WorldWideScience

Sample records for coa lyase deficiency

  1. Prenatal diagnosis in adenylosuccinate lyase deficiency

    NARCIS (Netherlands)

    Marie, S.; Flipsen, J. W.; Duran, M.; Poll-The, B. T.; Beemer, F. A.; Bosschaart, A. N.; Vincent, M. F.; van den Berghe, G.

    2000-01-01

    Adenylosuccinate lyase deficiency, an autosomal recessive inborn error of purine synthesis, provokes accumulation in body fluids of succinylaminoimidazolecarboxamide riboside and succinyladenosine, the dephosphorylated derivatives of the two substrates of the enzyme. Most patients display severe

  2. Hematopoietic Sphingosine 1-Phosphate Lyase Deficiency Decreases Atherosclerotic Lesion Development in LDL-Receptor Deficient Mice

    NARCIS (Netherlands)

    Bot, Martine; Van Veldhoven, Paul P.; de Jager, Saskia C. A.; Johnson, Jason; Nijstad, Niels; Van Santbrink, Peter J.; Westra, Marijke M.; Van Der Hoeven, Gerd; Gijbels, Marion J.; Mueller-Tidow, Carsten; Varga, Georg; Tietge, Uwe J. F.; Kuiper, Johan; Van Berkel, Theo J. C.; Nofer, Jerzy-Roch; Bot, Ilze; Biessen, Erik A. L.

    2013-01-01

    Aims: Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1(-/-)) deficiency on leukocyte subsets

  3. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice

    NARCIS (Netherlands)

    Bot, Martine; van Veldhoven, Paul P.; de Jager, Saskia C. A.; Johnson, Jason; Nijstad, Niels; van Santbrink, Peter J.; Westra, Marijke M.; van der Hoeven, Gerd; Gijbels, Marion J.; Müller-Tidow, Carsten; Varga, Georg; Tietge, Uwe J. F.; Kuiper, Johan; van Berkel, Theo J. C.; Nofer, Jerzy-Roch; Bot, Ilze; Biessen, Erik A. L.

    2013-01-01

    Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1(-/-)) deficiency on leukocyte subsets relevant to

  4. Hematopoietic Sphingosine 1-Phosphate Lyase Deficiency Decreases Atherosclerotic Lesion Development in LDL-Receptor Deficient Mice

    NARCIS (Netherlands)

    Bot, M.; Veldhoven, van P.P.; Jager, de S.C.; Johnson, J.; Nijstad, N.; van, Santbrink P.J.; Westra, M.M.; Hoeven, van der G.; Gijbels, M.J.; Muller-Tidow, C.; Varga, G.; Tietge, U.J.; Kuiper, J.; Berkel, van T.J.; Nofer, J.R.; Bot, I.; Biessen, E.A.

    2013-01-01

    Abstract Aims Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1−/−) deficiency on leukocyte

  5. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice.

    Directory of Open Access Journals (Sweden)

    Martine Bot

    Full Text Available AIMS: Altered sphingosine 1-phosphate (S1P homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1(-/- deficiency on leukocyte subsets relevant to atherosclerosis. METHODS AND RESULTS: LDL receptor deficient mice that were transplanted with Sgpl1(-/- bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1(-/- chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. CONCLUSIONS: Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution.

  6. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

    CERN Document Server

    Foulon, V; Croes, K; Waelkens, E

    1999-01-01

    Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

  7. [Sudden death of a patient with 3-hydroxy-3-methylglutaryl coenzyme A lyase deficiency].

    Science.gov (United States)

    Vilaseca Busca, M A; Ribes Rubio, A; Briones Godino, P; Cusi Sánchez, V; Baraíbar Castelló, R; Gairi Taull, J M

    1990-02-01

    A new case of neonatal 3-hydroxy-3-methylglutaric aciduria is described. 3-hydroxy-3-methylglutaryl CoA lyase activities in leukocytes demonstrated the patient's homozygosity and the heterozygous character of the parents and two other members of the family. Dietetic management with low fat high carbohydrate diet together with protein restriction and carnitine resulted in a good control of the metabolic acidosis, the hypoglycemia, and the physical and neurological development. Nevertheless, sudden death occurred at the age thirteen months without any previous apparent trouble and the necropsia showed neither signs of infection nor hepatic or cardiac derangement.

  8. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch

    Directory of Open Access Journals (Sweden)

    Steven Zhao

    2016-10-01

    Full Text Available Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY, cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histone acetylation levels remain low in ACLY-deficient cells unless supplemented with high levels of acetate. ACLY-deficient adipocytes accumulate lipid in vivo, exhibit increased acetyl-CoA and malonyl-CoA production from acetate, and display some differences in fatty acid content and synthesis. Together, these data indicate that engagement of acetate metabolism is a crucial, although partial, mechanism of compensation for ACLY deficiency.

  9. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch.

    Science.gov (United States)

    Zhao, Steven; Torres, AnnMarie; Henry, Ryan A; Trefely, Sophie; Wallace, Martina; Lee, Joyce V; Carrer, Alessandro; Sengupta, Arjun; Campbell, Sydney L; Kuo, Yin-Ming; Frey, Alexander J; Meurs, Noah; Viola, John M; Blair, Ian A; Weljie, Aalim M; Metallo, Christian M; Snyder, Nathaniel W; Andrews, Andrew J; Wellen, Kathryn E

    2016-10-18

    Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA) plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY), cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL) and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histone acetylation levels remain low in ACLY-deficient cells unless supplemented with high levels of acetate. ACLY-deficient adipocytes accumulate lipid in vivo, exhibit increased acetyl-CoA and malonyl-CoA production from acetate, and display some differences in fatty acid content and synthesis. Together, these data indicate that engagement of acetate metabolism is a crucial, although partial, mechanism of compensation for ACLY deficiency. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Refeeding syndrome in a young woman with argininosuccinate lyase deficiency.

    Science.gov (United States)

    Stuy, M; Chen, G-F; Masonek, J M; Scharschmidt, B F

    2015-09-01

    A severely chronically protein and calorie restricted young woman with argininosuccinate lyase deficiency developed transient refeeding syndrome (RFS) and hyperammonemia after modest diet liberalization following initiation of glycerol phenylbutyrate (GPB). The patient required IV supportive care and supplementation with potassium, magnesium and calcium. She is now doing well on GPB and an appropriate maintenance diet. Susceptibility to RFS should be considered in chronically nutritionally restricted patients with metabolic disorders after liberalization of diet.

  11. Refeeding syndrome in a young woman with argininosuccinate lyase deficiency

    Directory of Open Access Journals (Sweden)

    M. Stuy

    2015-09-01

    Full Text Available A severely chronically protein and calorie restricted young woman with argininosuccinate lyase deficiency developed transient refeeding syndrome (RFS and hyperammonemia after modest diet liberalization following initiation of glycerol phenylbutyrate (GPB. The patient required IV supportive care and supplementation with potassium, magnesium and calcium. She is now doing well on GPB and an appropriate maintenance diet. Susceptibility to RFS should be considered in chronically nutritionally restricted patients with metabolic disorders after liberalization of diet.

  12. One Year Experience of Pheburane® (Sodium Phenylbutyrate) Treatment in a Patient with Argininosuccinate Lyase Deficiency

    OpenAIRE

    Uçar, Sema Kalkan; Ozbaran, Burcu; Altinok, Yasemin Atik; Kose, Melis; Canda, Ebru; Kagnici, Mehtap; Coker, Mahmut

    2015-01-01

    Argininosuccinate lyase deficiency (ASLD) is a urea cycle disorder (UCD) treated with dietary adjustment and nitrogen scavenging agents. “Pheburane®” is a new tasteless and odour-free formulation of sodium phenylbutyrate, indicated in the treatment of UCD.

  13. Mutations in COA3 cause isolated complex IV deficiency associated with neuropathy, exercise intolerance, obesity, and short stature.

    Science.gov (United States)

    Ostergaard, Elsebet; Weraarpachai, Woranontee; Ravn, Kirstine; Born, Alfred Peter; Jønson, Lars; Duno, Morten; Wibrand, Flemming; Shoubridge, Eric A; Vissing, John

    2015-03-01

    We investigated a subject with an isolated cytochrome c oxidase (COX) deficiency presenting with an unusual phenotype characterised by neuropathy, exercise intolerance, obesity, and short stature. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) analysis showed an almost complete lack of COX assembly in subject fibroblasts, consistent with the very low enzymatic activity, and pulse-labelling mitochondrial translation experiments showed a specific decrease in synthesis of the COX1 subunit, the core catalytic subunit that nucleates assembly of the holoenzyme. Whole exome sequencing identified compound heterozygous mutations (c.199dupC, c.215A>G) in COA3, a small inner membrane COX assembly factor, resulting in a pronounced decrease in the steady-state levels of COA3 protein. Retroviral expression of a wild-type COA3 cDNA completely rescued the COX assembly and mitochondrial translation defects, confirming the pathogenicity of the mutations, and resulted in increased steady-state levels of COX1 in control cells, demonstrating a role for COA3 in the stabilisation of this subunit. COA3 exists in an early COX assembly complex that contains COX1 and other COX assembly factors including COX14 (C12orf62), another single pass transmembrane protein that also plays a role in coupling COX1 synthesis with holoenzyme assembly. Immunoblot analysis showed that COX14 was undetectable in COA3 subject fibroblasts, and that COA3 was undetectable in fibroblasts from a COX14 subject, demonstrating the interdependence of these two COX assembly factors. The mild clinical course in this patient contrasts with nearly all other cases of severe COX assembly defects that are usually fatal early in life, and underscores the marked tissue-specific involvement in mitochondrial diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. The ketogenic diet is well tolerated and can be effective in patients with argininosuccinate lyase deficiency and refractory epilepsy

    NARCIS (Netherlands)

    Peuscher, Rosanne; Dijsselhof, Monique E.; Abeling, Nico G.; van Rijn, Margreet; van Spronsen, Francjan J.; Bosch, Annet M.

    2012-01-01

    Argininosuccinate lyase (ASL) deficiency (MIM 608310, McKusick 207900) is a rare disorder of the urea cycle, which leads to a deficiency of arginine and hyperammonemia. Epilepsy is a frequent complication of this disorder. A ketogenic diet (KD) can be a very effective therapy for refractory

  15. Effect of elevated total CoA levels on metabolic pathways in cultured hepatocytes

    International Nuclear Information System (INIS)

    Steffen, C.A.; Smith, C.M.

    1987-01-01

    Livers from fasted rats have 30% higher total CoA levels than fed rats. To determine whether this increase of total CoA influences metabolism, the rates of gluconeogenesis, fatty acid oxidation and ketogenesis were measured in hepatocytes with cyanamide (CYM) or pantothenate (PA) deficient medium used to vary total CoA levels independently of hormonal status. Primary cultures of rat hepatocytes were incubated 14 hrs with Bt 2 cAMP, dexamethasone + theophylline in PA deficient medium or with CYM (500 μM) + PA, rinsed and preincubated 0.5 hr to remove the CYM. Hepatocytes treated with CYM had total CoA levels 10-24% higher than PA deficient cells and lower rates of glucose production from lactate + pyruvate (L/P) or from alanine (0.23 +/- 0.05 and 0.089 +/- 0.02 μm/mg protein, respectively in CYM treated cells compared to 0.33 +/- 0.06 and 0.130 +/- 0.006 in PA deficient cells). This decrease was not due to CYM per se, as the direct addition of CYM stimulated glucose production from L/P. CYM treated cells with 15-40% higher total CoA and 30% higher fatty acyl-CoA levels had the same rates of [ 14 C]-palmitate oxidation as PA deficient cells. However, rates of ketogenesis were lower in CYM treated cells (163 +/- 11 nm/mg compared to 217 +/- 14 nm/mg protein). These results suggest that physiological alterations of hepatic total CoA levels are not necessary for fasting rates of gluconeogenesis, fatty acid oxidation and ketogenesis

  16. A Turkish Patient With Succinyl-CoA:3-Oxoacid CoA Transferase Deficiency Mimicking Diabetic Ketoacidosis

    Directory of Open Access Journals (Sweden)

    Sahin Erdol MD

    2016-05-01

    Full Text Available Succinyl-CoA:3-oxoacid CoA transferase (SCOT deficiency is an autosomal recessive disorder of ketone body utilization that is clinically characterized with intermittent ketoacidosis crises. We report here the second Turkish case with SCOT deficiency. She experienced 3 ketoacidotic episodes: The first ketoacidotic crisis mimicked diabetic ketoacidosis because of the associated hyperglycemia. Among patients with SCOT deficiency, the blood glucose levels at the first crises were variable, and this case had the highest ever reported blood glucose level. She is a compound heterozygote with 2 novel mutations, c.517A>G (K173E and c.1543A>G (M515V, in exons 5 and 17 of the OXCT1 gene, respectively. In patient’s fibroblasts, SCOT activity was deficient and, by immunoblot analysis, SCOT protein was much reduced. The patient attained normal development and had no permanent ketosis. The accurate diagnosis of SCOT deficiency in this case had a vital impact on the management strategy and outcome.

  17. Structural insights into RipC, a putative citrate lyase β subunit from a Yersinia pestis virulence operon

    International Nuclear Information System (INIS)

    Torres, Rodrigo; Chim, Nicholas; Sankaran, Banumathi; Pujol, Céline; Bliska, James B.; Goulding, Celia W.

    2011-01-01

    Comparison of the 2.45 Å resolution crystal structure of homotrimeric RipC, a putative citrate lyase β subunit from Y. pestis, with structural homologs reveals conserved RipC residues that are implicated in CoA binding. Yersinia pestis remains a threat, with outbreaks of plague occurring in rural areas and its emergence as a weapon of bioterrorism; thus, an improved understanding of its various pathogenicity pathways is warranted. The rip (required for intracellular proliferation) virulence operon is required for Y. pestis survival in interferon-γ-treated macrophages and has been implicated in lowering macrophage-produced nitric oxide levels. RipC, one of three gene products from the rip operon, is annotated as a citrate lyase β subunit. Furthermore, the Y. pestis genome lacks genes that encode citrate lyase α and γ subunits, suggesting a unique functional role of RipC in the Y. pestisrip-mediated survival pathway. Here, the 2.45 Å resolution crystal structure of RipC revealed a homotrimer in which each monomer consists of a (β/α) 8 TIM-barrel fold. Furthermore, the trimeric state was confirmed in solution by size-exclusion chromatography. Through sequence and structure comparisons with homologous proteins, it is proposed that RipC is a putative CoA- or CoA-derivative binding protein

  18. Cobalt-vitamin B12 deficiency and the activity of methylmalonyl CoA mutase and methionine synthase in cattle.

    Science.gov (United States)

    Kennedy, D G; Young, P B; Kennedy, S; Scott, J M; Molloy, A M; Weir, D G; Price, J

    1995-01-01

    Cobalt deficiency was induced in cattle by feeding two groups of animals either a basal diet that was very low in Co (12.9-17.6 micrograms Co per kg), or the same diet supplemented with cobalt, for a total of 64 weeks. Vitamin B12 deficiency was induced, as judged by hepatic concentrations of vitamin B12 and plasma concentrations of MMA. However, the activity of holo-methylmalonyl CoA mutase was significantly reduced only in brain. This was reflected in very minor alterations in the tissue concentrations of branched chain- and odd numbered-fatty acids. The activity of holo-methionine synthase was significantly reduced in liver and brain, but there were no consequent alterations in the concentrations of phosphatidyl choline and phosphatidyl ethanolamine. This study confirms that cattle are less susceptible to the effects of cobalt deficiency than sheep, and concludes that prolonged cobalt deficiency had little significant effect on tissue metabolism.

  19. Diagnosis of adenylosuccinate lyase deficiency by metabolomic profiling in plasma reveals a phenotypic spectrum

    Directory of Open Access Journals (Sweden)

    Taraka R. Donti

    2016-09-01

    Full Text Available Adenylosuccinate lyase (ADSL deficiency is a rare autosomal recessive neurometabolic disorder that presents with a broad-spectrum of neurological and physiological symptoms. The ADSL gene produces an enzyme with binary molecular roles in de novo purine synthesis and purine nucleotide recycling. The biochemical phenotype of ADSL deficiency, accumulation of SAICAr and succinyladenosine (S-Ado in biofluids of affected individuals, serves as the traditional target for diagnosis with targeted quantitative urine purine analysis employed as the predominate method of detection. In this study, we report the diagnosis of ADSL deficiency using an alternative method, untargeted metabolomic profiling, an analytical scheme capable of generating semi-quantitative z-score values for over 1000 unique compounds in a single analysis of a specimen. Using this method to analyze plasma, we diagnosed ADSL deficiency in four patients and confirmed these findings with targeted quantitative biochemical analysis and molecular genetic testing. ADSL deficiency is part of a large a group of neurometabolic disorders, with a wide range of severity and sharing a broad differential diagnosis. This phenotypic similarity among these many inborn errors of metabolism (IEMs has classically stood as a hurdle in their initial diagnosis and subsequent treatment. The findings presented here demonstrate the clinical utility of metabolomic profiling in the diagnosis of ADSL deficiency and highlights the potential of this technology in the diagnostic evaluation of individuals with neurologic phenotypes.

  20. Malonyl CoA decarboxylase deficiency: C to T transition in intron 2 of the MCD gene.

    Science.gov (United States)

    Surendran, S; Sacksteder, K A; Gould, S J; Coldwell, J G; Rady, P L; Tyring, S K; Matalon, R

    2001-09-15

    Malonyl CoA decarboxylase (MCD) is an enzyme involved in the metabolism of fatty acids synthesis. Based on reports of MCD deficiency, this enzyme is particular important in muscle and brain metabolism. Mutations in the MCD gene result in a deficiency of MCD activity, that lead to psychomotor retardation, cardiomyopathy and neonatal death. To date however, only a few patients have been reported with defects in MCD. We report here studies of a patient with MCD deficiency, who presented with hypotonia, cardiomyopathy and psychomotor retardation. DNA sequencing of MCD revealed a homozygous intronic mutation, specifically a -5 C to T transition near the acceptor site for exon 3. RT-PCR amplification of exons 2 and 3 revealed that although mRNA from a normal control sample yielded one major DNA band, the mutant mRNA sample resulted in two distinct DNA fragments. Sequencing of the patient's two RT-PCR products revealed that the larger molecular weight fragments contained exons 2 and 3 as well as the intervening intronic sequence. The smaller size band from the patient contained the properly spliced exons, similar to the normal control. Western blotting analysis of the expressed protein showed only a faint band in the patient sample in contrast to a robust band in the control. In addition, the enzyme activity of the mutant protein was lower than that of the control protein. The data indicate that homozygous mutation in intron 2 disrupt normal splicing of the gene, leading to lower expression of the MCD protein and MCD deficiency. Copyright 2001 Wiley-Liss, Inc.

  1. Congenital Adrenal Hyperplasia due to 17-alpha-hydoxylase/17,20-lyase Deficiency Presenting with Hypertension and Pseudohermaphroditism: First Case Report from Oman

    Directory of Open Access Journals (Sweden)

    Waad-Allah S. Mula-Abed

    2014-01-01

    Full Text Available This is the first report of congenital adrenal hyperplasia (CAH due to combined 17α-hydroxylase/17,20 lyase deficiency in an Omani patient who was initially treated for many years as a case of hypertension. CAH is an uncommon disorder that results from a defect in steroid hormones biosynthesis in the adrenal cortex. The clinical presentation depends on the site of enzymatic mutations and the types of accumulated steroid precursors. A 22-year-old woman who was diagnosed to have hypertension since the age of 10 years who was treated with anti-hypertensive therapy was referred to the National Diabetes and Endocrine Centre, Royal Hospital, Oman. The patient also had primary amenorrhea and features of sexual infantilism. Full laboratory and radio-imaging investigations were done. Adrenal steroids, pituitary function and karyotyping study were performed and the diagnosis was confirmed by molecular mutation study. Laboratory investigations revealed adrenal steroids and pituitary hormones profile in addition to 46XY karyotype that are consistent with the diagnosis of CAH due to 17α-hydroxylase deficiency. Extensive laboratory workup revealed low levels of serum cortisol (and its precursors 17α-hydroxyprogesterone and 11-deoxycortisol, adrenal androgens (dehydroepiandrosterone sulfate and androstenedione, and estrogen (estradiol; and high levels of mineralocorticoids precursors (11-deoxycorticosterone and corticosterone with high levels of ACTH, FSH and LH. Mutation analysis revealed CYP17A1-homozygous mutation (c.287G>A p.Arg96Gln resulting in the complete absence of 17α-hydroxylase/17,20-lyase activity. The patient was treated with dexamethasone and ethinyl estradiol with cessation of anti-hypertensive therapy. A review of the literature was conducted to identify previous studies related to this subtype of CAH. This is the first biochemically and genetically proven case of CAH due to 17α-hydroxylase/17,20-lyase deficiency in Oman and in the Arab

  2. Differences among Adult COAs and Adult Non-COAs on Levels of Self-Esteem, Depression, and Anxiety.

    Science.gov (United States)

    Dodd, David T.; Roberts, Richard L.

    1994-01-01

    Examined self-esteem, depression, and anxiety among 60 adult children of alcoholics (COAs) and 143 adult non-COAs. Subjects completed Children of Alcoholics Screening Test, demographic questionnaire, Beck Depression Inventory, State-Trait Anxiety Inventory, and Coopersmith Self-Esteem Inventory. Found no significant differences between COAs and…

  3. ¹³C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation.

    Directory of Open Access Journals (Sweden)

    Dany J V Beste

    2011-07-01

    Full Text Available Mycobacterium tuberculosis requires the enzyme isocitrate lyase (ICL for growth and virulence in vivo. The demonstration that M. tuberculosis also requires ICL for survival during nutrient starvation and has a role during steady state growth in a glycerol limited chemostat indicates a function for this enzyme which extends beyond fat metabolism. As isocitrate lyase is a potential drug target elucidating the role of this enzyme is of importance; however, the role of isocitrate lyase has never been investigated at the level of in vivo fluxes. Here we show that deletion of one of the two icl genes impairs the replication of Mycobacterium bovis BCG at slow growth rate in a carbon limited chemostat. In order to further understand the role of isocitrate lyase in the central metabolism of mycobacteria the effect of growth rate on the in vivo fluxes was studied for the first time using ¹³C-metabolic flux analysis (MFA. Tracer experiments were performed with steady state chemostat cultures of BCG or M. tuberculosis supplied with ¹³C labeled glycerol or sodium bicarbonate. Through measurements of the ¹³C isotopomer labeling patterns in protein-derived amino acids and enzymatic activity assays we have identified the activity of a novel pathway for pyruvate dissimilation. We named this the GAS pathway because it utilizes the Glyoxylate shunt and Anapleurotic reactions for oxidation of pyruvate, and Succinyl CoA synthetase for the generation of succinyl CoA combined with a very low flux through the succinate--oxaloacetate segment of the tricarboxylic acid cycle. We confirm that M. tuberculosis can fix carbon from CO₂ into biomass. As the human host is abundant in CO₂ this finding requires further investigation in vivo as CO₂ fixation may provide a point of vulnerability that could be targeted with novel drugs. This study also provides a platform for further studies into the metabolism of M. tuberculosis using ¹³C-MFA.

  4. One Year Experience of Pheburane(®) (Sodium Phenylbutyrate) Treatment in a Patient with Argininosuccinate Lyase Deficiency.

    Science.gov (United States)

    Uçar, Sema Kalkan; Ozbaran, Burcu; Altinok, Yasemin Atik; Kose, Melis; Canda, Ebru; Kagnici, Mehtap; Coker, Mahmut

    2015-01-01

    Argininosuccinate lyase deficiency (ASLD) is a urea cycle disorder (UCD) treated with dietary adjustment and nitrogen scavenging agents. "Pheburane(®)" is a new tasteless and odour-free formulation of sodium phenylbutyrate, indicated in the treatment of UCD.A male patient diagnosed with ASLD was put on treatment with the new formulation of sodium phenylbutyrate (granules) for a period of one year, at 500 mg/kg orally in 3 intakes/day. Plasma glutamine, arginine, citrulline, argininosuccinate, serum sodium, potassium, liver function tests and urine orotate all remained unchanged over this period. There was no difference in mean ammonia levels before and after treatment, and no hyperammonemia episode occurred during treatment with Pheburane(®). An improvement in a measurement of quality of life (QOL) was noted after treatment with Pheburane(®). Good metabolic control and improved QOL were achieved throughout the treatment period.

  5. Sudden unexpected infant death (SUDI in a newborn due to medium chain acyl CoA dehydrogenase (MCAD deficiency with an unusual severe genotype

    Directory of Open Access Journals (Sweden)

    Lovera Cristina

    2012-10-01

    Full Text Available Abstract Medium chain acyl CoA dehydrogenase deficiency (MCAD is the most common inborn error of fatty acid oxidation. This condition may lead to cellular energy shortage and cause severe clinical events such as hypoketotic hypoglycemia, Reye syndrome and sudden death. MCAD deficiency usually presents around three to six months of life, following catabolic stress as intercurrent infections or prolonged fasting, whilst neonatal-onset of the disease is quite rare. We report the case of an apparently healthy newborn who suddenly died at the third day of life, in which the diagnosis of MCAD deficiency was possible through peri-mortem blood-spot acylcarnitine analysis that showed very high concentrations of octanoylcarnitine. Genetic analysis at the ACADM locus confirmed the biochemical findings by demonstrating the presence in homozygosity of the frame-shift c.244dup1 (p.Trp82LeufsX23 mutation, a severe genotype that may explain the unusual and very early fatal outcome in this newborn. This report confirms that inborn errors of fatty acid oxidation represent one of the genetic causes of sudden unexpected deaths in infancy (SUDI and underlines the importance to include systematically specific metabolic screening in any neonatal unexpected death.

  6. ORF Alignment: NC_000913 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ... Formate-Lyase With Pyruvate pdb|1H18|B Chain B, Pyruvate ... Formate-Lyase (E.Coli) In Complex ...With Pyruvate ... pdb|1H18|A Chain A, Pyruvate Formate-Lyase (E.Coli) In ... ... ... Complex With Pyruvate pdb|1H17|A Chain A, Pyruvate ... Formate-Lyase (E.Coli) In Complex Wi...th Coa And The ... Substrate Analog Oxamate pdb|1H16|A Chain A, Pyruvate ... Formate-Lyase (E.Coli...) In Complex With Pyruvate And Coa ... pdb|3PFL|B Chain B, Crystal Structure Of Pfl From E.Coli

  7. Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency: two pathogenic mutations, V133E and C456F, in Japanese siblings.

    Science.gov (United States)

    Song, X Q; Fukao, T; Watanabe, H; Shintaku, H; Hirayama, K; Kassovska-Bratinova, S; Kondo, N; Mitchell, G A

    1998-01-01

    Succinyl-CoA:3-ketoacid CoA transferase (SCOT; EC 2.8.3.5; locus symbol OXCT) is the key enzyme of ketone body utilization. Hereditary SCOT deficiency (MIM 245050) causes episodes of severe ketoacidosis. We developed a transient expression system for mutant SCOT cDNAs, using immortalized SCOT-deficient fibroblasts. This paper describes and characterizes three missense mutations in two SCOT-deficient siblings from Japan. They are genetic compounds who inherited the mutation C456F (c1367 G-->T) from their mother. Their paternal allele contains two mutations in cis, T58M (c173 C-->T) and V133E (c398T-->A). Expression of SCOT cDNAs containing either V133E or C456F produces no detectable SCOT activity, whereas T58M is functionally neutral. T58M is a rare sequence variant not detected in 100 control Japanese alleles. In fibroblasts from the proband (GS02), in whom immunoblot demonstrated no detectable SCOT peptide, we measured an apparent residual SCOT activity of 20-35%. We hypothesize that the high residual SCOT activity in homogenates may be an artifact caused by use of the substrate, acetoacetyl-CoA by other enzymes. Expression of mutant SCOT cDNAs more accurately reflects the residual activity of SCOT than do currently available assays in cell or tissue homogenates.

  8. Refeeding syndrome in a young woman with argininosuccinate lyase deficiency☆

    Science.gov (United States)

    Stuy, M.; Chen, G.-F.; Masonek, J.M.; Scharschmidt, B.F.

    2015-01-01

    A severely chronically protein and calorie restricted young woman with argininosuccinate lyase deficiency developed transient refeeding syndrome (RFS) and hyperammonemia after modest diet liberalization following initiation of glycerol phenylbutyrate (GPB). The patient required IV supportive care and supplementation with potassium, magnesium and calcium. She is now doing well on GPB and an appropriate maintenance diet. Susceptibility to RFS should be considered in chronically nutritionally restricted patients with metabolic disorders after liberalization of diet. PMID:26937403

  9. Early diagnosis of adenylosuccinate lyase deficiency using a high-throughput screening method and a trial of oral S-adenosyl-l-methionine as a treatment method.

    Science.gov (United States)

    van Werkhoven, Michiel A; Duley, John A; McGown, Ivan; Munce, Teresa; Freeman, Jeremy L; Pitt, James J

    2013-11-01

    The aim of this study was to develop a high-throughput urine screening technique for adenylosuccinate lyase (ADSL) deficiency and to evaluate S-adenosyl-l-methionine (SAMe) as a potential treatment for this disorder. Testing for succinyladenosine (S-Ado), a marker of ADSL deficiency, was incorporated into a screening panel for urine biomarkers for inborn errors of metabolism using electrospray tandem mass spectrometry. Liquid chromatography-mass spectrometry and high-performance liquid chromatography were used to confirm and monitor the response of metabolites to oral SAMe treatment. Increased levels of S-Ado were detected in a 3-month-old male infant with hypotonia and seizures. ADSL gene sequencing revealed a previously described c.-49T>C mutation and a novel c.889_891dupAAT mutation, which was likely to disrupt enzyme function. After 9 months of SAMe treatment, there was no clear response evidenced in urine metabolite levels or clinical parameters. These results demonstrate proof of the principle for the high-throughput urine screening technique, allowing earlier diagnosis of patients with ADSL deficiency. However, early treatment with SAMe does not appear to be effective in ADSL deficiency. It is suggested that although SAMe treatment may ameliorate purine nucleotide deficiency, it cannot correct metabolic syndromes in which a toxic nucleotide is present, in this case presumed to be succinylaminoimidazole carboxamide ribotide. © 2013 Mac Keith Press.

  10. Requirement of argininosuccinate lyase for systemic nitric oxide production.

    Science.gov (United States)

    Erez, Ayelet; Nagamani, Sandesh C S; Shchelochkov, Oleg A; Premkumar, Muralidhar H; Campeau, Philippe M; Chen, Yuqing; Garg, Harsha K; Li, Li; Mian, Asad; Bertin, Terry K; Black, Jennifer O; Zeng, Heng; Tang, Yaoping; Reddy, Anilkumar K; Summar, Marshall; O'Brien, William E; Harrison, David G; Mitch, William E; Marini, Juan C; Aschner, Judy L; Bryan, Nathan S; Lee, Brendan

    2011-11-13

    Nitric oxide (NO) is crucial in diverse physiological and pathological processes. We show that a hypomorphic mouse model of argininosuccinate lyase (encoded by Asl) deficiency has a distinct phenotype of multiorgan dysfunction and NO deficiency. Loss of Asl in both humans and mice leads to reduced NO synthesis, owing to both decreased endogenous arginine synthesis and an impaired ability to use extracellular arginine for NO production. Administration of nitrite, which can be converted into NO in vivo, rescued the manifestations of NO deficiency in hypomorphic Asl mice, and a nitric oxide synthase (NOS)-independent NO donor restored NO-dependent vascular reactivity in humans with ASL deficiency. Mechanistic studies showed that ASL has a structural function in addition to its catalytic activity, by which it contributes to the formation of a multiprotein complex required for NO production. Our data demonstrate a previously unappreciated role for ASL in NOS function and NO homeostasis. Hence, ASL may serve as a target for manipulating NO production in experimental models, as well as for the treatment of NO-related diseases.

  11. Sphingosine-1-Phosphate Lyase Deficient Cells as a Tool to Study Protein Lipid Interactions.

    Directory of Open Access Journals (Sweden)

    Mathias J Gerl

    Full Text Available Cell membranes contain hundreds to thousands of individual lipid species that are of structural importance but also specifically interact with proteins. Due to their highly controlled synthesis and role in signaling events sphingolipids are an intensely studied class of lipids. In order to investigate their metabolism and to study proteins interacting with sphingolipids, metabolic labeling based on photoactivatable sphingoid bases is the most straightforward approach. In order to monitor protein-lipid-crosslink products, sphingosine derivatives containing a reporter moiety, such as a radiolabel or a clickable group, are used. In normal cells, degradation of sphingoid bases via action of the checkpoint enzyme sphingosine-1-phosphate lyase occurs at position C2-C3 of the sphingoid base and channels the resulting hexadecenal into the glycerolipid biosynthesis pathway. In case the functionalized sphingosine looses the reporter moiety during its degradation, specificity towards sphingolipid labeling is maintained. In case degradation of a sphingosine derivative does not remove either the photoactivatable or reporter group from the resulting hexadecenal, specificity towards sphingolipid labeling can be achieved by blocking sphingosine-1-phosphate lyase activity and thus preventing sphingosine derivatives to be channeled into the sphingolipid-to-glycerolipid metabolic pathway. Here we report an approach using clustered, regularly interspaced, short palindromic repeats (CRISPR-associated nuclease Cas9 to create a sphingosine-1-phosphate lyase (SGPL1 HeLa knockout cell line to disrupt the sphingolipid-to-glycerolipid metabolic pathway. We found that the lipid and protein compositions as well as sphingolipid metabolism of SGPL1 knock-out HeLa cells only show little adaptations, which validates these cells as model systems to study transient protein-sphingolipid interactions.

  12. CoaSim Guile Manual — Using the Guile-based CoaSim Simulator

    DEFF Research Database (Denmark)

    Mailund, T

    2006-01-01

    CoaSim is a tool for simulating the coalescent process with recombination and geneconversion, under either constant population size or exponential population growth. It effectively constructs the ancestral recombination graph for a given number of chromosomes and uses this to simulate samples...

  13. CoAs: The line of 3 d demarcation

    Science.gov (United States)

    Campbell, Daniel J.; Wang, Limin; Eckberg, Chris; Graf, Dave; Hodovanets, Halyna; Paglione, Johnpierre

    2018-05-01

    Transition metal-pnictide compounds have received attention for their tendency to combine magnetism and unconventional superconductivity. Binary CoAs lies on the border of paramagnetism and the more complex behavior seen in isostructural CrAs, MnP, FeAs, and FeP. Here we report the properties of CoAs single crystals grown with two distinct techniques along with density functional theory calculations of its electronic structure and magnetic ground state. While all indications are that CoAs is paramagnetic, both experiment and theory suggest proximity to a ferromagnetic instability. Quantum oscillations are seen in torque measurements up to 31.5 T and support the calculated paramagnetic Fermiology.

  14. Getting Started with CoaSim — An Introduction to the Simulator CoaSim

    DEFF Research Database (Denmark)

    Mailund, T

    2005-01-01

    CoaSim is a tool for simulating the coalescent process with recombination and geneconversion, under either constant population size or exponential population growth. It effectively constructs the ancestral recombination graph for a given number of chromosomes and uses this to simulate samples...

  15. Partial deficiency of sphingosine-1-phosphate lyase confers protection in experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Andreas Billich

    Full Text Available BACKGROUND: Sphingosine-1-phosphate (S1P regulates the egress of T cells from lymphoid organs; levels of S1P in the tissues are controlled by S1P lyase (Sgpl1. Hence, Sgpl1 offers a target to block T cell-dependent inflammatory processes. However, the involvement of Sgpl1 in models of disease has not been fully elucidated yet, since Sgpl1 KO mice have a short life-span. METHODOLOGY: We generated inducible Sgpl1 KO mice featuring partial reduction of Sgpl1 activity and analyzed them with respect to sphingolipid levels, T-cell distribution, and response in models of inflammation. PRINCIPAL FINDINGS: The partially Sgpl1 deficient mice are viable but feature profound reduction of peripheral T cells, similar to the constitutive KO mice. While thymic T cell development in these mice appears normal, mature T cells are retained in thymus and lymph nodes, leading to reduced T cell numbers in spleen and blood, with a skewing towards increased proportions of memory T cells and T regulatory cells. The therapeutic relevance of Sgpl1 is demonstrated by the fact that the inducible KO mice are protected in experimental autoimmune encephalomyelitis (EAE. T cell immigration into the CNS was found to be profoundly reduced. Since S1P levels in the brain of the animals are unchanged, we conclude that protection in EAE is due to the peripheral effect on T cells, leading to reduced CNS immigration, rather than on local effects in the CNS. SIGNIFICANCE: The data suggest Sgpl1 as a novel therapeutic target for the treatment of multiple sclerosis.

  16. Targeting sphingosine-1-phosphate lyase as an anabolic therapy for bone loss.

    Science.gov (United States)

    Weske, Sarah; Vaidya, Mithila; Reese, Alina; von Wnuck Lipinski, Karin; Keul, Petra; Bayer, Julia K; Fischer, Jens W; Flögel, Ulrich; Nelsen, Jens; Epple, Matthias; Scatena, Marta; Schwedhelm, Edzard; Dörr, Marcus; Völzke, Henry; Moritz, Eileen; Hannemann, Anke; Rauch, Bernhard H; Gräler, Markus H; Heusch, Gerd; Levkau, Bodo

    2018-05-01

    Sphingosine-1-phosphate (S1P) signaling influences bone metabolism, but its therapeutic potential in bone disorders has remained unexplored. We show that raising S1P levels in adult mice through conditionally deleting or pharmacologically inhibiting S1P lyase, the sole enzyme responsible for irreversibly degrading S1P, markedly increased bone formation, mass and strength and substantially decreased white adipose tissue. S1P signaling through S1P 2 potently stimulated osteoblastogenesis at the expense of adipogenesis by inversely regulating osterix and PPAR-γ, and it simultaneously inhibited osteoclastogenesis by inducing osteoprotegerin through newly discovered p38-GSK3β-β-catenin and WNT5A-LRP5 pathways. Accordingly, S1P 2 -deficient mice were osteopenic and obese. In ovariectomy-induced osteopenia, S1P lyase inhibition was as effective as intermittent parathyroid hormone (iPTH) treatment in increasing bone mass and was superior to iPTH in enhancing bone strength. Furthermore, lyase inhibition in mice successfully corrected severe genetic osteoporosis caused by osteoprotegerin deficiency. Human data from 4,091 participants of the SHIP-Trend population-based study revealed a positive association between serum levels of S1P and bone formation markers, but not resorption markers. Furthermore, serum S1P levels were positively associated with serum calcium , negatively with PTH , and curvilinearly with body mass index. Bone stiffness, as determined through quantitative ultrasound, was inversely related to levels of both S1P and the bone formation marker PINP, suggesting that S1P stimulates osteoanabolic activity to counteract decreasing bone quality. S1P-based drugs should be considered as a promising therapeutic avenue for the treatment of osteoporotic diseases.

  17. Role of Feedback Regulation of Pantothenate Kinase (CoaA) in Control of Coenzyme A Levels in Escherichia coli

    Science.gov (United States)

    Rock, Charles O.; Park, Hee-Won; Jackowski, Suzanne

    2003-01-01

    Pantothenate kinase (CoaA) is a key regulator of coenzyme A (CoA) biosynthesis in Escherichia coli, and its activity is controlled by feedback inhibition by CoA and its thioesters. The importance of feedback inhibition in the control of the intracellular CoA levels was tested by constructing three site-directed mutants of CoaA that were predicted to be feedback resistant based on the crystal structure of the CoaA-CoA binary complex. CoaA[R106A], CoaA[H177Q], and CoaA[F247V] were purified and shown to retain significant catalytic activity and be refractory to inhibition by CoA. CoaA[R106A] retained 50% of the catalytic activity of CoaA, whereas the CoaA[H177Q] and CoaA[F247V] mutants were less active. The importance of feedback control of CoaA to the intracellular CoA levels was assessed by expressing either CoaA or CoaA[R106A] in strain ANS3 [coaA15(Ts) panD2]. Cells expressing CoaA[R106A] had significantly higher levels of phosphorylated pantothenate-derived metabolites and CoA in vivo and excreted significantly more 4′-phosphopantetheine into the medium compared to cells expressing the wild-type protein. These data illustrate the key role of feedback regulation of pantothenate kinase in the control of intracellular CoA levels. PMID:12754240

  18. Analysis of acyl CoA ester intermediates of the mevalonate pathway in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Seker, Tamay; Møller, Kasper; Nielsen, Jens

    2005-01-01

    The mevalonate pathway plays an important role in providing the cell with a number of essential precursors for the synthesis of biomass constituents. With respect to their chemical structure, the metabolites of this pathway can be divided into two groups: acyl esters [acetoacetyl CoA, acetyl Co......A, hydroxymethylglutaryl (HMG) CoA] and phosphorylated metabolites (isopentenyl pyrophosphate, dimethylallyl pyrophosphate, geranyl pyrophosphate, farnesyl pyrophosphate). In this study, we developed a method for the precise analysis of the intracellular concentration of acetoacetyl CoA, acetyl CoA and HMG CoA; and we...... used this method for quantification of these metabolites in Saccharomyces cerevisiae, both during batch growth on glucose and on galactose and in glucose-limited chemostat cultures operated at three different dilution rates. The level of the metabolites changed depending on the growth phase...

