to the problem include: reviewing air flow through the mills; examining the pulverizers for coal fineness variations; investigating air distribution in the burners; review dual-firing equations; examining the burners for slag build up; checking coal fineness is appropriate to the boiler; increasing air flow; and checking instrumentation. 2 figs., 1 photo.

  17. Agglomeration and reaction characteristics of various coal chars in fluidized-bed coal gasifier; Ryudoso sekitan gas ka ronai deno sekitan no gyoshu tokusei to hanno tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Uemiya, S.; Aoki, K.; Mori, S.; Kojima, T. [Seikei University, Tokyo (Japan). Faculty of Engineering

    1996-10-28

    With relation to the coals delivered as common samples in the coal fundamental technology development project, an experimental study was conducted on agglomeration characteristics and reaction characteristics in the fluidized-bed coal gasifier. For the experiment, used was a fluidized bed gasifier inserted with a cone-shape dispersion plate with a nozzle in the center. After raising the temperature of the gasifier up to 773K, gasification was conducted sending to the gasifier air from the nozzle and steam from the dispersion plate. The mean particle diameter and gas concentration of chars were measured till the temperature reaches 1373K. As a result of the experiment, it was confirmed that the carbon conversion ratio increases with a decrease in coalification degree of the coal. Moreover, influence of the coal kind was markedly observed at the grid zone of the lower part of the bed, and it was clarified that the lower carbon content ratio the coal kind has, the faster the speed of CO formation and water gasification get. The agglomeration temperature of charcoal which is a product of the condensate is lower by as many as several hundred K than the point of softening, and it was considered to be necessary to study the relation with the temperature distribution in the bed. 3 refs., 3 figs., 1 tab.

  18. Synthesis of zeolite from coal fly ashes with different silica-alumina composition

    Energy Technology Data Exchange (ETDEWEB)

    Miki Inada; Yukari Eguchi; Naoya Enomoto; Junichi Hojo [Kyushu University, Fukuoka (Japan). Department of Chemistry and Biochemistry, Graduate School of Engineering

    2005-02-01

    Coal fly ashes can be converted into zeolites by hydrothermal alkaline treatment. This study focuses on the effect of Si/Al molar ratio of the fly ash source on the type of formed zeolite, which also is affected by the alkaline condition. The fly ashes were mixed with an aqueous NaOH solution and hydrothermally treated at about 100{degree}C. Zeolite Na-P1 and/or hydroxy-sodalite appeared after the treatment. Zeolite Na-P1 predominantly formed from silica-rich fly ash at a low-NaOH concentration. The cation exchange capacity of the product with a large content of zeolite Na-P1 reached a value of 300 meq/100 g. The type of the product was controlled by addition of aerosil silica or alumina. It was found that silica addition effectively enhances the formation of zeolite Na-P1, even at a high-NaOH concentration. These results were discussed on the basis of a formation mechanism of zeolite from coal fly ash through dissolution-precipitation process. 10 refs., 6 figs., 1 tab.

  19. Hazards from radioactivity of fly ash of Greek coal power plants (CPP)

    International Nuclear Information System (INIS)

    Papastefanou, C.; Charalambous, C.

    1980-01-01

    Fly ash and fine dispersion releases by coal combustion in Greek coal power plants are radioactive. Concentrations in the fly ash up to 20 pCi/g and 10 pCi/g were measured for 238 U and 226 Ra respectively (not in secular equilibrium). The radioactivity of fly ash deduces risks in two ways: a) from the escaping fly ash in particulate form or fine dispersion and b) from using fly ash as substitute for cement in concrete. In a room of dimensions 10 x 10x4 m 3 the concentration of Radon in the air will be about 10 -9 μCi/cm 3 . For the above estimation a concrete porosity of 5% and a wall thickness of 20 cm was used. The estimated concentration of Radon was about two orders of magnitude lower than that of the MPC of Radon in the air, which is about 10 -9 μCi/cm 3 . It is pointed out that if a 25% porosity were used, the Radon concentration will be an order of magnitude higher. (U.K.)

  20. Clean utilization of low-rank coals for low-cost power generation

    International Nuclear Information System (INIS)

    Sondreal, E.A.

    1992-01-01

    Despite the unique utilization problems of low-rank coals, the ten US steam electric plants having the lowest operating cost in 1990 were all fueled on either lignite or subbituminous coal. Ash deposition problems, which have been a major barrier to sustaining high load on US boilers burning high-sodium low-rank coals, have been substantially reduced by improvements in coal selection, boiler design, on-line cleaning, operating conditions, and additives. Advantages of low-rank coals in advanced systems are their noncaking behavior when heated, their high reactivity allowing more complete reaction at lower temperatures, and the low sulfur content of selected deposits. The principal barrier issues are the high-temperature behavior of ash and volatile alkali derived from the coal-bound sodium found in some low-rank coals. Successful upgrading of low-rank coals requires that the product be both stable and suitable for end use in conventional and advanced systems. Coal-water fuel produced by hydrothermal processing of high-moisture low-rank coal meets these criteria, whereas most dry products from drying or carbonizing in hot gas tend to create dust and spontaneous ignition problems unless coated, agglomerated, briquetted, or afforded special handling

  1. An SEM/EDX study of bed agglomerates formed during fluidized bed combustion of three biomass fuels

    International Nuclear Information System (INIS)

    Scala, Fabrizio; Chirone, Riccardo

    2008-01-01

    The agglomeration behaviour of three biomass fuels (exhausted and virgin olive husk and pine seed shells) during fluidized bed combustion in a lab-scale reactor was studied by means of SEM/EDX analysis of bed agglomerate samples. The effect of the fuel ash composition, bed temperature and sand particle size on agglomeration was investigated. The study was focused on the main fuel ash components and on their interaction with the bed sand particles. Agglomeration was favoured by high temperature, small sand size, a high fraction of K and Na and a low fraction of Ca and Mg in the fuel ash. An initial fuel ash composition close to the low-melting point eutectic composition appears to enhance agglomeration. The agglomerates examined by SEM showed a hollow structure, with an internal region enriched in K and Na where extensive melting is evident and an external one where sand particles are only attached by a limited number of fused necks. Non-molten or partially molten ash structures deposited on the sand surface and enriched in Ca and Mg were also observed. These results support an ash deposition-melting mechanism: the ash released by burning char particles inside the agglomerates is quantitatively deposited on the sand surface and then gradually embedded in the melt. The low-melting point compounds in the ash migrate towards the sand surface enriching the outermost layer, while the ash structure is progressively depleted of these compounds

  2. Feasibility of coal fly ash based bricks and roof tiles as construction materials: a review

    Directory of Open Access Journals (Sweden)

    Akhtar M.N.

    2017-01-01

    Full Text Available The aim of present study is to investigate about the potential use of coal fly ash along with other natural and solid wastes for the production of coal fly ash based bricks and roof tiles. The study is based on the comprehensive reviews available from the previous experimental data on coal fly ash based bricks and roof tiles. The study intendeds to provide the essential technical information and data for the use of fly ash mix with other solid wastes and reveal their suitability as construction materials. It has been found that samples were non-hazardous in nature and vigorously used as an additional construction materials and their compositions are perfectly fit to make the strong composite material for bricks and tiles. The three past studies have been demonstrated that, fly ash based bricks and roof tiles provides a sustainable supplement to the traditional clay bricks and roof tiles, that not only increases the efficiency of traditional bricks and roof tiles but also helps significantly to reduce the environmental issues associated with the disposal of these waste materials. In addition to this study highlights the potential use of fly ash for producing sustainable construction materials.

  3. Deposit formation in a full-scale pulverized wood-fired power plant with and without coal fly ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt

    2013-01-01

    Ash transformation and deposition in a pulverized wood-fired power plant boiler of 800 MWth were studied with and without the addition of coal fly ash. The transient ash deposition behavior was investigated by using an advanced deposit probe system at two different boiler locations with flue gas...... at the low-temperature location showed a slow initial build-up and a stable mass of deposits after approximately 1-5 h. The deposits collected during pulverized wood combustion contained a considerable amount of K2SO4, KCl, and KOH/K2CO3. With the addition of coal fly ash (~4 times of the mass flow of wood...... ash) to the boiler, these alkali species were effectively removed both in the fly ash and in the deposits, and a more frequent shedding of the deposits was observed. The results imply that coal fly ash can be an effective additive to reduce ash deposition and corrosion problems in a pulverized wood...

  4. Appendices 1-3 - the effects of combustion on ash and deposits from low rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Ledger, R.C.; Ottrey, A.L.; Mackay, G.H.

    1985-12-01

    Thermomechanical analyses (TMA) of ashes derived from combustion of fourteen coal samples from Victorian and South Australian coalfields are presented in the results volumes of this report (Volume 2-4). This appendix describes the analytical equipment used, the modifications that were incorporated and the technique developed for analysis and interpretation of the data. To aid identification, limited numbers of analyses were performed on reference materials, the results of which are presented in this appendix. Analyses were performed on a modified Stanton Redcroft 790 series thermomechanical analyser. The aim was to identify components in the ashes and to gain an understanding of the sintering and fusion behaviour of the ashes up to temperatures encountered in large scale boilers. As part of the main project, ashes were also submitted to simultaneous Differential Thermal Analysis and Thermogravimetry (DTA-TG). For each coal burnt in this investigation the Test Bank 1 and precipitator ashes produced at a flame temperature of 1200/sup o/C and 3% excess oxygen were examined by TMA, as were ashes from tests at other flame temperatures and at 3% excess oxygen for four of the coals. This was to investigate the effects of variation in combustion conditions on ash properties. The results are presented in Volume 2-4 of this report as tables, giving details of events and assignments and as a formalised TMA pattern for each ash tested.

  5. Modified coal fly ash as low cost adsorbent for removal reactive dyes from batik industry

    Directory of Open Access Journals (Sweden)

    Taufiq Agus

    2018-01-01

    Full Text Available The removal of reactive dyes on modified coal fly ash has been investigated during a series of batch adsorption experiments. Physical characteristics of modified coal fly ash was characterized by Brunauer Emmett Teller (BET surface area analysis, X-ray powder diffraction (XRD, Fourier transform infrared spectrophotometer (FT-IR, and scanning electron microscope (SEM. The effects of operational parameters such as initial dye concentration (50–200 mg/L, solution pH (4–10 and adsorbent dosage (50–200 mg/L were studied. The adsorption experiments indicated that modified coal fly ash was effective in removing of Remazol Blue. The percentage removal of dyes increased while the modified fly ash dosage increased. The percentage removal of dyes increased with decreased initial concentration of the dye and also increased with amount of adsorbent used. The optimum of removal of dyes was found to be 94% at initial dye concentration 50 g/mL, modified fly ash dosage 250 g/mL, and pH of 2.0.

  6. Determination of 30 elements in coal and fly ash by thermal and epithermal neutron-activation analysis

    International Nuclear Information System (INIS)

    Rowe, J.J.; Steinnes, E.

    1977-01-01

    Thirty elements are determined in coal and fly ash by instrumental neutron-activation analysis using both thermal and epithermal irradiation. Gamma-ray spectra were recorded 7 and 20 days after the irradiations. The procedure is applicable to the routine analysis of coals and fly ash. Epithermal irradiation was found preferable for the determination of Ni, Zn, As, Se, Br, Rb, Sr, Mo, Sb, Cs, Ba, Sm, Tb, Hf, Ta, W, Th and U, whereas thermal irradiation was best for Sc, Cr, Fe, Co, La, Ce, Nd, Eu, Yb and Lu. Results for SRM 1632 (coal) and SRM 1633 (fly ash) agree with those of other investigators. (author)

  7. Evaluation of the ecological risks to terrestrial wildlife associated with a coal ash disposal site

    International Nuclear Information System (INIS)

    Sample, B.E.

    1994-01-01

    Between 1955 and 1989, coal ash was deposited within an impounded watershed on the Oak Ridge Reservation, creating the 3.6 ha-Filled Coal Ash Pond (FCAP). The site has subsequently become vegetated, providing habitat for wildlife. To evaluate the risks that metals in the ash may pose to wildlife, ash, surface water, small mammal, and vegetation samples were collected and metal residues were determined. Metal concentrations, As and Se in particular, were elevated in ash, surface water, plant foliage, and small mammals relative to reference materials. Estimates of metal exposures received from food, water, and ash consumption were calculated for short-tailed shrews, white-footed mice, white-tailed deer, red fox, and red-tailed hawks. While shrews and mice were assumed to reside exclusively at and receive 100% exposure from the site, exposure experienced by deer, fox, and hawks was assumed to be proportional to the size of the site relative to their home range. Because deer had been observed to consume ash presumably for it's high sodium content, exposure experienced by deer consuming ash to meet sodium requirements was also estimated. To assess the risk of coal ash to wildlife, exposure estimates were compared to body-size adjusted toxicity data for each metal. These comparisons suggest that metals at the site may be detrimental to reproduction and survivorship of mice, shrews, deer and fox; hawks do not appear to be at risk

  8. Influence of the co-firing on the leaching of trace pollutants from coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Maria Izquierdo; Natalia Moreno; Oriol Font; Xavier Querol; Esther Alvarez; Diano Antenucci; Henk Nugteren; Yolanda Luna; Constantino Fernandez-Pereira [Institute of Earth Sciences ' Jaume Almera' (CSIC), Barcelona (Spain)

    2008-08-15

    The (co)-firing of low-cost alternative fuels is expected to increase in the forthcoming years in the EU because of the economic and environmental benefits provided by this technology. This study deals with the impact of the different coal/waste fuel ratio of the feed blend on the mineralogy, the chemical composition and especially on the leaching properties of fly ash. Different blends of coal, petroleum coke, sewage sludge, wood pellets, coal tailings and other minor biomass fuels were tested in PCC (pulverised coal combustion) and FBC (fluidized bed combustion) power plants. The co-firing of the studied blends did not drastically modify the mineralogy, bulk composition or the overall leaching of the fly ash obtained. This suggests that the co-firing process using the alternative fuels studied does not entail significant limitations in the re-use or management strategies of fly ash. 34 refs., 4 figs., 3 tabs.

  9. Field trial of a pair production gauge for the on-line determination of ash in coal on a conveyor belt

    International Nuclear Information System (INIS)

    Millen, M.J.; Sowerby, B.D.; Rafter, P.T.; Ellis, W.K.; Gravitis, V.L.; Howells, E.; McLennan, T.D.; Muldoon, L.J.

    1984-01-01

    The ash content of coal can be determined by a method based on pair production. Coal is irradiated with high energy γ-rays and the resulting 0.511 MeV annihilation and Compton scattered γ-rays are measured. The pair production (PP) technique has been previously proved in the laboratory on static bulk samples and in the field on high-throughput sample by-lines. In the present paper, a plant test to assess the PP gauge for direct on-line conveyor belt analysis is described. This test was undertaken on the recirculating coal facility at the pilot plant coal washery at the BHP Steel Works, Newcastle, New South Wales. Seven Hunter Valley coals with ash in the range 7.5-33 wt% were circulated around the conveyor loop, and scanned by both PP and low energy γ-ray transmission (LET) gauges. Samples were measured on-belt as a function of sample depth, compaction, moisture and particle size. The mass per unit area of coal on the belt was varied in the range 40-210 kg m -2 . The r.m.s. deviation between PP gauge ash and chemical laboratory ash was 1.07 wt% ash for 370 individual on-belt measurements on coal of mass per unit area greater than 60 kg m -2 ad 0.45 wt% ash for the mean ash of each sample. (author)

  10. Geochemical characterization of arsenic-rich coal-combustion ashes buried under agricultural soils and the release of arsenic

    International Nuclear Information System (INIS)

    Veselská, Veronika; Majzlan, Juraj; Hiller, Edgar; Peťková, Katarína; Jurkovič, Ľubomír; Ďurža, Ondrej; Voleková-Lalinská, Bronislava

    2013-01-01

    Highlights: ► Sources, mineralogy and mobility of As in coal-combustion ashes were investigated. ► After a dam failure in 1965, the spilled ashes were buried under agricultural soils. ► Primary carriers of As within coal-combustion ashes are aluminosilicate glasses. ► The most probable secondary carriers of labile As are oxyhydroxides of Si, Al, and Fe. ► Arsenic stored in ashes is a long-term contamination source for the environment. - Abstract: A combination of geochemical and mineralogical methods was used to determine the concentrations, mobility, and sources of As in coal-combustion ashes and soils in the vicinity of a thermal power plant at Nováky, central Slovakia. Fresh lagooned ash, ashes buried under agricultural soils for 45 a, and the overlying soils, contain high concentrations of As ranging from 61 to 1535 mg/kg. There is no differences in the water extractable percentages of As between the fresh lagooned ash and buried ashes, which range from 3.80% to 6.70% of the total As. This small amount of As may perhaps reside on the surfaces of the ash particles, as postulated in the earlier literature, but no evidence was found to support this claim. Electron microprobe analyses show that the dominant primary As carriers are the aluminosilicate glasses enriched in Ca and Fe. The acid NH 4 + -oxalate extraction hints that the oxyhydroxides of Si, Al, and Fe are the most probable secondary carriers of labile As. The X-ray absorption spectroscopy (XAS) analyses show that As in the lagooned and buried ashes occurs mostly as As(V). The long-term burial of the coal-combustion ash under agricultural soil did not cause any major change of its chemical composition or As lability compared to the fresh lagooned ash

  11. Soot, organics and ultrafine ash from air- and oxy-fired coal combustion

    Science.gov (United States)

    This paper is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practically relevant s...

  12. Characterization of bottom ashes from coal pulverized power plants to determine their potential use feasibility

    International Nuclear Information System (INIS)

    Menendez, E.; Alvaro, A. M.; Argiz, C.; Parra, J. L.; Moragues, A.

    2013-01-01

    The disposal of coal by products represents environmental and economical problems around the world. Therefore, the reuse and valorisation of this waste has become an important issue in the last decades. While high-value construction products containing fly ash were developed and its use is actually totally accepted as an addition to cement, the use of the bottom ash as supplementary cementitious material has not been allow. This paper examines the chemical and physical properties of fly ashes and bottom ashes from two different coal power plants in order to compare them and analyse the potential feasibility of bottom ash as cement replacement. The mechanical properties of cement mortars made with different percentages of both ashes were also study. The results obtained showed similar chemical composition of both kinds of ashes. The compressive strength values of mortars with 10 % and 25 % of cement replacement (at 28 days) were above the limits established in European standards and there were not significant differences between fly ash and bottom ash from both origins. (Author)

  13. Ash partitioning during the oxy-fuel combustion of lignite and its dependence on the recirculation of flue gas impurities (H{sub 2}O, HCl and SO{sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Facun Jiao; Juan Chen; Lian Zhang; Yajuan Wei; Yoshihiko Ninomiya; Sankar Bhattacharya; Hong Yao [Monash University, Clayton, Vic. (Australia). Department of Chemical Engineering

    2011-06-15

    Oxy-fuel combustion of a brown coal (i.e. lignite) has been carried out at 1000{sup o}C to experimentally examine the vaporisation of organically bound metals and the agglomeration of ash particles as a function of the concentration of gaseous impurities including H{sub 2}O, HCl and SO{sub 2} in about 27% O{sub 2} balanced with CO{sub 2}. The properties of bulk ash and individual metals were investigated intensively. Particularly, attention was paid to Na which is notorious for fouling and to organically bound Al which has been less studied. The results indicate that, the organically bound metals, although possessing a very low content in the raw coal, are vital for the agglomeration of ash particles, which are also highly sensitive to the loading of gas impurities in flue gas. HCl recirculation is the most crucial factor promoting the vaporisation of metals via chlorination. Apart from alkali metals, the organically bound Al and Ti were also vaporised noticeably. Recirculation of SO{sub 2} promoted the sulfation of Na to condense into liquid droplet which increased fine ash yield. Co-existence of bulk HCl and SO{sub 2} played a synergetic role in the sulfation of Na via an initial chlorination of the char-bound Na. In contrast, co-existence of steam with HCl and SO{sub 2} favored the formation of Na alumino-silicates, which are favorable for ash agglomeration. 34 refs., 15 figs., 3 tabs.

  14. Radioactivity in coal, ashes and selected wastewaters from Canadian coal-fired steam electric generating stations

    International Nuclear Information System (INIS)

    1985-09-01

    Coal is known to contain naturally occurring radioactive elements and there has been speculation that as a results, coal-fuelled power generation stations may be significant emitters of these substances. In this report, the subject of radioactivity is introduced. The kinds of radioactive substances which occur naturally in coal formations, the nature of their emissions and the existing information on their behaviour and their effects on environmental organisms are also reviewed. The results of an examination of levels of alpha, beta and gamma radiaton levels, and the substances which produce them in coals, fly ashes, bottom ashes and related wastewaters at six Canadian coal-fuelled power stations are presented. Difficulties in studies of this nature and the potential effects of these releases on organisms in the adjacent aquatic environment are discussed. Existing and potential technologies for the removal of these substances from wastewaters are examined. In general the releases in wastewaters from the six stations were found to be lower than those known to cause short-term or acute biological effects. The potential for long-term effects from such low-level releases could not be accurately assessed because of the paucity of information. A number of recommendations for: improvements in further studies of this nature; the further examination of the fate of naturally occurring radionuclides in the environment; and the determination of the long-term effects of low levels of naturally occurring radioactive substances on aquatic organisms, are made

  15. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    Science.gov (United States)

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  16. Utilization of zeolites synthesized from coal ash for methylene blue removal from water

    Directory of Open Access Journals (Sweden)

    Denise Alves Fungaro

    2008-12-01

    Full Text Available The adsorption of methylene blue from aqueous solution was carried out using zeolites synthesized from coal ash as low-cost adsorbents. The coal ash sample was converted to zeolites by hydrothermal treatment using different synthesis parameters. The materials were characterized by physical-chemical analysis, XRD and SEM studies. The adsorption isotherms can be fitted by Freundlich model. The values of the adsorption capacity of adsorbents were similar for adsorbents. Kinetic studies indicate that the adsorption follows pseudo-second-order kinetic model.

  17. Unmanned aerial vehicles for the assessment and monitoring of environmental contamination: An example from coal ash spills.

    Science.gov (United States)

    Messinger, Max; Silman, Miles

    2016-11-01

    Unmanned aerial vehicles (UAVs) offer new opportunities to monitor pollution and provide valuable information to support remediation. Their low-cost, ease of use, and rapid deployment capability make them ideal for environmental emergency response. Here we present a UAV-based study of the third largest coal ash spill in the United States. Coal ash from coal combustion is a toxic industrial waste material present worldwide. Typically stored in settling ponds in close proximity to waterways, coal ash poses significant risk to the environment and drinking water supplies from both chronic contamination of surface and ground water and catastrophic pond failure. We sought to provide an independent estimate of the volume of coal ash and contaminated water lost during the rupture of the primary coal ash pond at the Dan River Steam Station in Eden, NC, USA and to demonstrate the feasibility of using UAVs to rapidly respond to and measure the volume of spills from ponds or containers that are open to the air. Using structure-from-motion (SfM) imagery analysis techniques, we reconstructed the 3D structure of the pond bottom after the spill, used historical imagery to estimate the pre-spill waterline, and calculated the volume of material lost. We estimated a loss of 66,245 ± 5678 m 3 of ash and contaminated water. The technique used here allows rapid response to environmental emergencies and quantification of their impacts at low cost, and these capabilities will make UAVs a central tool in environmental planning, monitoring, and disaster response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Manufacture of lightweight aggregates utilizing coal fly ash. Sekitan bai riyo ni yoru jinko keiryo kotsuzai seizo

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, K [Kyushu Electric Power Co. Inc., Fukuoka (Japan)

    1990-11-20

    Processing of a large amount of coal ash is a serious problem in considering the locational conditions of coal firing power generation plants. 46% of the coal ash was effectively used in 1985, and the remaining 54% was disposed at landfills on land and sea. Positive promotion of the effective use of coal ash is the necessity. A production method for an artificial lightweight aggregate utilizing coal ash was established by a joint research. The history of the research and development of this artificial lightweight aggregate (brand name: FA-lIGHT), outline of the manufacturing facilities, physical properties and result of use are introduced. The lightweight aggregates are used not only for the construction of multistoried buildings but also used as most suitable aggregates for making lightweight large scale panels and concrete secondary products such as lightweight blocks. FA-LIGHT is most suitable for use in the production of concrete lightweight aggregates, and can be used for hydroponic agriculture and for the improvement of drainage of land. Spread of its use is expected. 5 figs., 5 tabs.

  19. Technical note: Vetiver can grow on coal fly ash without DNA damage.

    Science.gov (United States)

    Chakraborty, Rajarshi; Mukherjee, Anita

    2011-02-01

    Fly ash is a by-product of coal-fired electricity generation plants. The prevalent practice of disposal is as slurry of ash and water to open lands or ash ponds located near power plants and this has lain to waste thousands of hectares all over the world. Wind and leaching are often the causes of off-site contamination from fly ash dumpsites. Vetiver (Vetiveria zizanioides) grown on fly ash for three months showed massive, mesh-like growth of roots which could have a phytostabilizing effect. The plant achieved this without any damage to its nuclear DNA as shown by comet assay done on the root nuclei, which implies the long-term survival of the plant on the remediation site. Also, when Vetiver is used for phytoremediation of coal fly ash, its shoots can be safely grazed by animals as very little of heavy metals in fly ash were found to be translocated to the shoots. These features make planting of Vetiver a practical and environmentally compatible method for restoration of fly ash dumpsites. Lack of DNA damage in Vetiver has been compared to that in a sensitive plant i.e. Allium cepa. Our results suggested that apart from traditional end-points viz. growth parameters like root length, shoot length and dry weight, comet assay could also be included in a battery of tests for initial, rapid and effective selection of plants for restoration and phytoremediation of polluted sites.

  20. The Influence Of Calcite On The Ash Flow Temperature For Semi-Anthracite Coal From Donbas District

    Directory of Open Access Journals (Sweden)

    Čarnogurská Mária

    2014-12-01

    Full Text Available This paper presents the results of research focused on the lowering of ash flow temperature at semianthracite coal from Donbas district by means of additive (calcite dosing. Ash fusion temperatures were set for two coal samples (A, B and for five various states (samples of ash without any additives, with 1%, with 3%, with 5% and with 7% of the additive in total. The macroscopicphotographic method was used for identifying all specific temperatures. Obtained outputs prove that A type coal has a lower value of sphere temperature than B type coal in the whole scope of percentage representation of the additive. The flow temperature dropped in total from 1489 °C to 1280 °C, i.e. by 14% during the test of coal of type A with 7% of the additive; while it was near 10% for coal of type B (from 1450 °C to 1308 °C. Numerical simulations of the process showed that it is not effective to add an additive with a grain size lower than 280 μm by means of wastevapour burners.

  1. Fate of the naturally occurring radioactive materials during treatment of acid mine drainage with coal fly ash and aluminium hydroxide.

    Science.gov (United States)

    Madzivire, Godfrey; Maleka, Peane P; Vadapalli, Viswanath R K; Gitari, Wilson M; Lindsay, Robert; Petrik, Leslie F

    2014-01-15

    Mining of coal is very extensive and coal is mainly used to produce electricity. Coal power stations generate huge amounts of coal fly ash of which a small amount is used in the construction industry. Mining exposes pyrite containing rocks to H2O and O2. This results in the oxidation of FeS2 to form H2SO4. The acidic water, often termed acid mine drainage (AMD), causes dissolution of potentially toxic elements such as, Fe, Al, Mn and naturally occurring radioactive materials such as U and Th from the associated bedrock. This results in an outflow of AMD with high concentrations of sulphate ions, Fe, Al, Mn and naturally occurring radioactive materials. Treatment of AMD with coal fly ash has shown that good quality water can be produced which is suitable for irrigation purposes. Most of the potentially toxic elements (Fe, Al, Mn, etc) and substantial amounts of sulphate ions are removed during treatment with coal fly ash. This research endeavours to establish the fate of the radioactive materials in mine water with coal fly ash containing radioactive materials. It was established that coal fly ash treatment method was capable of removing radioactive materials from mine water to within the target water quality range for drinking water standards. The alpha and beta radioactivity of the mine water was reduced by 88% and 75% respectively. The reduced radioactivity in the mine water was due to greater than 90% removal of U and Th radioactive materials from the mine water after treatment with coal fly ash as ThO2 and UO2. No radioisotopes were found to leach from the coal fly ash into the mine water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Source identification of individual soot agglomerates in Arctic air by transmission electron microscopy

    Science.gov (United States)

    Weinbruch, S.; Benker, N.; Kandler, K.; Schütze, K.; Kling, K.; Berlinger, B.; Thomassen, Y.; Drotikova, T.; Kallenborn, R.

    2018-01-01

    Individual soot agglomerates collected at four different locations on the Arctic archipelago Svalbard (Norway) were characterised by transmission electron microscopy and energy-dispersive X-ray microanalysis. For source identification of the ambient soot agglomerates, samples from different local sources (coal burning power plants in Longyearbyen and Barentsburg, diesel and oil burning for power generation in Sveagruva and Ny Ålesund, cruise ship) as well as from other sources which may contribute to Arctic soot concentrations (biomass burning, aircraft emissions, diesel engines) were investigated. Diameter and graphene sheet separation distance of soot primary particles were found to be highly variable within each source and are not suited for source identification. In contrast, concentrations of the minor elements Si, P, K, Ca and Fe showed significant differences which can be used for source attribution. The presence/absence of externally mixed particle groups (fly ashes, tar balls, mercury particles) gives additional hints about the soot sources. Biomass/wood burning, ship emissions and coal burning in Barentsburg can be excluded as major source for ambient soot at Svalbard. The coal power plant in Longyearbyen is most likely a major source of soot in the settlement of Longyearbyen but does not contribute significantly to soot collected at the Global Atmosphere Watch station Zeppelin Mountain near Ny Ålesund. The most probable soot sources at Svalbard are aircraft emissions and diesel exhaust as well as long range transport of coal burning emissions.

  3. The use of coal fines fly ash for the improvement of soils in hydrophobic grounds

    International Nuclear Information System (INIS)

    Janssen-Mommen, J.P.M.; Bestebroer, S.I.

    1992-01-01

    New NO x reducing combustion techniques result in a different physical and morphological quality of fly ash, which makes the use of fly ash less attractive for the building and road construction industries. Attention is paid to the possibility of using low-NO x fly ash for the improvement of the properties of hydrophobic agricultural land. Such an application also depends on the environmental impacts of the leaching of elements to the ground water and the accumulation of hazardous compounds in crops. A literature study of hydrophobic grounds was carried out. Also attention is paid to the legal aspects. No juridical constraints could be found in the Dutch legislation concerning the use of fly ash from coal powder, although it seems that the use of such fly ash is not in agreement with the tenor of possibly to be applied legislation. However, a small-scale investigation was carried out to gain insight into the environmental impacts. The uptake in lettuce and the leaching of the elements As, B, Mo and Se was studied by means of lysimeters. Hydrophobic soils with 5%, 10% and 15% coal fines fly ash were used. Also an experiment with the use of coal gasification slags was performed

  4. Compressive strength performance of OPS lightweight aggregate concrete containing coal bottom ash as partial fine aggregate replacement

    Science.gov (United States)

    Muthusamy, K.; Mohamad Hafizuddin, R.; Mat Yahaya, F.; Sulaiman, M. A.; Syed Mohsin, S. M.; Tukimat, N. N.; Omar, R.; Chin, S. C.

    2018-04-01

    Concerns regarding the negative impact towards environment due to the increasing use of natural sand in construction industry and dumping of industrial solid wastes namely coal bottom ash (CBA) and oil palm shell (OPS) has resulted in the development of environmental friendly lightweight concrete. The present study investigates the effect of coal bottom ash as partial fine aggregate replacement towards workability and compressive strength of oil palm shell lightweight aggregate concrete (OPS LWAC). The fresh and mechanical properties of this concrete containing various percentage of coal bottom ash as partial fine aggregate replacement were investigated. The result was compared to OPS LWAC with 100 % sand as a control specimen. The concrete workability investigated by conducting slump test. All specimens were cast in form of cubes and water cured until the testing age. The compressive strength test was carried out at 7 and 28 days. The finding shows that integration of coal bottom ash at suitable proportion enhances the strength of oil palm shell lightweight aggregate concrete.

  5. Air oxidation of aqueous sodium sulfide solutions with coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, D; Chaudhuri, S K [Southern Illinois University, Carbondale, IL (United States). Dept. of Mining Engineering

    1999-02-01

    The paper investigated the potential of coal fly ash as a catalyst in the air oxidation of aqueous sodium sulfide (Na{sub 2}S) solutions in the temperature range of 303-333 K. The rate of oxidation was found to be independent of the initial concentration of Na{sub 2}S in the range of 5.80 x 10{sup -2} - 28.45 x 10{sup -2} kmol/m{sup 3}. The effects of fly ash loading, source of fly ash, speed of agitation, air flow rate, fly ash particle size were also studied. Experimental results suggested a film-diffusion controlled reaction mechanism. The deactivation of the catalytic effect of fly ash was found to be less than 31% even after five repeated uses.

  6. Direct Quantitative Analysis of Arsenic in Coal Fly Ash

    Directory of Open Access Journals (Sweden)

    Sri Hartuti

    2012-01-01

    Full Text Available A rapid, simple method based on graphite furnace atomic absorption spectrometry is described for the direct determination of arsenic in coal fly ash. Solid samples were directly introduced into the atomizer without preliminary treatment. The direct analysis method was not always free of spectral matrix interference, but the stabilization of arsenic by adding palladium nitrate (chemical modifier and the optimization of the parameters in the furnace program (temperature, rate of temperature increase, hold time, and argon gas flow gave good results for the total arsenic determination. The optimal furnace program was determined by analyzing different concentrations of a reference material (NIST1633b, which showed the best linearity for calibration. The optimized parameters for the furnace programs for the ashing and atomization steps were as follows: temperatures of 500–1200 and 2150°C, heating rates of 100 and 500°C s−1, hold times of 90 and 7 s, and medium then maximum and medium argon gas flows, respectively. The calibration plots were linear with a correlation coefficient of 0.9699. This method was validated using arsenic-containing raw coal samples in accordance with the requirements of the mass balance calculation; the distribution rate of As in the fly ashes ranged from 101 to 119%.

  7. Weathering behaviour of overburden-coal ash blending in relation to overburden management for acid mine drainage prevention in coal surface mine

    International Nuclear Information System (INIS)

    Gautama, R.S.; Kusuma, G.J.; Lestari, I.; Anggana, R.P.

    2010-01-01

    Potentially acid forming (PAF) materials are encapsulated with non-acid forming materials (NAF) in order to prevent acid mine drainage (AMD) in surface coal mines. NAF compaction techniques with fly and bottom ashes from coal-fired power plants are used in mines with limited amounts of NAF materials. This study investigated the weathering behaviour of blended overburden and coal combustion ash in laboratory conditions. Free draining column leach tests were conducted on different blending schemes. The weathering process was simulated by spraying the samples with de-ionized water once per day. The leachates were then analyzed using X-ray diffraction and fluorescence analyses in order to identify the mineral composition of the samples over a 14 week period. Results of the study indicated that the weathering process plays a significant role in controlling infiltration rates, and may increase the capability of capping materials to prevent infiltration into PAF materials. Fly- and bottom-ash additions improved the performance of the encapsulation materials. 3 refs., 4 tabs., 2 figs.

  8. Mutagenicity and genotoxicity of coal fly ash water leachate.

    Science.gov (United States)

    Chakraborty, Rajarshi; Mukherjee, Anita

    2009-03-01

    Fly ash is a by-product of coal-fired electricity generation plants. The prevalent practice of disposal is as slurry of ash and water to storage or ash ponds located near power stations. This has lain to waste thousands of hectares of land all over the world. Since leaching is often the cause of off-site contamination and pathway of introduction into the human environment, a study on the genotoxic effects of fly ash leachate is essential. Leachate prepared from the fly ash sample was analyzed for metal content, and tested for mutagenicity and genotoxicity. Analyses of metals show predominance of the metals-sodium, silicon, potassium, calcium, magnesium, iron, manganese, zinc, and sulphate. The Ames Salmonella mutagenicity assay, a short-term bacterial reverse mutation assay, was conducted on two-tester strains of Salmonella typhimurium strains TA97a and TA102. For genotoxicity, the alkaline version of comet assay on fly ash leachate was carried in vitro on human blood cells and in vivo on Nicotiana plants. The leachate was directly mutagenic and induced significant (Ppercentage (%), tail length (mum), and olive tail moment (arbitrary units). Our results indicate that leachate from fly ash dumpsites has the genotoxic potential and may lead to adverse effects on vegetation and on the health of exposed human populations.

  9. Utilization of coal fired power plant by-products. Utilization of coal ash; Sekitan karyoku ni okeru fukusanbutsu no yuko riyo gijutsu. Sekitanbai no yuko riyo

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, K. [The Federation of Electric Power Companies, Tokyo (Japan); Watanabe, M. [Electric Power Development Co. Ltd., Tokyo (Japan)

    1997-11-05

    The paper introduced the present situation and future task of the tackling with effective use of coal ash discharged from coal thermal power plants. Making the use of the characteristics, coal ash is mostly used in the fields of cement/concrete, civil engineering/construction, and agriculture/forestry/fisheries. In the case of using fly ash to concrete, the effects are the heightening of long-term strength, increase in workability, decrease in hydration heat, control of alkali aggregate reaction, etc. In the civil engineering/construction field, coal ash is allowed to be used for road bed material and mixed civil engineering material as road materials, for revetment back-filling material, soft ground surface layer treatment, soft ground/soil improvement materials, FGC deep layer mixing treatment process, SPC (sand compaction pile) material, etc. as earth work materials. Besides, it is used for light coarse aggregate, light sand, etc., as construction materials, for material substituting ceramics products, etc. as building materials, and for agricultural material, potassium silicate fertilizer and ocean structure in the agriculture/forestry/fisheries field. 4 refs., 2 tabs.

  10. Relating fish health and reproductive metrics to contaminant bioaccumulation at the Tennessee Valley Authority Kingston coal ash spill site.

    Science.gov (United States)

    Pracheil, Brenda M; Marshall Adams, S; Bevelhimer, Mark S; Fortner, Allison M; Greeley, Mark S; Murphy, Cheryl A; Mathews, Teresa J; Peterson, Mark J

    2016-08-01

    A 4.1 million m(3) coal ash release into the Emory and Clinch rivers in December 2008 at the Tennessee Valley Authority's Kingston Fossil Plant in east Tennessee, USA, prompted a long-term, large-scale biological monitoring effort to determine if there are chronic effects of this spill on resident biota. Because of the magnitude of the ash spill and the potential for exposure to coal ash-associated contaminants [e.g., selenium (Se), arsenic (As), and mercury (Hg)] which are bioaccumulative and may present human and ecological risks, an integrative, bioindicator approach was used. Three species of fish were monitored-bluegill (Lepomis macrochirus), redear sunfish (L. microlophus), and largemouth bass (Micropterus salmoides)-at ash-affected and reference sites annually for 5 years following the spill. On the same individual fish, contaminant burdens were measured in various tissues, blood chemistry parameters as metrics of fish health, and various condition and reproduction indices. A multivariate statistical approach was then used to evaluate relationships between contaminant bioaccumulation and fish metrics to assess the chronic, sub-lethal effects of exposure to the complex mixture of coal ash-associated contaminants at and around the ash spill site. This study suggests that while fish tissue concentrations of some ash-associated contaminants are elevated at the spill site, there was no consistent evidence of compromised fish health linked with the spill. Further, although relationships between elevated fillet burdens of ash-associated contaminants and some fish metrics were found, these relationships were not indicative of exposure to coal ash or spill sites. The present study adds to the weight of evidence from prior studies suggesting that fish populations have not incurred significant biological effects from spilled ash at this site: findings that are relevant to the current national discussions on the safe disposal of coal ash waste.

  11. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health.

    Science.gov (United States)

    Herndon, J Marvin

    2015-08-11

    The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1) Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2) Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA) filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1) the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test) and identical variances (F-test); and (2) the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

  12. Waste Water Treatment-Bed of Coal Fly Ash for Dyes and Pigments Industry

    Directory of Open Access Journals (Sweden)

    Syed Farman Ali Shah

    2015-12-01

    Full Text Available The highly porous power plant waste ashes have been utilized to treat toxic effluent of a dyes manufacturing plant. An attempt has been made for the first time in Pakistan, to generate an effective and economically sound treatment facility for the toxic effluent of a dyes manufacturing plant. This is an indigenous bed which could replace expensive treatment facilities, such as reverse osmosis (RO, granulated activated carbon (GAC bed, etc. The treatment efficiency was improved by coupling coagulants with fly ash adsorbent bed. The ash was collected from coal fired boilers of power plant at Lakhra Power Generation Company, Jamshoro, Pakistan. The use of this ash resolved the disposal and environmental issues by treating wastewater of chemical, dyes and pigment industry. The treatment bed comprised of briquettes of coal fly ash coupled with commercial coagulant ferrous sulfate-lime reduced COD, color, turbidity and TSS of effluent remarkably. An adsorption capacity and chemical behavior of fly ash bed was also studied. In coagulation treatment, coagulant FeSO4-lime influenced reduction of COD, color, turbidity and TSS by 32%, 48%, 50% and 51%, respectively. The CFAB coupled with coagulant, resulted an excessive removal of color, TSS, COD, and turbidity by 88%, 92%, 67% and89%, respectively.

  13. Waste Water Treatment-Bed of Coal Fly Ash for Dyes and Pigments Industry

    International Nuclear Information System (INIS)

    Shah, S.F.A.; Aftab, A.; Soomro, N.; Nawaz, M.S.; Vafai, K.

    2015-01-01

    The highly porous power plant waste ashes have been utilized to treat toxic effluent of a dyes manufacturing plant. An attempt has been made for the first time in Pakistan, to generate an effective and economically sound treatment facility for the toxic effluent of a dyes manufacturing plant. This is an indigenous bed which could replace expensive treatment facilities, such as reverse osmosis (RO), granulated activated carbon (GAC) bed, etc. The treatment efficiency was improved by coupling coagulants with fly ash adsorbent bed. The ash was collected from coal fired boilers of power plant at Lakhra Power Generation Company, Jamshoro, Pakistan. The use of this ash resolved the disposal and environmental issues by treating wastewater of chemical, dyes and pigment industry. The treatment bed comprised of briquettes of coal fly ash coupled with commercial coagulant ferrous sulfate-lime reduced COD, color, turbidity and TSS of effluent remarkably. An adsorption capacity and chemical behavior of fly ash bed was also studied. In coagulation treatment, coagulant FeSO/sun 4/-lime influenced reduction of COD, color, turbidity and TSS by 32 percentage, 48 percentage, 50 percentage and 51 percentage, respectively. The CFAB coupled with coagulant, resulted an excessive removal of color, TSS, COD, and turbidity by 88 percentage, 92 percentage, 67 percentage and 89 percentage, respectively. (author)

  14. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    KAUST Repository

    Andersen, Myrrha E.