  19. Impact of different alginate lyases on combined cellulase–lyase saccharification of brown seaweed

    DEFF Research Database (Denmark)

    Manns, Dirk Martin; Nyffenegger, Christian; Saake, B.

    2016-01-01

    -guluronic acid. When applied together with a fungal cellulase preparation (Cellic®CTec2) at pH 6 and 40 °C on a glucan rich brown seaweed Laminaria digitata the viscosity decreased in the initial minutes while measurable alginate degradation occurred primarily within the first 1–2 hours of reaction. Whereas FALy......, indicating that the degradation of mannuronic acid blocks inhibited cellulase catalyzed glucose release from L. digitata. Nevertheless, combined alginate lyase and cellulase treatment for 24 hours released all potential glucose regardless of the applied lyase. The enzymatic treatment moreover induced...

  20. Identification of a novel CoA synthase isoform, which is primarily expressed in Brain

    International Nuclear Information System (INIS)

    Nemazanyy, Ivan; Panasyuk, Ganna; Breus, Oksana; Zhyvoloup, Alexander; Filonenko, Valeriy; Gout, Ivan T.

    2006-01-01

    CoA and its derivatives Acetyl-CoA and Acyl-CoA are important players in cellular metabolism and signal transduction. CoA synthase is a bifunctional enzyme which mediates the final stages of CoA biosynthesis. In previous studies, we have reported molecular cloning, biochemical characterization, and subcellular localization of CoA synthase (CoASy). Here, we describe the existence of a novel CoA synthase isoform, which is the product of alternative splicing and possesses a 29aa extension at the N-terminus. We termed it CoASy β and originally identified CoA synthase, CoASy α. The transcript specific for CoASy β was identified by electronic screening and by RT-PCR analysis of various rat tissues. The existence of this novel isoform was further confirmed by immunoblot analysis with antibodies directed to the N-terminal peptide of CoASy β. In contrast to CoASy α, which shows ubiquitous expression, CoASy β is primarily expressed in Brain. Using confocal microscopy, we demonstrated that both isoforms are localized on mitochondria. The N-terminal extension does not affect the activity of CoA synthase, but possesses a proline-rich sequence which can bring the enzyme into complexes with signalling proteins containing SH3 or WW domains. The role of this novel isoform in CoA biosynthesis, especially in Brain, requires further elucidation

  1. Enhancing RGI lyase thermostability by targeted single point mutations

    DEFF Research Database (Denmark)

    Silva, Inês R.; Larsen, Dorte Møller; Jers, Carsten

    2013-01-01

    Rhamnogalacturonan I lyase (RGI lyase) (EC 4.2.2.-) catalyzes the cleavage of rhamnogalacturonan I in pectins by β-elimination. In this study the thermal stability of a RGI lyase (PL 11) originating from Bacillus licheniformis DSM 13/ATCC14580 was increased by a targeted protein engineering...

  2. Mitochondrial storage form of acetyl CoA carboxylase in fasted and alloxan diabetic rats

    International Nuclear Information System (INIS)

    Roman-Lopez, C.R.; Allred, J.B.

    1986-01-01

    Sodium dodecyl sulfate-denatured biotinyl proteins will bind [ 14 C]methyl avidin which remains bound through polyacrylamide gel electrophoresis. The method has been used to demonstrate the presence of two high molecular weight subunit forms of acetyl CoA carboxylase in rat liver cytoplasm, both of which are precipitated by antibody to purifed rat liver acetyl CoA carboxylase prepared from sheep serum. Rat liver mitochondria contained five distinct biotinyl protein subunits, the two largest of which have been identified as acetyl CoA carboxylase subunits on the basis of precipitation by anti-acetyl CoA carboxylase antibody. The small quantity of acetyl CoA carboxylase associated with rat liver microsomes could be attributed to cytoplasmic contamination. The binding of radioactive avidin is sufficiently tight to use as a measure of the quantity of acetyl CoA carboxylase. The quantity and activity of the cytoplasmic enzyme was reduced in fasted and in alloxan diabetic rats compared to that in fed controls but the quantity of the enzyme associated with isolated mitochondria was not reduced. The results indicate that there is a mitochondrial storage form of acetyl CoA carboxylase

  3. Molecular characterization of a Penicillium chrysogenum exo-rhamnogalacturonan lyase that is structurally distinct from other polysaccharide lyase family proteins.

    Science.gov (United States)

    Iwai, Marin; Kawakami, Takuya; Ikemoto, Takeshi; Fujiwara, Daisuke; Takenaka, Shigeo; Nakazawa, Masami; Ueda, Mitsuhiro; Sakamoto, Tatsuji

    2015-10-01

    We previously described an endo-acting rhamnogalacturonan (RG) lyase, termed PcRGL4A, of Penicillium chrysogenum 31B. Here, we describe a second RG lyase, called PcRGLX. We determined the cDNA sequence of the Pcrglx gene, which encodes PcRGLX. Based on analyses using a BLAST search and a conserved domain search, PcRGLX was found to be structurally distinct from known RG lyases and might belong to a new polysaccharide lyase family together with uncharacterized fungal proteins of Nectria haematococca, Aspergillus oryzae, and Fusarium oxysporum. The Pcrglx cDNA gene product (rPcRGLX) expressed in Escherichia coli demonstrated specific activity against RG but not against homogalacturonan. Divalent cations were not essential for the enzymatic activity of rPcRGLX. rPcRGLX mainly released unsaturated galacturonosyl rhamnose (ΔGR) from RG backbones used as the substrate from the initial stage of the reaction, indicating that the enzyme can be classified as an exo-acting RG lyase (EC 4.2.2.24). This is the first report of an RG lyase with this mode of action in Eukaryota. rPcRGLX acted synergistically with PcRGL4A to degrade soybean RG and released ΔGR. This ΔGR was partially decorated with galactose (Gal) residues, indicating that rPcRGLX preferred oligomeric RGs to polymeric RGs, that the enzyme did not require Gal decoration of RG backbones for degradation, and that the enzyme bypassed the Gal side chains of RG backbones. These characteristics of rPcRGLX might be useful in the determination of complex structures of pectins.

  4. Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington’s disease

    Science.gov (United States)

    Paul, Bindu D.; Sbodio, Juan I.; Xu, Risheng; Vandiver, M. Scott; Cha, Jiyoung Y.; Snowman, Adele M.; Snyder, Solomon H.

    2015-01-01

    Huntington’s disease is an autosomal dominant disease associated with a mutation in the gene encoding huntingtin (Htt) leading to expanded polyglutamine repeats of mutant Htt (mHtt) that elicit oxidative stress, neurotoxicity, and motor and behavioural changes1. Huntington’s disease is characterized by highly selective and profound damage to the corpus striatum, which regulates motor function. Striatal selectivity of Huntington’s disease may reflect the striatally selective small G protein Rhes binding to mHtt and enhancing its neurotoxicity2. Specific molecular mechanisms by which mHtt elicits neurodegeneration have been hard to determine. Here we show a major depletion of cystathionine γ-lyase (CSE), the biosynthetic enzyme for cysteine, in Huntington’s disease tissues, which may mediate Huntington’s disease pathophysiology. The defect occurs at the transcriptional level and seems to reflect influences of mHtt on specificity protein 1, a transcriptional activator for CSE. Consistent with the notion of loss of CSE as a pathogenic mechanism, supplementation with cysteine reverses abnormalities in cultures of Huntington’s disease tissues and in intact mouse models of Huntington’s disease, suggesting therapeutic potential. PMID:24670645

  5. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    International Nuclear Information System (INIS)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-01-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. 14 C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell

  6. Binding of acyl CoA by fatty acid binding protein and the effect on fatty acid activation

    Energy Technology Data Exchange (ETDEWEB)

    Burrier, R.E.; Manson, C.R.; Brecher, P.

    1987-05-01

    The ability of purified rat liver and heart fatty acid binding proteins (FABPs) to bind oleoyl CoA and modulate acyl CoA synthesis by microsomal membranes was investigated. Using binding assays employing either Lipidex 1000 or multilamellar liposomes to sequester unbound ligand, rat liver but not rat heart FABP was shown to bind radiolabeled acyl CoA. Binding studies suggest that liver FABP has a single binding site for acyl CoA which is separate from the two binding sites for fatty acids. Experiments were then performed to determine how binding may influence acyl CoA metabolism by liver microsomes or heart sarcoplasmic reticulum. Using liposomes as fatty acid donors, liver FABP stimulated acyl CoA production whereas heart FABP did not stimulate production over control values. /sup 14/C-Fatty acid-FABP complexes were prepared, incubated with membranes and acyl CoA synthetase activity was determined. Up to 70% of the fatty acid could be converted to acyl CoA in the presence of liver FABP but in the presence of heart FABP, only 45% of the fatty acid was converted. The amount of product formed was not changed by additional membrane, enzyme cofactor, or incubation time. Liver but not heart FABP bound the acyl CoA formed and removed it from the membranes. These studies suggest that liver FABP can increase the amount of acyl CoA by binding this ligand thereby removing it from the membrane and possibly aiding transport within the cell.

  7. Succinyl-CoA:3-ketoacid CoA transferase (SCOT): cloning of the human SCOT gene, tertiary structural modeling of the human SCOT monomer, and characterization of three pathogenic mutations

    NARCIS (Netherlands)

    Fukao, T.; Mitchell, G. A.; Song, X. Q.; Nakamura, H.; Kassovska-Bratinova, S.; Orii, K. E.; Wraith, J. E.; Besley, G.; Wanders, R. J.; Niezen-Koning, K. E.; Berry, G. T.; Palmieri, M.; Kondo, N.

    2000-01-01

    The activity of succinyl-CoA:3-ketoacid CoA transferase (SCOT; locus symbol OXCT; EC 2.8.3.5) is the main determinant of the ketolytic capacity of tissues. Hereditary SCOT deficiency causes episodic ketoacidosis. Here we describe the human SCOT gene, which spans more than 100 kb and contains 17

  8. The crystal structures of the tri-functional Chloroflexus aurantiacus and bi-functional Rhodobacter sphaeroides malyl-CoA lyases and comparison with CitE-like superfamily enzymes and malate synthases.

    Science.gov (United States)

    Zarzycki, Jan; Kerfeld, Cheryl A

    2013-11-09

    Malyl-CoA lyase (MCL) is a promiscuous carbon-carbon bond lyase that catalyzes the reversible cleavage of structurally related Coenzyme A (CoA) thioesters. This enzyme plays a crucial, multifunctional role in the 3-hydroxypropionate bi-cycle for autotrophic CO2 fixation in Chloroflexus aurantiacus. A second, phylogenetically distinct MCL from Rhodobacter sphaeroides is involved in the ethylmalonyl-CoA pathway for acetate assimilation. Both MCLs belong to the large superfamily of CitE-like enzymes, which includes the name-giving β-subunit of citrate lyase (CitE), malyl-CoA thioesterases and other enzymes of unknown physiological function. The CitE-like enzyme superfamily also bears sequence and structural resemblance to the malate synthases. All of these different enzymes share highly conserved catalytic residues, although they catalyze distinctly different reactions: C-C bond formation and cleavage, thioester hydrolysis, or both (the malate synthases). Here we report the first crystal structures of MCLs from two different phylogenetic subgroups in apo- and substrate-bound forms. Both the C. aurantiacus and the R. sphaeroides MCL contain elaborations on the canonical β8/α8 TIM barrel fold and form hexameric assemblies. Upon ligand binding, changes in the C-terminal domains of the MCLs result in closing of the active site, with the C-terminal domain of one monomer forming a lid over and contributing side chains to the active site of the adjacent monomer. The distinctive features of the two MCL subgroups were compared to known structures of other CitE-like superfamily enzymes and to malate synthases, providing insight into the structural subtleties that underlie the functional versatility of these enzymes. Although the C. aurantiacus and the R. sphaeroides MCLs have divergent primary structures (~37% identical), their tertiary and quaternary structures are very similar. It can be assumed that the C-C bond formation catalyzed by the MCLs occurs as proposed for

  9. In Silico Characterization of Pectate Lyase Protein Sequences from Different Source Organisms

    Directory of Open Access Journals (Sweden)

    Amit Kumar Dubey

    2010-01-01

    Full Text Available A total of 121 protein sequences of pectate lyases were subjected to homology search, multiple sequence alignment, phylogenetic tree construction, and motif analysis. The phylogenetic tree constructed revealed different clusters based on different source organisms representing bacterial, fungal, plant, and nematode pectate lyases. The multiple accessions of bacterial, fungal, nematode, and plant pectate lyase protein sequences were placed closely revealing a sequence level similarity. The multiple sequence alignment of these pectate lyase protein sequences from different source organisms showed conserved regions at different stretches with maximum homology from amino acid residues 439–467, 715–816, and 829–910 which could be used for designing degenerate primers or probes specific for pectate lyases. The motif analysis revealed a conserved Pec_Lyase_C domain uniformly observed in all pectate lyases irrespective of variable sources suggesting its possible role in structural and enzymatic functions.

  10. COA based robust output feedback UPFC controller design

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)

    2010-12-15

    In this paper, a novel method for the design of output feedback controller for unified power flow controller (UPFC) using chaotic optimization algorithm (COA) is developed. Chaotic optimization algorithms, which have the features of easy implementation, short execution time and robust mechanisms of escaping from the local optimum, is a promising tool for the engineering applications. The selection of the output feedback gains for the UPFC controllers is converted to an optimization problem with the time domain-based objective function which is solved by a COA based on Lozi map. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed chaotic optimization problem introduces chaos mapping using Lozi map chaotic sequences which increases its convergence rate and resulting precision. To ensure the robustness of the proposed stabilizers, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller for damping low frequency oscillations is tested and demonstrated through non-linear time-domain simulation and some performance indices studies. The results analysis reveals that the designed COA based output feedback UPFC damping controller has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems.

  11. Crystallization and preliminary X-ray analysis of an exotype alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, a member of polysaccharide lyase family 15

    International Nuclear Information System (INIS)

    Ochiai, Akihito; Yamasaki, Masayuki; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2006-01-01

    The crystallization and preliminary X-ray characterization of a family PL-15 exotype alginate lyase are presented. Almost all alginate lyases depolymerize alginate in an endolytical fashion via a β-elimination reaction. The alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, consisting of 776 amino-acid residues, is a novel exotype alginate lyase classified into polysaccharide lyase family 15. The enzyme was crystallized at 293 K by sitting-drop vapour diffusion with polyethylene glycol 4000 as a precipitant. Preliminary X-ray analysis showed that the Atu3025 crystal belonged to space group P2 1 and diffracted to 2.8 Å resolution, with unit-cell parameters a = 107.7, b = 108.3, c = 149.5 Å, β = 91.5°

  12. Mechanism of the Dual Activities of Human CYP17A1 and Binding to Anti-Prostate Cancer Drug Abiraterone Revealed by a Novel V366M Mutation Causing 17,20 Lyase Deficiency

    Directory of Open Access Journals (Sweden)

    Mónica Fernández-Cancio

    2018-04-01

    Full Text Available The CYP17A1 gene regulates sex steroid biosynthesis in humans through 17α-hydroxylase/17,20 lyase activities and is a target of anti-prostate cancer drug abiraterone. In a 46, XY patient with female external genitalia, together with a loss of function mutation S441P, we identified a novel missense mutation V366M at the catalytic center of CYP17A1 which preferentially impaired 17,20 lyase activity. Kinetic experiments with bacterially expressed proteins revealed that V366M mutant enzyme can bind and metabolize pregnenolone to 17OH-pregnenolone, but 17OH-pregnenolone binding and conversion to dehydroepiandrosterone (DHEA was impaired, explaining the patient’s steroid profile. Abiraterone could not bind and inhibit the 17α-hydroxylase activity of the CYP17A1-V366M mutant. Molecular dynamics (MD simulations showed that V366M creates a “one-way valve” and suggests a mechanism for dual activities of human CYP17A1 where, after the conversion of pregnenolone to 17OH-pregnenolone, the product exits the active site and re-enters for conversion to dehydroepiandrosterone. The V366M mutant also explained the effectiveness of the anti-prostate cancer drug abiraterone as a potent inhibitor of CYP17A1 by binding tightly at the active site in the WT enzyme. The V366M is the first human mutation to be described at the active site of CYP17A1 that causes isolated 17,20 lyase deficiency. Knowledge about the specificity of CYP17A1 activities is of importance for the development of treatments for polycystic ovary syndrome and inhibitors for prostate cancer therapy.

  13. Cloning and expression of isocitrate lyase from human round worm Strongyloides stercoralis

    Directory of Open Access Journals (Sweden)

    Siddiqui A.A.

    2000-09-01

    Full Text Available A full length cDNA (1463 bp encoding isocitrate lyase (EC 4.1.3.1 of Strongyloides stercoralis is described. The nucleotide sequence of this insert identified a cDNA coding for the isocitrate lyase. The conceptually translated amino acid sequence of the open reading frame for S. stercoralis isocitrate lyase encodes a 450 amino acid residue protein with an apparent molecular weight of 50 kDa and a predicted pl of 6.39. The sequence is 69 % A/T, reflecting a characteristic A/T codon bias of S. stercoralis. The amino acid sequence of S. stercoralis isocitrate lyase is compared with bifunctional glyoxylate cycle protein of Caenorhabditis elegans and isocitrate lyases from Chlamydomonas reinhardtii and Myxococcus xanthus. The full length cDNA of S. stercoralis was expressed in pRSET vector and bacteriophage T7 promoter based expression system. S. stercoralis lyase recombinant protein, purified via immobilized metal affinity chromatography, showed a molecular mass of 50 kDa on polyacrylamide gels. The role of isocitrate lyase in the glyoxylate cycle and energy metabolism of S. stercoralis is also discussed.

  14. Synthesis and magnetic properties of superparamagnetic CoAs nanostructures

    Science.gov (United States)

    Desai, P.; Ashokaan, N.; Masud, J.; Pariti, A.; Nath, M.

    2015-03-01

    This article provides a comprehensive guide on the synthesis and characterization of superparamagnetic CoAs nanoparticles and elongated nanostructures with high blocking temperature, (TB), via hot-injection precipitation and solvothermal methods. Cobalt arsenides constitute an important family of magnetically active solids that find a variety of applications ranging from magnetic semiconductors to biomedical imaging. While the higher temperature hot-injection precipitation technique (300 °C) yields pure CoAs nanostructures, the lower temperature solvothermal method (200 °C) yields a mixture of CoAs nanoparticles along with other Co-based impurity phases. The synthesis in all these cases involved usage of triphenylarsine ((C6H5)3As) as the As precursor which reacts with solid Co2(CO)8 by ligand displacement to yield a single source precursor. The surfactant, hexadecylamine (HDA) further assists in controlling the morphology of the nanostructures. HDA also provides a basic medium and molten flux-like conditions for the redox chemistry to occur between Co and As at elevated temperatures. The influence of the length of reaction time was investigated by studying the evolution of product morphology over time. It was observed that while spontaneous nucleation at higher temperature followed by controlled growth led to the predominant formation of short nanorods, with longer reaction time, the nanorods were further converted to nanoparticles. The size of the nanoparticles obtained, was mostly in the range of 10-15 nm. The key finding of this work is exceptionally high coercivity in CoAs nanostructures for the first time. Coercivity observed was as high as 0.1 T (1000 Oe) at 2 K. These kinds of magnetic nanostructures find multiple applications in spintronics, whereas the superparamagnetic nanoparticles are viable for use in magnetic storage, ferrofluids and as contrast enhancing agents in MRI.

  15. The hydroxynitrile lyase from almond: crystal structure and mechanistical studies

    International Nuclear Information System (INIS)

    Dreveny, Ingrid

    2001-09-01

    Cyanogenesis is a defense process of several thousand plant species. Hydroxynitrile lyase (HNL), a key enzyme of this process, cleaves a cyanohydrin precursor into hydrocyanic acid and the corresponding aldehyde or ketone. The reverse reaction constitutes an important tool in industrial biocatalysis. Different classes of hydroxynitrile lyases have convergently evolved from FAD-dependent oxidoreductases, α/β hydrolases and alcohol dehydrogenases. The FAD-dependent hydroxynitrile lyases (FAD-HNLs) carry a flavin cofactor whose redox properties appear to be unimportant for catalysis. The high resolution crystal structure of the hydroxynitrile lyase from almond (Prunus amygdalus), PaHNL1, has been determined and constitutes the first 3D structure of an FAD-HNL. The overall fold and the architecture of the active site region showed that PaHNL1 belongs to the glucose-methanol-choline-oxidoreductase family, with closest structural similarity to glucose oxidase. There is strong evidence from the sequence and the reaction product that FAD-dependent hydroxynitrile lyases have evolved from an aryl alcohol oxidizing precursor. Structures of PaHNL1 in complex with its natural substrate mandelonitrile and the competitive inhibitor benzyl alcohol provided insight into the residues involved in catalysis and a mechanism without participation of the cofactor could be suggested. Although the catalytic residues differ between the α/β-hydrolase-type HNLs and PaHNL1, common general features relevant for hydroxynitrile lyase activity could be proposed. (author)

  16. Metabolically engineered cells for the production of resveratrol or an oligomeric or glycosidically-bound derivative thereof

    DEFF Research Database (Denmark)

    2006-01-01

    A from said 4-coumaric acid, and resveratrol synthase (VST) produces said resveratrol from said 4- coumaroyl CoA, or in which L-phenylalanine- or tyrosine- ammonia lyase (PAL/TAL) produces 4-coumaric acid, 4- coumarate-CoA ligase (4CL) produces 4-coumaroyl CoA from said 4-coumaric acid, and resveratrol...... synthase (VST) produces said resveratrol from said 4-coumaroyl CoA. The micro-organism may be a yeast, fungus or bacterium including Saccharomyces cerevisiae, E. coli, Lactococcus lactis, Aspergillus niger, or Aspergillus oryzae....

  17. Cystathionine γ-Lyase-Produced Hydrogen Sulfide Controls Endothelial NO Bioavailability and Blood Pressure.

    Science.gov (United States)

    Szijártó, István András; Markó, Lajos; Filipovic, Milos R; Miljkovic, Jan Lj; Tabeling, Christoph; Tsvetkov, Dmitry; Wang, Ning; Rabelo, Luiza A; Witzenrath, Martin; Diedrich, André; Tank, Jens; Akahoshi, Noriyuki; Kamata, Shotaro; Ishii, Isao; Gollasch, Maik

    2018-06-01

    Hydrogen sulfide (H 2 S) and NO are important gasotransmitters, but how endogenous H 2 S affects the circulatory system has remained incompletely understood. Here, we show that CTH or CSE (cystathionine γ-lyase)-produced H 2 S scavenges vascular NO and controls its endogenous levels in peripheral arteries, which contribute to blood pressure regulation. Furthermore, eNOS (endothelial NO synthase) and phospho-eNOS protein levels were unaffected, but levels of nitroxyl were low in CTH-deficient arteries, demonstrating reduced direct chemical interaction between H 2 S and NO. Pretreatment of arterial rings from CTH-deficient mice with exogenous H 2 S donor rescued the endothelial vasorelaxant response and decreased tissue NO levels. Our discovery that CTH-produced H 2 S inhibits endogenous endothelial NO bioavailability and vascular tone is novel and fundamentally important for understanding how regulation of vascular tone is tailored for endogenous H 2 S to contribute to systemic blood pressure function. © 2018 American Heart Association, Inc.

  18. Studies on pectin lyase

    NARCIS (Netherlands)

    Houdenhoven, van F.E.A.

    1975-01-01

    The pectin lyase activity in the commercial enzyme preparation Ultrazym originates from more then one type of enzyme; two of them, accounting for 95 % of the total activity, have been completely purified. As purity criteria specific activity, polyacrylamide disc gel electrophoresis and SDS

  19. Acetyl CoA Carboxylase 2 Is Dispensable for CD8+ T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Jang Eun Lee

    Full Text Available Differentiation of T cells is closely associated with dynamic changes in nutrient and energy metabolism. However, the extent to which specific metabolic pathways and molecular components are determinative of CD8+ T cell fate remains unclear. It has been previously established in various tissues that acetyl CoA carboxylase 2 (ACC2 regulates fatty acid oxidation (FAO by inhibiting carnitine palmitoyltransferase 1 (CPT1, a rate-limiting enzyme of FAO in mitochondria. Here, we explore the cell-intrinsic role of ACC2 in T cell immunity in response to infections. We report here that ACC2 deficiency results in a marginal increase of cellular FAO in CD8+ T cells, but does not appear to influence antigen-specific effector and memory CD8+ T cell responses during infection with listeria or lymphocytic choriomeningitis virus. These results suggest that ACC2 is dispensable for CD8+ T cell responses.

  20. Regulation of schistosome egg production by HMG CoA reductase

    International Nuclear Information System (INIS)

    VandeWaa, E.A.; Bennett, J.L.

    1986-01-01

    Hydroxymethylglutaryl coenzyme A reductase (HMG CoA reductase) catalyzes the conversion of HMG CoA to mevalonate in the synthesis of steroids, isoprenoids and terpenes. Mevinolin, an inhibitor of this enzyme, decreased egg production in Schistosoma mansoni during in vitro incubations. This was associated with a reduction in the incorporation of 14 C-acetate into polyisoprenoids and a reduction in the formation of a lipid-linked oligosaccharide. In vivo, mevinolin in daily doses of 50 mg/kg (p.o., from days 30-48 post-infection) caused no change in gross liver pathology in S. mansoni infected mice. However, when parasites exposed to mevinolin or its vehicle in vivo were cultured in vitro, worms from mevinolin-treated mice produced six times more eggs than control parasites. When infected mice were dosed with 250 mg/kg mevinolin daily (p.o., from days 35-45 post-infection), liver pathology was reduced in comparison to control mice. Thus, during in vivo exposure to a high dose of the drug egg production is decreased, while at a lower dose it appears unaffected until the parasites are cultured in a drug-free in vitro system wherein egg production is stimulated to extraordinarily high levels. It may be that at low doses mevinolin, by inhibiting the enzyme, is blocking the formation of a product (such as an isoprenoid) which normally acts to down-regulate enzyme synthesis, resulting in enzyme induction. Induction of HMG CoA reductase is then expressed as increased egg production when the worms are removed from the drug. These data suggest that HMG CoA reductase plays a role in schistosome egg production

  1. Catalytic-site mapping of pyruvate formate lyase. Hypophosphite reaction on the acetyl-enzyme intermediate affords carbon-phosphorus bond synthesis (1-hydroxyethylphosphonate).

    Science.gov (United States)

    Plaga, W; Frank, R; Knappe, J

    1988-12-15

    Pyruvate formate-lyase of Escherichia coli cells, a homodimeric protein of 2 x 85 kDa, is distinguished by the property of containing a stable organic free radical (g = 2.0037) in its resting state. The enzyme (E-SH) achieves pyruvate conversion to acetyl-CoA via two distinct half-reactions (E-SH + pyruvate in equilibrium E-S-acetyl + formate; E-S-acetyl + CoA in equilibrium E-SH + acetyl-CoA), the first of which has been proposed to involve reversible homolytic carbon-carbon bond cleavage [J. Knappe et al. (1984) Proc. Natl Acad. Sci. USA 81, 1332-1335]. Present studies identified Cys-419 as the covalent-catalytic cysteinyl residue via CNBr fragmentation of E-S-[14C]acetyl and radio-sequencing of the isolated peptide CB-Ac (amino acid residues 406-423). Reaction of the formate analogue hypophosphite with E-S-acetyl was investigated and found to produce 1-hydroxyethylphosphonate with a thioester linkage to the adjacent Cys-418. The structure was determined from the chymotryptic peptide CH-P (amino acid residues 415-425), using 31P-NMR spectroscopy (delta = 44 ppm) and by chemical characterisation through degradation into 1-hydroxyethylphosphonate with phosphodiesterase or bromine. This novel P-C-bond synthesis involves the enzyme-based free radical and is proposed to resemble the physiological C-C-bond synthesis (pyruvate production) from formate and E-S-acetyl. These findings are interpreted as proof of a radical mechanism for the action of pyruvate formate-lyase. The central Cys-418/Cys-419 pair of the active site shows a distinctive thiolate property even in the inactive (nonradical) form of the enzyme, as determined using an iodoacetate probe.

  2. The Antibiotic CJ-15,801 is an Antimetabolite which Hijacks and then Inhibits CoA Biosynthesis

    Science.gov (United States)

    van der Westhuyzen, Renier; Hammons, Justin C.; Meier, Jordan L.; Dahesh, Samira; Moolman, Wessel J. A.; Pelly, Stephen C.; Nizet, Victor; Burkart, Michael D.; Strauss, Erick

    2012-01-01

    SUMMARY The natural product CJ-15,801 is an inhibitor of Staphylococcus aureus, but not other bacteria. Its close structural resemblance to pantothenic acid, the vitamin precursor of coenzyme A (CoA), and its Michael acceptor moiety suggest that it irreversibly inhibits an enzyme involved in CoA biosynthesis or utilization. However, its mode of action and the basis for its specificity have not been elucidated to date. We demonstrate that CJ-15,801 is transformed by the uniquely selective S. aureus pantothenate kinase, the first CoA biosynthetic enzyme, into a substrate for the next enzyme, phosphopantothenoylcysteine synthetase, which is inhibited through formation of a tight-binding structural mimic of its native reaction intermediate. These findings reveal CJ-15,801 as a vitamin biosynthetic pathway antimetabolite with a mechanism similar to that of the sulfonamide antibiotics, and highlight CoA biosynthesis as a viable antimicrobial drug target. PMID:22633408

  3. Circadian Rhythmicity in the Activities of Phenylalanine Ammonia-Lyase from Lemna perpusilla and Spirodela polyrhiza 1

    Science.gov (United States)

    Gordon, William R.; Koukkari, Willard L.

    1978-01-01

    The oscillations in phenylalanine ammonia-lyase activity from Spirodela polyrhiza and phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities from Lemna perpusilla displayed a circadian rhythm under continuous light. Rhythmicity in enzymic activity could not be detected in continuous darkness since under this condition phenylalanine ammonia-lyase activity remains at a fairly constantly low level. Results from our studies of the oscillatory pattern of the respective activities of phenylalanine and tyrosine ammonia-lyase support their “inseparability.” PMID:16660569

  4. Structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase in complex with the feedback inhibitor CoA reveals only one active-site conformation

    Energy Technology Data Exchange (ETDEWEB)

    Wubben, T.; Mesecar, A.D. (Purdue); (UIC)

    2014-10-02

    Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine to form dephosphocoenzyme A (dPCoA). To complement recent biochemical and structural studies on Mycobacterium tuberculosis PPAT (MtPPAT) and to provide further insight into the feedback regulation of MtPPAT by CoA, the X-ray crystal structure of the MtPPAT enzyme in complex with CoA was determined to 2.11 {angstrom} resolution. Unlike previous X-ray crystal structures of PPAT-CoA complexes from other bacteria, which showed two distinct CoA conformations bound to the active site, only one conformation of CoA is observed in the MtPPAT-CoA complex.

  5. Purification, gene cloning, and characterization of γ-butyrobetainyl CoA synthetase from Agrobacterium sp. 525a.

    Science.gov (United States)

    Fujimitsu, Hiroshi; Matsumoto, Akira; Takubo, Sayaka; Fukui, Akiko; Okada, Kazuma; Mohamed Ahmed, Isam A; Arima, Jiro; Mori, Nobuhiro

    2016-08-01

    The report is the first of purification, overproduction, and characterization of a unique γ-butyrobetainyl CoA synthetase from soil-isolated Agrobacterium sp. 525a. The primary structure of the enzyme shares 70-95% identity with those of ATP-dependent microbial acyl-CoA synthetases of the Rhizobiaceae family. As distinctive characteristics of the enzyme of this study, ADP was released in the catalytic reaction process, whereas many acyl CoA synthetases are annotated as an AMP-forming enzyme. The apparent Km values for γ-butyrobetaine, CoA, and ATP were, respectively, 0.69, 0.02, and 0.24 mM.

  6. Utilization of Aspergillus oryzae to produce pectin lyase from various agro-industrial residues

    Directory of Open Access Journals (Sweden)

    Safia Koser

    2014-07-01

    Full Text Available The present study was aimed to investigate the culture influence on pectin lyase production potential of fungal strain Aspergillus oryzae. The enzyme profile of A. oryzae showed highest activity of pectin lyase after 3rd day of incubation on lemon peel waste under solid state fermentation conditions. To induce the pectin lyase synthesis capability of A. oryzae at optimal level various culture variables including physical and nutritional parameters were optimized by adopting classical optimization technique. Therefore, through fermentation process optimization the production of pectin lyase was substantially induced up to the level of 875 U/mL, when fermentation medium of lemon peel waste inoculated with 5 mL spore suspension of A. oryzae. The optimal fermentation conditions for maximum pectin lyase yield were as: optimum pH 5, 70% moisture level and incubated at 40 °C in addition with 1% sterile glucose solution as readily available carbon source and 0.2% yeast extract as an inexpensive nitrogen supplement (1%. The results obtained in current investigation so far demonstrated that culture conditions have great influence on the pectin lyase production potential of A. oryzae.

  7. Characterization of AlgMsp, an alginate lyase from Microbulbifer sp. 6532A.

    Directory of Open Access Journals (Sweden)

    Steven M Swift

    Full Text Available Alginate is a polysaccharide produced by certain seaweeds and bacteria that consists of mannuronic acid and guluronic acid residues. Seaweed alginate is used in food and industrial chemical processes, while the biosynthesis of bacterial alginate is associated with pathogenic Pseudomonas aeruginosa. Alginate lyases cleave this polysaccharide into short oligo-uronates and thus have the potential to be utilized for both industrial and medicinal applications. An alginate lyase gene, algMsp, from Microbulbifer sp. 6532A, was synthesized as an E.coli codon-optimized clone. The resulting 37 kDa recombinant protein, AlgMsp, was expressed, purified and characterized. The alginate lyase displayed highest activity at pH 8 and 0.2 M NaCl. Activity of the alginate lyase was greatest at 50°C; however the enzyme was not stable over time when incubated at 50°C. The alginate lyase was still highly active at 25°C and displayed little or no loss of activity after 24 hours at 25°C. The activity of AlgMsp was not dependent on the presence of divalent cations. Comparing activity of the lyase against polymannuronic acid and polyguluronic acid substrates showed a higher turnover rate for polymannuronic acid. However, AlgMSP exhibited greater catalytic efficiency with the polyguluronic acid substrate. Prolonged AlgMsp-mediated degradation of alginate produced dimer, trimer, tetramer, and pentamer oligo-uronates.

  8. Structure and Mechanism of PhnP, a Phosphodiesterase of the Carbon-Phosphorus Lyase Pathway

    DEFF Research Database (Denmark)

    He, Shu-Mei; Wathier, Matthew; Podzelinska, Kateryna

    2011-01-01

    PhnP is a phosphodiesterase that plays an important role within the bacterial carbon-phosphorus lyase (CP-lyase) pathway by recycling a "dead-end" intermediate, 5-phospho-α-d-ribosyl 1,2-cyclic phosphate, that is formed during organophosphonate catabolism. As a member of the metallo-β-lactamase s......PhnP is a phosphodiesterase that plays an important role within the bacterial carbon-phosphorus lyase (CP-lyase) pathway by recycling a "dead-end" intermediate, 5-phospho-α-d-ribosyl 1,2-cyclic phosphate, that is formed during organophosphonate catabolism. As a member of the metallo...

  9. Production and Purification of a Novel Xanthan Lyase from a Xanthan-Degrading Microbacterium sp. Strain XT11

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2014-01-01

    Full Text Available A xanthan lyase was produced and purified from the culture supernatant of an excellent xanthan-modifying strain Microbacterium sp. XT11. Xanthan lyase was induced by xanthan but was inhibited by its structural monomer glucose. Its production by strain XT11 is much higher than that by all other reported strains. The purified xanthan lyase has a molecular mass of 110 kDa and a specific activity of 28.2 U/mg that was much higher than that of both Paenibacillus and Bacillus lyases. It was specific on the pyruvated mannosyl residue in the intact xanthan molecule, but about 50% lyase activity remained when xanthan was partially depyruvated. Xanthan lyase was optimally active at pH 6.0–6.5 and 40°C and alkali-tolerant at a high pH value of 11.0. The metal ions including K+, Ca2+, Na+, Mg2+, Mn2+, and Li+ strongly stimulated xanthan lyase activity but ions Zn2+ and Cu2+ were its inhibitor. Xanthan lyase should be a novel enzyme different from the other xanthan lyases ever reported.

  10. Utilization of Aspergillus oryzae to produce pectin lyase from various agro-industrial residues

    OpenAIRE

    Koser, Safia; Anwar, Zahid; Iqbal, Zafar; Anjum, Awais; Aqil, Tahir; Mehmood, Sajid; Irshad, Muhammad

    2014-01-01

    The present study was aimed to investigate the culture influence on pectin lyase production potential of fungal strain Aspergillus oryzae. The enzyme profile of A. oryzae showed highest activity of pectin lyase after 3rd day of incubation on lemon peel waste under solid state fermentation conditions. To induce the pectin lyase synthesis capability of A. oryzae at optimal level various culture variables including physical and nutritional parameters were optimized by adopting classical optimiza...

  11. Correlation of changes in rate of sterol synthesis with changes in HMG CoA reductase activity in cultured lens epithelial cells

    International Nuclear Information System (INIS)

    Cenedella, R.J.; Hitchener, W.R.

    1986-01-01

    In the present study, the authors correlated changes in HMG CoA reductase activity with changes in relative rates of sterol synthesis measured from either 3 H 2 O or 1- 14 C-acetate for bovine lens epithelial cells cultured in the presence or absence of lipoproteins. Enzyme activity and rates of incorporation of 3 H 2 O or 1- 14 C-acetate into digitonin precipitable sterols were measured in cells on the 4th day of subculture in DMEM containing 9% whole calf serum (WM) or 9% lipoprotein deficient serum (LDM). In three experiments, HMG CoA reductase activity (U/10 6 cells) averaged 2.2 +/- 0.1 times greater for cells grown in LDM than WM. Sterol synthesis averaged 3.0 +/- 0.4 times greater when measured with 3 H 2 O and 4.0 +/- 1.1 times greater when measured with 14 C-acetate. Thus, 3 H 2 O and 14 C-acetate appear to be comparable substrates for estimating changes in relative rates of sterol synthesis by cultured cells. The larger increases in rates of sterol synthesis than in reductase activity in response to decreased cholesterol could reflect stimulation at additional metabolic steps in the cholesterol pathway beyond mevalonic acid

  12. A novel gene encoding xanthan lyase of Paenibacillus alginolyticus strain XL-1

    NARCIS (Netherlands)

    Ruijssenaars, H.J.; Hartmans, S.; Verdoes, J.C.

    2000-01-01

    Xanthan-modifying enzymes are powerful tools in studying structure-function relationships of this polysaccharide. One of these modifying enzymes is xanthan lyase, which removes the terminal side chain residue of xanthan. In this paper, the cloning and sequencing of the first xanthan lyase-encoding

  13. Crystallization and preliminary X-ray analysis of βC–S lyases from two oral streptococci

    International Nuclear Information System (INIS)

    Kezuka, Yuichiro; Yoshida, Yasuo; Nonaka, Takamasa

    2009-01-01

    The βC-S lyases from two oral bacteria, Streptococcus anginosus and S. gordonii, were cloned, overproduced, purified and crystallized. The obtained crystals were characterized by X-ray diffraction. Hydrogen sulfide, which causes oral malodour, is generally produced from l-cysteine by the action of βC–S lyase from oral bacteria. The βC–S lyases from two oral bacteria, Streptococcus anginosus and S. gordonii, have been cloned, overproduced, purified and crystallized. X-ray diffraction data were collected from the two types of crystals using synchrotron radiation. The crystal of S. anginosus βC–S lyase belonged to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 67.0, b = 111.1, c = 216.4 Å, and the crystal of S. gordonii βC–S lyase belonged to the same space group, with unit-cell parameters a = 58.0, b = 73.9. c = 187.6 Å. The structures of the βC–S lyases were solved by molecular-replacement techniques

  14. Cytochrome c and c1 heme lyases are essential in Plasmodium berghei.

    Science.gov (United States)

    Posayapisit, Navaporn; Songsungthong, Warangkhana; Koonyosying, Pongpisid; Falade, Mofolusho O; Uthaipibull, Chairat; Yuthavong, Yongyuth; Shaw, Philip J; Kamchonwongpaisan, Sumalee

    Malaria parasites possess a de novo heme synthetic pathway. Interestingly, this pathway is dispensable during the blood stages of development in mammalian hosts. The assembly of the two most important hemeproteins, cytochromes c and c1, is mediated by cytochrome heme lyase enzymes. Plasmodium spp. possess two cytochrome heme lyases encoded by separate genes. Given the redundancy of heme synthesis, we sought to determine if heme lyase function also exhibits redundancy. To answer this question, we performed gene knockout experiments. We found that the PBANKA_143950 and PBANKA_0602600 Plasmodium berghei genes encoding cytochrome c (Pbcchl) and cytochrome c1 (Pbcc 1 hl) heme lyases, respectively, can only be disrupted when a complementary gene is present. In contrast, four genes in the de novo heme synthesis pathway can be disrupted without complementation. This work provides evidence that Pbcchl and Pbcc 1 hl are both essential and thus may be antimalarial targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Reduced phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities and lignin synthesis in wheat grown under low pressure sodium lamps

    Science.gov (United States)

    Guerra, D.; Anderson, A. J.; Salisbury, F. B.

    1985-01-01

    Wheat (Triticum aestivum L. cv Fremont) grown in hydroponic culture under 24-hour continuous irradiation at 560 to 580 micromoles per square meter per second from either metalhalide (MH), high pressure sodium (HPS), or low pressure sodium (LPS) lamps reached maturity in 70 days. Grain yields were similar under all three lamps, although LPS-grown plants lodged at maturity. Phenylalanine ammonia-lyase (PAL) and a tyrosine ammonia lyase (TAL) with lesser activity were detected in all extracts of leaf, inflorescence, and stem. Ammonia-lyase activities increased with age of the plant, and plants grown under the LPS lamp displayed PAL and TAL activities lower than wheat cultured under MH and HPS radiation. Greenhouse solar-grown wheat had the highest PAL and TAL activities. Lignin content of LPS-grown wheat was also significantly reduced from that of plants grown under MH or HPS lamps or in the greenhouse, showing a correlation with the reduced PAL and TAL activities. Ratios of far red-absorbing phytochrome to total phytochrome were similar for all three lamps, but the data do not yet warrant a conclusion about specific wavelengths missing from the LPS lamps that might have induced PAL and TAL activities in plants under the other lamps.

  16. A liver-specific defect of Acyl-CoA degradation produces hyperammonemia, hypoglycemia and a distinct hepatic Acyl-CoA pattern.

    Directory of Open Access Journals (Sweden)

    Nicolas Gauthier

    Full Text Available Most conditions detected by expanded newborn screening result from deficiency of one of the enzymes that degrade acyl-coenzyme A (CoA esters in mitochondria. The role of acyl-CoAs in the pathophysiology of these disorders is poorly understood, in part because CoA esters are intracellular and samples are not generally available from human patients. We created a mouse model of one such condition, deficiency of 3-hydroxy-3-methylglutaryl-CoA lyase (HL, in liver (HLLKO mice. HL catalyses a reaction of ketone body synthesis and of leucine degradation. Chronic HL deficiency and acute crises each produced distinct abnormal liver acyl-CoA patterns, which would not be predictable from levels of urine organic acids and plasma acylcarnitines. In HLLKO hepatocytes, ketogenesis was undetectable. Carboxylation of [2-(14C] pyruvate diminished following incubation of HLLKO hepatocytes with the leucine metabolite 2-ketoisocaproate (KIC. HLLKO mice also had suppression of the normal hyperglycemic response to a systemic pyruvate load, a measure of gluconeogenesis. Hyperammonemia and hypoglycemia, cardinal features of many inborn errors of acyl-CoA metabolism, occurred spontaneously in some HLLKO mice and were inducible by administering KIC. KIC loading also increased levels of several leucine-related acyl-CoAs and reduced acetyl-CoA levels. Ultrastructurally, hepatocyte mitochondria of KIC-treated HLLKO mice show marked swelling. KIC-induced hyperammonemia improved following administration of carglumate (N-carbamyl-L-glutamic acid, which substitutes for the product of an acetyl-CoA-dependent reaction essential for urea cycle function, demonstrating an acyl-CoA-related mechanism for this complication.

  17. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation.

    Science.gov (United States)

    Cotter, David G; Schugar, Rebecca C; Wentz, Anna E; d'Avignon, D André; Crawford, Peter A

    2013-02-15

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.

  18. CoCoa: a software tool for estimating the coefficient of coancestry from multilocus genotype data.

    Science.gov (United States)

    Maenhout, Steven; De Baets, Bernard; Haesaert, Geert

    2009-10-15

    Phenotypic data collected in breeding programs and marker-trait association studies are often analyzed by means of linear mixed models. In these models, the covariance between the genetic background effects of all genotypes under study is modeled by means of pairwise coefficients of coancestry. Several marker-based coancestry estimation procedures allow to estimate this covariance matrix, but generally introduce a certain amount of bias when the examined genotypes are part of a breeding program. CoCoa implements the most commonly used marker-based coancestry estimation procedures and as such, allows to select the best fitting covariance structure for the phenotypic data at hand. This better model fit translates into an increased power and improved type I error control in association studies and an improved accuracy in phenotypic prediction studies. The presented software package also provides an implementation of the new Weighted Alikeness in State (WAIS) estimator for use in hybrid breeding programs. Besides several matrix manipulation tools, CoCoa implements two different bending heuristics, in case the inverse of an ill-conditioned coancestry matrix estimate is needed. The software package CoCoa is freely available at http://webs.hogent.be/cocoa. Source code, manual, binaries for 32 and 64-bit Linux systems and an installer for Microsoft Windows are provided. The core components of CoCoa are written in C++, while the graphical user interface is written in Java.

  19. Chondroitin Sulfate (CS) Lyases: Structure, Function and Application in Therapeutics.

    Science.gov (United States)

    Rani, Aruna; Patel, Seema; Goyal, Arun

    2018-01-01

    Glycosaminoglycans (GAGs) such as chondroitin sulfate (CS) are the chief natural polysaccharides which reside in biological tissues mainly in extracellular matrix. These CS along with adhesion molecules and growth factors are involved in central nervous system (CNS) development, cell progression and pathogenesis. The chondroitin lyases are the enzyme that degrade and alter the CS chains and hence modify various signalling pathways involving CS chains. These CS lyases are substrate specific, can precisely manipulate the CS polysaccharides and have various biotechnological, medical and therapeutic applications. These enzymes can be used to produce the unsaturated oligosaccharides, which have immune-modulatory, anti-inflammatory and neuroprotective properties. This review focuses on the major breakthrough of the chondroitin sulfate degrading enzymes, their structures and functioning mechanism. This also provides comprehensive information regarding production, purification, characterization of CS lyases and their major applications, both established as well as emerging ones such as neural development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Deficiência da 3-OH-3-metil-glutaril-CoA-liase como causa de coma no período neonatal: relato de caso 3-hydroxy-3-methylglutaryl-CoA-lyase deficiency as coma etiology in the neonatal period: case report

    Directory of Open Access Journals (Sweden)

    ERASMO BARBANTE CASELLA

    1998-09-01

    Full Text Available Estudamos um paciente que apresentou dois episódios de coma no primeiro mês de vida, com descompensação metabólica, nos quais se observou hipoglicemia e acidose metabólica acentuada, sem cetonúria. O estudo dos ácidos orgânicos urinários demonstrou elevação acentuada de 3-OH-3-metil-glutárico, 3-metil-glutacônico, 3-metil-glutárico e 3-OH-isovalérico. Os sinais e sintomas clínicos associados às alterações metabólicas citadas permitiram o diagnóstico da deficiência da 3-OH-3-metil-glutaril-CoA-liase, entidade de origem autossômica recessiva, passível de ser tratada, como no caso estudado, com dieta hipoproteica, restrita em leucina, hipogordurosa e rica em carboidratos, associada a L-carnitina e evitando-se períodos prolongados de jejum.We report a patient that presented two episodes of coma in the neonatal period, with severe metabolic acidosis and hypoglycemia, without ketosis. The urinary organic acid analysis showed increased amounts of 3-hydroxy-3-methyl-glutaric, 3-methylglutaconic, 3-methylglutaric and 3-hydroxyisovaleric acid. The deficiency of 3-hydroxy-3-methylglutaryl-CoA lyase was diagnosed by the clinical and metabolic features. This disease shows autosomal recessive inheritance and the treatment is done by a diet with restriction of protein (mainly leucine and lipids, high in carbohydrate content, and the avoidance of fasting and carnitine supplementation.

  1. Up-regulation of hepatic Acyl CoA: Diacylglycerol acyltransferase-1 (DGAT-1) expression in nephrotic syndrome.

    Science.gov (United States)

    Vaziri, Nosratola D; Kim, Choong H; Phan, Dennis; Kim, Sara; Liang, Kaihui

    2004-07-01

    Nephrotic syndrome is associated with hypercholesterolemia, hypertriglyceridemia, and marked elevations of plasma low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL). Hypertriglyceridemia in nephrotic syndrome is accompanied by increased hepatic fatty acid synthesis, elevated triglyceride secretion, as well as lipoprotein lipase, VLDL-receptor, and hepatic triglyceride lipase deficiencies, which lead to impaired clearance of triglyceride-rich lipoproteins. Acyl CoA: diacylglycerol acyltransferase (DGAT) is a microsomal enzyme that joins acyl CoA to 1, 2-diacylglycerol to form triglyceride. Two distinct DGATs (DGAT-1 and DGAT2) have recently been identified in the liver and other tissues. The present study tested the hypothesis that the reported increase in hepatic triglyceride secretion in nephrotic syndrome may be caused by up-regulation of DGAT. Male Sprague-Dawley rats were rendered nephrotic by two sequential injections of puromycin aminonucleoside (130 mg/kg on day 1 and 60 mg/kg on day 14) and studied on day 30. Placebo-treated rats served as controls. Hepatic DGAT-1 and DGAT-2 mRNA abundance and enzymatic activity were measured. The nephrotic group exhibited heavy proteinuria, hypoalbuminemia, hypercholesterolemia, hypertriglyceridemia, and marked elevation of VLDL concentration. Hepatic DGAT-1 mRNA, DGAT-1, and total DGAT activity were significantly increased, whereas DGAT-2 mRNA abundance and activity were unchanged in the nephrotic rats compared to the control animals. The functional significance of elevation of DGAT activity was illustrated by the reduction in microsomal free fatty acid concentration in the liver of nephrotic animals. Nephrotic syndrome results in up-regulation of hepatic DGAT-1 expression and activity, which can potentially contribute to the associated hypertriglyceridemia by enhancing triglyceride synthesis. Thus, it appears that both depressed catabolism and increased synthetic capacity contribute to

  2. Adenylosuccinate lyase (ADSL) and infantile autism: Absence of previously reported point mutation

    Energy Technology Data Exchange (ETDEWEB)

    Fon, E.A.; Sarrazin, J.; Rouleau, G.A. [Montreal General Hospital (Canada)] [and others

    1995-12-18

    Autism is a heterogeneous neuropsychiatric syndrome of unknown etiology. There is evidence that a deficiency in the enzyme adenylosuccinate lyase (ADSL), essential for de novo purine biosynthesis, could be involved in the pathogenesis of certain cases. A point mutation in the ADSL gene, resulting in a predicted serine-to-proline substitution and conferring structural instability to the mutant enzyme, has been reported previously in 3 affected siblings. In order to determine the prevalence of the mutation, we PCR-amplified the exon spanning the site of this mutation from the genomic DNA of patients fulfilling DSM-III-R criteria for autistic disorder. None of the 119 patients tested were found to have this mutation. Furthermore, on preliminary screening using single-strand conformation polymorphism (SSCP), no novel mutations were detected in the coding sequence of four ADSL exons, spanning approximately 50% of the cDNA. In light of these findings, it appears that mutations in the ADSL gene represent a distinctly uncommon cause of autism. 12 refs., 2 figs.

  3. [Construction and high-density fermentation of alkaline pectate lyase high-yield yeast].

    Science.gov (United States)

    Wang, Xiaowen; Xiang, La; Xu, Ting; Lu, Zhenghui; Zhang, Guimin

    2017-12-25

    Pectate lyase is widely applied in ramie degumming and fabric bioscouring in the textile industry. Compared to conventional processes that involve high alkaline and high temperature treatment, enzyme based treatments have significant advantages in fibers protectiveness, improved efficiency of refining, reduced energy consumption and pollution. Hence, it would be highly desirable to construct high-yield alkaline pectate lyase engineered strains and reduce the pectate lyase production cost. In the previous study, pectate lyase gene pel from Bacillus subtilis168 was expressed in Pichia pastoris GS115 after codon usage optimization based on the vector pHBM905A. To improve the expression level, the vector pHBM905BDM with optimized promoter and signal peptide was used to express the optimized gene pels in GS115. The transformant had increased activity from 68 U/mL to 100 U/mL with the improvement in the transcription level by 27% measured by qPCR. The transformants were further screened on pectin plates, where higher halo forming strains were picked for shake-flask fermentation and strain GS115-pHBM905BDM-pels4 showed the highest activity of 536 U/mL. Then plasmid pPIC9K-pels was constructed and electroporated into the GS115-pHBM905BDM-pels4 cells. Subsequently, high-copy transformant was screened by using the medium containing antibiotics G418, strain GS115-pHBM905BDMpPIC9K- pels1 was identified with increased activity of 770 U/mL and the copy number of pels was 7 confirmed by qPCR. Finally, the activity of pectate lyase produced by GS115-pHBM905BDM-pPIC9K-pels1reached to 2 271 U/mL in a 5-L fermentor. The activity of pectate lyase in our study reached the highest level of expression in P. pastoris, showing good application potential in the textile industry.

  4. Characterization of a Novel Alginate Lyase from Marine Bacterium Vibrio furnissii H1

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhu

    2018-01-01

    Full Text Available Alginate lyases show great potential for industrial and medicinal applications, especially as an attractive biocatalyst for the production of oligosaccharides with special bioactivities. A novel alginate lyase, AlyH1, from the marine bacterium Vibrio furnissii H1, which has been newly isolated from rotten seaweed, was purified and characterized. The purified enzyme showed the specific activity of 2.40 U/mg. Its molecular mass was 35.8 kDa. The optimal temperature and pH were 40 °C and pH 7.5, respectively. AlyH1 maintained stability at neutral pH (7.0–8.0 and temperatures below 30 °C. Metal ions Na+, Mg2+, and K+ increased the activity of the enzyme. With sodium alginate as the substrate, the Km and Vmax values of AlyH1 were 2.28 mg/mL and 2.81 U/mg, respectively. AlyH1 exhibited activities towards both polyguluronate and polymannuronate, and preferentially degraded polyguluronate. Products prepared from sodium alginate by AlyH1 were displayed to be di-, tri-, and tetra-alginate oligosaccharides. A partial amino acid sequence (190 aa of AlyH1 analysis suggested that AlyH1 was an alginate lyase of polysaccharide lyase family 7. The sequence showed less than 77% identity to the reported alginate lyases. These data demonstrated that AlyH1 could be as a novel and potential candidate in application of alginate oligosaccharides production with low polymerization degrees.

  5. Quantitation of heparosan with heparin lyase III and spectrophotometry.

    Science.gov (United States)

    Huang, Haichan; Zhao, Yingying; Lv, Shencong; Zhong, Weihong; Zhang, Fuming; Linhardt, Robert J

    2014-02-15

    Heparosan is Escherichia coli K5 capsule polysaccharide, which is the key precursor for preparing bioengineered heparin. A rapid and effective quantitative method for detecting heparosan is important in the large-scale production of heparosan. Heparin lyase III (Hep III) effectively catalyzes the heparosan depolymerization, forming unsaturated disaccharides that are measurable using a spectrophotometer at 232 nm. We report a new method for the quantitative detection of heparosan with heparin lyase III and spectrophotometry that is safer and more specific than the traditional carbazole assay. In an optimized detection system, heparosan at a minimum concentration of 0.60 g/L in fermentation broth can be detected. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Xylella fastidiosa esterase rather than hydroxynitrile lyase.

    Science.gov (United States)

    Torrelo, Guzman; Ribeiro de Souza, Fayene Zeferino; Carrilho, Emanuel; Hanefeld, Ulf

    2015-03-02

    In 2009, we reported that the product of the gene SCJ21.16 (XFa0032) from Xylella fastidiosa, a xylem-restricted plant pathogen that causes a range of diseases in several important crops, encodes a protein (XfHNL) with putative hydroxynitrile lyase activity. Sequence analysis and activity tests indicated that XfHNL exhibits an α/β-hydrolase fold and could be classified as a member of the family of FAD-independent HNLs. Here we provide a more detailed sequence analysis and new experimental data. Using pure heterologously expressed XfHNL we show that this enzyme cannot catalyse the cleavage/synthesis of mandelonitrile and that this protein is in fact a non-enantioselective esterase. Homology modelling and ligand docking simulations were used to study the active site and support these results. This finding could help elucidate the common ancestor of esterases and hydroxynitrile lyases with an α/β -hydrolase fold. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Catalytically important amino-acid residues of abalone alginate lyase HdAly assessed by site-directed mutagenesis

    OpenAIRE

    Yamamoto, Sayo; Sahara, Takehiko; Sato, Daisuke; Kawasaki, Kosei; Ohgiya, Satoru; Inoue, Akira; Ojima, Takao

    2008-01-01

    Alginate lyase is an enzyme that degrades alginate chains via β-elimination and has been used for the production of alginate oligosaccharides and protoplasts from brown algae. Previously, we deduced the amino-acid sequence of an abalone alginate lyase, HdAly, from its cDNA sequence and, through multiple amino-acid sequence alignment, found that several basic amino-acid residues were highly conserved among the polysaccharide-lyase family 14 (PL-14) enzymes including HdAly. In the present study...

  8. Design of thermostable rhamnogalacturonan lyase mutants from Bacillus licheniformis by combination of targeted single point mutations

    DEFF Research Database (Denmark)

    da Silva, Ines Isabel Cardoso Rodrigues; Jers, Carsten; Otten, Harm

    2014-01-01

    Rhamnogalacturonan I lyases (RGI lyases) (EC 4.2.2.-) catalyze cleavage of α-1,4 bonds between rhamnose and galacturonic acid in the backbone of pectins by β-elimination. In the present study, targeted improvement of the thermostability of a PL family 11 RGI lyase from Bacillus licheniformis (DSM......, were obtained due to additive stabilizing effects of single amino acid mutations (E434L, G55V, and G326E) compared to the wild type. The crystal structure of the B. licheniformis wild-type RGI lyase was also determined; the structural analysis corroborated that especially mutation of charged amino...

  9. A radiometric technique for the measurement of adenylosuccinate lyase

    International Nuclear Information System (INIS)

    Park, K.W.; Tyagi, A.K.; Cooney, D.A.

    1980-01-01

    When radioactive adenylosuccinic acid (AMP-S) is metabolized to AMP and fumaric acid by the enzyme adenylosuccinate lyase (EC 4.3.2.2), a proton is released to the solvent as 3 H 2 O. This removal is believed to be stereospecifically identical to that catalyzed by the enzyme, L-aspartase, and therefore entails the loss of a proton from C-3 of the dicarboxylic acid moiety of the nucleotide. Advantage has been taken of this fact in the design of a facile assay for this enzyme. The assay permits the simultaneous estimation of the lyase activity in a large battery of samples; it is not interfered with by opalescent or proteinaceous suspensions; it is accurate and outstandingly sensitive. (Auth.)

  10. Endophilin-A1 BAR domain interaction with arachidonyl CoA.

    Science.gov (United States)

    Petoukhov, Maxim V; Weissenhorn, Winfried; Svergun, Dmitri I

    2014-01-01

    Endophilin-A1 belongs to the family of BAR domain containing proteins that catalyze membrane remodeling processes via sensing, inducing and stabilizing membrane curvature. We show that the BAR domain of endophilin-A1 binds arachidonic acid and molds its coenzyme A (CoA) activated form, arachidonyl-CoA into a defined structure. We studied low resolution structures of endophilin-A1-BAR and its complex with arachidonyl-CoA in solution using synchrotron small-angle X-ray scattering (SAXS). The free endophilin-A1-BAR domain is shown to be dimeric at lower concentrations but builds tetramers and higher order complexes with increasing concentrations. Extensive titration SAXS studies revealed that the BAR domain produces a homogenous complex with the lipid micelles. The structural model of the complexes revealed two arachidonyl-CoA micelles bound to the distal arms of an endophilin-A1-BAR dimer. Intriguingly, the radius of the bound micelles significantly decreases compared to that of the free micelles, and this structural result may provide hints on the potential biological relevance of the endophilin-A1-BAR interaction with arachidonyl CoA.

  11. Alfalfa contains substantial 9-hydroperoxide lyase activity and a 3Z:2E-enal isomerase

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Noordermeer, M.A.; Veldink, G.A.

    1999-01-01

    Fatty acid hydroperoxides formed by lipoxygenase can be cleaved by hydroperoxide lyase resulting in the formation of short-chain aldehydes and omega-oxo acids. Plant hydroperoxide lyases use 13- or 9-hydroperoxy linoleic and linolenic acid as substrates. Alfalfa (Medicago sativa L.) has been

  12. A Chemo-Enzymatic Road Map to the Synthesis of CoA Esters

    Directory of Open Access Journals (Sweden)

    Dominik M. Peter

    2016-04-01

    Full Text Available Coenzyme A (CoA is a ubiquitous cofactor present in every known organism. The thioesters of CoA are core intermediates in many metabolic processes, such as the citric acid cycle, fatty acid biosynthesis and secondary metabolism, including polyketide biosynthesis. Synthesis of CoA-thioesters is vital for the study of CoA-dependent enzymes and pathways, but also as standards for metabolomics studies. In this work we systematically tested five chemo-enzymatic methods for the synthesis of the three most abundant acyl-CoA thioester classes in biology; saturated acyl-CoAs, α,β-unsaturated acyl-CoAs (i.e., enoyl-CoA derivatives, and α-carboxylated acyl-CoAs (i.e., malonyl-CoA derivatives. Additionally we report on the substrate promiscuity of three newly described acyl-CoA dehydrogenases that allow the simple conversion of acyl-CoAs into enoyl-CoAs. With these five methods, we synthesized 26 different CoA-thioesters with a yield of 40% or higher. The CoA esters produced range from short- to long-chain, include branched and α,β-unsaturated representatives as well as other functional groups. Based on our results we provide a general guideline to the optimal synthesis method of a given CoA-thioester in respect to its functional group(s and the commercial availability of the precursor molecule. The proposed synthetic routes can be performed in small scale and do not require special chemical equipment, making them convenient also for biological laboratories.

  13. Activities of methionine-γ-lyase in the acidophilic archaeon “Ferroplasma acidarmanus” strain fer1

    Directory of Open Access Journals (Sweden)

    Khan MA

    2013-04-01

    Full Text Available M A Khan,1 Madeline M López-Muñoz,2 Charles W Kaspar,3 Kai F Hung1 1Department of Biological Sciences, Eastern Illinois University, Charleston, IL, USA; 2Department of Biology, Universidad de Puerto Rico, Mayaguez, Puerto Rico; 3Bacteriology Department, University of Wisconsin, Madison, WI, USA Abstract: Biogeochemical processes on exposed pyrite ores result in extremely high levels of sulfuric acid at these locations. Acidophiles that thrive in these conditions must overcome significant challenges, including an environment with proton concentrations at pH 3 or below. The role of sulfur metabolism in the archaeon “Ferroplasma acidarmanus” strain fer1's ability to thrive in this environment was investigated due to its growth-dependent production of methanethiol, a volatile organic sulfur compound. Two putative sequences for methionine-γ-lyase (EC 4.4.1.11, an enzyme known to carry out α, γ-elimination on L-methionine to produce methanethiol, were identified in fer1. Bioinformatic analyses identified a conserved pyridoxal-5'-phosphate (PLP binding domain and a partially conserved catalytic domain in both putative sequences. Detection of PLP-dependent and L-methionine-dependent production of α-keto compounds and thiol groups in fer1 confirmed the presence of methionine-γ-lyase activity. Further, fer1 lysate was capable of processing related substrates, including D-methionine, L-cysteine, L-cystathionine, and L/D-homocysteine. When the two putative fer1 methionine-γ-lyase gene-coded proteins were expressed in Escherichia coli cells, one sequence demonstrated an ability to carry out α, γ-elimination activity, while the other exhibited γ-replacement activity. These fer1 methionine-γ-lyases also exhibited optimum pH, substrate specificity, and catalytic preferences that are different from methionine-γ-lyases from other organisms. These differences are discussed in the context of molecular phylogeny constructed using a maximum

  14. Biotin augments acetyl CoA carboxylase 2 gene expression in the hypothalamus, leading to the suppression of food intake in mice.

    Science.gov (United States)

    Sone, Hideyuki; Kamiyama, Shin; Higuchi, Mutsumi; Fujino, Kaho; Kubo, Shizuka; Miyazawa, Masami; Shirato, Saya; Hiroi, Yuka; Shiozawa, Kota

    2016-07-29

    It is known that biotin prevents the development of diabetes by increasing the functions of pancreatic beta-cells and improving insulin sensitivity in the periphery. However, its anti-obesity effects such as anorectic effects remain to be clarified. Acetyl CoA carboxylase (ACC), a biotin-dependent enzyme, has two isoforms (ACC1 and ACC2) and serves to catalyze the reaction of acetyl CoA to malonyl CoA. In the hypothalamus, ACC2 increases the production of malonyl CoA, which acts as a satiety signal. In this study, we investigated whether biotin increases the gene expression of ACC2 in the hypothalamus and suppresses food intake in mice administered excessive biotin. Food intake was significantly decreased by biotin, but plasma regulators of appetite, including glucose, ghrelin, and leptin, were not affected. On the other hand, biotin notably accumulated in the hypothalamus and enhanced ACC2 gene expression there, but it did not change the gene expression of ACC1, malonyl CoA decarboxylase (a malonyl CoA-degrading enzyme), and AMP-activated protein kinase α-2 (an ACC-inhibitory enzyme). These findings strongly suggest that biotin potentiates the suppression of appetite by upregulating ACC2 gene expression in the hypothalamus. This effect of biotin may contribute to the prevention of diabetes by biotin treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Molecular cloning, purification, and characterization of a novel polyMG-specific alginate lyase responsible for alginate MG block degradation in Stenotrophomas maltophilia KJ-2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su In; Kim, Hee Sook [Kyungsung Univ., Busan (Korea, Republic of). Dept. of Food Science and Biotechnology; Choi, Sung Hee; Lee, Eun Yeol [Kyung Hee Univ., Gyeonggi-do (Korea, Republic of). Dept. of Chemical Engineering

    2012-09-15

    A gene for a polyMG-specific alginate lyase possessing a novel structure was identified and cloned from Stenotrophomas maltophilia KJ-2 by using PCR with homologous nucleotide sequences-based primers. The recombinant alginate lyase consisting of 475 amino acids was purified on Ni-Sepharose column and exhibited the highest activity at pH 8 and 40 C. Interestingly, the recombinant alginate lyase was expected to have a similar catalytic active site of chondroitin B lyase but did not show chondroitin lyase activity. In the test of substrate specificity, the recombinant alginate lyase preferentially degraded the glycosidic bond of polyMG-block than polyM-block and polyG-block. The chemical structures of the degraded alginate oligosaccharides were elucidated to have mannuronate (M) at the reducing end on the basis of NMR analysis, supporting that KJ-2 polyMG-specific alginate lyase preferably degraded the glycosidic bond in M-G linkage than that in G-M linkage. The KJ-2 polyMG-specific alginate lyase can be used in combination with other alginate lyases for a synergistic saccharification of alginate. (orig.)

  16. Selective Screening for Organic Acidurias and Amino Acidopathies in Pakistani Children

    International Nuclear Information System (INIS)

    Sherazi, N. A.; Khan, A. H.; Jafri, L.; Jamil, A.; Khan, N. A.; Afroze, B.

    2017-01-01

    Objective: To determine the frequency of organic acidurais (OA) and amino acidopathies (AA) in selected high-risk patients screened in two years. Study Design: Retrospective Observational study. Place and Duration of Study: The Aga Khan University Hospital (AKUH), Karachi, from January 2013 to December 2014. Methodology: Patients with OA and AA were included in the study and patients with IMDs other than OA and AA were excluded. Amino acids and organic acids were analyzed on high performance liquid chromatography and gas chromatography-mass spectrometry respectively. Clinical data and chromatograms of patients screened for IMDs were reviewed by chemical pathologist and metabolic physician. Results: Eighty-eight cases (4.7 percent) were diagnosed including 41 OA (46.5 percent), 28 AA (31.8 percent) and 19 others (21.5 percent) from 1,866 specimens analyzed. Median age of the patients was 1.1 years, with high consanguinity rate (64.8 percent). Among OA, methyl CoA mutase deficiency was diagnosed in 9 (10.2 percent) and was suspected in 2 (2.3 percent) cases. Five (5.7 percent) cases of MHBD (2-methyl-3-hydroxybutyryl-CoA), 4 (4.5 percent) each of PPA (propionic aciduria) and HMG-CoA lyase deficiency, 3 (3.4 percent) cases each of IVA (isovaleric aciduria), multiple carboxylase deficiency, fructose-1, 6-biphosphatase deficiency, fumarase deficiency, GA-1 (glutaric aciduria type 1) and 2 (2.3 percent) cases of EMA (ethyl-malonic aciduria). AA included 8 (9.1 percent) cases of MSUD (maple syrup urine disease), 6 (6.8 percent) cases of CBS (cystathionine beta-synthetase) and UCDs (urea cycle disorders) each, 5 (5.7 percent) cases of hyperphenylalaninemia and 3 (3.4 percent) cases of hyperprolinemia were reported. Other inherited metabolic disorders included: 9 (10.2 percent) cases of intracellular cobalamin defects, 2 (2.3 percent) cases each of alkaptonuria, Canavan's disease, SUCL (succinate CoA ligase) deficiency, and 1 (1.1 percent) case each of DPD

  17. Sequence analysis and overexpression of a pectin lyase gene (pel1) from Aspergillus oryzae KBN616.

    Science.gov (United States)

    Kitamoto, N; Yoshino-Yasuda, S; Ohmiya, K; Tsukagoshi, N

    2001-01-01

    A gene (pel1) encoding pectin lyase (Pel1) was isolated from a shoyu koji mold, Aspergillus oryzae KBN616, and characterized. The structural gene comprised 1,196 bp with a single intron. The ORF encoded 381 amino acids with a signal peptide of 20 amino acids. The deduced amino acid sequence showed high similarity to those of Aspergillus niger pectin lyases and Glomerella cingulata PnlA. The pel1 gene was successfully overexpressed under the promoter of the A. oryzae TEF1 gene. The molecular mass of the recombinant pectin lyase substantially coincided with that calculated based on nucleotide sequence.

  18. Structure-based functional annotation of putative conserved proteins having lyase activity from Haemophilus influenzae.

    Science.gov (United States)

    Shahbaaz, Mohd; Ahmad, Faizan; Imtaiyaz Hassan, Md

    2015-06-01

    Haemophilus influenzae is a small pleomorphic Gram-negative bacteria which causes several chronic diseases, including bacteremia, meningitis, cellulitis, epiglottitis, septic arthritis, pneumonia, and empyema. Here we extensively analyzed the sequenced genome of H. influenzae strain Rd KW20 using protein family databases, protein structure prediction, pathways and genome context methods to assign a precise function to proteins whose functions are unknown. These proteins are termed as hypothetical proteins (HPs), for which no experimental information is available. Function prediction of these proteins would surely be supportive to precisely understand the biochemical pathways and mechanism of pathogenesis of Haemophilus influenzae. During the extensive analysis of H. influenzae genome, we found the presence of eight HPs showing lyase activity. Subsequently, we modeled and analyzed three-dimensional structure of all these HPs to determine their functions more precisely. We found these HPs possess cystathionine-β-synthase, cyclase, carboxymuconolactone decarboxylase, pseudouridine synthase A and C, D-tagatose-1,6-bisphosphate aldolase and aminodeoxychorismate lyase-like features, indicating their corresponding functions in the H. influenzae. Lyases are actively involved in the regulation of biosynthesis of various hormones, metabolic pathways, signal transduction, and DNA repair. Lyases are also considered as a key player for various biological processes. These enzymes are critically essential for the survival and pathogenesis of H. influenzae and, therefore, these enzymes may be considered as a potential target for structure-based rational drug design. Our structure-function relationship analysis will be useful to search and design potential lead molecules based on the structure of these lyases, for drug design and discovery.

  19. Biochemical characterization of recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) from Leucaena leucocephala.

    Science.gov (United States)

    Sonawane, Prashant; Vishwakarma, Rishi Kishore; Khan, Bashir M

    2013-07-01

    Recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) protein from Leucaena leucocephala was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Optimum pH for forward and reverse reaction was found to be 6.5 and 7.8 respectively. The enzyme was most stable around pH 6.5 at 25°C for 90 min. The enzyme showed Kcat/Km for feruloyl, caffeoyl, sinapoyl, coumaroyl CoA, coniferaldehyde and sinapaldehyde as 4.6, 2.4, 2.3, 1.7, 1.9 and 1.2 (×10(6) M(-1) s(-1)), respectively, indicating affinity of enzyme for feruloyl CoA over other substrates and preference of reduction reaction over oxidation. Activation energy, Ea for various substrates was found to be in the range of 20-50 kJ/mol. Involvement of probable carboxylate ion, histidine, lysine or tyrosine at the active site of enzyme was predicted by pH activity profile. SAXS studies of protein showed radius 3.04 nm and volume 49.25 nm(3) with oblate ellipsoid shape. Finally, metal ion inhibition studies revealed that Ll-CCRH1 is a metal independent enzyme. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Cloning and study of the pectate lyase gene of Erwinia carotovora

    International Nuclear Information System (INIS)

    Bukanov, N.O.; Fonshtein, M.Yu.; Evtushenkov, A.N.; Syarinskii, M.A.; Strel'chenko, P.P.; Yankovski, N.K.; Alikhanyan, S.I.; Fomichev, Yu.K.; Debabov, V.G.

    1986-01-01

    The cloning of the gene of a secretable protein of Erwinia carotovora, pectate lyase, in Escherichia coli was described. Primary cloning was conducted using the phage vector λ 47.1. In the gene library of E. carotovora obtained, eight phages carrying the gene sought were identified according to the appearance of enzymatic activity of the gene product, pectate lyase, in situ. The BamHI fragment of DNA, common to all these phages, was recloned on the plasmid pUC19. It was shown that the cloned pectate lyase gene is represented on the E. carotovora chromosome in one copy. Methods of production of representative gene libraries on phage vectors from no less than 1 μg of cloned DNA even for the genomes of eukaryotes have now been developed. Vectors have been created, for example, λ 47.1, permitting the selection only of hybrid molecules. A number of methods have been developed for the search for a required gene in the library, depending on whether the cloned gene can be expressed or not, and if it can, what properties it will impart to the hybrid clone containing it

  1. Molecular analysis of human argininosuccinate lyase: Mutant characterization and alternative splicing of the coding region

    International Nuclear Information System (INIS)

    Walker, D.C.; McCloskey, D.A.; Simard, L.R.; McInnes, R.R.

    1990-01-01

    Argininosuccinic acid lyase (ASAL) deficiency is a clinically heterogeneous autosomal recessive urea cycle disorder. The authors previously established by complementation analysis that 29 ASAL-deficient patients have heterogeneous mutations in a single gene. To prove that the ASAL structural gene is the affected locus, they sequenced polymerase chain reaction-amplified ASAL cDNA of a representative mutant from the single complementation group. Fibroblast strain 944 from a late-onset patient who was the product of a consanguineous mating, had only a single base-pair change in the coding region, a C-283→ T transition at a CpG dinucleotide in exon 3. This substitution converts Arg-95 to Cys (R95C), occurs in a stretch of 13 residues that is identical in yeast and human ASAL, and was present in both of the patient's alleles but not in 14 other mutant or 10 normal alleles. They observed that amplified cDNA from mutant 944 and normal cells (liver, keratinocytes, lymphoblasts, and fibroblasts) contained, in addition to the expected 5' 513-base-pair band, a prominent 318-base-pair ASAL band formed by the splicing of exon 2 from the transcript. The short transcript maintains the ASAL reading frame but removes Lys-51, a residue that may be essential for catalysis, since it binds the argininosuccinate substrate. They conclude (i) that the identification of the R95C mutation in strain 944 demonstrates that virtually all ASAL deficiency results from defects in the ASAL structural gene and (ii) that minor alternative splicing of the coding region occurs at the ASAL locus

  2. Flexible DAQ card for detector systems utilizing the CoaXPress communication standard

    International Nuclear Information System (INIS)

    Neue, G.; Hejtmánek, M.; Marčišovský, M.; Voleš, P.

    2015-01-01

    This work concerns the design and construction of a flexible FPGA based data acquisition system aimed for particle detectors. The interface card as presented was designed for large area detectors with millions of individual readout channels. Flexibility was achieved by partitioning the design into multiple PCBs, creating a set of modular blocks, allowing the creation of a wide variety of configurations by simply stacking functional PCBs together. This way the user can easily toggle the polarity of the high voltage bias supply or switch the downstream interface from CoaXPress to PCIe or stream directly HDMI. We addressed the issues of data throughput, data buffering, bias voltage generation, trigger timing and fine tuning of the whole readout chain enabling a smooth data transmission. On the current prototype, we have wire-bonded a MediPix2 MXR quad and connected it to a XILINX FPGA. For the downstream interface, we implemented the CoaXPress communication protocol, which enables us to stream data at 3.125 Gbps to a standard PC

  3. Ammonia lyases and aminomutases as biocatalysts for the synthesis of α-amino and β-amino acids.

    Science.gov (United States)

    Turner, Nicholas J

    2011-04-01

    Ammonia lyases catalyse the reversible addition of ammonia to cinnamic acid (1: R=H) and p-hydroxycinnamic (1: R=OH) to generate L-phenylalanine (2: R=H) and L-tyrosine (2: R=OH) respectively (Figure 1a). Both phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) are widely distributed in plants, fungi and prokaryotes. Recently there has been interest in the use of these enzymes for the synthesis of a broader range of L-arylalanines. Aminomutases catalyse a related reaction, namely the interconversion of α-amino acids to β-amino acids (Figure 1b). In the case of L-phenylalanine, this reaction is catalysed by phenylalanine aminomutase (PAM) and proceeds stereospecifically via the intermediate cinnamic acid to generate β-Phe 3. Ammonia lyases and aminomutases are related in sequence and structure and share the same active site cofactor 4-methylideneimidazole-5-one (MIO). There is currently interest in the possibility of using these biocatalysts to prepare a wide range of enantiomerically pure l-configured α-amino and β-amino acids. Recent reviews have focused on the mechanism of these MIO containing enzymes. The aim of this review is to review recent progress in the application of ammonia lyase and aminomutase enzymes to prepare enantiomerically pure α-amino and β-amino acids. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Kinetic and thermodynamic properties of alginate lyase and cellulase co-produced by Exiguobacterium species Alg-S5.