    2016-10-19

    Pulverized bituminous coal was burned in a 10. W externally heated entrained flow furnace under air-combustion and three oxy-combustion inlet oxygen conditions (28, 32, and 36%). Experiments were designed to produce flames with practically relevant stoichiometric ratios (SR. =1.2-1.4) and constant residence times (2.3. s). Size-classified fly ash samples were collected, and measurements focused on the soot, elemental carbon (EC), and organic carbon (OC) composition of the total and ultrafine (<0.6. μm) fly ash. Results indicate that although the total fly ash carbon, as measured by loss on ignition, was always acceptably low (<2%) with all three oxy-combustion conditions lower than air-combustion, the ultrafine fly ash for both air-fired and oxy-fired combustion conditions consists primarily of carbonaceous material (50-95%). Carbonaceous components on particles <0.6. μm measured by a thermal optical method showed that large fractions (52-93%) consisted of OC rather than EC, as expected. This observation was supported by thermogravimetric analysis indicating that for the air, 28% oxy, and 32% oxy conditions, 14-71% of this material may be OC volatilizing between 100. C and 550. C with the remaining 29-86% being EC/soot. However, for the 36% oxy condition, OC may comprise over 90% of the ultrafine carbon with a much smaller EC/soot contribution. These data were interpreted by considering the effects of oxy-combustion on flame attachment, ignition delay, and soot oxidation of a bituminous coal, and the effects of these processes on OC and EC emissions. Flame aerodynamics and inlet oxidant composition may influence emissions of organic hazardous air pollutants (HAPs) from a bituminous coal. During oxy-coal combustion, judicious control of inlet oxygen concentration and placement may be used to minimize organic HAP and soot emissions.

  15. Evaluation and Treatment of Coal Fly Ash for Adsorption Application

    Directory of Open Access Journals (Sweden)

    Samson Oluwaseyi BADA

    Full Text Available Many researchers had investigated fly ash as an adsorbent for the uptake of organic compounds from petrochemical waste effluents. The availability, inexpensive and its adsorption characteristic had made it an alternative media for the removal of organic compounds from aqueous solution. The physical property of South African Coal Fly Ash (SACFA was investigated to determine its adsorption capability and how it can be improved. Chemical treatment using 1M HCl solution in the ratio of (1 g fly ash to (2 ml of acid was used and compared with untreated heat-treated samples. The chemically treated fly ash has a higher specific surface area of 5.4116 m2/g than the heat-treated fly ash with 2.9969 m2/g. More attention had to be given to the utilization of SACFA for the treatment of wastewaters containing organic compounds through the application of Liquid phase adsorption process that was considered as an inexpensive and environmentally friendly technology.

  16. Concentrations and distributions of trace and minor elements in Chinese and Canadian coals and ashes

    International Nuclear Information System (INIS)

    Sun Jingxin; Jervis, R.E.

    1987-01-01

    A total of 35 trace and minor elements including some of environmental significance were determined in each of a selection of 15 Chinese and 6 Canadian thermal coals and their ashes by using the SLOWPOKE-2 nuclear reactor facility of the University of Toronto. The concentrations and distributions of these constituents among the coals and their combustion products (viz. ash and volatile matter) are presented. The detailed results showed wide variations in trace impurity concentrations (up to a factor of 100 and more) among the coals studied. Values for elemental enrichment factors (EF) relative to normal crustal abundances indicated that only As(EF=13), Br(5.7), I(16), S(230), Sb(11) and Se(320) were appreciably enriched in coal. (author) 14 refs.; 5 tabs

  17. Testing the application of portable scintillation unit HOU 22 SCS in determining ash content in coal

    International Nuclear Information System (INIS)

    Simon, L.; Barcalova, L.; Sok, V.; Kacena, V.

    1977-01-01

    Operating tests were conducted for determining the ash content of coal on the conveyor belt using a portable scintillation radiometric unit of the HOU22 SCS type. The apparatus operated on the principle of scattered gamma radiation from a 75 Se source with an activity of 18 MBq. The detection probe 41 mm in diameter was mounted at the inlet of the coal flow onto the conveyor belt. The accuracy of determination of the ash content of undersize coal used for power production (grain size 0 to 10 mm) was +-4.4%. (B.S.)

  18. Evaluation of environmental stress imposed by a coal-ash effluent: Wisconsin power plant impact study

    Energy Technology Data Exchange (ETDEWEB)

    Webster, K.E.; Forbes, A.M.; Magnuson, J.L.

    1985-06-01

    Effluent discharged from the coal-ash settling basin of the Columbia Generating Station (Wisconsin) modified water chemistry (increased trace metal concentrations, suspended solids and dissolved materials) and substrate quality (precipitation of chemical floc) in the receiving stream, the ash pit drain. To test the hypothesis that habitat avoidance could account for declines in macroinvertebrate density observed after discharge began, drift rates of two species were measured in laboratory streams containing combinations of reference and coal-ash-modified substrate and water. Contrary to the hypothesis, drift was uniformly lower in laboratory streams containing modified substrate and/or water compared to the reference condition for Gammarus pseudolimnaeus and Asellus racovitzai.

  19. Obtention and characterization of ceramic products with addition of the mineral coal bottom ashes from thermoelectric power plants

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Brys, M.; Martins, G.J.; Riella, H.G.; Bernardin, A.

    2011-01-01

    The physical, chemical and mineralogical properties of mineral coal bottom ash derived from thermoelectric power plants are compatible with various raw materials used in ceramic industries, which indicates a possibility of partial or fully substitution of raw materials by this residue. This work intends to obtain and characterize ceramic products with additions of different percentages of bottom ash coal. For this, was used a commercial ceramic body (CI) made by an industry in the state of Santa Catarina. The formulations of the ceramics products were obtained by the mixture design (planning network Simplex). The byproduct of coal bottom ash was found to be an attractive raw material source of SiO_2 and Al_2O_3 to obtain ceramic materials. Was demonstrated the possibility of developing a ceramic materials classified as semi-porous (6 10) with additions of up to 20% of coal bottom ash in the composition of the ceramic body. (author)

  20. Evaluation of ash deposits during experimental investigation of co-firing of Bosnian coal with wooden biomass

    Energy Technology Data Exchange (ETDEWEB)

    Smajevic, Izet; Kazagic, Anes [JP Elektroprivreda BiH d.d., Sarajevo (Bosnia and Herzegovina); Sarajevo Univ. (Bosnia and Herzegovina). Faculty of Mechanical Engineering

    2008-07-01

    The paper is addressed to the development and use different criteria for evaluation of ash deposits collected during experimental co-firing of Bosnian coals with wooden biomass. Spruce saw dust was used for the co-firing tests with the Kakanj brown coal and with a lignite blend consisted of the Dubrave lignite and the Sikulje lignite. The coal/biomass mixtures at 93:7 %w and at 80:20 %w were tested. Experimental lab-scale facility PF entrained flow reactor is used for the co-firing tests. The reactor allows examination of fouling/slagging behaviors and emissions at various and infinitely variable process temperature which can be set at will in the range from ambient to 1560 C. Ash deposits are collected on two non-cooled ceramic probes and one water-cooled metal surface. Six different criteria are developed and used to evaluate behavior of the ash deposits on the probes: ash deposit shape, state and structure, which are analyzed visually - photographically and optically by a microscope, rate of adhesion and ash deposit strength, analyzed by physic acting to the ash deposits, and finally deposition rate, determined as a mass of the deposit divided by the collecting area and the time of collecting. Furthermore, chemical composition analysis and AFT of the ash deposits were also done to provide additional information on the deposits. (orig.)

  1. Slagging behavior of upgraded brown coal and bituminous coal in 145 MW practical coal combustion boiler

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Katsuya; Pak, Haeyang; Takubo, Yoji [Kobe Steel, Ltd, Kobe (Japan). Mechanical Engineering Research Lab.; Tada, Toshiya [Kobe Steel, Ltd, Takasago (Japan). Coal and Energy Technology Dept.; Ueki, Yasuaki [Nagoya Univ. (Japan). Energy Science Div.; Yoshiie, Ryo; Naruse, Ichiro [Nagoya Univ. (Japan). Dept. of Mechanical Science and Engineering

    2013-07-01

    The purpose of this study is to quantitatively evaluate behaviors of ash deposition during combustion of Upgraded Brown Coal (UBC) and bituminous coal in a 145 MW practical coal combustion boiler. A blended coal consisting 20 wt% of the UBC and 80 wt% of the bituminous coal was burned for the combustion tests. Before the actual ash deposition tests, the molten slag fractions of ash calculated by chemical equilibrium calculations under the combustion condition was adopted as one of the indices to estimate the tendency of ash deposition. The calculation results showed that the molten slag fraction for UBC ash reached approximately 90% at 1,523 K. However, that for the blended coal ash became about 50%. These calculation results mean that blending the UBC with a bituminous coal played a role in decreasing the molten slag fraction. Next, the ash deposition tests were conducted, using a practical pulverized coal combustion boiler. A water-cooled stainless-steel tube was inserted in locations at 1,523 K in the boiler to measure the amount of ash deposits. The results showed that the mass of deposited ash for the blended coal increased and shape of the deposited ash particles on the tube became large and spherical. This is because the molten slag fraction in ash for the blended coal at 1,523 K increased and the surface of deposited ash became sticky. However, the mass of the deposited ash for the blended coal did not greatly increase and no slagging problems occurred for 8 days of boiler operation under the present blending conditions. Therefore, appropriate blending of the UBC with a bituminous coal enables the UBC to be used with a low ash melting point without any ash deposition problems in a practical boiler.

  2. SUBMICRON PARTICLES EMISSION CONTROL BY ELECTROSTATIC AGGLOMERATION

    Directory of Open Access Journals (Sweden)

    Andrzej Krupa

    2017-04-01

    Full Text Available The aim of the study was to develop a device for more effective treatment of flue gases from submicron particles emitted by power plants burning bituminous coal and by this way the reduction of environment pollution. Electrostatic processes were employed to this goal, as the most effective solution. The solutions hitherto applied in electrostatic precipitation techniques were designed for large particles, typically with sizes> 5 µm, which are easily removed by the action of electrostatic force on the electrically charged particles. In submicron size range (0.1-1 µm the collection efficiency of an ESP is minimal, because of the low value of electric charge on such particles. In order to avoid problems with the removal of submicron particles of fly ash from the flue gases electrostatic agglomeration has been used. In this process, by applying an alternating electric field, larger charged particles (> 1 µm oscillate, and the particles "collect" smaller uncharged particles. In the developed agglomerator with alternating electric field, the charging of particles and the coagulation takes place in one stage that greatly simplified the construction of the device, compared to other solutions. The scope of this study included measurements of fractional collection efficiency of particles in the system comprising of agglomerator and ESP for PM1 and PM2.5 ranges, in device made in pilot scale. The collection efficiency for PM2.5 was greater than 90% and PM1 slightly dropped below 90%. The mass collection efficiency for PM2.5 was greater than 95%. The agglomerator stage increases the collection efficiency for PM1 at a level of 5-10%.

  3. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Akan-Etuk, A.; Diaz, R.; Niksa, S.

    1991-10-01

    The objective of the present work is to introduce an experimental program that will eventually lead to time-resolved iron ash composition over the technological operating domain. The preceding literature survey suggests two important stipulations on any such experimental program. The first stipulation is that good control must be established over the operating conditions, to accurately quantify their effects. The other is that data must be obtained rapidly, to thoroughly cover the important operating domain. This work presents a series of studies that has characterized the desulfurization of pyrite during the early stages of combustion. An experimental system was established and used to monitor the effects of oxygen, temperature, and residence time on the evolution of condensed phase products of the combustion of pure pyrite. (VC)

  4. Extractive de-sulfurization and de-ashing of high sulfur coals by oxidation with ionic liquids

    International Nuclear Information System (INIS)

    Saikia, Binoy K.; Khound, Kakoli; Baruah, Bimala P.

    2014-01-01

    Highlights: • Extractive de-sulfurization and de-ashing process for cleaning high sulfur coals. • The process removes inorganic as well as organic sulfur components from high sulfur coals. • The process has less risk to chemists and other surroundings. - Abstract: The environmental consequences of energy production from coals are well known, and are driving the development of desulfurization technologies. In this investigation, ionic liquids were examined for extractive desulfurization and de-ashing in industrially important high sulfur sub-bituminous Indian coals. The ionic liquids, namely, 1-n-butyl-3-methylimidazolium tetrafluoroborate (IL1) and 1-n-butyl 3-methylimidazolium chloride (IL2) were employed for desulfurization of a few Indian coal samples in presence of HCOOH/H 2 O 2 and V 2 O 5 . Results show the maximum removal of 50.20% of the total sulfur, 48.00% of the organic sulfur, and 70.37 wt% of the ash in this process. The ionic liquids were recovered and subsequently used for further desulfurization. FT-IR spectra reveal the transformation of organic sulfur functionalities into the sulfoxides (S=O) and sulfones (-SO 2 ) due to the oxidative reactions. The sulfate, pyrite and sulfides (aryls) signals in the near edge X-ray absorption fine structure (NEXAFS) of the oxidized coal samples showed sulfur transformation during the desulfurization process. The study demonstrates the removal of significant amount of inorganic as well as organic sulfur (aryls) components from the original high sulfur coal samples to make them cleaner

  5. The bonding of heavy metals on nitric acid-etched coal fly ashes functionalized with 2-mercaptoethanol or thioglycolic acid

    International Nuclear Information System (INIS)

    Muñoz, M.I.; Aller, A.J.; Littlejohn, D.

    2014-01-01

    Coal fly ash is a waste by-product of the coal fire industry, which generates many environmental problems. Alternative uses of this material would provide efficient solutions for this by-product. In this work, nitric acid-etched coal fly ash labelled with 2-mercaptoethanol or thioglycolic acid was assessed for retention of Al(III), As(III), Cu(II), Cd(II), Fe(III), Mn(II), Hg(II), Ni(II), Pb(II) and Zn(II) ions. The bonding characteristics between the organic compounds with the solid support, as well as with the metal ions, were evaluated using various surface analytical techniques. Visualization of the organically-functionalized coal fly ash particle was possible using scanning electron microscopy (SEM), while the elemental composition of the functionalized material, before and after retention of the metal ions, was obtained by energy dispersive (ED)-X ray spectrometry (XRS) and electrothermal atomic absorption spectrometry (ETAAS). Fourier transform infrared (FT-IR) spectrometry and Raman spectrometry were used to obtain information about the functional groups. It was found that some metal(oid) ions (As, Ni, Pb, Zn) were coordinated through the mercaptan group, while other metal(oid)s (Al, Cd, Cu, Fe, Hg, Mn) were apparently bonded to oxygen atoms. A low-cost and effective solid phase retention system for extraction of heavy metals from aqueous solutions was thus developed. - Graphical abstract: Nitric acid-etched coal fly ash labelled with 2-mercaptoethanol or thioglycolic acid was intended for the retention of heavy metals. The bonding characteristics between the organic compounds with the solid support, as well as with the metal ions, were evaluated using surface analytical techniques. - Highlights: • Coal fly ashes were organically-functionalized. • Organically-functionalized coal fly ashes were spectrometrically characterized. • Organically-functionalized coal fly ashes can be used as an effective solid sorbent for metal(oid)s. • This retention

  6. Selenium poisoning of fish by coal ash wastewater in Herrington Lake, Kentucky.

    Science.gov (United States)

    Lemly, A Dennis

    2018-04-15

    Selenium pollution from the E.W. Brown Electric Generating Station was investigated in Herrington Lake, KY. Coal ash wastewater is discharged as surface water overflow from ash disposal ponds into the lake via a National Pollutant Discharge Elimination System permit issued by the Kentucky Division of Water, but the permit does not restrict or limit the amount of selenium released. Unpermitted discharges occur from seeps and drainage through leaks in ash pond dams. Together, these discharges have resulted in selenium concentrations in water, sediment, benthic macroinvertebrates, and fish that are 2-9 times the level that is toxic for fish reproduction and survival. A large proportion (12.2%, or 25 times background) of juvenile largemouth bass (Micropterus salmoides, the only species examined) exhibited spinal and/or craniofacial malformations that are consistent with selenium poisoning. Teratogenic Deformity Index values indicated a 3.05% population-level impact on the bass fishery, with total selenium-induced mortality (including pre-swimup mortality) estimated to be in excess of 25% per year. These findings confirm that coal ash discharges into Herrington Lake are contributing selenium to the Lake that is poisoning fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. pH-dependent leaching of dump coal ash - retrospective environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, A.; Djordjevic, D. [University of Belgrade, Belgrade (Serbia). Dept. of Chemistry

    2009-07-01

    Trace and major elements in coal ash particles from dump of 'Nikola Tesla A' power plant in Obrenovac near Belgrade (Serbia) can cause pollution, due to leaching by atmospheric and surface waters. In order to assess this leaching potential, dump ash samples were subjected to extraction with solutions of decreasing pH values (8.50, 7.00, 5.50, and 4.00), imitating the reactions of the alkaline ash particles with the possible alkaline, neutral, and acidic (e.g., acid rain) waters. The most recently deposited ash represents the greatest environmental threat, while 'aged' ash, because of permanent leaching on the dump, was shown to have already lost this pollution potential. On the basis of the determined leachability, it was possible to perform an estimation of the acidity of the regional rainfalls in the last decades.

  8. Characterization of coal fly ash components by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Ctvrtnickova, Tereza; Mateo, Mari-Paz; Yanez, Armando; Nicolas, Gines

    2009-01-01

    The high sensitivity of laser-induced breakdown spectroscopy (LIBS) for the detection of most of the fly ash components enables the analysis of these residues produced during the combustion of coal. Fly ash consists of oxides (SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO...) and unburnt carbon which is the major determinant of combustion efficiency in coal fired boilers. For example, an excessive amount of residual carbon dispersed in the fly ash means a significant loss of energy (Styszko et al., 2004). Standard methods employed for the analysis of fly ash make not possible a control of boiler in real time. LIBS technique can significantly reduce the time of analysis, in some cases even an online detection can be performed. For this reason, some studies have been addressed in order to demonstrate the capability of the laser-induced breakdown spectroscopy technique for the detection of carbon content in high pressure conditions typical of thermal power plants (Noda et al., 2002) and for the monitoring of unburnt carbon for the boiler control in real time (Kurihara et al., 2003). In particular, the content of unburnt carbon is a valuable indicator for the control of fly ash quality and for the boiler combustion. Depending on this unburnt carbon content, fly ash can be disposed as an industrial waste or as a raw material for the production of concrete in the construction sector. In this study, analyses were performed on specimens of various forms of preparation. Pressed pellets were prepared with two different binders. Presented results concern the nature and amount of the binder used to pelletize the powder, and the laser-induced breakdown spectroscopy parameters and procedure required to draw calibration curves of elements from the fly ash. Analysis 'on tape' was performed in order to establish the experimental conditions for the future 'online analysis'.

  9. Ash fusion temperatures and their association with the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Gupta, R.P. [Cooperative Research Centre for Black Coal Utilisation, Newcastle, NSW (Australia); Creelman, R.A. [Creelman (R.A.) and Associates, Sydney, NSW (Australia)

    1997-04-01

    Ash deposition on furnace walls in PF (pulverized fuel) furnaces is called slagging when it occurs in the high temperature areas of furnaces directly exposed to flame radiation and fouling in other regions such as tubes in the convection section of the boiler. There are well documented shortcomings of certain approaches relating to their uncertainties as predictive tools for plant performance such as poor repeatability and re-producibility of ash fusion measurements. The nature of physical and chemical changes occurring during melting of coal ash has been investigated in the current study to provide an alternative procedure to the ash fusion test. Shrinkage measurements are frequently used in metallurgy and ceramic science to study the physical properties of materials at high temperatures. The output of this experiment provides three to four `peaks` (maximum rate of shrinkage with temperature) of different intensity and at different temperatures which are related to melting characteristics of the sample. It was concluded that shrinkage extents exceeding 50 percent indicated that the effect of the ash particle size is of secondary importance compared to ash chemistry in determining shrinkage levels, with fine particles giving rapid shrinkage events 10 degrees C lower in temperature. (author). 7 figs., refs.

  10. A two-stage treatment for Municipal Solid Waste Incineration (MSWI) bottom ash to remove agglomerated fine particles and leachable contaminants.

    Science.gov (United States)

    Alam, Qadeer; Florea, M V A; Schollbach, K; Brouwers, H J H

    2017-09-01

    In this lab study, a two-stage treatment was investigated to achieve the valorization of a municipal solid waste incineration (MSWI) bottom ash fraction below 4mm. This fraction of MSWI bottom ash (BA) is the most contaminated one, containing potentially toxic elements (Cu, Cr, Mo and Sb), chlorides and sulfates. The BA was treated for recycling by separating agglomerated fine particles (≤125µm) and soluble contaminants by using a sequence of sieving and washing. Initially, dry sieving was performed to obtain BA-S (≤125µm), BA-M (0.125-1mm) and BA-L (1-4mm) fractions from the original sample. The complete separation of fine particles cannot be achieved by conventional sieving, because they are bound in a cementitious matrix around larger BA grains. Subsequently, a washing treatment was performed to enhance the liberation of the agglomerated fine particles from the BA-M and BA-L fractions. These fine particles were found to be similar to the particles of BA-S fraction in term of chemical composition. Furthermore, the leaching behavior of Cr, Mo Sb, chlorides and sulfates was investigated using various washing parameters. The proposed treatment for the separation of agglomerated fine particles with dry sieving and washing (L/S 3, 60min) was successful in bringing the leaching of contaminants under the legal limit established by the Dutch environmental norms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Surface chemical properties of novel high surface area solids synthesized from coal fly ash

    CSIR Research Space (South Africa)

    Pretorius, PJ

    2003-07-23

    Full Text Available The zeolite, Na-P1, was synthesized from fly ash samples originating from coal-fired power stations in South Africa by hydrothermal treatment of the raw ash with concentrated aqueous NaOH solutions. The zeolite was then further modified by acid...

  12. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland - Upper Silesian Industrial Region

    International Nuclear Information System (INIS)

    Smolka-Danielowska, Danuta

    2010-01-01

    The subject of the study covered volatile ashes created during hard coal burning process in ash furnaces, in power plants operating in the Upper Silesian Industrial Region, Southern Poland. Coal-fired power plants are furnished with dust extracting devices, electro precipitators, with 99-99.6% combustion gas extracting efficiency. Activity concentrations ofTh-232, Ra-226, K-40, Ac-228, U-235 and U-238 were measured with gamma-ray spectrometer. Concentrations of selected rare soil elements (La, Ce, Nd, Sm, Y, Gd, Th, U) were analysed by means of instrumental neutron activation analysis (INAA). Mineral phases of individual ash particles were identified with the use of scanning electron microscope equipped with EDS attachment. Laser granulometric analyses were executed with the use of Analyssette analyser. The activity of the investigated fly-ash samples is several times higher than that of the bituminous coal samples; in the coal, the activities are: 226Ra - 85.4 Bq kg -1 , 40 K-689 Bq kg -1 , 232Th - 100.8 Bq kg -1 , 235U-13.5 Bq kg -1 , 238U-50 Bq kg -1 and 228Ac - 82.4 Bq kg -1 .

  13. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland - Upper Silesian Industrial Region.

    Science.gov (United States)

    Smolka-Danielowska, Danuta

    2010-11-01

    The subject of the study covered volatile ashes created during hard coal burning process in ash furnaces, in power plants operating in the Upper Silesian Industrial Region, Southern Poland. Coal-fired power plants are furnished with dust extracting devices, electro precipitators, with 99-99.6% combustion gas extracting efficiency. Activity concentrations ofTh-232, Ra-226, K-40, Ac-228, U-235 and U-238 were measured with gamma-ray spectrometer. Concentrations of selected rare soil elements (La, Ce, Nd, Sm, Y, Gd, Th, U) were analysed by means of instrumental neutron activation analysis (INAA). Mineral phases of individual ash particles were identified with the use of scanning electron microscope equipped with EDS attachment. Laser granulometric analyses were executed with the use of Analyssette analyser. The activity of the investigated fly-ash samples is several times higher than that of the bituminous coal samples; in the coal, the activities are: 226Ra - 85.4 Bq kg(-1), 40 K-689 Bq kg(-1), 232Th - 100.8 Bq kg(-1), 235U-13.5 Bq kg(-1), 238U-50 Bq kg(-1) and 228Ac - 82.4 Bq kg(-1).

  14. The influence of lisping material in pelletizing and agglomeration of fine coal pieces in laboratory conditions

    International Nuclear Information System (INIS)

    Vrencovski, Angele; Andreevski, Borche

    1998-01-01

    The work presents a part of laboratory results realized in academy of Firebug, carried on pelletizing and agglomeration of waste material, fine coal from thermal power station, using different lisping materials. Specially the influence of these materials in getting solid fuel, small briquette, formed by rolling press is analyzed. Special interest is attended to their characteristics: hardness and resistance. (Author)

  15. Evidence of Coal-Fly-Ash Toxic Chemical Geoengineering in the Troposphere: Consequences for Public Health

    Directory of Open Access Journals (Sweden)

    J. Marvin Herndon

    2015-08-01

    Full Text Available The widespread, intentional and increasingly frequent chemical emplacement in the troposphere has gone unidentified and unremarked in the scientific literature for years. The author presents evidence that toxic coal combustion fly ash is the most likely aerosolized particulate sprayed by tanker-jets for geoengineering, weather-modification and climate-modification purposes and describes some of the multifold consequences on public health. Two methods are employed: (1 Comparison of 8 elements analyzed in rainwater, leached from aerosolized particulates, with corresponding elements leached into water from coal fly ash in published laboratory experiments, and (2 Comparison of 14 elements analyzed in dust collected outdoors on a high-efficiency particulate air (HEPA filter with corresponding elements analyzed in un-leached coal fly ash material. The results show: (1 the assemblage of elements in rainwater and in the corresponding experimental leachate are essentially identical. At a 99% confidence interval, they have identical means (T-test and identical variances (F-test; and (2 the assemblage of elements in the HEPA dust and in the corresponding average un-leached coal fly ash are likewise essentially identical. The consequences on public health are profound, including exposure to a variety of toxic heavy metals, radioactive elements, and neurologically-implicated chemically mobile aluminum released by body moisture in situ after inhalation or through transdermal induction.

  16. Uranium trace and alpha activity characterization of coal and fly ash using particle track etch technique

    International Nuclear Information System (INIS)

    Chakravarti, S.K.

    1991-01-01

    Uranium is extensively found in carbonaceous components of sedimentary rocks and is considered to be accumulated in coals during the coalification process through the geological times. Burning of coal is mainly responsible for a manifold increase in the concentration of radioactive nuclides in atmosphere precipitates. Fly ash being an incombustible residue and formed from 90% of the inorganic material in coal, escapes into the atmosphere and constitutes a potential hazard. Also its use as one of the pozzolanic materials in the products of concrete, bricks etc and filling of ground cavities is even more hazardous because of the wall radioactivity, besides emission and diffusion of radon. This paper reports a simple method called Particle Track Etch (PTE) technique, for trace determination of uranium content in coal and fly ash samples by making use of low cost and versatile plastic detectors known as Solid State Nuclear Track Detectors (SSNTDs). Total alpha activity has also been estimated using these SSNTDs. The values of uranium concentration in coal samples are found to range from 1.1 to 3.6 ppm (uniform component) and 33 to 46 ppm (non-uniform part) whereas in fly ash, it varies from 8 to 11 ppm (uniform) and 55 to 71 ppm in non-uniform range. It is also observed that the alpha activity is a function of uranium concentration for most of the natural samples of coal studied except for mixtures of fly ash samples where relationship is found to be on higher side. (author). 13 refs., 2 tabs., 1 fig

  17. Survey of the potential environmental and health impacts in the immediate aftermath of the coal ash spill in Kingston, Tennessee.

    Science.gov (United States)

    Ruhl, Laura; Vengosh, Avner; Dwyer, Gary S; Hsu-Kim, Heileen; Deonarine, Amrika; Bergin, Mike; Kravchenko, Julia

    2009-08-15

    An investigation of the potential environmental and health impacts in the immediate aftermath of one of the largest coal ash spills in U.S. history at the Tennessee Valley Authority (TVA) Kingston coal-burning power plant has revealed three major findings. First the surface release of coal ash with high levels of toxic elements (As = 75 mg/kg; Hg = 150 microg/kg) and radioactivity (226Ra + 228Ra = 8 pCi/g) to the environment has the potential to generate resuspended ambient fine particles (risk to local communities. Second, leaching of contaminants from the coal ash caused contamination of surface waters in areas of restricted water exchange, but only trace levels were found in the downstream Emory and Clinch Rivers due to river dilution. Third, the accumulation of Hg- and As-rich coal ash in river sediments has the potential to have an impact on the ecological system in the downstream rivers by fish poisoning and methylmercury formation in anaerobic river sediments.

  18. A new method to quantify fluidized bed agglomeration in the combustion of biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, M. [Umeaa Univ. (Sweden). Dept. of Chemistry

    1997-12-31

    -combustion of these fuels with coal. The results showed that loss of fluidization resulted from formation of molten phases coating the bed materials. By fuel mixing, the in-bed ash composition is altered, conferring higher melting temperatures and thereby preventing agglomeration and defluidization. In the last paper, a comparison between three techniques to predict bed agglomeration tendencies was performed. The limited applicability of the ASTM standard test was clearly illustrated as the resulting initial deformation temperatures were found to be 100 - 900 deg C higher than those from the compression strength and bench scale FBC tests. With some minor modifications of a compression strength based sintering method, a relatively good agreement was obtained with the actual bed agglomeration results 90 refs, 6 figs

  19. Synthesis and characterization of zeolite material from coal ashes modified by surfactant

    International Nuclear Information System (INIS)

    Fungaro, D.A.; Borrely, S.I.

    2010-01-01

    Coal ash was used as starting material for zeolite synthesis by means of hydrothermal treatment. The surfactant-modified zeolite (SMZ) was prepared by adsorbing the cationic surfactant hexadecyltrimethylammonium bromide (HDTMA-Br) on the external surface of the zeolite from coal ash. The zeolite structure stability was monitored during the characterization of the materials by FTIR, XDR and SEM. The structural parameters of surfactant-modified zeolite are very close to that of corresponding non-modified zeolite which indicates that the crystalline nature of the zeolite remained intact after required chemical treatment with HDTMA-Br molecules and heating treatment for drying. The most intense peaks in the FTIR spectrum of HDTMA-Br were observed in SMZ spectrum confirming adsorption of surfactant on zeolites. (author)

  20. Studying the melting behavior of coal, biomass, and coal/biomass ash using viscosity and heated stage XRD data

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Folkedahl, B.; Dam-Johansen, Kim

    2006-01-01

    by the cocombustion tests appeared to be somewhat different compared to that of the laboratory-prepared ash samples. The heated stage XRD data provide useful information regarding the reactions among the various ash compounds and the phase transformations during the heating and cooling of the ash samples and helped...... a high-temperature rotational viscometer and a hot stage XRD. The produced data were used to calculate the operating temperature of a pilot-scale entrained flow reactor during the cocombustion of biomass/ coal samples in order to ensure the slag flow and to avoid corrosion of the walls due to liquid slag...

  1. Primary investigation of a design for a dual energy gamma-ray transmission gauge to determine the ash content of coal on a conveyor belt

    International Nuclear Information System (INIS)

    Abedinzadeh, A.; Rahimi, H.; Rahimi, N.; Amini, A.; Naimpour, A.; Moafian, J.

    1993-01-01

    In order to design a dual energy γ-ray transmission gauge for measuring, on-line, the ash content of coal, an investigation was carried out to determine the relation between the theoretical mass absorption coefficient (μ-bar) and the % ash of coal in the Kerman District Coal Mines. Because coal, transported on a conveyor belt, may be a non-homogeneous mixture from one or more mines, it was decided to compare % ash in a mixture of coals from several mines with that from individual mines, the measurements being made whilst the coal was being transported on a conveyor belt. The investigation shows that the relation between the mass absorption coefficient and the % ash in a coal mixture from several mines cannot be used to assess, accurately, the value of μ-bar for coals from individual mines in this particular region. (author)

  2. Removal of vertigo blue dyes from Batik textile wastewater by adsorption onto activated carbon and coal bottom ash

    Science.gov (United States)

    Kusmiyati, L., Puspita Adi; Deni, V.; Robi Indra, S.; Islamica, Dlia; Fuadi, M.

    2016-04-01

    Removal of vertigo blue dye from batik textile wastewater was studied by adsorptionprocess onto activated carbon (AC) and coal bottom ash (CBA).The influence of experimental conditions (pH solution, dye concentration, and contact time) were studied on the both adsorbents. At equilibrium conditions, the data were fitted to Langmuir and Freundlich adsorption models. The maximum adsorption capacity calculated from the Langmuir model for carbon active was 6.29mg/g at pH that found to be considerably higher than that obtained for coal bottom ash 3.72mg/g pH 9. From Freundlich model, the maximum adsorption capacity is less for coal bottom ash (pH 9) than that for carbon active (pH4).

  3. Reuse of ash coal in the formulation of mortars

    International Nuclear Information System (INIS)

    Siqueira, J.S.; Souza, C.A.G.; Souza, J.A.S.

    2012-01-01

    This paper aims to study the ash incorporation from the combustion of coal in fluidized bed boilers, in production of mortar, replacing part of cement. Specimens were prepared using Portland cement to the specifications CPII-E-32 of normal characteristics and classification of sand below 100 mesh. Blends in the 4:1 ratio, that is, 4 parts of aggregate to 1 part of cement, with insertion of ashes in the proportions 0, 10, 20, 30, 40 and 50%. The mortar was developed in mixing and casting was made in a mold of 5 cm x 10 cm. The behavior of compressive strength was evaluated after 28 days; the strength decreases with increasing percentage of ash. Additional analysis was carried out by X-ray diffraction, and it was found that the substitution of this waste can be successfully used in mortars with blends of up to 30%. (author)

  4. DOLOMITE DESULFURIZATION BEHAVIOR IN A BUBBLING FLUIDIZED BED PILOT PLANT FOR HIGH ASH COAL

    Directory of Open Access Journals (Sweden)

    G. M. F. Gomes

    Full Text Available Abstract Although fluidized bed in situ desulphurization from coal combustion has been widely studied, there are aspects that remain under investigation. Additionally, few publications address Brazilian coal desulphurization via fluidized beds. This study used a 250 kWth bubbling fluidized bed pilot plant to analyze different aspects of the dolomite desulphurization of two Brazilian coals. Superficial velocities of 0.38 and 0.46 m/s, flue gas recycling, Ca/S molar ratios and elutriation were assessed. Results confirmed the influence of the Ca/S molar ratio and superficial velocity - SO2 conversion up to 60.5% was achieved for one coal type, and 70.9% was achieved for the other type. A recycling ratio of 54.6% could increase SO2 conversion up to 86.1%. Elutriation and collection of ashes and Ca-containing products did not present the same behavior because a lower wt. % of CaO was collected by the gas controlled mechanism compared to the ash.

  5. Reduction of metal leaching in brown coal fly ash using geopolymers

    International Nuclear Information System (INIS)

    Bankowski, P.; Zou, L.; Hodges, R.

    2004-01-01

    Current regulations classify fly ash as a prescribed waste and prohibit its disposal in regular landfill. Treatment of the fly ash can reduce the leach rate of metals, and allow it to be disposed in less prescribed landfill. A geopolymer matrix was investigated as a potential stabilisation method for brown coal fly ash. Precipitator fly ash was obtained from electrostatic precipitators and leached fly ash was collected from ash disposal ponds, and leaching tests were conducted on both types of geopolymer stabilised fly ashes. The ratio of fly ash to geopolymer was varied to determine the effects of different compositions on leaching rates. Fourteen metals and heavy metals were targeted during the leaching tests and the results indicate that a geopolymer is effective at reducing the leach rates of many metals from the fly ash, such as calcium, arsenic, selenium, strontium and barium. The major element leachate concentrations obtained from leached fly ash were in general lower than that of precipitator fly ash. Conversely, heavy metal leachate concentrations were lower in precipitator fly ash than leached pond fly ash. The maximum addition of fly ash to this geopolymer was found to be 60 wt% for fly ash obtained from the electrostatic precipitators and 70 wt% for fly ash obtained from ash disposal ponds. The formation of geopolymer in the presence of fly ash was studied using 29Si MAS-NMR and showed that a geopolymer matrix was formed. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) imaging showed the interaction of the fly ash with the geopolymer, which was related to the leachate data and also the maximum percentage fly ash addition

  6. Coating and melt induced agglomeration in a poultry litter fired fluidized bed combustor

    International Nuclear Information System (INIS)

    Billen, Pieter; Creemers, Benji; Costa, José; Van Caneghem, Jo; Vandecasteele, Carlo

    2014-01-01

    The combustion of poultry litter, which is rich in phosphorus, in a fluidized bed combustor (FBC) is associated with agglomeration problems, which can lead to bed defluidization and consequent shutdown of the installation. Whereas earlier research indicated coating induced agglomeration as the dominant mechanism for bed material agglomeration, it is shown experimentally in this paper that both coating and melt induced agglomeration occur. Coating induced agglomeration mainly takes place at the walls of the FBC, in the freeboard above the fluidized bed, where at the prevailing temperature the bed particles are partially molten and hence agglomerate. In the ash, P 2 O 5 forms together with CaO thermodynamically stable Ca 3 (PO 4 ) 2 , thus reducing the amount of calcium silicates in the ash. This results in K/Ca silicate mixtures with lower melting points. On the other hand, in-bed agglomeration is caused by thermodynamically unstable, low melting HPO 4 2− and H 2 PO 4 − salts present in the fuel. In the hot FBC these salts may melt, may cause bed particles to stick together and may subsequently react with Ca salts from the bed ash, forming a solid bridge of the stable Ca 3 (PO 4 ) 2 between multiple particles. - Highlights: • Coating induced agglomeration not due to K phosphates, but due to K silicates. • Melt induced agglomeration due to H 2 PO 4 − and HPO 4 2− salts in the fuel. • Wall agglomeration corresponds to coating induced mechanism. • In-bed agglomeration corresponds to melt induced mechanism

  7. Design and implementation of a field pilot study on using coal fly ash to prevent oxidation of reactive mine tailings

    International Nuclear Information System (INIS)

    Wang, H.L.; Shang, J.Q.; Xu, Y.Q.; Yanful, E.K.

    2009-01-01

    This paper reported on a pilot scale study that investigated the feasibility of using coal fly ash in mine tailings management and acid mine drainage (AMD) treatment at Goldcorp's Musselwhite Mine site in northern Ontario. The principles and key aspects of the fly ash application in mine tailings management were described. Fly ash from the Atikokan coal-fired power generating plant was added to the Musselwhite tailings as a mixture as well as intermediate and top layers. The physical, chemical and hydrogeological effects of the two approaches were monitored. The paper provided details of the design, implementation, monitoring, sampling and testing over 2 years. The objectives were to evaluate the optimum mass ratio of coal fly ash and mine tailings, effectiveness in reducing the infiltration of precipitation, and projected long-term durability and performance on tailings oxidation prevention. The pilot study was designed based on the principles of cementitious materials formation and secondary mineral formation by the reactions of coal fly ash and water/AMD. Calcium oxide, aluminum oxide, silicon oxide, and ferric oxide are major components of coal fly ash. The preliminary test results revealed that water did not accumulate and cracks did not form on top of 4 tanks. The settlements of the mixing approaches were lower than that of the stratified approach and the temperature distributions in the 4 tanks were comparable. 9 refs., 3 tabs., 11 figs.

  8. Experience in a 6.2 MW{sub e} pressurized fluidized bed gasifier with high ash Indian coals

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, G.; Rajasekaran, A.; Periyakaruppan, V.; Krishnamoorthy, S. [Bharat Heavy Electricals Ltd., Tiruchirappalli (India)

    2006-07-01

    Bharat Heavy Electrical Limited has installed a 165 tons/day air-blown pressurized fluidized bed gasifier (PFBG) as an add-on to their 6.2 MW IGCC demonstration plant and has operated it for more than 4000 hours. Improvements in the gasifier refractory lining, ash extraction and cooling devices, air distribution and temperature measuring devices were incorporated to improve the reliability and performance. Coal with 30-42% ash and high calorific value in the range of 15-20 MJ/kg was used during these operations with crushed coal of 1-4 mm as well as -6 mm coal with fines. Tests were conducted at gasifier pressure of 0.3-1.0 MPa, fluidized bed temperature of 980-1050{sup o}C and at various fluidized velocities and air to steam ratios. Once through carbon conversion efficiency of 90%, cold gas efficiency of 69% and dry gas calorific value of 4.4-4.6 MJ/Nm{sup 3} were obtained. About 15% char in fly ash (with 40% ash coal) was established by TGA. Seal pot system was added for recyling fly ash from the first cyclone to enhance carbon conversion, other parameters and to reduce the char in fly ash to acceptable level. Trends and correlations were established for constituents of gas, carbon conversion efficiency, cold gas efficiency, calorific value of gas and gas yield. BHEL is currently working with a partner to install a 125 MW IGCC plant. The paper elaborates the schematic and constructional details of the PFBG, operating experience and performance. 3 refs., 9 figs.

  9. Coal fly ash based carbons for SO2 removal from flue gases.

    Science.gov (United States)

    Rubio, B; Izquierdo, M T

    2010-07-01

    Two different coal fly ashes coming from the burning of two coals of different rank have been used as a precursor for the preparation of steam activated carbons. The performance of these activated carbons in the SO(2) removal was evaluated at flue gas conditions (100 degrees C, 1000 ppmv SO(2), 5% O(2), 6% H(2)O). Different techniques were used to determine the physical and chemical characteristics of the samples in order to explain the differences found in their behaviour. A superior SO(2) removal capacity was shown by the activated carbon obtained using the fly ash coming from a sub-bituminous-lignite blend. Experimental results indicated that the presence of higher amount of certain metallic oxides (Ca, Fe) in the carbon-rich fraction of this fly ash probably has promoted a deeper gasification in the activation with steam. A more suitable surface chemistry and textural properties have been obtained in this case which explains the higher efficiency shown by this sample in the SO(2) removal. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Mineralogical investigations into ash deposits of selected brown coals; Mineralogische Untersuchungen an Ascheansaetzen ausgewaehlter Braunkohlen

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, J.; Ullrich, B. [Technische Univ. Dresden, Inst. fuer Geotechnik (Germany)

    2003-07-01

    Within the framework of the research project financed by the Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AIF) ''Experimental investigations into the formation of ash deposits from stack gases during the combustion of pulverised lignite'' and supervised by the chair of power station technology (Institute of Energy Technology) of the Dresden Technical University, the mineral composition of ash deposits of six different coals were investigated: two coal blends (different countries worldwide), two lignites from east from the River Elbe (types WM and JAe), one from west of the River Elbe and one Rhenish lignite. (orig.)

  11. Composition and microstructure of a furnace ash deposit from a coal-fired utility boiler

    Energy Technology Data Exchange (ETDEWEB)

    Fessler, R R

    1980-07-01

    An exploratory study of the structure and composition of furnace-ash deposits was carried out using optical metallography, electron microprobe analysis, scanning electron microscopy, and energy-dispersive X-ray analysis. The results of these analyses were supplemented by studies of particulate melting temperature using hot-stage microscopy to measure melting temperature, and energy-dispersive X-ray analyses to measure composition of melted particles. It was found that the general structure of the ash deposit was a matrix of glassy, spherical particles having a wide range of composition in which unfused particles containing iron oxide and calcium oxide were dispersed. At the imprint of the tube surface a considerable concentration of calcium, sulphur and iron was found. Near the fused outer surface of the deposit, the glassy materials had melted into a porous, glassy slag containing spherical globules of iron oxide combined with other materials. There were no systematic compositional gradients from the tube surface to the fused outer layer except for the sulfur layer found only at the tube surface. However, there were significant differences in composition from particle to particle and these differences were similar to those found in the coal mineral matter as isolated by low-temperature ashing. Single particles of low-temperature ash were found having low fusion temperatures, in the range of fusion temperatures for particles in furnance has. Thus, the glassy spheres found in furnace deposits could originate from single coal particles, without the need of interactions among coal particles or ash particles.