    Science.gov (United States)

    Mohapatra, Bidyut R

    2017-05-01

    In an effort to screen out the alginolytic and cellulolytic bacteria from the putrefying invasive seaweed Sargassum species accumulated off Barbados' coast, a potent bacterial strain was isolated. This bacterium, which simultaneously produced alginate lyase and cellulase, was identified as Exiguobacterium sp. Alg-S5 via the phylogenetic approach targeting the 16S rRNA gene. The co-produced alginate lyase and cellulase exhibited maximal enzymatic activity at pH 7.5 and at 40°C and 45°C, respectively. The K m and V max values recorded as 0.91mg/mL and 21.8U/mg-protein, respectively, for alginate lyase, and 10.9mg/mL and 74.6U/mg-protein, respectively, for cellulase. First order kinetic analysis of the thermal denaturation of the co-produced alginate lyase and cellulase in the temperature range from 40°C to 55°C revealed that both the enzymes were thermodynamically efficient by displaying higher activation energy and enthalpy of denaturation. These enzymatic properties indicate the potential industrial importance of this bacterium in algal biomass conversion. This appears to be the first report on assessing the efficacy of a bacterium for the co-production of alginate lyase and cellulase. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Crystal structure and characterization of a novel L-serine ammonia-lyase from Rhizomucor miehei

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhen [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China); Yan, Qiaojuan [College of Engineering, China Agricultural University, Beijing 100083 (China); Ma, Qingjun [Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Jiang, Zhengqiang, E-mail: zhqjiang@cau.edu.cn [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China)

    2015-10-23

    L-serine ammonia-lyase, as a member of the β-family of pyridoxal-5′-phosphate (PLP) dependent enzymes, catalyzes the conversion of L-serine (L-threonine) to pyruvate (α-ketobutyrate) and ammonia. The crystal structure of L-serine ammonia-lyase from Rhizomucor miehei (RmSDH) was solved at 1.76 Å resolution by X-ray diffraction method. The overall structure of RmSDH had the characteristic β-family PLP dependent enzyme fold. It consisted of two distinct domains, both of which show the typical open twisted α/β structure. A PLP cofactor was located in the crevice between the two domains, which was attached to Lys52 by a Schiff-base linkage. Unique residue substitutions (Gly78, Pro79, Ser146, Ser147 and Thr312) were discovered at the catalytic site of RmSDH by comparison of structures of RmSDH and other reported eukaryotic L-serine ammonia-lyases. Optimal pH and temperature of the purified RmSDH were 7.5 and 40 °C, respectively. It was stable in the pH range of 7.0–9.0 and at temperatures below 40 °C. This is the first crystal structure of a fungal L-serine ammonia-lyase. It will be useful to study the catalytic mechanism of β-elimination enzymes and will provide a basis for further enzyme engineering. - Highlights: • The crystal structure of a fungal L-serine ammonia-lyase (RmSDH) was solved. • Five unique residue substitutions are found at the catalytic site of RmSDH. • RmSDH was expressed in Pichia. pastoris and biochemically characterized. • RmSDH has potential application in splitting D/L-serine.

  6. Cystathionine .gamma.-lyase: Clinical, metabolic, genetic, and structural studies

    Czech Academy of Sciences Publication Activity Database

    Kraus, J. P.; Hašek, Jindřich; Kožich, V.; Collard, R.; Venezia, S.; Janošíková, B.; Wang, J.; Stabler, S. P.; Allen, R. H.; Jakobs, C.; Finn, C. T.; Chien, Y. H.; Hwu, W. L.; Hegele, R. A.; Mudd, S. H.

    2009-01-01

    Roč. 97, č. 4 (2009), s. 250-259 ISSN 1096-7192 R&D Projects: GA ČR GA305/07/1073 Institutional research plan: CEZ:AV0Z40500505 Keywords : cystathionine gamma-lyase * cystathioninuria * hypercystathioninemia Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.897, year: 2009

  7. Phenylalanine ammonia-lyase (PAL) gene activity in response to ...

    African Journals Online (AJOL)

    Phenylalanine ammonia-lyase (PAL) catalyzes the biosynthesis of rosmarinic acid (RA), tyrosine and phenylalanine are the precursors of RA, while proline drives metabolite precursors toward Shikimate and phenylpropanoid pathway ending with the production of RA. The aim of this study was to investigate the PAL gene ...

  8. Processes for the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity. More particularly, the present invention pertains to polypeptides having tyrosine ammonia lyase activity and high...... substrate specificity towards tyrosine, which makes them particularly suitable in the production of p-coumaric acid and other hydroxycinnamic acids. The present invention thus provides processes for the production of p-coumaric acid and other hydroxycinnamic acids employing these polypeptides as well...

  9. Characterization of C-S lyase from Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 and its potential role in food flavour applications.

    Science.gov (United States)

    Allegrini, Alessandra; Astegno, Alessandra; La Verde, Valentina; Dominici, Paola

    2017-04-01

    Volatile thiols have substantial impact on the aroma of many beverages and foods. Thus, the control of their formation, which has been linked to C-S lyase enzymatic activities, is of great significance in industrial applications involving food flavours. Herein, we have carried out a spectroscopic and functional characterization of a putative pyridoxal 5'-phosphate (PLP)-dependent C-S lyase from the lactic acid bacterium Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 (LDB C-S lyase). Recombinant LDB C-S lyase exists as a tetramer in solution and shows spectral properties of enzymes containing PLP as cofactor. The enzyme has a broad substrate specificity toward sulphur-containing amino acids with aminoethyl-L-cysteine and L-cystine being the most effective substrates over L-cysteine and L-cystathionine. Notably, the protein also reveals cysteine-S-conjugate β-lyase activity in vitro, and is able to cleave a cysteinylated substrate precursor into the corresponding flavour-contributing thiol, with a catalytic efficiency higher than L-cystathionine. Contrary to similar enzymes of other lactic acid bacteria however, LDB C-S lyase is not capable of α,γ-elimination activity towards L-methionine to produce methanethiol, which is a significant compound in flavour development. Based on our results, future developments can be expected regarding the flavour-forming potential of Lactobacillus C-S lyase and its use in enhancing food flavours. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  10. Kinetic properties and inhibition of Trypanosoma cruzi 3-hydroxy-3-methylglutaryl CoA reductase

    DEFF Research Database (Denmark)

    Hurtado-Guerrrero, Ramón; Pena Diaz, Javier; Montalvetti, Andrea

    2002-01-01

    A detailed kinetic analysis of the recombinant soluble enzyme 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) from Trypanosoma cruzi has been performed. The enzyme catalyzes the normal anabolic reaction and the reductant is NADPH. It also catalyzes the oxidation of mevalonate but at a lower propo...

  11. Novel Pectate Lyase Genes of Heterodera glycines Play Key Roles in the Early Stage of Parasitism.

    Directory of Open Access Journals (Sweden)

    Huan Peng

    Full Text Available Pectate lyases are known to play a key role in pectin degradation by catalyzing the random cleavage of internal polymer linkages (endo-pectinases. In this paper, four novel cDNAs, designated Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7, that encode pectate lyases were cloned and characterized from the soybean cyst nematode, Heterodera glycines. The predicted protein sequences of HG-PEL-3, HG-PEL-4 and HG-PEL-6 differed significantly in both their amino acid sequences and their genomic structures from other pectate lyases of H. glycines (HG-PEL-1, HG-PEL-2 and HG-PEL-7. A phylogenetic study revealed that the pectate lyase proteins of H. glycines are clustered into distinct clades and have distinct numbers and positioning of introns, which suggests that the pectate lyase genes of H. glycines may have evolved from at least two ancestral genes. A Southern blot analysis revealed that multiple Hg-pel-6-like genes were present in the H. glycines genome. In situ hybridization showed that four novel pectate lyases (Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7 were actively transcribed in the subventral esophageal gland cells. A semi-quantitative RT-PCR assay supported the finding that the expression of these genes was strong in the egg, pre-parasitic second-stage juvenile (J2 and early parasitic J2 stages and that it declined in further developmental stages of the nematode. This expression pattern suggests that these proteins play a role in the migratory phase of the nematode life cycle. Knocking down Hg-pel-6 using in vitro RNA interference resulted in a 46.9% reduction of the number of nematodes that invaded the plants and a 61.5% suppression of the development of H. glycines females within roots compared to the GFP-dsRNA control. Plant host-derived RNAi induced the silencing of the Hg-pel-6gene, which significantly reduced the nematode infection levels at 7 Days post inoculation (dpi. Similarly, this procedure reduced the number of female adults at 40 dpi

  12. Priming ammonia lyases and aminomutases for industrial and therapeutic applications

    NARCIS (Netherlands)

    Heberling, Matthew M.; Wu, Bian; Bartsch, Sebastian; Janssen, Dick B.

    Ammonia lyases (AL) and aminomutases (AM) are emerging in green synthetic routes to chiral amines and an AL is being explored as an enzyme therapeutic for treating phenylketonuria and cancer. Although the restricted substrate range of the wild-type enzymes limits their widespread application, the

  13. One-step purification and characterization of alginate lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial biofilm

    Directory of Open Access Journals (Sweden)

    Parinaz Ghadam

    2017-05-01

    Full Text Available Objective(s: Pseudomonas aeruginosais a Gram-negative and aerobic rod bacterium that displays mucoid and non-mucoid phenotype. Mucoid strains secrete alginate, which is the main agent of biofilms in chronic P. aeruginosa infections, show high resistance to antibiotics; consequently, the biological disruption of mucoid P. aeruginosa biofilms is an attractive area of study for researchers. Alginate lyase gene (algl is a member of alginate producing operon which by glycosidase activity produces primer for other enzymes in this cluster. Also this activity can destroy the extracellular alginate; therefore this enzyme participates in alginate production and destruction pathway. Alginate lyase causes detachment of a biofilm by reducing its adhesion to the surfaces, and increases phagocytosis and antibiotic susceptibility. In this study, alginate lyase was purified in just one step and its properties were investigated. Materials and Methods: The purification was done by affinity chromatography, analysed by SDS-PAGE, and its effect on P. aeruginosa biofilms was surveyed by micro titer plate assay and SEM. The substrate specificity of the enzyme was determined by PCR. Results: Alginate lyase from isolate 48 was purified in one step. It is more thermally resistant than alginate lyase from Pseudomonas aeruginosa PAO1 and poly M, poly G and poly MG alginate were the substrate of this enzyme. Moreover, it has an eradication effect on biofilms from P. aeruginosa 48 and PAO1. Conclusion: In this study an alginate lyase with many characteristics suitable in medicine such as thermal stability, effective on poly M alginate, and bacterial biofilm destructive was introduced and purified.

  14. Correlation between the cystathionine-r-lyase (CES) and the ...

    African Journals Online (AJOL)

    Background: The infection of Helicobacter pylori (H. pylori) is one of the most important causes of gastric ulcer disease. The role of hydrogen sulfide (H2S) production in H. pylori-induced gastric ulcer disease. Aim: The expression of cystathionine-γ-lyase (CSE) was determined, and correlated with the severity of gastric ulcer ...

  15. Isolated Poly(3-Hydroxybutyrate) (PHB) Granules Are Complex Bacterial Organelles Catalyzing Formation of PHB from Acetyl Coenzyme A (CoA) and Degradation of PHB to Acetyl-CoA▿

    OpenAIRE

    Uchino, Keiichi; Saito, Terumi; Gebauer, Birgit; Jendrossek, Dieter

    2007-01-01

    Poly(3-hydroxybutyrate) (PHB) granules isolated in native form (nPHB granules) from Ralstonia eutropha catalyzed formation of PHB from 14C-labeled acetyl coenzyme A (CoA) in the presence of NADPH and concomitantly released CoA, revealing that PHB biosynthetic proteins (acetoacetyl-CoA thiolase, acetoacetyl-CoA reductase, and PHB synthase) are present and active in isolated nPHB granules in vitro. nPHB granules also catalyzed thiolytic cleavage of PHB in the presence of added CoA, resulting in...

  16. Insulin signaling regulates fatty acid catabolism at the level of CoA activation.

    Directory of Open Access Journals (Sweden)

    Xiaojun Xu

    2012-01-01

    Full Text Available The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS. We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis.

  17. Characterization of the N-linked glycosylation site of recombinant pectate lyase

    NARCIS (Netherlands)

    Colangelo, J.; Licon, V.; Benen, J.A.E.; Visser, J.; Bergmann, C.; Orlando, R.

    1999-01-01

    Recombinant pectate lyase from Aspergillus niger was overexpressed in Aspergillus nidulans. The two recombinant proteins produced differed in molecular mass by 1200 Da, which suggested that the larger molecular weight protein was glycosylated. The deduced amino acid sequence was searched for

  18. Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal β-Oxidation of Unsaturated Fatty Acids

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Tian; Wu, Dong; Ding, Wei; Wang, Jiangyun; Shaw, Neil; Liu, Zhi-Jie [Nankai; (Chinese Aca. Sci.)

    2012-10-15

    Peroxisomes play an essential role in maintaining fatty acid homeostasis. Although mitochondria are also known to participate in the catabolism of fatty acids via β-oxidation, differences exist between the peroxisomal and mitochondrial β-oxidation. Only peroxisomes, but not mitochondrion, can shorten very long chain fatty acids. Here, we describe the crystal structure of a ternary complex of peroxisomal 2,4-dienoyl CoA reductases (pDCR) with hexadienoyl CoA and NADP, as a prototype for comparison with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two organelles at the molecular level. Unexpectedly, the structure of pDCR refined to 1.84 Å resolution reveals the absence of the tyrosine-serine pair seen in the active site of mDCR, which together with a lysine and an asparagine have been deemed a hallmark of the SDR family of enzymes. Instead, aspartate hydrogen-bonded to the Cα hydroxyl via a water molecule seems to perturb the water molecule for protonation of the substrate. Our studies provide the first structural evidence for participation of water in the DCR-catalyzed reactions. Biochemical studies and structural analysis suggest that pDCRs can catalyze the shortening of six-carbon-long substrates in vitro. However, the Km values of pDCR for short chain acyl CoAs are at least 6-fold higher than those for substrates with 10 or more aliphatic carbons. Unlike mDCR, hinge movements permit pDCR to process very long chain polyunsaturated fatty acids.

  19. Biochemical, Kinetic, and Spectroscopic Characterization of Ruegeria pomeroyi DddW--A Mononuclear Iron-Dependent DMSP Lyase.

    Directory of Open Access Journals (Sweden)

    Adam E Brummett

    Full Text Available The osmolyte dimethylsulfoniopropionate (DMSP is a key nutrient in marine environments and its catabolism by bacteria through enzymes known as DMSP lyases generates dimethylsulfide (DMS, a gas of importance in climate regulation, the sulfur cycle, and signaling to higher organisms. Despite the environmental significance of DMSP lyases, little is known about how they function at the mechanistic level. In this study we biochemically characterize DddW, a DMSP lyase from the model roseobacter Ruegeria pomeroyi DSS-3. DddW is a 16.9 kDa enzyme that contains a C-terminal cupin domain and liberates acrylate, a proton, and DMS from the DMSP substrate. Our studies show that as-purified DddW is a metalloenzyme, like the DddQ and DddP DMSP lyases, but contains an iron cofactor. The metal cofactor is essential for DddW DMSP lyase activity since addition of the metal chelator EDTA abolishes its enzymatic activity, as do substitution mutations of key metal-binding residues in the cupin motif (His81, His83, Glu87, and His121. Measurements of metal binding affinity and catalytic activity indicate that Fe(II is most likely the preferred catalytic metal ion with a nanomolar binding affinity. Stoichiometry studies suggest DddW requires one Fe(II per monomer. Electronic absorption and electron paramagnetic resonance (EPR studies show an interaction between NO and Fe(II-DddW, with NO binding to the EPR silent Fe(II site giving rise to an EPR active species (g = 4.29, 3.95, 2.00. The change in the rhombicity of the EPR signal is observed in the presence of DMSP, indicating that substrate binds to the iron site without displacing bound NO. This work provides insight into the mechanism of DMSP cleavage catalyzed by DddW.

  20. S1P Lyase Regulation of Thymic Egress and Oncogenic Inflammatory Signaling

    Science.gov (United States)

    Kumar, Ashok; Zamora-Pineda, Jesus; Degagné, Emilie

    2017-01-01

    Sphingosine-1-phosphate (S1P) is a potent lipid signaling molecule that regulates pleiotropic biological functions including cell migration, survival, angiogenesis, immune cell trafficking, inflammation, and carcinogenesis. It acts as a ligand for a family of cell surface receptors. S1P concentrations are high in blood and lymph but low in tissues, especially the thymus and lymphoid organs. S1P chemotactic gradients are essential for lymphocyte egress and other aspects of physiological cell trafficking. S1P is irreversibly degraded by S1P lyase (SPL). SPL regulates lymphocyte trafficking, inflammation and other physiological and pathological processes. For example, SPL located in thymic dendritic cells acts as a metabolic gatekeeper that controls the normal egress of mature T lymphocytes from the thymus into the circulation, whereas SPL deficiency in gut epithelial cells promotes colitis and colitis-associated carcinogenesis (CAC). Recently, we identified a complex syndrome comprised of nephrosis, adrenal insufficiency, and immunological defects caused by inherited mutations in human SGPL1, the gene encoding SPL. In the present article, we review current evidence supporting the role of SPL in thymic egress, inflammation, and cancer. Lastly, we summarize recent progress in understanding other SPL functions, its role in inherited disease, and SPL targeting for therapeutic purposes. PMID:29333002

  1. S1P Lyase Regulation of Thymic Egress and Oncogenic Inflammatory Signaling

    Directory of Open Access Journals (Sweden)

    Ashok Kumar

    2017-01-01

    Full Text Available Sphingosine-1-phosphate (S1P is a potent lipid signaling molecule that regulates pleiotropic biological functions including cell migration, survival, angiogenesis, immune cell trafficking, inflammation, and carcinogenesis. It acts as a ligand for a family of cell surface receptors. S1P concentrations are high in blood and lymph but low in tissues, especially the thymus and lymphoid organs. S1P chemotactic gradients are essential for lymphocyte egress and other aspects of physiological cell trafficking. S1P is irreversibly degraded by S1P lyase (SPL. SPL regulates lymphocyte trafficking, inflammation and other physiological and pathological processes. For example, SPL located in thymic dendritic cells acts as a metabolic gatekeeper that controls the normal egress of mature T lymphocytes from the thymus into the circulation, whereas SPL deficiency in gut epithelial cells promotes colitis and colitis-associated carcinogenesis (CAC. Recently, we identified a complex syndrome comprised of nephrosis, adrenal insufficiency, and immunological defects caused by inherited mutations in human SGPL1, the gene encoding SPL. In the present article, we review current evidence supporting the role of SPL in thymic egress, inflammation, and cancer. Lastly, we summarize recent progress in understanding other SPL functions, its role in inherited disease, and SPL targeting for therapeutic purposes.

  2. Probing the structure of glucan lyases – the lytic members of GH31 - by sequence analysis, circular dichroism and proteolysis

    DEFF Research Database (Denmark)

    Ernst, Heidi; Lo Leggio, Leila; Yu, Shukun

    2005-01-01

    Glucan lyase (GL) is a polysaccharide lyase with unique characteristics. It is involved in an alternative pathway for the degradation of alpha-glucans, the anhydrofructose pathway. Sequence similarity suggests that this lytic enzyme belongs to glycoside hydrolase family 31, for which until very r...

  3. Urease Inhibitor Drug Treatment for Urea Cycle Disorders

    Science.gov (United States)

    2016-08-23

    Ornithine Transcarbamylase Deficiency; Argininosuccinate Synthetase Deficiency (Citrullinemia); Argininosuccinic Acid Lyase Deficiency (Argininosuccinic Aciduria); Carbamyl-Phosphate Synthase I Deficiency

  4. [3-hydroxy-3-methylglutaric aciduria and recurrent Reye-like syndrome].

    Science.gov (United States)

    Eirís, J; Ribes, A; Fernández-Prieto, R; Rodríguez-García, J; Rodríguez-Segade, S; Castro-Gago, M

    1998-06-01

    3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMG-CoA lyase) is an inborn error of ketogenesis and Leucine catabolism. HMG-CoA lyase catalyses the final step in leucine degradation, converting HMG-CoA to acetyl-CoA and acetoacetic acid. Clinical manifestations include hepatomegaly, lethargy or coma and apnoea. Biochemically there is a characteristic absence of ketosis with hypoglycemia, acidosis, hipertransaminasemia and variable hyperammoniemia. The urinary organic acid profile includes elevated concentrations of 3-hydroxy-3-isovaleric, 3-hydroxy-3-methylglutaric, 3-methylglutaconic and 3-methylglutaric acids. Here, we report the case of a 17-year-old girl who presented in both ten months and five years of age a clinical picture characterized by lethargy leading to apnea and coma, hepatomegaly, hypoglycemia, metabolic acidosis, hyperammoniemia, elevated serum transaminases and absence of ketonuria. Diagnostic of Reye syndrome was suggested by hystopathologic finding of hepatic steatosis and clinical and biochemical data. As of 11 years old, laboratory investigations revealed carnitine deficiency and characteristic aciduria. Confirmatory enzyme diagnosis revealing deficiency of HMG-CoA lyase was made in cultured fibroblasts. Our report constitutes an example of the presentation of HMG-CoA lyase deficiency as recurrent Reye-like syndrome.

  5. Microbial β-etherases and glutathione lyases for lignin valorisation in biorefineries: current state and future perspectives.

    Science.gov (United States)

    Husarcíková, Jana; Voß, Hauke; Domínguez de María, Pablo; Schallmey, Anett

    2018-05-04

    Lignin is the major aromatic biopolymer in nature, and it is considered a valuable feedstock for the future supply of aromatics. Hence, its valorisation in biorefineries is of high importance, and various chemical and enzymatic approaches for lignin depolymerisation have been reported. Among the enzymes known to act on lignin, β-etherases offer the possibility for a selective cleavage of the β-O-4 aryl ether bonds present in lignin. These enzymes, together with glutathione lyases, catalyse a reductive, glutathione-dependent ether bond cleavage displaying high stereospecificity. β-Etherases and glutathione lyases both belong to the superfamily of glutathione transferases, and several structures have been solved recently. Additionally, different approaches for their application in lignin valorisation have been reported in the last years. This review gives an overview on the current knowledge on β-etherases and glutathione lyases, their biochemical and structural features, and critically discusses their potential for application in biorefineries.

  6. Highly Active and Specific Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jendresen, Christian Bille; Stahlhut, Steen Gustav; Li, Mingji

    2015-01-01

    Phenylalanine and tyrosine ammonia-lyases form cinnamic acid and p-coumaric acid, which are precursors of a wide range of aromatic compounds of biotechnological interest. Lack of highly active and specific tyrosine ammonia-lyases has previously been a limitation in metabolic engineering approaches...

  7. Pectinolytic bacteria and their secreted pectate lyases: agents for the maceration and solubilization of phytomass for fuels production

    Energy Technology Data Exchange (ETDEWEB)

    Preston, J.F. III; Rice, J.D.; Chow, M.C. (Florida Univ., Gainesville, FL (United States). Dept. of Microbiology and Cell Science)

    1993-01-01

    The objectives of this research have been to identify the pectinolytic enzymes secreted by bacteria and apply these towards the enhanced maceration and solubilization of plant material, focusing on the pectate lyases secreted by the phytopathogenic strains of Erwinia chrysanthemi, the ruminant resident Lachnospira multiparus, and the wood digestor isolate, Clostridium populeti. An HPLC approach has been developed that permits the kinetic analysis of each enzyme with respect to the formation of individual products during the pectate depolymerization process. This approach has demonstrated that each of these organisms secretes a nonrandom trimer-generating pectate lyase with a combination of endolytic and exolytic depolymerizing mechanisms. Two different strains of E. chrysanthemi secrete a battery of pectate lyases that include random endolytic as well as nonrandom dimer - and nonrandom trimer-generating endolytic/exolytic mechanisms. (author)

  8. Catalytic Mechanisms and Biocatalytic Applications of Aspartate and Methylaspartate Ammonia Lyases

    NARCIS (Netherlands)

    de Villiers, Marianne; Veetil, Vinod Puthan; Raj, Hans; de Villiers, Jandre; Poelarends, Gerrit J.

    2012-01-01

    Ammonia lyases catalyze the formation of alpha-beta-unsaturated bonds by the elimination of ammonia from their substrates. This conceptually straightforward reaction has been the emphasis of many studies, with the main focus on the catalytic mechanism of these enzymes and/or the use of these enzymes

  9. Mutations in COA3 cause isolated complex IV deficiency associated with neuropathy, exercise intolerance, obesity, and short stature

    DEFF Research Database (Denmark)

    Ostergaard, Elsebet; Weraarpachai, Woranontee; Ravn, Kirstine Johanne Theresia

    2015-01-01

    BACKGROUND: We investigated a subject with an isolated cytochrome c oxidase (COX) deficiency presenting with an unusual phenotype characterised by neuropathy, exercise intolerance, obesity, and short stature. METHODS AND RESULTS: Blue-native polyacrylamide gel electrophoresis (BN-PAGE) analysis s...

  10. S1P lyase in thymic perivascular spaces promotes egress of mature thymocytes via up-regulation of S1P receptor 1.

    Science.gov (United States)

    Maeda, Yasuhiro; Yagi, Hideki; Takemoto, Kana; Utsumi, Hiroyuki; Fukunari, Atsushi; Sugahara, Kunio; Masuko, Takashi; Chiba, Kenji

    2014-05-01

    Sphingosine 1-phosphate (S1P) and S1P receptor 1 (S1P1) play an important role in the egress of mature CD4 or CD8 single-positive (SP) thymocytes from the thymus. Fingolimod hydrochloride (FTY720), an S1P1 functional antagonist, induced significant accumulation of CD62L(high)CD69(low) mature SP thymocytes in the thymic medulla. Immunohistochemical staining using anti-S1P1 antibody revealed that S1P1 is predominantly expressed on thymocytes in the thymic medulla and is strongly down-regulated even at 3h after FTY720 administration. 2-Acetyl-4-tetrahydroxybutylimidazole (THI), an S1P lyase inhibitor, also induced accumulation of mature SP thymocytes in the thymic medulla with an enlargement of the perivascular spaces (PVS). At 6h after THI administration, S1P1-expressing thymocytes reduced partially as if to form clusters and hardly existed in the proximity of CD31-expressing blood vessels in the thymic medulla, suggesting S1P lyase expression in the cells constructing thymic medullary PVS. To determine the cells expressing S1P lyase in the thymus, we newly established a mAb (YK19-2) specific for mouse S1P lyase. Immunohistochemical staining with YK19-2 revealed that S1P lyase is predominantly expressed in non-lymphoid thymic stromal cells in the thymic medulla. In the thymic medullary PVS, S1P lyase was expressed in ER-TR7-positive cells (reticular fibroblasts and pericytes) and CD31-positive vascular endothelial cells. Our findings suggest that S1P lyase expressed in the thymic medullary PVS keeps the tissue S1P concentration low around the vessels and promotes thymic egress via up-regulation of S1P1.

  11. Sugar-cane juice induces pectin lyase and polygalacturonase in Penicillium griseoroseum

    Directory of Open Access Journals (Sweden)

    Minussi Rosana Cristina

    1998-01-01

    Full Text Available The use of other inducers as substitutes for pectin was studied aiming to reduce the production costs of pectic enzymes. The effects of sugar-cane juice on the production of pectin lyase (PL and polygalacturonase (PG by Penicillium griseoroseum were investigated. The fungus was cultured in a mineral medium (pH 6.3 in a rotary shaker (150 rpm for 48 h at 25oC. Culture media were supplemented with yeast extract and sucrose or sugar-cane juice. Sugar-cane juice added singly to the medium promoted higher PL activity and mycelial dry weight when compared to pectin and the use of sugar-cane juice and yeast extract yielded levels of PG activity that were similar to those obtained with sucrose-yeast extract or pectin. The results indicated that, even at low concentrations, sugar-cane juice was capable of inducing pectin lyase and polygalacturonase with no cellulase activity in P. griseoroseum.

  12. Crystallization and preliminary X-ray analysis of argininosuccinate lyase from Streptococcus mutans

    International Nuclear Information System (INIS)

    Cao, Yan-Li; Li, Gui-Lan; Wang, Kai-Tuo; Zhang, Hong-Yin; Li, Lan-Fen

    2011-01-01

    Crystals of argininosuccinate lyase from S. mutans were obtained and X-ray data were collected to 2.5 Å resolution in space group R3. Argininosuccinate lyase (ASL) is an important enzyme in arginine synthesis and the urea cycle, which are highly conserved from bacteria to eukaryotes. The gene encoding Streptococcus mutans ASL (smASL) was amplified and cloned into expression vector pET28a. The recombinant smASL protein was expressed in a soluble form in Escherichia coli strain BL21 (DE3) and purified to homogeneity by two-step column chromatography. Crystals suitable for X-ray analysis were obtained and X-ray diffraction data were collected to a resolution of 2.5 Å. The crystals belonged to space group R3, with unit-cell parameters a = b = 254.5, c = 78.3 Å

  13. Cloning and Sequence Analysis of Vibrio halioticoli Genes Encoding Three Types of Polyguluronate Lyase.

    Science.gov (United States)

    Sugimura; Sawabe; Ezura

    2000-01-01

    The alginate lyase-coding genes of Vibrio halioticoli IAM 14596(T), which was isolated from the gut of the abalone Haliotis discus hannai, were cloned using plasmid vector pUC 18, and expressed in Escherichia coli. Three alginate lyase-positive clones, pVHB, pVHC, and pVHE, were obtained, and all clones expressed the enzyme activity specific for polyguluronate. Three genes, alyVG1, alyVG2, and alyVG3, encoding polyguluronate lyase were sequenced: alyVG1 from pVHB was composed of a 1056-bp open reading frame (ORF) encoding 352 amino acid residues; alyVG2 gene from pVHC was composed of a 993-bp ORF encoding 331 amino acid residues; and alyVG3 gene from pVHE was composed of a 705-bp ORF encoding 235 amino acid residues. Comparison of nucleotide and deduced amino acid sequences among AlyVG1, AlyVG2, and AlyVG3 revealed low homologies. The identity value between AlyVG1 and AlyVG2 was 18.7%, and that between AlyVG2 and AlyVG3 was 17.0%. A higher identity value (26.0%) was observed between AlyVG1 and AlyVG3. Sequence comparison among known polyguluronate lyases including AlyVG1, AlyVG2, and AlyVG3 also did not reveal an identical region in these sequences. However, AlyVG1 showed the highest identity value (36.2%) and the highest similarity (73.3%) to AlyA from Klebsiella pneumoniae. A consensus region comprising nine amino acid (YFKAGXYXQ) in the carboxy-terminal region previously reported by Mallisard and colleagues was observed only in AlyVG1 and AlyVG2.

  14. Increased superoxide accumulation in pyruvate dehydrogenase complex deficient fibroblasts.

    Science.gov (United States)

    Glushakova, Lyudmyla G; Judge, Sharon; Cruz, Alex; Pourang, Deena; Mathews, Clayton E; Stacpoole, Peter W

    2011-11-01

    The pyruvate dehydrogenase complex (PDC) oxidizes pyruvate to acetyl CoA and is critically important in maintaining normal cellular energy homeostasis. Loss-of-function mutations in PDC give rise to congenital lactic acidosis and to progressive cellular energy failure. However, the subsequent biochemical consequences of PDC deficiency that may contribute to the clinical manifestations of the disorder are poorly understood. We postulated that altered flux through PDC would disrupt mitochondrial electron transport, resulting in oxidative stress. Compared to cells from 4 healthy subjects, primary cultures of skin fibroblasts from 9 patients with variable mutations in the gene encoding the alpha subunit (E1α) of pyruvate dehydrogenase (PDA1) demonstrated reduced growth and viability. Superoxide (O(2)(.-)) from the Qo site of complex III of the electron transport chain accumulated in these cells and was associated with decreased activity of manganese superoxide dismutase. The expression of uncoupling protein 2 was also decreased in patient cells, but there were no significant changes in the expression of cellular markers of protein or DNA oxidative damage. The expression of hypoxia transcription factor 1 alpha (HIF1α) also increased in PDC deficient fibroblasts. We conclude that PDC deficiency is associated with an increase in O(2)(.-) accumulation coupled to a decrease in mechanisms responsible for its removal. Increased HIF1α expression may contribute to the increase in glycolytic flux and lactate production in PDC deficiency and, by trans-activating pyruvate dehydrogenase kinase, may further suppress residual PDC activity through phosphorylation of the E1α subunit. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice

    KAUST Repository

    La, Honggui; Ding, Bo; Mishra, Gyan Prakash; Zhou, Bo; Yang, Hongmei; Bellizzi, Maria Del Rosario; Chen, Songbiao; Meyers, Blake C.; Peng, Zhaohua; Zhu, Jian-Kang; Wang, Guoliang

    2011-01-01

    DNA 5-methylcytosine (5-meC) is an important epigenetic mark for transcriptional gene silencing in many eukaryotes. In Arabidopsis, 5-meC DNA glycosylase/lyases actively remove 5-meC to counter-act transcriptional gene silencing in a locus-specific manner, and have been suggested to maintain the expression of transposons. However, it is unclear whether plant DNA demethylases can promote the transposition of transposons. Here we report the functional characterization of the DNA glycosylase/lyase DNG701 in rice. DNG701 encodes a large (1,812 amino acid residues) DNA glycosylase domain protein. Recombinant DNG701 protein showed 5-meC DNA glycosylase and lyase activities in vitro. Knockout or knockdown of DNG701 in rice plants led to DNA hypermethylation and reduced expression of the retrotransposon Tos17. Tos17 showed less transposition in calli derived from dng701 knockout mutant seeds compared with that in wild-type calli. Overexpression of DNG701 in both rice calli and transgenic plants substantially reduced DNA methylation levels of Tos17 and enhanced its expression. The overexpression also led to more frequent transposition of Tos17 in calli. Our results demonstrate that rice DNG701 is a 5-meC DNA glycosylase/lyase responsible for the demethylation of Tos17 and this DNA demethylase plays a critical role in promoting Tos17 transposition in rice calli.

  16. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice

    KAUST Repository

    La, Honggui

    2011-09-06

    DNA 5-methylcytosine (5-meC) is an important epigenetic mark for transcriptional gene silencing in many eukaryotes. In Arabidopsis, 5-meC DNA glycosylase/lyases actively remove 5-meC to counter-act transcriptional gene silencing in a locus-specific manner, and have been suggested to maintain the expression of transposons. However, it is unclear whether plant DNA demethylases can promote the transposition of transposons. Here we report the functional characterization of the DNA glycosylase/lyase DNG701 in rice. DNG701 encodes a large (1,812 amino acid residues) DNA glycosylase domain protein. Recombinant DNG701 protein showed 5-meC DNA glycosylase and lyase activities in vitro. Knockout or knockdown of DNG701 in rice plants led to DNA hypermethylation and reduced expression of the retrotransposon Tos17. Tos17 showed less transposition in calli derived from dng701 knockout mutant seeds compared with that in wild-type calli. Overexpression of DNG701 in both rice calli and transgenic plants substantially reduced DNA methylation levels of Tos17 and enhanced its expression. The overexpression also led to more frequent transposition of Tos17 in calli. Our results demonstrate that rice DNG701 is a 5-meC DNA glycosylase/lyase responsible for the demethylation of Tos17 and this DNA demethylase plays a critical role in promoting Tos17 transposition in rice calli.

  17. Engineering methylaspartate ammonia lyase for the asymmetric synthesis of unnatural amino acids

    NARCIS (Netherlands)

    Raj, Hans; Szymanski, Wiktor; de Villiers, Jandre; Rozeboom, Henriëtte J.; Puthan Veetil, Vinod; Reis, Carlos R.; Villiers, Marianne de; Dekker, Frank J.; Wildeman, Stefaan de; Quax, Wim J.; Thunnissen, Andy-Mark W.H.; Feringa, Ben L.; Janssen, Dick B.; Poelarends, Gerrit J.

    The redesign of enzymes to produce catalysts for a predefined transformation remains a major challenge in protein engineering. Here, we describe the structure-based engineering of methylaspartate ammonia lyase (which in nature catalyses the conversion of 3-methylaspartate to ammonia and

  18. Purification and Characterization of a Unique Pectin Lyase from Aspergillus giganteus Able to Release Unsaturated Monogalacturonate during Pectin Degradation

    Directory of Open Access Journals (Sweden)

    Danielle Biscaro Pedrolli

    2014-01-01

    Full Text Available A pectin lyase, named PLIII, was purified to homogeneity from the culture filtrate of Aspergillus giganteus grown in submerged culture containing orange peel waste as carbon source. PLIII was able to digest apple pectin and citrus pectins with different degrees of methyl esterification. Interestingly, the PLIII activity was stimulated in the presence of some divalent cations including Pb2+ and was not significantly affected by Hg2+. Like other pectin lyases, PLIII is stimulated by but is not dependent on Ca2+. The main soluble product released during the degradation of pectic substances promoted by the PLIII is compatible with an unsaturated monogalacturonate. PLIII is a unique enzyme able to release unsaturated monogalacturonate as the only soluble product during the degradation of pectic substances; therefore, PLIII was classified as an exo-pectin lyase. To our knowledge, this is the first characterization of an exo-pectin lyase. The PLIII described in this work is potentially useful for ethanol production from pectin-rich biomass, besides other common applications for alkaline pectinases like preparation of textile fibers, coffee and tea fermentation, vegetable oil extraction, and the treatment of pulp in papermaking.

  19. Genetic and molecular analyses of Escherichia coli N-acetylneuraminate lyase gene.

    OpenAIRE

    Kawakami, B; Kudo, T; Narahashi, Y; Horikoshi, K

    1986-01-01

    Two plasmids containing the N-acetylneuraminate lyase (NALase) gene (nanA) of Escherichia coli, pNL1 and pNL4, were constructed. Immunoprecipitation analysis indicated that the 35,000-dalton protein encoded in pNL4 was NALase. The synthesis of NALase in E. coli carrying these plasmids was constitutive.

  20. Mechanism of Cytochrome P450 17A1-Catalyzed Hydroxylase and Lyase Reactions

    DEFF Research Database (Denmark)

    Bonomo, Silvia; Jorgensen, Flemming Steen; Olsen, Lars

    2017-01-01

    Cytochrome P450 17A1 (CYP17A1) catalyzes C17 hydroxylation of pregnenolone and progesterone and the subsequent C17–C20 bond cleavage (lyase reaction) to form androgen precursors. Compound I (Cpd I) and peroxo anion (POA) are the heme-reactive species underlying the two reactions. We have characte...... the concept that the selectivity of the steroidogenic CYPs is ruled by direct interactions with the enzyme, in contrast to the selectivity of drug-metabolizing CYPs, where the reactivity of the substrates dominates....... characterized the reaction path for both the hydroxylase and lyase reactions using density functional theory (DFT) calculations and the enzyme–substrate interactions by molecular dynamics (MD) simulations. Activation barriers for positions subject to hydroxylase reaction have values close to each other and span...

  1. Kynurenine aminotransferase III and glutamine transaminase L are identical enzymes that have cysteine S-conjugate β-lyase activity and can transaminate L-selenomethionine.

    Science.gov (United States)

    Pinto, John T; Krasnikov, Boris F; Alcutt, Steven; Jones, Melanie E; Dorai, Thambi; Villar, Maria T; Artigues, Antonio; Li, Jianyong; Cooper, Arthur J L

    2014-11-07

    Three of the four kynurenine aminotransferases (KAT I, II, and IV) that synthesize kynurenic acid, a neuromodulator, are identical to glutamine transaminase K (GTK), α-aminoadipate aminotransferase, and mitochondrial aspartate aminotransferase, respectively. GTK/KAT I and aspartate aminotransferase/KAT IV possess cysteine S-conjugate β-lyase activity. The gene for the former enzyme, GTK/KAT I, is listed in mammalian genome data banks as CCBL1 (cysteine conjugate beta-lyase 1). Also listed, despite the fact that no β-lyase activity has been assigned to the encoded protein in the genome data bank, is a CCBL2 (synonym KAT III). We show that human KAT III/CCBL2 possesses cysteine S-conjugate β-lyase activity, as does mouse KAT II. Thus, depending on the nature of the substrate, all four KATs possess cysteine S-conjugate β-lyase activity. These present studies show that KAT III and glutamine transaminase L are identical enzymes. This report also shows that KAT I, II, and III differ in their ability to transaminate methyl-L-selenocysteine (MSC) and L-selenomethionine (SM) to β-methylselenopyruvate (MSP) and α-ketomethylselenobutyrate, respectively. Previous studies have identified these seleno-α-keto acids as potent histone deacetylase inhibitors. Methylselenol (CH3SeH), also purported to have chemopreventive properties, is the γ-elimination product of SM and the β-elimination product of MSC catalyzed by cystathionine γ-lyase (γ-cystathionase). KAT I, II, and III, in part, can catalyze β-elimination reactions with MSC generating CH3SeH. Thus, the anticancer efficacy of MSC and SM will depend, in part, on the endogenous expression of various KAT enzymes and cystathionine γ-lyase present in target tissue coupled with the ability of cells to synthesize in situ either CH3SeH and/or seleno-keto acid metabolites. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Molecular analysis of virulent genes (coa and spa) of staphylococcus aureus involved in natural cases of bovine mastitis

    International Nuclear Information System (INIS)

    Khan, A.; Javed, M.T.; Mahmood, F.; Hussain, R.