  12. Geopolymer obtained from coal ash; Geopolimeros obtidos a partir de cinzas de carvao mineral

    Energy Technology Data Exchange (ETDEWEB)

    Conte, V.; Bissari, E.S.; Uggioni, E.; Bernardin, A.M., E-mail: amb@unesc.net [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil). Grupo de Materiais Ceramicos e Vitreos

    2011-07-01

    Geopolymers are three-dimensional alumino silicates that can be rapidly formed at low temperature from naturally occurring aluminosilicates with a structure similar to zeolites. In this work coal ash (Tractebel Energy) was used as source of aluminosilicate according a full factorial design in eight formulations with three factors (hydroxide type and concentration and temperature) and two-levels. The ash was dried and hydroxide was added according type and concentration. The geopolymer was poured into cylindrical molds, cured (14 days) and subjected to compression test. The coal ash from power plants belongs to the Si-Al system and thus can easily form geopolymers. The compression tests showed that it is possible to obtain samples with strength comparable to conventional Portland cement. As a result, temperature and molarity are the main factors affecting the compressive strength of the obtained geopolymer. (author)

  13. Trace element toxicity in VA mycorrhizal cucumber grown on weathered coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Dosskey, M.G.; Adriano, D.C. (University of Georgia, Aiken, SC (United States). Savannah River Ecology Lab.)

    1993-11-01

    Mycorrhizal colonization is widely recognized as enhancing plant growth on severely disturbed sites. A greenhouse pot experiment was conducted to determine if inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi will enhance vegetation establishment on abandoned coal fly ash basinss, Spores of Glomus intraradices (Schenck and Smith) and Glomus etunicatum (Becker and Gerdemann) were added to weathered precipitator ash (EC-0.91 dSm[sup -1], pH 5.0) and to a pasteurized soils of the same pH (Grossarenic Paleudult, 92% sand, 1% organic matter). Some soil and ash were left unamended as non-mycorrhizal controls. Cucumber (Cucumis sativus L. cv. Poinsette 76) seeds were sown, watered regularly, and fertilized periodically with macronutrient solution. By 8 weeks all ash-grown plants exhibited smaller leaves with leaf margin curl and necrosis, and plant biomass was significantly less (0.75x) than soil-grown plants. Based on analysis of 18 elements in plant tissues, toxicity to B, Mn, or Zn could have caused growth suppression, confirming trace element problems for plant growth on fly ash. For plants grown on fly ash, G. etunicatum was the only fungus that colonized roots (20% of root length reduced from 67% on soil) and it suppressed plant growth to 0.80 x that of uninoculated ash-grown plants. Correspondingly, shoot Zn concentration in G. etunicatum-inoculated plants was 3.5 x higher than in uninoculated plants and at generally toxic levels (273 mg kg[sup -1]). Glomus etunicatum had no other significant effects on elemental concentrations. These results indicate that VAM colonization in acid, weathered fly ash suppressed plant growth by facilitating uptake of Zn to toxic levels, and implies a limitation to successful use of VAM for vegetation establishment on abandoned coal fly ash basins.

  14. Lognormal distribution of natural radionuclides in freshwater ecosystems and coal-ash repositories

    International Nuclear Information System (INIS)

    Drndarski, N.; Lavi, N.

    1997-01-01

    This study summarizes and analyses data for natural radionuclides, 40 K, 226 Ra and 'Th, measured by gamma spectrometry in water samples, sediments and coal-ash samples collected from regional freshwater ecosystems and near-by coal-ash repositories during the last decade, 1986-1996, respectively. The frequency plots of natural radionuclide data, for which the hypothesis of the regional scale log normality was accepted, exhibited single population groups with exception of 226 Ra and 232 Th data for waters. Thus the presence of break points in the frequency distribution plots indicated that 226 Ra and 232 Th data for waters do not come from a single statistical population. Thereafter the hypothesis of log normality was accepted for the separate population groups of 226 Ra and '-32 Th in waters. (authors)

  15. Injection of alkaline ashes into underground coal mines for acid mine drainage abatement

    International Nuclear Information System (INIS)

    Aljoe, W.W.

    1996-01-01

    The injection of alkaline coal combustion waste products into abandoned underground coal mines for acid mine drainage (AMD) abatement has obvious conceptual appeal. This paper summarizes the findings of the baseline hydrogeologic and water quality evaluations at two sites--one in West Virginia and one in Maryland--where field demonstrations of the technique are being pursued in cooperative efforts among State and Federal agencies and/or private companies. The West Virginia site produces severe AMD from three to seven AMD sources that are spaced over about a 1.2 km stretch of the down-dip side of the mine workings. By completely filling the most problematic portion of the mine workings with coal combustion ashes, the State expects that the costs and problems associated with AMD treatment will be greatly reduced. At the Maryland site, it is expected that the AMD from a relatively small target mine will be eliminated completely by filling the entire mine void with a grout composed of a mixture of fly ash, fluidized-bed combustion ash, and flue gas desulfurization sludge. This project will also demonstrate the potential cost-effectiveness of the technique at other sites, both for the purpose of AMD remediation and control of land subsidence

  16. Adsorption of anionic dyes from aqueous solutions onto coal fly ash and zeolite synthesized from coal fly ash

    International Nuclear Information System (INIS)

    Carvalho, Terezinha Elizabeth Mendes de

    2010-01-01

    Coal fly ash, a waste generated in coal-fired electric power plant, was used to synthesize zeolite by hydrothermal treatment with NaOH solution. The fly ash (CL-2) and this synthesized zeolite (ZM-2) that was characterized as hydroxy-sodalite were used as adsorbents for anionic dyes indigo carmine (IC), and reactive orange 16 (RO16) from aqueous solutions. Effects of contact time, initial dye concentration, pH, adsorbent mass, and temperature were evaluated in the adsorption processes. The kinetics studies indicated that the adsorption followed the pseudo-second order kinetics and that surface adsorption and intraparticle diffusion were involved in the adsorption mechanism. The thermodynamics parameters demonstrated that the adsorption was spontaneous for all adsorption processes. The enthalpy data confirmed the endothermic nature for all adsorption processes except for IC/ZM-2 system which was exothermic. The entropy data showed an increased disorder at the solid/solution interface during the adsorption for all systems except for IC/ZM-2 whose negative entropy value indicated a decreased disorder at the interface. The adsorption isotherms were closely fitted to the Langmuir linear equation. The maximum adsorption capacities were 1.48 mg/g for the IC/CL-2 system; 1.13 mg/g for IC/ZM-2; 0.96 mg/g for RO16/CL-2, and 1.14 mg/g for RO16/ZM-2 at room temperature. The desorption study carried out with water, with acid aqueous solutions, and with an alkali aqueous solution showed to be inefficient both for recovering the dyes and regenerating the adsorbents. (author)

  17. Determination of sulfur in coal and ash slurry by high-resolution continuum source electrothermal molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nakadi, Flávio V.; Rosa, Lilian R.; Veiga, Márcia A.M.S. da, E-mail: mamsveiga@ffclrp.usp.br

    2013-10-01

    We propose a procedure for the determination of sulfur in coal slurries by high resolution continuum source electrothermal molecular absorption spectrometry. The slurry, whose concentration is 1 mg mL{sup −1}, was prepared by mixing 50 mg of the sample with 5% v/v nitric acid and 0.04% m/v Triton X-100 and was homogenized manually. It sustained good stability. The determination was performed via CS molecular absorption at 257.592 nm, and the optimized vaporization temperature was 2500 °C. The accuracy of the method was ensured by analysis of certified reference materials SRM 1632b (trace elements in coal) and SRM 1633b (coal fly ash) from the National Institute of Standards and Technology, using external calibration with aqueous standards prepared in the same medium and used as slurry. We achieved good agreement with the certified reference materials within 95% confidence interval, LOD of 0.01% w/w, and RSD of 6%, which confirms the potential of the proposed method. - Highlights: • HR-CS ET MAS as a technique to determine sulfur in coal and ash • Utilization of (coal and coal fly ash) slurry as a sample preparation • Simple and fast method, which uses external calibration with aqueous standards without chemical modifier.

  18. False deformation temperatures for ash fusibility associated with the conditions for ash preparation

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Gupta, S.K.; Gupta, R.P.; Sanders, R.H.; Creelman, R.A.; Bryant, G.W. [University of Newcastle, Callaghan, NSW (Australia). Cooperative Research Centre for Black Coal Utilization, Dept. of Chemical Engineering

    1999-07-01

    A study was made to investigate the fusibility behaviour of coal ashes of high ash fusion temperatures. Coals and ashes formed in the boiler were sampled in several Australian power stations, with laboratory ashes being prepared from the coals. The laboratory ashes gave lower values for the deformation temperature (DT) than the combustion ashes when the ash had low levels of basic oxide components. Thermo-mechanical analysis, quantitative X-ray diffraction and scanning electron microscopy were used to establish the mechanisms responsible for the difference. Laboratory ash is finer than combustion ash and it includes unreacted minerals (such as quartz, kaolinite and illite) and anhydrite (CaSO{sub 4}). Fusion events which appear to be characteristic of reacting illite, at temperatures from 900 to 1200{degree}C, were observed for the laboratory ashes, these being associated with the formation of melt phase and substantial shrinkage. The combustion ashes did not contain this mineral and their fusion events were observed at temperatures exceeding 1300{degree}C. The low DTs of coal ashes with low levels of basic oxides are therefore a characteristic of laboratory ash rather than that found in practical combustion systems. These low temperatures are not expected to be associated with slagging in pulverised coal fired systems. 10 refs., 3 figs., 2 tabs.

  19. An urgent need for an EPA standard for disposal of coal ash

    International Nuclear Information System (INIS)

    Lemly, A. Dennis

    2014-01-01

    EPA, the White House, and electric utilities are stalled in a struggle over a proposed new rule on coal ash disposal. Although this rule is long overdue, EPA now stands on the cusp of bringing forward a landmark decision that could benefit aquatic resources in the USA for decades to come and also set an important regulatory leadership example for the international community to follow. However, multi-million dollar wildlife losses are continuing to pile up as things stall in Washington. In this commentary I use a newly reported example, Wildlife Damage Case 23, to further illustrate serious flaws in the National Pollutant Discharge Elimination System that EPA's new rule can address. Case 23 provides additional impetus for EPA and the White House to move swiftly and decisively to end surface impoundment disposal of coal ash and the associated toxic impacts to wildlife. - Wildlife poisoning from coal combustion waste shows how regulatory policy is influenced by politics and industry rather than prudent decisions based on credible scientific investigation

  20. Hydrothermal conversion of South African coal fly ash into pure phase Zeolite Na-P1

    CSIR Research Space (South Africa)

    Gitari, MW

    2016-08-01

    Full Text Available South African coal combustion power utilities generate huge amounts of coal fly ash that can be beneficiated into zeolitic products. This chapter reports on the optimization of the presynthesis and synthesis conditions for a pure-phase zeolite Na-P1...

  1. Chemical forms of the fluorine, chlorine, oxygen and carbon in coal fly ash and their correlations with mercury retention

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Shuang [State Key Laboratory of Environmental Criteria and Risk Assessment (China); Research Academy of Environmental Sciences, Beijing 100012 (China); Shu, Yun [Research Academy of Environmental Sciences, Beijing 100012 (China); Li, Songgeng, E-mail: sgli@ipe.ac.cn [State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Tian, Gang; Huang, Jiayu [Research Academy of Environmental Sciences, Beijing 100012 (China); Zhang, Fan, E-mail: zhangfan5188@vip.sina.com [Research Academy of Environmental Sciences, Beijing 100012 (China)

    2016-01-15

    Highlights: • Chlorine and fluorine are present mainly in an inorganic form on ash. • Correlations of carbon–oxygen complexes with mercury retention are established. • Concentrations of carbon–oxygen complexes on ash are related to coal type. • No effect of fluorine on mercury retention is observed. • Chlorine, fluorine and carbon in ash are enriched on surface. - Abstract: Fly ashes recovered from the particulate control devices at six pulverized coal boiler unites of China, are studied using an X-ray photoelectron spectroscopy (XPS) with a particular focus on the functionalities of fluorine (F), chlorine (Cl), carbon and oxygen on fly ash. It is found that the inorganic forms of F and Cl are predominant on the ash surface in comparison with their organics, and the proportion of organic Cl is relatively higher than that of organic F. Similar results are also obtained in the bulk by correlating the F and Cl contents with those of the unburnt carbon and other compositions in ash. Strong correlations of mercury retention with surface carbon–oxygen functional groups indicate that the C=O, OH/C−O and (O−C=O)−O on surface are of significant importance for mercury retention in fly ash. Their surface concentrations are related to coal type. The presence of Cl in fly ash helps with mercury retention. No obvious effect of F is observed.

  2. The Utilization of Bottom Ash Coal for Briquette Products by Adding Teak Leaves Charcoal, Coconut Shell Charcoal, and Rice Husk Charcoal

    Directory of Open Access Journals (Sweden)

    Syafrudin Syafrudin

    2015-01-01

    Full Text Available The limitations of the availability of energy sources especially fuel oil has become a serious threat for the society. The use of coal for energy source as the replacement of fuel oil, in one hand, is very profitable, but on the other hand, will cause problem which is the coal ash residue. This coal ash is a by-product of coal combustion. This coal ash contains bottom ash. Through this observation, the bottom ash can be processed to be charcoal if added by teak leaves, coconut shell, and rice husk. Also, this observation needs to add binder materials for further processing in order to form briquette. It can be used as alternative fuel, the utilization of bottom ash and biomass will give positive impact to the environment. This observation was conducted by using compositions such as bottom ash, teak leaves, coconut shell, and rice husk. The treatment was using comparison 100%:0% ; 80%:20% ; 60%:40% ; 50%:50% ; 40%:60% ; 20%:80% ; 0%:100%. The result that the best briquette was on the composition of 20% bottom ash : 80% coconut shell. The characteristic values from that composition were moisture content of 3.45%, ash content of 17,32%, calorific value of 7.945,72 Cal/gr, compressive strength of 2,18 kg/cm2, level of CO of 105 mg/m3, and heavy metals Cu of 29,83 µg/g and  Zn 32,99 µg/g. The characteristic value from each briquette composition treatment showed that the increasing usage proportion of biomass as added material for briquette was able to increase its moisture content and calorific value. Besides, it is also able to decrease its ash content and compressive strength

  3. Evaluation of radioactivity levels of coal, slag and fly ash samples used in Giresun province of Turkey

    International Nuclear Information System (INIS)

    Kara, A.; Chevik, U.; Damla, N.; Yeshilbag, Y.O.

    2010-01-01

    In present work natural radionuclides activities (236Ra, 232Th and 40K) of the different types of coal, slag and fly ash samples used in Giresun province (Eastern Black Sea region of Turkey) were measured by using gamma-ray spectrometry. These samples were collected as homogeneously and separately around Giresun province. The mean activity concentrations of 226Ra, 232Th and 40K radionuclides in coal, slag and fly ash samples were found as 107, 67 and 440 Bg.Kg - 1 for coal; 59, 25 and 268 Bg.kg - 1 for slag and 136, 60 and 417 Bg.kg - 1 for fly ash samples, respectively. To estimate health effect due to the aforementioned radionuclides, absorbed dose rates and annual effective doses have been calculated. These values were evaluated and compared with the internationally recommended values

  4. Influence of coal ash and slag dumping on dump waste waters of the Kostolac power plants (Serbia)

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, A.; Djinovic, J. [University of Belgrade, Belgrade (Serbia)

    2006-10-01

    The content of selected trace and major elements in the river water used for transport, as well as in the subcategories of the waste waters (overflow and drainage) were analyzed in order to establish the influence of transport and dumping of coal ash and slag from the 'Kostolac A' and 'Kostolac B' power plants located 100 km from Belgrade (Serbia). It was found that during transport of coal ash and slag to the dump, the water used for transport becomes enriched with manganese, nickel, zinc, chromium, vanadium, titanium, cobalt, arsenic, aluminum, and silicon, while more calcium, iron, cadmium, and lead are adsorbed by the ash and slag than is released from them. There is also an equilibrium between the release and adsorption processes of copper and magnesium during transport. The vertical penetration of the water used for transport results in a release of calcium, magnesium, manganese, and cadmium to the environment, while iron, nickel, zinc, chromium, copper, lead, vanadium, titanium, cobalt, and arsenic are adsorbed by the fractions of coal ash and slag in the dump.

  5. Design and implementation of a field pilot study on using coal fly ash to prevent oxidation of reactive mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Shang, J.Q.; Xu, Y.Q.; Yanful, E.K. [Western Ontario Univ., London, ON (Canada). Dept. of Civil and Environmental Engineering; Hmidi, N. [Goldcorp Inc., Musselwhite Mine, Thunder Bay, ON (Canada)

    2009-07-01

    This paper reported on a pilot scale study that investigated the feasibility of using coal fly ash in mine tailings management and acid mine drainage (AMD) treatment at Goldcorp's Musselwhite Mine site in northern Ontario. The principles and key aspects of the fly ash application in mine tailings management were described. Fly ash from the Atikokan coal-fired power generating plant was added to the Musselwhite tailings as a mixture as well as intermediate and top layers. The physical, chemical and hydrogeological effects of the two approaches were monitored. The paper provided details of the design, implementation, monitoring, sampling and testing over 2 years. The objectives were to evaluate the optimum mass ratio of coal fly ash and mine tailings, effectiveness in reducing the infiltration of precipitation, and projected long-term durability and performance on tailings oxidation prevention. The pilot study was designed based on the principles of cementitious materials formation and secondary mineral formation by the reactions of coal fly ash and water/AMD. Calcium oxide, aluminum oxide, silicon oxide, and ferric oxide are major components of coal fly ash. The preliminary test results revealed that water did not accumulate and cracks did not form on top of 4 tanks. The settlements of the mixing approaches were lower than that of the stratified approach and the temperature distributions in the 4 tanks were comparable. 9 refs., 3 tabs., 11 figs.

  6. Impact of co-combustion of petroleum coke and coal on fly ash quality: Case study of a Western Kentucky power plant

    International Nuclear Information System (INIS)

    Hower, James C.; Thomas, Gerald A.; Mardon, Sarah M.; Trimble, Alan S.

    2005-01-01

    Petroleum coke has been used as a supplement or replacement for coal in pulverized-fuel combustion. At a 444-MW western Kentucky power station, the combustion of nearly 60% petroleum coke with moderate- to high-sulfur Illinois Basin coal produces fly ash with nearly 50% uncombusted petroleum coke and large amounts of V and Ni when compared to fly ash from strictly pulverized coal burns. Partitioning of the V and Ni, known from other studies to be concentrated in petroleum coke, was noted. However, the distribution of V and Ni does not directly correspond to the amount of uncombusted petroleum coke in the fly ash. Vanadium and Ni are preferentially associated with the finer, higher surface area fly ash fractions captured at lower flue gas temperatures. The presence of uncombusted petroleum coke in the fly ash doubles the amount of ash to be disposed, makes the fly ash unmarketable because of the high C content, and would lead to higher than typical (compared to other fly ashes in the region) concentrations of V and Ni in the fly ash even if the petroleum coke C could be beneficiated from the fly ash. Further studies of co-combustion ashes are necessary in order to understand their behavior in disposal

  7. Prediction of Agglomeration, Fouling, and Corrosion Tendency of Fuels in CFB Co-Combustion

    Science.gov (United States)

    Barišć, Vesna; Zabetta, Edgardo Coda; Sarkki, Juha

    Prediction of agglomeration, fouling, and corrosion tendency of fuels is essential to the design of any CFB boiler. During the years, tools have been successfully developed at Foster Wheeler to help with such predictions for the most commercial fuels. However, changes in fuel market and the ever-growing demand for co-combustion capabilities pose a continuous need for development. This paper presents results from recently upgraded models used at Foster Wheeler to predict agglomeration, fouling, and corrosion tendency of a variety of fuels and mixtures. The models, subject of this paper, are semi-empirical computer tools that combine the theoretical basics of agglomeration/fouling/corrosion phenomena with empirical correlations. Correlations are derived from Foster Wheeler's experience in fluidized beds, including nearly 10,000 fuel samples and over 1,000 tests in about 150 CFB units. In these models, fuels are evaluated based on their classification, their chemical and physical properties by standard analyses (proximate, ultimate, fuel ash composition, etc.;.) alongside with Foster Wheeler own characterization methods. Mixtures are then evaluated taking into account the component fuels. This paper presents the predictive capabilities of the agglomeration/fouling/corrosion probability models for selected fuels and mixtures fired in full-scale. The selected fuels include coals and different types of biomass. The models are capable to predict the behavior of most fuels and mixtures, but also offer possibilities for further improvements.

  8. Sulfur retention by ash during coal combustion. Part I. A model of char particle combustion

    Directory of Open Access Journals (Sweden)

    BORISLAV GRUBOR

    2003-02-01

    Full Text Available A model for the combustion of porous char particles as a basis for modeling the process of sulfur retention by ash during coal combustion is developed in this paper. The model belongs to the microscopic intrinsic models and describes the dynamic behavior of a porous char particle during comustion, taking into account temporal and spatial changes of all important physical properties of the char particle and various combustion parameters. The parametric analysis of the enhanced model shows that the model represents a good basis for the development of a model for the process of sulfur retention by ash during coal combustion. The model enables the prediction of the values of all parameters necessary for the introduction of reactions between sulfur compounds and mineral components in ash, primarily calcium oxide.

  9. Influence of several experimental parameters on As and Se leaching from coal fly ash samples

    International Nuclear Information System (INIS)

    Otero-Rey, Jose R.; Mato-Fernandez, Maria J.; Moreda-Pineiro, Jorge; Alonso-Rodriguez, Elia; Muniategui-Lorenzo, Soledad; Lopez-Mahia, Purificacion; Prada-Rodriguez, Dario

    2005-01-01

    Coal fly ash leaching process for As and Se is studied. Environmental parameters such as pH, temperature, solid-liquid ratio, particle size and leaching time are taken into account in order to simulate As and Se leaching process for disposal coal fly ash. Analysis of reference materials was carried out by using of hydride generation coupled to atomic fluorescence spectrometry. Plackett-Burman experimental design is used to know the significative parameters, and Box-Behnken experimental design is used to refine the results obtained for these significative parameters. pH and temperature shown a hardly influence in leaching process. Furthermore, leaching time was also significative. According our results, it may be assumed that percentage of As and Se leaching in experimental conditions tested is relatively low for acidic fly ashes

  10. Coal Combustion Residual Beneficial Use Evaluation: Fly Ash Concrete and FGD Gypsum Wallboard

    Science.gov (United States)

    This page contains documents related to the evaluation of coal combustion residual beneficial use of fly ash concrete and FGD gypsum wallboard including the evaluation itself and the accompanying appendices

  11. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    To study the influence of local conditions on the reaction between gaseous KCl and kaolin or coal fly ash experiments were done on CHECs electrically heated entrained flow reactor, which can simulate the local conditions in suspension fired boilers. The experimental results were compared with mod...

  12. Physical and Chemical Character of Fly Ash of Coal Fired Power Plant in Java

    Science.gov (United States)

    Triwulan; Priadana, K. A.; Ekaputri, J. J.; Bayuaji, R.

    2017-11-01

    Quality of fly ash is varying widely in the field, it depends on the combustion process and the quality of the basic ingredients, namely coal. It will affect the physical and mechanical properties of the concrete mixtures used. This study used 12 samples of fly ash. The physical and chemical properties and finesse modulus were analyzed. The fly ash was mixed with OPC (Ordinary Portland Cement) with the proportion of 20% fly ash and 80% OPC. The specimens were form with mortar dimension of 5cm x 5 cm. The test was affected by the correlation of fly ash fineness modulus to compressive strength, correlation density of fly ash to compressive strength, and correlation of carbon content to the compressive strength.

  13. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  14. Effects of inhaled coal fly ash on lung biochemistry and function in guinea pigs

    International Nuclear Information System (INIS)

    Kimmel, T.A.; Chen, L.C.; Ryan, I.; Gordon, I.; Amdur, M.O.

    1991-01-01

    The ultrafine fraction of particles produced during the combustion of coal are the most difficult to remove with control devices and are retained longest in the atmosphere. Combustion of a high-sulfur coal, such as Illinois No. 6, produces a significant quantity of sulfuric acid, most of which is absorbed to the surface of those particles smaller than 1 μm in diameter. Particles smaller than 0.05 μm in diameter, moreover, consist largely of sulfuric acid; since these particles penetrate to the deepest regions of the lung, exposure to coal fly ash can result in the administration of large doses of acid to the alveolar tissues. Using a combustion system that generates coal fly ash similar to that collected in flue gas, guinea pigs were exposed for 2 h to aerosols produced from Illinois No. 6 (mean aerodynamic diameter 0.2 μm) at concentrations of 5 and 20 mg/m 3 . The animals were lavaged at 24 h post-exposure and levels of dehydrogenase (LDH), β-glucuronidase (β-GC), and protein were compared to those of control animals. After 24 h, no changes in levels of LDH and β-GC were seen in the lavage fluid from both high-dose and low-dose animals. Slight, but statistically significant elevations in protein concentration were measured in the high-dose exposure group. The total cell number in the lavage fluid was also found exposure group. The total cell number in the lavage fluid was also found to be exchanged following both exposures. It was previously found that exposure to 5 mg/M 3 of Illinois No. 6 fly ash results in immediate reductions in pulmonary diffusing capacity (DLco), total lung capacity (TLC), and vital capacity, and that both DLco and TLC values are not completely restored to normal 96 h post-exposure. These results suggest that the alterations in pulmonary function resulting from exposure to acidic coal fly ash are not accompanied by major inflammatory changes in lavage fluid

  15. Survey of the potential environmental and health impacts in the immediate aftermath of the coal ash spill in Kingston, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Laura Ruhl; Avner Vengosh; Gary S. Dwyer; Heileen Hsu-Kim; Amrika Deonarine; Mike Bergin; Julia Kravchenko [Duke University, Durham, NC (United States). Division of Earth and Ocean Sciences

    2009-08-15

    An investigation of the potential environmental and health impacts in the immediate aftermath of one of the largest coal ash spills in U.S. history at the Tennessee Valley Authority (TVA) Kingston coal-burning power plant has revealed three major findings. First, the surface release of coal ash with high levels of toxic elements (As = 75 mg/kg; Hg = 150 {mu}g/kg) and radioactivity ({sup 226}Ra + {sup 228}Ra = 8 pCi/g) to the environment has the potential to generate resuspended ambient fine particles (<10 {mu}m) containing these toxics into the atmosphere that may pose a health risk to local communities. Second, leaching of contaminants from the coal ash caused contamination of surface waters in areas of restricted water exchange, but only trace levels were found in the downstream Emory and Clinch Rivers due to river dilution. Third, the accumulation of Hg- and As-rich coal ash in river sediments has the potential to have an impact on the ecological system in the downstream rivers by fish poisoning and methylmercury formation in anaerobic river sediments. 61 refs., 2 figs., 3 tabs.

  16. Photosynthetic pigment concentrations, gas exchange and vegetative growth for selected monocots and dicots treated with two contrasting coal fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Yunusa, I.A.M.; Burchett, M.D.; Manoharan, V.; DeSilva, D.L.; Eamus, D.; Skilbeck, C.G. [University of Technology Sydney, Sydney, NSW (Australia). Dept. of Environmental Science

    2009-07-15

    There is uncertainty as to the rates of coal fly ash needed for optimum physiological processes and growth. In the current study we tested the hyothesis that photosynthetic pigments concentrations and CO{sub 2} assimilation (A) are more sensitive than dry weights in plants grown on media amended with coal fly ash. We applied the Terrestrial Plant Growth Test (Guideline 208) protocols of the Organization for Economic Cooperation and Development (OECD) to monocots (barley (Hordeum vulgare) and ryegrass (Secale cereale)) and dicots (canola (Brasica napus), radish (Raphanus sativus), field peas (Pisum sativum), and lucerne (Medicago sativa)) on media amended with fly ashes derived from semi-bituminous (gray ash) or lignite (red ash) coals at rates of 0, 2.5, 5.0, 10, or 20 Mg ha(-1). The red ash had higher elemental concentrations and salinity than the gray ash. Fly ash addition had no significant effect on germination by any of the six species. At moderate rates ({<=}10 Mg ha{sup -1}) both ashes increased (P < 0.05) growth rates and concentrations of chlorophylls a and b, but reduced carotenoid concentrations. Addition of either ash increased A in radish and transpiration in barley. Growth rates and final dry weights were reduced for all of the six test species when addition rates exceeded 10 Mg ha{sup -1} for gray ash and 5 Mg ha{sup -1} for red ash. We concluded that plant dry weights, rather than pigment concentrations and/or instantaneous rates of photosynthesis, are more consistent for assessing subsequent growth in plants supplied with fly ash.

  17. Ash liberation from included minerals during combustion of pulverized coal: the relationship with char structure and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.; Wall, T.; Liu, G.; Bryant, G. [University of Newcastle, Callaghan, NSW (Australia). CRC for Black Coal Utilization and Dept. of Chemical Engineering

    1999-12-01

    In this study, the float fraction ({lt} specific gravity of 2.0) of a size cut (63-90 {mu}m) bituminous coal was combusted in a drop tube furnace (DTF) at a gas temperature of 1300{degree}C under an atmosphere of air, to investigate the ash liberation at five coal burnoff levels (35.5%, 54.3%, 70.1%, 87.1% and 95.6%). The data indicated that char structure determines the ash liberation at different burnoff levels. Fragmentation of porous char was found to be the determinative mechanism for formation of fine ash during the early and middle stages of char combustion, while coalescence of included mineral matter determines the coarse ash formed in the later stages of combustion. The investigation confirmed that the char morphology and structure play a key role in determining char fragmentation, char burnout history, and the ash liberation during combustion. 35 refs., 5 figs., 2 tabs.

  18. Zinc estimates in ore and slag samples and analysis of ash in coal samples

    International Nuclear Information System (INIS)

    Umamaheswara Rao, K.; Narayana, D.G.S.; Subrahmanyam, Y.

    1984-01-01

    Zinc estimates in ore and slag samples were made using the radioisotope X-ray fluorescence method. A 10 mCi 238 Pu was employed as the primary source of radiation and a thin crystal NaI(Ti) spectrometer was used to accomplish the detection of the 8.64 keV Zinc K-characteristic X-ray line. The results are reported. Ash content of coal concerning about 100 samples from Ravindra Khani VI and VII mines in Andhra Pradesh were measured using X-ray backscattering method with compensation for varying concentrations of iron in different coal samples through iron-X-ray fluorescent intensity measurements. The ash percent is found to range from 10 to 40. (author)

  19. Ash fouling monitoring and key variables analysis for coal fired power plant boiler

    Directory of Open Access Journals (Sweden)

    Shi Yuanhao

    2015-01-01

    Full Text Available Ash deposition on heat transfer surfaces is still a significant problem in coal-fired power plant utility boilers. The effective ways to deal with this problem are accurate on-line monitoring of ash fouling and soot-blowing. In this paper, an online ash fouling monitoring model based on dynamic mass and energy balance method is developed and key variables analysis technique is introduced to study the internal behavior of soot-blowing system. In this process, artificial neural networks (ANN are used to optimize the boiler soot-blowing model and mean impact values method is utilized to determine a set of key variables. The validity of the models has been illustrated in a real case-study boiler, a 300MW Chinese power station. The results on same real plant data show that both models have good prediction accuracy, while the ANN model II has less input parameters. This work will be the basis of a future development in order to control and optimize the soot-blowing of the coal-fired power plant utility boilers.

  20. The agronomic landspreading of coal bottom ash: using a regulated solid waste as a resource

    Energy Technology Data Exchange (ETDEWEB)

    Sell, N; McIntosh, T; Severance, C; Peterson, A

    1989-02-01

    Within the US, approximately 8860 Mg of dry coal bottom ash is generated daily, the majority of which is disposed of by landfilling. The disposal cost varies significantly depending on location. In Wisconsin, for example, in 1987 public landfill disposal costs ranged from 8.90 US dollars to 30 US dollars per Mg. However, bottom ash appears to be an acceptable soil amendment which may alter texture and improve tilth by making clay soils more friable and decreasing crust formation. If a generic exemption for this material can be developed with the appropriate regulatory bodies, use of coal bottom ash as a soil amendment has societal and economic advantages. This paper describes the key point of an agronomic management plant. An economic comparison indicates that, based on 1987 costs, agronomic use is only 38% as costly as landfill disposal. 14 refs., 5 tabs.

  1. Review of coal bottom ash and coconut shell in the production of concrete

    Science.gov (United States)

    Faisal, S. K.; Mazenan, P. N.; Shahidan, S.; Irwan, J. M.

    2018-04-01

    Concrete is the main construction material in the worldwide construction industry. High demand of sand in the concrete production have been increased which become the problems in industry. Natural sand is the most common material used in the construction industry as natural fine aggregate and it caused the availability of good quality of natural sand keep decreasing. The need for a sustainable and green construction building material is required in the construction industry. Hence, this paper presents utilization of coal bottom ash and coconut shell as partial sand replacement in production of concrete. It is able to save cost and energy other than protecting the environment. In summary, 30% usage of coal bottom ash and 25% replacement of coconut shell as aggregate replacement show the acceptable and satisfactory strength of concrete.

  2. A Review: The Effect of Grinded Coal Bottom Ash on Concrete

    Directory of Open Access Journals (Sweden)

    Basirun Nurul Fasihah

    2017-01-01

    Full Text Available This paper offers a review on the use of grinded coal bottom ash (CBA on the concrete properties as demonstrated by strength test and microstructure test. Amount of CBA from power plant station was disposed in landfill because of the particle shape had a rough particles. By finding an alternative way to gain its surface area by grinding and used as replacement material as cement replacement may give a good side feedback on the strength and morphology of concrete. Most of the prior works studied on the grinded fly ash and grinded rice husk ash. The study on the influence of grinded CBA on the properties of concrete still limited and need more attention Therefore, the review on the effect of grinded CBA on the strength and microstructure of concrete are discussed.

  3. Preliminary report on coal pile, coal pile runoff basins, and ash basins at the Savannah River Site: effects on groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-04-28

    Coal storage piles, their associated coal pile runoff basins and ash basins could potentially have adverse environmental impacts, especially on groundwater. This report presents and summarizes SRS groundwater and soil data that have been compiled. Also, a result of research conducted on the subject topics, discussions from noted experts in the field are cited. Recommendations are made for additional monitor wells to be installed and site assessments to be conducted.

  4. Engineering properties of lightweight geopolymer synthesized from coal bottom ash and rice husk ash

    Science.gov (United States)

    Thang, Nguyen Hoc; Hoa, Nguyen Ngoc; Quyen, Pham Vo Thi Ha; Tuyen, Nguyen Ngoc Kim; Anh, Tran Vu Thao; Kien, Pham Trung

    2018-04-01

    Geopolymer technology was developed by Joseph Davidovits in 1970s based on reactions among alumino-silicate resources in high alkaline conditions. Geopolymer has been recently gaining attention as an alternative binder for Ordinary Portland cement (OPC) due to its low energy and CO2 burden. The raw materials used for geopolymerization normally contain high SiO2 and Al2O3 in the chemical compositions such as meta-kaoline, rice husk ash, fly ash, bottom ash, blast furnace slag, red mud, and others. Moreover, in this paper, coal bottom ash (CBA) and rice husk ash (RHA), which are industrial and agricultural wastes, respectively, were used as raw materials with high alumino-silicate resources. Both CBA and RHA were mixed with sodium hydroxide (NaOH) solution for 20 minutes to obtain the geopolymer pastes. The pastes were filled in 5-cm cube molds according to ASTM C109/C109M 99, and then cured at room condition for hardening of the geopolymer specimens. After 24 hours, the specimens were removed out of the molds and continuously cured at room condition for 27 days. The geopolymer-based materials were then tested for engineering properties such as compressive strength (MPa), volumetric weight (kg/m3), and water absorption (kg/m3). Results indicated that the material can be considered lightweight with volumetric weight from 1192 to 1425 kg/m3; compressive strength at 28 days is in the range of 12.38 to 37.41 MPa; and water absorption is under 189.92 kg/m3.

  5. Evaluation of radionuclide contamination of soil, coal ash and zeolitic materials from Figueira thermoelectric power plant

    International Nuclear Information System (INIS)

    Fungaro, Denise Alves; Silva, Paulo Sergio Cardoso da; Campello, Felipe Arrelaro; Miranda, Caio da Silva; Izidoro, Juliana de Carvalho

    2017-01-01

    Neutron activation analysis and gamma-ray spectrometry was used to determine 238 U, 226 Ra, 228 Ra, 210 Pb, 232 Th and 40 K contents in feed pulverized coal, bottom ash, fly ash from cyclone and baghouse filters, zeolites synthesized from the ashes and two different soil samples. All the samples used in the study was collected at Figueira thermoelectric power plant, located in the city of Figueira, Paraná State, which coal presents a significant amount of uranium concentration. The natural radionuclide concentrations in pulverized coal were 4216 Bq kg -1 for 238 U, 180 Bq kg -1 for 226 Ra, 27 Bq kg -1 for 228 Ra, 28 Bq kg -1 for 232 Th and 192 Bq kg -1 for 40 K. The ashes fraction presented concentrations ranging from 683.5 to 1479 Bq kg -1 for 238 U, from 484 to 1086 Bq kg -1 for 226 Ra, from 291 to 1891 Bq kg -1 for 210 Pb, from 67 to 111 Bq kg -1 for 228 Ra, from 80 to 87 Bq -1 for 232 Th and from 489 to 718 Bq kg -1 for 40 K. Similar ranges were observed for zeolites. The activity concentration of 238 U was higher than worldwide average concentration for all samples. The concentration of the uranium series found in the ashes were lower than the values observed in similar studies carried out 10 years ago and under the limit adopted by the Brazilian guideline (CNEN-NN-4.01). Nevertheless, the concentrations of this specific area are higher than others coal mines and thermoelectric power plants in and out of Brazil, so it is advisable to evaluate the environmental impact of the installation. (author).

  6. Mineralogy and microstructure of sintered lignite coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Marina Ilic; Christopher Cheeseman; Christopher Sollars; Jonathan Knight [Faculty of Technology and Metallurgy, Belgrade (Yugoslavia)

    2003-02-01

    Lignite coal fly ash from the 'Nikola Tesla' power plant in Yugoslavia has been characterised, milled, compacted and sintered to form monolithic ceramic materials. The effect of firing at temperatures between 1130 and 1190{sup o}C on the density, water accessible porosity, mineralogy and microstructure of sintered samples is reported. This class C fly ash has an initial average particle size of 82 {mu}m and contains siliceous glass together with the crystalline phases quartz, anorthite, gehlenite, hematite and mullite. Milling the ash to an average particle size of 5.6 m, compacting and firing at 1170{sup o}C for 1 h produces materials with densities similar to clay-based ceramics that exhibit low water absorption. Sintering reduces the amount of glass, quartz, gehlenite and anhydrite, but increases formation of anorthite, mullite, hematite and cristobalite. SEM confirms the formation of a dense ceramic at 1170{sup o}C and indicates that pyroplastic effects cause pore formation and bloating at 1190{sup o}C. 23 refs., 6 figs., 2 tabs.

  7. Effects of the addition of oil shale ash and coal ash on physic-chemical properties of CPJ45 cement

    Directory of Open Access Journals (Sweden)

    Nabih K.

    2014-04-01

    Full Text Available We focused our research on recycling industrial wastes, fly ash (F.A, bottom ash (B.A and oil shale ash (S.A in cement production. The study concerns physico-chemical characterization of these products and the influence of their addition on the mechanical proprieties of the CPJ45 cement. XRF allowed us to rank the three additives used according to their contents on major oxides. Coal ashes belong to the class F, and thus possess poozzolanic properties and oil shale ash belongs to the class C and possesses hydraulic and poozolanic properties. The crystalline phases constituting each ash were analysed by XRD. We observe in bottom ash the presence of quartz and mullite. The same crystals are found in fly ash with hematite and magnetite. Oil shale ash is composed of quartz, anhydrite, gehlenite, wollastonite and periclase. The microstructures of fly ash and bottom ash were studied using SEM. The bottom ash was composed respectively of fine particles that are generally irregularly shaped, their dimensions are between 5 and 28μm and of big particles(300 μm. The EDX analysis coupled with an electronic microscope provided some information about the major elements that constitute our samples. The dehydrations of anhydrous and three days hydrated cement were examined by DSC. For hydrated cements we noticed endothermic peaks related to the dehydration of CSH, CH and decomposition of carbonates. The study of the mechanical properties of CPJ45 cement by adding different proportions of fly ash, bottom ash and oil shale ash helped clarifying the percentage of ash that leaded to improve the 28 days mechanical strength. The results show that the cements studied have their maximum mechanical resistance with the addition at 7% of fly ash or 10% of oil shale ash.

  8. Radiological characterization of the coal ash and slag from Kastel Gomilica, Croatia

    International Nuclear Information System (INIS)

    Lovrencic, I.; Orescanin, V.; Barisic, D.; Mikelic, L.; Rozmaric Macefat, M.; Lulic, St.; Pavlovic, G.

    2006-01-01

    The objective of this study was radiological characterization of slag and ash produced in a thermo electric unit of the former 'Adriavinil' chemical factory as a by-product of coal combustion and deposited in the Kastel Gomilica region, Croatia. The waste material was deposited in the 'old' regulated and the 'new' unregulated part of the depot. 33 samples were analyzed to obtain a preliminary data on the present state of the new unregulated part of the depot. Activities of the selected radionuclides (40 K, 232 Th, 235 U and 226 Ra) were measured using gamma-spectrometry method. 238 U activity was calculated from the assumed natural 235 U /238 U activity ratio. It is found that there is a dependence of the activities of the selected radionuclides on the activities of the coal used for energy production in the power unit. The content of 232 Th, 226 Ra and 238 U in slag and ash increased several times during the combustion process. Investigated slag and ash showed a significant variability in their activities of selected radionuclides due to a different origin of coal used in the thermoelectric unit of the factory. The waste material was characterized by high activity of naturally occurring 238 U, 235 U and 226 Ra. 226 Ra and 238 U activities were up to 50 times higher than their average activities characteristic for surrounding soils developed on flysch sediments. 40 K and 232 Th showed no elevation compared to soil activities. Mineralogical analysis has been made as well. (authors)

  9. Radiological characterization of the coal ash and slag from Kastel Gomilica, Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Lovrencic, I.; Orescanin, V.; Barisic, D.; Mikelic, L.; Rozmaric Macefat, M.; Lulic, St. [Rudjer Boskovic Institute, Zagreb (Croatia); Pavlovic, G. [Zagreb Univ., Faculty of Science, Dept. of Mineralogy and Petrography (Croatia)

    2006-07-01

    objective of this study was radiological characterization of slag and ash produced in a thermo electric unit of the former 'Adriavinil' chemical factory as a by-product of coal combustion and deposited in the Kastel Gomilica region, Croatia. The waste material was deposited in the 'old' regulated and the 'new' unregulated part of the depot. 33 samples were analyzed to obtain a preliminary data on the present state of the new unregulated part of the depot. Activities of the selected radionuclides (40 K, 232 Th, 235 U and 226 Ra) were measured using gamma-spectrometry method. 238 U activity was calculated from the assumed natural 235 U /238 U activity ratio. It is found that there is a dependence of the activities of the selected radionuclides on the activities of the coal used for energy production in the power unit. The content of 232 Th, 226 Ra and 238 U in slag and ash increased several times during the combustion process. Investigated slag and ash showed a significant variability in their activities of selected radionuclides due to a different origin of coal used in the thermoelectric unit of the factory. The waste material was characterized by high activity of naturally occurring 238 U, 235 U and 226 Ra. 226 Ra and 238 U activities were up to 50 times higher than their average activities characteristic for surrounding soils developed on flysch sediments. 40 K and 232 Th showed no elevation compared to soil activities. Mineralogical analysis has been made as well. (authors)

  10. Influence of Coal Ash Leachates and Emergent Macrophytes on Water Quality in Wetland Microcosms

    Data.gov (United States)

    U.S. Environmental Protection Agency — Influence of Coal Ash Leachates and Emergent Macrophytes on Water Quality in Wetland Microcosms. This dataset is associated with the following publication: Olson,...