    2013-01-01

    The present study was undertaken to determine the distribution and genotypic characteristics of Staphylococcus aureus isolates recovered from naturally occurring mastitis in cattle and buffaloes. For this purpose a total of 1445 lactating cattle (653) and buffaloes (792) present at two experimental livestock farms Okara (Bahadarnagar) and Sahiwal (Qadiarabad), in and around district Faisalabad and slaughtered at an abattoir due to low milk yield and were screened for mastitis. California Mastitis Test (CMT) was used to detect sub clinical mastitis. The positive quarter milk samples were collected for culturing of S. aureus isolates. taphylococcus aureus isolates were identified on the basis of growth features, biochemical characteristics, coagulase test and as well as amplification of coagulase (coa) and spa (spa-X) genes specific to its virulence. S. aureus isolates (n=265) were characterized by Polymerase chain reaction to determine the frequency of coagulase (coa) and spa (spa-X) genes. From these isolates the amplification of the coagulase (coa) gene yielded three different PCR products approximately 204bp to 490bp while spa (spa-X) gene produced five different products ranging in size from 190bp to 320bp. PCR revealed that from all the coagulase positive S. aureus isolates 261(98.5%) had spa (spa-X) gene. The results of the present study indicated that S. aureus isolates recovered from bovine mastitis were genetically different within and among the various herds which may provide essential and valuable strategies to control staphylococcal infections in future. (author)

  3. Molecular analysis of virulent genes (coa and spa) of staphylococcus aureus involved in natural cases of bovine mastitis

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A.; Javed, M. T.; Mahmood, F. [University of Agriculture, Faisalabad (Pakistan). Dept. of Pathology; Hussain, R. [The Islamia Univ. of Bahawalpur, Pakistan (Pakistan). Dept. of Veterinary and Animal Sciences

    2013-12-15

    The present study was undertaken to determine the distribution and genotypic characteristics of Staphylococcus aureus isolates recovered from naturally occurring mastitis in cattle and buffaloes. For this purpose a total of 1445 lactating cattle (653) and buffaloes (792) present at two experimental livestock farms Okara (Bahadarnagar) and Sahiwal (Qadiarabad), in and around district Faisalabad and slaughtered at an abattoir due to low milk yield and were screened for mastitis. California Mastitis Test (CMT) was used to detect sub clinical mastitis. The positive quarter milk samples were collected for culturing of S. aureus isolates. taphylococcus aureus isolates were identified on the basis of growth features, biochemical characteristics, coagulase test and as well as amplification of coagulase (coa) and spa (spa-X) genes specific to its virulence. S. aureus isolates (n=265) were characterized by Polymerase chain reaction to determine the frequency of coagulase (coa) and spa (spa-X) genes. From these isolates the amplification of the coagulase (coa) gene yielded three different PCR products approximately 204bp to 490bp while spa (spa-X) gene produced five different products ranging in size from 190bp to 320bp. PCR revealed that from all the coagulase positive S. aureus isolates 261(98.5%) had spa (spa-X) gene. The results of the present study indicated that S. aureus isolates recovered from bovine mastitis were genetically different within and among the various herds which may provide essential and valuable strategies to control staphylococcal infections in future. (author)

  4. CoaSim: A Flexible Environment for Simulating Genetic Data under Coalescent Models

    DEFF Research Database (Denmark)

    Mailund; Schierup, Mikkel Heide; Pedersen, Christian Nørgaard Storm

    2005-01-01

    get insight into these. Results We have created the CoaSim application as a flexible environment for Monte various types of genetic data under equilibrium and non-equilibrium coalescent variety of applications. Interaction with the tool is through the Guile version scripting language. Scheme scripts......Background Coalescent simulations are playing a large role in interpreting large scale intra- polymorphism surveys and for planning and evaluating association studies. Coalescent of data sets under different models can be compared to the actual data to test different evolutionary factors and thus...

  5. Chromium downregulates the expression of Acetyl CoA Carboxylase 1 gene in lipogenic tissues of domestic goats: a potential strategy for meat quality improvement.

    Science.gov (United States)

    Najafpanah, Mohammad Javad; Sadeghi, Mostafa; Zali, Abolfazl; Moradi-Shahrebabak, Hossein; Mousapour, Hojatollah

    2014-06-15

    Acetyl CoA Carboxylase 1 (ACC1) is a biotin-dependent enzyme that catalyzes the carboxylation of Acetyl CoA to form Malonyl CoA, the key intermediate metabolite in fatty acid synthesis. In this study, the mRNA expression of the ACC1 gene was evaluated in four different tissues (liver, visceral fat, subcutaneous fat, and longissimus muscle) of the domestic goat (Capra hircus) kids feeding on four different levels of trivalent chromium (0, 0.5, 1, and 1.5mg/day) as food supplementation. RT-qPCR technique was used for expression analyses and heat shock protein 90 gene (HSP-90) was considered as reference gene for data normalization. Our results revealed that 1.5mg/day chromium significantly reduced the expression of the ACC1 gene in liver, visceral fat, and subcutaneous fat tissues, but not in longissimus muscles (Pmeat quality in domestic animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. AlgM4: A New Salt-Activated Alginate Lyase of the PL7 Family with Endolytic Activity

    Directory of Open Access Journals (Sweden)

    Guiyuan Huang

    2018-04-01

    Full Text Available Alginate lyases are a group of enzymes that catalyze the depolymerization of alginates into oligosaccharides or monosaccharides. These enzymes have been widely used for a variety of purposes, such as producing bioactive oligosaccharides, controlling the rheological properties of polysaccharides, and performing structural analyses of polysaccharides. The algM4 gene of the marine bacterium Vibrio weizhoudaoensis M0101 encodes an alginate lyase that belongs to the polysaccharide lyase family 7 (PL7. In this study, the kinetic constants Vmax (maximum reaction rate and Km (Michaelis constant of AlgM4 activity were determined as 2.75 nmol/s and 2.72 mg/mL, respectively. The optimum temperature for AlgM4 activity was 30 °C, and at 70 °C, AlgM4 activity dropped to 11% of the maximum observed activity. The optimum pH for AlgM4 activity was 8.5, and AlgM4 was completely inactive at pH 11. The addition of 1 mol/L NaCl resulted in a more than sevenfold increase in the relative activity of AlgM4. The secondary structure of AlgM4 was altered in the presence of NaCl, which caused the α-helical content to decrease from 12.4 to 10.8% and the β-sheet content to decrease by 1.7%. In addition, NaCl enhanced the thermal stability of AlgM4 and increased the midpoint of thermal denaturation (Tm by 4.9 °C. AlgM4 exhibited an ability to degrade sodium alginate, poly-mannuronic acid (polyM, and poly-guluronic acid (polyG, resulting in the production of oligosaccharides with a degree of polymerization (DP of 2–9. AlgM4 possessed broader substrate, indicating that it is a bifunctional alginate lyase. Thus, AlgM4 is a novel salt-activated and bifunctional alginate lyase of the PL7 family with endolytic activity.

  7. Characterization of two bacterial hydroxynitrile lyases with high similarity to cupin superfamily proteins

    NARCIS (Netherlands)

    Hussain, Z.; Wiedner, R.; Steiner, K.; Hajek, T.; Avi, M.; Hecher, B.; Sessitsch, A.; Schwab, H.

    2012-01-01

    Hydroxynitrile lyases (HNLs) catalyze the cleavage of cyanohydrins. In the reverse reaction, they catalyze the formation of carbon-carbon bonds by enantioselective condensation of hydrocyanic acid with carbonyls. In this study, we describe two proteins from endophytic bacteria that display activity

  8. Biocatalytic Enantioselective Synthesis of N-Substituted Aspartic Acids by Aspartate Ammonia Lyase

    NARCIS (Netherlands)

    Weiner, Barbara; Poelarends, Gerrit J.; Janssen, Dick B.; Feringa, Ben L.

    2008-01-01

    The gene encoding aspartate ammonia lyase (aspB) from Bacillus sp. YM55-1 has been cloned and overexpressed, and the recombinant enzyme containing a C-terminal His6 tag has been purified to homogeneity and subjected to kinetic characterization. Kinetic studies have shown that the His6 tag does not

  9. The replicative DNA polymerase of herpes simplex virus 1 exhibits apurinic/apyrimidinic and 5′-deoxyribose phosphate lyase activities

    Science.gov (United States)

    Bogani, Federica; Boehmer, Paul E.

    2008-01-01

    Base excision repair (BER) is essential for maintaining genome stability both to counter the accumulation of unusual bases and to protect from base loss in the DNA. Herpes simplex virus 1 (HSV-1) is a large dsDNA virus that encodes its own DNA replication machinery, including enzymes involved in nucleotide metabolism. We report on a replicative family B and a herpesvirus-encoded DNA Pol that possesses DNA lyase activity. We have discovered that the catalytic subunit of the HSV-1 DNA polymerase (Pol) (UL30) exhibits apurinic/apyrimidinic (AP) and 5′-deoxyribose phosphate (dRP) lyase activities. These activities are integral to BER and lead to DNA cleavage on the 3′ side of abasic sites and 5′-dRP residues that remain after cleavage by 5′-AP endonuclease. The UL30-catalyzed reaction occurs independently of divalent cation and proceeds via a Schiff base intermediate, indicating that it occurs via a lyase mechanism. Partial proteolysis of the Schiff base shows that the DNA lyase activity resides in the Pol domain of UL30. These observations together with the presence of a virus-encoded uracil DNA glycosylase indicates that HSV-1 has the capacity to perform critical steps in BER. These findings have implications on the role of BER in viral genome maintenance during lytic replication and reactivation from latency. PMID:18695225

  10. High-Level Expression of a Thermally Stable Alginate Lyase Using Pichia pastoris, Characterization and Application in Producing Brown Alginate Oligosaccharide

    Directory of Open Access Journals (Sweden)

    Haifeng Li

    2018-05-01

    Full Text Available An alginate lyase encoding gene sagl from Flavobacterium sp. H63 was codon optimized and recombinantly expressed at high level in P.pastoris through high cell-density fermentation. The highest yield of recombinant enzyme of sagl (rSAGL in yeast culture supernatant reached 226.4 μg/mL (915.5 U/mL. This was the highest yield record of recombinant expression of alginate lyase so far. The rSAGL was confirmed as a partially glycosylated protein through EndoH digestion. The optimal reaction temperature and pH of this enzyme were 45 °C and 7.5; 80 mM K+ ions could improve the catalytic activity of the enzyme by 244% at most. rSAGL was a thermal stable enzyme with T5015 of 57–58 °C and T5030 of 53–54 °C. Its thermal stability was better than any known alginate lyase. In 100 mM phosphate buffer of pH 6.0, rSAGL could retain 98.8% of the initial activity after incubation at 50 °C for 2 h. Furthermore, it could retain 61.6% of the initial activity after 48 h. The specific activity of the purified rSAGL produced by P. pastoris attained 4044 U/mg protein, which was the second highest record of alginate lyase so far. When the crude enzyme of the rSAGL was directly used in transformation of sodium alginate with 40 g/L, 97.2% of the substrate was transformed to di, tri, tetra brown alginate oligosaccharide after 32 h of incubation at 50 °C, and the final concentration of reducing sugar in mixture reached 9.51 g/L. This is the first report of high-level expression of thermally stable alginate lyase using P. pastoris system.

  11. Understanding Which Residues of the Active Site and Loop Structure of a Tyrosine Aminomutase Define Its Mutase and Lyase Activities.

    Science.gov (United States)

    Attanayake, Gayanthi; Walter, Tyler; Walker, Kevin D

    2018-05-30

    Site-directed mutations and substrate analogues were used to gain insights into the branch-point reaction of the 3,5-dihydro-5-methylidene-4 H-imidazol-4-one (MIO)-tyrosine aminomutase from Oryza sativa ( OsTAM). Exchanging the active residues of OsTAM (Y125C/N446K) for those in a phenylalanine aminomutase TcPAM altered its substrate specificity from tyrosine to phenylalanine. The aminomutase mechanism of OsTAM surprisingly changed almost exclusively to that of an ammonia lyase making cinnamic acid (>95%) over β-phenylalanine [Walter, T., et al. (2016) Biochemistry 55, 3497-3503]. We hypothesized that the missing electronics or sterics on the aryl ring of the phenylalanine substrate, compared with the sizable electron-donating hydroxyl of the natural tyrosine substrate, influenced the unexpected lyase reactivity of the OsTAM mutant. The double mutant was incubated with 16 α-phenylalanine substituent analogues of varying electronic strengths and sterics. The mutant converted each analogue principally to its acrylate with ∼50% conversion of the p-Br substrate, making only a small amount of the β-amino acid. The inner loop structure over the entrance to the active site was also mutated to assess how the lyase and mutase activities are affected. An OsTAM loop mutant, matching the loop residues of TcPAM, still chiefly made >95% of the acrylate from each substrate. A combined active site:loop mutant was most reactive but remained a lyase, making 10-fold more acrylates than other mutants did. While mutations within the active site changed the substrate specificity of OsTAM, continued exploration is needed to fully understand the interplay among the inner loop, the substrate, and the active site in defining the mutase and lyase activities.

  12. Synthesis of O-[11C]acetyl CoA, O-[11C]acetyl-L-carnitine, and L-[11C]carnitine labelled in specific positions, applied in PET studies on rhesus monkey

    International Nuclear Information System (INIS)

    Jacobson, Gunilla B.; Watanabe, Yasuyoshi; Valind, Sven; Kuratsune, Hirohiko; Laangstroem, Bengt

    1997-01-01

    The syntheses of L-carnitine, O-acetyl CoA, and O-acetyl-L-carnitine labelled with 11 C at the 1- or 2-position of the acetyl group or the N-methyl position of carnitine, using the enzymes acetyl CoA synthetase and carnitine acetyltransferase, are described. With a total synthesis time of 45 min, O-[1- 11 C]acetyl CoA and O-[2- 11 C]acetyl CoA was obtained in 60-70% decay-corrected radiochemical yield, and O-[1- 11 C]acetyl-L-carnitine and O-[2- 11 C]acetyl-L-carnitine in 70-80% yield, based on [1- 11 C]acetate or [2- 11 C]acetate, respectively. By an N-methylation reaction with [ 11 C]methyl iodide, L-[methyl- 11 C]carnitine was obtained within 30 min, and O-acetyl-L-[methyl- 11 C]carnitine within 40 min, giving a decay-corrected radiochemical yield of 60% and 40-50%, respectively, based on [ 11 C]methyl iodide. Initial data of the kinetics of the different 11 C-labelled L-carnitine and acetyl-L-carnitines in renal cortex of anaesthetized monkey (Macaca mulatta) are presented

  13. Cystathionine-gamma-lyase deficient mice are protected against the development of multiorgan failure and exhibit reduced inflammatory response during burn.

    Science.gov (United States)

    Ahmad, Akbar; Druzhyna, Nadiya; Szabo, Csaba

    2017-08-01

    Considering the role of H 2 S in critical illness, the aim of this study was to compare the outcome of burn in wild-type mice and in mice deficient in CSE, one of the principal mammalian H 2 S-generating enzymes. Animals were subjected to scald burn. Outcome variables included indices of organ injury, clinical chemistry parameters and plasma levels of inflammatory mediators. Plasma levels of H 2 S significantly increased in response to burn in wild-type mice, but remained unchanged in CSE -/- mice. Expression of the three H 2 S-producing enzymes (CSE, CBS and 3-MST) in the lung and liver, and the capacity of tissue homogenates to produce H 2 S, however, was not affected by burn. In CSE deficient mice there was a significant amelioration of burn-induced accumulation of myeloperoxidase levels in heart, lung, liver and kidney and significantly lower degree of malon dialdehyde accumulation in the heart, lung and kidney than in wild-type mice. CSE deficient mice, compared to wild-type mice, showed a significant attenuation of the burn-induced elevation in circulating alkaline aminotransferase and blood urea nitrogen and creatinine levels, indicative of protective effects of CSE deficiency against burn-induced hepatic, and renal functional impairment. Multiple burn-induced inflammatory mediators (TNF-α, IL-1β, IL-4, IL-6, IL-10 and IL-12) were significantly lower in the plasma of CSE -/- animals after burn than in the plasma of wild-type controls subjected to burns. In conclusion, CSE deficiency improves organ function and attenuates the inflammatory response in a murine model of burn. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  14. Regulation of expression of pectate lyase genes pelA, pelD, and pelE in Erwinia chrysanthemi.

    Science.gov (United States)

    Reverchon, S; Robert-Baudouy, J

    1987-06-01

    The regulation of pelA, pelD, and pelE genes encoding three of the five major pectate lyase isoenzymes (PLa, PLd, and PLe) in Erwinia chrysanthemi B374 was analyzed by using genetic fusions to lacZ. These three genes are clustered on a 5-kilobase DNA fragment in the order pelD-pelE-pelA and constitute three independent transcriptional units. We localized the pelDEA cluster near the pro-1 marker on the genetic map of B374 by chromosomal mobilization with RP4::mini-Mu plasmid pULB110. Three classes of regulatory mutations responsible for constitutive pectate lyase synthesis have been described (kdgR, gpiR, and cri). We studied the effects of each mutation on pelE, pelD, and pelA expression independently. The mutations kdgR and gpiR mainly affect the expression of pelE and pelD, although PLa synthesis is slightly increased. The cri mutation results in a low level of constitutive expression of the three pel genes, but it is a pleiotropic mutation since other genes not involved in pectinolysis are also affected. In addition, we demonstrated that exuR, a negative regulatory gene governing the catabolism of hexuronates, does not modify the expression of pel genes. The frequency of gpiR or cri mutations (about 10(-8)) and the resulting constitutivity of pectate lyase synthesis suggest that these genes act as negative regulatory genes in addition to kdgR, which is already known to encode a repressor. Moreover, we found that expression of pel-lac fusions carried on pBR322 derivatives was higher in E. chrysanthemi than in Escherichia coli; this fact suggests the existence of positive regulation of pectate lyase synthesis in E. chrysanthemi.

  15. New lupane triterpenoids from Solidago canadensis that inhibit the lyase activity of DNA polymerase beta.

    Science.gov (United States)

    Chaturvedula, V S Prakash; Zhou, Bing-Nan; Gao, Zhijie; Thomas, Shannon J; Hecht, Sidney M; Kingston, David G I

    2004-12-01

    Bioassay-directed fractionation of a methyl ethyl ketone extract of Solidago canadensis L. (Asteraceae), using an assay to detect the lyase activity of DNA polymerase beta, resulted in the isolation of the four new lupane triterpenoids 1-4 and the seven known compounds lupeol, lupeyl acetate, ursolic acid, cycloartenol, cycloartenyl palmitate, alpha-amyrin acetate, and stigmasterol. The structures of the new compounds were established as 3beta-(3R-acetoxyhexadecanoyloxy)-lup-20(29)-ene (1), 3beta-(3-ketohexadecanoyloxy)-lup-20(29)-ene (2), 3beta-(3R-acetoxyhexadecanoyloxy)-29-nor-lupan-20-one (3), and 3beta-(3-hetohexadecanoyloxy)-29-nor-lupan-20-one (4), respectively, on the basis of extensive 1D and 2D NMR spectroscopic interpretation and chemical modification studies. All 11 compounds were inhibitory to the lyase activity of DNA polymerase beta.

  16. Structural insights into the bacterial carbon - phosphorus lyase machinery

    DEFF Research Database (Denmark)

    Seweryn, Paulina; Van, Lan Bich; Kjeldgaard, Morten

    2015-01-01

    Phosphorus is required for all life and microorganisms can extract it from their environment through several metabolic pathways. When phosphate is in limited supply, some bacteria are able to use phosphonate compounds, which require specialized enzymatic machinery to break the stable carbon......–phosphorus (C–P) bond. Despite its importance, the details of how this machinery catabolizes phosphonates remain unknown. Here we determine the crystal structure of the 240-kilodalton Escherichia coli C–P lyase core complex (PhnG–PhnH–PhnI–PhnJ; PhnGHIJ), and show that it is a two-fold symmetric hetero...

  17. Molecular characterization of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency

    DEFF Research Database (Denmark)

    Gregersen, N; Andresen, B S; Bross, P

    1991-01-01

    . All clones sequenced from the patient exhibited a single base substitution from adenine (A) to guanine (G) at position 985 in the MCAD cDNA as the only consistent base-variation compared with control cDNA. In contrast, the parents contained cDNA with the normal and the mutated sequence, revealing......A series of experiments has established the molecular defect in the medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) gene in a family with MCAD deficiency. Demonstration of intra-mitochondrial mature MCAD indistinguishable in size (42.5-kDa) from control MCAD, and of mRNA with the correct...... size of 2.4 kb, indicated a point-mutation in the coding region of the MCAD gene to be disease-causing. Consequently, cloning and DNA sequencing of polymerase chain reaction (PCR) amplified complementary DNA (cDNA) from messenger RNA of fibroblasts from the patient and family members were performed...

  18. NHE1 deficiency in liver: Implications for non-alcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Vikram, E-mail: prasadvm@ucmail.uc.edu [Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine (United States); Chirra, Shivani [Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine (United States); Kohli, Rohit [Department of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital, University of Cincinnati, Cincinnati, OH 45267 (United States); Shull, Gary E. [Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine (United States)

    2014-07-25

    Highlights: • FXR, PGC1α and PPARγ levels are upregulated in NHE1 deficient livers. • NHE1 deficiency downregulates expression of pro-lipogenic genes in liver. • Chronic exposure to high-fat diet upregulates hepatic NHE1 expression. • Loss of NHE1 better preserves hepatic insulin signaling in high-fat diet-fed mice. - Abstract: Non-alcoholic fatty liver disease NAFLD is closely associated with the dysregulation of lipid homeostasis. Diet-induced hepatic steatosis, which can initiate NAFLD progression, has been shown to be dramatically reduced in mice lacking the electroneutral Na{sup +}/H{sup +} exchanger NHE1 (Slc9a1). In this study, we investigated if NHE1 deficiency had effects in liver that could contribute to the apparent protection against aberrant lipid accumulation. RT-PCR and immunoblot analyses of wild-type and NHE1-null livers revealed an expression profile that strongly suggested attenuation of both de novo lipogenesis and hepatic stellate cell activation, which is implicated in liver fibrosis. This included upregulation of the farnesoid X receptor FXR, peroxisome proliferator-activated receptor PPARγ, its co-activator PGC1α, and sestrin 2, an antioxidant protein involved in hepatic metabolic homeostasis. Furthermore, expression levels of the pro-lipogenic liver X receptor LXRα, and acetyl CoA carboxylases 1 and 2 were downregulated. These changes were associated with evidence of reduced cellular stress, which persisted even upon exposure to a high-fat diet, and the better preservation of insulin signaling, as evidenced by protein kinase B/Akt phosphorylation (Ser473). These results indicate that NHE1 deficiency may protect against NAFLD pathogenesis, which is significant given the availability of highly specific NHE1 inhibitors.

  19. NHE1 deficiency in liver: Implications for non-alcoholic fatty liver disease

    International Nuclear Information System (INIS)

    Prasad, Vikram; Chirra, Shivani; Kohli, Rohit; Shull, Gary E.

    2014-01-01

    Highlights: • FXR, PGC1α and PPARγ levels are upregulated in NHE1 deficient livers. • NHE1 deficiency downregulates expression of pro-lipogenic genes in liver. • Chronic exposure to high-fat diet upregulates hepatic NHE1 expression. • Loss of NHE1 better preserves hepatic insulin signaling in high-fat diet-fed mice. - Abstract: Non-alcoholic fatty liver disease NAFLD is closely associated with the dysregulation of lipid homeostasis. Diet-induced hepatic steatosis, which can initiate NAFLD progression, has been shown to be dramatically reduced in mice lacking the electroneutral Na + /H + exchanger NHE1 (Slc9a1). In this study, we investigated if NHE1 deficiency had effects in liver that could contribute to the apparent protection against aberrant lipid accumulation. RT-PCR and immunoblot analyses of wild-type and NHE1-null livers revealed an expression profile that strongly suggested attenuation of both de novo lipogenesis and hepatic stellate cell activation, which is implicated in liver fibrosis. This included upregulation of the farnesoid X receptor FXR, peroxisome proliferator-activated receptor PPARγ, its co-activator PGC1α, and sestrin 2, an antioxidant protein involved in hepatic metabolic homeostasis. Furthermore, expression levels of the pro-lipogenic liver X receptor LXRα, and acetyl CoA carboxylases 1 and 2 were downregulated. These changes were associated with evidence of reduced cellular stress, which persisted even upon exposure to a high-fat diet, and the better preservation of insulin signaling, as evidenced by protein kinase B/Akt phosphorylation (Ser473). These results indicate that NHE1 deficiency may protect against NAFLD pathogenesis, which is significant given the availability of highly specific NHE1 inhibitors

  20. The development of a decision analytic model of changes in mean deviation in people with glaucoma: the COA model.

    Science.gov (United States)

    Kymes, Steven M; Lambert, Dennis L; Lee, Paul P; Musch, David C; Siegfried, Carla J; Kotak, Sameer V; Stwalley, Dustin L; Fain, Joel; Johnson, Chris; Gordon, Mae O

    2012-07-01

    To create and validate a statistical model predicting progression of primary open-angle glaucoma (POAG) assessed by loss of visual field as measured in mean deviation (MD) using 3 landmark studies of glaucoma progression and treatment. A Markov decision analytic model using patient level data described longitudinal MD changes over 7 years. Patient-level data from the Collaborative Initial Glaucoma Treatment Study (n = 607), the Ocular Hypertension Treatment Study (OHTS; n = 148; only those who developed POAG in the first 5 years of OHTS) and Advanced Glaucoma Intervention Study (n = 591), the COA model. We developed a Markov model with transition matrices stratified by current MD, age, race, and intraocular pressure categories and used a microsimulation approach to estimate change in MD over 7 years. Internal validation compared model prediction for 7 years to actual MD for COA participants. External validation used a cohort of glaucoma patients drawn from university clinical practices. Change in visual field as measured in MD in decibels (dB). Regressing the actual MD against the predicted produced an R(2) of 0.68 for the right eye and 0.63 for the left. The model predicted ending MD for right eyes of 65% of participants and for 63% of left eyes within 3 dB of actual results at 7 years. In external validation the model had an R(2) of 0.79 in the right eye and 0.77 in the left at 5 years. The COA model is a validated tool for clinicians, patients, and health policy makers seeking to understand longitudinal changes in MD in people with glaucoma. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  1. Synthesis of O-[{sup 11}C]acetyl CoA, O-[{sup 11}C]acetyl-L-carnitine, and L-[{sup 11}C]carnitine labelled in specific positions, applied in PET studies on rhesus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Gunilla B.; Watanabe, Yasuyoshi; Valind, Sven; Kuratsune, Hirohiko; Laangstroem, Bengt

    1997-07-01

    The syntheses of L-carnitine, O-acetyl CoA, and O-acetyl-L-carnitine labelled with {sup 11}C at the 1- or 2-position of the acetyl group or the N-methyl position of carnitine, using the enzymes acetyl CoA synthetase and carnitine acetyltransferase, are described. With a total synthesis time of 45 min, O-[1-{sup 11}C]acetyl CoA and O-[2-{sup 11}C]acetyl CoA was obtained in 60-70% decay-corrected radiochemical yield, and O-[1-{sup 11}C]acetyl-L-carnitine and O-[2-{sup 11}C]acetyl-L-carnitine in 70-80% yield, based on [1-{sup 11}C]acetate or [2-{sup 11}C]acetate, respectively. By an N-methylation reaction with [{sup 11}C]methyl iodide, L-[methyl-{sup 11}C]carnitine was obtained within 30 min, and O-acetyl-L-[methyl-{sup 11}C]carnitine within 40 min, giving a decay-corrected radiochemical yield of 60% and 40-50%, respectively, based on [{sup 11}C]methyl iodide. Initial data of the kinetics of the different {sup 11}C-labelled L-carnitine and acetyl-L-carnitines in renal cortex of anaesthetized monkey (Macaca mulatta) are presented.

  2. Liberdade e coação no direito de Kant

    Directory of Open Access Journals (Sweden)

    Pinheiro, Celso de Moraes

    2007-01-01

    Full Text Available Kant divide a filosofia moral em duas partes: Ética e Teoria da Justiça. Cada uma é compota de diferentes descrições de deveres e direitos. A ética contém deveres e direitos internos, voluntários e não-coercitivos. A teoria da justiça contém deveres e direitos externos e coercitivos. Os dois tipos de deveres e direitos são definidos em sua relação um com o outro. O que distingue os deveres éticos, ou deveres de virtude, dos deveres jurídicos, é que a compulsão externa para o dever de virtude é baseado na livre coerção própria. Assim, a finalidade deste artigo é pesquisar a noção de dever, e a relação entre dever, liberdade e coação

  3. Isolation and characterization of an Antarctic Flavobacterium strain with agarase and alginate lyase activities

    Directory of Open Access Journals (Sweden)

    Lavín Paris

    2016-09-01

    Full Text Available Several bacteria that are associated with macroalgae can use phycocolloids as a carbon source. Strain INACH002, isolated from decomposing Porphyra (Rhodophyta, in King George Island, Antarctica, was screened and characterized for the ability to produce agarase and alginate-lyase enzymatic activities. Our strain INACH002 was identified as a member of the genus Flavobacterium, closely related to Flavobacterium faecale, using 16S rRNA gene analysis. The INACH002 strain was characterized as psychrotrophic due to its optimal temperature (17ºC and maximum temperature (20°C of growth. Agarase and alginate-lyase displayed enzymatic activities within a range of 10°C to 50°C, with differences in the optimal temperature to hydrolyze agar (50°C, agarose (50°C and alginate (30°C during the first 30 min of activity. Strain Flavobacterium INACH002 is a promising Antarctic biotechnological resource; however, further research is required to illustrate the structural and functional bases of the enzymatic performance observed during the degradation of different substrates at different temperatures.

  4. Mode of action of pectin lyase A of Aspergillus niger on differently C6-substituted oligogalacturonides

    NARCIS (Netherlands)

    Alebeek, van G.J.W.M.; Christensen, T.M.I.E.; Schols, H.A.; Mikkelsen, J.D.; Voragen, A.G.J.

    2002-01-01

    A thorough investigation of the mode of action of Aspergillus niger (4M-147) pectin lyase A (PLA) on differently C6-substituted oligogalacturonides is described. PLA appeared to be very specific for fully methyl-esterified oligogalacturonides: removal of the methyl-ester or changing the type of

  5. Kinetic Resolution and Stereoselective Synthesis of 3-Substituted Aspartic Acids by Using Engineered Methylaspartate Ammonia Lyases

    NARCIS (Netherlands)

    Raj, Hans; Szymanski, Wiktor; Villiers, Jandré de; Puthan Veetil, Vinod; Quax, Wim J.; Shimamoto, Keiko; Janssen, Dick B.; Feringa, Ben L.; Poelarends, Gerrit J.

    2013-01-01

    Kinetic resolution and asymmetric synthesis of various valuable 3-substituted aspartic acids, which were obtained in fair to good yields with diastereomeric ratio values of up to >98:2 and enantiomeric excess values of up to >99 %, by using engineered methylaspartate ammonia lyases are described.

  6. Urea cycle disorder--argininosuccinic lyase deficiency.

    Science.gov (United States)

    Mehta, Neeta; Kirk, Pia Chatterjee; Holder, Ray; Precheur, Harry V

    2012-01-01

    An increased level of ammonia in the bloodstream, or hyperammonemia, is a symptom associated with metabolic disorders referred to as inborn errors of metabolism. Urea cycle disorder is a congenital abnormality or absence of one of the six enzymes involved in the elimination of ammonia. Administration of certain medications, high protein diet, excessive exercise, surgical procedures, or trauma can precipitate symptoms of mental confusion, seizure-like activity, and ataxia. This paper reviews the literature with insight into current treatment and management options of the disorder and modification of treatment for the dental patient. © 2012 Special Care Dentistry Association and Wiley Periodicals, Inc.

  7. Genetics Home Reference: adenylosuccinate lyase deficiency

    Science.gov (United States)

    ... during fetal development and a small head size ( microcephaly ). Affected newborns have severe encephalopathy, which leads to ... severe psychomotor delay, weak muscle tone (hypotonia), and microcephaly. Many affected infants develop recurrent seizures that are ...

  8. Enantioselective Synthesis of Various Cyanohydrins Using Covalently Immobilized Preparations of Hydroxynitrile Lyase from Prunus dulcis.

    Science.gov (United States)

    Alagöz, Dilek; Tükel, S Seyhan; Yildirim, Deniz

    2015-11-01

    The carrier-based and carrier-free (cross-linked enzyme aggregate) covalent immobilizations of Prunus dulcis hydroxynitrile lyase were investigated. The immobilized preparations were tested for enantioselective carbon-carbon bond formation activity in the biphasic medium. Of the tested preparations, only cross-linked enzyme aggregate of P. dulcis hydroxynitrile lyase (PdHNL-CLEA) achieved the synthesis of (R)-mandelonitrile with 93% yield and 99% enantiopurity. PdHNL-CLEA was also used in the synthesis of various (R)-cyanohydrins from corresponding aldehydes/ketones and hydrocyanic acid. When 4-methoxybenzaldehyde, 4-methyl benzaldehyde, and 4-hydroxybenzaldehyde were used as substrates, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were obtained as 95-95, 85-79, and 2-25%, respectively, after 96 h at pH 4.0 and 5 °C. For acetophenone, 4-fluoroacetophenone, 4-chloroacetophenone, 4-bromoacetophenone, and 4-iodoacetophenone, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were 1-99, 20-84, 11-95, 5-99, and 3-24%, respectively at the same conditions. The results demonstrate PdHNL-CLEA can be effectively used in the synthesis of (R)-mandelonitrile.

  9. Diversity of function in the isocitrate lyase enzyme superfamily: the Dianthus caryophyllus petal death protein cleaves alpha-keto and alpha-hydroxycarboxylic acids.

    Science.gov (United States)

    Lu, Zhibing; Feng, Xiaohua; Song, Ling; Han, Ying; Kim, Alexander; Herzberg, Osnat; Woodson, William R; Martin, Brian M; Mariano, Patrick S; Dunaway-Mariano, Debra

    2005-12-20

    The work described in this paper was carried out to define the chemical function a new member of the isocitrate lyase enzyme family derived from the flowering plant Dianthus caryophyllus. This protein (Swiss-Prot entry Q05957) is synthesized in the senescent flower petals and is named the "petal death protein" or "PDP". On the basis of an analysis of the structural contexts of sequence markers common to the C-C bond lyases of the isocitrate lyase/phosphoenolpyruvate mutase superfamily, a substrate screen that employed a (2R)-malate core structure was designed. Accordingly, stereochemically defined C(2)- and C(3)-substituted malates were synthesized and tested as substrates for PDP-catalyzed cleavage of the C(2)-C(3) bond. The screen identified (2R)-ethyl, (3S)-methylmalate, and oxaloacetate [likely to bind as the hydrate, C(2)(OH)(2) gem-diol] as the most active substrates (for each, k(cat)/K(m) = 2 x 10(4) M(-)(1) s(-)(1)). In contrast to the stringent substrate specificities previously observed for the Escherichia coli isocitrate and 2-methylisocitrate lyases, the PDP tolerated hydrogen, methyl, and to a much lesser extent acetate substituents at the C(3) position (S configuration only) and hydoxyl, methyl, ethyl, propyl, and to a much lesser extent isobutyl substituents at C(2) (R configuration only). It is hypothesized that PDP functions in oxalate production in Ca(2+) sequestering and/or in carbon scavenging from alpha-hydroxycarboxylate catabolites during the biochemical transition accompanying petal senescence.

  10. PecS and PecT coregulate the synthesis of HrpN and pectate lyases, two virulence determinants in Erwinia chrysanthemi 3937.

    Science.gov (United States)

    Nasser, William; Reverchon, Sylvie; Vedel, Regine; Boccara, Martine

    2005-11-01

    Erwinia chrysanthemi strain 3937 is a necrotrophic bacterial plant pathogen. Pectinolytic enzymes and, in particular, pectate lyases play a key role in soft rot symptoms; however, the efficient colonization of plants by E. chrysanthemi requires additional factors. These factors include HrpN (harpin), a heat-stable, glycine-rich hydrophilic protein, which is secreted by the type III secretion system. We investigated the expression of hrpN in E. chrysanthemi 3937 in various environmental conditions and different regulatory backgrounds. Using lacZ fusions, hrpN expression was markedly influenced by the carbon source, osmolarity, growth phase, and growth substrate. hrpN was repressed when pectinolysis started and negatively regulated by the repressors of pectate lyase synthesis, PecS and PecT. Primer extension data and in vitro DNA-protein interaction experiments support a model whereby PecS represses hrpN expression by binding to the hrpN regulatory region and inhibiting transcript elongation. The results suggest coordinated regulation of HrpN and pectate lyases by PecS and PecT. A putative model of the synthesis of these two virulence factors in E. chrysanthemi during pathogenesis is presented.

  11. Lactic acid bacteria involved in cocoa beans fermentation from Ivory Coast: Species diversity and citrate lyase production.

    Science.gov (United States)

    Ouattara, Hadja D; Ouattara, Honoré G; Droux, Michel; Reverchon, Sylvie; Nasser, William; Niamke, Sébastien L

    2017-09-01

    Microbial fermentation is an indispensable process for high quality chocolate from cocoa bean raw material. lactic acid bacteria (LAB) are among the major microorganisms responsible for cocoa fermentation but their exact role remains to be elucidated. In this study, we analyzed the diversity of LAB in six cocoa producing regions of Ivory Coast. Ribosomal 16S gene sequence analysis showed that Lactobacillus plantarum and Leuconostoc mesenteroides are the dominant LAB species in these six regions. In addition, other species were identified as the minor microbial population, namely Lactobacillus curieae, Enterococcus faecium, Fructobacillus pseudoficulneus, Lactobacillus casei, Weissella paramesenteroides and Weissella cibaria. However, in each region, the LAB microbial population was composed of a restricted number of species (maximum 5 species), which varied between the different regions. LAB implication in the breakdown of citric acid was investigated as a fundamental property for a successful cocoa fermentation process. High citrate lyase producer strains were characterized by rapid citric acid consumption, as revealed by a 4-fold decrease in citric acid concentration in the growth medium within 12h, concomitant with an increase in acetic acid and lactic acid concentration. The production of citrate lyase was strongly dependent on environmental conditions, with optimum production at acidic pH (pHfermentation. This study reveals that one of the major roles of LAB in the cocoa fermentation process involves the breakdown of citric acid during the early stage of cocoa fermentation through the activity of citrate lyase. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Possible regulatory role of phenylalanine ammonia-lyase in the production of anthocyanins in asparagus (Asparagus officinalis L)

    NARCIS (Netherlands)

    Flores, F.B.; Oosterhaven, J.; Martinez-Madrid, M.C.; Romojaro, F.