  11. Evaluation of the CO2 sequestration capacity for coal fly ash using a flow-through column reactor under ambient conditions

    International Nuclear Information System (INIS)

    Jo, Ho Young; Ahn, Joon-Hoon; Jo, Hwanju

    2012-01-01

    Highlights: ► A conceptual in-situ mineral carbonation method using a coal ash pond is proposed. ► CO 2 uptake occurred by carbonation reaction of CO 2 with Ca 2+ ions from coal fly ash. ► The CO 2 sequestration capacity was affected by the solid dosage. ► Seawater can be used as a solvent for mineral carbonation of coal fly ash. - Abstract: An in-situ CO 2 sequestration method using coal ash ponds located in coastal regions is proposed. The CO 2 sequestration capacity of coal fly ash (CFA) by mineral carbonation was evaluated in a flow-through column reactor under various conditions (solid dosage: 100–330 g/L, CO 2 flow rate: 20–80 mL/min, solvent type: deionized (DI) water, 1 M NH 4 Cl solution, and seawater). The CO 2 sequestration tests were conducted on CFA slurries using flow-through column reactors to simulate more realistic flow-through conditions. The CO 2 sequestration capacity increased when the solid dosage was increased, whereas it was affected insignificantly by the CO 2 flow rate. A 1 M NH 4 Cl solution was the most effective solvent, but it was not significantly different from DI water or seawater. The CO 2 sequestration capacity of CFA under the flow-through conditions was approximately 0.019 g CO 2 /g CFA under the test conditions (solid dosage: 333 g/L, CO 2 flow rate: 40 mL/min, and solvent: seawater).

  12. Development of a pulsed coal combustor fired with CWM (coal-water mixture): Phase 3, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, M.N.; Durai-Swamy, K.

    1986-11-01

    This report presents the results of an R and D program aimed at developing a new burner technology for coal-water mixture (CWM) fuels to enable the substitution of these new fuels in utility and industrial boilers and process heaters currently firing oil and gas. The application of pulse combustion to CWM fuels is chosen to alleviate many of the physical plant and environmental constraints presently associated with the direct use of these fuels in equipment designed for oil and gas firing. Pulse combustion has been shown to be capable of high-intensity burning of coal for acceptably complete combustion within relatively small equipment volumes. It also has the inherent capability to agglomerate ash particles, thus rendering ash more easily separable from the combustion gas prior to its entrance into the convective section of the boiler or heater, thereby reducing ash buildup and pluggage. Pulse combustion is also well-suited to staged combustion for NO/sub x/ control and has excellent potential for enhanced in-furnace SO/sub 2/ removal due to the enhanced levels of mass transfer brought about by the vigorous flow oscillations. The primary objective of the Phase 2 work was to develop a detailed program for laboratory development and evaluation of the pulse CWM combustor and system design concepts. 112 refs., 40 figs., 94 tabs.

  13. Report of base consolidation promotion survey of overseas coal import in FY 1993. Feasibility survey of effective utilization of coal ash; 1993 nendo kaigaitan yunyu kiban seibi sokushin chosa. Sekitanbai yuko riyo jigyo no feasibility chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    This report describes the effective utilization of coal ash discharged from general industry (general industry ash) as improving material of construction waste soil and deodorant for poultry industry. Coal ash is characterized by the pozzolan and self-hardening properties which are not shown in soil and sand. Coal ash having a large amount of free CaO in its composition has stronger such properties. Coal ash generated from fluidized bed combustor which is a kind of combustor of coal contains a large amount of free CaO, especially, resulting in the stronger such properties. On the other hand, coal ash has water and oil absorbing property due to its porous structure. To utilize these properties, the improving material of soft construction waste soil and deodorant for poultry industry have been selected. As a result of laboratory and field tests for the former, it was found that sufficient supporting force can be obtained. Since the protection of powder splash is required at the site, a humidification system has been developed, which can protect the splash by the humidification of 5%. The price between 500 and 1,000 yen/ton is suitable for the improving material of construction waste soil. The maximum price of the deodorant for poultry industry is 10 yen/kg. 14 refs., 40 figs., 49 tabs.

  14. Relationships between waste physicochemical properties, microbial activity and vegetation at coal ash and sludge disposal sites.

    Science.gov (United States)

    Woch, Marcin W; Radwańska, Magdalena; Stanek, Małgorzata; Łopata, Barbara; Stefanowicz, Anna M

    2018-06-11

    The aim of the study was to assess the relationships between vegetation, physicochemical and microbial properties of substrate at coal ash and sludge disposal sites. The study was performed on 32 plots classified into 7 categories: dried ash sedimentation ponds, dominated by a grass Calamagrostis epigejos (AH-Ce), with the admixture of Pinus sylvestris (AH-CePs) or Robinia pseudoacacia (AH-CeRp), dry ash landfill dominated by Betula pendula and Pinus sylvestris (AD-BpPs) or Salix viminalis (AD-Sv) and coal sludge pond with drier parts dominated by Tussilago farfara (CS-Tf) and the wetter ones by Cyperus flavescens (CS-Cf). Ash sites were covered with soil layer imported as a part of technical reclamation. Ash had relatively high concentrations of some alkali and alkaline earth metals, Mn and pH, while coal sludge had high water and C, S, P and K contents. Concentrations of heavy metals were lower than allowable limits in all substrate types. Microbial biomass and, particularly, enzymatic activity in ash and sludge were generally low. The only exception were CS-Tf plots characterized by the highest microbial biomass, presumably due to large deposits of organic matter that became available for aerobic microbial biomass when water level fell. The properties of ash and sludge adversely affected microbial biomass and enzymatic activity as indicated by significant negative correlations between the content of alkali/alkaline earth metals, heavy metals, and macronutrients with enzymatic activity and/or microbial biomass, as well as positive correlations of these parameters with metabolic quotient (qCO 2 ). Plant species richness and cover were relatively high, which may be partly associated with alleviating influence of soil covering the ash. The effect of the admixture of R. pseudoacacia or P. sylvestris to stands dominated by C. epigejos was smaller than expected. The former species increased NNH 4 , NNO 3 and arylsulfatase activity, while the latter reduced activity of

  15. Zeolite Synthesized from Coal Fly Ash Produced by a Gasification Process for Ni2+ Removal from Water

    Directory of Open Access Journals (Sweden)

    Yixin Zhang

    2018-03-01

    Full Text Available There are increasing demands and great potential of coal gasification in China, but there is a lack of studies focused on the disposal and utilization of coal fly ash produced by the gasification process. In this study, a coal fly ash sample derived from a gasifier in Jincheng, China, was utilized as raw material for the synthesis of zeolite by alkali fusion followed by hydrothermal treatments. The effects of operation conditions on the cation exchange capacity (CEC of synthesized zeolite were investigated. The synthesized zeolite with the highest CEC (270.4 meq/100 g, with abundant zeolite X and small amount of zeolite A, was produced by 1.5 h alkali fusion under 550 °C with NaOH/coal fly ash ratio 1.2 g/g followed by 15 h hydrothermal treatment under 90 °C with liquid/solid ratio 5 mL/g and applied in Ni2+ removal from water. The removal rate and the adsorption capacity of Ni2+ from water by the synthesized zeolite were determined at the different pH, contact time, adsorbent dose and initial Ni2+ concentration. The experimental data of adsorption were interpreted in terms of Freundlich and Langmuir equations. The adsorption of Ni2+ by the synthesized zeolite was found to fit sufficient using the Langmuir isotherm. More than 90% of Ni2+ in water could be removed by synthesized zeolite under the proper conditions. We show that the coal fly ash produced by the gasification process has great potential to be used as an alternative and cheap source in the production of adsorbents.

  16. Biomass ash-bed material interactions leading to agglomeration in FBC

    DEFF Research Database (Denmark)

    Visser, H.J.M.; van Lith, Simone Cornelia; Kiel, J.H.A.

    2008-01-01

    -scale installations is "coating-induced" agglomeration. During reactor operation, a coating is formed on the surface of bed material grains and at certain critical conditions (e.g., coating thickness or temperature) sintering of the coatings initiates the agglomeration. In an experimental approach, this work...

  17. Comparative evaluation of carcinogenesis risk in case of radiation effect and pollution of atmospheric air with coal ashes and benzo(a)pyrene

    International Nuclear Information System (INIS)

    Knizhnikov, V.A.; Shandala, N.K.; Komleva, V.A.; Likhovajdo, N.V.; Shvetsov, A.I.

    1993-01-01

    Assessment of the risk of lung carcinogenesis under the effect of benzo(a)pyrene (BP) and volatil coal ash in the atmospheric air was performed as well as comparison of this risk with the risk due to ionizing radiation effect from natural and technogenic sources. White mice were used as experimental animals. It was shown that BP was rather more carcinogenic than volatile coal ash. BP inhalation at a maximum permissible concentration level (0.1 μg/100 m 3 of air) corresponds to the equivalent risk of whole-body gamma exposure at bout 2 Sv. Coal ash inhalation at the concentration of 0.05 mg/m 3 corresponds to the same equivalent risk as for radiation dose 0.05 Sv. Conclusion is made that safety standards for coal ash and BP contents in the air do not remove carcinogenesis risk for the population. Whereas carcinogenesis risk due to irradiation at the level of radiation safety standards is considerably lower

  18. Removal of unburned carbon in fly ash produced in coal combustion process

    International Nuclear Information System (INIS)

    Velasquez V, Leonardo F; De La Cruz M, Javier F; Sanchez M, Jhon F

    2007-01-01

    The coal unburned in flying ashes obtained in the processes of coal combustion is the main disadvantage for its use in the industry of the construction. This material normally has a size of particle greater than the mineral material, therefore it is possible to be separated in a considerable percentage, obtaining double benefit: the reusability of unburned like fuel or precursor for the activated charcoal production and the use of the mineral material in the industry of the construction since the organic matter has retired him that disables its use. In this work it is experienced with a sifted technique of separation by for three obtained flying ash samples with different technology (travelling Grill, pneumatic injection and overturning grill), were made grain sized analyses with meshes of a diameter of particle greater to 0,589 mm, the short analyses were made to them next to the retained material in each mesh and the unburned percentage of removal was determined of. The technique was compared with other developing.

  19. Coal Ash Aerosol in East Asian Outflow as a Source for Oceanic Deposition of Iron and Other Metals

    Science.gov (United States)

    Anderson, J. R.; Hua, X.

    2008-12-01

    While ocean deposition of East Asian dust is given significant emphasis as a source of biologically-active trace elements, iron in particular, dust events are episodic and highly seasonal. There is, however, a constant source of aerosol that is chemically similar to dust (albeit amorphous in structure rather than crystalline) in the ash particles emitted from many hundreds of coal-fired power plants that are sited along the entire coastal region of China and Korea. The emission controls on these facilities vary widely and, in even cases of state-of-the-art emission controls, the secondary release of ash can be significant. There are of course even more small industrial and household sources of coal combustion emissions, in most cases with little or no emissions controls. Ash from a modern coal-fired power facility in Korea has been examined chemically and morphologically with electron microscopic techniques. As is characteristic of all such facilities, two principal types of ash are present: (1) flyash, silicate glass spheres that are emitted with the smoke and removed by electrostatic precipitators; and (2) bottom ash, "clinkers" and noncombustible material sticking to the furnace walls that are mixed with water and ground after cooling, then removed as a slurry to a dumping area. In addition, iron sulfide (pyrite) is a common constituent of coal and provides both a source of sulfur dioxide gas and also molten iron spherical particles in the ash. The iron spheres then are rapidly oxidized upon cooling. Bottom ash is a more complex material than flyash in that it contains more iron and other trace metals, plus it contains varying amounts of uncombusted carbon. The post-combustion handling of bottom ash can lead to significant emissions despite the fact that little or none goes out the stack. The iron oxide spheres can also be emitted by this secondary method. The concentrations of ash can be very high in close proximity to power plants (PM10 of several hundred

  20. JV Task 120 - Coal Ash Resources Research Consortium Research

    Energy Technology Data Exchange (ETDEWEB)

    Debra Pflughoeft-Hassett; Loreal Heebink; David Hassett; Bruce Dockter; Kurt Eylands; Tera Buckley; Erick Zacher

    2009-03-28

    The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') is the core coal combustion product (CCP) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCPs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCP utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program, which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCP performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 2007 to 2009 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCPs. The tasks were included in four categories: (1) Environmental Evaluations of CCPs; (2) Evaluation of Impacts on CCPs from Emission Controls; (3) Construction and Product-Related Activities; and (4) Technology Transfer and Maintenance Tasks. All tasks are designed to work toward achieving the CARRC overall goal and supporting objectives. The various tasks are coordinated in order to provide broad and useful technical data for CARRC members

  1. Generating a representative signal of coal ash content to anticipate combustion control in a thermal power station

    International Nuclear Information System (INIS)

    Prieto-Fernandez, Ismael; Santurio-Diaz, J.M.; Folgueras-Diaz, B.; Lopez-Bobo, M. Rosario; Fernandez-Viar, P.

    2004-01-01

    This paper describes the possibilities of continuously measuring coal ash in the boiler feeding circuit of a thermal power station so that the measurement can be used as a signal for the boiler combustion control system. An installation was designed, at semi-industrial scale, that could faithfully reproduce the operation of a belt feeder. In order to measure the ash content, a natural radioactivity meter was installed and a large number of coal samples with different ranks and grain sizes were tested, eventually showing the possibility of achieving the objective

  2. Conversion of South African coal fly ash into high-purity ZSM-5 zeolite without additional source of silica or alumina and its application as a methanol-to-olefins catalyst

    CSIR Research Space (South Africa)

    Missengue, RNM

    2018-03-01

    Full Text Available Characteristics of ZSM-5 synthesized from H2SO4-treated coal fly ash and fused coal fly ash extracts are compared in this study. In the synthesis process, fused coal fly ash extract (without an additional silica source) was used in the synthesis...

  3. Selenium bioaccumulation in fish exposed to coal ash at the Tennessee Valley Authority Kingston spill site.

    Science.gov (United States)

    Mathews, Teresa J; Fortner, Allison M; Jett, R Trent; Morris, Jesse; Gable, Jennifer; Peterson, Mark J; Carriker, Neil

    2014-10-01

    In December 2008, 4.1 million cubic meters of coal ash were released into the Emory and Clinch Rivers by the Tennessee Valley Authority Kingston Fossil Plant. Coal ash contains several contaminants, including the bioaccumulative metalloid selenium (Se). Because Se is predominantly accumulated in aquatic organisms through dietary rather than aqueous exposure, tissue-based toxicity thresholds for Se are currently being considered. The proposed threshold concentrations range between 4 μg/g and 9 μg/g Se (dry wt.) in whole body fish, with a proposed fillet threshold of 11.8 μg/g. In the present study, the authors examined the spatial and temporal trends in Se bioaccumulation and examined the relationship between the Se content in fillets and in whole bodies of fish collected around the Kingston spill site to determine whether Se bioaccumulation was a significant concern at the ash spill site. Whereas Se concentrations in fish (whole bodies and fillets) were elevated at sampling locations affected by the Kingston ash spill relative to reference locations, concentrations do not appear to be above risk thresholds and have not been increasing over the 5-yr period since the spill. These findings are not only relevant to guiding the human health and ecological risk assessments at the Kingston ash spill site, but because of current national discussions on appropriate guidelines for Se in fish as well for the disposal of coal combustion wastes, the results are also relevant to the general understanding of Se bioaccumulation in contaminated water bodies. © 2014 SETAC.

  4. The use of tetragnathid spiders as bioindicators of metal exposure at a coal ash spill site.

    Science.gov (United States)

    Otter, Ryan R; Hayden, Mary; Mathews, Teresa; Fortner, Allison; Bailey, Frank C

    2013-09-01

    On 22 December 2008, a dike containing coal fly ash from the Tennessee Valley Authority Kingston Fossil Fuel Plant (TN, USA) failed, resulting in the largest coal ash spill in US history. The present study was designed to determine sediment metal concentrations at multiple site locations and to determine whether site-specific bioaccumulation of metals existed in tetragnathid spiders. Selenium and nickel were the only 2 metals to exceed the US Environmental Protection Agency sediment screening levels. Selenium concentrations in spiders were significantly higher at ash-affected sites than in those from reference sites. The ratio of methylmercury to total mercury in spiders was found to be similar to that in other organisms (65-75%), which highlights the potential use of tetragnathid spiders as an indicator species for tracing contaminant transfer between the aquatic and terrestrial ecosystems. Copyright © 2013 SETAC.

  5. Fluidised bed gasification of high-ash South African coals: An experimental and modelling study

    CSIR Research Space (South Africa)

    Engelbrecht, AS

    2011-11-01

    Full Text Available model (CeSFaMB). The predictive capability of the model was analysed in terms of the degree of variation between experimental and simulated results for each test. The calibrated model was used to design a 15 MW fluidised bed coal gasifier...-scale BFBG are given in Figure 1 and Table 1. Process description Coal, air, oxygen and steam are the input streams to the process which produce the output streams: gas and char (ash). Coal is fed to the gasifier by means of a screw conveyor at a...

  6. Immersion freezing induced by different kinds of coal fly ash: Comparing particle generation methods and measurement techniques

    Science.gov (United States)

    Grawe, Sarah; Augustin-Bauditz, Stefanie; Clemen, Hans-Christian; Eriksen-Hammer, Stine; Lubitz, Jasmin; Schneider, Johannes; Stratmann, Frank; Wex, Heike

    2017-04-01

    To date, a lot of effort has been put into the identification and characterization of atmospheric ice nucleating particles (INPs), which may influence both weather and climate. The majority of studies focuses on INPs from natural origin such as biological particles or mineral dust particles (Hoose and Möhler 2012, Murray et al. 2012). Combustion ashes, being possible sources of anthropogenic INPs, have rarely been investigated in the past. Ash particles may be emitted into the atmosphere either by the action of wind from ash deposits on the ground (bottom ash), or during the combustion process (fly ash). Two recent studies (Umo et al., 2015; Grawe et al., 2016) identified fly ash from coal combustion as the most efficient of the investigated samples (including also bottom ashes from wood and coal combustion). These results motivate the here presented study in which we investigated the immersion freezing behavior of four coal fly ash samples taken from the filters of different coal-fired power plants in Germany. A combination of two instruments was used to capture the temperature range from 0 °C to the homogeneous freezing limit at around -38 °C. Firstly, the new Leipzig Ice Nucleation Array (LINA) was used, where droplets from an ash-water suspension are pipetted onto a cooled plate. Secondly, we used the Leipzig Aerosol Cloud Interaction Simulator (LACIS; Hartmann et al., 2011), a laminar flow tube in which every droplet contains a single size-segregated ash particle. Here, it was possible to study the effect of different kinds of particle generation, i.e., atomization of an ash-water suspension, and aerosolization of dry ash material. The composition of the ash particles was investigated by means of single particle aerosol mass spectrometry and particles were sampled on filters for environmental scanning electron microscope analysis. Our measurements show that all four fly ash samples feature a similar immersion freezing behavior (ice fractions vary by a

  7. An attempt to evaluate some regression models used for radiometric ash determination in the brown coal

    International Nuclear Information System (INIS)

    Karamuz, S.; Urbanski, P.; Antoniak, W.; Wagner, D.

    1984-01-01

    Five different regression models for determination of the ash as well as iron and calcium contents in brown coal using fluorescence and scattering of X-rays have been evaluated. Calculations were done using experimental results obtained from the natural brown coal samples to which appropriate quantities of iron, calcium and silicon oxides were added. The secondary radiation was excited by Pu-238 source and detected by X-ray argone filled proportional counter. The investigation has shown the superiority of the multiparametric models over the radiometric ash determination in the pit-coal applying aluminium filter for the correction of the influence of iron content on the intensity of scattered radiation. Standard error of estimation for the best algorithm is about three time smaler than that for algorithm simulating application of the aluminium filter. Statistical parameters of the considered algorithm were reviewed and discussed. (author)

  8. Coal-oil gold agglomeration assisted flotation to recover gold from refractory ore

    Science.gov (United States)

    Otsuki, A.; Yue, C.

    2017-07-01

    This study aimed to investigate the applicability of coal-oil gold agglomeration (CGA) assisted flotation to recover gold from a refractory ore. The ore with the grade of 2-5 g/t was tested with the CGA-flotation process in six different size fractions from 38 to 300 urn using different collector types and dosages. In addition, the flotation without CGA was performed under the same condition for comparison. The results showed that the higher gold grade and recovery were achieved by applying the CGA-flotation, compared with the flotation without CGA. More than 20-60 times grade increase from the head grade was obtained with CGA-flotation. The elemental analysis of gold and sulphur explained their relationship with gold recovery. The results well indicated the applicability of CGA to upgrade the refractory gold ore.

  9. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction

    Energy Technology Data Exchange (ETDEWEB)

    Grasby, S.E.; Sanei, H.; Beauchamp, B. [Geological Survey Canada Calgary, Calgary, AB (Canada)

    2011-02-15

    During the latest Permian extinction about 250 Myr ago, more than 90% of marine species went extinct, and biogeochemical cycles were disrupted globally. The cause of the disruption is unclear, but a link between the eruption of the Siberian Trap flood basalts and the extinction has been suggested on the basis of the rough coincidence of the two events. The flood basalt volcanism released CO{sub 2}. In addition, related thermal metamorphism of Siberian coal measures and organic-rich shales led to the emission of methane, which would have affected global climate and carbon cycling, according to model simulations. This scenario is supported by evidence for volcanic eruptions and gas release in the Siberian Tunguska Basin, but direct indicators of coal combustion have not been detected. Here we present analyses of terrestrial carbon in marine sediments that suggest a substantial amount of char was deposited in Permian aged rocks from the Canadian High Arctic immediately before the mass extinction. Based on the geochemistry and petrology of the char, we propose that the char was derived from the combustion of Siberian coal and organic-rich sediments by flood basalts, which was then dispersed globally. The char is remarkably similar to modern coal fly ash, which can create toxic aquatic conditions when released as slurries. We therefore speculate that the global distribution of ash could have created toxic marine conditions.

  10. The UZPI ash content monitoring device

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, E.P.; Bezverkhii, E.A.; Mozhaev, L.G.

    1987-07-01

    This paper describes the results of industrial trials (in coal preparation plants) to establish the accuracy of the UZPI device which determines coal ash content using X-ray detection. It is designed to monitor ash content in the 4-40% range in coal with a grain size of 0-100 mm and a coal layer thickness of 50-150 mm (depending on the ash content and grain size). The ash frequently contains oxides, and although variations in magnesium, aluminium, silicon and sulfur oxides have virtually no effect on accuracy of the UZPI, changes in the levels of calcium oxides and particularly iron oxides have a considerable influence on measurement accuracy (caused by changes in their gamma ray scattering cross section values and atomic numbers). The overall sensitivity to ash content in coal varies from 1.6 to 2.4% abs./% while that to iron oxides in ash is 0.4% abs./%. Concludes that this device is suitable for use in coal preparation plants on thin layers of coal, but its efficiency is affected by external influences, e.g. fluctuations in conveyor loading.

  11. Assessment of coal and ash environmental impact with the use of gamma- and X-ray spectrometry

    International Nuclear Information System (INIS)

    Kierzek, J.; Malozewska-Bucko, B.; Bukowski, P.; Parus, J.L.; Ciurapisnki, A.; Zaras, S.; Kunach, B.; Wiland, K.

    1999-01-01

    Gamma-ray spectrometry (GS), energy dispersive X-ray fluorescence (EDXRF) analysis methods and wavelength dispersive X-ray fluorescence (WDXRF) were applied for the studies of some coal components, e.g., sulphur, light and heavy metal element concentrations and naturally occurring radioactive isotope contents. Hundred fifty coal samples originating mostly from eight different coal mines from Upper Silesian Coal Basin and 150 samples of ash obtained from these coal samples in laboratory by total combustion at final temperature of 820 deg C, were analyzed. Such comparative analyses can be helpful in selection of most suitable kind of coal for burning in electrical power and heat plants to minimize the environmental pollution. (author)

  12. Evaluation of radionuclide contamination of soil, coal ash and zeolitic materials from Figueira thermoelectric power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fungaro, Denise Alves; Silva, Paulo Sergio Cardoso da; Campello, Felipe Arrelaro; Miranda, Caio da Silva; Izidoro, Juliana de Carvalho, E-mail: dfungaro@ipen.br, E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Neutron activation analysis and gamma-ray spectrometry was used to determine {sup 238}U, {sup 226}Ra, {sup 228}Ra, {sup 210}Pb, {sup 232}Th and {sup 40}K contents in feed pulverized coal, bottom ash, fly ash from cyclone and baghouse filters, zeolites synthesized from the ashes and two different soil samples. All the samples used in the study was collected at Figueira thermoelectric power plant, located in the city of Figueira, Paraná State, which coal presents a significant amount of uranium concentration. The natural radionuclide concentrations in pulverized coal were 4216 Bq kg{sup -1} for {sup 238}U, 180 Bq kg{sup -1} for {sup 226}Ra, 27 Bq kg{sup -1} for {sup 228}Ra, 28 Bq kg{sup -1} for {sup 232}Th and 192 Bq kg{sup -1} for {sup 40}K. The ashes fraction presented concentrations ranging from 683.5 to 1479 Bq kg{sup -1} for {sup 238}U, from 484 to 1086 Bq kg{sup -1} for {sup 226}Ra, from 291 to 1891 Bq kg{sup -1} for {sup 210}Pb, from 67 to 111 Bq kg{sup -1} for {sup 228}Ra, from 80 to 87 Bq{sup -1} for {sup 232}Th and from 489 to 718 Bq kg{sup -1} for {sup 40}K. Similar ranges were observed for zeolites. The activity concentration of {sup 238}U was higher than worldwide average concentration for all samples. The concentration of the uranium series found in the ashes were lower than the values observed in similar studies carried out 10 years ago and under the limit adopted by the Brazilian guideline (CNEN-NN-4.01). Nevertheless, the concentrations of this specific area are higher than others coal mines and thermoelectric power plants in and out of Brazil, so it is advisable to evaluate the environmental impact of the installation. (author).

  13. Coal fly ash basins as an attractive nuisance to birds: Parental provisioning exposes nestlings to harmful trace elements

    International Nuclear Information System (INIS)

    Bryan, A.L.; Hopkins, W.A.; Parikh, J.H.; Jackson, B.P.; Unrine, J.M.

    2012-01-01

    Birds attracted to nest around coal ash settling basins may expose their young to contaminants by provisioning them with contaminated food. Diet and tissues of Common Grackle (Quiscalus quiscala) nestlings were analyzed for trace elements to determine if nestlings were accumulating elements via dietary exposure and if feather growth limits elemental accumulation in other tissues. Arsenic, cadmium, and selenium concentrations in ash basin diets were 5× higher than reference diets. Arsenic, cadmium, and selenium concentrations were elevated in feather, liver, and carcass, but only liver Se concentrations approached levels of concern. Approximately 15% of the total body burden of Se, As, and Cd was sequestered in feathers of older (>5 days) nestlings, whereas only 1% of the total body burden of Sr was sequestered in feathers. Feather concentrations of only three elements (As, Se, and Sr) were correlated with liver concentrations, indicating their value as non-lethal indicators of exposure. - Highlights: ► We examined elemental uptake by grackle nestlings associated with coal ash basins. ► Diet of ash basin nestlings had higher levels of Se, As, and Cd than control nestlings. ► Se, As, Cd, and Sr concentrations of ash basin nestling tissues were elevated. ► Only Se in nestling liver approached published levels of concern. ► Nestling feathers sequestered >15% of the total body burden of Se, As, and Cd. - Nestlings of common grackles attracted to nest around coal ash settling basins were exposed to elevated dietary Se, As, Cd, and Sr, resulting in elevated Se tissue concentrations approaching reported levels of concern.

  14. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash

    International Nuclear Information System (INIS)

    Ivan Diaz-Loya, E.; Allouche, Erez N.; Eklund, Sven; Joshi, Anupam R.; Kupwade-Patil, Kunal

    2012-01-01

    Highlights: ► Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. ► Means of stabilizing the incinerator ash for use in construction applications. ► Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. ► Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA’s Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson’s ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg

  15. Analytical applications of atomic spectroscopy, with particular reference to inductively coupled plasma emission analysis of coal and fly ash

    International Nuclear Information System (INIS)

    Pougnet, M.A.B.

    1983-08-01

    This thesis outlines the analytical applications of atomic emission and absorption spectroscopy to a variety of materials. Special attention was directed to the analysis of coal and coal ashes. A simple slurry sampling technique was developed and used to determine V, Ni, Co, Mo and Mn in the National Bureau of Standards Standard Reference Materials (NBS-SRM) coals 1632a and 1635 by furnace atomic absorption spectroscopy (FAAS). Coal and fly ash were analysed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The determination of B, Be, Li, C, K and other trace elements by ICP-AES was investigated. Analytical methods were developed for the analysis of coal, fly ash and water samples. Fusion with sodium carbonate and a digestion bomb dissolution method were compared for the determination of boron in a South African boron-rich mineral (Kornerupine). Eight elements were determined in 10 industrial water samples from a power plant. Ca, Mg, Si and B were determined by ICP-AES and V, Ni, Co and Mo by FAAS. Various problems encountered during the course of the work and interferences in ICP-AES analysis are discussed. Some recommendations concerning method development and routine analysis by this technique are suggested

  16. Trace elements and As speciation analysis of fly ash samples from an Indonesian coal power plant by means of neutron activation analysis and synchrotron based techniques

    International Nuclear Information System (INIS)

    Muhayatun Santoso; Diah Dwiana Lestiani; Endah Damastuti; Syukria Kurniawat; Bennett, J.W.; Juan Jose Leani; Mateusz Czyzycki; Alessandro Migliori; Germanos Karydas, Andreas

    2016-01-01

    The elemental characterization of coal fly ash samples is required to estimate the coal burning emissions into the environment and to assess the potential impact into the biosphere. Fly ash samples collected from a coal fired power plant in center Java, Indonesia were characterized by instrumental neutron activation analysis at two different facilities (BATAN, ANSTO) and synchrotron based techniques at Elettra Italy. Assessment of thirty (30) elements and an investigation of the potential toxicity of As species in coal fly ash were presented. The results obtained are discussed and compared with those reported from other regions of the world. (author)

  17. Sintering in Biofuel and Coal-Biofuel Fired FBC's

    DEFF Research Database (Denmark)

    Lin, Weigang; Dam-Johansen, Kim

    1998-01-01

    This report presents the results of systematic experiments conducted in a laboratory scale fluidized bed combustor in order to study agglomeration phenomena during firing straw and co-firing straw with coal. The influence of operating conditions on ag-glomeration was investigated. The effect of co......-firing straw with coal on agglomeration was also examined. The results show that temperature has the most pronounced effect on the agglomeration tendency. As bed temperature increases, the defluidiza-tion time decreases sharply, which indicates an increasing tendency of agglomera-tion. When co-firing straw...... with coal, the defluidization time can be extended signifi-cantly. Examination of the agglomerates sampled during combustion by various analytical techniques indicates that the high potassium content in straw is the main cause for the formation of agglomerates. In the combustion process, potassium...

  18. Accumulation and selective maternal transfer of contaminants in the turtle Trachemys scripta associated with coal ash deposition

    Energy Technology Data Exchange (ETDEWEB)

    Nagle, R.D.; Rowe, C.L.; Congdon, J.D. [University of Georgia, Aiken, SC (USA). Savannah River Ecology Laboratory

    2001-07-01

    Coal combustion wastes are enriched in a number of potentially toxic compounds and may pose risks to biota exposed to the wastes. Slider turtles (Trachemys scripta) are common inhabitants of coal ash settling basins in South Carolina, USA, where they feed on contaminated prey items and accumulate high levels of potentially toxic compounds in their tissues. Furthermore, female sliders sometimes nest in contaminated spill piles and thus may expose embryos to contaminated soils. We examined two potential pathways by which female T. scripta may influence the survivorship and quality of their offspring in a contaminated habitat: (1) nesting in contaminated soil and (2) maternal transfer of pollutants. Eggs were collected from turtles captured in coal ash-polluted or unpolluted sites; individual clutches were incubated in both ash-contaminated and uncontaminated soil in outdoor, artificial nests. Incubation in contaminated soil was associated with reduced embryo survivorship. Adult females from the polluted site accumulated high levels of As, Cd, Cr, and Se in their tissues, yet Se was the only element transferred maternally to hatchlings at relatively high levels. Hatchlings from polluted-site females exhibited reduced O{sub 2} consumption rates compared to hatchlings from reference sites. Relatively high levels of Se transferred to hatchlings by females at the ash-polluted site might contribute to the observed differences in hatchling physiology.

  19. A scanning electron microscopy study of ash, char, deposits and fuels from straw combustion and co-combustion of coal and straw

    Energy Technology Data Exchange (ETDEWEB)

    Sund Soerensen, H.

    1998-07-01

    The SEM-study of samples from straw combustion and co-combustion of straw and coal have yielded a reference selection of representative images that will be useful for future comparison. The sample material encompassed potential fuels (wheat straw and grain), bottom ash, fly ash and deposits from straw combustion as well as fuels (coal and wheat straw), chars, bottom ash, fly ash and deposits from straw + coal co-combustion. Additionally, a variety of laboratory ashes were studied. SEM and CCSEM analysis of the samples have given a broad view of the inorganic components of straw and of the distribution of elements between individual ash particles and deposits. The CCSEM technique does, however, not detect dispersed inorganic elements in biomass, so to get a more complete visualization of the distribution of inorganic elements additional analyses must be performed, for example progressive leaching. In contrast, the CCSEM technique is efficient in characterizing the distribution of elements in ash particles and between ash fractions and deposits. The data for bottom ashes and fly ashes have indicated that binding of potassium to silicates occurs to a significant extent. The silicates can either be in the form of alumino-silicates or quartz (in co-combustion) or be present as straw-derived amorphous silica (in straw combustion). This process is important for two reasons. One is that potasium lowers the melting point of silica in the fly ash, potentially leading to troublesome deposits by particle impaction and sticking to heat transfer surfaces. The other is that the reaction between potassium and silica in the bottom ash binds part of the potassium meaning that it is not available for reaction with chlorine or sulphur to form KCl or K{sub 2}SO{sub 4}. Both phases are potentially troublesome because they can condense of surfaces to form a sticky layer onto which fly ash particles can adhere and by inducing corrosion beneath the deposit. It appears that in the studied

  20. Coal-gold agglomeration: an alternative separation process in gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Akcil, A.; Wu, X.Q.; Aksay, E.K. [Suleyman Demirel University, Isparta (Turkey). Dept. of Mining Engineering

    2009-07-01

    Considering the increasing environmental concerns and the potential for small gold deposits to be exploited in the future, the uses of environmentally friendly processes are essential. Recent developments point to the potential for greatly increased plant performance through a separation process that combines the cyanide and flotation processes. In addition, this kind of alternative treatment processes to the traditional gold recovery processes may reduce the environmental risks of present small-scale gold mining. Gold recovery processes that applied to different types of gold bearing ore deposits show that the type of deposits plays an important role for the selection of mineral processing technologies in the production of gold and other precious metals. In the last 25 years, different alternative processes have been investigated on gold deposits located in areas where environmental issues are a great concern. In 1988, gold particles were first recovered by successful pilot trial of coal-gold agglomeration (CGA) process in Australia. The current paper reviews the importance of CGA in the production of gold ore and identifies areas for further development work.

  1. Effect of fuel type and deposition surface temperature on the growth and structure of ash deposit collected during co-firing of coal with sewage-sludge, saw-dust and refuse derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kupka, Tomasz; Zajac, Krzysztof; Weber, Roman [Clausthal Univ. of Technology, Clausthal-Zellerfeld (Germany). Inst. of Energy Process Engineering and Fuel Technology

    2008-07-01

    Blends of a South African bituminous ''Middleburg'' coal and three alternative fuels (a municipal sewage-sludge, a saw-dust and a refuse derived fuel) have been fired in the slagging reactor to examine the effect of the added fuel on slagging propensity of the mixtures. Two kinds of deposition probes have been used, un-cooled ceramic probes and air-cooled steal probes. Distinct differences in physical and chemical structures of the deposits collected using the un-cooled ceramic probes and air-cooled metal probes have been observed. Glassy, easily molten deposits collected on un-cooled ceramic deposition probes were characteristic for co-firing of municipal sewage-sludge with coal. Porous, sintered (not molten) but easily removable deposits of the same fuel blend have been collected on the air-cooled metal deposition probes. Loose, easy removable deposits have been sampled on air-cooled metal deposition probe during co-firing of coal/saw-dust blends. The mass of the deposit sampled at lower surface temperatures (550-700 C) was always larger than the mass sampled at higher temperatures (1100-1300 C) since the higher temperature ash agglomerated and sintered much faster than the low temperature deposit. (orig.)

  2. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    -1300°C, and a trend of higher fusion temperatures with increasing contents of Al-silicates and quartz was found.c) Fly ashes, bottom ashes and deposits from coal/straw co-firing were all found to consist mainly of metal-alumina and alumina-silicates. These ashes all melt in the temperature range 1000......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction......, the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co-firing...

  3. Investigation on catalytic gasification of high-ash coal with mixing-gas in a small-scale fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Zhang, J.; Lin, J. [Fuzhou University, Fuzhou (China)

    2005-10-15

    The experimental study on the Yangquan high-ash coal catalytic gasification with mixing gas by using solid alkali or waste liquid of viscose fiber as the catalyst in a small-scale fluidized bed with 28 mm i.d. was carried out. The loading saturation levels of two catalysts in Yangquan high-ash coal are about 6%. Under the gasification temperature ranging from 830 to 900{sup o}C and from 900 to 920{sup o}C, the apparent reaction order of Yangquan high-ash coal with respect to the unreacted carbon fraction approximates to 2.3 and 1/3 for the non-catalyst case, respectively. Also, the different values of apparent reaction order in the two temperature ranges are presented for the case with 3% solid alkali catalyst loaded. At the low temperature ranging from 830 to 860{sup o}C, the apparent reaction order of catalytic gasification is 1 since enough active carbon sites on the coal surface are formed during the catalytic gasification by solid alkali. But at the high temperature ranging from 860 to 920{sup o}C, the sodium carbonate produced by the reaction of solid alkali with carbon dioxide can be easily fused, transferred and re-distributed, which affects the gasification reaction rate, and the apparent reaction order of catalytic gasification is reduced to 1.3. 10 refs., 9 figs., 4 tab s.

  4. Investigation of the potential of coal combustion fly ash for mineral sequestration of CO2 by accelerated carbonation

    International Nuclear Information System (INIS)

    Ukwattage, N.L.; Ranjith, P.G.; Wang, S.H.

    2013-01-01

    Mineral carbonation of alkaline waste materials is being studied extensively for its potential as a way of reducing the increased level of CO 2 in the atmosphere. Carbonation converts CO 2 into minerals which are stable over geological time scales. This process occurs naturally but slowly, and needs to be accelerated to offset the present rate of emissions from power plants and other emission sources. The present study attempts to identify the potential of coal fly ash as a source for carbon storage (sequestration) through ex-situ accelerated mineral carbonation. In the study, two operational parameters that could affect the reaction process were tested to investigate their effect on mineralization. Coal fly ash was mixed with water to different water-to-solid ratios and samples were carbonated in a pressure vessel at different initial CO 2 pressures. Temperature was kept constant at 40 °C. According to the results, one ton of Hazelwood fly ash could sequester 7.66 kg of CO 2 . The pressure of CO 2 inside the vessel has an effect on the rate of CO 2 uptake and the water-to-solid ratio affects the weight gain after the carbonation of fly ash. The results confirm the possibility of the manipulation of process parameters in enhancing the carbonation reaction. - Highlights: ► Mineral sequestration CO 2 by of coal fly ash is a slow process under ambient conditions. ► It can be accelerated by manipulating the process parameters inside a reactor. ► Initial CO 2 pressure and water to solid mixing ratio inside the reactor are two of those operational parameters. ► According to the test results higher CO 2 initial pressure gives higher on rates of CO 2 sequestration. ► Water to fly ash mixing ratio effect on amount of CO 2 sequestered into fly ash

  5. Floating cultivation of marine cyanobacteria using coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M.; Yoshida, E.; Takeyama, H.; Matsunaga, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan). Dept. of Biotetechnology

    2000-07-01

    The aim was to develop improved methodologies for bulk culturing of biotechnologically useful marine cyanobacteria in the open ocean. The viability of using coal fly ash (CFA) blocks as the support medium in a novel floating culture system for marine microalgae was investigated. The marine cyanobacterium Synechococcus sp. NKBC 040607 was found to adhere to floating CFA blocks in liquid culture medium. The marine cyanobacterium Synechococcus sp. NKBG 042902 weakly adhered to floating CFA blocks in BG-11 medium. Increasing the concentration of calcium ion in the culture medium enhanced adherence to CFA blocks.

  6. Measurement of radon activity, exhalation rate and radiation dose in fly ash and coal samples from NTPC, Badarpur, Delhi, India

    International Nuclear Information System (INIS)

    Gupta, Mamta; Verma, K.D.; Mahur, A.K.; Prasad, R.; Sonkawade, R.G.

    2013-01-01

    In the present study radon activities and exhalation rates from fly ash and coal samples from NTPC (National Thermal Power Corporation) situated at Badarpur, Delhi, India, have been measured. 'Sealed Can Technique' using LR-115 type II track detectors was employed. In fly ash samples, radon activity has been found to vary from 400.0 ± 34.7 to 483.9 ± 38.1Bqm -3 with an average value of 447.1 ± 36.6 Bqm -3 and in coal samples, radon activity has been found to vary from 504.0 ± 39.0 to 932.1 ± 52.9 Bqm -3 with an average value of 687.2 ± 45.2 Bqm -3 . Radon exhalation rate from coal is found to be higher than radon exhalation rate from its ash products, whereas the opposite is expected. Indoor inhalation exposure (radon) effective dose has also been estimated. (author)

  7. Study on the technology of decreasing ash and sulfur in coking coal concentrate by deep-cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Li, A.; Li, P.; Chen, S. [Hefei Design and Research Institute of Coal Industry, Hefei (China)

    2007-06-15

    Middling fractions of coking coal, a rare resource in China, were analysed for their embedded minerals both in kind and distribution. Observation with a microscope shows that most are clay minerals of very small particle size. The embedded minerals can be liberated from middling by grinding. Clean coal can be obtained from ground middling by the flocculation-flotation process. The yield of clean coal could thus be increased and its ash and sulfur content decreased. 3 refs., 2 figs., 4 tabs.

  8. Study on the correlation between chemical and mineral composition of coal ashes; Sekitanbaibun no kobutsu soseigakuteki kento kagakubutsu sosei to kobutsugakuteki sosei no sokan

    Energy Technology Data Exchange (ETDEWEB)

    Hirato, M.; Nagashima, S.; Okada, S. [Hachinohe Institute of Technology, Aomori (Japan)

    1996-10-28

    Coal ash is a substance that has been mixed into minerals in the earth`s crust during their coalification process. Estimation was made on what kinds of mineral composition have been mixed into coals. Noted first was the kinds of compounds contained in the ash, wherein the ratios of mass in the compounds and minerals were correlated, and selection was made on minerals which are thought correlated. The selection criterion was based on minerals containing silica, alumina, iron oxide, lime and magnesium as compounds. Then, a phase equilibrium line diagram was used to estimate compositions and melting points of minerals which are thought to have been produced from these compounds. By comparing the estimation with the measured melting points of the ashes, mineral compositions thought reasonable were all selected. Assumption was possible on minerals that are thought to have been transferred into coal ash. Compound indications of ashes from 29 kinds of the world`s typical coals were replaced with the subject minerals and expressed as mineral compositions. As a method of calculation, stoichiometric coefficients for each mineral were determined by taking material balance in atomic/molecular levels in masses of compound aggregates and mineral composition aggregates. 7 tabs.

  9. Evaluation of the CO{sub 2} sequestration capacity for coal fly ash using a flow-through column reactor under ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Ho Young, E-mail: hyjo@korea.ac.kr [Department of Earth and Environmental Sciences, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Ahn, Joon-Hoon; Jo, Hwanju [Department of Earth and Environmental Sciences, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer A conceptual in-situ mineral carbonation method using a coal ash pond is proposed. Black-Right-Pointing-Pointer CO{sub 2} uptake occurred by carbonation reaction of CO{sub 2} with Ca{sup 2+} ions from coal fly ash. Black-Right-Pointing-Pointer The CO{sub 2} sequestration capacity was affected by the solid dosage. Black-Right-Pointing-Pointer Seawater can be used as a solvent for mineral carbonation of coal fly ash. - Abstract: An in-situ CO{sub 2} sequestration method using coal ash ponds located in coastal regions is proposed. The CO{sub 2} sequestration capacity of coal fly ash (CFA) by mineral carbonation was evaluated in a flow-through column reactor under various conditions (solid dosage: 100-330 g/L, CO{sub 2} flow rate: 20-80 mL/min, solvent type: deionized (DI) water, 1 M NH{sub 4}Cl solution, and seawater). The CO{sub 2} sequestration tests were conducted on CFA slurries using flow-through column reactors to simulate more realistic flow-through conditions. The CO{sub 2} sequestration capacity increased when the solid dosage was increased, whereas it was affected insignificantly by the CO{sub 2} flow rate. A 1 M NH{sub 4}Cl solution was the most effective solvent, but it was not significantly different from DI water or seawater. The CO{sub 2} sequestration capacity of CFA under the flow-through conditions was approximately 0.019 g CO{sub 2}/g CFA under the test conditions (solid dosage: 333 g/L, CO{sub 2} flow rate: 40 mL/min, and solvent: seawater).

  10. Alkaline hydrothermal de-ashing and desulfurization of low quality coal and its application to hydrogen-rich gas generation

    International Nuclear Information System (INIS)

    Mursito, Anggoro Tri; Hirajima, Tsuyoshi; Sasaki, Keiko

    2011-01-01

    This paper describes experimental research and a fundamental study of alkaline hydrothermal treatment of high-sulfur, high-ash coal from Banten, Java-Indonesia. Experiments were carried out on a laboratory-scale 0.5 L batch reactor. The alkaline hydrothermal treatment gave upgraded clean coal with low sulfur content (about 0.3 wt.%) and low ash content (about 2.1 wt.%). A zero carbon dioxide and pure hydrogen gas were produced at 330 o C by introducing an alkali (sodium hydroxide, NaOH) to the hydrothermal treatment of raw coal. X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques were used to test for the removal or reduction of major inorganic elements in the coal, and changes in carbon-functional groups and their properties were determined by Fourier transform infrared spectroscopy (FTIR) and Carbon-13 of nuclear magnetic resonance ( 13 C NMR) tests on the product of the hydrothermal upgrading and demineralization process.

  11. Recovery of gallium from coal fly ash by a dual reactive extraction process

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, B.; Pazos, C.; Coca, J. [University of Oviedo, Oviedo (Spain). Dept. of Chemical Engineering and Environmental Technology

    1997-08-01

    This paper describes the extraction of gallium from coal fly ash by leaching and extraction with commercial extractants Amerlite LA-2 and LIX-54N dissolved in kerosene. Leaching of gallium and other metals from the fly ash was carried out with 6 M hydrochloric acid. The leaching liquor is first contacted with Amerlite LA-2 which extracts the gallium and iron. The iron is then precipitated with sodium hydroxide, while gallium remains in solution. Gallium is extracted selectively from the base solution with LIX 54; the resulting stripped solution contains 83% of the gallium present in the leaching liquor.

  12. Making the most of South Africa’s low-quality coal: Converting high-ash coal to fuel gas using bubbling fluidised bed gasifiers

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2010-08-31

    Full Text Available for process heating or for power generation using the IGCC (Integrated Gasification Combined Cycle) process. A high-ash coal from the Waterberg coalfield was tested in a bubbling fluidised bed gasifier using various gasification agents and operating conditions...

  13. Adsorption of As, B, Cr, Mo and Se from coal fly ash leachate by Fe3 modified bentonite clay

    CSIR Research Space (South Africa)

    Vhahangwele, M

    2015-01-01

    Full Text Available Fly ash contains the potentially toxic elements As, B, Cr, Mo and Se which upon contact with water may be leached to contaminate surface and subsurface water bodies. This study aims to evaluate the adsorption of these elements from coal fly ash...

  14. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingen; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-07-15

    Highlights: • An environmental friendly vacuum reduction metallurgical process is proposed. • Rare and valuable metal germanium from coal fly ash is recycled. • Residues are not a hazardous material and can be further recycled. • A germanium recovery ratio of 94.64% is obtained in pilot scale experiments. - Abstract: The demand for germanium in the field of semiconductor, electronics, and optical devices is growing rapidly; however, the resources of germanium are scarce worldwide. As a secondary material, coal fly ash could be further recycled to retrieve germanium. Up to now, the conventional processes to recover germanium have two problems as follows: on the one hand, it is difficult to be satisfactory for its economic and environmental effect; on the other hand, the recovery ratio of germanium is not all that could be desired. In this paper, an environmentally-friendly vacuum reduction metallurgical process (VRMP) was proposed to recover germanium from coal fly ash. The results of the laboratory scale experiments indicated that the appropriate parameters were 1173 K and 10 Pa with 10 wt% coke addition for 40 min, and recovery ratio germanium was 93.96%. On the basis of above condition, the pilot scale experiments were utilized to assess the actual effect of VRMP for recovery of germanium with parameter of 1473 K, 1–10 Pa and heating time 40 min, the recovery ratio of germanium reached 94.64%. This process considerably enhances germanium recovery, meanwhile, eliminates much of the water usage and residue secondary pollution compared with other conventional processes.

  15. Utilization options for fly ash, bottom ash, and slag in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Manz, O.E.

    1995-12-01

    Since 1967, at least six ash utilization symposiums have been held in the United States, with papers presented by several European authors on the utilization of coal by-products in Eastern Europe. There is currently over 80,000 megawatts of installed coal-fired capacity available in that region. Unfortunately, of the 117,778,000 tonnes of fly ash, bottom ash, and slag produced in Eastern Europe in 1989, only 13% was utilized. This paper outlines the research and levels and kinds of coal by-product utilization taking place in Eastern Europe since the late 1960s.

  16. Reduced ash related operational problems (slagging, bed agglomeration, corrosion and fouling) by co-combustion biomass with peat; Minskade askrelaterade driftsproblem (belaeggning, slaggning, hoegtemperatur-korrosion, baeddagglomerering) genom inblandning av torv i biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Marcus; Boman, Christoffer; Erhardsson, Thomas; Gilbe, Ram; Pommer, Linda; Bostroem, Dan; Nordin, Anders; Samuelsson, Robert; Burvall, Jan

    2006-12-15

    Combustion studies were performed in both a fluidized bed (5 kW) and in an under-feed pellets burner (20 kW) to elucidate the responsible mechanisms for the positive effects on ash related operational problems (i.e. slagging, fouling, corrosion and bed agglomeration) during co-combustion of several problematic biomass with peat. Three typical carex-containing Swedish peat samples with differences in e.g. silicon-, calcium- and sulfur contents were co-fired with logging residues, willow and straw in proportions corresponding to 15-40 weight %d.s. Mixing of corresponding 20 wt-% of peat significantly reduced the bed agglomeration tendencies for all fuels. The fuel specific agglomeration temperature were increased by 150-170 deg C when adding peat to the straw fuel and approximately 70-100 deg C when adding peat to the logging residue- and the willow fuel. The increased level of calcium in the inner bed particle layer caused by the added reactive calcium from the peat and/or removing alkali in the gas phase to a less reactive particular form via sorption and/or reaction with reactive peat ash (containing calcium, silica etc.) during which larger particles (>1{mu}m) are formed where collected potassium is present in a less reactive form, is considered to be the dominated reason for the increased agglomeration temperatures during combustion of logging residues and willow. During straw combustion, the ash forming matter were found as individual ash sticky particles in the bed. The iron, sulphur and calcium content of these individual ash particles were significantly increased when adding peat to the fuel mix thereby decreasing the stickiness of these particles i.e. reducing the agglomeration tendencies. Adding peat to the relatively silicon-poor fuels (willow and logging residues) resulted in higher slagging tendencies, especially when the relative silicon rich peat fuel (Brunnskoelen) was used. However, when co-combusting peat with the relatively silicon and potassium

  17. The characteristics of bed agglomeration during fluidized bed combustion of eucalyptus bark

    International Nuclear Information System (INIS)

    Chaivatamaset, Pawin; Tia, Suvit

    2015-01-01

    The bed agglomeration behaviors were investigated experimentally when eucalyptus bark was burning tested in a laboratory scale fluidized bed reactor. The focuses of this work were the influences of operating conditions and bed materials on the bed agglomeration tendency and the elucidation in the behaviors of fuel inorganic elements and the governing mode of the agglomeration. It was found that the defluidization caused by the bed agglomeration was clearly detectable from the decrease in measured bed pressure. The growth of bed particle and accumulation of agglomerates during combustion provided the partial to complete defluidization. The defluidization was promoted by the increase of bed temperature and bed particle size, and the decrease of fluidizing air velocity. The SEM-EDS analyses revealed that the bed agglomeration was mainly attributed to the formation of potassium silicate compounds as liquid phase during the combustion. This was initiated by the chemical reaction between the bed particle and the released ash constituents. In this study, the inorganic migration from fuel particle to bed particle was likely dominated by the condensation/reaction. The thermodynamic examination by ternary phase diagram analysis corroborated that the liquid phase formation of the ash derived materials controlled the agglomeration. The alumina sand prevented the bed agglomeration since it was inactive in the formation of viscous molten substances during combustion at the observed temperatures. - Highlights: • The behaviors of bed agglomeration were studied during the fluidized bed combustion of eucalyptus bark. • The increase in bed temperature and sand size, and the decrease of air velocity promoted bed defluidization. • The formation of molten potassium silicate compounds conduced to the bed agglomeration. • Condensation/reaction was the dominant inorganic migration mechanism from fuel particle to bed particle. • The alumina sand prevented effectively the bed

  18. Utilization of coal ash from fluidized-bed combustion boilers as road base material; Sekitandaki ryudoso boiler kara no sekitanbai no robanzai to shite no riyo

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Y. [Kawasaki Heavy Industries, Ltd., Kobe (Japan); Kozasa, K. [Center for Coal Utilization, Japan, Tokyo (Japan); Tsuzura, K. [Naruto Salt Mfg. Co. Ltd., Tokushima (Japan); Izumi, H. [Nippon Hodo Co. Ltd., Tokyo (Japan)

    1998-03-01

    Coal ash from the fluidized bed boiler is evaluated for its properties as is, as solidified or granulated, and as the roadbed material. The coal ash tested in the experiment is a mixture of ash from the fluidized bed boiler bottom, ash from the cyclone separator, and ash from the bag filter. In the manufacture of solid or granulated bodies, coal ashes are kneaded in water whose amount puts the mixture near the plasticization limit, are pressed in a low-pressure press and made into solid bodies by a 15-hour curing in 60degC saturated steam, and the solid bodies are crushed into solid granules. A content release test is conducted about the release of dangerous substances, and road paving experiments are conducted to learn the workability and serviceability of the granulated material as a road paving material. A study of the experimental results discloses what is mentioned below. Coal ash containing 10-20vol% of CaO and 15vol% or less of unburnt carbon turns into a high-strength solid after curing in saturated steam whose temperature is not higher than 60degC. The granulated solid satisfies the standards that an upper subbase material is expected to satisfy. It also meets the environmental standards in a release content test for soil set forth by Environment Agency notification No.46. 8 refs., 8 figs., 4 tabs.

  19. Compressive and tensile strength for concrete containing coal bottom ash

    Science.gov (United States)

    Maliki, A. I. F. Ahmad; Shahidan, S.; Ali, N.; Ramzi Hannan, N. I. R.; Zuki, S. S. Mohd; Ibrahim, M. H. W.; Azmi, M. A. Mohammad; Rahim, M. Abdul

    2017-11-01

    The increasing demand in the construction industry will lead to the depletion of materials used in construction sites such as sand. Due to this situation, coal bottom ash (CBA) was selected as a replacement for sand. CBA is a by-product of coal combustion from power plants. CBA has particles which are angular, irregular and porous with a rough surface texture. CBA also has the appearance and particle size distribution similar to river sand. Therefore, these properties of CBA make it attractive to be used as fine aggregate replacement in concrete. The objectives of this study were to determine the properties of CBA concrete and to evaluate the optimum percentage of CBA to be used in concrete as fine aggregate replacement. The CBA was collected at Tanjung Bin power plant. The mechanical experiment (compressive and tensile strength test) was conducted on CBA concrete. Before starting the mechanical experiment, cubic and cylindrical specimens with dimensions measuring 100 × 100 × 100 mm and 150 × 300 mm were produced based on the percentage of coal bottom ash in this study which is 0% as the control specimen. Meanwhile 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of CBA were used to replace the fine aggregates. The CBA concrete samples were cured for 7 days and 28 days respectively to maintain the rate of hydration and moisture. After the experimental work was done, it can be concluded that the optimum percentage of CBA as fine aggregate is 60% for a curing period of both 7 days and 28 days with the total compressive strength of 36.4 Mpa and 46.2 Mpa respectively. However, the optimum percentage for tensile strength is at 70% CBA for a curing period of both 7 days and 28 days with a tensile strength of 3.03 MPa and 3.63 MPa respectively.

  20. Mapping of Trace Elements in Coal and Ash Research Based on a Bibliometric Analysis Method Spanning 1971–2017

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2018-02-01

    Full Text Available Coal is the most important fossil energy used in China. The environmental impact of trace elements released in coal combustion has become one of the hottest issues in recent years. Based on a software named CiteSpace, and social network analysis (SNA, a bibliometric analysis of research into trace elements in coal and ash field during 1971–2017 is presented with the information of authors, countries, institutions, journals, hot issues and research trends in the present study. The study results indicate that: (1 Shifeng Dai, Robert B Finkelman, Guijian Liu and James C Hower have a large number of publications with great influence. (2 China (29.8% and USA (22.2% have high productivity in total publications. China and the USA correlate closely in the cooperative web system. (3 China University of Mining and Technology and Chinese Academy of Sciences take the leading position in the quantity of publications among all research institutions. (4 Energy and fuels, engineering and environmental science are three disciplines with the most studies in this field. (5 International Journal of Coal Geology, Fuel, Energy and Fuels and Fuel Processing Technology are the top four journals with the most publications in this field. (6 The enrichment origin and modes of occurrence of trace elements are the mainstream research related to trace elements in coal and ash. The environmental problems caused by coal combustion have promoted the development of trace elements in coal research, and human health is getting more and more popular in recent years. The study findings provide a better understanding of features of trace elements in coal and ash research, which could be taken as a reference for future studies in this field.

  1. Resource recovery from coal fly ash waste: an overview study

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V.; Matsuda, M.; Miyake, M. [Okayama University, Okayama (Japan). Graduate School of Environmental Science

    2008-02-15

    Coal fly ash (CFA) is a useful byproduct of the combustion of coal. It is composed primarily of almost perfectly spherical aluminosilicate glass particles. This spherical characteristic and other characteristics of CFA should be exploited, rather than simply using CFA as inert filler for construction. Unfortunately, the presence of carbon residues and high levels of heavy metals has so far limited the uses of CFA. Forced leaching methods have been used to improve the technical and environmentally friendly qualities of CFA, but these processes do not seem to be economically viable. Actually, CFA is a major source of Si and Al for the synthesis of industrial minerals. Potential novel uses of CFA, e.g., for the synthesis of ceramic materials, ceramic membrane filters, zeolites, and geopolymers, are reviewed in this article with the intention of exploring new areas that will

  2. Characterization of Rare Earth Element Minerals in Coal Utilization Byproducts

    Energy Technology Data Exchange (ETDEWEB)

    Montross, Scott N. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); Verba, Circe A. [National Energy Technology Lab. (NETL), Albany, OR (United States). Research Innovation Center; Collins, Keith [National Energy Technology Lab. (NETL), Albany, OR (United States). Research Innovation Center

    2017-07-17

    The United States currently produces over 100 million tons of coal utilization byproducts (CUB) per year in the form of fly ash, bottom ash, slag, and flue gas (American Coal Ash Association (ACCA), 2015). But this “waste material” also contains potentially useful levels of rare earth elements (REE). Rare earth elements are crucial for many existing and emerging technologies, but the U.S. lacks a domestic, sustainable REE source. Our project explored the possibility of developing a supply of REEs for U.S. technologies by extracting REEs from CUBs. This work offers the potential to reduce our dependence on other countries for supply of these critical elements (NETL, REE 2016 Project Portfolio). Geologic and diagenetic history, industrial preparation methods, and the specific combustion process all play major roles in the composition of CUB. During combustion, inorganic mineral phases of coal particles are fluidized at temperatures higher than 1400oC, so inorganic mineral materials are oxidized, fused, disintegrated, or agglomerated into larger spherical and amorphous (non-crystalline) particles. The original mineralogy of the coal-containing rock and heating/cooling of the material significantly affects the composition and morphology of the particles in the combustion byproduct (Kutchko and Kim, 2006). Thus, different types of coal/refuse/ash must be characterized to better understand mineral evolution during the combustion process. Our research focused on developing a working model to address how REE minerals behave during the combustion process: this research should help determine the most effective engineering methods for extracting REEs from CUBs. We used multimodal imaging and image processing techniques to characterize six rock and ash samples from different coal power plants with respect to morphology, grain size, presence of mineral phases, and elemental composition. The results of these characterization activities provided thresholds for realizing the

  3. The analysis of coal-and coke ashes by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Coutinho, C.A.; Prates, H.T.; Pereira, C.P.

    1977-01-01

    In order to provide better conditions for the control of the chemical composition of the load in the USIMINAS blast furnaces, a method of analysis for sodium, potassium, iron, aluminium, calcium, magnesium and maganese in coal-and coke ash by atomic absorption spectrophotometry was developed. The precision of the calibration curves and the reproducibility of the results are given, together with an estimate of the speed compared with conventional methods of chemical analysis [pt

  4. Determining ash content in flotation wastes by means of the MPOF optical ash meter. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, T; Sliwa, J

    1982-03-01

    The paper evaluates an experimental unit of the MPOF optical ash meter, developed by the EMAG Research and Production Center for Electrical Engineering and Mining Automation. The MPOF, which is being tested at the coal preparation plant of the 30 lecia PRL mine, is the first system for continuous determination of ash content in flotation tailings developed in Poland. A block scheme of the system is given. It consists of a measuring head and electronic system which processes data supplied by the measuring head and calculates ash content. System operation is based on the principle of determining ash content in a mixture of coal and mineral wastes by measuring mixture reflectivity. Determining ash content in the mixture is possible as reflectivity coefficients for coal and ash are constant. Performance of the MPOF optical ash meter is evaluated; the results are shown in a table and a scheme. Measurement accuracy is satisfactory.

  5. Direct synthesis of carbon nanofibers from South African coal fly ash

    Science.gov (United States)

    Hintsho, Nomso; Shaikjee, Ahmed; Masenda, Hilary; Naidoo, Deena; Billing, Dave; Franklyn, Paul; Durbach, Shane

    2014-08-01

    Carbon nanofibers (CNFs), cylindrical nanostructures containing graphene, were synthesized directly from South African fly ash (a waste product formed during the combustion of coal). The CNFs (as well as other carbonaceous materials like carbon nanotubes (CNTs)) were produced by the catalytic chemical vapour deposition method (CCVD) in the presence of acetylene gas at temperatures ranging from 400°C to 700°C. The fly ash and its carbonaceous products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), laser Raman spectroscopy and Brunauer-Emmett-Teller (BET) surface area measurements. It was observed that as-received fly ash was capable of producing CNFs in high yield by CCVD, starting at a relatively low temperature of 400°C. Laser Raman spectra and TGA thermograms showed that the carbonaceous products which formed were mostly disordered. Small bundles of CNTs and CNFs observed by TEM and energy-dispersive spectroscopy (EDS) showed that the catalyst most likely responsible for CNF formation was iron in the form of cementite; X-ray diffraction (XRD) and Mössbauer spectroscopy confirmed these findings.

  6. Distributional Fate of Elements during the Synthesis of Zeolites from South African Coal Fly Ash

    Directory of Open Access Journals (Sweden)

    Pieter W. Du Plessis

    2014-04-01

    Full Text Available The synthesis of zeolites from South African coal fly ash has been deemed a viable solution to the growing economical strain caused by the disposal of ash in the country. Two synthesis routes have been studied thus far namely the 2-step method and the fusion assisted process. Fly ash contains several elements originating from coal which is incorporated in the ash during combustion. It is vital to determine the final destination of these elements in order to unveil optimization opportunities for scale-up purposes. The aim of this study was to perform a material balance study on both synthesis routes to determine the distributional fate of these elements during the synthesis of zeolites. Zeolites were first synthesized by means of the two synthesis routes. The composition of all raw materials and products were determined after which an overall and elemental balance were performed. Results indicated that in the 2-step method almost all elements were concentrated in the solid zeolite product while during the fusion assisted route the elements mostly report to the solid waste. Toxic elements such as Pb, Hg, Al, As and Nb were found in both the supernatant waste and washing water resulting from each synthesis route. It has also been seen that large quantities of Si and Al are wasted in the supernatant waste. It is highly recommended that the opportunity to recycle this liquid waste be investigated for scale-up purposes. Results also indicate that efficiency whereby Si and Al are extracted from fused ash is exceptionally poor and should be optimized.

  7. Project ash cultch: A report on optimal oyster cultch based on a prepared fly ash substratum

    International Nuclear Information System (INIS)

    Price, K.S.; Hansen, K.M.; Schlekat, C.E.

    1991-01-01

    Based on a three year study involving setting, growth, mortality, oyster condition, and metals accumulation, the evidence is extensive and convincing that stabilized coal ash is an acceptable oyster growing cultch (substratum). Oyster larvae are attracted to set on coal ash cultch at commercial fishery densities, tend to grow as well as on natural substrata (oyster shell), and are moderately more exposed to predators on the puck shaped ash materials as produced for this study. Oysters grown for one to two years on coal ash do not accumulate heavy metals and generally are in good health as measured by several biological condition indexes

  8. Coal-oil assisted flotation for the gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sen, S.; Seyrankaya, A.; Cilingir, Y. [Dokuz Eylul University, Izmir (Turkey). Mining Engineering Department

    2005-09-01

    Using coal-oil agglomeration method for free or native gold recovery has been a research subject for many researchers over the years. In this study, a new approach 'coal-oil assisted gold flotation' was used to recover gold particles. The coal-oil-gold agglomeration process considers the preferential wetting of coal and gold particles. The method takes advantage of the greater hydrophobicity and oleophilicity of coal and gold compared to that the most gangue materials. Unlike the previous studies about coal-oil-gold agglomeration, this method uses a very small amount of coal and agglomerating agents. Some experiments were conducted on synthetic gold ore samples to reveal the reaction of the coal-oil assisted gold flotation process against the size and the number of gold particles in the feed. It was observed that there is no significant difference in process gold recoveries for feeds assaying different Au. Although there was a slight decrease for coarse gold particles, the process seems to be effective for the recovery of gold grains as coarse as 300 {mu} m. The decrease in the finest size ({lt} 53 {mu} m) is considered to be the decrease in the collision efficiency between the agglomerates and the finest gold particles. The effect of changing coal quantity for constant ore and oil amounts was also investigated. The experiments showed that the process gives very similar results for both artificial and natural ore samples; the best results have been obtained by using 30/1 coal-oil ratio.

  9. Experimental on fly ash recirculation with bottom feeding to improve the performance of a circulating fluidized bed boiler co-burning coal sludge

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lunbo; Xu, Guiling; Liu, Daoyin; Chen, Xiaoping; Zhao, Changsui [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    With the aim of reducing carbon content in fly ash, fly ash recirculation with bottom feeding (FARBF) technology was applied to a 75 t/h Circulating Fluidized Bed (CFB) boiler burning mixture of coal and coal sludge. And industrial experiments were carried out to investigate the influence of FARBF technology on the combustion performance and pollutant emission characteristics of the CFB boiler. Results show that as the recirculation rate of fly ash increases, the CFB dense bed temperature decreases while the furnace outlet temperature increases, and the temperature distribution in the furnace becomes uniform. Compared with the conditions without fly ash recirculation, the combustion efficiency increases from 92 to 95% when the recirculation rate increases to 8 t/h, and the desulfurization efficiency also increases significantly. As the recirculation rate increases, the emissions of NO and CO decrease, but the particulate emission increases. The present study indicates that FARBF technology can improve the combustion performance and desulfurization efficiency for the CFB boilers burning coal sludge, and this can bring large economical and environmental benefits in China.

  10. Determination of Cd, Hg, Pb and Tl in coal and coal fly ash slurries using electrothermal vaporization inductively coupled plasma mass spectrometry and isotopic dilution

    Energy Technology Data Exchange (ETDEWEB)

    Maia, S.M.; Pozebon, D.; Curtius, A.J. [Univ. Federal de Santa Catarina, Florianopolis, SC (Brazil)

    2003-07-01

    A method has been investigated for the determination of Cd, Hg, Pb and Tl in coal and in coal fly ash, using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry and isotope dilution. The slurry, 25 mg ml{sup -1}, was prepared by mixing the powdered sample (less than or equal to 36 - 45 mm) with acid solutions (nitric acid for coal and nitric and hydrofluoric acids for coal fly ash) and submitting the mixture to an ultrasonic agitation, letting it stand afterwards in a water bath at 60{sup o}C for 2 h. An ultrasonic probe was used to homogenize the slurry in the autosampler cup just before its introduction into the graphite tube. The best conditions were determined regarding analyte sensitivity, furnace temperature program, amount of modifier, acid concentration, gas flow rate and particle size. For Hg, the pyrolysis stage was omitted and a low vaporization temperature was used (450 - 1000{sup o}C); the residual matrix was eliminated in the first step of the following cycle. The modifiers used were: Pd for Cd and Tl; Au, Ir or Pd for Hg; Ir or Pd for Pb. The accuracy of the method was checked by analyzing six certified coal reference materials (SARM 20, SARM 19, BCR No. 40, BCR No. 180, BCR No. 181 and NIST 1630a) and one certified coal fly ash (NIST 1633b). With one exception (Hg in BCR No. 180), the found concentrations were typically within 95% confidence interval of the certified values, or close enough to the recommended values, as long as the samples were ground to a small enough particle size. The limits of detection were typically around 0.08 {mu}g g{sup -1}, 0.03 {mu}g g{sup -1}, 1 {mu}g g{sup -1} and 0.02 {mu}g g{sup -1} for Cd, Hg, Pb and Tl, respectively. The precision was also adequate with relative standard deviations of usually < 5%.

  11. State and performance of on-stream ash content determination in lignite and black coal using 2-energy transmission technique

    International Nuclear Information System (INIS)

    Thuemmel, H.W.; Koerner, G.; Leonhardt, J.

    1986-01-01

    The total r.m.s. ash error of the 2-energy transmission on-stream ash gauges KRAS-2 (CIIRR, GDR) and SIROASH (Australia) are 4 weight percentage for raw lignite and 0.5 weight percentage for black coal, respectively. A detailed error analysis shows that this difference is due to the high water content and to strong variations in the ash composition of raw lignite. Both gauges show essentially the same radiometric performance. (author)

  12. Effects of process parameters and ash on the adsorption properties of activated carbon from coals

    International Nuclear Information System (INIS)

    Gao, F.; Han, L.

    2013-01-01

    super-activated carbon was prepared from three representative shanxi coals, i.e. datong bituminous coal, yangquan anthracite and jincheng anthracite by KOH activation. The optimum parameters were obtained by comparing CCl/sub 4/ absorption values of activated carbon (ac). In addition, pristine coal and ac were deashed by acid washing, respectively. The effect of ash content on the adsorption properties of ac was studied. the results indicate that CCl/sub 4/ adsorption value of ac from yangquan anthracite with deashing treatment reaches up to 3301 mg/g when the activated temperature, activated time and ratio of alkali to carbon are 1830 degree C, 60 min and 5/1, respectively. (author)

  13. Agglomeration mechanism in biomass fluidized bed combustion – Reaction between potassium carbonate and silica sand

    DEFF Research Database (Denmark)

    Anicic, Bozidar; Lin, Weigang; Dam-Johansen, Kim

    2018-01-01

    Agglomeration is one of the operational problems in fluidized bed combustion of biomass, which is caused by interaction between bed materials (e.g. silica sand) and the biomass ash with a high content of potassium species. However, the contribution of different potassium species to agglomeration ...

  14. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Akan-Etuk, A.; Diaz, R.; Niksa, S.

    1991-10-01

    The objective of the present work is to introduce an experimental program that will eventually lead to time-resolved iron ash composition over the technological operating domain. The preceding literature survey suggests two important stipulations on any such experimental program. The first stipulation is that good control must be established over the operating conditions, to accurately quantify their effects. The other is that data must be obtained rapidly, to thoroughly cover the important operating domain. This work presents a series of studies that has characterized the desulfurization of pyrite during the early stages of combustion. An experimental system was established and used to monitor the effects of oxygen, temperature, and residence time on the evolution of condensed phase products of the combustion of pure pyrite. (VC)

  15. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt

    2009-01-01

    Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome...... ash deposits which contain significant concentrations of alkali, and earth-alkali metals. The specific composition of biomass deposits give different characteristics as compared to coal ash deposits, i.e. different physical significance of the deposition mechanisms, lower melting temperatures, etc....... Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster...

  16. Comparing grey water versus tap water and coal ash versus perlite on growth of two plant species on green roofs.

    Science.gov (United States)

    Agra, Har'el; Solodar, Ariel; Bawab, Omar; Levy, Shay; Kadas, Gyongyver J; Blaustein, Leon; Greenbaum, Noam

    2018-08-15

    Green roofs provide important ecosystem services in urban areas. In Mediterranean and other semi-arid climate regions, most perennial plants on green roofs need to be irrigated during the dry season. However, the use of freshwater in such regions is scarce. Therefore, the possibility of using grey water should be examined. Coal ash, produced primarily from the burning of coal in power plants, constitutes an environmental contaminant that should be disposed. One option is to use ash as a growing substrate for plants. Here, we compare the effects of irrigating with grey- versus tap-water and using ash versus perlite as growing substrates in green roofs. The study was conducted in northern Israel in a Mediterranean climate. The design was full factorial with three factors: water-type (grey or tap-water)×substrate-type (coal ash vs perlite)×plant species (Phyla nodiflora, Convolvulus mauritanicus or no-plant). The development of plants and the quality of drainage water along the season, as well as quality of the used substrates were monitored. Both plant species developed well under all the experimental conditions with no effect of water type or substrate type. Under all treatments, both plant species enhanced electrical conductivity (EC) and chemical oxygen demand (COD) of the drainage water. In the summer, EC and COD reached levels that are unacceptable in water and are intended to be reused for irrigation. We conclude that irrigating with grey water and using coal ash as a growth substrate can both be implemented in green roofs. The drainage from tap water as well as from grey water can be further used for irrigating the roof, but for that, COD and EC levels must be lowered by adding a sufficient amount of tap water before reusing. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Agglomeration and Deposition Behaviour of Solid Recovered Fuel

    DEFF Research Database (Denmark)

    Pedersen, Morten Nedergaard; Jensen, Peter Arendt; Hjuler, Klaus

    2016-01-01

    formation, or accumulation of impurities. The combustion of polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), wood, and SRF were studied in a rotary drum furnace. The combustion was recorded on a camera (60 frames per second), so that any agglomeration or deposition of fuel or ash...

  18. Differentiation of volcanic ash-fall and water-borne detrital layers in the Eocene Senakin coal bed, Tanjung Formation, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, L F; Moore, T A [US Geological Survey, Reston, VA (USA). National Center

    1993-02-01

    The Sangsang deposit of the Eocene Senakin coal bed, Tanjung Formation, southeastern Kalimantan, Indonesia, contains 11 layers, which are thin ([lt] 5 cm) and high in ash ([gt] 70%). These layers are characterized by their pelitic macroscopic texture. Examination of eight of the layers by scanning-electron microscopy, energy-dispersive X-ray, and X-ray diffraction analyses show that they are composed primarily of fairly well-crystallized kaolinite, much of which is vermicular. Accessory minerals include abundant Ti oxide, rare-earth element-rich Ca and Al phosphates, quartz that luminesces in the blue colour range, and euhedral to subhedral pyrooxene, hornblende, zircon, and sanidine. Although this mineral suite is suggestive of volcanic ash-fall material, only the four pelitic layers in the middle of the bed are thought to be solely derived from volcanic ash-falls on the basis of diagnostic minerals, replaced glass shards, and lithostratigraphic relationships observed in core and outcrop. The three uppermost pelitic layers contain octahedral chromites, some quartz grains that luminesce in the organic colour range, and some quartz grains that contain two-phase fluid inclusions. These layers are interpreted to be derived from a combination of volcanic ash-fall material and hydrologic transport of volcaniclastic sediment. In contrast, the lowermost pelitic layer, which contains large, rounded FeMg-rich chromites, is thought to have been dominantly deposited by water. The source of the volcanic ash-fall material may have been middle Tertiary volcanism related to plate tectonic activity between Kalimantan and Sulawesi. The volcanic ash was deposited in sufficient amounts to be preserved as layers within the coal only in the northern portions of the Senakin region: the southern coal beds in the region do not contain pelitic layers. 29 refs., 8 figs., 3 tabs.

  19. Evolution of coal ash solidification properties with disposal site depth and age, 'Gacko' Thermal power plant case

    Directory of Open Access Journals (Sweden)

    Knežević Dinko

    2017-01-01

    Full Text Available Ash with high calcium content is produced by coal combusting in 'Gacko' thermal power plant (Bosnia and Herzegovina. Result of controlled mixture of water and ash is spontaneous ash solidification on disposal site. Speed and solidification efficiency depends on content of calcium-oxide in ash and water: ash mass ratio, which was determined by previous research. Mass ratio that was chosen as the most suitable ratio for industrial usage (roughly was 1:1. Samples of ash of different age were taken after 6.5 years of exploitation and their chemical, physical, mineralogical and geotechnical characteristics were analyzed. Disposed ash was stratified and very heterogeneous. It was shown that great impact on solidification process in practice have climate conditions, proper handling slurry processing, work continuity and disposal site preparation. Great impact of water is noticed which is, because of its water permeability filtrated into lower layers and significantly alters it characteristic.

  20. The reaction of acid mine drainage with fly ash from coal combustion

    International Nuclear Information System (INIS)

    Kim, A.G.

    1999-01-01

    The placement of alkaline fly ash in abandoned, reclaimed or active surface coal mines is intended to reduce the amount of acid mine drainage (AMD) produced at such sites by neutralization, inhibition of acid forming bacteria, encapsulation of the pyrite or water diversion. A continuing concern with this application is the potential release of trace elements from the fly ash when it is placed in contact with AMD. To investigate the possible release of antimony, arsenic, barium, boron, cadmium, chromium, cobalt, copper, lead, nickel, selenium, and zinc from fly ash, a series of column leaching tests were conducted. A one kg fly ash sample, placed in a 5-cm by 1 m acrylic columns, was leached at a nominal rate of 250 mL/d for between 30 and 60 days. The leachant solutions were deionized water, and dilute solutions of sulfuric acid and ferric chloride. Leaching tests have been completed on 28 fly ash samples. leachate data, analyzed as the mass extracted with respect to the concentration in the solid, indicate that the release of trace elements is variable, with only barium and zinc extracted at greater than 50 pct of the amount present in the original sample. As a comparison, water quality changes have been monitored at three sites where fly ash grout was injected after reclamation to control AMD. When compared before and after grouting, small increases in pH and decreases in acidity at discharge points were observed. Concentrations of trace metals were found to be comparable in treated and untreated areas. When grouted and ungrouted areas were compared, the effect of the fly ash was shown to be localized in the areas of injection. These studies indicated that when fly ash is used as a reagent to control of AMD, the release of trace elements is relatively small

  1. Test work of sand compaction pile method on coal ash soil foundation. Sekitanbai jiban ni okeru sand compaction pile koho no shiken seko

    Energy Technology Data Exchange (ETDEWEB)

    Goto, K.; Maeda, S.; Shibata, T. (The Kansai Electric Power Co. Inc., Osaka (Japan))

    1992-01-25

    As an electric power supply source after the 1990 {prime}s, Nos. 5 and 6 units are additionally being constructed by Kansai Electric Power in its Himeji Power Station No.1 which is an exclusively LNG burning power station. The additional construction site of those units is of soil foundation reclaimed with coal ash which was used residual product in the existing No.1 through No.4 units. As a result of soil foundation survey, the coal ash layer and sand layer were known to be of material to be possibly liquidized at the time of earthquake. As measures against the liquidization, application was basically made of a sand compaction pile (SCP) method which is economical and abundant in record. However, that method was so short of record in the coal ash layer that its evaluation was difficult in soil reforming effect. Therefore, its applicability was evaluated by a work test on the site, which resulted in a confirmation that the coal ash as well as the sand can be sufficiently reformed by the SCP method. Started in September, 1991, the additional construction of Nos. 5 and 6 units in Himeji Power Station No.1 uses a 1.5m pitch SCP method to reform the soil foundation. 3 refs., 10 figs., 1 tab.

  2. Revegetation on a coal fine ash disposal site in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Van Rensburg, L.; De Sousa Correia, R.I.; Booysen, J. [Potchefstroom Univ. for Christian Higher Education (South Africa). Research Inst. for Reclamation Ecology; Ginster, M. [Sastech Research and Development, Sasolburg (South Africa)

    1998-11-01

    Eight medium amendments were conducted on top of a fine ash coal dump (i) to evaluate a few cost-effective treatments that could determine the minimum fertility status required for the local ash to support the establishment of a viable vegetation cover, and (ii) to select suitable grass species that would establish on the ash and could serve as a foundation for long-term rehabilitation. Degree and success of grass establishment per medium amelioration treatment is expressed in terms of total biomass, percentage basal cover, and in terms of a condition assessment model. Both the chemical and physical nature of the ash medium before and after amendment was characterized, as were the concentrations of some essential and potentially toxic elements in leaf samples. In terms of medium amelioration 5000 kg ha{sup {minus}1} compost, or 500 kg ha{sup {minus}1} kraal manure or 480 kg 2:3:2 ha{sup {minus}1} proved to be most effective. The grass species that occurred with the highest frequency, irrespective of treatment, were the perennials bermudagrass [Cynodon dactylon (L.) pers. var dactylon], weeping lovegrass [Eragrostis curvula (Schrader) Nees], and the annual teff [Eragrostis tef (Zuccagni) Trotter]. Of the potentially toxic extractable metals monitored in the leaves of vegetation on the dump, only Se accumulated to an average level of 4.4 mg kg{sup {minus}1} that could be toxic to livestock.

  3. National Coal Quality Inventory (NACQI)

    Energy Technology Data Exchange (ETDEWEB)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  4. The synergistic effect in coal/biomass blend briquettes combustion on elements behavior in bottom ash using ICP-OES

    Energy Technology Data Exchange (ETDEWEB)

    Lazaroiu, G.; Frentiu, T.; Maescu, L.; Mihaltan, A.; Ponta, M.; Frentiu, M.; Cordos, E. [Universitatea Politehnica din Bucuresti, Bucharest (Romania)

    2009-05-15

    This paper focuses on the study of the synergistic effect in coal/biomass blend briquettes combustion on behavior of Al, As, Ba, Cd, Co. Cr, Cu, Fe, Ga, K, Mn, Mo, Ni, P, Pb, Si, V, W, Zn, Zr and characterization of raw materials and bottom ashes. The manufacturing of coal/biomass briquettes although not commonly used is an attractive approach, as briquettes combustion is more technologically advantageous than the fluidized bed combustion. In the same time this technology is a way to render valuable materials of low calorific power and results in diminishing polluting emission. Raw materials and briquettes from different blends of pitcoal/sawdust were subjected to combustion in a 55 kW-boiler. The total content of elements after digestion in the HNO{sub 3} - HF mixture and the content in water leachate at a solid/liquid ratio of 1:2 were determined both in raw materials and bottom ash by ICP-OES. The total content of elements was higher in pitcoal than in sawdust. The synergistic effect depends both on coal/biomass ratio in blend and element nature. The water leachable fraction of elements from ash decreased along with the increase of sawdust weight excepting macronutrients (K, P) and Si.

  5. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    Under the overall objectives of DOE Contract ``Engineering Development of Selective Agglomeration,`` there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  6. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  7. Gypsum amendment to soil can reduce selenium uptake by alfalfa grown in the presence of coal fly ash

    International Nuclear Information System (INIS)

    Arthur, M.A.; Rubin, G.; Woodbury, P.B.; Weinstein, L.H.