    2005-01-01

    The regulatory role of phenylalanine ammonia-lyase (PAL) in the light-induced accumulation of anthocyanins in the epidermis of asparagus spears has been analysed. A correlation between the stimulation of PAL activity and the rise in total anthocyanin content has been observed. Light radiation

  13. Unstable argininosuccinate lyase in variant forms of the urea cycle disorder argininosuccinic aciduria.

    Science.gov (United States)

    Hu, Liyan; Pandey, Amit V; Balmer, Cécile; Eggimann, Sandra; Rüfenacht, Véronique; Nuoffer, Jean-Marc; Häberle, Johannes

    2015-09-01

    Loss of function of the urea cycle enzyme argininosuccinate lyase (ASL) is caused by mutations in the ASL gene leading to ASL deficiency (ASLD). ASLD has a broad clinical spectrum ranging from life-threatening severe neonatal to asymptomatic forms. Different levels of residual ASL activity probably contribute to the phenotypic variability but reliable expression systems allowing clinically useful conclusions are not yet available. In order to define the molecular characteristics underlying the phenotypic variability, we investigated all ASL mutations that were hitherto identified in patients with late onset or mild clinical and biochemical courses by ASL expression in human embryonic kidney 293 T cells. We found residual activities >3% of ASL wild type (WT) in nine of 11 ASL mutations. Six ASL mutations (p.Arg95Cys, p.Ile100Thr, p.Val178Met, p.Glu189Gly, p.Val335Leu, and p.Arg379Cys) with residual activities ≥16% of ASL WT showed no significant or less than twofold reduced Km values, but displayed thermal instability. Computational structural analysis supported the biochemical findings by revealing multiple effects including protein instability, disruption of ionic interactions and hydrogen bonds between residues in the monomeric form of the protein, and disruption of contacts between adjacent monomeric units in the ASL tetramer. These findings suggest that the clinical and biochemical course in variant forms of ASLD is associated with relevant residual levels of ASL activity as well as instability of mutant ASL proteins. Since about 30% of known ASLD genotypes are affected by mutations studied here, ASLD should be considered as a candidate for chaperone treatment to improve mutant protein stability.

  14. Cooperative functioning between phenylalanine ammonia lyase and isochorishmate synthase activities contributes to salicylic acid biosynthesis in soybean

    Science.gov (United States)

    Salicylic acid (SA), an essential regulator of plant defense, is derived from chorismate via either the phenylalanine ammonia lyase (PAL), or the isochorishmate synthase (ICS) catalyzed steps. The ICS pathway is thought to be the primary contributor of defense-related SA, at least in Arabidopsis. We...

  15. Molecular Pathways: Fumarate Hydratase-Deficient Kidney Cancer: Targeting the Warburg Effect in Cancer

    Science.gov (United States)

    Linehan, W. Marston; Rouault, Tracey A.

    2015-01-01

    Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is a hereditary cancer syndrome in which affected individuals are at risk for development of cutaneous and uterine leiomyomas and an aggressive form of type II papillary kidney cancer. HLRCC is characterized by germline mutation of the tricarboxylic acid cycle (TCA) enzyme, fumarate hydratase (FH). FH-deficient kidney cancer is characterized by impaired oxidative phosphorylation and a metabolic shift to aerobic glycolysis, a form of metabolic reprogramming referred to as the Warburg effect. Increased glycolysis generates ATP needed for increased cell proliferation. In FH-deficient kidney cancer levels of AMPK, a cellular energy sensor, are decreased; resulting in diminished p53 levels, decreased expression of the iron importer, DMT1, leading to low cellular iron levels, and to enhanced fatty acid synthesis by diminishing phosphorylation of acetyl CoA carboxylase, a rate limiting step for fatty acid synthesis. Increased fumarate and decreased iron levels in FH-deficient kidney cancer cells inactivate prolyl hydroxylases, leading to stabilization of HIF1α, and increased expression of genes such as vascular endothelial growth factor (VEGF) and GLUT1 to provide fuel needed for rapid growth demands. Several therapeutic approaches for targeting the metabolic basis of FH-deficient kidney cancer are under development or are being evaluated in clinical trials, including the use of agents such as metformin, which would reverse the inactivation of AMPK, approaches to inhibit glucose transport, LDH-A, the anti-oxidant response pathway, the heme oxygenase pathway and approaches to target the tumor vasculature and glucose transport with agents such as bevacizumab and erlotinib. These same types of metabolic shifts, to aerobic glycolysis with decreased oxidative phosphorylation, have been found in a wide variety of other cancer types. Targeting the metabolic basis of a rare cancer such as fumarate hydratase-deficient

  16. Murine FATP alleviates growth and biochemical deficiencies of yeast fat1Delta strains

    DEFF Research Database (Denmark)

    Dirusso, C C; Connell, E J; Færgeman, Nils J.

    2000-01-01

    following incubation of the cells with exogenous oleate. Expression of either Fat1p or murine FATP from a plasmid in a fat1Delta strain restored these phenotypic and biochemical deficiencies. Fat1p and FATP restored growth of fat1Delta cells in the presence of cerulenin and under hypoxic conditions....... Furthermore, fatty-acid transport was restored and was found to be chain length specific: octanoate, a medium-chain fatty acid was transported in a Fat1p- and FATP-independent manner while the long-chain fatty acids myristate, palmitate, and oleate required either Fat1p or FATP for maximal levels of transport....... Lignoceryl CoA synthetase activities were restored to wild-type levels in fat1Delta strains expressing either Fat1p or FATP. Fat1p or FATP also restored wild-type levels of beta-oxidation of exogenous long-chain fatty acids. These data show that Fat1p and FATP are functionally equivalent when expressed...

  17. AMP-acetyl CoA synthetase from Leishmania donovani: identification and functional analysis of 'PX4GK' motif.

    Science.gov (United States)

    Soumya, Neelagiri; Kumar, I Sravan; Shivaprasad, S; Gorakh, Landage Nitin; Dinesh, Neeradi; Swamy, Kayala Kambagiri; Singh, Sushma

    2015-04-01

    An adenosine monophosphate forming acetyl CoA synthetase (AceCS) which is the key enzyme involved in the conversion of acetate to acetyl CoA has been identified from Leishmania donovani for the first time. Sequence analysis of L. donovani AceCS (LdAceCS) revealed the presence of a 'PX4GK' motif which is highly conserved throughout organisms with higher sequence identity (96%) to lower sequence identity (38%). A ∼ 77 kDa heterologous protein with C-terminal 6X His-tag was expressed in Escherichia coli. Expression of LdAceCS in promastigotes was confirmed by western blot and RT-PCR analysis. Immunolocalization studies revealed that it is a cytosolic protein. We also report the kinetic characterization of recombinant LdAceCS with acetate, adenosine 5'-triphosphate, coenzyme A and propionate as substrates. Site directed mutagenesis of residues in conserved PX4GK motif of LdAceCS was performed to gain insight into its potential role in substrate binding, catalysis and its role in maintaining structural integrity of the protein. P646A, G651A and K652R exhibited more than 90% loss in activity signifying its indispensible role in the enzyme activity. Substitution of other residues in this motif resulted in altered substrate specificity and catalysis. However, none of them had any role in modulation of the secondary structure of the protein except G651A mutant. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. RNAi inhibition of feruloyl CoA 6'-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots.

    Science.gov (United States)

    Liu, Shi; Zainuddin, Ima M; Vanderschuren, Herve; Doughty, James; Beeching, John R

    2017-05-01

    Cassava (Manihot esculenta Crantz) is a major world crop, whose storage roots provide food for over 800 million throughout the humid tropics. Despite many advantages as a crop, the development of cassava is seriously constrained by the rapid post-harvest physiological deterioration (PPD) of its roots that occurs within 24-72 h of harvest, rendering the roots unpalatable and unmarketable. PPD limits cassava's marketing possibilities in countries that are undergoing increased development and urbanisation due to growing distances between farms and consumers. The inevitable wounding of the roots caused by harvesting triggers an oxidative burst that spreads throughout the cassava root, together with the accumulation of secondary metabolites including phenolic compounds, of which the coumarin scopoletin (7-hydroxy-6-methoxy-2H-1-benzopyran-2-one) is the most abundant. Scopoletin oxidation yields a blue-black colour, which suggests its involvement in the discoloration observed during PPD. Feruloyl CoA 6'-hydroxylase is a controlling enzyme in the biosynthesis of scopoletin. The cassava genome contains a seven membered family of feruloyl CoA 6'-hydroxylase genes, four of which are expressed in the storage root and, of these, three were capable of functionally complementing Arabidopsis T-DNA insertion mutants in this gene. A RNA interference construct, designed to a highly conserved region of these genes, was used to transform cassava, where it significantly reduced feruloyl CoA 6'-hydroxylase gene expression, scopoletin accumulation and PPD symptom development. Collectively, our results provide evidence that scopoletin plays a major functional role in the development of PPD symptoms, rather than merely paralleling symptom development in the cassava storage root.

  19. Increased protein expression of LHCG receptor and 17a-hydroxylase/17,20-lyase in human polycystic ovaries

    NARCIS (Netherlands)

    Comim, F.V.; Teerds, K.J.; Hardy, K.; Franks, S.

    2013-01-01

    STUDY QUESTION Does the expression of LHCG receptor (LHCGR) protein and key enzymes in the androgen biosynthetic pathway differ in normal human versus polycystic ovarian tissue? SUMMARY ANSWER LHCGR and 17a-hydroxylase/17-20-lyase (CYP17A1) protein levels are increased in polycystic ovaries (PCOs).

  20. Renal cysteine conjugate C-S lyase mediated toxicity of halogenated alkenes in primary cultures of human and rat proximal tubular cells.

    Science.gov (United States)

    McGoldrick, Trevor A; Lock, Edward A; Rodilla, Vicente; Hawksworth, Gabrielle M

    2003-07-01

    Proximal tubular cells from human (HPT) and rat (RPT) kidneys were isolated, grown to confluence and incubated with S-(1,2-dichlorovinyl)- l-cysteine (DCVC), S-(1,2,2-trichlorovinyl)- l-cysteine (TCVC), S-(1,1,2,2-tetrafluoroethyl)- l-cysteine (TFEC) and S-(2-chloro-1,1-difluorethyl)- l-cysteine (CDFEC), the cysteine conjugates of nephrotoxicants. The cultures were exposed to the conjugates for 12, 24 and 48 h and the toxicity determined using the MTT assay. All four conjugates caused dose-dependent toxicity to RPT cells over the range 50-1,000 microM, the order of toxicity being DCVC>TCVC>TFEC=CDFEC. The inclusion of aminooxyacetic acid (AOAA; 250 microM), an inhibitor of pyridoxal phosphate-dependent enzymes such as C-S lyase, afforded protection, indicating that C-S lyase has a role in the bioactivation of these conjugates. In HPT cultures only DCVC caused significant time- and dose-dependent toxicity. Exposure to DCVC (500 microM) for 48 h decreased cell viability to 7% of control cell values, whereas co-incubation of DCVC (500 microM) with AOAA (250 microM) resulted in cell viability of 71%. Human cultures were also exposed to S-(1,2-dichlorovinyl)-glutathione (DCVG). DCVG was toxic to HPT cells, but the onset of toxicity was delayed compared with the corresponding cysteine conjugate. AOAA afforded almost complete protection from DCVG toxicity. Acivicin (250 microM), an inhibitor of gamma-glutamyl transferase (gamma-GT), partially protected against DCVG (500 microM)-induced toxicity at 48 h (5% viability and 53% viability in the absence and presence of acivicin, respectively). These results suggest that DCVG requires processing by gamma-GT prior to bioactivation by C-S lyase in HPT cells. The activity of C-S lyase, using TFEC as a substrate, and glutamine transaminase K (GTK) was measured in rat and human cells with time in culture. C-S lyase activity in RPT and HPT cells decreased to approximately 30% of fresh cell values by the time the cells reached

  1. Abundance and genetic diversity of microbial polygalacturonase and pectate lyase in the sheep rumen ecosystem.

    Directory of Open Access Journals (Sweden)

    Peng Yuan

    Full Text Available Efficient degradation of pectin in the rumen is necessary for plant-based feed utilization. The objective of this study was to characterize the diversity, abundance, and functions of pectinases from microorganisms in the sheep rumen.A total of 103 unique fragments of polygalacturonase (PF00295 and pectate lyase (PF00544 and PF09492 genes were retrieved from microbial DNA in the rumen of a Small Tail Han sheep, and 66% of the sequences of these fragments had low identities (<65% with known sequences. Phylogenetic tree building separated the PF00295, PF00544, and PF09492 sequences into five, three, and three clades, respectively. Cellulolytic and noncellulolytic Butyrivibrio, Prevotella, and Fibrobacter species were the major sources of the pectinases. The two most abundant pectate lyase genes were cloned, and their protein products, expressed in Escherichia coli, were characterized. Both enzymes probably act extracellularly as their nucleotide sequences contained signal sequences, and they had optimal activities at the ruminal physiological temperature and complementary pH-dependent activity profiles.This study reveals the specificity, diversity, and abundance of pectinases in the rumen ecosystem and provides two additional ruminal pectinases for potential industrial use under physiological conditions.

  2. Inhibitory effect on in vitro LDL oxidation and HMG Co-A reductase activity of the liquid-liquid partitioned fractions of Hericium erinaceus (Bull.) Persoon (lion's mane mushroom).

    Science.gov (United States)

    Rahman, Mohammad Azizur; Abdullah, Noorlidah; Aminudin, Norhaniza

    2014-01-01

    Oxidation of low-density lipoprotein (LDL) has been strongly suggested as the key factor in the pathogenesis of atherosclerosis. Mushrooms have been implicated in having preventive effects against chronic diseases due especially to their antioxidant properties. In this study, in vitro inhibitory effect of Hericium erinaceus on LDL oxidation and the activity of the cholesterol biosynthetic key enzyme, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG Co-A) reductase, was evaluated using five liquid-liquid solvent fractions consisting of methanol : dichloromethane (M : DCM), hexane (HEX), dichloromethane (DCM), ethyl acetate (EA), and aqueous residue (AQ). The hexane fraction showed the highest inhibition of oxidation of human LDL as reflected by the increased lag time (100 mins) for the formation of conjugated diene (CD) at 1 µg/mL and decreased production (68.28%, IC50 0.73 mg/mL) of thiobarbituric acid reactive substances (TBARS) at 1 mg/mL. It also mostly inhibited (59.91%) the activity of the HMG Co-A reductase at 10 mg/mL. The GC-MS profiling of the hexane fraction identified the presence of myconutrients: inter alia, ergosterol and linoleic acid. Thus, hexane fraction of Hericium erinaceus was found to be the most potent in vitro inhibitor of both LDL oxidation and HMG Co-A reductase activity having therapeutic potential for the prevention of oxidative stress-mediated vascular diseases.

  3. Seventeen Alpha-hydroxylase Deficiency

    Directory of Open Access Journals (Sweden)

    Siew-Lee Wong

    2006-01-01

    Full Text Available Seventeen a-hydroxylase deficiency (17OHD is a rare form of congenital adrenal hyperplasia in which defects in the biosynthesis of cortisol and sex steroid result in mineralocorticoid excess, hypokalemic hypertension and sexual abnormalities such as pseudohermaphroditism in males, and sexual infantilism in females. The disease is inherited in an autosomal recessive pattern, and is caused by mutations in the gene encoding cytochrome P450c17 (CYP17, which is the single polypeptide that mediates both 17α-hydroxylase and 17,20-lyase activities. We report the case of a 15-year-old patient with 17OHD who had a female phenotype but male karyotype (46,XY. The diagnosis was made based on classical clinical features, biochemical data and molecular genetic study. Two mutations were identified by polymerase chain reaction amplification and sequencing, including a S106P point mutation in exon 2 and a 9-bp (GACTCTTTC deletion from nucleotide position 1519 in exon 8 of CYP17. The first of these mutations was found in the father and the second in the mother, and both have been previously reported in Asia. The patient's hypertension and hypokalemia resolved after glucocorticoid replacement and treatment with potassium-sparing diuretics. Sex hormone replacement was prescribed for induction of sexual development and reduction of the final height. Prophylactic gonadectomy was scheduled. In summary, 17OHD should be suspected in patients with hypokalemic hypertension and lack of secondary sexual development so that appropriate therapy can be implemented.

  4. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E.

    NARCIS (Netherlands)

    Boxma, B.; Voncken, F.L.M.; Jannink, S.A.; Alen, T.A. van; Akhmanova, A.S.; Weelden, S.W. van; Hellemond, J.J. van; Ricard, G.N.S.; Huynen, M.A.; Tielens, A.G.; Hackstein, J.H.P.

    2004-01-01

    Anaerobic chytridiomycete fungi possess hydrogenosomes, which generate hydrogen and ATP, but also acetate and formate as end-products of a prokaryotic-type mixed-acid fermentation. Notably, the anaerobic chytrids Piromyces and Neocallimastix use pyruvate:formate lyase (PFL) for the catabolism of

  5. Identification, expression, and characterization of a novel bacterial RGI Lyase enzyme for the production of bio-functional fibers

    DEFF Research Database (Denmark)

    da Silva, Ines Isabel Cardoso Rodrigues; Larsen, Dorte Møller; Meyer, Anne S.

    2011-01-01

    A gene encoding a putative rhamnogalacturonan I (RGI) Lyase (EC 4.2.2.-) from Bacillus licheniformis (DSM13) was selected after a homology search and phylogenetic analysis and optimized with respect to codon usage. The designed gene was transformed into Pichia pastoris and the enzyme was produced...

  6. Structural Insights Into The Bacterial Carbon-Phosphorus Lyase Machinery

    DEFF Research Database (Denmark)

    Brodersen, Ditlev Egeskov

    the proteins encoded in the phn operon act in concert to catabolise phosphonate remain unknown. We have determined the crystal structure of a 240 kDa Escherichia coli carbon-phosphorus lyase core complex at 1.7 Å and show that it comprises a highly intertwined network of subunits with several unexpected......Phosphonate compounds act as a nutrient source for some microorganisms when phosphate is limiting but require a specialised enzymatic machinery due to the presence of the highly stable carbon-phosphorus bond. Despite the fundamental importance to microbial metabolism, the details of how...... structural features. The complex contains at least two different active sites and suggest a revision of current models of carbon-phosphorus bond cleavage. Using electron microscopy, we map the binding site of an additional protein subunit, which may use ATP for driving conformational changes during...

  7. Five phosphonate operon gene products as components of a multi-subunit complex of the carbon-phosphorus lyase pathway

    DEFF Research Database (Denmark)

    Jochimsen, Bjarne; Lolle, Signe; McSorley, Fern R.

    2011-01-01

    Organophosphonate utilization by Escherichia coli requires the 14 cistrons of the phnCDEFGHIJKLMNOP operon, of which the carbon-phosphorus lyase has been postulated to consist of the seven polypeptides specified by phnG to phnM. A 5,660-bp DNA fragment encompassing phnGHIJKLM is cloned, followed...

  8. Exploration of swapping enzymatic function between two proteins: A simulation study of chorismate mutase and isochorismate pyruvate lyase

    Science.gov (United States)

    Choutko, Alexandra; Eichenberger, Andreas P; Gunsteren, Wilfred F; Dolenc, Jožica

    2013-01-01

    The enzyme chorismate mutase EcCM from Escherichia coli catalyzes one of the few pericyclic reactions in biology, the transformation of chorismate to prephenate. The isochorismate pyruvate lyase PchB from Pseudomonas aeroginosa catalyzes another pericyclic reaction, the isochorismate to salicylate transformation. Interestingly, PchB possesses weak chorismate mutase activity as well thus being able to catalyze two distinct pericyclic reactions in a single active site. EcCM and PchB possess very similar folds, despite their low sequence identity. Using molecular dynamics simulations of four combinations of the two enzymes (EcCM and PchB) with the two substrates (chorismate and isochorismate) we show that the electrostatic field due to EcCM at atoms of chorismate favors the chorismate to prephenate transition and that, analogously, the electrostatic field due to PchB at atoms of isochorismate favors the isochorismate to salicylate transition. The largest differences between EcCM and PchB in electrostatic field strengths at atoms of the substrates are found to be due to residue side chains at distances between 0.6 and 0.8 nm from particular substrate atoms. Both enzymes tend to bring their non-native substrate in the same conformation as their native substrate. EcCM and to a lower extent PchB fail in influencing the forces on and conformations of the substrate such as to favor the other chemical reaction (isochorismate pyruvate lyase activity for EcCM and chorismate mutase activity for PchB). These observations might explain the difficulty of engineering isochorismate pyruvate lyase activity in EcCM by solely mutating active site residues. PMID:23595942

  9. Exploration of swapping enzymatic function between two proteins: a simulation study of chorismate mutase and isochorismate pyruvate lyase.

    Science.gov (United States)

    Choutko, Alexandra; Eichenberger, Andreas P; van Gunsteren, Wilfred F; Dolenc, Jožica

    2013-06-01

    The enzyme chorismate mutase EcCM from Escherichia coli catalyzes one of the few pericyclic reactions in biology, the transformation of chorismate to prephenate. The isochorismate pyruvate lyase PchB from Pseudomonas aeroginosa catalyzes another pericyclic reaction, the isochorismate to salicylate transformation. Interestingly, PchB possesses weak chorismate mutase activity as well thus being able to catalyze two distinct pericyclic reactions in a single active site. EcCM and PchB possess very similar folds, despite their low sequence identity. Using molecular dynamics simulations of four combinations of the two enzymes (EcCM and PchB) with the two substrates (chorismate and isochorismate) we show that the electrostatic field due to EcCM at atoms of chorismate favors the chorismate to prephenate transition and that, analogously, the electrostatic field due to PchB at atoms of isochorismate favors the isochorismate to salicylate transition. The largest differences between EcCM and PchB in electrostatic field strengths at atoms of the substrates are found to be due to residue side chains at distances between 0.6 and 0.8 nm from particular substrate atoms. Both enzymes tend to bring their non-native substrate in the same conformation as their native substrate. EcCM and to a lower extent PchB fail in influencing the forces on and conformations of the substrate such as to favor the other chemical reaction (isochorismate pyruvate lyase activity for EcCM and chorismate mutase activity for PchB). These observations might explain the difficulty of engineering isochorismate pyruvate lyase activity in EcCM by solely mutating active site residues. © 2013 The Protein Society.

  10. Utilization of Glyphosate as Phosphate Source: Biochemistry and Genetics of Bacterial Carbon-Phosphorus Lyase

    Science.gov (United States)

    Zechel, David L.; Jochimsen, Bjarne

    2014-01-01

    SUMMARY After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses. PMID:24600043

  11. Expression and properties of the highly alkalophilic phenylalanine ammonia-lyase of thermophilic Rubrobacter xylanophilus.

    Directory of Open Access Journals (Sweden)

    Klaudia Kovács

    Full Text Available The sequence of a phenylalanine ammonia-lyase (PAL; EC: 4.3.1.24 of the thermophilic and radiotolerant bacterium Rubrobacter xylanophilus (RxPAL was identified by screening the genomes of bacteria for members of the phenylalanine ammonia-lyase family. A synthetic gene encoding the RxPAL protein was cloned and overexpressed in Escherichia coli TOP 10 in a soluble form with an N-terminal His6-tag and the recombinant RxPAL protein was purified by Ni-NTA affinity chromatography. The activity assay of RxPAL with l-phenylalanine at various pH values exhibited a local maximum at pH 8.5 and a global maximum at pH 11.5. Circular dichroism (CD studies showed that RxPAL is associated with an extensive α-helical character (far UV CD and two distinctive near-UV CD peaks. These structural characteristics were well preserved up to pH 11.0. The extremely high pH optimum of RxPAL can be rationalized by a three-dimensional homology model indicating possible disulfide bridges, extensive salt-bridge formation and an excess of negative electrostatic potential on the surface. Due to these properties, RxPAL may be a candidate as biocatalyst in synthetic biotransformations leading to unnatural l- or d-amino acids or as therapeutic enzyme in treatment of phenylketonuria or leukemia.

  12. Evaluation of the hydroxynitrile lyase activity in cell cultures of capulin (Prunus serotina).

    Science.gov (United States)

    Hernández, Liliana; Luna, Héctor; Navarro-Ocaña, Arturo; Olivera-Flores, Ma Teresa de Jesús; Ayala, Ivon

    2008-07-01

    Enzymatic preparations obtained from young plants and cell cultures of capulin were screened for hydroxynitrile lyase activity. The three week old plants, grown under sterile conditions, were used to establish a solid cell culture. Crude preparations obtained from this plant material were evaluated for the transformation of benzaldehyde to the corresponding cyanohydrin (mandelonitrile). The results show that the crude material from roots, stalks, and leaves of young plants and calli of roots, stalks, internodes and petioles biocatalyzed the addition of hydrogen cyanide (HCN) to benzaldehyde with a modest to excellent enantioselectivity.

  13. Sphingosine 1-phosphate lyase enzyme assay using a BODIPY-labeled substrate

    International Nuclear Information System (INIS)

    Bandhuvula, Padmavathi; Li Zaiguo; Bittman, Robert; Saba, Julie D.

    2009-01-01

    Sphingosine 1-phosphate lyase (SPL) is responsible for the irreversible catabolism of sphingosine 1-phosphate, which signals through five membrane receptors to mediate cell stress responses, angiogenesis, and lymphocyte trafficking. The standard assay for SPL activity utilizes a radioactive dihydrosphingosine 1-phosphate substrate and is expensive and cumbersome. In this study, we describe an SPL assay that employs an ω-labeled BODIPY-sphingosine 1-phosphate substrate, allowing fluorescent product detection by HPLC and incorporating advantages of the BODIPY fluorophore. The major aldehyde product is confirmed by reaction with 2,4-dinitrophenylhydrazine. The SPL-catalyzed reaction is linear over a 30 min time period and yields a K m of 35 μM for BODIPY-sphingosine 1-phosphate.

  14. Diagnostic utility of alpha-methylacyl CoA racemase (P504S) on prostate needle biopsy.

    Science.gov (United States)

    Jiang, Zhong; Woda, Bruce A

    2004-11-01

    Alpha-methylacyl CoA racemase (AMACR), also known as P504S, was identified by the analysis of cDNA library subtraction in conjunction with high throughput microarray screening from prostate tissue and has been proven to be one of the very few biomarkers that can distinguish cancer from benign cells with high sensitivity and specificity for prostate carcinoma. It is a successful example of the translation of molecular findings into clinical practice. This review focuses on the study of AMACR (P504S) expression in small focal prostate cancer and atypical small acinar proliferation (ASAP) on needle biopsies and emphasizes the utility of AMACR (P504S) in routine surgical pathology practice. We also discuss the potential pitfalls and caveats in the interpretation of immunostaining results.

  15. Biocatalysis of a Paclitaxel Analogue: Conversion of Baccatin III to N-Debenzoyl-N-(2-furoyl)paclitaxel and Characterization of an Amino Phenylpropanoyl CoA Transferase.

    Science.gov (United States)

    Thornburg, Chelsea K; Walter, Tyler; Walker, Kevin D

    2017-11-07

    In this study, we demonstrate an enzyme cascade reaction using a benzoate CoA ligase (BadA), a modified nonribosomal peptide synthase (PheAT), a phenylpropanoyltransferase (BAPT), and a benzoyltransferase (NDTNBT) to produce an anticancer paclitaxel analogue and its precursor from the commercially available biosynthetic intermediate baccatin III. BAPT and NDTNBT are acyltransferases on the biosynthetic pathway to the antineoplastic drug paclitaxel in Taxus plants. For this study, we addressed the recalcitrant expression of BAPT by expressing it as a soluble maltose binding protein fusion (MBP-BAPT). Further, the preparative-scale in vitro biocatalysis of phenylisoserinyl CoA using PheAT enabled thorough kinetic analysis of MBP-BAPT, for the first time, with the cosubstrate baccatin III. The turnover rate of MBP-BAPT was calculated for the product N-debenzoylpaclitaxel, a key intermediate to various bioactive paclitaxel analogues. MBP-BAPT also converted, albeit more slowly, 10-deacetylbaccatin III to N-deacyldocetaxel, a precursor of the pharmaceutical docetaxel. With PheAT available to make phenylisoserinyl CoA and kinetic characterization of MBP-BAPT, we used Michaelis-Menten parameters of the four enzymes to adjust catalyst and substrate loads in a 200-μL one-pot reaction. This multienzyme network produced a paclitaxel analogue N-debenzoyl-N-(2-furoyl)paclitaxel (230 ng) that is more cytotoxic than paclitaxel against certain macrophage cell types. Also in this pilot reaction, the versatile N-debenzoylpaclitaxel intermediate was made at an amount 20-fold greater than the N-(2-furoyl) product. This reaction network has great potential for optimization to scale-up production and is attractive in its regioselective O- and N-acylation steps that remove protecting group manipulations used in paclitaxel analogue synthesis.

  16. Metagenome Sequence Analysis of Filamentous Microbial Communities Obtained from Geochemically Distinct Geothermal Channels Reveals Specialization of Three Aquificales Lineages

    Directory of Open Access Journals (Sweden)

    Cristina eTakacs-vesbach

    2013-05-01

    Full Text Available The Aquificales are thermophilic microorganisms that inhabit hydrothermal systems worldwide and are considered one of the earliest lineages of the domain Bacteria. We analyzed metagenome sequence obtained from six thermal ‘filamentous streamer’ communities (~40 Mbp per site, which targeted three different groups of Aquificales found in Yellowstone National Park (YNP. Unassembled metagenome sequence and PCR-amplified 16S rRNA gene libraries revealed that acidic, sulfidic sites were dominated by Hydrogenobaculum (Aquificaceae populations, whereas the circumneutral pH (6.5 - 7.8 sites containing dissolved sulfide were dominated by Sulfurihydrogenibium spp. (Hydrogenothermaceae. Thermocrinis (Aquificaceae populations were found primarily in the circumneutral sites with undetectable sulfide, and to a lesser extent in one sulfidic system at pH 8. Phylogenetic analysis of assembled sequence containing 16S rRNA genes as well as conserved protein-encoding genes revealed that the composition and function of these communities varied across geochemical conditions. Each Aquificales lineage contained genes for CO2 fixation by the reverse TCA cycle, but only the Sulfurihydrogenibium populations perform citrate cleavage using ATP citrate lyase (Acl. The Aquificaceae populations use an alternative pathway catalyzed by two separate enzymes, citryl CoA synthetase (Ccs and citryl CoA lyase (Ccl. All three Aquificales lineages contained evidence of aerobic respiration, albeit due to completely different types of heme Cu oxidases (subunit I involved in oxygen reduction. The distribution of Aquificales populations and differences among functional genes involved in energy generation and electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, H2, O2 have resulted in niche specialization among members of the Aquificales.

  17. Exercise Increases Cystathionine-γ-lyase Expression and Decreases the Status of Oxidative Stress in Myocardium of Ovariectomized Rats.

    Science.gov (United States)

    Tang, Zhiping; Wang, Yujun; Zhu, Xiaoyan; Ni, Xin; Lu, Jianqiang

    2016-01-01

    Exercise could be a therapeutic approach for cardiovascular dysfunction induced by estrogen deficiency. Our previous study has shown that estrogen maintains cystathionine-γ-lyase (CSE) expression and inhibits oxidative stress in the myocardium of female rats. In the present study, we investigated whether exercise improves CSE expression and oxidative stress status and ameliorates isoproterenol (ISO)-induced cardiac damage in ovariectomized (OVX) rats. The results showed that treadmill training restored the ovariectomy-induced reduction of CSE and estrogen receptor (ER)α and decrease of total antioxidant capacity (T-AOC) and increase of malondialdehyde (MDA). The level of CSE was positively correlated to T-AOC and ERα while inversely correlated to MDA. OVX rats showed increases in the serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH) and the percentage of TUNEL staining in myocardium upon ISO insult compared to sham rats. Exercise training significantly reduced the serum levels of LDH and CK and the percentage of TUNEL staining in myocardium upon ISO insult in OVX rats. In cultured cardiomyocytes, ISO treatment decreased cell viability and increased LDH release, while overexpression of CSE increased cell viability and decreased LDH release in the cells upon ISO insult. The results suggest that exercise training improves the oxidative stress status and ameliorates the cardiac damage induced by oxidative stress in OVX rats. The improvement of oxidative stress status by exercise might be at least partially due to upregulation of CSE/H2S signaling.

  18. Inhibitory Effect on In Vitro LDL Oxidation and HMG Co-A Reductase Activity of the Liquid-Liquid Partitioned Fractions of Hericium erinaceus (Bull. Persoon (Lion’s Mane Mushroom

    Directory of Open Access Journals (Sweden)

    Mohammad Azizur Rahman

    2014-01-01

    Full Text Available Oxidation of low-density lipoprotein (LDL has been strongly suggested as the key factor in the pathogenesis of atherosclerosis. Mushrooms have been implicated in having preventive effects against chronic diseases due especially to their antioxidant properties. In this study, in vitro inhibitory effect of Hericium erinaceus on LDL oxidation and the activity of the cholesterol biosynthetic key enzyme, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG Co-A reductase, was evaluated using five liquid-liquid solvent fractions consisting of methanol : dichloromethane (M : DCM, hexane (HEX, dichloromethane (DCM, ethyl acetate (EA, and aqueous residue (AQ. The hexane fraction showed the highest inhibition of oxidation of human LDL as reflected by the increased lag time (100 mins for the formation of conjugated diene (CD at 1 µg/mL and decreased production (68.28%, IC50 0.73 mg/mL of thiobarbituric acid reactive substances (TBARS at 1 mg/mL. It also mostly inhibited (59.91% the activity of the HMG Co-A reductase at 10 mg/mL. The GC-MS profiling of the hexane fraction identified the presence of myconutrients: inter alia, ergosterol and linoleic acid. Thus, hexane fraction of Hericium erinaceus was found to be the most potent in vitro inhibitor of both LDL oxidation and HMG Co-A reductase activity having therapeutic potential for the prevention of oxidative stress-mediated vascular diseases.

  19. Crystal Structure of α-1,4-Glucan Lyase, a Unique Glycoside Hydrolase Family Member with a Novel Catalytic Mechanism

    NARCIS (Netherlands)

    Rozeboom, Henriëtte J.; Yu, Shukun; Madrid, Susan; Kalk, Kor H.; Zhang, Ran; Dijkstra, Bauke W.

    2013-01-01

    α-1,4-Glucan lyase (EC 4.2.2.13) from the red seaweed Gracilariopsis lemaneiformis cleaves α-1,4-glucosidic linkages in glycogen, starch, and malto-oligosaccharides, yielding the keto-monosaccharide 1,5-anhydro-D-fructose. The enzyme belongs to glycoside hydrolase family 31 (GH31) but degrades

  20. Epigenetic regulation of pro-inflammatory cytokine secretion by sphingosine 1-phosphate (S1P) in acute lung injury: Role of S1P lyase.

    Science.gov (United States)

    Ebenezer, David L; Fu, Panfeng; Suryadevara, Vidyani; Zhao, Yutong; Natarajan, Viswanathan

    2017-01-01

    Cellular level of sphingosine-1-phosphate (S1P), the simplest bioactive sphingolipid, is tightly regulated by its synthesis catalyzed by sphingosine kinases (SphKs) 1 & 2 and degradation mediated by S1P phosphatases, lipid phosphate phosphatases, and S1P lyase. The pleotropic actions of S1P are attributed to its unique inside-out (extracellular) signaling via G-protein-coupled S1P1-5 receptors, and intracellular receptor independent signaling. Additionally, S1P generated in the nucleus by nuclear SphK2 modulates HDAC1/2 activity, regulates histone acetylation, and transcription of pro-inflammatory genes. Here, we present data on the role of S1P lyase mediated S1P signaling in regulating LPS-induced inflammation in lung endothelium. Blocking S1P lyase expression or activity attenuated LPS-induced histone acetylation and secretion of pro-inflammatory cytokines. Degradation of S1P by S1P lyase generates Δ2-hexadecenal and ethanolamine phosphate and the long-chain fatty aldehyde produced in the cytoplasmic compartment of the endothelial cell seems to modulate histone acetylation pattern, which is different from the nuclear SphK2/S1P signaling and inhibition of HDAC1/2. These in vitro studies suggest that S1P derived long-chain fatty aldehyde may be an epigenetic regulator of pro-inflammatory genes in sepsis-induced lung inflammation. Trapping fatty aldehydes and other short chain aldehydes such as 4-hydroxynonenal derived from S1P degradation and lipid peroxidation, respectively by cell permeable agents such as phloretin or other aldehyde trapping agents may be useful in treating sepsis-induced lung inflammation via modulation of histone acetylation. . Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Nitric-oxide supplementation for treatment of long-term complications in argininosuccinic aciduria

    Science.gov (United States)

    Argininosuccinate lyase (ASL) is required for the synthesis and channeling of L-arginine to nitric oxide synthase (NOS) for nitric oxide (NO) production. Congenital ASL deficiency causes argininosuccinic aciduria (ASA), the second most common urea cycle disorder, and leads to deficiency of both urea...

  2. C12 derivatives of the hydroperoxide lyase pathway are produced by product recycling through lipoxygenase-2 in Nicotiana attenuata leaves

    NARCIS (Netherlands)

    Kallenbach, M.; Gilardoni, P.A.; Allmann, S.; Baldwin, I.T.; Bonaventure, G.

    2011-01-01

    In response to diverse stresses, the hydroperoxide lyase (HPL) pathway produces C(6) aldehydes and 12-oxo-(9Z )-dodecenoic acid ((9Z )-traumatin). Since the original characterization of (10E )-traumatin and traumatic acid, little has been added to our knowledge of the metabolism and fluxes

  3. Understanding the role of argininosuccinate lyase transcript variants in the clinical and biochemical variability of the urea cycle disorder argininosuccinic aciduria.

    Science.gov (United States)

    Hu, Liyan; Pandey, Amit V; Eggimann, Sandra; Rüfenacht, Véronique; Möslinger, Dorothea; Nuoffer, Jean-Marc; Häberle, Johannes

    2013-11-29

    Argininosuccinic aciduria (ASA) is an autosomal recessive urea cycle disorder caused by deficiency of argininosuccinate lyase (ASL) with a wide clinical spectrum from asymptomatic to severe hyperammonemic neonatal onset life-threatening courses. We investigated the role of ASL transcript variants in the clinical and biochemical variability of ASA. Recombinant proteins for ASL wild type, mutant p.E189G, and the frequently occurring transcript variants with exon 2 or 7 deletions were (co-)expressed in human embryonic kidney 293T cells. We found that exon 2-deleted ASL forms a stable truncated protein with no relevant activity but a dose-dependent dominant negative effect on enzymatic activity after co-expression with wild type or mutant ASL, whereas exon 7-deleted ASL is unstable but seems to have, nevertheless, a dominant negative effect on mutant ASL. These findings were supported by structural modeling predictions for ASL heterotetramer/homotetramer formation. Illustrating the physiological relevance, the predominant occurrence of exon 7-deleted ASL was found in two patients who were both heterozygous for the ASL mutant p.E189G. Our results suggest that ASL transcripts can contribute to the highly variable phenotype in ASA patients if expressed at high levels. Especially, the exon 2-deleted ASL variant may form a heterotetramer with wild type or mutant ASL, causing markedly reduced ASL activity.

  4. Molecular cloning and characterization of l-methionine γ-lyase from Streptomyces avermitilis.

    Science.gov (United States)

    Kudou, Daizou; Yasuda, Eri; Hirai, Yoshiyuki; Tamura, Takashi; Inagaki, Kenji

    2015-10-01

    A pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) was cloned from Streptomyces avermitilis catalyzed the degradation of methionine to α-ketobutyrate, methanethiol, and ammonia. The sav7062 gene (1,242 bp) was corresponded to 413 amino acid residues with a molecular mass of 42,994 Da. The deduced amino acid sequence showed a high degree of similarity to those of other MGL enzymes. The sav7062 gene was overexpressed in Escherichia coli. The enzyme was purified to homogeneity and exhibited the MGL catalytic activities. We cloned the enzyme that has the MGL activity in Streptomyces for the first time. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. A second pectin lyase gene (pel2) from Aspergillus oryzae KBN616: its sequence analysis and overexpression, and characterization of the gene products.

    Science.gov (United States)

    Kitamoto, N; Yoshino-Yasuda, S; Ohmiya, K; Tsukagoshi, N

    2001-01-01

    A second pectin lyase gene, designated pel2, was isolated from a shoyu koji mold Aspergillus oryzae KBN616 and characterized. The structural gene comprised 1306 bp with three introns. The ORF encoded 375 amino acids with a signal peptide of 19 amino acids. The deduced amino acid sequence showed high similarity to those of A. oryzae Pel1, Aspergillus niger pectin lyases and Glomerella cingulata Pn1A. The pel2 gene was overexpressed under the control of the promoter of the A. oryzae TEF1 gene for purification and enzymatic characterization of its gene product. The gene product exhibited two molecular masses of 48 and 44 kDa due to different degrees of glycosylation. Both proteins had the same pH optimum of 6.0 and temperature optimum of 50 degrees C.