    1993-01-01

    Experiments in the field and greenhouse were conducted in the presence of coal fly ash to determine whether gypsum can reduce Se concentration in alfalfa (Medicago sativa L.). In the field experiment, conducted at a coal fly ash landfill, 11.2 t ha -1 gypsum was applied to soil as a top dressing to test the effect of gypsum in reducing selenium (Se) concentration in aboveground plant tissue. There were four treatment combinations of gypsum over a two year period, 1990, and 1991: (0, 0), (0, 11.2) (11.2, 0) and (11.2, 11.2). In 1991, the Se concentration was lower in alfalfa grown with gypsum, regardless of whether the gypsum was applied in both years or in only one year, indicating that the effect of gypsum application in the first year persisted into the second year. Since there was no increase in aboveground biomass with added gypsum, differences in Se concentration reflect a competitive interaction between S and Se. In the greenhouse experiment, 12 soil treatments were tested: three levels of fly ash (0, 10 and 20%) in combination with each of four levels of gypsum (0, 2.5, 5 and 7.5%). The Se concentration in alfalfa grown in 10% fly ash declined linearly with increasing gypsum dose, resulting in a reduction in Se concentration of 0.04 ± 0.02 μg g -1 for each 1% gypsum added for the first harvest and 0.06 ± 0.03 μg g -1 for each 1% gypsum added in the second harvest. Based on these results, gypsum may prove useful as a management tool to reduce the uptake of Se by plants growing on coal fly ash landfills

  8. Mobility and contamination assessment of mercury in coal fly ash, atmospheric deposition, and soil collected from Tianjin, China.

    Science.gov (United States)

    Wei, Zheng; Wu, Guanghong; Su, Ruixian; Li, Congwei; Liang, Peiyu

    2011-09-01

    Samples of class F coal fly ash (levels I, II, and III), slag, coal, atmospheric deposition, and soils collected from Tianjin, China, were analyzed using U.S. Environmental Protection Agency (U.S. EPA) Method 3052 and a sequential extraction procedure, to investigate the pollution status and mobility of Hg. The results showed that total mercury (HgT) concentrations were higher in level I fly ash (0.304 µg/g) than in level II and level III fly ash and slag (0.142, 0.147, and 0.052 µg/g, respectively). Total Hg in the atmospheric deposition was higher during the heating season (0.264 µg/g) than the nonheating season (0.135 µg/g). Total Hg contents were higher in suburban area soils than in rural and agricultural areas. High HgT concentrations in suburban area soils may be a result of the deposition of Hg associated with particles emitted from coal-fired power plants. Mercury in fly ash primarily existed as elemental Hg, which accounted for 90.1, 85.3, and 90.6% of HgT in levels I, II, and III fly ash, respectively. Mercury in the deposition existed primarily as sulfide Hg, which accounted for 73.8% (heating season) and 74.1% (nonheating season) of HgT. However, Hg in soils existed primarily as sulfide Hg, organo-chelated Hg and elemental Hg, which accounted for 37.8 to 50.0%, 31.7 to 41.8%, and 13.0 to 23.9% of HgT, respectively. The percentage of elemental Hg in HgT occurred in the order fly ash > atmospheric deposition > soils, whereas organo-chelated Hg and sulfide Hg occurred in the opposite order. The present approach can provide a window for understanding and tracing the source of Hg in the environment in Tianjin and the risk associated with Hg bioaccessibility. Copyright © 2011 SETAC.

  9. Improved leaching test methods for environmental assessment of coal ash and recycled materials used on construction

    Science.gov (United States)

    Changes in air pollution control at coal-fired power plants will result in lower emissions of mercury and other pollutants. Fly ash, flue gas desulfurization gypsum, and other air pollution control residues are used in agricultural, commercial, and engineering applications. Resea...

  10. Differentiation of volcanic ash-fall and water-borne detrital layers in the Eocene Senakin coal bed, Tanjung Formation, Indonesia

    Science.gov (United States)

    Ruppert, L.F.; Moore, T.A.

    1993-01-01

    The Sangsang deposit of the Eocene Senakin coal bed, Tanjung Formation, southeastern Kalimantan, Indonesia, contains 11 layers, which are thin ( 70%). These layers are characterized by their pelitic macroscopic texture. Examination of eight of the layers by scanning-electron microscopy, energy-dispersive X-ray, and X-ray diffraction analyses show that they are composed primarily of fairly well-crystallized kaolinite, much of which is vermicular. Accessory minerals include abundant Ti oxide, rare-earth element-rich Ca and A1 phosphates, quartz that luminescences in the blue color range, and euhedral to subhedral pyroxene, hornblende, zircon, and sanidine. Although this mineral suite is suggestive of volcanic ash-fall material, only the four pelitic layers in the middle of the bed are thought to be solely derived from volcanic ash-falls on the basis of diagnostic minerals, replaced glass shards, and lithostratigraphic relationships observed in core and outcrop. The three uppermost pelitic layers contain octahedral chromites, some quartz grains that luminesce in teh orange color range, and some quartz grains that contain two-phase fluid inclusions. These layers are interpreted to be derived from a combination of volcanic ash-fall material and hydrologic transport of volcaniclastic sediment. In contrast, the lowermost pelitic layer, which contains large, rounded FeMg-rich chromites, is thought to have been dominantly deposited by water. The source of the volcanic ash-fall material may have been middle Tertiary volcanism related to plate tectonic activity between Kalimantan and Sulawesi. The volcanic ash was deposited in sufficient amounts to be preserved as layers within the coal only in the northern portions of the Senakin region: the southern coal beds in the region do not contain pelitic layers. ?? 1993.

  11. Analysis of hard coal quality for narrow size fraction under 20 mm

    Science.gov (United States)

    Niedoba, Tomasz; Pięta, Paulina

    2018-01-01

    The paper presents the results of an analysis of hard coal quality diversion in narrow size fraction by using taxonomic methods. Raw material samples were collected in selected mines of Upper Silesian Industrial Region and they were classified according to the Polish classification as types 31, 34.2 and 35. Then, each size fraction was characterized in terms of the following properties: density, ash content, calorific content, volatile content, total sulfur content and analytical moisture. As a result of the analysis it can be stated that the best quality in the entire range of the tested size fractions was the 34.2 coking coal type. At the same time, in terms of price parameters, high quality of raw material characterised the following size fractions: 0-6.3 mm of 31 energetic coal type and 0-3.15 mm of 35 coking coal type. The methods of grouping (Ward's method) and agglomeration (k-means method) have shown that the size fraction below 10 mm was characterized by higher quality in all the analyzed hard coal types. However, the selected taxonomic methods do not make it possible to identify individual size fraction or hard coal types based on chosen parameters.

  12. Experimental investigation of ash deposits characteristics of co-combustion of coal and rice hull using a digital image technique

    International Nuclear Information System (INIS)

    Qiu, Kunzan; Zhang, Hailong; Zhou, Hao; Zhou, Bin; Li, Letian; Cen, Kefa

    2014-01-01

    This paper investigated the ash deposit characteristics during the co-firing Da Tong (DA) coal with different proportions of rice hull (0%, 5%, 10%, and 20%, based on weight) in a pilot-scale furnace. The growth of ash deposit with a four-stage mode was presented. The stable thickness values of DA coal, 5% rice hull, 10% rice hull, and 20% rice hull were 0.5, 1.4, 2.9, 5.7 cm, with stable heat flux values of 230, 200, 175, and 125 kW/m 2 , respectively. According to the results of scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX), the amount of Si in the deposits increased with the increasing proportion of rice hull rich in SiO 2 . The X-ray diffraction (XRD) analysis results indicated that most elements except Si were in the amorphous state because of the formation of eutectics. The stable thicknesses of deposits increased exponentially with the proportion of rice hull. The deposit was loose, easy removable but it reduced the heat transfer significantly. Consequently, sootblowing timely was necessary when co-firing DA coal with rice hull. - Highlights: • Digital image technique was used to monitor deposits growth process. • A type of four stages mode of ash deposit growth was presented. • The heat flux of ash deposits fit a three-stage mode. • The addition of rice hull increased the porosity of deposits

  13. Development of bricks with incorporation of coal ash and sludge from water treatment plant; Desenvolvimento de tijolos com incorporacao de cinzas de carvao e lodo provenientes de estacao de tratamento de agua

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mauro Valerio da

    2011-07-01

    Sludge from treatment water Brazilian plant station are, frequently, disposed and launched directly in the water bodies, causing a negative impact in the environment. Also, coal ashes is produced by burning of coal in coal-fired power stations and is the industrial solid waste most generated in southern Brazil: approximately 4 million tons/y. The efficient disposal of coal ashes is an issue due to its massive volume and harmful risks to the environment. The aim of this work was study the feasibility of incorporating these two industrial wastes in a mass used in the manufacture of ecological bricks. Samples of fly ashes from a cyclone filter from a coal-fired power plant located at Figueira County in Parana State, Brazil and waterworks sludge of Terra Preta County in Sao Paulo State, Brazil, were used in the study. Fly ash-sludge and fly ash-sludge-soil-cement bricks were molded and tested, according to the Brazilians Standards. The materials were characterized by physical-chemical analysis, X-ray diffraction, thermal analysis, morphological analysis, Fourier transform infrared spectroscopy and granulometric analysis. The results indicate that the waterworks sludge and coal ashes have potential to be used on manufacturing soil-cement pressed bricks according to the of Brazilians Standards NBR 10836/94. (author)

  14. A Comparative study Of Catalityc Activity Of Heterogeneous Base Of Banana Stem Ash And Fly Ash On Production Of Biodiesel Byultrasonic

    Directory of Open Access Journals (Sweden)

    Marlinda

    2015-08-01

    Full Text Available Abstract The use of heterogeneous catalysts in the production of biodiesel provides many advantages due to heterogeneous catalysts can be easily separated from the product so that it can be reused. This research using heterogeneous catalysts derived from natural materials namely banana stem ash and coal fly ash containing alkali and alkaline earth elements. The preparation of catalyst from banana stem ash and coal fly ash used activator KOH 1.9 N and impregnation with KNO3 15 and then heated to a temperature of 550 0C for 3 hours. Results of preparation banana stem ash contains potassium of 36.52 and surface area of 41.901 m2g. This work presents the effect of ultrasonic assisted of waste cooking oil with methanol as solvent using banana stem ash and coal fly ash as catalyst. The diameter of catalyst particles of banana stem ash and coal fly ash varied at 50 100 150 200 and 250 mesh. The transesterification reaction was performed in the presence of ultrasonic operating frequency constant at 40 kHz methanol molar ratio to oil of 9 1 and reaction time of 30 minutes. The methyl ester biodiesel content of product was 93.26 of banana stems ash and 57 of coal fly ash respectively. The physical property was compared with the National Indonesia Standard SNI 2006 with a density viscosity cloud point flash point and cetane number.

  15. Natural revegetation of coal fly ash in a highly saline disposal lagoon in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Chu, L.M. [Chinese University of Hong Kong, Hong Kong (China). Dept. of Biology

    2008-08-15

    Question: What is the relationship of the naturally colonizing vegetation and substrate characteristics in fly ash lagoons? Location: West lagoon, Deep Bay, a 13-ha coastal lagoon in Hong Kong in subtropical Southeast Asia. Methods: Vegetation establishment was examined in a coal fly ash lagoon two years after its abandonment to investigate the distribution of vegetation in relationship to the chemical properties of the fly ash in the lagoon. A greenhouse experiment assessed the limits imposed on plant growth in fly ash. Results: The fly ash was saline, slightly alkaline and very poor in organic matter and nitrogen. Ash from bare and vegetated areas differed significantly in their salinity and extractable concentrations of inorganic nitrogen and various metals. Bare ash had a significantly higher conductivity and extractable sodium, aluminum, manganese, potassium. and lead. In total 11 plant species that belonged to seven families were found growing on the fly ash: all species except the shrub Tamarix chinensis were herbaceous. Using discriminant analysis, the most important factors in distinguishing bare and vegetated ashes were conductivity and sodium. Cluster analysis of bare samples gave two distinct groups, one from the periphery of the lagoon, which had lower sodium, conductivity, organic carbon, potassium and copper, and the other from a second group that contained ashes from the central region of the lagoon. Results of the greenhouse experiment showed that the inhibition of plant growth was significantly correlated with the presence of soluble toxic elements in ash. Conclusion: Toxicity and salinity seem to be the major limiting factors to plant establishment in fly ash, and these factors must be ameliorated for the successful reclamation of these fly ash lagoons.

  16. An appraisal of the potential use of fly ash for reclaiming coal mine spoil.

    Science.gov (United States)

    Ram, Lal C; Masto, Reginald E

    2010-01-01

    Growing dependence on coal-fired power plants for electrical generation in many countries presents ongoing environmental challenges. Burning pulverized coal in thermal power plants (TPPs) generates large amounts of fly ash (FA) that must be disposed of or otherwise handled, in an environmentally-sound manner. A possible option for dealing with fly ash is to use it as an amendment for mine spoil or other damaged soil. It has been demonstrated through studies in India and other countries that FA alone or in combination with organic or inorganic materials can be used in a productive manner for reclamation of mine spoil. The characteristics of FA, including silt-sized particles, lighter materials with low bulk density (BD), higher water holding capacity, favorable pH and significant concentrations of many essential plant nutrients, make it a potentially favorable amendment for mine spoil reclamation. Studies have indicated that the application of FA has improved the physical, chemical and biological qualities of soil to which it is applied. The release of trace metals and soluble salts from FA could be a major limitation to its application. This is particularly true of fresh, un-weathered FA or acidic FA, although perhaps not a concern for weathered/pond ash or alkaline FA. Some potential contaminants, especially metals and other salt ions, could be immobilized and rendered biologically inert by the addition of certain inorganic and organic amendments. However, in view of the variability in the characteristics of FAs that are associated with location, feed coal, combustion conditions and other factors, the suitability of a particular FA for a specific soil/mine spoil needs to be critically evaluated before it is applied in order to maximize favorable results and eliminate unexpected consequences. FA generated in India tends to be mostly alkaline, with lower levels of trace elements than are often found in FAs from other countries. The concentrations of potential

  17. Floating cultivation of marine cyanobacteria using coal fly ash.

    Science.gov (United States)

    Matsumoto, M; Yoshida, E; Takeyama, H; Matsunaga, T

    2000-01-01

    The aim of this study was to develop improved methodologies for bulk culturing of biotechnologically useful marine cyanobacteria in the open ocean. We have investigated the viability of using coal fly ash (CFA) blocks as the support medium in a novel floating culture system for marine micro-algae. The marine cyanobacterium Synechococcus sp. NKBG 040607 was found to adhere to floating CFA blocks in liquid culture medium. Maximum density of attached cells of 2.0 x 10(8) cells/cm2 was achieved using seawater. The marine cyanobacterium Synechococcus sp. NKBG 042902 weakly adhered to floating CFA blocks in BG-11 medium. Increasing the concentration of calcium ion in the culture medium enhanced adherence to CFA blocks.

  18. Pilot plant development of a new catalytic process for improved electrostatic separation of fly ash in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Olivares del Valle, J.; Martinez, L.S.; Baum, B.M.; Galeano, V.C. [Universidad de Sevilla (Spain)

    1995-12-31

    The design and operation of pulverized-coal-fired power plants (PCFPP) are usually regarded as fuel range in terms of sulphur and ash contents. These units may give severe environmental problems of fly ash emissions as a result of lower SO{sub 3} contents in the flue gas (FG) because the electrical resistivity of the solid particles is correspondingly lower, with consequent adverse effects on electrostatic precipitator (ESP) efficiency. More stringent air pollution laws cause many power companies to burn lower sulphur coal under boilers in plants that formerly burned higher S coal or ran with abnormal operational conditions (only remediable by shutdown and repairs). This presentation of the GASOX process is a contribution to the improvement of existing technology for flue gas conditioning (FGC), which is defined as a control system for (ESP) efficiency in PCFPP.

  19. Recovery of Rare Earth Elements from Coal and Coal Byproducts via a Closed Loop Leaching Process: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Richard [Battelle Memorial Inst., Columbus, OH (United States); Heinrichs, Michael [Battelle Memorial Inst., Columbus, OH (United States); Argumedo, Darwin [Battelle Memorial Inst., Columbus, OH (United States); Taha, Rachid [Battelle Memorial Inst., Columbus, OH (United States); Winecki, Slawomir [Battelle Memorial Inst., Columbus, OH (United States); Johnson, Kathryn [Battelle Memorial Inst., Columbus, OH (United States); Lane, Ann [Battelle Memorial Inst., Columbus, OH (United States); Riordan, Daniel [Battelle Memorial Inst., Columbus, OH (United States)

    2017-08-31

    Objectives: Through this grant, Battelle proposes to address Area of Interest (AOI) 1 to develop a bench-scale technology to economically separate, extract, and concentrate mixed REEs from coal ash. U.S. coal and coal byproducts provide the opportunity for a domestic source of REEs. The DOE’s National Energy Technology Laboratory (NETL) has characterized various coal and coal byproducts samples and has found varying concentrations of REE ranging up to 1,000 parts per million by weight. The primary project objective is to validate the economic viability of recovering REEs from the coal byproduct coal ash using Battelle’s patented closed-loop Acid Digestion Process (ADP). This will be accomplished by selecting coal sources with the potential to provide REE concentrations above 300 parts per million by weight, collecting characterization data for coal ash samples generated via three different methods, and performing a Techno-Economic Analysis (TEA) for the proposed process. The regional availability of REE-laden coal ash, the regional market for rare earth concentrates, and the system capital and operating costs for rare earth recovery using the ADP technology will be accounted for in the TEA. Limited laboratory testing will be conducted to generate the parameters needed for the design of a bench scale system for REE recovery. The ultimate project outcome will be the design for an optimized, closed loop process to economically recovery REEs such that the process may be demonstrated at the bench scale in a Phase 2 project. Project Description: The project will encompass evaluation of the ADP technology for the economic recovery of REEs from coal and coal ash. The ADP was originally designed and demonstrated for the U.S. Army to facilitate demilitarization of cast-cured munitions via acid digestion in a closed-loop process. Proof of concept testing has been conducted on a sample of Ohio-based Middle Kittanning coal and has demonstrated the feasibility of recovering

  20. Experience with vertical down-fired, coal-fuelled, low emissions air heaters incorporating automatic ash removal

    Energy Technology Data Exchange (ETDEWEB)

    Keller, M.; Noble, R.K.; Keller, J. [Tulsa Combustion LLC, Tulsa, OK (United States)

    2009-07-01

    This paper discussed the conversion of a horizontally-oriented air heater system with a vertically-oriented pulverized coal-fuelled air heater system. The vertically-oriented heater was used for automatic de-ashing and avoiding the ash accumulation often seen in horizontally-oriented systems. The study showed that the use of the vertical system significantly reduced emissions of nitrous oxides (NO{sub x}), carbon monoxide (CO) and volatile organic compounds (VOCs). Slag and salt attacks on the refractory were also reduced. The vertical systems provided automatic ash removal and eliminated hot spots on the refractory. The potential for variations in composition was also reduced. It was concluded that the system's smaller footprint means that it can be used in retrofits and can be installed in small spaces. 12 figs.

  1. De-agglomeration and homogenisation of nanoparticles in coal tar pitch-based carbon materials

    Science.gov (United States)

    Gubernat, Maciej; Tomala, Janusz; Frohs, Wilhelm; Fraczek-Szczypta, Aneta; Blazewicz, Stanislaw

    2016-03-01

    The aim of the work was to characterise coal tar pitch (CTP) modified with selected nanoparticles as a binder precursor for the manufacture of synthetic carbon materials. Different factors influencing the preliminary preparative steps in the preparation of homogenous nanoparticle/CTP composition were studied. Graphene flakes, carbon black and nano-sized silicon carbide were used to modify CTP. Prior to introducing them into liquid CTP, nanoparticles were subjected to sonication. Various dispersants were used to prepare the suspensions, i.e. water, ethanol, dimethylformamide (DMF) and N-methylpyrrolidone (NMP).The results showed that proper dispersant selection is one of the most important factors influencing the de-agglomeration process of nanoparticles. DMF and NMP were found to be effective dispersants for the preparation of homogenous nanoparticle-containing suspensions. The presence of SiC and carbon black nanoparticles in the liquid pitch during heat treatment up to 2000 °C leads to the inhibition of crystallite growth in carbon residue.

  2. De-agglomeration and homogenisation of nanoparticles in coal tar pitch-based carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Gubernat, Maciej [AGH University of Science and Technology, Faculty of Materials Science and Ceramics (Poland); Tomala, Janusz [SGL Carbon Polska S.A. (Poland); Frohs, Wilhelm [SGL CARBON GmbH (Germany); Fraczek-Szczypta, Aneta; Blazewicz, Stanislaw, E-mail: blazew@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramics (Poland)

    2016-03-15

    The aim of the work was to characterise coal tar pitch (CTP) modified with selected nanoparticles as a binder precursor for the manufacture of synthetic carbon materials. Different factors influencing the preliminary preparative steps in the preparation of homogenous nanoparticle/CTP composition were studied. Graphene flakes, carbon black and nano-sized silicon carbide were used to modify CTP. Prior to introducing them into liquid CTP, nanoparticles were subjected to sonication. Various dispersants were used to prepare the suspensions, i.e. water, ethanol, dimethylformamide (DMF) and N-methylpyrrolidone (NMP).The results showed that proper dispersant selection is one of the most important factors influencing the de-agglomeration process of nanoparticles. DMF and NMP were found to be effective dispersants for the preparation of homogenous nanoparticle-containing suspensions. The presence of SiC and carbon black nanoparticles in the liquid pitch during heat treatment up to 2000 °C leads to the inhibition of crystallite growth in carbon residue.

  3. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    Under the overall objectives of DOE Contract Engineering Development of Selective Agglomeration,'' there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  4. Repair Mortars and New Concretes with Coal Bottom and Biomass Ashes Using Rheological Optimisation

    International Nuclear Information System (INIS)

    Bras, A.; Faustino, P.

    2016-01-01

    The objective of the present work is to analyse the potential of using non-classical additions in concrete and mortar compositions such as coal bottom ash and biomass ash (Bio), as partial replacing binder of ordinary Portland cement. It is intended to deal with production of these type of wastes and its accumulation and contribute to the minimisation of carbon and embodied energy in construction materials. The aim is to identify the concrete and mortars formulation types where it is possible to get more benefit by incorporating bottom ash and Bio. Based on the optimisation of the rheological properties of cement-based materials, mortars with repair function and concrete compositions were developed including 0%, 10%, 15% and 20% of bottom ash and Bio as cement replacement. An assessment of the evolution of relative concrete compressive strength was calculated as a function of the relative solid volume fraction of several concretes. bottom ash compositions present low resistance to high flow rates, increasing the ease of placement and vibration. bottom ash seems to present more filler and pozzolanic effect when compared with Bio. bottom ash mortars fulfil the compressive strength and stiffness requirements to be used as repair mortars, allowing the replacement of 15% or 20% of cement by an industrial waste. This by-product is able to work in the development of the mortar and concrete microstructure strength adopting a much more sustainable solution for the environment.

  5. Development of a material for preventing fluidization of asphalt laid on a road by using coal-ash. Sekitan hai riyo ni yoru asufaruto hoso ryudoka boshizai no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, T. (Tohoku Electric Power Co. Inc., Sendai (Japan). Electric Power Engineering Lab.); Yamada, Y. (Taiseirotec Corp., Tokyo (Japan)); Chiba, Y. (Ministry of Construction, Tokyo (Japan))

    1993-05-30

    Currently, although prevention of fluidization of asphalt using modified asphalt mixed with resin and rubber has been taken, application of such a fluidization prevention means is limited, due to the reasons of high cost and difficult quality control, particularly mainly to places in the vicinity of intersections where the traffic is heavy, on bridges and in tunnels where construction is difficult. In addition, although low penetration asphalt is used, in this case, there are problems of deterioration of wear resistance and of cracks caused by temperature stress at low temperatures. The writers have conducted a study of imparting asphalt a fluidization resistance by adsorbing light oil in asphalt on a coal-ash fluidization preventing agent (FB) mixed in advance in an asphalt mixture. This article reports a study about the influence of mixing ratio and grain size of coal-ash upon the anti-fluidization property and durability of asphalt when coal-ash discharged from coal thermal power plants is mixed into asphalt, and a confirmation of the effectiveness of the mixing of coal-ash by actual road tests. 6 refs., 22 figs., 11 tabs.

  6. Nitration of benzo[a]pyrene adsorbed on coal fly ash particles by nitrogen dioxide: role of thermal activation.

    Science.gov (United States)

    Kristovich, Robert L; Dutta, Prabir K

    2005-09-15

    Nitration of benzo[a]pyrene (BaP) by nitrogen dioxide (NO2) adsorbed on the surface of thermally activated coal fly ash and model aluminosilicate particles led to the formation of nitrobenzo[a]pyrenes as verified by extraction and gas chromatography/mass spectrometry (GC/MS). In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was utilized to follow the nitration reaction on the surface of zeolite Y. Nitrobenzo[a]pyrene formation was observed along with the formation of nitrous acid and nitrate species. The formation of the BaP radical cation was also observed on thermally activated aluminosilicate particles by electron spin resonance (ESR) spectroscopy. On the basis of GC/MS, DRIFTS, and ESR spectroscopy results, a mechanism of nitration involving intermediate BaP radical cations generated on thermally activated aluminosilicate particles is proposed. These observations have led to the hypothesis that nitration of adsorbed polyaromatic hydrocarbons on coal fly ash by reaction with nitrogen oxides can occur in the smokestack, but with the aging of the fly ash particles, the extent of the nitration reaction will be diminished.

  7. Relationship between ash content and R{sub 70} self-heating rate of Callide Coal

    Energy Technology Data Exchange (ETDEWEB)

    Beamish, B. Basil; Blazak, Darren G. [School of Engineering, The University of Queensland, St Lucia, Qld 4072 (Australia)

    2005-10-17

    Borecore samples from the Trap Gully pit at Callide have been assessed using the R{sub 70} self-heating test. The highest R{sub 70} self-heating rate value was 16.22 {sup o}C/h, which is consistent with the subbituminous rank of the coal. R{sub 70} decreases significantly with increasing mineral matter content, as defined by the ash content of the coal. This effect is due to the mineral matter in the coal acting as a heat sink. A trendline equation has been fitted to the borecore data from the Trap Gully pit: R{sub 70}=0.0029xash{sup 2}-0.4889xash+20.644, where all parameters are on a dry-basis. This relationship can be used to model the self-heating hazard of the pit, both vertically and laterally. (author)

  8. Ash study for biogas purification

    International Nuclear Information System (INIS)

    Juarez V, R. I.

    2016-01-01

    This work evaluates the ashes generated from the wood and coal combustion process of the thermoelectric plant in Petacalco, Guerrero (Mexico) in order to determine its viability as a filter in the biogas purification process. The ash is constituted by particles of morphology and different chemical properties, so it required a characterization of the same by different analytical techniques: as was scanning electron microscopy and X-ray diffraction, in order to observe the microstructure and determine the elemental chemical composition of the particles. Prior to the analysis, a set of sieves was selected to classify as a function of particle size. Four different types of ashes were evaluated: one generated by the wood combustion (wood ash) and three more of the Petacalco thermoelectric generated by the coal combustion (wet fly ash, dry fly ash and dry bottom ash). (Author)

  9. Relationship between selenium body burdens and tissue concentrations in fish exposed to coal ash at the Tennessee Valley Authority Kingston spill site

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, Teresa J [ORNL; Fortner, Allison M [ORNL; Jett, Robert T [ORNL; Peterson, Mark J [ORNL; Carriker, Neil [Tennessee Valley Authority (TVA); Morris, Jesse G [ORNL; Gable, Jennifer [Environmental Standards, Inc.

    2014-01-01

    In December 2008, 4.1 million m3 of coal ash were released into the Emory and Clinch Rivers by the Tennessee Valley Authority (TVA) Kingston Fossil Plant. Coal ash contains several contaminants, including the bioaccumulative metalloid selenium (Se). Because Se is predominantly accumulated in aquatic organisms through dietary, rather than aqueous exposure, tissue-based toxicity thresholds for Se are currently being considered. The proposed threshold concentrations range between 4-9 g/g Se (dry wt.) in whole body fish, with a proposed fillet threshold of 11.8 g/g. In the present study we examined the spatial and temporal trends in Se bioaccumulation and examined the relationship between the Se content in fillets and in whole bodies of fish collected around the Kingston spill site to determine whether Se bioaccumulation was a significant concern at the ash spill site. While Se concentrations in fish (whole bodies and fillets) were elevated at sampling locations affected by the Kingston ash spill relative to reference locations, concentrations do not appear to be above risk thresholds and have not been increasing over the five year period since the spill. Our results are not only relevant to guiding the human health and ecological risk assessments at the Kingston ash spill site, but because of current national discussions on appropriate guidelines for Se in fish as well for the disposal of coal combustion wastes, our results are also relevant to the general understanding of Se bioaccumulation in contaminated water bodies.

  10. Best management practices plan for the Chestnut Ridge-Filled Coal Ash Pond at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-05-01

    The Chestnut Ridge Filled Coal Ash Pond (FCAP) Project has been established to satisfy Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements for the Chestnut Ridge Operable Unit 2. FCAP is on Chestnut Ridge, approximately 0.5 miles south of the Y-12 Plant. A 62-foot high earthen dam across Upper McCoy Branch was constructed in 1955 to create a pond to serve as a settling basin for fly and bottom ashes generated by burning coal at the Y-12 Steam Plant. Ash from the steam was mixed with water to form a slurry and then pumped to the crest of Chestnut Ridge and released through a large pipe to flow across the Sluice Channel area and into the pond. The ash slurry eventually overtopped the dam and flowed along Upper McCoy Branch to Rogers Quarry. The purpose of this document is to provide a site-specific Best Management Practices (BMP) Plan for construction associated with environmental restoration activities at the FCAP Site

  11. Zeolite A synthesis employing a brazilian coal ash as the silicon and aluminum source and its applications in adsorption and pigment formulation

    Directory of Open Access Journals (Sweden)

    Lindiane Bieseki

    2012-01-01

    Full Text Available Zeolite A was synthesized using the coal ash from Siderópolis/RS - Brazil. The synthesis was based on a standard IZA synthesis using coal ash as the Si and Al source. XRF analysis showed that the coal ash has a Si/Al ratio of 1.52, which is close to the Si/Al ratio required to produce zeolite A (1.0. The synthesized materials were analyzed by XRD, SEM and N2 adsorption. More crystalline materials were obtained during synthesis when an additional treatment was applied at a temperature of 353 K at the dissolution of NaOH step. The product formed after 4 hours was the most crystalline, but even the product formed after 1 hour proved to be better than that formed using the standard 4 hours IZA synthesis. The zeolites synthesized by this method had an adsorption capacity of 120 mg.g-1 for Ca2+, half the capacity of commercial zeolite A (300 mg.g-1. It was not possible to obtain blue or green pigments using the synthesized zeolite A.

  12. Mosses accumulate heavy metals from the substrata of coal ash

    Directory of Open Access Journals (Sweden)

    Vukojević Vanja

    2005-01-01

    Full Text Available Plants that are able to accumulate and tolerate extraordinarily high concentrations of heavy metals (hyperaccumulators can be used for phytoremediation (removal of contaminants from soils or phytomining (growing a crop of plants to harvest the metals. Two moss species, Bryum capillare Hedw. and Ceratodon purpureus Hedw., were tested as potential phytoremedies under in vivo conditions on a coal ash disposal site in the surroundings of Obrenovac (NW Serbia. The content of various heavy metals (iron, manganese zinc, lead, nickel, cadmium, and copper in the mosses and substrata were investigated over a period of three years. Iron and zinc were found to have the highest concentration in the mosses.

  13. Study on uranium leaching behavior from coal fly ash samples

    International Nuclear Information System (INIS)

    Police, S.; Maity, S.; Chaudhary, D.K.; Sahu, S.K.; Pandit, G.G.

    2017-01-01

    Leachability of trace and toxic metals from coal fly ash (FA) poses significant environmental problems especially ground and surface water contamination. In the present study, leachability of U using batch leaching tests (i.e., at various leachate pH values) and using TCLP was studied. Results of pH variation study indicate that, U has higher leachability in acidic medium as compared to slightly alkaline medium. The leachable U concentrations observed in pH variation study are well below the WHO safety limits. In TCLP leachates, the leachable U concentrations are found to be higher than that observed in pH variation study. (author)

  14. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  15. Research on Power Plant Ash Impact on the Quality of Soil in Kostolac and Gacko Coal Basins

    Directory of Open Access Journals (Sweden)

    Dragana Savic

    2018-02-01

    Full Text Available Increased concentrations of heavy metals in ash can adversely affect the microbiological and pedogenetic processes in soil. The aim of this paper is to determine the impact of ash from unburned coal generated in the Kostolac and Gacko coal basins on the quality of soil in the surrounding environment. The investigation included the surface soil layer that was sampled and tested during 2016 and 2017. A total of 30 samples of Kostolac soil and 9 samples of Gacko soil were analyzed for the content of 8 heavy metals: Cu, Pb, Cd, Zn, Hg, As, Cr and Ni. The analyses were carried out by inductively coupled plasma mass spectrometry (ICPMS technique according to the EPA 6020A method and the following conclusions were made: Kostolac coal ash affects the quality of the surrounding soil in terms of Ni, Cu and Cr as evidenced by the moderately strong correlation of the Ni-Cu pair (k = 0.71, as well as the Cu-Cr pair (k = 0.73 and strong correlation of the Ni-Cr pair (k = 0.82, while the high recorded concentration of Pb, Hg, As and Zn is attributed to other sources of pollution, such as the traffic network and intensive farming activities, and in some cases, its impact is only local. All recorded concentrations of heavy metals are within the remediation values. The effect of ash on soil contamination in the surroundings of the Gacko coal basin is limited to Ni and Cd, with a strong correlation coefficient of this pair (k = 0.82. The recorded overrun of maximum allowed concentration of Cr is evidenced in only 2 samples, and in terms of this element the contamination of the Gacko soil can be considered to be local. It is concluded that prevailing winds play a part in soil pollution. Cluster analysis showed that Ni, Cr and Zn have very similar values in analyzed soil samples from both basins, while a cluster composed of only Hg, in the case of Gacko, indicates lower contamination with Hg compared to the other heavy metals.

  16. Immobilization of chromate from coal fly ash leachate using an attenuating barrier containing zero-valent iron

    DEFF Research Database (Denmark)

    Astrup, Thomas; Stipp, S. L. S.; Christensen, Thomas Højlund

    2000-01-01

    The purpose of this investigation was (i) to test the effectiveness of a barrier engineered to remove Cr(VI) from leachates of higher pH and salinity typical of coal burning ashes and (ii) to determine which geochemical processes control Cr immobilization. Laboratory column and batch desorption e...

  17. Differential pulmonary inflammation and in vitro cytotoxicity of size-fractionated fly ash particles from pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    M. Ian Gilmour; Silvia O' Connor; Colin A.J. Dick; C. Andrew Miller; William P. Linak [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States). National Health and Environmental Effects Research Laboratory

    2004-03-01

    Exposure to airborne particulate matter (PM) has been associated with adverse health effects in humans. Pulmonary inflammatory responses were examined in CD1 mice after intratracheal instillation of 25 or 100 {mu}g of ultrafine ({lt}0.2 {mu}m), fine ({lt}2.5 {mu}m), and coarse ({gt}2.5 {mu}m) coal fly ash from a combusted Montana subbituminous coal, and of fine and coarse fractions from a combusted western Kentucky bituminous coal. After 18 hr, the lungs were lavaged and the bronchoalveolar fluid was assessed for cellular influx, biochemical markers, and pro-inflammatory cytokines. The responses were compared with saline and endotoxin as negative and positive controls, respectively. On an equal mass basis, the ultrafine particles from combusted Montana coal induced a higher degree of neutrophil inflammation and cytokine levels than did the fine or coarse PM. The western Kentucky fine PM caused a moderate degree of inflammation and protein levels in bronchoalveolar fluid that were higher than the Montana fine PM. Coarse PM did not produce any significant effects. In vitro experiments with rat alveolar macrophages showed that of the particles tested, only the Montana ultrafine displayed significant cytotoxicity. It is concluded that fly ash toxicity is inversely related with particle size and is associated with increased sulfur and trace element content. 42 refs., 5 figs., 3 tabs.

  18. Power plant ash and slag waste management technological direction when Kansk-Achinsk brown coal is burned

    Directory of Open Access Journals (Sweden)

    Lihach Snejana A.

    2017-01-01

    Full Text Available Today resource efficiency technology development in all industries where conventional raw material is being replaced by local natural resources and industrial waste is an essential matter. Along with that most producing operations are overload with wide range of waste produced during technological process. Thermal power stations are real world evidence. Their main waste is ash and slag which accumulated in great amounts in often overfull ash dumps. The goal of present work is to find perspective ash dump waste utilization methods. The study will be based on experimentally obtained data: elementary compound and properties of Kansk-Achinsk brown coal. Research methods: experimental, chemical silicate analysis, mineralogical forms identification within samples by using ASM X-ray diffraction analysis. Experiments resulted with the following conclusions: silica is ash main component, and ash has the form of ore concentrate analogy in a number of elements. We think that ASM main properties which make it useful for utilization are: high content of calcium oxide; high ash sorption properties; ASM radiation safety class which makes them safe to be used in materials, goods, and structures production for residence and public buildings construction and reconstruction; sufficiently high content of individual elements.

  19. Physicochemical Characterization and Thermal Decomposition of Garin Maiganga Coal

    Directory of Open Access Journals (Sweden)

    Nyakuma Bemgba Bevan

    2016-12-01

    Full Text Available The paper examined physicochemical and thermal characteristics of the newly discovered Garin Maiganga (GMG coal from Nigeria. The physicochemical characterization comprised of elemental, proximate, calorific value, and classification (rank analyses. Thermal analysis was examined using combined Thermogravimetric (TG and Derivative Thermogravimetric analyses (DTG. Hence, the coal was heated from 30°C to 1000°C at 20°C/min under inert conditions to examine its thermal degradation behaviour and temperature profile characteristics (TPC. The results indicated that the GMG coal fuel properties consist of low Ash, Nitrogen, and Sulphur content. Moisture content was > 5%, Volatile Matter > 50%, Fixed Carbon > 22%, and Heating Value (HHV 23.74 MJ/kg. Based on its fuel properties, the GMG coal can be classified as a Sub-Bituminous B, non-agglomerating low rank coal (LRC. The GMG coal TPCs – onset, peak, and offset temperatures – were 382.70°C, 454.60°C, and 527.80°C, respectively. The DTG profile revealed four (4 endothermic peaks corresponding to loss of moisture (drying, volatile matter (devolatization, and coke formation. The residual mass Rm was 50.16%, which indicates that higher temperatures above 1000°C are required for the complete pyrolytic decomposition of the GMG coal. In conclusion, the results indicate that the GMG coal is potentially suitable for future utilization in electric power generation and the manufacture of cement and steel.

  20. The Impact of Coal Combustion Fly Ash Used as a Supplemental Cementitious Material on the Leaching of Constituents from Cements and Concretes

    Science.gov (United States)

    The objective of this report is to compare the leaching of portland cement-based materials that have been prepared with and without coal combustion fly ash to illustrate whether there is evidence that the use of fly ash in cement and concrete products may result in increased leac...

  1. Genetic-industrial classification of brown coals in Serbia

    Energy Technology Data Exchange (ETDEWEB)

    Ercegovac, Marko [Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade (Serbia and Montenegro); ?ivotic, Dragana; Kostic, Aleksandar [University of Belgrade, Faculty of Mining and Geology, Djusina 7, 11000 Belgrade (Serbia and Montenegro)

    2006-08-01

    The petrologic, chemical and technological features of low-rank coals from nineteen of the most important basins in Serbia have been studied as part of the research project of genetic-industrial classification of low-rank coals of Serbia. Most of these features have been included as parameters of the codification system for low-rank coals. The paper discusses the main genetic, technological and supplementary parameters of the Serbian brown coals such as rank, petrographic composition, gelification degree, total moisture, ash content, sulphur content, calorific value, tar yield, the chemical composition and the thermotechnical properties of ash. The rank of brown coals from Serbia has been defined on the basis of the following parameters: random reflectance of huminite/vitrinite (R{sub r}=0.26-0.50%), total moisture (W{sup ar}=13.18-49.11%), gross calorific value (Q{sup daf}=22.3-29.2MJ/kg, dry, ash-free basis), net calorific value (Q{sup daf}=21.2-28.1MJ/kg, dry, ash-free basis). The results from the maceral analysis confirm that the humic coals, in general, are characterized by high huminite content (76.0-97.9vol.%, mineral matter free), low inertinite amount (0.7-6.3vol.%, mineral matter free), and a variable amount of liptinite (0.8-15.5vol.%, mineral matter free). It is possible to define three groups of Serbian brown coals on the basis of the primary, or genetic parameters, technological, or chemical parameters, and supplementary parameters: soft (Low-Rank C; [Economic Commission for Europe, Committee on Sustainable Energy- United Nations (ECE-UN), 1998. International Classification of in-Seam Coals. Energy 19, 41 pp.; Economic Commission for Europe, Committee on Sustainable Energy- United Nations (ECE-UN), 1999. International Codification System for Low-Rank Coals. Energy 9, 19 pp.; Economic Commission for Europe, Committee on Sustainable Energy- United Nations (ECE-UN), 2000. International Classification for Low-Rank Coals. Energy 12, 21 pp.]), dull (Low

  2. Characterization of humidity-controlling porous ceramics produced from coal fly ash and waste catalyst by co-sintering

    Science.gov (United States)

    Lin, Kae-Long; Ma, Chih-Ming; Lo, Kang-Wei; Cheng, Ta-Wui

    2018-04-01

    In this study, the following operating conditions were applied to develop humidity-controlling porous ceramic (HCPC) products: sintering temperatures of 800-1000 °C and percentages of coal fly ash in waste catalyst of 0%-40%. The HCPC samples then underwent a flexural strength test, to determine their quality according to the Chinese National Standards (CNS 3298). Their microstructures, crystal structures, and pore volume were determined in terms of equilibrium moisture content, water vapor adsorption/desorption, and hygroscopic sorption properties over 48 h. Nitrogen adsorption/desorption isotherms showed a hydrophobic behavior (type H3 isotherm). The water vapor adsorption/desorption and hygroscopic sorption properties satisfied the JIS A1470 intensity specification for building materials (>29 g/m2). At sintering temperatures of 950-1000 °C, HCPC samples for coal fly ash containing 20%-30% waste catalyst met the JIS A1470 intensity specifications for building materials (<29 g/m2).

  3. Alkaline coal fly ash amendments are recommended for improving rice-peanut crops

    Energy Technology Data Exchange (ETDEWEB)

    Swain, D.K.; Ghosh, B.C. [Agricultural and Food Engineering Department, Indi an Inst. of Technology, Kharagpur, West Bengal (India); Rautaray, S.K. [RRLRRS, Gerua Via-Hajo, Dist-Kamrup, Assam (India)

    2007-05-15

    A field experiment investigating amendments of organic material including farmyard manure, paper factory sludge and crop residues combined with fly ash, lime and chemical fertilizer in a rice-peanut cropping system was conducted during 1997-98 and 1998-99 at the Indian Institute of Technology, Kharagpur, India. The soil was an acid lateritic (Halustaf) sandy loam. For rice, an N:P:K level of 90:26.2:33.3 kg/ha was supplied through the organic materials and chemical fertilizer to all the treatments except control and fly ash alone. The required quantities of organic materials were added to supply 30 kg N/ha and the balance amount of N, P and K was supplied through chemical fertilizer. Amendment materials as per fertilization treatments were incorporated to individual plots 15 days before planting of rice during the rainy season. The residual effects were studied on the following peanut crop with application of N:P:K at 30:26.2:33.3 kg/ha through chemical fertilizer alone in all treatments, apart from the control. An application of fly ash at 10 t/ha in combination with chemical fertilizer and organic materials increased the grain yield of rice by 11% compared to chemical fertilizer alone. The residual effect of both lime and fly ash applications combined with direct application of chemical fertilizer increased peanut yields by 30% and 24%, respectively, compared to chemical fertilizer alone. Treatments with fly ash or lime increased P and K uptake in both the crops and oil content in peanut kernel compared to those without the amendments. Alkaline coal fly ash proved to be a better amendment than lime for improving productivity of an acid lateritic soil and enriching the soil with P and K.

  4. Studies of technology of mass production and quality control in road base material using coal ash; Sekitanbai wo genryo to suru robanzai no ryosan hinshitsu kanri gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Y. [Kawasaki Heavy Industries, Ltd., Kobe (Japan); Ozasa, K. [Center for Coal Utilization, Tokyo (Japan); Tsuzura, K. [Naruto Salt Mfg. Ltd., Tokushima (Japan); Izumi, H. [Nippon Hodo Co. Ltd., Tokyo (Japan)

    1998-05-10

    Use of granular solidified coal ash as a road base material has been studied to facilitate the large scale utilization of powdered material. The proposed technology of producing granular solidified coal ash includes steam curing combined with different unit operations. Investigations on the technological and quality control aspects make clear the followings: (1) A proper technology for large scale processing may consists of the following steps: kneading of coal ash with water around its plastic limit, low pressure molding, steam curing and crushing. (2) A road base material of good quality can be produced in large qualities from coal ash of fixed CaO content and unburnt carbon content. Further processing includes mixing with the amount of water based on the size and the time change degree of the consuming power in kneader, kneading and molding. The temperature of the kneading water should be adjusted to the ambient conditions. 4 refs., 7 figs., 3 tabs.

  5. Clean up fly ash from coal burning plants by new isolated fungi Fusarium oxysporum and Penicillium glabrum.

    Science.gov (United States)

    Ertit Taştan, Burcu

    2017-09-15

    In Turkey approximately 45 million tons of coals are burned in a year and 19.3 million tons of fly ash have emerged. The bioremediation of heavy metals or different elements from fly ash makes them bio-available. However, in previous studies, requiring of long operational time and failing to show tolerance to high pulp densities of fly ash of selected fungal species makes them impractical. In this work, bioremediation of fly ash by new isolated fungi Fusarium oxysporum and Penicillium glabrum were investigated in one step and two step bioremediation process. Ca, Si, Fe and S were found to be considerable amount in studied fly ashes by ED-XRF element analysis. The bioremediation yields of Mo (100%), S (64.36%) Ni (50%) and Cu (33.33%) by F. oxysporum were high. The remediated elements by P. glabrum in fly ash were Mo (100%), S (57.43%), Ni (25%), Si (24.66%), V (12.5%), Ti (5%) and Sr (3.2%). The isolation of high fly ash resistant fungi and reduction of the bioremediation time will allow the practical applications of the bioremediation technology when it is scaled up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Influence of a modification of the petcoke/coal ratio on the leachability of fly ash and slag produced from a large PCC power plant

    Energy Technology Data Exchange (ETDEWEB)

    Maria Izquierdo; Oriol Font; Natalia Moreno (and others) [CSIC, Barcelona (Spain). Institute of Earth Sciences ' Jaume Almera'

    2007-08-01

    Co-firing of coal with inexpensive secondary fuels such as petroleum coke is expected to increase in the near future in the EU given that it may provide certain economic and environmental benefits with respect to coal combustion. However, changes in the feed fuel composition of power plants may modify the bulk content and the speciation of a number of elements in fly ash and slag. Consequently, leachability of these byproducts also can be modified. This study is focused on identifying the changes in the environmental quality of co-fired fly ash and slag induced by a modification of the petcoke/coal ratio. Petcoke was found to increase the leachable content of V and Mo and to enhance the mobility of S and As. However, with the exception of these elements, the addition of this secondary fuel did not drastically modify the bulk composition or the overall leachability of the resulting fly ash and slag. 30 refs., 3 figs., 2 tabs.

  7. Arsenic removal from water using a novel amorphous adsorbent developed from coal fly ash.

    Science.gov (United States)

    Zhang, Kaihua; Zhang, Dongxue; Zhang, Kai

    2016-01-01

    A novel effective adsorbent of alumina/silica oxide hydrate (ASOH) for arsenic removal was developed through simple chemical reactions using coal fly ash. The iron-modified ASOH with enhancing adsorption activity was further developed from raw fly ash based on the in situ technique. The adsorbents were characterized by X-ray diffraction, Fourier transform infrared spectrometry, scanning electron micrograph, laser particle size and Brunauer-Emmet-Teller surface area. The results show that the adsorbents are in amorphous and porous structure, the surface areas of which are 8-12 times that of the raw ash. The acidic hydrothermal treatment acts an important role in the formation of the amorphous structure of ASOH rather than zeolite crystal. A series of adsorption experiments for arsenic on them were studied. ASOH can achieve a high removal efficiency for arsenic of 96.4% from water, which is more than 2.5 times that of the raw ash. Iron-modified ASOH can enhance the removal efficiency to reach 99.8% due to the in situ loading of iron (Fe). The condition of synthesis pH = 2-4 is better for iron-modified ASOH to adsorb arsenic from water.

  8. Residual Ash Formation during Suspension-Firing of Biomass

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Jappe Frandsen, Flemming; Jensen, Peter Arendt

    2014-01-01

    Through 50+ years, high quality research has been conducted in order to characterize ash and deposit formation in utility boilers fired with coal, biomass and waste fractions. The basic mechanism of fly ash formation in suspension fired coal boilers is well described, documented and may even...... be modeled relatively precisely. Concerning fly ash formation from biomass or waste fractions, the situation is not nearly as good. Lots of data are available from campaigns where different ash fractions, including sometimes also in-situ ash, have been collected and analyzed chemically and for particle size...... distribution. Thus, there is a good flair of the chemistry of fly ash formed in plants fired with biomass or waste fractions, either alone, or in conjunction with coal. But data on dedicated studies of the physical size development of fly ash, are almost non-existing for biomasses and waste fractions...

  9. Germanium content in Polish hard coals

    Directory of Open Access Journals (Sweden)

    Makowska Dorota

    2016-01-01

    Full Text Available Due to the policy of the European Union, it is necessary to search for new sources of scarce raw materials. One of these materials is germanium, listed as a critical element. This semi-metal is widely used in the electronics industry, for example in the production of semiconductors, fibre optics and solar cells. Coal and fly ash from its combustion and gasification for a long time have been considered as a potential source of many critical elements, particularly germanium. The paper presents the results of germanium content determination in the Polish hard coal. 23 coal samples of various coal ranks were analysed. The samples were collected from 15 mines of the Upper Silesian Coal Basin and from one mine of the Lublin Coal Basin. The determination of germanium content was performed with the use of Atomic Absorption Spectrometry with Electrothermal Atomization (GFAAS. The investigation showed that germanium content in the analysed samples was at least twice lower than the average content of this element in the hard coals analysed so far and was in the range of 0.08 ÷ 1.28 mg/kg. Moreover, the content of Ge in the ashes from the studied coals does not exceed 15 mg/kg, which is lower than the average value of Ge content in the coal ashes. The highest content of this element characterizes coals of the Lublin Coal Basin and young coals type 31 from the Vistula region. The results indicate a low utility of the analysed coal ashes as a source of the recovery of germanium. On the basis of the analyses, the lack of the relationship between the content of the element and the ash content in the tested coals was noted. For coals of the Upper Silesian Coal Basin, the relationship between the content of germanium in the ashes and the depth of the seam was observed.

  10. Identification of high molecular weight nitroaromatic compounds from coal fly ash

    International Nuclear Information System (INIS)

    Harris, W.R.; Okamoto, D.J.; Chess, E.K.; Wilson, B.W.

    1983-01-01

    A large sample of stack-collected coal fly ash was extracted with 60:40 nu/nu benzene:methanol to remove as much of the soluble organic material as possible. This solution was concentrated by gentle evaporation, and was then fractionated on a series of high performance liquid chromatography columns to generate samples suitable for probe mass spectrometric analysis. A series of nitrated derivatives of C 21 H 12 polycyclic aromatic hydrocarbon have been tentatively identified by low and high resolution mass spectrometry and gas chromatography. The series includes a mononitro, two dinitro isomers, and a trinitro derivative

  11. Distribution and occurrence of lithium in high-alumina-coal fly ash

    DEFF Research Database (Denmark)

    Hu, Pengpeng; Hou, Xinjuan; Zhang, Jianbo

    2018-01-01

    the generalized gradient approximation (GGA) method indicated that Li occurred in Q3(0Al) and Q3(1Al) structures by reacting with Q4(0Al) and Q4(1Al). Based on the experimental and simulation results, we propose extracting Li during the pre-desilication process by dissolving the glass phase.......High-alumina-coal fly ash (HAFA) with a high Li content is regarded as a potential resource for Li production. To support the development of Li recovery technology from HAFA, the distribution and modes of occurrence of Li in HAFA were investigated. HAFA was separated into magnetic particles, glass...

  12. Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    Francisco Grau

    2015-10-01

    Full Text Available Biomasses are organic materials that are derived from any living or recently-living structure. Plenty of biomasses are produced nationwide. Biomasses are mostly combusted and usually discarded or disposed of without treatment as biomass ashes, which include wood and sugarcane bagasse ashes. Thus, recycling or treatment of biomass ashes leads to utilizing the natural materials as an economical and environmental alternative. This study is intended to provide an environmental solution for uncontrolled disposal of biomass ashes by way of recycling the biomass ash and replacing the soils in geotechnical engineering projects. Therefore, in this study, characteristic tests of wood and sugarcane bagasse ashes that are considered the most common biomass ashes are conducted. The test of chemical compositions of biomass ashes is conducted using energy dispersive X-ray spectroscopy (EDS, and Scanning Electron Microscope (SEM, and heavy metal analysis is also conducted. Engineering behaviors including hydraulic conductivity, constrained modulus and shear modulus are examined. Also, coal fly ash Class C is used in this study for comparison with biomass ashes, and Ottawa 20/30 sands containing biomass ashes are examined to identify the soil replacement effect of biomass ashes. The results show that the particle sizes of biomass ashes are halfway between coal fly ash Class C and Ottawa 20/30 sand, and biomass ashes consist of a heterogeneous mixture of different particle sizes and shapes. Also, all heavy metal concentrations were found to be below the US Environmental Protection Agency (EPA maximum limit. Hydraulic conductivity values of Ottawa 20/30 sand decrease significantly when replacing them with only 1%–2% of biomass ashes. While both the constrained modulus and shear modulus of biomass ashes are lower than Ottawa 20/30 sand, those of mixtures containing up to 10% biomass ashes are little affected by replacing the soils with biomass ashes.

  13. Application of paste technology to mitigate the dust emissions from handling of fly and bottom ash at coal fired power plant : CGTEE in Candiota, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva Marques, M.E. [Golder Associates Peru, Lima (Peru); Lima, H. [Golder Associates Brazil, Sao Paulo (Brazil); Mandl, B.; Francoeur, R.; Palkovits, F. [Golder Paste Technology Ltd., Mississauga, ON (Canada); Blois, R. [Companhia de Geracao Termica de Energia Electrica, Porto Alegre (Brazil)

    2010-07-01

    This paper discussed a method developed to reduce dust emissions generated in a fly ash handling procedure used at a thermal power plant located in the south of Brazil. The fly ash is collected in dry form at several locations in the plant and pneumatically conveyed to storage silos, where it is moistened with water in a mixer, loaded into dump trucks and deposited in a disposal area near a surface coal mine. The new solution created low density fly ash slurry in localized mixing tanks within the power plant. The low density slurry is pumped to an ash conditioning plant where the slurry is then mixed with the bottom ash, dewatered, and densified. The densified slurry is then pumped to an adjacent coal mine disposal site in order to be used as backfill in mined areas. The proposed method will significantly reduce dust emissions both inside and outside the plant, and will substantially reduce truck traffic at the mine. The method will reduce the environmental impacts associated with fly ash dust emissions in the region. 8 figs.

  14. Biomass oxygen/steam gasification in a pressurized bubbling fluidized bed: Agglomeration behavior

    International Nuclear Information System (INIS)

    Zhou, Chunguang; Rosén, Christer; Engvall, Klas

    2016-01-01

    Highlights: • Dolomite is a superior material in preventing bed agglomeration. • Small molten ash particles deposited on magnesite at bed temperatures above 1000 °C. • The performance, when using magnesite, is sensitive to temperature disturbances. • The anti-agglomeration mechanisms of Ca- and Mg-bearing materials were discussed. - Abstract: In this study, the anti-agglomeration abilities of Ca- and Mg-containing bed materials, including dolomite and magnesite, in a pressurized bubbling fluidized bed gasifier using pine pellets and birch chips as feedstock, is investigated. The most typical bed material—silica sand—was also included as a reference for comparison. The sustainability of the operation was evaluated via analyzing the temperatures at different levels along the bed height. During the performances, the aim was to keep the temperature at the bottom zone of the reactor at around 870 °C. However, the success highly depends on the bed materials used in the bed and the temperature can vary significantly in case of agglomeration or bad mixing of bed materials and char particles. Both Glanshammar and Sala dolomites performed well with no observed agglomeration tendencies. In case of magnesite, the bed exhibited a high agglomeration tendency. Silica sand displayed the most severe agglomeration among all bed materials, even when birch chips with a low silica content was fed at a relatively low temperature. The solid samples of all the bed materials were inspected by light microscopy and Scanning Electron Microscopy (SEM). The Energy Dispersive Spectroscopy (EDS) detector was used to detect the elemental distribution in the surface. The crystal chemical structure was analyzed using X-ray Diffraction (XRD). Magnesite agglomerates glued together by big molten ash particles. There was no coating layer detected on magnesite particles at bed temperatures – below 870 °C. But when the temperature was above 1000 °C, a significant amount of small molten

  15. Coal preparation and coal cleaning in the dry process; Kanshiki sentaku to coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Z; Morikawa, M; Fujii, Y [Okayama University, Okayama (Japan). Faculty of Engineering

    1996-09-01

    Because the wet process has a problem such as waste water treatment, coal cleaning in the dry process was discussed. When a fluidized bed (using glass beads and calcium carbonate) is utilized instead of the heavy liquid, the fluidized bed will have apparent density as the liquid does, whereas the relative relationship therewith determines whether a substance having been put into the fluidized bed will float or sink. This is utilized for coals. In addition, two powder constituents of A and B may be wanted to be separated using the fluidized extraction process (similar to the liquid-liquid extraction process). In such a case, a fluidized bed in which both constituents are mixed is added with a third constituent C (which will not mix with A, but mix well with B), where the constituents are separated into A and (B + C), and the (B + C) constituent is separated further by using a sieve. If coal has the coal content mixed with ash content and pulverized, it turns into particle groups which have distributions in grain size and density. Groups having higher density may contain more ash, and those having lower density less ash. In addition, the ash content depends also on the grain size. The ash content may be classified by using simultaneously wind classification (for density and grain size) and a sieve (for grain size). This inference may be expanded to consideration of constructing a multi-stage fluidized bed classification tower. 12 figs., 5 tabs.

  16. Studies of lagoon ash from Sarawak to assess the impact on the environment

    Energy Technology Data Exchange (ETDEWEB)

    Prabir Kumar Kolay; Harwant Singh [University Malaysia Sarawak, Sarawak (Malaysia). Dept. of Civil Engineering

    2010-02-15

    Coal utilization, mainly in thermal power plants, has increased significantly from 4.2 to 13 million tonnes within 2000 to 2005, which resulted in the production of approximately 2 million tonnes of coal ash in Malaysia. Of this only a small percentage is used as a cement ingredient, in concrete industry, as a fill material, etc. and with the rest of the amount being disposed in ash ponds or lagoons. If the lagoons are not properly designed with a landfill liner or if there is spillage from the ash pond, the toxic heavy metal present in coal ash can result in the contamination of the subsurface soil and the ground water. The concentration of heavy metals or trace elements in coal residues depends on the composition of a particular parent coal and the bulk utilization of lagoon ash for various purposes requires a complete characterization of the ash. Hence, this paper analyzes the coal ash for its trace element content and characterizes mainly physical, chemical, mineralogical, morphological and thermal properties of the lagoon ash from a local coal based thermal power plant from Sarawak, Malaysia. The results also indicated that, the concentration of some trace elements is quite high from the environmental perspective in this particular lagoon ash. 43 refs., 4 figs., 4 tabs.

  17. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  18. Reuse and recycling options for solid prescribed industrial wastes and brown coal fly ash

    OpenAIRE

    Seyoum Hailu, Tesfaye

    2017-01-01

    This dissertation presents the results of detailed investigation of the possible use of stabilised sludge and brown coal fly ash as raw material ingredients for road construction and manufacture of building bricks. The thesis is organised into seven chapters including a general introduction chapter. A literature review of solid waste management practices employed in Australia and some selected countries are discussed (chapter 1) together with waste generation from power station...

  19. The influence of coal bottom ash and tincal (boron mineral) additions on the physical and microstructures of ceramic bodies

    Energy Technology Data Exchange (ETDEWEB)

    Bayca, S.U.; Batar, T.; Sayin, E.; Solak, O.; Kahraman, B. [Celal Bayar University, Manisa (Turkey). Soma Vocational School

    2008-07-01

    In this paper, the influence of coal bottom ash and tincal additions on the physical properties and microstructures of the standard wall tile body composition was investigated. Water absorption, fang strength, dry and fired shrinkage tests of the incorporated ceramic bodies and reference body were done. Microstructures of sintered tiles were analyzed using a scanning electron microscope (SEM). The results show that tincal additions to the ceramic body improved the physical properties of the tiles. As a result, tincal can be used as a flux material in the ceramic bodies due to its favorable effects on the water absorption and fired strength. The results revealed that bottom ash can be used in the ceramic tile body composition. When bottom ash was used in the ceramic industry, environmental hazards of bottom ash are inhibited. Furthermore, bottom ash is transformed to an economic product.

  20. Impregnation/Agglomeration Laboratory Tests of Heavy Fuel from Prestige to Improve Its Manageability and Removal from Seawater Surface. (Physical Behaviour of Fuel Agglomates)

    International Nuclear Information System (INIS)

    Garcia Frutos, F. J.; Rodriguez, V.; Otero, J.

    2002-01-01

    The handling and removal problems showed by heavy fuel floating in seawater could be improved or solved by using materials that agglomerate it. These materials must fulfill the following conditions: be inert materials in marine environment, the agglomerated fuel/material should float and its application and removal should be done using simple technologies. Based on these requirements, clay minerals, pine chips, mineral coal and charcoal were selected. The preliminary/results on impregnation/agglomeration with the materials mentioned above of heavy fuel from Prestige at lab scale are presented in this paper. The results have shown that only hydrophobic materials, such as mineral coal and charcoal, are able to agglomerate with fuel, which is also a hydrophobic substance. Whereas the agglomerates fuel/mineral coal sink, the agglomerates fuel/charcoal keep floating on water surface. It can be concluded that the addition of charcoal on dispersed fuel in seawater could improve its handling and removal. In this sense, pilot scale and eventually controlled in situ tests to study the feasibility of the proposed solution should be performed. (Author) 2 refs

  1. Fly ash from a Mexican mineral coal. II. Source of W zeolite and its effectiveness in arsenic (V) adsorption

    International Nuclear Information System (INIS)

    Medina, Adriana; Gamero, Procoro; Almanza, Jose Manuel; Vargas, Alfredo; Montoya, Ascencion; Vargas, Gregorio; Izquierdo, Maria

    2010-01-01

    Coal-fired plants in Coahuila (Mexico) produce highly reactive fly ash (MFA), which is used in a one-step process as a raw material in producing zeolite. We explored two routes in the synthesis of zeolite: (a) direct MFA zeolitization, which resulted in the formation of W zeolite with KOH and analcime with NaOH and (b) a MFA fusion route, which resulted in the formation of zeolite W or chabazite with KOH and zeolite X or P with NaOH. No residual crystalline phases were present. When LiOH was employed, ABW zeolite with quartz and mullite were obtained. For both zeolitization routes, the nature of the alkali (KOH, NaOH, LiOH), the alkali/MFA ratio (0.23-1.46), and the crystallization temperature and time (90-175 o C; 8-24 h) were evaluated. Additionally, the effect of temperature and time on MFA fusion was studied. W zeolite was obtained by both zeolitization methods. The direct route is preferred because it is a straightforward method using soft reaction conditions that results in a high yield of low cost zeolites with large crystal agglomerates. It was demonstrated that aluminum modified W zeolite has the ability to remove 99% of the arsenic (V) from an aqueous solution of Na 2 HAsO 4 .7H 2 O originally containing 740 ppb.

  2. Fly ash from a Mexican mineral coal. II. Source of W zeolite and its effectiveness in arsenic (V) adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Adriana [CINVESTAV IPN-Unidad Saltillo, Carretera Saltillo-Monterrey Km 13.5, C.P. 25900, Ramos Arizpe, Coahuila (Mexico); Gamero, Procoro, E-mail: pgamerom@hotmail.com [CINVESTAV IPN-Unidad Saltillo, Carretera Saltillo-Monterrey Km 13.5, C.P. 25900, Ramos Arizpe, Coahuila (Mexico); Almanza, Jose Manuel [CINVESTAV IPN-Unidad Saltillo, Carretera Saltillo-Monterrey Km 13.5, C.P. 25900, Ramos Arizpe, Coahuila (Mexico); Vargas, Alfredo; Montoya, Ascencion [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, G.A. Madero, C.P. 07730, Distrito Federal (Mexico); Vargas, Gregorio [CINVESTAV IPN-Unidad Saltillo, Carretera Saltillo-Monterrey Km 13.5, C.P. 25900, Ramos Arizpe, Coahuila (Mexico); Izquierdo, Maria [Instituto de Ciencias de la Tierra ' Jaume Almera' , CSIC, C/Luis Sole Sabaris, s/n 08028 Barcelona (Spain)

    2010-09-15

    Coal-fired plants in Coahuila (Mexico) produce highly reactive fly ash (MFA), which is used in a one-step process as a raw material in producing zeolite. We explored two routes in the synthesis of zeolite: (a) direct MFA zeolitization, which resulted in the formation of W zeolite with KOH and analcime with NaOH and (b) a MFA fusion route, which resulted in the formation of zeolite W or chabazite with KOH and zeolite X or P with NaOH. No residual crystalline phases were present. When LiOH was employed, ABW zeolite with quartz and mullite were obtained. For both zeolitization routes, the nature of the alkali (KOH, NaOH, LiOH), the alkali/MFA ratio (0.23-1.46), and the crystallization temperature and time (90-175 {sup o}C; 8-24 h) were evaluated. Additionally, the effect of temperature and time on MFA fusion was studied. W zeolite was obtained by both zeolitization methods. The direct route is preferred because it is a straightforward method using soft reaction conditions that results in a high yield of low cost zeolites with large crystal agglomerates. It was demonstrated that aluminum modified W zeolite has the ability to remove 99% of the arsenic (V) from an aqueous solution of Na{sub 2}HAsO{sub 4}.7H{sub 2}O originally containing 740 ppb.

  3. Adsorptive removal of organics from aqueous phase by acid-activated coal fly ash: preparation, adsorption, and Fenton regenerative valorization of "spent" adsorbent.

    Science.gov (United States)

    Wang, Nannan; Hao, Linlin; Chen, Jiaqing; Zhao, Qiang; Xu, Han

    2018-05-01

    Raw coal fly ash was activated to an adsorbent by sulfuric acid impregnation. The activation condition, the adsorption capacity, and the regenerative valorization of the adsorbent were studied. The results show that the optimal preparation conditions of the adsorbent are [H 2 SO 4 ] = 1 mol L -1 , activation time = 30 min, the ratio of coal fly ash to acid = 1:20 (g:mL), calcination temperature = 100 °C. The adsorption of p-nitrophenol on the adsorbent accords with the pseudo-second-order kinetic equation and the adsorption rate constant is 0.089 g mg -1  min -1 . The adsorption on this adsorbent can be considered enough after 35 min, when the corresponding adsorption capacity is 1.07 mg g -1 (85.6% of p-nitrophenol removal). Compared with raw coal fly ash, the adsorbent has a stable adsorption performance at low pH range (pH = 1-6) and the adsorption of p-nitrophenol is an exothermic process. Ninety minutes is required for the regenerative valorization of saturated adsorbent by Fenton process. The regenerative valorization for this saturated adsorbent can reach 89% under the optimal proposed conditions (30 °C, pH = 3, [H 2 O 2 ] = 5.0 mmol L -1 , [Fe 2+ ] = 5.5 mmol L -1 ). Within 15 experimental runs, the adsorbent has a better and better stability with the increase of experimental runs. Finally, the mechanism of activating coal fly ash is proposed, being verified by the results of the SEM and BET test.

  4. Evaluation of the effects of coal fly ash amendments on the toxicity of a contaminated marine sediment

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, R.M.; Perron, M.M.; Friedman, C.L.; Suuberg, E.M.; Pennell, K.G.; Cantwell, M.G.; Pelletier, M.C.; Ho, K.T.; Serbst, J.R.; Ryba, S.A. [US EPA, Narragansett, RI (USA). Office for Research and Development

    2009-01-15

    Approaches for cleaning up contaminated sediments range from dredging to in situ treatment. In this study, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7-d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspected that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of postoxidation treatment to reduce nitrous oxide emissions. Relatively simple methods exist to remove ammonia from fly ash before use, and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. No evidence was seen of the release of the metals cadmium, copper, nickel, or lead from the fly ashes. A preliminary 28-d polychaete bioaccumulation study with one of the high-carbon fly ashes and a reference sediment was also performed. Although preliminary, no evidence was seen of adverse effects to worm growth or lipid content or of accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon content could represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments.

  5. Effect of mixes made of coal bottom ash and fly ash on the mechanical strength and porosity of Portland cement

    Directory of Open Access Journals (Sweden)

    Argiz, C.

    2013-03-01

    Full Text Available New additions to the cement are needed to achieve a more sustainable and durable construction material. Within this context, bottom ashes can be used as a main constituent of Portland cements when it is mixed in an optimized proportion with fly ashes. The mechanical characteristics of standarized mortars made of mixes of pulverized coal combustion bottom and fly ashes are studied. The mortars were made of ordinary Portland cement (CEM I 42.5 N and mixes of bottom ashes with fly ashes in similar proportions to those of CEM II/A-V, CEM II/B-V and CEM IV/A (V. Summing up, it can be said that the utilization of bottom ashes mixed with fly ashes in replacement levels from 0% to 100% do not affect significantively on the mechanical caracteristics of the mortars considered in the present study which had an addition maximum content of 35%.

    La utilización de nuevas adiciones en el cemento es necesaria con el fin de obtener un material más sostenible y durable. En este sentido, las cenizas de fondo o cenicero de las centrales termoeléctricas de carbón se podrían reciclar siendo empleadas como un componente principal de los cementos Portland. Se han estudiado las propiedades mecánicas de unos morteros normalizados elaborados con mezclas de cenizas volantes con cenizas de fondo fabricados con unos porcentajes similares a los correspondientes de los CEM II/A-V, CEM II/B-V y CEM IV/A (V. En conclusión, la utilización de mezclas de cenizas de fondo o cenicero con cenizas volantes sustituyendo a éstas últimas entre el 0% y el 100%, no influye significativamente en el comportamiento mecánico de los morteros estudiados en los que el contenido máximo de adición ha sido del 35%, si bien afecta a determinados aspectos microestructurales, como la cantidad y distribución de poros capilares.

  6. Chemical, microbial and physical properties of manufactured soils produced by co-composting municipal green waste with coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Belyaeva, O.N.; Haynes, R.J. [University of Queensland, St Lucia, Qld. (Australia)

    2009-11-15

    Increasing proportions of coal fly ash were co-composted with municipal green waste to produce manufactured soil for landscaping use. Only the 100% green waste treatment reached a thermophilic composting phase ({ge} 50{sup o}C) which lasted for 6 days. The 25% and 50% ash treatments reached 36-38{sup o}C over the same period while little or no self-heating occurred in the 75% and 100% ash treatments. Composted green waste had a low bulk density and high total and macro-porosity. Addition of 25% ash to green waste resulted in a 75% increase in available water holding capacity. As the proportions of added ash in the composts increased, the organic C, soluble C, microbial biomass C, basal respiration and activities of beta-glucosidase, L-asparaginase, alkali phosphatase and arylsulphatase enzymes in the composted products all decreased. It could be concluded that addition of fly ash to green waste at a proportion higher than 25% did not improve the quality parameters of manufactured soil.

  7. Environmental risks of farmed and barren alkaline coal ash landfills in Tuzla, Bosnia and Herzegovina

    International Nuclear Information System (INIS)

    Dellantonio, Alex; Fitz, Walter J.; Custovic, Hamid; Repmann, Frank; Schneider, Bernd U.; Gruenewald, Holger; Gruber, Valeria; Zgorelec, Zeljka; Zerem, Nijaz; Carter, Claudia; Markovic, Mihajlo; Puschenreiter, Markus; Wenzel, Walter W.

    2008-01-01

    The disposal of coal combustion residues (CCR) has led to a significant consumption of land in the West Balkan region. In Tuzla (Bosnia and Herzegovina) we studied previously soil-covered (farmed) and barren CCR landfills including management practises, field ageing of CCR and the transfer of trace elements into crops, wild plants and wastewaters. Soil tillage resulted in mixing of cover soil with CCR. Medicago sativa showed very low Cu:Mo ratios (1.25) which may cause hypocuprosis in ruminants. Total loads of inorganic pollutants in the CCR transport water, but not pH (∼12), were below regulatory limits of most EU countries. Arsenic concentrations in CCR transport water were -1 whereas reductive conditions in an abandoned landfill significantly enhanced concentrations in leachates (44 μg l -1 ). The opposite pattern was found for Cr likely due to large initial leaching of CrVI. Public use of landfills, including farming, should be based on a prior risk assessment due to the heterogeneity of CCR. - Uncontrolled farming and tillage of previously soil-covered coal ash landfills resulted in exposure of ash on the surface

  8. The mineral matter characteristics of some Chinese coal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. [China University of Mining and Technology (China). Dept. of Coal Preparation and Utilization

    1994-12-01

    The mineral matter has been separated from 18 coal samples with a low temperature ashes and analyzed by means of X-ray diffraction method. Based on the results of chemical analysis of the coal ash, with reference to the standard composition of minerals, the content of various mineral phases in the coal ash has been determined. Furthermore, this paper summarizes the mineral matter characteristics of the coal samples and discusses the relationship between the composition of mineral matter in coal and its depositional environment.

  9. Co-combustion of anthracite coal and wood pellets: Thermodynamic analysis, combustion efficiency, pollutant emissions and ash slagging.

    Science.gov (United States)

    Guo, Feihong; Zhong, Zhaoping

    2018-08-01

    This work presents studies on the co-combustion of anthracite coal and wood pellets in fluidized bed. Prior to the fluidized bed combustion, thermogravimetric analysis are performed to investigate the thermodynamic behavior of coal and wood pellets. The results show that the thermal decomposition of blends is divided into four stages. The co-firing of coal and wood pellets can promote the combustion reaction and reduce the emission of gaseous pollutants, such as SO 2 and NO. It is important to choose the proportion of wood pellets during co-combustion due to the low combustion efficiency caused by large pellets with poor fluidization. Wood pellets can inhibit the volatilization of trace elements, especially for Cr, Ni and V. In addition, the slagging ratio of wood pellets ash is reduced by co-firing with coal. The research on combustion of coal and wood pellets is of great significance in engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Distinctive features of high-ash bituminuos coals combution with low milling fineness in furnace chambers with bottom blowing

    Science.gov (United States)

    Zroychikov, N. A.; Kaverin, A. A.; Biryukov, Ya A.

    2017-11-01

    Nowadays the problem of improvement of pulverized coal combustion schemes is an actual one for national power engineering, especially for combustion of coals with low milling fineness with significant portion of moisture or mineral impurities. In this case a big portion of inert material in the fuel may cause impairment of its ignition and combustion. In addition there are a lot of boiler installations on which nitrogen oxides emission exceeds standard values significantly. Decreasing of milling fineness is not without interest as a way of lowering an electric energy consumption for pulverization, which can reach 30% of power plant’s auxiliary consumption of electricity. Development of a combustion scheme meeting the requirements both for effective coal burning and environmental measures (related to NOx emission) is a complex task and demands compromising between these two factors, because implementation of NOx control by combustion very often leads to rising of carbon-in-ash loss. However widespread occurrence of such modern research technique as computer modeling allows to conduct big amount of variants calculations of combustion schemes with low cost and find an optimum. This paper presents results of numerical research of combined schemes of coal combustion with high portion of inert material based on straight-flow burners and nozzles. Several distinctive features of furnace aerodynamics, heat transfer and combustion has been found. The combined scheme of high-ash bituminouos coals combustion with low milling fineness, which allows effective combustion of pointed type of fuels with nitrogen oxides emission reduction has been proposed.

  11. Pb-free Radiation Shielding Glass Using Coal Fly Ash

    Directory of Open Access Journals (Sweden)

    Watcharin Rachniyom

    2015-12-01

    Full Text Available In this work, Pb-free shielding glass samples were prepared by the melt quenching technique using subbituminous fly ash (SFA composed of xBi2O3 : (60-xB2O3 : 10Na2O : 30SFA (where x = 10, 15, 20, 25, 30 and 35 by wt%. The samples were investigated for their physical and radiation shielding properties. The density and hardness were measured. The results showed that the density increased with the increase of Bi2O3 content. The highest value of hardness was observed for glass sample with 30 wt% of Bi2O3 concentration. The samples were investigated under 662 keV gamma ray and the results were compared with theoretical calculations. The values of the mass attenuation coefficient (μm, the atomic cross section (σe and the effective atomic number (Zeff were found to increase with an increase of the Bi2O3 concentration and were in good agreement with the theoretical calculations. The best results for the half-value layer (HVL were observed in the sample with 35 wt% of Bi2O3 concentration, better than the values of barite concrete. These results demonstrate the viability of using coal fly ash waste for radiation shielding glass without PbO in the glass matrices.

  12. Dose assessment of natural radioactivity in fly ash and environmental materials from Morupule a coal-fired power station in Botswana

    International Nuclear Information System (INIS)

    Mudiwa, J

    2015-01-01

    This study has been undertaken to estimate the occupational and public radiation doses due to natural radioactivity at Morupule, a Coal-Fired Power Station and its environs. The radiation doses were reconstructed to include 60 year period from 1985 to 2045. Direct gamma ray spectroscopy was used to determine the natural radionuclides Th-232, U-238, and K-40 both qualitatively and quantitatively for fly ash, coal, soil and water (from the fly ash ponds) samples. The average activity concentrations for Th-232, U-238, and K-40 in fly ash samples were 64.54 Bq/kg, 49.37 Bq/kg and 40.08 Bq/kg respectively. In the case of coal, the corresponding average activity concentrations for Th-232, U-238, and K-40 were 27.43 Bq/kg, 18.10 Bq/kg and 17.38 Bq/kg respectively. For soil samples, the average activity concentrations for Th-232, U-238, and K-40 were 10.11 Bq/kg, 6.76 Bq/kg and 118.03 Bq/kg respectively. In water samples, the average activity concentrations for Th-232, U-238, and K-40 were 0.79 Bq/l, 0.32 Bq/l and 1.01 Bq/l respectively. These average activity concentrations were generally comparable to the average world activity concentrations in the case of coal samples, but were generally lower than the average world activity concentrations in the case of fly ash, soil and water samples. The average annual effective doses for the study area were estimated as 0.320 mSv, 0.126 mSv, 0.069 mSv and 0.003 mSv for fly ash, coal, soil and water samples respectively. Dose reconstruction modelling estimated the average fly ash annual effective doses for the years 1985, 1995, 2005, 2015, 2025, 2035 and 2045 to be 0.182 mSv, 0.459 mSv, 0.756 mSv, 0.320 mSv, 0.183 mSv, 0.137 mSv and 0.124 mSv respectively. The reconstructed average coal annual effective doses for similar years were 0.070 mSv, 0.182 mSv, 0.303 mSv, 0.126 mSv, 0.070 mSv, 0.060 mSv and 0.046 mSv respectively. The dose reconstruction modelling also estimated the average soil annual effective doses for the same years as

  13. Determination of coal ash content by the combined x-ray fluorescence and scattering spectrum

    Science.gov (United States)

    Mikhailov, I. F.; Baturin, A. A.; Mikhailov, A. I.; Borisova, S. S.; Fomina, L. P.

    2018-02-01

    An alternative method is proposed for the determination of the inorganic constituent mass fraction (ash) in solid fuel by the ratio of Compton and Rayleigh X-ray scattering peaks IC/IR subject to the iron fluorescence intensity. An original X-ray optical scheme with a Ti/Mo (or Sc/Cu) double-layer secondary radiator allows registration of the combined fluorescence-and-scattering spectrum at the specified scattering angle. An algorithm for linear calibration of the Compton-to-Rayleigh IC/IR ratio is proposed which uses standard samples with two certified characteristics: mass fractions of ash (Ad) and iron oxide (WFe2O3). Ash mass fractions have been determined for coals of different deposits in the wide range of Ad from 9.4% to 52.7% mass and WFe2O3 from 0.3% to 4.95% mass. Due to the high penetrability of the probing radiation with energy E > 17 keV, the sample preparation procedure is rather simplified in comparison with the traditional method of Ad determination by the sum of fluorescence intensities of all constituent elements.

  14. Growth and elemental content of two tree species growing on abandoned coal fly ash basins

    International Nuclear Information System (INIS)

    Carlson, C.L.; Adriano, D.C.

    1991-01-01

    Differences in aboveground tissue concentrations of trace elements were assessed for sweetgum (Liquidambar styraciflua L.) and sycamore (Plantanus occidentalis L.) growing on two abandoned coal fly ash basins and a control soil. The wet basin (pH = 5.58) had originally received precipitator ash in an ash-water slurry, while the dry basin (pH = 8.26) had received both precipitator and bottom ash in dry form. In general, trees from the wet basin exhibited elevated trace element concentrations in comparison to the controls, while the dry basin trees exhibited reduced concentrations. On eof the most striking differenced in elemental concentrations among the ash basin and control trees was observed for Mn, with the control trees exhibiting concentrations orders of magnitude greater than the ash basin trees. Differences in foliar trace element concentrations among the sites can generally be explained by differences in substrate trace element concentrations and/or substrate pH. While trees from the wet ash basin generally had the highest trace element concentrations, these trees also attained the greatest height and diameter growth, suggesting that the elevated trace element concentrations in the wet basin substrate are not limiting the establishment of these two species. The greater height and diameter growth of the wet basin trees is presumably a result of the greater water-holding capacity of the substrate on this site. Differences in growth and tissue concentrations between sweetgum and sycamore highlight the importance of using more than one species when assessing metal toxicity or deficiency on a given substrate

  15. Arsenic and mercury partitioning in fly ash at a Kentucky power plant

    Energy Technology Data Exchange (ETDEWEB)

    Tanaporn Sakulpitakphon; James C. Hower; Alan S. Trimble; William H. Schram; Gerald A. Thomas [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2003-08-01

    Coal and fly ash samples were collected from a 500-MW unit at a Kentucky power plant, with the objective of studying the distribution of arsenic, mercury, and other trace elements in fly ash. The coal feed was low-sulfur, high volatile A bituminous central West Virginia coal. The plant produced a relatively low-carbon fly ash. In contrast to power plants with high-mercury feed coal, the fly ashes from the lower-mercury feed coal had low mercury values, generally not exceeding 0.01 ppm Hg. Mercury capture by fly ash varies with both the amount and type of carbon and the collection temperature; mercury capture is more efficient at lower temperatures. Arsenic in the feed coal and in the flue gas is of concern to the utility, because of the potential for catalyst poisoning in the selective catalytic reduction system (in the planning stage at the time of the sampling). Arsenic is captured in the fly ash, increasing in concentration in the more-distant (from the boiler) reaches of the electrostatic precipitator system. 16 refs., 2 figs., 5 tabs.

  16. A Comparative study Of Catalityc Activity Of Heterogeneous Base Of Banana Stem Ash And Fly Ash On Production Of Biodiesel Byultrasonic

    OpenAIRE

    Marlinda; Ramli; Muh. Irwan

    2015-01-01

    Abstract The use of heterogeneous catalysts in the production of biodiesel provides many advantages due to heterogeneous catalysts can be easily separated from the product so that it can be reused. This research using heterogeneous catalysts derived from natural materials namely banana stem ash and coal fly ash containing alkali and alkaline earth elements. The preparation of catalyst from banana stem ash and coal fly ash used activator KOH 1.9 N and impregnation with KNO3 15 and then heated...

  17. Enrichment of coal pulps by selective flocculation

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, Z

    1977-01-01

    The results are presented of selective flocculation of coal pulps using different reagents. In some tests the coal particles were flocculated, and in others the coal remained in suspension and the dirt was flocculated. Selective flocculation makes it possible to obtain coal concentrates with a very low ash content from slurries with a high ash content. (In Polish)

  18. Enrichment of coal pulps by selective flocculation

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, Z

    1977-01-01

    The results are presented of selective flocculation of coal pulps using different reagents. In some tests the coal particles were flocculated, and in others the coal remained in suspension and the dirt was flocculated. Selective flocculation makes it possible to obtain coal concentrates with a very low ash content from slurries with a high ash content.

  19. Comparison of H2S adsorption by two hydrogel composite (HBC) derived by Empty Fruit Bunch (EFB) biochar and Coal Fly Ash (CFA)

    Science.gov (United States)

    Meri, N. H.; Alias, A. B.; Talib, N.; Rashid, Z. A.; Ghani, W. A. W. A. K.

    2018-03-01

    This study are covered the adsorption performance of two adsorbent Empty Fruit Bunch Hydrogel Biochar Composite (EFB-HBC) and Coal Fly Ash Hydrogel Composite (CFA-HC) on hydrogen sulphide. The EFB biochar were produce by pyrolysed and heated from room temperature to 550˚C at 10˚C/min under the Nitrogen flow. Meanwhile, coal fly ash collected from a power plant located in Selangor, Malaysia. Both of the materials is a waste from different industries and became the precursor to our adsorbents. EFB biochar and coal fly ash has been synthesized to become hydrogel by polymerization process with acrylamide (AAm) as monomer, N,N’-methylene bisacry lamide (MBA) as cross linker and ammonium persulfate (APS) as initiator. In addition, because of the speciality of hydrogel itself, which is has high ability in storing water, the effect of H2O wetness on EFB-HBC and CFA-HC were investigate in adsorption of H2S. EFB-HBC gave a longest breakthrough time and highest adsorption capacity compared with CFA-HC in both condition (dry/wet). The result also indicated that, the increased the bed height, increased the adsorption capacity.