  6. Fatty acid CoA ligase-4 gene polymorphism influences fatty acid metabolism in metabolic syndrome, but not in depression.

    Science.gov (United States)

    Zeman, Miroslav; Vecka, Marek; Jáchymová, Marie; Jirák, Roman; Tvrzická, Eva; Stanková, Barbora; Zák, Ales

    2009-04-01

    The composition of polyunsaturated fatty acids (PUFAs) in cell membranes and body tissues is altered in metabolic syndrome (MetS) and depressive disorder (DD). Within the cell, fatty acid coenzyme A (CoA) ligases (FACLs) activate PUFAs by esterifying with CoA. The FACL4 isoform prefers PUFAs (arachidonic and eicosapentaenoic acid) as substrates, and the FACL4 gene is mapped to Xq23. We have analyzed the association between the common single nucleotide polymorphism (SNP) (rs1324805, C to T substitution) in the first intron of the FACL4 gene and MetS or DD. The study included 113 healthy subjects (54 Males/59 Females), 56 MetS patients (34M/22F) and 41 DD patients (7M/34F). In MetS group, T-carriers and patients with CC or C0 (CC/C0) genotype did not differ in the values of metabolic indices of MetS and M/F ratio. Nevertheless, in comparison with CC/C0, the T-allele carriers were characterized by enhanced unfavorable changes in fatty acid metabolism typical for MetS: higher content of dihomogammalinolenic acid (P phosphatidylcholine (PC) (P = 0.052), lower index of Delta5 desaturation (P insulin, conjugated dienes and index of insulin resistance, but showed no significant association with the studied SNP. The present study shows that the common SNP (C to T substitution) in the first intron of the FACL4 gene is associated with altered FA composition of plasma phosphatidylcholines in patients with MetS.

  7. 1200 nt rat liver mRNA identified by differential hybridization exhibits coordinate regulation with 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase

    International Nuclear Information System (INIS)

    Tanaka, R.D.; Clarke, C.F.; Fogelman, A.M.; Edwards, P.A.

    1986-01-01

    Differential hybridization has been used to identify genes in rat liver that encode transcripts which are increased by the drugs cholestyramine and mevinolin and are decreased by dietary cholesterol. This approach should prove useful in isolating and identifying coordinately regulated genes involved in the isoprene biosynthetic pathway. Rat liver poly (A) + RNA was isolated from animals fed diets supplemented with either cholestyramine and mevinolin or with cholesterol. Radiolabeled cDNAs generated from these two RNA preparations were used to screen a rat cDNAs library. A preliminary screen of 10,000 recombinants has led to the identification of a clone with an insert of 1200 bp that hybridizes to a mRNA species of about 1200 nt. The level of this RNA species in rat liver is elevated by the drugs cholestyramine and mevinolin and is decreased by cholesterol feeding. This RNA species is also decreased by mevalonate administration to rats. The regulation of this 1200 nt mRNA species mirrors that of HMG CoA reductase and HMG CoA synthase. It seems very likely that this 1200 nt mRNA encodes a polypeptide which is involved in the isoprene biosynthetic pathway

  8. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    Science.gov (United States)

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  9. The effect of cadmium on phenylalanine ammonia lyase activity and lipid peroxidation in pepper (Capsicum annuum L. seedlings

    Directory of Open Access Journals (Sweden)

    Esra Koç

    2015-04-01

    Full Text Available In this study, the effect on differrent concentrations (20, 40, 80µM ve 100 µM CdCl2 of cadmium (CdCl2 on the activity of phenylalanine ammonia-lyase (PAL and lipid peroxidation amount in leaf and stem of Kahramanmaraş- Hot (Capsicum annum L. pepper seedlings were researched. Activity of phenylalanine ammonia-lyase (PAL, the first enzyme in the phenylpropanoid biosynthetic pathway, was increased at 2 and 4 days in KM-Hot plants exposed to CdCl2 stress. The highest PAL activity was detected in 20 μM CdCl2 application, on the four day after the application in the leaves of KM-Hot pepper. Moreover, it was observed that treatment of pepper with Cd led to an increased the rate of lipid peroxidation (which is indicated by increasing MDA content in the leaf and stem tissues. The highest MDA content was detected in 80 μM CdCl2 application, on the four day after the application in the leaf tissues. These results suggest that the activation of PAL may be associated with increased production of MDA

  10. Mini-review: recent developments in hydroxynitrile lyases for industrial biotechnology.

    Science.gov (United States)

    Lanfranchi, Elisa; Steiner, Kerstin; Glieder, Anton; Hajnal, Ivan; Sheldon, Roger A; van Pelt, Sander; Winkler, Margit

    2013-12-01

    Hydroxynitrile lyases (HNLs) catalyze the cleavage as well as the formation of cyanohydrins. The latter reaction is valuable for the stereoselective C-C bond formation by condensation of HCN with carbonyl compounds. The resulting cyanohydrins serve as versatile building blocks for a broad range of chemical and enzymatic follow-up reactions. A significant number of (R)- and (S)-selective HNLs are known today and the number is still increasing. HNLs not only exhibit varying substrate scope but also differ in sequence and structure. Tailor-made enzymes for large-scale manufacturing of cyanohydrins with improved yield and enantiomeric excess are very interesting targets, which is reflected in a solid number of patents. This review will complement and extend our recent review with a strong focus on applications of HNLs for the synthesis of highly functionalized, chiral compounds with newest literature, recent and current patent literature.

  11. Kinetic resolution and stereoselective synthesis of 3-substituted aspartic acids by using engineered methylaspartate ammonia lyases.

    Science.gov (United States)

    Raj, Hans; Szymanski, Wiktor; de Villiers, Jandré; Puthan Veetil, Vinod; Quax, Wim J; Shimamoto, Keiko; Janssen, Dick B; Feringa, Ben L; Poelarends, Gerrit J

    2013-08-19

    Enzymatic amino acid synthesis: Kinetic resolution and asymmetric synthesis of various valuable 3-substituted aspartic acids, which were obtained in fair to good yields with diastereomeric ratio values of up to >98:2 and enantiomeric excess values of up to >99 %, by using engineered methylaspartate ammonia lyases are described. These biocatalytic methodologies for the selective preparation of aspartic acid derivatives appear to be attractive alternatives for existing chemical methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cloning, expression and characterization of phenylalanine ammonia-lyase from Rhodotorula glutinis.

    Science.gov (United States)

    Zhu, Longbao; Cui, Wenjing; Fang, Yueqin; Liu, Yi; Gao, Xinxing; Zhou, Zhemin

    2013-05-01

    The industrial-scale production of phenylalanine ammonia-lyase (PAL) mainly uses strains of Rhodotorula. However, the PAL gene from Rhodotorula has not been cloned. Here, the full-length gene of PAL from Rhodotorula glutinis was isolated. It was 2,121 bp, encoding a polypeptide with 706 amino acids and a calculated MW of 75.5 kDa. Though R. glutinis is an anamorph of Rhodosporium toruloides, the amino acid sequences of PALs them are not the same (about 74 % identity). PAL was expressed in E. coli and characterized. Its specific activity was 4.2 U mg(-1) and the k cat/K m was 1.9 × 10(4) mM(-1) s(-1), exhibiting the highest catalytic ability among the reported PALs. The genetic and biochemical information reported here should facilitate future application in industry.

  13. Determination of the quantity of acetyl CoA carboxylase by [14C]methyl avidin binding

    International Nuclear Information System (INIS)

    Roman-Lopez, C.R.; Goodson, J.; Allred, J.B.

    1987-01-01

    Conditions are described under which monomeric [ 14 C]methyl avidin binds to SDS-denatured biotin enzymes and remains bound through polyacrylamide gel electrophoresis. The location of radioactive proteins on the dried gel was determined by fluorography and their identity was established by subunit molecular weight. The relative quantity of bound radioactive avidin, stoichiometrically equivalent to the molar quantity of biotin protein, can be determined by scanning the fluorograph with a soft laser densitometer. To determine the absolute quantity of biotin protein, the radioactive areas of the dried gel were cut out, resolubilized, and assayed for radioactivity. Since the specific radioactivity of the [ 14 C]methyl avidin was known, the quantity of avidin bound and therefore the quantity of biotin enzyme could be calculated. The method is illustrated by the analysis of purified acetyl CoA carboxylase and is applied to the analysis of biotin enzymes in isolated rat liver mitochondria

  14. Purification and characterization of selenocysteine beta-lyase from Citrobacter freundii

    International Nuclear Information System (INIS)

    Chocat, P.; Esaki, N.; Tanizawa, K.; Nakamura, K.; Tanaka, H.; Soda, K.

    1985-01-01

    The purification and characterization of bacterial selenocysteine beta-lyase, an enzyme which specifically catalyzes the cleavage of L-selenocysteine to L-alanine and Se0, are presented. The enzyme, purified to near homogeneity from Citrobacter freundii, is monomeric with a molecular weight of ca. 64,000 and contains 1 mol of pyridoxal 5'-phosphate as a cofactor per mol of enzyme. L-Selenocysteine is the sole substrate. L-Cysteine is a competitive inhibitor of the enzyme. The enzyme also catalyzes the alpha, beta elimination of beta-chloro-L-alanine to form NH 3 , pyruvate, and Cl- and is irreversibly inactivated during the reaction. The physicochemical properties, e.g., amino acid composition and subunit structure, of the bacterial enzyme are fairly different from those of the pig liver enzyme. However, the catalytic properties of both enzymes, e.g., substrate specificity and inactivation by the substrate or a mechanism-based inactivator, beta-chloro-L-alanine, are very similar

  15. Halothane effects on metabolic processes in cholinergic synaptosomes prepared from rat cerebra

    International Nuclear Information System (INIS)

    Johnson, G.V.W.

    1984-01-01

    Synaptosomes are an excellent model system for examining metabolic processes that occur in nerve endings. In this study they were used to examine the effects of halothane, an inhalational anesthetic, on metabolic processes associated with the synthesis of the neurotransmitter, acetylcholine. They were also used to study possible mechanisms involved with supplying the cytosol with activated acetyl groups produced in the mitochondria. In synaptosomes, halothane reversibly inhibits acetylcholine synthesis, and inhibits choline uptake in a competitive-like manner. It also depresses 14 CO 2 evolution from labeled pyruvate, glucose and succinate, decreases the activity of ATP-citrate lyase and pyruvate dehydrogenase, and completely inhibits pentose phosphate pathway activity. Halothane also significantly enhances glucose utilization and lactate production. However, halothane has no effect on choline acetyltransferases activity or total synaptosomal acetyl CoA levels. These alterations of metabolic processes leads to the suggestion that the primary effect of halothane is to decrease the NAD + /NADH potential, possibly resulting from mitochondrial NADH-CoQ reductase inhibition. This in combination with halothane's inhibition of choline transport would reduce the availability of both choline and acetyl CoA, precursors required for acetylcholine synthesis

  16. Molecular Cloning of cpcU and Heterodimeric Bilin Lyase Activity Analysis of CpcU and CpcS for Attachment of Phycocyanobilin to Cys-82 on the β-Subunit of Phycocyanin in Arthrospira platensis FACHB314

    Directory of Open Access Journals (Sweden)

    Fei Wu

    2016-03-01

    Full Text Available A new bilin lyase gene cpcU was cloned from Arthrospira platensis FACHB314 to study the assembly of the phycocyanin β-Subunit. Two recombinant plasmids, one contained the phycocyanobilin (PCB producing genes (hoxI and pcyA, while the other contained the gene of the β-Subunit of phycobiliprotein (cpcB and the lyase gene (cpcU, cpcS, or cpcU/S were constructed and separately transferred into Escherichia coli in order to test the activities of relevant lyases for catalyzing PCB addition to CpcB during synthesizing fluorescent β-PC of A. platensis FACHB314. The fluorescence intensity examination showed that Cys-82 maybe the active site for the β-Subunit binding to PCBs and the attachment could be carried out by CpcU, CpcS, or co-expressed cpcU/S in A. platensis FACHB314.

  17. Zinc deficiency promotes cystitis-related bladder pain by enhancing function and expression of Cav3.2 in mice.

    Science.gov (United States)

    Ozaki, Tomoka; Matsuoka, Junki; Tsubota, Maho; Tomita, Shiori; Sekiguchi, Fumiko; Minami, Takeshi; Kawabata, Atsufumi

    2018-01-15

    Ca v 3.2 T-type Ca 2+ channel activity is suppressed by zinc that binds to the extracellular histidine-191 of Ca v 3.2, and enhanced by H 2 S that interacts with zinc. Ca v 3.2 in nociceptors is upregulated in an activity-dependent manner. The enhanced Ca v 3.2 activity by H 2 S formed by the upregulated cystathionine-γ-lyase (CSE) is involved in the cyclophosphamide (CPA)-induced cystitis-related bladder pain in mice. We thus asked if zinc deficiency affects the cystitis-related bladder pain in mice by altering Ca v 3.2 function and/or expression. Dietary zinc deficiency for 2 weeks greatly decreased zinc concentrations in the plasma but not bladder tissue, and enhanced the bladder pain/referred hyperalgesia (BP/RH) following CPA at 200mg/kg, a subeffective dose, but not 400mg/kg, a maximal dose, an effect abolished by pharmacological blockade or gene silencing of Ca v 3.2. Acute zinc deficiency caused by systemic N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylendiamine (TPEN), a zinc chelator, mimicked the dietary zinc deficiency-induced Ca v 3.2-dependent promotion of BP/RH following CPA at 200mg/kg. CPA at 400mg/kg alone or TPEN plus CPA at 200mg/kg caused Ca v 3.2 overexpression accompanied by upregulation of Egr-1 and USP5, known to promote transcriptional expression and reduce proteasomal degradation of Ca v 3.2, respectively, in the dorsal root ganglia (DRG). The CSE inhibitor, β-cyano-l-alanine, prevented the BP/RH and upregulation of Ca v 3.2, Egr-1 and USP5 in DRG following TPEN plus CPA at 200mg/kg. Together, zinc deficiency promotes bladder pain accompanying CPA-induced cystitis by enhancing function and expression of Ca v 3.2 in nociceptors, suggesting a novel therapeutic avenue for treatment of bladder pain, such as zinc supplementation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sexual Dimorphism in the Selenocysteine Lyase Knockout Mouse.

    Science.gov (United States)

    Ogawa-Wong, Ashley N; Hashimoto, Ann C; Ha, Herena; Pitts, Matthew W; Seale, Lucia A; Berry, Marla J

    2018-01-31

    Selenium (Se) is an essential micronutrient known for its antioxidant properties and health benefits, attributed to its presence in selenoproteins as the amino acid, selenocysteine. Selenocysteine lyase (Scly) catalyzes hydrolysis of selenocysteine to selenide and alanine, facilitating re-utilization of Se for de novo selenoprotein synthesis. Previously, it was reported that male Scly -/- mice develop increased body weight and body fat composition, and altered lipid and carbohydrate metabolism, compared to wild type mice. Strikingly, females appeared to present with a less severe phenotype, suggesting the relationship between Scly and energy metabolism may be regulated in a sex-specific manner. Here, we report that while body weight and body fat gain occur in both male and female Scly -/- mice, strikingly, males are susceptible to developing glucose intolerance, whereas female Scly -/- mice are protected. Because Se is critical for male reproduction, we hypothesized that castration would attenuate the metabolic dysfunction observed in male Scly -/- mice by eliminating sequestration of Se in testes. We report that fasting serum insulin levels were significantly reduced in castrated males compared to controls, but islet area was unchanged between groups. Finally, both male and female Scly -/- mice exhibit reduced hypothalamic expression of selenoproteins S, M, and glutathione peroxidase 1.

  19. Sexual Dimorphism in the Selenocysteine Lyase Knockout Mouse

    Directory of Open Access Journals (Sweden)

    Ashley N. Ogawa-Wong

    2018-01-01

    Full Text Available Selenium (Se is an essential micronutrient known for its antioxidant properties and health benefits, attributed to its presence in selenoproteins as the amino acid, selenocysteine. Selenocysteine lyase (Scly catalyzes hydrolysis of selenocysteine to selenide and alanine, facilitating re-utilization of Se for de novo selenoprotein synthesis. Previously, it was reported that male Scly−/− mice develop increased body weight and body fat composition, and altered lipid and carbohydrate metabolism, compared to wild type mice. Strikingly, females appeared to present with a less severe phenotype, suggesting the relationship between Scly and energy metabolism may be regulated in a sex-specific manner. Here, we report that while body weight and body fat gain occur in both male and female Scly−/− mice, strikingly, males are susceptible to developing glucose intolerance, whereas female Scly−/− mice are protected. Because Se is critical for male reproduction, we hypothesized that castration would attenuate the metabolic dysfunction observed in male Scly−/− mice by eliminating sequestration of Se in testes. We report that fasting serum insulin levels were significantly reduced in castrated males compared to controls, but islet area was unchanged between groups. Finally, both male and female Scly−/− mice exhibit reduced hypothalamic expression of selenoproteins S, M, and glutathione peroxidase 1.

  20. Intracellular long-chain acyl CoAs activate TRPV1 channels.

    Directory of Open Access Journals (Sweden)

    Yi Yu

    Full Text Available TRPV1 channels are an important class of membrane proteins that play an integral role in the regulation of intracellular cations such as calcium in many different tissue types. The anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2 is a known positive modulator of TRPV1 channels and the negatively charged phosphate groups interact with several basic amino acid residues in the proximal C-terminal TRP domain of the TRPV1 channel. We and other groups have shown that physiological sub-micromolar levels of long-chain acyl CoAs (LC-CoAs, another ubiquitous anionic lipid, can also act as positive modulators of ion channels and exchangers. Therefore, we investigated whether TRPV1 channel activity is similarly regulated by LC-CoAs. Our results show that LC-CoAs are potent activators of the TRPV1 channel and interact with the same PIP2-binding residues in TRPV1. In contrast to PIP2, LC-CoA modulation of TRPV1 is independent of Ca2+i, acting in an acyl side-chain saturation and chain-length dependent manner. Elevation of LC-CoAs in intact Jurkat T-cells leads to significant increases in agonist-induced Ca2+i levels. Our novel findings indicate that LC-CoAs represent a new fundamental mechanism for regulation of TRPV1 channel activity that may play a role in diverse cell types under physiological and pathophysiological conditions that alter fatty acid transport and metabolism such as obesity and diabetes.

  1. Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation.

    Directory of Open Access Journals (Sweden)

    Clément Chevalier

    2010-03-01

    Full Text Available Staphylococcus aureus RNAIII is the intracellular effector of the quorum sensing system that temporally controls a large number of virulence factors including exoproteins and cell-wall-associated proteins. Staphylocoagulase is one major virulence factor, which promotes clotting of human plasma. Like the major cell surface protein A, the expression of staphylocoagulase is strongly repressed by the quorum sensing system at the post-exponential growth phase. Here we used a combination of approaches in vivo and in vitro to analyze the mechanism used by RNAIII to regulate the expression of staphylocoagulase. Our data show that RNAIII represses the synthesis of the protein through a direct binding with the mRNA. Structure mapping shows that two distant regions of RNAIII interact with coa mRNA and that the mRNA harbors a conserved signature as found in other RNAIII-target mRNAs. The resulting complex is composed of an imperfect duplex masking the Shine-Dalgarno sequence of coa mRNA and of a loop-loop interaction occurring downstream in the coding region. The imperfect duplex is sufficient to prevent the formation of the ribosomal initiation complex and to repress the expression of a reporter gene in vivo. In addition, the double-strand-specific endoribonuclease III cleaves the two regions of the mRNA bound to RNAIII that may contribute to the degradation of the repressed mRNA. This study validates another direct target of RNAIII that plays a role in virulence. It also illustrates the diversity of RNAIII-mRNA topologies and how these multiple RNAIII-mRNA interactions would mediate virulence regulation.

  2. Storage Pool Deficiencies

    Science.gov (United States)

    ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ...

  3. Structural Snapshots of an Engineered Cystathionine-γ-lyase Reveal the Critical Role of Electrostatic Interactions in the Active Site

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wupeng; Stone, Everett; Zhang, Yan Jessie

    2017-02-01

    Enzyme therapeutics that can degrade l-methionine (l-Met) are of great interest as numerous malignancies are exquisitely sensitive to l-Met depletion. To exhaust the pool of methionine in human serum, we previously engineered an l-Met-degrading enzyme based on the human cystathionine-γ-lyase scaffold (hCGL-NLV) to circumvent immunogenicity and stability issues observed in the preclinical application of bacterially derived methionine-γ-lyases. To gain further insights into the structure–activity relationships governing the chemistry of the hCGL-NLV lead molecule, we undertook a biophysical characterization campaign that captured crystal structures (2.2 Å) of hCGL-NLV with distinct reaction intermediates, including internal aldimine, substrate-bound, gem-diamine, and external aldimine forms. Curiously, an alternate form of hCGL-NLV that crystallized under higher-salt conditions revealed a locally unfolded active site, correlating with inhibition of activity as a function of ionic strength. Subsequent mutational and kinetic experiments pinpointed that a salt bridge between the phosphate of the essential cofactor pyridoxal 5'-phosphate (PLP) and residue R62 plays an important role in catalyzing β- and γ-eliminations. Our study suggests that solvent ions such as NaCl disrupt electrostatic interactions between R62 and PLP, decreasing catalytic efficiency.

  4. Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers.

    Science.gov (United States)

    Klempien, Antje; Kaminaga, Yasuhisa; Qualley, Anthony; Nagegowda, Dinesh A; Widhalm, Joshua R; Orlova, Irina; Shasany, Ajit Kumar; Taguchi, Goro; Kish, Christine M; Cooper, Bruce R; D'Auria, John C; Rhodes, David; Pichersky, Eran; Dudareva, Natalia

    2012-05-01

    Biosynthesis of benzoic acid from Phe requires shortening of the side chain by two carbons, which can occur via the β-oxidative or nonoxidative pathways. The first step in the β-oxidative pathway is cinnamoyl-CoA formation, likely catalyzed by a member of the 4-coumarate:CoA ligase (4CL) family that converts a range of trans-cinnamic acid derivatives into the corresponding CoA thioesters. Using a functional genomics approach, we identified two potential CoA-ligases from petunia (Petunia hybrida) petal-specific cDNA libraries. The cognate proteins share only 25% amino acid identity and are highly expressed in petunia corollas. Biochemical characterization of the recombinant proteins revealed that one of these proteins (Ph-4CL1) has broad substrate specificity and represents a bona fide 4CL, whereas the other is a cinnamate:CoA ligase (Ph-CNL). RNA interference suppression of Ph-4CL1 did not affect the petunia benzenoid scent profile, whereas downregulation of Ph-CNL resulted in a decrease in emission of benzylbenzoate, phenylethylbenzoate, and methylbenzoate. Green fluorescent protein localization studies revealed that the Ph-4CL1 protein is localized in the cytosol, whereas Ph-CNL is in peroxisomes. Our results indicate that subcellular compartmentalization of enzymes affects their involvement in the benzenoid network and provide evidence that cinnamoyl-CoA formation by Ph-CNL in the peroxisomes is the committed step in the β-oxidative pathway.

  5. Report of 3 Patients With Urea Cycle Defects Treated With Related Living-Donor Liver Transplant.

    Science.gov (United States)

    Özçay, Figen; Barış, Zeren; Moray, Gökhan; Haberal, Nihan; Torgay, Adnan; Haberal, Mehmet

    2015-11-01

    Urea cycle defects are a group of metabolic disorders caused by enzymatic disruption of the urea cycle pathway, transforming nitrogen to urea for excretion from the body. Severe cases present in early infancy with life-threatening metabolic decompensation, and these episodes of hyperammonemia can be fatal or result in permanent neurologic damage. Despite the progress in pharmacologic treatment, long-term survival is poor especially for severe cases. Liver transplant is an alternative treatment option, providing sufficient enzymatic activity and decreasing the risk of metabolic decompensation. Three patients with urea cycle defects received related living-donor liver transplants at our hospital. Patients presented with late-onset ornithine transcarbamylase deficiency, argininosuccinate lyase deficiency, and citrullinemia. Maximum pretransplant ammonia levels were between 232 and 400 μmol/L (normal range is 18-72 μmol/L), and maximum posttransplant values were 52 to 94 μmol/L. All patients stopped medical treatment and dietary protein restriction for urea cycle defects after transplant. The patient with late-onset ornithine transcarbamylase deficiency already had motor deficits related to recurrent hyperammonemia attacks pretransplant. A major improvement could not be achieved, and he is wheelchair dependent at the age of 6 years. The other 2 patients had normal motor and mental skills before transplant, which have continued 12 and 14 months after transplant. Hepatic artery thrombosis in the patient with the ornithine transcarbamylase deficiency, intraabdominal infection in the patient with argininosuccinate lyase deficiency, and posterior reversible encephalopathy syndrome in the patient with citrullinemia were early postoperative complications. Histopathologic changes in livers explanted from patients with ornithine transcarbamylase deficiency and citrullinemia were nonspecific. The argininosuccinate lyase-deficient patient had portoportal fibrosis and cirrhotic

  6. Phenylalanine ammonia-lyase through evolution: A bioinformatic approach

    Directory of Open Access Journals (Sweden)

    Shiva Hemmati

    2015-03-01

    Full Text Available Phenylalanine ammonia-lyase (PAL is the first entry enzyme of the phenylpropanoid pathway that converts phenylalanine to cinnamic acid which is the precursor of various secondary metabolites. PAL is recently formulated for phenylketonuric patients in pegylated forms; therefore, screening a PAL with the highest affinity to the substrate is of a great importance. PAL exists in all higher plants and some fungi and few bacteria. Ancestors of land plants have been adopted by evolving metabolic pathways. A multi-gene family encodes PAL by gene duplication events in most plants. In this study, the taxonomic distribution and phylogeny of pal gene found in land plants, fungi and bacteria have been analyzed. It seems that the ancestor of plants acquired a pal gene via horizontal gene transfer in symbioses with bacteria and fungi. Gymnosperms have kept a diverse set of pal genes that arose from gene duplication events. In angiosperms, after the divergence of dicotyledons from monocots, pal genes were duplicated many times. The close paralogues of pal genes in some species indicate expansion of gene families after the divergence in plant pal gene evolution. Interestingly, some of the plant pals clustered by species in a way that pals within one species are more closely related to each other than to homologs in the other species which indicates this duplication event occurred more recently.

  7. Thiamine and magnesium deficiencies: keys to disease.

    Science.gov (United States)

    Lonsdale, D

    2015-02-01

    Thiamine deficiency (TD) is accepted as the cause of beriberi because of its action in the metabolism of simple carbohydrates, mainly as the rate limiting cofactor for the dehydrogenases of pyruvate and alpha-ketoglutarate, both being critical to the action of the citric acid cycle. Transketolase, dependent on thiamine and magnesium, occurs twice in the oxidative pentose pathway, important in production of reducing equivalents. Thiamine is also a cofactor in the dehydrogenase complex in the degradation of the branched chain amino acids, leucine, isoleucine and valine. In spite of these well accepted facts, the overall clinical effects of TD are still poorly understood. Because of the discovery of 2-hydroxyacyl-CoA lyase (HACL1) as the first peroxisomal enzyme in mammals found to be dependent on thiamine pyrophosphate (TPP) and the ability of thiamine to bind with prion protein, these factors should improve our clinical approach to TD. HACL1 has two important roles in alpha oxidation, the degradation of phytanic acid and shortening of 2-hydroxy long-chain fatty acids so that they can be degraded further by beta oxidation. The downstream effects of a lack of efficiency in this enzyme would be expected to be critical in normal brain metabolism. Although TD has been shown experimentally to produce reversible damage to mitochondria and there are many other causes of mitochondrial dysfunction, finding TD as the potential biochemical lesion would help in differential diagnosis. Stresses imposed by infection, head injury or inoculation can initiate intermittent cerebellar ataxia in thiamine deficiency/dependency. Medication or vaccine reactions appear to be more easily initiated in the more intelligent individuals when asymptomatic marginal malnutrition exists. Erythrocyte transketolase testing has shown that thiamine deficiency is widespread. It is hypothesized that the massive consumption of empty calories, particularly those derived from carbohydrate and fat, results in

  8. Iodine Deficiency

    Science.gov (United States)

    ... Fax/Phone Home » Iodine Deficiency Leer en Español Iodine Deficiency Iodine is an element that is needed ... world’s population remains at risk for iodine deficiency. Iodine Deficiency FAQs WHAT IS THE THYROID GLAND? The ...

  9. Synthesis of d‐ and l‐Phenylalanine Derivatives by Phenylalanine Ammonia Lyases: A Multienzymatic Cascade Process†

    Science.gov (United States)

    Parmeggiani, Fabio; Lovelock, Sarah L.; Weise, Nicholas J.; Ahmed, Syed T.

    2015-01-01

    Abstract The synthesis of substituted d‐phenylalanines in high yield and excellent optical purity, starting from inexpensive cinnamic acids, has been achieved with a novel one‐pot approach by coupling phenylalanine ammonia lyase (PAL) amination with a chemoenzymatic deracemization (based on stereoselective oxidation and nonselective reduction). A simple high‐throughput solid‐phase screening method has also been developed to identify PALs with higher rates of formation of non‐natural d‐phenylalanines. The best variants were exploited in the chemoenzymatic cascade, thus increasing the yield and ee value of the d‐configured product. Furthermore, the system was extended to the preparation of those l‐phenylalanines which are obtained with a low ee value using PAL amination. PMID:27478261

  10. Synthesis of d- and l-Phenylalanine Derivatives by Phenylalanine Ammonia Lyases: A Multienzymatic Cascade Process**

    Science.gov (United States)

    Parmeggiani, Fabio; Lovelock, Sarah L; Weise, Nicholas J; Ahmed, Syed T; Turner, Nicholas J

    2015-01-01

    The synthesis of substituted d-phenylalanines in high yield and excellent optical purity, starting from inexpensive cinnamic acids, has been achieved with a novel one-pot approach by coupling phenylalanine ammonia lyase (PAL) amination with a chemoenzymatic deracemization (based on stereoselective oxidation and nonselective reduction). A simple high-throughput solid-phase screening method has also been developed to identify PALs with higher rates of formation of non-natural d-phenylalanines. The best variants were exploited in the chemoenzymatic cascade, thus increasing the yield and ee value of the d-configured product. Furthermore, the system was extended to the preparation of those l-phenylalanines which are obtained with a low ee value using PAL amination. PMID:25728350

  11. Comparison of expression, purification and characterization of a new pectate lyase from Phytophthora capsici using two different methods

    Directory of Open Access Journals (Sweden)

    Zhang Xiuguo

    2011-04-01

    Full Text Available Abstract Background Pectate lyases (PELs play an important role in the infection process of plant pathogens and also have a commercial significance in industrial applications. Most of the PELs were expressed as soluble recombinant proteins, while a few recombinant proteins were insoluble. The production of a large-scale soluble recombinant PEL would allow not only a more detailed structural and functional characterization of this enzyme but also may have important applications in the food industry. Results We cloned a new pectate lyase gene (Pcpel2 from Phytophthora capsici. Pcpel2 was constructed by pET system and pMAL system, and both constructs were used to express the PCPEL2 in Escherichia coli BL21 (DE3 pLysS. The expressed products were purified using affinity chromatography and gel filtration chromatography. The purity, specific activity and pathogenicity of the purified PCPEL2 expressed by the pMAL system were higher than the purified PCPEL2 expressed by the pET system. In addition, some other characteristics of the purified PCPEL2 differed from the two systems, such as crystallographic features. Purified PCPEL2 expressed by the pMAL system was crystallized by the hanging-drop vapour-diffusion method at 289 K, and initial crystals were grown. Conclusion The two different methods and comparison presented here would be highly valuable in obtaining an ideal enzyme for the downstream experiments, and supply an useful alternative to purify some insoluble recombinant proteins.

  12. P450 oxidoreductase deficiency: a disorder of steroidogenesis with multiple clinical manifestations.

    Science.gov (United States)

    Miller, Walter L

    2012-10-23

    Cytochrome P450 enzymes catalyze the biosynthesis of steroid hormones and metabolize drugs. There are seven human type I P450 enzymes in mitochondria and 50 type II enzymes in endoplasmic reticulum. Type II enzymes, including both drug-metabolizing and some steroidogenic enzymes, require electron donation from a two-flavin protein, P450 oxidoreductase (POR). Although knockout of the POR gene causes embryonic lethality in mice, we discovered human POR deficiency as a disorder of steroidogenesis associated with the Antley-Bixler skeletal malformation syndrome and found mild POR mutations in phenotypically normal adults with infertility. Assay results of mutant forms of POR using the traditional but nonphysiologic assay (reduction of cytochrome c) did not correlate with patient phenotypes; assays based on the 17,20 lyase activity of P450c17 (CYP17) correlated with clinical phenotypes. The POR sequence in 842 normal individuals revealed many polymorphisms; amino acid sequence variant A503V is encoded by ~28% of human alleles. POR A503V has about 60% of wild-type activity in assays with CYP17, CYP2D6, and CYP3A4, but nearly wild-type activity with P450c21, CYP1A2, and CYP2C19. Activity of a particular POR variant with one P450 enzyme will not predict its activity with another P450 enzyme: Each POR-P450 combination must be studied individually. Human POR transcription, initiated from an untranslated exon, is regulated by Smad3/4, thyroid receptors, and the transcription factor AP-2. A promoter polymorphism reduces transcription to 60% in liver cells and to 35% in adrenal cells. POR deficiency is a newly described disorder of steroidogenesis, and POR variants may account for some genetic variation in drug metabolism.

  13. The replicative DNA polymerase of herpes simplex virus 1 exhibits apurinic/apyrimidinic and 5′-deoxyribose phosphate lyase activities

    OpenAIRE

    Bogani, Federica; Boehmer, Paul E.

    2008-01-01

    Base excision repair (BER) is essential for maintaining genome stability both to counter the accumulation of unusual bases and to protect from base loss in the DNA. Herpes simplex virus 1 (HSV-1) is a large dsDNA virus that encodes its own DNA replication machinery, including enzymes involved in nucleotide metabolism. We report on a replicative family B and a herpesvirus-encoded DNA Pol that possesses DNA lyase activity. We have discovered that the catalytic subunit of the HSV-1 DNA polymeras...

  14. Generation of poly-β-hydroxybutyrate from acetate in higher plants: Detection of acetoacetyl CoA reductase- and PHB synthase- activities in rice.

    Science.gov (United States)

    Tsuda, Hirohisa; Shiraki, Mari; Inoue, Eri; Saito, Terumi

    2016-08-20

    It has been reported that Poly-β-hydroxybutyrate (PHB) is generated from acetate in the rice root. However, no information is available about the biosynthetic pathway of PHB from acetate in plant cells. In the bacterium Ralstonia eutropha H16 (R. eutropha), PHB is synthesized from acetyl CoA by the consecutive reaction of three enzymes: β-ketothiolase (EC: 2.3.1.9), acetoacetyl CoA reductase (EC: 1.1.1.36) and PHB synthase (EC: 2.3.1.-). Thus, in this study, we examined whether the above three enzymatic activities were also detected in rice seedlings. The results clearly showed that the activities of the above three enzymes were all detected in rice. In particular, the PHB synthase activity was detected specifically in the sonicated particulate fractions (2000g 10min precipitate (ppt) and the 8000g 30min ppt) of rice roots and leaves. In addition to these enzyme activities, several new experimental results were obtained on PHB synthesis in higher plants: (a) (14)C-PHB generated from 2-(14)C-acetate was mainly localized in the 2000g 10min ppt and the 8000g 30min ppt of rice root. (b) Addition of acetate (0.1-10mM) to culture medium of rice seedlings did not increase the content of PHB in the rice root or leaf. (c) In addition to C3 plants, PHB was generated from acetate in a C4 plant (corn) and in a CAM plant (Bryophyllum pinnatum). d) Washing with ethylenediaminetetraacetic acid (EDTA) strongly suggested that the PHB synthesized from acetate was of plant origin and was not bacterial contamination. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Research Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  16. Production of endo-pectate lyase by two stage cultivation of Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Fukuoka, Satoshi; Kobayashi, Yoshiaki

    1987-02-26

    The productivity of endo-pectate lyase from Erwinia carotovora GIR 1044 was found to be greatly improved by two stage cultivation: in the first stage the bacterium was grown with an inducing carbon source, e.g., pectin, and in the second stage it was cultivated with glycerol, xylose, or fructose with the addition of monosodium L-glutamate as nitrogen source. In the two stage cultivation using pectin or glycerol as the carbon source the enzyme activity reached 400 units/ml, almost 3 times as much as that of one stage cultivation in a 10 liter fermentor. Using two stage cultivation in the 200 liter fermentor improved enzyme productivity over that in the 10 liter fermentor, with 500 units/ml of activity. Compared with the cultivation in Erlenmeyer flasks, fermentor cultivation improved enzyme productivity. The optimum cultivating conditions were agitation of 480 rpm with aeration of 0.5 vvm at 28 /sup 0/C. (4 figs, 4 tabs, 14 refs)

  17. Sphingosine-1-phosphate (S1P) displays sustained S1P1 receptor agonism and signaling through S1P lyase-dependent receptor recycling.

    Science.gov (United States)

    Gatfield, John; Monnier, Lucile; Studer, Rolf; Bolli, Martin H; Steiner, Beat; Nayler, Oliver

    2014-07-01

    The sphingosine-1-phosphate (S1P) type 1 receptor (S1P1R) is a novel therapeutic target in lymphocyte-mediated autoimmune diseases. S1P1 receptor desensitization caused by synthetic S1P1 receptor agonists prevents T-lymphocyte egress from secondary lymphoid organs into the circulation. The selective S1P1 receptor agonist ponesimod, which is in development for the treatment of autoimmune diseases, efficiently reduces peripheral lymphocyte counts and displays efficacy in animal models of autoimmune disease. Using ponesimod and the natural ligand S1P, we investigated the molecular mechanisms leading to different signaling, desensitization and trafficking behavior of S1P1 receptors. In recombinant S1P1 receptor-expressing cells, ponesimod and S1P triggered Gαi protein-mediated signaling and β-arrestin recruitment with comparable potency and efficiency, but only ponesimod efficiently induced intracellular receptor accumulation. In human umbilical vein endothelial cells (HUVEC), ponesimod and S1P triggered translocation of the endogenous S1P1 receptor to the Golgi compartment. However, only ponesimod treatment caused efficient surface receptor depletion, receptor accumulation in the Golgi and degradation. Impedance measurements in HUVEC showed that ponesimod induced only short-lived Gαi protein-mediated signaling followed by resistance to further stimulation, whereas S1P induced sustained Gαi protein-mediated signaling without desensitization. Inhibition of S1P lyase activity in HUVEC rendered S1P an efficient S1P1 receptor internalizing compound and abrogated S1P-mediated sustained signaling. This suggests that S1P lyase - by facilitating S1P1 receptor recycling - is essential for S1P-mediated sustained signaling, and that synthetic agonists are functional antagonists because they are not S1P lyase substrates. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Contribution of CoA Ligases to Benzenoid Biosynthesis in Petunia Flowers[W

    Science.gov (United States)

    Klempien, Antje; Kaminaga, Yasuhisa; Qualley, Anthony; Nagegowda, Dinesh A.; Widhalm, Joshua R.; Orlova, Irina; Shasany, Ajit Kumar; Taguchi, Goro; Kish, Christine M.; Cooper, Bruce R.; D’Auria, John C.; Rhodes, David; Pichersky, Eran; Dudareva, Natalia

    2012-01-01

    Biosynthesis of benzoic acid from Phe requires shortening of the side chain by two carbons, which can occur via the β-oxidative or nonoxidative pathways. The first step in the β-oxidative pathway is cinnamoyl-CoA formation, likely catalyzed by a member of the 4-coumarate:CoA ligase (4CL) family that converts a range of trans-cinnamic acid derivatives into the corresponding CoA thioesters. Using a functional genomics approach, we identified two potential CoA-ligases from petunia (Petunia hybrida) petal-specific cDNA libraries. The cognate proteins share only 25% amino acid identity and are highly expressed in petunia corollas. Biochemical characterization of the recombinant proteins revealed that one of these proteins (Ph-4CL1) has broad substrate specificity and represents a bona fide 4CL, whereas the other is a cinnamate:CoA ligase (Ph-CNL). RNA interference suppression of Ph-4CL1 did not affect the petunia benzenoid scent profile, whereas downregulation of Ph-CNL resulted in a decrease in emission of benzylbenzoate, phenylethylbenzoate, and methylbenzoate. Green fluorescent protein localization studies revealed that the Ph-4CL1 protein is localized in the cytosol, whereas Ph-CNL is in peroxisomes. Our results indicate that subcellular compartmentalization of enzymes affects their involvement in the benzenoid network and provide evidence that cinnamoyl-CoA formation by Ph-CNL in the peroxisomes is the committed step in the β-oxidative pathway. PMID:22649270

  19. The Skin Bacterium Propionibacterium acnes Employs Two Variants of Hyaluronate Lyase with Distinct Properties

    DEFF Research Database (Denmark)

    Nazipi, Seven; Stødkilde-Jørgensen, Kristian; Scavenius, Carsten

    2017-01-01

    Hyaluronic acid (HA) and other glycosaminoglycans are extracellular matrix components in the human epidermis and dermis. One of the most prevalent skin microorganisms, Propionibacterium acnes, possesses HA-degrading activity, possibly conferred by the enzyme hyaluronate lyase (HYL). In this study......, we identified the HYL of P. acnes and investigated the genotypic and phenotypic characteristics. Investigations include the generation of a P. acneshyl knockout mutant and HYL activity assays to determine the substrate range and formed products. We found that P. acnes employs two distinct variants...... of the observed differences between P. acnes phylotype IA and IB/II strains. Whereas type IA strains are primarily found on the skin surface and associated with acne vulgaris, type IB/II strains are more often associated with soft and deep tissue infections, which would require elaborate tissue invasion...