  20. Water permeabilities of pulverized fuel ash; Bifuntan sekitanbai no tosui tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, T [Center for Coal Utilization, Japan, Tokyo (Japan); Nagataki, S [Niigata University, Niigata (Japan); Hosoda, N [Kumagai Gumi Co. Ltd., Tokyo (Japan); Utsuki, T [The Coal Mining Research Center, Japan, Tokyo (Japan); Kubo, H [Obayashi Corp., Tokyo (Japan)

    1996-09-01

    It is intended to establish a technology to utilize coal ash in bulk to deal with its increasing production. In order to expand its use into earth engineering materials, two kinds of combustion ashes produced from dust coal burning power plants were used for studies using different kinds of tests. The tests were carried out on strength properties, water permeability, and characteristics of dissolving trace amounts of chemical constituents, with regard to addition effects of cement into compacted and slurry-state dust coal burned ashes. The derived findings may be summarized as follows: as the strength properties, the strength for both of the compacted and slurry-state ashes increases as the cement addition ratio is increased; growth of the strength due to the cement addition ratio and material age varies depending on the kinds of dust coal burned ash; comparison of strengths of the compacted and the slurry-state ashes indicates the strength of the latter ash is about one-third to quarter of that of the former ash; water permeability of the ashes decreases both in the compacted and slurry- state ashes as the cement addition ratio is increased; and the cement addition ratio gives greater impact to the water permeability than the density of the ashes. 28 figs., 5 tabs.

  1. Transformation of South African coal fly ash into ZSM-5 zeolite and its application as an MTO catalyst

    CSIR Research Space (South Africa)

    Missengue, RNM

    2017-01-01

    Full Text Available This study presents a way of using South African coal fly ash by extracting metals such as Al and Fe with concentrated sulphuric acid, and then using the solid residue as a feedstock for the synthesis of ZSM-5 zeolite. The percentage of aluminium...

  2. Influence of the composition and agglomeration pressure on the compaction level of the fertilizers based on biomass ash and digestate

    Directory of Open Access Journals (Sweden)

    Wróbel Marek

    2018-01-01

    Full Text Available The paper presents the results of research aimed at determining the influence of the composition of the fertilizer mixtures and the compaction pressure on the specific density and density index of fertilizer granules. Investigated mixtures were prepared from fly ash from power plant fuelled by biomass and digestate from biogas plant. The urea, sulfur and phosphorite were also added as enhancing additives. For granule samples made on a strength machine, their specific density was determined on a quasifluid-pycnometer. To determine the effect of agglomerate pressure on the compaction process, the absolute density of the materials was omitted. In such case it was needed to introduce a density index AI. Such a presentation of the results obtained has made it possible to clearly determine how the density of the test mixture results in the applied agglomeration pressure. The specific density of the resulting granules was in the range of 0.85-1.27 g/cm3. The determined density index for the given pressure was in the following ranges: 0.44-0.49 g/cm3 (pressure 100MPa, 0.47-0.51 g/cm3 (pressure 150MPa 0.51 - 0.59 g/cm3 (200MPa pressure. This means that, regardless of the contribution of components to the mixture at the given pressure, a similar degree of compaction was obtained.

  3. Natural radionuclides in coal and waste material originating from coal fired power plant

    International Nuclear Information System (INIS)

    Marovic, Gordana; Franic, Zdenko; Sencar, Jasminka; Petrinec, Branko; Bituh, Tomislav; Kovac, Jadranka

    2008-01-01

    This paper presents long-term investigations of natural radioactivity in coal, used for power production in the coal-fired power plant (CFPP) situated on the Adriatic coast, and resulting slag and ash. Activity concentrations of 40 K, 232 Th, 226 Ra and 238 U in used coal and resulting waste material have been measured for 25 years. As expected, it was demonstrated that the content of radionuclides in deposited bottom and filter ash material are closely related with radionuclide activity concentrations and mineral matter fraction in used coals. The external hazard index has been calculated and discussed for the slag and ash depository. During the first decade of operation of the CFPP has been used domestic coal produced in nearby area characterized by higher background radiation compared with the rest of Croatia. Therefore, the coal itself had relatively high 226 Ra and 238 U activity concentrations while potassium and thorium content was very low, 40 K activity concentrations being 2-9% and those of 232 Th 1-3% of total activity. As, in addition, the sulphur concentrations in coal were very high use of domestic coal was gradually abandoned till it was completely substituted by imported coal originated from various sources and of low natural radioactivity. Upon this, activity concentrations of uranium series radionuclides in deposited waste materials decreased significantly. Consequently, waste material i.e., slag and ash, generated in the last several years of coal fired power plant operation could be readily used in cement industry and as additive to other building materials, without any special restrictions according to the Croatian regulations dealing with building materials and European directives. (author)

  4. Biosynthesis of titanium dioxide nanoparticles using a probiotic from coal fly ash effluent

    International Nuclear Information System (INIS)

    Babitha, S; Korrapati, Purna Sai

    2013-01-01

    Graphical abstract: - Highlights: • Metal resistant probiotic species was isolated from coal fly ash effluent site. • Uniform sized anatase form of TiO 2 nanoparticles were synthesized using Propionibacterium jensenii. • Diffraction patterns confirmed the anatase – TiO 2 NPs with average size 2 nanoparticle incorporated wound dressing exhibits better wound healing. - Abstract: The synthesis of titanium dioxide nanoparticle (TiO 2 NP) has gained importance in the recent years owing to its wide range of potential biological applications. The present study demonstrates the synthesis of TiO 2 NPs by a metal resistant bacterium isolated from the coal fly ash effluent. This bacterial strain was identified on the basis of morphology and 16s rDNA gene sequence [KC545833]. The physico-chemical characterization of the synthesized nanoparticles is completely elucidated by energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmission and scanning electron microscopy (TEM, SEM). The crystalline nature of the nanoparticles was confirmed by X-RD pattern. Further, cell viability and haemolytic assays confirmed the biocompatible and non toxic nature of the NPs. The TiO 2 NPs was found to enhance the collagen stabilization and thereby enabling the preparation of collagen based biological wound dressing. The paper essentially provides scope for an easy bioprocess for the synthesis of TiO 2 NPs from the metal oxide enriched effluent sample for future biological applications

  5. Biosynthesis of titanium dioxide nanoparticles using a probiotic from coal fly ash effluent

    Energy Technology Data Exchange (ETDEWEB)

    Babitha, S; Korrapati, Purna Sai, E-mail: purnasaik.clri@gmail.com

    2013-11-15

    Graphical abstract: - Highlights: • Metal resistant probiotic species was isolated from coal fly ash effluent site. • Uniform sized anatase form of TiO{sub 2} nanoparticles were synthesized using Propionibacterium jensenii. • Diffraction patterns confirmed the anatase – TiO{sub 2} NPs with average size <80 nm. • TiO{sub 2} nanoparticle incorporated wound dressing exhibits better wound healing. - Abstract: The synthesis of titanium dioxide nanoparticle (TiO{sub 2} NP) has gained importance in the recent years owing to its wide range of potential biological applications. The present study demonstrates the synthesis of TiO{sub 2} NPs by a metal resistant bacterium isolated from the coal fly ash effluent. This bacterial strain was identified on the basis of morphology and 16s rDNA gene sequence [KC545833]. The physico-chemical characterization of the synthesized nanoparticles is completely elucidated by energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmission and scanning electron microscopy (TEM, SEM). The crystalline nature of the nanoparticles was confirmed by X-RD pattern. Further, cell viability and haemolytic assays confirmed the biocompatible and non toxic nature of the NPs. The TiO{sub 2} NPs was found to enhance the collagen stabilization and thereby enabling the preparation of collagen based biological wound dressing. The paper essentially provides scope for an easy bioprocess for the synthesis of TiO{sub 2} NPs from the metal oxide enriched effluent sample for future biological applications.

  6. Transformations of inorganic coal constituents in combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J. (ed.); Srinivasachar, S.; Wilemski, G.; Boni, A.A. (PSI Technology Co., Andover, MA (United States)); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. (Arizona Univ., Tucson, AZ (United States)); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexingt

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles What determines their composition Whether or not particles deposit How combustion conditions, including reactor size, affect these processes remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

  7. Seventh symposium on coal mine drainage research. NCA/BCR coal conference and Expo IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Seventh Symposium on Coal Mine Drainage Research, sponsored by the National Coal Association and Bituminous Coal Research, Inc., was held at the Kentucky Fair and Exposition Center, Louisville, Kentucky, October 18-20, 1977. Seventeen papers from the proceedings have been entered individually into EDB and ERA. Topics covered include chemical reactions of pyrite oxidation and acid formation in spoil banks, abandoned mines, etc., formation of small acid lakes from the drainage and their neutralization by natural and other neutralization measures, trace elements in acid mine drainage, ground water contamination, limnology, effects of surface mined ground reclamation and neutralization, water purification and treatment, mining and coal preparation plant waste disposal, ash and fly ash disposal (to minimize leaching from the wastes), runoff from large coal storage stockpiles during storms (prevention of environmental effects by collection and neutralization by passing through an ash pond). (LTN)

  8. SELECTION OF SUSTAINABLE TECHNOLOGIES FOR COMBUSTION OF BOSNIAN COALS

    Directory of Open Access Journals (Sweden)

    Anes Kazagić

    2010-01-01

    Full Text Available This paper deals with optimization of coal combustion conditions to support selection a sustainable combustion technology and an optimal furnace and boiler design. A methodology for optimization of coal combustion conditions is proposed and demonstrated on the example of Bosnian coals. The properties of Bosnian coals vary widely from one coal basin to the next, even between coal mines within the same basin. Very high percentage of ash (particularly in Bosnian brown coal makes clear certain differences between Bosnian coal types and other world coal types, providing a strong argument for investigating specific problems related to the combustion of Bosnian coals, as well as ways to improve their combustion behaviour. In this work, options of the referent energy system (boiler with different process temperatures, corresponding to the different combustion technologies; pulverised fuel combustion (slag tap or dry bottom furnace and fluidized bed combustion, are under consideration for the coals tested. Sustainability assessment, based on calculation economic and environment indicators, in combination with common low cost planning method, is used for the optimization. The total costs in the lifetime are presented by General index of total costs, calculated on the base of agglomeration of basic economic indicators and the economic indicators derived from environmental indicators. So, proposed methodology is based on identification of those combustion technologies and combustion conditions for coals tested for which the total costs in lifetime of the system under consideration are lowest, provided that all environmental issues of the energy system is fulfilled during the lifetime. Inputs for calculation of the sustainability indicators are provided by the measurements on an experimental furnace with possibility of infinite variation of process temperature, supported by good praxis from the power plants which use the fuels tested and by thermal

  9. Coal-peat compositions for co-combustion in local boilers

    Directory of Open Access Journals (Sweden)

    А. В. Михайлов

    2016-08-01

    Full Text Available In article results of experiments on creation of coal and peat fuel compositions for burning in solid-fuel boilers are described. The main objective of research consisted in development of combination of coal dust and natural peat without binding additives. The role of peat consists that it increases efficiency of process of granulation, being natural binding. The method of granulation allows to utilize waste of the coal industry. Joint burning of two types of fuel – coal dust and peat reduces emission of sulfur dioxides. The cost of peat raw materials is lower, than artificial binding, applied to briquetting of coal dust. The composition of mix of coal dust and peat varied in the ratio 2:1, 1:1 and 1:2 in volume ratio at humidity of mix before extrusion of 65 %. In the course of preparatory operations of coal raw materials its crushing and sifting through sieve of 24 mesh (0,707 mm was carried out. Procedure of hashing of samples of coal and peat was carried out before receiving homogeneous mixture. After hashing mix was located in piston press for receiving granules. Coal dust and wet peat pass semifixed extrusion on piston press with formation of cylindrical granules with a diameter of 16 mm. After extrusion of granule are dried to operational humidity of 25 %. Coal and peat fuel granules showed sufficient mechanical strength for transportation and power feed in solid-fuel boilers. Burning of coal and peat fuel granules in vitro at temperature of 800 °C does not lead to ashes agglomeration. The conducted preliminary researches showed prospects of utilization of coal waste by granulation method in mix with natural peat.

  10. Pengaruh Kombinasi Fly Ash dan Bottom Ash sebagai Bahan Substitusi pada Campuran Beton terhadap Sifat Mekanis

    OpenAIRE

    Yahya, Tengku Tantoni; Kurniawandy, Alex; Djauhari, Zulfikar

    2017-01-01

    Fly ash and bottom ash were waste that generated from the power plant burning coal process. Fly ash and bottom ash has the potential to be developed as a basic ingredient in concrete composites. This research aimed to obtain the properties of fresh concrete and hard concrete of the combined effect of fly ash and bottom ash as a substitute ingredient in composite concrete. This research has examined the influence of a combination of waste fly ash and bottom ash to the compressive strength of a...

  11. Atmospheric emission of mercury due to combustion of steam coal and domestic coal in China

    Science.gov (United States)

    Wang, Shaobin; Luo, Kunli

    2017-08-01

    To study the mercury emission due to the combustion of steam coal and domestic coal in China, we analyzed the mercury contents of coal, fly ash, bottom ash and sluicing water in thermal power plants, steam boilers as well as domestic coal-stoves, in Shaanxi, Shanxi, Shandong and Yunnan Provinces. This study conduct an estimate of the Hg emission rates from steam coal and domestic coal combustion based on the method of mass distribution ratio of fly ash and bottom ash. The results show that the Hg emission rate of coal combustion in thermal power plants is about 50.21% (electrostatic precipitators + wet flue gas desulfurization), and that in heating boilers is about 67.23%, and 92.28% in industrial boilers without flue gas desulphurisation equipment. Furthermore, Hg emission rate is 83.61% due to domestic coal combustion in coal-stoves. The Hg emission amount into the atmosphere from power and heat generation, industrial boilers, domestic coal-stoves and spontaneous combustion of coal gangue is roughly estimated to be 133 ± 4, 100 ± 17, 11 ± 0.1 and 47 ± 26 tons in China in 2014, respectively, and the total Hg emission amount from this paper is estimated at 292 tons. The trends of Hg emission in China from 1991 to 2014 show an accelerating growth after 2002. The proportion of mercury emission due to thermal power, heating generation and industrial energy utilization continuously increased. The atmospheric emission of mercury due to combustion of steam coal, domestic coal and coal gangue accounts nearly 50% in total anthropogenic Hg emissions in China, indicating one of the largest sources of Hg emission in China which should draw more public and scientific attention in the future.

  12. Conversion of coal-fired bottom ash to fuel and construction materials.

    Science.gov (United States)

    Koca, Huseyin; Aksoy, Derya Oz; Ucar, Reyhan; Koca, Sabiha

    2017-07-01

    In this study, solid wastes taken from Seyitomer coal-fired power plant bottom ashes were subjected to experimental research to obtain a carbon-rich fraction. The possible recycling opportunities of remaining inorganic fraction in the cement and concrete industry was also investigated. Flotation technique was used to separate unburned carbon from inorganic bottom ashes. Collector type, collector, dispersant and frother amounts, and pulp density are the most important variables in the flotation technique. A number of flotation collectors were tested in the experiments including new era flotation reactives. Optimum collector, dispersant and frother dosages as well as optimum pulp density were also determined. After experimental work, an inorganic fraction was obtained, which included 5.41% unburned carbon with 81.56% weight yield. These properties meets the industrial specifications for the cement and concrete industry. The carbon content of the concentrate fraction, obtained in the same experiment, was enhanced to 49.82%. This fraction accounts for 18.44% of the total amount and can be mixed to the power plant fuel. Therefore total amount of the solid waste can possibly be recycled according to experimental results.

  13. Coal reverse flotation. Part II: Cleaning of a subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Ding, K.J.; Laskowski, J.S. [University of British Columbia, Vancouver, BC (Canada). Dept. for Mining Engineering

    2006-01-15

    Reverse flotation of a subbituminous coal was investigated and it turned out that a large amount of DTAC was needed in this process. The application of the zero-conditioning time method along with the use of PAM significantly reduced DTAC consumption from over 6 kg/t down to 1.375 kg/t. Dextrin was necessary to improve the selectivity. The addition of a dispersant (tannic acid) improved further the quality of concentrate. The concentrate ash content of 16.7% at 50.4% yield was obtained for the feed ash content of 34.6%. Although this gives only about 64% combustible recovery, since the inherent ash content for this coal was determined to be 10% the room for further improvement is very limited. The best separation was obtained around a natural pH of 7.5-8.4 for this coal.

  14. The comparative analysis of heat transfer efficiency in the conditions of formation of ash deposits in the boiler furnaces, with taking into account the crystallization of slag during combustion of coal and water-coal fuel

    Science.gov (United States)

    Salomatov, V. V.; Kuznetsov, G. V.; Syrodoy, S. V.

    2017-11-01

    The results of the numerical simulation of heat transfer from the combustion products of coal and coal-water fuels (CWF) to the internal environment. The mathematical simulation has been carried out on the sample of the pipe surfaces of the combustion chamber of the boiler unit. The change in the characteristics of heat transfer (change of thermochemical characteristics) in the conditions of formation of the ash deposits have been taken into account. According to the results of the numerical simulation, the comparative analysis of the efficiency of heat transfer has been carried out from the furnace environment to the inside pipe coolant (water, air, or water vapor) from the combustion of coal and coal-water fuels. It has been established that, in the initial period of the boiler unit operation during coal fuel combustion the efficiency of heat transfer from the combustion products of the internal environment is higher than when using CWF. The efficiency of heat transfer in CWF combustion conditions is more at large times (τ≥1.5 hours) of the boiler unit. A significant decrease in heat flux from the combustion products to the inside pipe coolant in the case of coal combustion compared to CWF has been found. It has been proved that this is due primarily to the fact that massive and strong ash deposits are formed during coal combustion.

  15. Sound absorption coefficient of coal bottom ash concrete for railway application

    Science.gov (United States)

    Ramzi Hannan, N. I. R.; Shahidan, S.; Maarof, Z.; Ali, N.; Abdullah, S. R.; Ibrahim, M. H. Wan

    2017-11-01

    A porous concrete able to reduce the sound wave that pass through it. When a sound waves strike a material, a portion of the sound energy was reflected back and another portion of the sound energy was absorbed by the material while the rest was transmitted. The larger portion of the sound wave being absorbed, the lower the noise level able to be lowered. This study is to investigate the sound absorption coefficient of coal bottom ash (CBA) concrete compared to the sound absorption coefficient of normal concrete by carried out the impedance tube test. Hence, this paper presents the result of the impedance tube test of the CBA concrete and normal concrete.

  16. The long-term behavior of stabilized coal ash in the sea

    International Nuclear Information System (INIS)

    van der Sloot, H.A.; Hockley, D.; Woodhead, P.M.J.; Roethel, F.J.

    1991-01-01

    Over an eight year period blocks of stabilized coal fly-ash and FGD scrubber sludge were placed in the Atlantic Ocean where they served as substrate for an artificial fishing reef. Structural testing has shown that these blocks have maintained their physical integrity over this extended time period. The concentrations of Ca, As, Sb and Mo have declined. The concentrations of Mg, Na, Br and CO 3 have increased. The influx of mass entering the block exceeds the leaching of inorganic constituents and results in the deposition of material in the pore spaces. This pore-blocking affects the diffusion of ions from the block and could potentially result in the cessation of contaminant release to the water column

  17. Radioisotope conveyor ash meter

    International Nuclear Information System (INIS)

    Savelov, V.D.

    1994-01-01

    Radioisotope conveyor ash meter realizes persistent measuring of ashiness of coal and products of its enrichment on the belt conveyor without contact. The principle of ash meter acting is based on functional dependence of the gamma radiation flows backscattering intensity of radioisotope sources from the ash volume content in the controlled fuel. Facility consists from the ashiness transducer and the processing and control device

  18. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes

    International Nuclear Information System (INIS)

    Alvarez-Ayuso, E.; Querol, X.; Plana, F.; Alastuey, A.; Moreno, N.; Izquierdo, M.; Font, O.; Moreno, T.; Diez, S.; Vazquez, E.; Barra, M.

    2008-01-01

    The synthesis of geopolymer matrixes from coal (co-)combustion fly ashes as the sole source of silica and alumina has been studied in order to assess both their capacity to immobilise the potentially toxic elements contained in these coal (co-)combustion by-products and their suitability to be used as cement replacements. The geopolymerisation process has been performed using (5, 8 and 12 M) NaOH solutions as activation media and different curing time (6-48 h) and temperature (40-80 o C) conditions. Synthesised geopolymers have been characterised with regard to their leaching behaviour, following the DIN 38414-S4 [DIN 38414-S4, Determination of leachability by water (S4), group S: sludge and sediments. German standard methods for the examination of water, waste water and sludge. Institut fuer Normung, Berlin, 1984] and NEN 7375 [NEN 7375, Leaching characteristics of moulded or monolithic building and waste materials. Determination of leaching of inorganic components with the diffusion test. Netherlands Normalisation Institute, Delft, 2004] procedures, and to their structural stability by means of compressive strength measurements. In addition, geopolymer mineralogy, morphology and structure have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. It was found that synthesised geopolymer matrixes were only effective in the chemical immobilisation of a number of elements of environmental concern contained in fly ashes, reducing (especially for Ba), or maintaining their leachable contents after the geopolymerisation process, but not for those elements present as oxyanions. Physical entrapment does not seem either to contribute in an important way, in general, to the immobilisation of oxyanions. The structural stability of synthesised geopolymers was mainly dependent on the glass content of fly ashes, attaining at the optimal activation conditions (12 M NaOH, 48 h, 80 o C

  19. Unburnt carbon from coal fly ashes as a precursor of activated carbon for nitric oxide removal.

    Science.gov (United States)

    Rubio, Begoña; Izquierdo, M Teresa; Mayoral, M Carmen; Bona, M Teresa; Andres, Jose M

    2007-05-08

    The aim of this work is to evaluate the characteristics of an activated carbon obtained from unburnt carbon in coal fly ashes to be used in the removal of NO. Carbon-rich fraction was obtained by mechanical sieving of fly ashes. The mineral matter was removed by conventional HCl and HF demineralization procedure. Activation was carried out with steam at 900 degrees C in order to develop porosity onto the sample. Characterization of samples was performed by several techniques with a main objective: to follow the mineral matter content, composition and distribution on the samples in order to better understand how to remove it from unburnt carbon in fly ashes. To study the use of this unburnt carbon as a precursor for the preparation of activated carbons for gas cleaning, the NO removal by ammonia using activated carbon as a catalyst at low temperature was performed. Results show a good performance of activated carbon in this reaction that is in relationship with BET surface area.

  20. Properties of sorbents from brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Straka, P.; Buchtele, J. [Academy of Sciences of the Czech Republic, Prague (Czech Republic)

    2000-07-01

    The surface and sorptional properties of carbonaceous materials prepared from brown coal and their relation to minerals content and coal bulk density as technologically important parameters of starting coal were described. Chars were prepared from brown coal of North Bohemian Brown Coal District and activated with CO{sub 2} in a large-scale laboratory unit. Their surface and sorptive properties were investigated. It was found that mineral matter/ash content favourably affects the mesoporosity development in chars/activated chars as the sorption capacity increased with increasing ash content in chars. No influence of ash content on the macroporosity was observed. With the activated chars, both the inner surface and sorption capacity showed the maximum in the burn-off range of 41-64%. Optimization of the process is discussed.

  1. ICP-AES determination of rare earth elements in coal fly ash samples of thermal power stations: assessment of possible recovery and environmental impact of rare earth elements

    International Nuclear Information System (INIS)

    Premadas, A.; Mary, Thomas Anitha; Chakrapani, G.

    2013-01-01

    Accurate determination of rare earth elements (REEs) in ashes of thermal power plants is important in the current scenario due to its economic value, and the pollution caused if they are released in to the environment. Their toxicity to living organisms now gaining importance in international community, and some investigation shows it causes retardation in plant growth. In coal based thermal stations huge quantity of coal used annually as a fuel and lakhs of tones of waste is generated in the form of ashes. Therefore studies were carried out on three aspects - fairly rapid and accurate ICP-AES determination REEs in coal fly ash samples using addition technique, a preliminary acid leaching studies on coal received from three different fired thermal power stations using hydrochloric acid at pH 1 and 2, and quantify the REEs leached, and economic recovery of REEs using di-(2-ethylhexyl) phosphoric acid solvent extraction process or precipitation hydroxides using dilute ammonia solution. The standard addition method of REEs determination using rate and reproducible values, besides the analysis is fast compared to the ion exchange separation of REEs followed by the ICP-AES determination. (author)

  2. Fundamental study of low-NOx combustion fly ash utilization

    International Nuclear Information System (INIS)

    Suuberg, Eric M.; Hurt, Robert H.

    1998-01-01

    This study is principally concerned with characterizing the organic part of coal combustion fly ashes. High carbon fly ashes are becoming more common as by-products of low-NOx combustion technology, and there is need to learn more about this fraction of the fly ash. The project team consists of two universities, Brown and Princeton, and an electrical utility, New England Power. A sample suite of over fifty fly ashes has been gathered from utilities across the United States, and includes ashes from a coals ranging in rank from bituminous to lignite. The characterizations of these ashes include standard tests (LOI, Foam Index), as well as more detailed characterizations of their surface areas, porosity, extractability and adsorption behavior. The ultimate goal is, by better characterizing the material, to enable broadening the range of applications for coal fly ash re-use beyond the current main market as a pozzolanic agent for concretes. The potential for high carbon-content fly ashes to substitute for activated carbons is receiving particular attention. The work performed to date has already revealed how very different the surfaces of different ashes produced by the same utility can be, with respect to polarity of the residual carbon. This can help explain the large variations in acceptability of these ashes as concrete additives

  3. ANN-GA based optimization of a high ash coal-fired supercritical power plant

    International Nuclear Information System (INIS)

    Suresh, M.V.J.J.; Reddy, K.S.; Kolar, Ajit Kumar

    2011-01-01

    Highlights: → Neuro-genetic power plant optimization is found to be an efficient methodology. → Advantage of neuro-genetic algorithm is the possibility of on-line optimization. → Exergy loss in combustor indicates the effect of coal composition on efficiency. -- Abstract: The efficiency of coal-fired power plant depends on various operating parameters such as main steam/reheat steam pressures and temperatures, turbine extraction pressures, and excess air ratio for a given fuel. However, simultaneous optimization of all these operating parameters to achieve the maximum plant efficiency is a challenging task. This study deals with the coupled ANN and GA based (neuro-genetic) optimization of a high ash coal-fired supercritical power plant in Indian climatic condition to determine the maximum possible plant efficiency. The power plant simulation data obtained from a flow-sheet program, 'Cycle-Tempo' is used to train the artificial neural network (ANN) to predict the energy input through fuel (coal). The optimum set of various operating parameters that result in the minimum energy input to the power plant is then determined by coupling the trained ANN model as a fitness function with the genetic algorithm (GA). A unit size of 800 MWe currently under development in India is considered to carry out the thermodynamic analysis based on energy and exergy. Apart from optimizing the design parameters, the developed model can also be used for on-line optimization when quick response is required. Furthermore, the effect of various coals on the thermodynamic performance of the optimized power plant is also determined.

  4. 6th Conference on Coal Utilization Technology; Dai 6 kai sekitan riyo gijutsu kaigi koenshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The paper compiled the papers presented in the 6th Conference on Coal Utilization Technology held in September 1996. With relation to the fluidized bed boiler, reported were Field operation test of Wakamatsu PFBC combined cycle power plant and Development of pressurized internally circulating fluidized bed combustion technology. Regarding the coal reformation, Development of advanced coal cleaning process, Coal preparation and coal cleaning in the dry process, etc. Concerning the combustion technology, Study of the O2/CO2 combustion technology, Development of pressurized coal partial combustor, etc. About the CWM, Development of low rank coals upgrading and their CWM producing technology, Technique of CWM distribution system, etc. Relating to the coal ash, Engineering characteristics of the improved soil by deep mixing method using coal ash, Employment of fluidized bed ash as a basecourse material, On-site verification trials using fly ash for reclamation behind bulkheads, Water permeabilities of pulverized fuel ash, Separation of unburned carbon from coal fly ash through froth flotation, Practical use technology of coal ash (POZ-O-TEC), etc

  5. Reclamation of the Domtar/Canada brick quarry using coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, P J

    1991-03-20

    Two power plants in the Toronto area required disposal sites for coal fly ash in the late 1970s. A local brick quarry was recognized as a potential disposal site, since a 10-hectare area of the quarry was no longer in production and was required to be filled for reclamation. Ontario Hydro and the brick company joined together to obtain approval for the landfilling project. The preliminary site investigations included an examination of the impact of the project on local residents and the environment in terms of traffic volumes, noise levels, road dirt, airborne dust, and contamination of surface water and groundwater. Ontario Environmental Assessment Board hearings were held, with evidence presented from concerned parties. The findings from the hearings indicated that the project would have little effect on nearby residents and would improve the local environment by reclaiming usable land. Filling of the quarry began in December 1981 and continued for 5 years, after which a total of over 680,000 tonnes of fly ash was deposited. After completion, the ash was covered with a seal layer consisting of at least 1 m of clay or till compacted to structural fill standards with a 1 m thick protective cover layer to protect the seal layer from desiccation cracking and frost heave. Material is currently being stockpiled at the site to increase the thickness of the protective layer in order to make the site self-managing. Monitoring of surface water and groundwater is still ongoing and will continue for many years. 17 refs., 24 figs., 7 tabs.

  6. Possibilities of utilizing power plant fly ashes

    Directory of Open Access Journals (Sweden)

    Mezencevová Andrea

    2003-09-01

    Full Text Available The burning of fossil fuels in industrial power stations plays a significant role in the production of thermal and electrical energy. Modern thermal power plants are producing large amounts of solid waste, mainly fly ashes. The disposal of power plant waste is a large environmental problem at the present time. In this paper, possibilities of utilization of power plant fly ashes in industry, especially in civil engineering, are presented. The fly ash is a heterogeneous material with various physical, chemical and mineralogical properties, depending on the mineralogical composition of burned coal and on the used combustion technology. The utilization of fly ashes is determined of their properties. The fineness, specific surface area, particle shape, density, hardness, freeze-thaw resistance, etc. are decisive. The building trade is a branch of industry, which employs fly ash in large quantities for several decades.The best utilization of fluid fly ashes is mainly in the production of cement and concrete, due to the excellent pozzolanic and cementitious properties of this waste. In the concrete processing, the fly ash is utilized as a replacement of the fine aggregate (fine filler or a partial replacement for cement (active admixture. In addition to economic and ecological benefits, the use of fly ash in concrete improves its workability and durability, increases compressive and flexural strength, reduces segregation, bleeding, shrinkage, heat evolution and permeability and enhances sulfate resistance of concrete.The aim of current research is to search for new technologies for the fly ash utilization. The very interesting are biotechnological methods to recovery useful components of fly ashes and unconventional methods of modification of fly ash properties such as hydrothermal zeolitization and mechanochemical modification of its properties. Mechanochemistry deals with physico - chemical transformations and chemical reactions of solids induced by

  7. Chemical forms of the fluorine and carbon in fly ashes recovered from electrostatic precipitators of pulverized coal-fired plants

    Energy Technology Data Exchange (ETDEWEB)

    Naoto Tsubouchi; Hidekazu Hayashi; Akiyuki Kawashima; Masahide Sato; Noboru Suzuki; Yasuo Ohtsuka [Tohoku University, Sendai (Japan). Institute of Multidisciplinary Research for Advanced Materials

    2011-01-15

    The functionalities of the fluorine and carbon present in fly ashes formed in pulverized coal combustion have been studied with X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) techniques. The ash samples include 20-130 {mu}g/g-dry and 0.4-4.1 mass%-dry of fluorine and carbon elements, respectively, and these components are enriched at the outermost layer of the ash surface. The F consists of both inorganic and organic functionalities, and the proportion of the latter is as high as 84-98 mol%. The C has different types of surface oxygen species, such as carboxyl, lactone/acid anhydride and phenolic groups, and most of these groups decompose to CO{sub 2} or CO up to 700{sup o}C to yield carbon active sites. When the amount of the O-functional forms increases, the content of organic C-F forms tends to increase almost linearly. On the basis of the above results, it may be speculated as one possibility that the formation of covalent C-F bonds takes place mainly through secondary reactions between gaseous F-containing compounds (HF and/or F{sub 2}) in flue gas and carbon active sites produced below 700{sup o}C downstream of coal-fired boilers. 30 refs., 8 figs., 4 tabs.

  8. Prospects for ash pond reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Shyyam, A.K.; Shukla, K.S.; Agrawal, D. (National Thermal Power Corporation Ltd., New Delhi (India))

    1993-01-01

    A typical modern coal fired station in India burns 0.7 t/MWh of coal and consequently generates ash at 0.245 t/MWh. The physical nature of ash, low available concentrations of certain plant nutrients and the presence of phytotoxic trace elements render fly ash marginally adequate for plant growth. As fly ash itself was thought to be an inappropriate growth medium for plants, regulators decided that a soil cover is mandatory. There is ample data to suggest that the attributes of fly ash detrimental to plant growth can be ameliorated, allowing the establishment of vegetation directly on fly ash surfaces. The natural revegetation of fly ash disposal sites has been reported in the world. The natural vegetation pioneered by Cynodon at different stages of ecological succession and comprising of species such as [ital Calotropis gigantea], [ital Lippia nodiflora], [ital Ipomea, cornea], [ital Xanthium parviflorum] has been noted at one of the NTPC projects, in Badarpur Thermal Power Station. Since natural reclamation is a time-consuming process, experimental trials of growing some species over the temporary ash lagoon directly (without soil cover) were carried out at Ramagundam Super Thermal Power Project (RSTPP) of NTPC, in South India to achieve faster results than the natural process. 6 refs., 8 figs.

  9. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  10. Clean coal technology. Coal utilisation by-products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-08-15

    The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

  11. Combustion characteristics and retention-emission of selenium during co-firing of torrefied biomass and its blends with high ash coal.

    Science.gov (United States)

    Ullah, Habib; Liu, Guijian; Yousaf, Balal; Ali, Muhammad Ubaid; Abbas, Qumber; Zhou, Chuncai

    2017-12-01

    The combustion characteristics, kinetic analysis and selenium retention-emission behavior during co-combustion of high ash coal (HAC) with pine wood (PW) biomass and torrefied pine wood (TPW) were investigated through a combination of thermogravimetric analysis (TGA) and laboratory-based circulating fluidized bed combustion experiment. Improved ignition behavior and thermal reactivity of HAC were observed through the addition of a suitable proportion of biomass and torrefied. During combustion of blends, higher values of relative enrichment factors in fly ash revealed the maximum content of condensing volatile selenium on fly ash particles, and depleted level in bottom ash. Selenium emission in blends decreased by the increasing ratio of both PW and TPW. Higher reductions in the total Se volatilization were found for HAC/TPW than individual HAC sample, recommending that TPW have the best potential of selenium retention. The interaction amongst selenium and fly ash particles may cause the retention of selenium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Possibilities of utilization of fly ash from the black coal Power Engineering of the U. S. Steel Košice

    Directory of Open Access Journals (Sweden)

    Františka Michalíková

    2005-11-01

    Full Text Available The paper presents modes of a direct utilization of the fly ash by-product of the combustion of black power coal in the slag - bottom boilers of the Division Plant Power Engineering ( DP PE of the U. S. Steel Košice ( next USSK . The properties of fly ash limit its use in metallurgy and foundry industry. The fly ash is directly utilizable in the metallurgical industry as a component of powder cover mixtures and insulation inserts, heat insulation parts and exothermical mixtures. The most important components in the mixtures are light micro spheres – cenospheres and heavy micro spheres – plerospheres. The micro spheres significantly improve properties of the powder cover mixtures.

  13. Characterization of upgraded hydrogel biochar from blended rice husk with coal fly ash

    Science.gov (United States)

    Ahmad, Nurul Farhana; Alias, Azil Bahari; Talib, Norhayati; Rashid, Zulkifli Abd; Ghani, Wan Azlina Wan Ab Karim

    2017-12-01

    Rice husk biochar (RB) blended with coal fly ash (CFA) is used as a material to develop hydrogel for heavy metal removal. This combination, namely hydrogel rice husk biochar-coal fly ash (HRB-CFA) composite is synthesized by embedding the biochar into acrylamide (AAM) as monomer, with N,N'-Methylenebisacrylamide (MBA) as crosslinker and ammonium persulfate (APS) as initiator. While activated carbon (AC) remains an expensive material, HRB-CFA is attracting great interest for its use in the absorption of organic contaminants due to its low material cost and importance as renewable source for securing future energy supply in the environmental system. Although the CFA does not have the surface area as high as AC, certain metallic components that are naturally present in the CFA can play the catalytic role in the removal of heavy metal from wastewater. The percentage of heavy metal removal is depends on the parameters that influence the sorption process; the effect of pH solution, dosage of adsorbent, initial concentration of solution, and contact time. The aim of this study is to characterize HRB-CFA by performing several analyses such as the Brunauer-Emmett-Teller (BET), thermogravimetric (TGA) and field emission scanning electron microscopy (FESEM) methods. The results obtained revealed that the best hydrogel ratio is 0.5:0.5 of blended RB and CFA, as proven by BET surface area, pore volume and pore size of 3.5392 m2/g, 0.00849 cm3/g and 90.566 Å, and the surface morphology showed an increase in porosity size.

  14. Removal of Pb(II) from wastewater using Al2O3-NaA zeolite composite hollow fiber membranes synthesized from solid waste coal fly ash.

    Science.gov (United States)

    Zhu, Li; Ji, Jiayou; Wang, Shulin; Xu, Chenxi; Yang, Kun; Xu, Man

    2018-09-01

    Al 2 O 3 -NaA zeolite composite hollow fiber membranes were successfully fabricated via hydrothermal synthesis by using industrial solid waste coal fly ash and porous Al 2 O 3 hollow fiber supports. The as-synthesized Al 2 O 3 -NaA zeolite composite hollow fiber membranes were then characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The hollow fiber membranes were used to remove lead ions (Pb(II), 50 mg L -1 ) from synthetic wastewater with a removal efficiency of 99.9% at 0.1 MPa after 12 h of filtration. This study showed that the Al 2 O 3 -NaA zeolite composite hollow fiber membranes (the pore size of the membrane was about 0.41 nm in diameter) synthesized from coal fly ash could be efficiently used for treating low concentration Pb(II) wastewater. It recycled solid waste coal fly ash not only to solve its environment problems, but also can produce high-value Al 2 O 3 -NaA zeolite composite hollow fiber membranes for separation application in treating wastewater containing Pb(II). Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Quality characteristics of Greek fly ashes and potential uses

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Grammelis, P.; Kakaras, E. [Institute for Solid Fuels Technology and Applications, Ptolemais (Greece); Karangelos, D.; Anagnostakis, M.; Hinis, E. [Nuclear Engineering Section, Mechanical Engineering Department, National Technical University of Athens, Athens (Greece)

    2007-01-15

    The main characteristics of fly ash from Greek coal-fired boilers are presented in this paper in relation to its exploitation potential. Both fuel and fly ash samples were collected and analyzed according to the ASTM Standards. Apart from the typical analyses (proximate, ultimate, ash analysis and calorific value), an ICP-AES spectrometer was used for the analysis of heavy metals in the ash. Experimental measurements in order to determine the radioactivity content of raw fuel and the fly ash were carried out as well. A representative fly ash sample from Ptolemais power plant was evaluated and tested as filler in Self-Compacting Concrete (SCC). Ashes from the Greek brown coal are classified in type C, most of the fly ash being produced in Ptolemais of Northern Greece, while the rest in Megalopolis. Ptolemais fly ash is rich in calcium compounds, while Megalopolis fly ash contains more pyrite. Increased heavy metal concentrations are observed in the fly ash samples of Greek coal. Greek fly ash appears to have not only pozzolanic but also hydraulic behaviour. Furthermore, Greek fly ash, depending on its origin, may have relatively high natural radioactivity content, reaching in the case of Megalopolis fly ash 1 kBq kg{sup -1} of {sup 226}Ra. The laboratory results showed that fly ashes can be a competitive substitute to conventional limestone filler material in SCC. Fly ash is mostly used in Greece in cement industry replacing cement clinker and aiming to the production of special types of Portland cements. However, a more aggressive utilisation strategy should be developed, since low quantities of the total produced fly ash are currently further utilised. (author)

  16. Effect of mechanical activation of fly ash added to Moroccan Portland cement

    Directory of Open Access Journals (Sweden)

    Ez-zaki H.

    2018-01-01

    This study aims to investigate the influence of grinding fly ash on the physico-chemical and mechanical properties of fly ash blended CPJ45 cement. The addition of the fly ash particles to the grinder leads respectively to the breakage of the particles and to reduce the agglomeration effect in the balls of cement grinder. Fly ash milling was found to improve particles fineness, and increase the silica and alumina content in the cement. Furthermore, milled fly ash blended cements show higher compressive strength compared to unmilled fly ash blended cements, due to improved fly ash reactivity through their mechanical activation.

  17. Flue gas desulfurization gypsum and fly ash

    International Nuclear Information System (INIS)

    1992-05-01

    The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority's newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective

  18. Processed bottom ash for replacing fine aggregate in making high-volume fly ash concrete

    OpenAIRE

    Antoni; Sulistio Aldi Vincent; Wahjudi Samuel; Hardjito Djwantoro; Hardjito Djwantoro

    2017-01-01

    Bottom ash is a coal plant by-product that is abundant and underutilized. There is the potential use of bottom ash as a fine aggregate replacement in concrete mixtures; however, the problems of water absorption and uniformity of quality of the material need to be overcome first. In this study, bottom ash was treated by sieve separation and pounding to smaller particle size for use as a sand substitute. The physical and chemical characteristics of bottom ash were tested after treatment includi...

  19. Radon exhalation of cementitious materials made with coal fly ash: Part 2 - testing hardened cement-fly ash pastes

    International Nuclear Information System (INIS)

    Kovler, K.; Perevalov, A.; Levit, A.; Steiner, V.; Metzger, L.A.

    2005-01-01

    Increased interest in measuring radionuclides and radon concentrations in fly ash (FA), cement and other components of building products is due to the concern about health hazards of naturally occurring radioactive materials (NORM). The paper focuses on studying the influence of FA on radon exhalation rate (radon flux) from cementitious materials. In the previous part of the paper the state of the art was presented, and the experiments for testing raw materials, Portland cement and coal fly ash, were described. Since the cement and FA have the most critical role in the radon release process relative to other concrete constituents (sand and gravel), and their contribution is dominant in the overall radium content of concrete, tests were carried out on cement paste specimens with different FA contents, 0-60% by weight of the binder (cement+FA). It is found that the dosage of FA in cement paste has a limited influence on radon exhalation rate, if the hardened material is relatively dense. The radon flux of cement-FA pastes is lower than that of pure cement paste: it is about ∼3 mBq m -2 s -1 for cement-FA pastes with FA content as high as 960 kg m -3

  20. Application and feasibility of coal fly ash and scrap tire fiber as wood wall insulation supplements in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Van de Lindt, J.W.; Carraro, J.A.H.; Heyliger, P.R.; Choi, C. [Colorado State University, Department of Civil and Environmental Engineering, Fort Collins, CO (United States)

    2008-08-15

    Each year, nearly 55% of the fly ash (FA) produced by coal burning power plants in the United States is disposed of in landfills and ash ponds, while the amount of recycled fiber from scrap tires that is beneficially used in end-user markets is virtually negligible. This paper presents the results of a study carried out to investigate whether it might be possible to increase the thermal efficiency of a light-frame residential structure through addition of a fly ash-scrap tire fiber composite to traditional fiberglass insulation in light-frame wood residential construction. This type of construction represents more than 80% of the building stock in North America. The results of this study suggest that the fly ash-scrap tire fiber composite provides a sustainable supplement to traditional insulation that not only increases the efficiency of traditional insulation but can also help significantly reduce the environmental issues associated with disposal of these waste products. (author)