  20. Cofilin/Twinstar phosphorylation levels increase in response to impaired coenzyme a metabolism.

    Directory of Open Access Journals (Sweden)

    Katarzyna Siudeja

    Full Text Available Coenzyme A (CoA is a pantothenic acid-derived metabolite essential for many fundamental cellular processes including energy, lipid and amino acid metabolism. Pantothenate kinase (PANK, which catalyses the first step in the conversion of pantothenic acid to CoA, has been associated with a rare neurodegenerative disorder PKAN. However, the consequences of impaired PANK activity are poorly understood. Here we use Drosophila and human neuronal cell cultures to show how PANK deficiency leads to abnormalities in F-actin organization. Cells with reduced PANK activity are characterized by abnormally high levels of phosphorylated cofilin, a conserved actin filament severing protein. The increased levels of phospho-cofilin coincide with morphological changes of PANK-deficient Drosophila S2 cells and human neuronal SHSY-5Y cells. The latter exhibit also markedly reduced ability to form neurites in culture--a process that is strongly dependent on actin remodeling. Our results reveal a novel and conserved link between a metabolic biosynthesis pathway, and regulation of cellular actin dynamics.

  1. Iron-Deficiency Anemia

    Science.gov (United States)

    ... To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  2. Molecular cloning and characterization of an Erwinia carotovora subsp. carotovora pectin lyase gene that responds to DNA-damaging agents.

    OpenAIRE

    McEvoy, J L; Murata, H; Chatterjee, A K

    1990-01-01

    recA-mediated production of pectin lyase (PNL) and the bacteriocin carotovoricin occurs in Erwinia carotovora subsp. carotovora 71 when this organism is subjected to agents that damage or inhibit the synthesis of DNA. The structural gene pnlA was isolated from a strain 71 cosmid gene library following mobilization of the cosmids into a moderate PNL producer, strain 193. The cosmid complemented pnl::Tn5 but not ctv::Tn5 mutations. A constitutive level of PNL activity was detected in RecA+ and ...

  3. Localization and regulation of mouse pantothenate kinase 2 [The PanK2 Genes of Mouse and Human Specify Proteins with Distinct Subcellular Locations

    Energy Technology Data Exchange (ETDEWEB)

    Leonardi, Roberta [St. Jude Children' s Research Hospital, Memphis, TN (United States); Zhang, Yong-Mei [St. Jude Children' s Research Hospital, Memphis, TN (United States); Lykidis, Athanasios [DOE Joint Genome Inst., Walnut Creek, CA (United States); Rock, Charles O. [St. Jude Children' s Research Hospital, Memphis, TN (United States); Jackowski, Suzanne [St. Jude Children' s Research Hospital, Memphis, TN (United States)

    2007-09-07

    Coenzyme A (CoA) biosynthesis is initiated by pantothenatekinase (PanK) and CoA levels are controlled through differentialexpression and feedback regulation of PanK isoforms. PanK2 is amitochondrial protein in humans, but comparative genomics revealed thatacquisition of a mitochondrial targeting signal was limited to primates.Human and mouse PanK2 possessed similar biochemical properties, withinhibition by acetylCoA and activation by palmitoylcarnitine. Mouse PanK2localized in the cytosol, and the expression of PanK2 was higher in humanbrain compared to mouse brain. Differences in expression and subcellularlocalization should be considered in developing a mouse model for humanPanK2 deficiency.

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  5. Identification of isobutyryl-CoA dehydrogenase and its deficiency in humans

    DEFF Research Database (Denmark)

    Nguyen, Tien V; Andresen, Brage S; Corydon, Thomas J

    2002-01-01

    -CoA dehydrogenase. A single patient has previously been described whose fibroblasts exhibit a specific deficit in the oxidation of valine. Amplified ACAD8 cDNA made from patient fibroblast mRNA was homozygous for a single nucleotide change (905G>A) in the ACAD8 coding region compared to the sequence from control...... in a patient....

  6. Disease: H01190 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available on with secondary impairment of methionine synthetase and methyl-malonyl CoA mutase activities. This disorder presents with failure...deficiency--potential cause of bone marrow failure in childhood. ... JOURNAL ... J Inherit Metab Dis 31 Suppl 2:S287-92 (2008) DOI:10.1007/s10545-008-0864-3

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency anemia is a ... address the cause of your iron deficiency, such as any underlying bleeding. If undiagnosed or untreated, iron- ...

  8. A QM/MM study of the reaction mechanism of (R)-hydroxynitrile lyases from Arabidopsis thaliana (AtHNL).

    Science.gov (United States)

    Zhu, Wenyou; Liu, Yongjun; Zhang, Rui

    2015-01-01

    Hydroxynitrile lyases (HNLs) catalyze the conversion of chiral cyanohydrins to hydrocyanic acid (HCN) and aldehyde or ketone. Hydroxynitrile lyase from Arabidopsis thaliana (AtHNL) is the first R-selective HNL enzyme containing an α/β-hydrolases fold. In this article, the catalytic mechanism of AtHNL was theoretically studied by using QM/MM approach based on the recently obtained crystal structure in 2012. Two computational models were constructed, and two possible reaction pathways were considered. In Path A, the calculation results indicate that the proton transfer from the hydroxyl group of cyanohydrin occurs firstly, and then the cleavage of C1-C2 bond and the rotation of the generated cyanide ion (CN(-)) follow, afterwards, CN(-) abstracts a proton from His236 via Ser81. The C1-C2 bond cleavage and the protonation of CN(-) correspond to comparable free energy barriers (12.1 vs. 12.2 kcal mol(-1)), suggesting that both of the two processes contribute a lot to rate-limiting. In Path B, the deprotonation of the hydroxyl group of cyanohydrin and the cleavage of C1-C2 bond take place in a concerted manner, which corresponds to the highest free energy barrier of 13.2 kcal mol(-1). The free energy barriers of Path A and B are very similar and basically agree well with the experimental value of HbHNL, a similar enzyme of AtHNL. Therefore, both of the two pathways are possible. In the reaction, the catalytic triad (His236, Ser81, and Asp208) acts as the general acid/base, and the generated CN(-) is stabilized by the hydroxyl group of Ser81 and the main-chain NH-groups of Ala13 and Phe82. © 2014 Wiley Periodicals, Inc.

  9. The pectin lyase-encoding gene (pnl) family from Glomerella cingulata: characterization of pnlA and its expression in yeast.

    Science.gov (United States)

    Templeton, M D; Sharrock, K R; Bowen, J K; Crowhurst, R N; Rikkerink, E H

    1994-05-03

    Oligodeoxyribonucleotide primers were designed from conserved amino acid (aa) sequences between pectin lyase D (PNLD) from Aspergillus niger and pectate lyases A and E (PELA/E) from Erwinia chrysanthemi. The polymerase chain reaction (PCR) was used with these primers to amplify genomic DNA from the plant pathogenic fungus Glomerella cingulata. Three different 220-bp fragments with homology to PNL-encoding genes from A. niger, and a 320-bp fragment with homology to PEL-encoding genes from Nicotiana tabacum and E. carotovora were cloned. One of the 220-bp PCR products (designated pnlA) was used as a probe to isolate a PNL-encoding gene from a lambda genomic DNA library prepared from G. cingulata. Nucleotide (nt) sequence data revealed that this gene has seven exons and codes for a putative 380-aa protein. The nt sequence of a cDNA clone, prepared using PCR, confirmed the presence of the six introns. The positions of the introns were different from the sites of the five introns present in the three PNL-encoding genes previously sequenced from A. niger. PNLA was synthesised in yeast by cloning the cDNA into the expression vector, pEMBLYex-4, and enzymatically active protein was secreted into the culture medium. Significantly higher expression was achieved when the context of the start codon, CACCATG, was mutated to CAAAATG, a consensus sequence commonly found in highly expressed yeast genes. The produced protein had an isoelectric point (pI) of 9.4, the same as that for the G. cingulata pnlA product.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Genomic Characterization of Phenylalanine Ammonia Lyase Gene in Buckwheat.

    Directory of Open Access Journals (Sweden)

    Karthikeyan Thiyagarajan

    Full Text Available Phenylalanine Ammonia Lyase (PAL gene which plays a key role in bio-synthesis of medicinally important compounds, Rutin/quercetin was sequence characterized for its efficient genomics application. These compounds possessing anti-diabetic and anti-cancer properties and are predominantly produced by Fagopyrum spp. In the present study, PAL gene was sequenced from three Fagopyrum spp. (F. tataricum, F. esculentum and F. dibotrys and showed the presence of three SNPs and four insertion/deletions at intra and inter specific level. Among them, the potential SNP (position 949th bp G>C with Parsimony Informative Site was selected and successfully utilised to individuate the zygosity/allelic variation of 16 F. tataricum varieties. Insertion mutations were identified in coding region, which resulted the change of a stretch of 39 amino acids on the putative protein. Our Study revealed that autogamous species (F. tataricum has lower frequency of observed SNPs as compared to allogamous species (F. dibotrys and F. esculentum. The identified SNPs in F. tataricum didn't result to amino acid change, while in other two species it caused both conservative and non-conservative variations. Consistent pattern of SNPs across the species revealed their phylogenetic importance. We found two groups of F. tataricum and one of them was closely related with F. dibotrys. Sequence characterization information of PAL gene reported in present investigation can be utilized in genetic improvement of buckwheat in reference to its medicinal value.

  11. An acidic pectin lyase from Aspergillus niger with favourable efficiency in fruit juice clarification.

    Science.gov (United States)

    Xu, S X; Qin, X; Liu, B; Zhang, D Q; Zhang, W; Wu, K; Zhang, Y H

    2015-02-01

    The pectin lyase gene pnl-zj5a from Aspergillus niger ZJ5 was identified and expressed in Pichia pastoris. PNL-ZJ5A was purified by ultrafiltration, anion exchange and gel chromatography. The Km and Vmax values determined using citrus pectin were 0.66 mg ml(-1) and 32.6 μmol min(-1) mg(-1) , respectively. PNL-ZJ5A exhibited optimal activity at 43°C and retained activity over 25-50°C. PNL-ZJ5A was optimally active at pH 5 and effective in apple juice clarification. Compared with controls, PNL-ZJ5A increased the fruit juice yield significantly. Furthermore, PNL-ZJ5A reduced the viscosity of apple juice by 38.8% and increased its transmittance by 86.3%. PNL-ZJ5A combined with a commercial pectin esterase resulted in higher juice volume. © 2014 The Society for Applied Microbiology.

  12. Phenylalanine ammonia lyase catalyzed synthesis of amino acids by an MIO-cofactor independent pathway.

    Science.gov (United States)

    Lovelock, Sarah L; Lloyd, Richard C; Turner, Nicholas J

    2014-04-25

    Phenylalanine ammonia lyases (PALs) belong to a family of 4-methylideneimidazole-5-one (MIO) cofactor dependent enzymes which are responsible for the conversion of L-phenylalanine into trans-cinnamic acid in eukaryotic and prokaryotic organisms. Under conditions of high ammonia concentration, this deamination reaction is reversible and hence there is considerable interest in the development of PALs as biocatalysts for the enantioselective synthesis of non-natural amino acids. Herein the discovery of a previously unobserved competing MIO-independent reaction pathway, which proceeds in a non-stereoselective manner and results in the generation of both L- and D-phenylalanine derivatives, is described. The mechanism of the MIO-independent pathway is explored through isotopic-labeling studies and mutagenesis of key active-site residues. The results obtained are consistent with amino acid deamination occurring by a stepwise E1 cB elimination mechanism. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Solvent Isotope-induced Equilibrium Perturbation for Isocitrate Lyase

    Science.gov (United States)

    Quartararo, Christine E.; Hadi, Timin; Cahill, Sean M.; Blanchard, John S.

    2014-01-01

    Isocitrate lyase (ICL) catalyzes the reversible retro-aldol cleavage of isocitrate to generate glyoxylate and succinate. ICL is the first enzyme of the glyoxylate shunt, which allows for the anaplerosis of citric acid cycle intermediates under nutrient limiting conditions. In Mycobacterium tuberculosis, the source of ICL for these studies, ICL is vital for the persistence phase of the bacteria’s life cycle. Solvent kinetic isotope effects (KIEs) in the direction of isocitrate cleavage of D2OV = 2.0 ± 0.1 and D2O[V/Kisocitrate] = 2.2 ± 0.3 arise from the initial deprotonation of the C2 hydroxyl group of isocitrate or the protonation of the aci-acid of succinate product of the isocitrate aldol cleavage by a solvent-derived proton. This KIE suggested that an equilibrium mixture of all protiated isocitrate, glyoxylate and succinate prepared in D2O, would undergo transient changes in equilibrium concentrations as a result of the solvent KIE and solvent-derived deuterium incorporation into both succinate and isocitrate. No change in the isotopic composition of glyoxylate was expected or observed. We have directly monitored the changing concentrations of all isotopic species of all reactants and products using a combination of NMR spectroscopy and mass spectrometry. Continuous monitoring of glyoxylate by 1H NMR spectroscopy shows a clear equilibrium perturbation in D2O. The final equilibrium isotopic composition of reactants in D2O revealed di-deuterated succinate, protiated glyoxylate, and mono-deuterated isocitrate, with the transient appearance and disappearance of mono-deuterated succinate. A model for the equilibrium perturbation of substrate species, and their time-dependent isotopic composition is presented. PMID:24261638

  14. A review of patients with glutaric aciduria type 1 at Inkosi Albert ...

    African Journals Online (AJOL)

    Glutaric aciduria type 1 (GA1) is a rare, autosomal-recessive organic acidaemia. It is caused by deficiency of glutaryl-co-enzyme A (CoA) dehydrogenase (GCDH) resulting from a mutation in the GCDH gene on chromosome 19p13.2. There are 108 known disease-causing mutations in the Human Gene Mutation Database.

  15. Identification of 3-hydroxy-3-methylglutaric acid (HMG) as a hypoglycemic principle of Spanish moss (Tillandsia usneoides).

    Science.gov (United States)

    Witherup, K M; McLaughlin, J L; Judd, R L; Ziegler, M H; Medon, P J; Keller, W J

    1995-08-01

    Bioactivity-directed fractionation, using brine shrimp lethality and murine hypoglycemia, of an ethanol extract prepared from Tillandsia usneoides, led to the isolation of four apparently bioactive compounds from the water-soluble fraction. The compounds were identified as citric acid, succinic acid, 3-hydroxy-3-methylglutaric acid (HMG), and 3,6,3',5'-tetramethoxy-5,7,4'-trihydroxyflavone-7-O-beta-D-g lucoside. The brine shrimp lethality of the acids was simply due to acidity; however, HMG elicited significant hypoglycemic responses in fasting normal mice. Ethyl and methyl esters of citric acid were prepared and tested in the murine hypoglycemic assay. Five of the predominant sugars were identified by tlc. Free thymidine was also isolated. Further evaluation of HMG and other potential inhibitors of HMG CoA lyase, in the treatment of symptoms of diabetes mellitus, is suggested.

  16. Vitamin Deficiency Anemia

    Science.gov (United States)

    ... are unique to specific vitamin deficiencies. Folate-deficiency anemia risk factors include: Undergoing hemodialysis for kidney failure. ... the metabolism of folate. Vitamin B-12 deficiency anemia risk factors include: Lack of intrinsic factor. Most ...

  17. Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; Nielsen, Michael Lynge; Olsson, Lisbeth

    2009-01-01

    With the availability of the genome sequence of the filamentous fungus Aspergillus niger, the use of targeted genetic modifications has become feasible. This, together with the fact that A. niger is well established industrially, makes this fungus an attractive micro-organism for creating a cell...... factory platform for production of chemicals. Using molecular biology techniques, this study focused on metabolic engineering of A. niger to manipulate its organic acid production in the direction of succinic acid. The gene target for complete gene deletion was cytosolic ATP: citrate lyase (acl), which...... the acl gene. Additionally, the total amount of organic acids produced in the deletion strain was significantly increased. Genome-scale stoichiometric metabolic model predictions can be used for identifying gene targets. Deletion of the acl led to increased succinic acid production by A. niger....

  18. A Pectate Lyase-Coding Gene Abundantly Expressed during Early Stages of Infection Is Required for Full Virulence in Alternaria brassicicola.

    Directory of Open Access Journals (Sweden)

    Yangrae Cho

    Full Text Available Alternaria brassicicola causes black spot disease of Brassica species. The functional importance of pectin digestion enzymes and unidentified phytotoxins in fungal pathogenesis has been suspected but not verified in A. brassicicola. The fungal transcription factor AbPf2 is essential for pathogenicity and induces 106 genes during early pathogenesis, including the pectate lyase-coding gene, PL1332. The aim of this study was to test the importance and roles of PL1332 in pathogenesis. We generated deletion strains of the PL1332 gene, produced heterologous PL1332 proteins, and evaluated their association with virulence. Deletion strains of the PL1332 gene were approximately 30% less virulent than wild-type A. brassicicola, without showing differences in colony expansion on solid media and mycelial growth in nutrient-rich liquid media or minimal media with pectins as a major carbon source. Heterologous PL1332 expressed as fusion proteins digested polygalacturons in vitro. When the fusion proteins were injected into the apoplast between leaf veins of host plants the tissues turned dark brown and soft, resembling necrotic leaf tissue. The PL1332 gene was the first example identified as a general toxin-coding gene and virulence factor among the 106 genes regulated by the transcription factor, AbPf2. It was also the first gene to have its functions investigated among the 19 pectate lyase genes and several hundred putative cell-wall degrading enzymes in A. brassicicola. These results further support the importance of the AbPf2 gene as a key pathogenesis regulator and possible target for agrochemical development.

  19. Synthesis of specifically labelled L-phenylalanines using phenylalanine ammonia lyase activity

    International Nuclear Information System (INIS)

    Haedener, A.; Tamm, Ch.

    1987-01-01

    Specifically labelled L-phenylalanines have been prepared using a variety of classical synthetic methods in combination with phenylalanine ammonia lyase (PAL) enzyme activity of the yeast Rhodosporidium toruloides ATCC 10788 or Rhodotorula glutinis IFO 0559, respectively. Thus, L-[2- 2 H]phenyl-[2- 2 H]alanine was formed from (E) -[2,2'- 2 H 2 ]cinnamic acid and ammonia in 46% yield, whereas L-phenyl-[2- 13 C, 15 N]alanine was obtained from (E)-[2- 13 C]cinnamic acid in 45% overall yield. Generally, labelled cinnamic acids were recovered in pure form from the reaction mixture, with a loss of 6-8%. Likewise, unchanged 15 NH 3 was reisolated as 15 NH 4 Cl after steam distillation with overall losses of less than 4%. Labelled cinnamic acids were prepared by Knoevenagel condensations between appropriately labelled benzaldehydes and malonic acids. [2- 2 H]Benzaldehyde was obtained from 2-bromotoluene by decomposition of the corresponding Grignard reagent with 2 H 2 O and subsequent oxidation. Since simple molecules, most of them commercially available in labelled form or otherwise easily accessible, may serve as starting material, and due to its defined stereochemistry, the reaction catalysed by PAL opens a short and attractive route to specifically labelled L-phenylalanines. (author)

  20. Paraffin as oxygen vector modulates tyrosine phenol lyase production by Citrobacter freundii MTCC 2424.

    Science.gov (United States)

    Azmi, Wamik; Kumar, Ajay; Dev, Varun

    2013-06-01

    The efficiency of three oxygen-vectors liquid paraffin, silicone oil and n-dodecane in the production of tyrosine phenol lyase (TPL) by Citrobacter freundii MTCC 2424 was evaluated at 4% (v/v) concentration. The liquid paraffin as oxygenvectors was found to exhibit a stimulatory effect on TPL synthesis. The liquid paraffin at 6% (v/v) resulted in 34% increase in the TPL synthesis accompanied by a 13% increase in the production of cell mass at a 10 L scale. This improvement in TPL and cell mass production in the presence of liquid paraffin can be related to the fact that liquid paraffin was capable of maintaining dissolved O2 concentration above 28% throughout the course of the fermentation. Maintenance of the dissolved O2 concentration above 28% could be viewed in terms of an adequate oxygen supply to the rapidly dividing cells of the bacterium, which in turn resulted in enhanced synthesis of TPL and cell mass.

  1. High-performance liquid chromatography-fluorescence assay of pyruvic acid to determine cysteine conjugate beta-lyase activity : application to S-1,2-dichlorovinyl-L-cysteine and S-2-benzothiazolyl-L-cysteine

    NARCIS (Netherlands)

    Stijntjes, G.J.; te Koppele, J.M.; Vermeulen, N P

    1992-01-01

    An HPLC-fluorescence assay has been developed for the determination of the activity of rat renal cytosolic cysteine conjugate beta-lyase. The method is based on isocratic HPLC separation and fluorescence detection of pyruvic acid, derivatized with o-phenylenediamine (OPD), and is shown to be rapid,

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... to moderate iron-deficiency anemia, or red blood cell transfusion for severe iron-deficiency anemia. You may ... body needs iron to make healthy red blood cells. Iron-deficiency anemia usually develops over time because ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron- ... iron-deficiency anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your ...

  4. What Are Rare Clotting Factor Deficiencies?

    Science.gov (United States)

    ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ...

  5. Molecular Cloning and Sequence Analysis of a Phenylalanine Ammonia-Lyase Gene from Dendrobium

    Science.gov (United States)

    Cai, Yongping; Lin, Yi

    2013-01-01

    In this study, a phenylalanine ammonia-lyase (PAL) gene was cloned from Dendrobium candidum using homology cloning and RACE. The full-length sequence and catalytic active sites that appear in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum are also found: PAL cDNA of D. candidum (designated Dc-PAL1, GenBank No. JQ765748) has 2,458 bps and contains a complete open reading frame (ORF) of 2,142 bps, which encodes 713 amino acid residues. The amino acid sequence of DcPAL1 has more than 80% sequence identity with the PAL genes of other plants, as indicated by multiple alignments. The dominant sites and catalytic active sites, which are similar to that showing in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum, are also found in DcPAL1. Phylogenetic tree analysis revealed that DcPAL is more closely related to PALs from orchidaceae plants than to those of other plants. The differential expression patterns of PAL in protocorm-like body, leaf, stem, and root, suggest that the PAL gene performs multiple physiological functions in Dendrobium candidum. PMID:23638048

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for iron-deficiency anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your doctor may recommend you eat heart-healthy foods or control other conditions that can cause iron-deficiency anemia. ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español ... bleeding Consuming less than recommended daily amounts of iron Iron-deficiency anemia can be caused by getting ...

  8. Characterization of a new (R)-hydroxynitrile lyase from the Japanese apricot Prunus mume and cDNA cloning and secretory expression of one of the isozymes in Pichia pastoris.

    Science.gov (United States)

    Fukuta, Yasuhisa; Nanda, Samik; Kato, Yasuo; Yurimoto, Hiroya; Sakai, Yasuyoshi; Komeda, Hidenobu; Asano, Yasuhisa

    2011-01-01

    PmHNL, a hydroxynitrile lyase from Japanese apricot ume (Prunus mume) seed was purified to homogeneity by ammonium sulfate fractionation and chromatographic steps. The purified enzyme was a monomer with molecular mass of 58 kDa. It was a flavoprotein similar to other hydroxynitrile lyases of the Rosaceae family. It was active over a broad temperature, and pH range. The N-terminal amino acid sequence (20 amino acids) was identical with that of the enzyme from almond (Prunus dulcis). Based on the N-terminal sequence of the purified enzyme and the conserved amino acid sequences of the enzymes from Pr. dulcis, inverse PCR method was used for cloning of a putative PmHNL (PmHNL2) gene from a Pr. mume seedling. Then the cDNA for the enzyme was cloned. The deduced amino acid sequence was found to be highly similar (95%) to that of an enzyme from Pr. serotina, isozyme 2. The recombinant Pichia pastoris transformed with the PmHNL2 gene secreted an active enzyme in glycosylated form.

  9. Suppressed phenylalanine ammonia-lyase activity after heat shock in transgenic Nicotiana plumbaginifolia containing an Arabidopsis HSP18.2-parsley PAL2 chimera gene.

    Science.gov (United States)

    Moriwaki, M; Yamakawa, T; Washino, T; Kodama, T; Igarashi, Y

    1999-01-01

    The activity of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) after heat shock (HS) in leaves and buds of transgenic Nicotiana plumbaginifolia containing an Arabidopsis HSP18.2 promoter-parsley phenylalanine ammonia-lyase 2 (HSP18.2-PAL2) chimera gene was examined. Immediately after HS treatment at 44 degrees C for 5 h, the PAL activity in both transgenic and normal (untransformed) plants was 35-38% lower than that before HS. At normal temperature (25-26 degrees C), the PAL activity recovered within 5 h of ending the HS treatment in normal plants, but not until 12-24 h in transgenic plants containing the HSP18.2-PAL2 gene. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed the presence of parsley PAL2 mRNA in transgenic plants, which remained for 8-12 h following 5-h HS at 44 degrees C; the mRNA was not observed before HS. The content of chlorogenic acid (CGA; 3-caffeoylquinic acid) decreased drastically 8-12 h after HS in transgenic plants, but only slightly in normal plants. Thus, the decrease in PAL activity accompanied by expression of the parsley PAL2 gene after HS treatment corresponded to the decrease in CGA synthesis. These results might be attributed to post-transcriptional degradation of endogenous PAL mRNA triggered by transcription of the transgene.

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... anemia, your doctor may order the following blood tests to diagnose iron-deficiency anemia: Complete blood count (CBC) to ... than normal when viewed under a microscope. Different tests help your doctor diagnose iron-deficiency anemia. In iron-deficiency anemia, blood ...

  11. Health Deficiencies

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of all health deficiencies currently listed on Nursing Home Compare, including the nursing home that received the deficiency, the associated inspection date,...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... if you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron-deficiency anemia because of your age, ... or sex. Age You may be at increased risk for iron deficiency at certain ages: Infants between ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Topics News & Resources Intramural Research Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer ... and symptoms as well as complications from iron-deficiency anemia. Research for Your Health The NHLBI is part of the U.S. Department ...

  14. Endocrine and molecular investigations in a cohort of 25 adolescent males with prominent/persistent pubertal gynecomastia.

    Science.gov (United States)

    Paris, F; Gaspari, L; Mbou, F; Philibert, P; Audran, F; Morel, Y; Biason-Lauber, A; Sultan, C

    2016-03-01

    Pubertal gynecomastia is a common condition observed in up to 65% of adolescent males. It is usually idiopathic and tends to regress within 1-2 years. In this descriptive cross-sectional study, we investigated 25 adolescent males with prominent (>B3) and/or persistent (>2 years) pubertal gynecomastia (P/PPG) to determine whether a hormonal/genetic defect might underline this condition. Endocrine investigation revealed the absence of hormonal disturbance for 18 boys (72%). Three patients presented Klinefelter syndrome and three a partial androgen insensitivity syndrome (PAIS) as a result of p.Ala646Asp and p.Ala45Gly mutations of the androgen receptor gene. The last patient showed a 17α-hydroxylase/17,20-lyase deficiency as a result of a compound heterozygous mutation of the CYP17A1 gene leading to p.Pro35Thr(P35T) and p.Arg239Stop(R239X) in the P450c17 protein. Enzymatic activity was analyzed: the mutant protein bearing the premature stop codon R239X showed a complete loss of 17α-hydroxylase and 17,20-lyase activity. The mutant P35T seemed to retain 15-20% of 17α-hydroxylase and about 8-10% of 17,20-lyase activity. This work demonstrates that P/PPG had an endocrine/genetic cause in 28% of our cases. PAIS may be expressed only by isolated gynecomastia as well as by 17α-hydroxylase/17,20-lyase deficiency. Isolated P/PPG is not always a 'physiological' condition and should thus be investigated through adequate endocrine and genetic investigations, even though larger studies are needed to better determine the real prevalence of genetic defects in such patients. © 2016 American Society of Andrology and European Academy of Andrology.

  15. Genetics Home Reference: succinyl-CoA:3-ketoacid CoA transferase deficiency

    Science.gov (United States)

    ... elevated level of ketones in their blood (persistent ketosis). If the level of ketones gets too high, ... attacks, but are less likely to have persistent ketosis. Learn more about the gene associated with succinyl- ...

  16. Iodine deficiency disorders

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S M [Pakistan Council for Science and Technology, Islamabad (Pakistan)

    1994-12-31

    Iodine deficiency (IDD) is one of the common problem in the diet. Iodine deficiency as prevalence of goiter in population occurs in the mountainous areas. There is consensus that 800 million people are at risk of IDD from living in iodine deficient area and 190 million from goiter. Very high prevalence of IDD in different parts of the world are striking. It has generally observed that in iodine-deficient areas about 50% are affected with goiter, 1-5% from cretinsim and 20% from impaired mental and/or mortor function. (A.B.).

  17. Skin wound healing in MMP2-deficient and MMP2 / plasminogen double-deficient mice

    DEFF Research Database (Denmark)

    Frøssing, Signe; Rønø, Birgitte; Hald, Andreas

    2010-01-01

    -sensitive MMPs during wound healing. To address whether MMP2 is accountable for the galardin-induced healing deficiency in wildtype and Plg-deficient mice, incisional skin wounds were generated in MMP2 single-deficient mice and in MMP2/Plg double-deficient mice and followed until healed. Alternatively, tissue...... was isolated 7 days post wounding for histological and biochemical analyses. No difference was found in the time from wounding to overt gross restoration of the epidermal surface between MMP2-deficient and wildtype control littermate mice. MMP2/Plg double-deficient mice were viable and fertile, and displayed...... an unchallenged general phenotype resembling that of Plg-deficient mice, including development of rectal prolapses. MMP2/Plg double-deficient mice displayed a slight increase in the wound length throughout the healing period compared with Plg-deficient mice. However, the overall time to complete healing...

  18. Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington’s disease

    OpenAIRE

    Paul, Bindu D.; Sbodio, Juan I.; Xu, Risheng; Vandiver, M. Scott; Cha, Jiyoung Y.; Snowman, Adele M.; Snyder, Solomon H.

    2014-01-01

    Huntington’s disease is an autosomal dominant disease associated with a mutation in the gene encoding huntingtin (Htt) leading to expanded polyglutamine repeats of mutant Htt (mHtt) that elicit oxidative stress, neurotoxicity, and motor and behavioural changes1. Huntington’s disease is characterized by highly selective and profound damage to the corpus striatum, which regulates motor function. Striatal selectivity of Huntington’s disease may reflect the striatally selective small G protein Rh...

  19. Genetics Home Reference: 17 alpha-hydroxylase/17,20-lyase deficiency

    Science.gov (United States)

    ... males) and the adrenal glands . The gonads direct sexual development before birth and during puberty and are important ... adrenal hyperplasias, that impair hormone production and disrupt sexual development and maturation. Hormone imbalances lead to the characteristic ...

  20. Insights into the structural characteristics and substrate binding analysis of chondroitin AC lyase (PsPL8A) from Pedobacter saltans.

    Science.gov (United States)

    Rani, Aruna; Dhillon, Arun; Sharma, Kedar; Goyal, Arun

    2018-04-01

    The structure of chondroitin AC lyase (PsPL8A) of family 8 polysaccharide lyase was characterized. Modeled PsPL8A structure showed, it contains N-terminal (α/α) 6 incomplete toroidal fold and a layered β sandwich structure at C-terminal. Ramchandran plot displayed 98.5% residues in favoured and 1.2% in generously allowed region. Secondary structure of PsPL8A by CD revealed 27.31% α helices 22.7% β sheets and 49.9% random coils. Protein melting study showed, PsPL8A completely unfolds at 60°C. SAXS analysis showed, PsPL8A is fully folded in solution form. The ab initio derived dummy model of PsPL8A superposed well with its modeled structure excluding some α-helices and loop region. Structural superposition and docking analysis showed, N153, W105, H203, Y208, Y212, R266 and E349 were involved in catalysis. Mutants N153A, H203A, Y212F, R266A and E349A created by SDM revealed no residual activity. Isothermal titration calorimetry analysis of Y212F and H203A with C4S polysaccharide, showed moderate binding by Y212F (Ka=9.56±3.81×10 5 ) and no binding with H203A, showing active contribution of Y212 in substrate binding. Residues Y212 and H203 or R266 might act as general base and general acid respectively. Residues N153 and E349 are likely contributing in charge neutralization and stabilizing enolate anion intermediate during β-elimination. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Iodine Deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.

    2009-01-01

    Iodine deficiency has multiple adverse effects in humans, termed iodine deficiency disorders, due to inadequate thyroid hormone production. Globally, it is estimated that 2 billion individuals have an insufficient iodine intake, and South Asia and sub-Saharan Africa are particularly affected.

  2. Single-dose, subcutaneous recombinant phenylalanine ammonia lyase conjugated with polyethylene glycol in adult patients with phenylketonuria: an open-label, multicentre, phase 1 dose-escalation trial.

    Science.gov (United States)

    Longo, Nicola; Harding, Cary O; Burton, Barbara K; Grange, Dorothy K; Vockley, Jerry; Wasserstein, Melissa; Rice, Gregory M; Dorenbaum, Alejandro; Neuenburg, Jutta K; Musson, Donald G; Gu, Zhonghua; Sile, Saba

    2014-07-05

    Phenylketonuria is an inherited disease caused by impaired activity of phenylalanine hydroxylase, the enzyme that converts phenylalanine to tyrosine, leading to accumulation of phenylalanine and subsequent neurocognitive dysfunction. Phenylalanine ammonia lyase is a prokaryotic enzyme that converts phenylalanine to ammonia and trans-cinnamic acid. We aimed to assess the safety, tolerability, pharmacokinetic characteristics, and efficacy of recombinant Anabaena variabilis phenylalanine ammonia lyase (produced in Escherichia coli) conjugated with polyethylene glycol (rAvPAL-PEG) in reducing phenylalanine concentrations in adult patients with phenylketonuria. In this open-label, phase 1, multicentre trial, single subcutaneous injections of rAvPAL-PEG were given in escalating doses (0·001, 0·003, 0·010, 0·030, and 0·100 mg/kg) to adults with phenylketonuria. Participants aged 18 years or older with blood phenylalanine concentrations of 600 μmol/L or higher were recruited from among patients attending metabolic disease clinics in the USA. The primary endpoints were safety and tolerability of rAvPAL-PEG. Secondary endpoints were the pharmacokinetic characteristics of the drug and its effect on concentrations of phenylalanine. Participants and investigators were not masked to assigned dose group. This study is registered with ClinicalTrials.gov, number NCT00925054. 25 participants were recruited from seven centres between May 6, 2008, and April 15, 2009, with five participants assigned to each escalating dose group. All participants were included in the safety population. The most frequently reported adverse events were injection-site reactions and dizziness, which were self-limited and without sequelae. Two participants had serious adverse reactions to intramuscular medroxyprogesterone acetate, a drug that contains polyethylene glycol as an excipient. Three of five participants given the highest dose of rAvPAL-PEG (0·100 mg/kg) developed a generalised skin rash

  3. Synthesis of specifically labelled L-phenylalanines using phenylalanine ammonia lyase activity

    Energy Technology Data Exchange (ETDEWEB)

    Haedener, A.; Tamm, Ch.

    1987-11-01

    Specifically labelled L-phenylalanines have been prepared using a variety of classical synthetic methods in combination with phenylalanine ammonia lyase (PAL) enzyme activity of the yeast Rhodosporidium toruloides ATCC 10788 or Rhodotorula glutinis IFO 0559, respectively. Thus, L-(2-/sup 2/H)phenyl-(2-/sup 2/H)alanine was formed from (E) -(2,2'-/sup 2/H/sub 2/)cinnamic acid and ammonia in 46% yield, whereas L-phenyl-(2-/sup 13/C, /sup 15/N)alanine was obtained from (E)-(2-/sup 13/C)cinnamic acid in 45% overall yield. Generally, labelled cinnamic acids were recovered in pure form from the reaction mixture, with a loss of 6-8%. Likewise, unchanged /sup 15/NH/sub 3/ was reisolated as /sup 15/NH/sub 4/Cl after steam distillation with overall losses of less than 4%. Labelled cinnamic acids were prepared by Knoevenagel condensations between appropriately labelled benzaldehydes and malonic acids. (2-/sup 2/H)Benzaldehyde was obtained from 2-bromotoluene by decomposition of the corresponding Grignard reagent with /sup 2/H/sub 2/O and subsequent oxidation. Since simple molecules, most of them commercially available in labelled form or otherwise easily accessible, may serve as starting material, and due to its defined stereochemistry, the reaction catalysed by PAL opens a short and attractive route to specifically labelled L-phenylalanines.

  4. Probing Reversible Chemistry in Coenzyme B12-Dependent Ethanolamine Ammonia Lyase with Kinetic Isotope Effects

    Science.gov (United States)

    Jones, Alex R; Rentergent, Julius; Scrutton, Nigel S; Hay, Sam

    2015-01-01

    Coenzyme B12-dependent enzymes such as ethanolamine ammonia lyase have remarkable catalytic power and some unique properties that enable detailed analysis of the reaction chemistry and associated dynamics. By selectively deuterating the substrate (ethanolamine) and/or the β-carbon of the 5′-deoxyadenosyl moiety of the intrinsic coenzyme B12, it was possible to experimentally probe both the forward and reverse hydrogen atom transfers between the 5′-deoxyadenosyl radical and substrate during single-turnover stopped-flow measurements. These data are interpreted within the context of a kinetic model where the 5′-deoxyadenosyl radical intermediate may be quasi-stable and rearrangement of the substrate radical is essentially irreversible. Global fitting of these data allows estimation of the intrinsic rate constants associated with CoC homolysis and initial H-abstraction steps. In contrast to previous stopped-flow studies, the apparent kinetic isotope effects are found to be relatively small. PMID:25950663

  5. Stabilization of Phenylalanine Ammonia Lyase from Rhodotorula glutinis by Encapsulation in Polyethyleneimine-Mediated Biomimetic Silica.

    Science.gov (United States)

    Cui, Jiandong; Liang, Longhao; Han, Cong; Lin Liu, Rong

    2015-06-01

    Phenylalanine ammonia lyase (PAL) from Rhodotorula glutinis was encapsulated within polyethyleneimine-mediated biomimetic silica. The main factors in the preparation of biomimetic silica were optimized by response surface methodology (RSM). Compared to free PAL (about 2 U), the encapsulated PAL retained more than 43 % of their initial activity after 1 h of incubation time at 60 °C, whereas free PAL lost most of activity in the same conditions. It was clearly indicated that the thermal stability of PAL was improved by encapsulation. Moreover, the encapsulated PAL exhibited the excellent stability of the enzyme against denaturants and storage stability, and pH stability was improved by encapsulation. Operational stability of 7 reaction cycles showed that the encapsulated PAL was stable. Nevertheless, the K m value of encapsulated PAL in biomimetic silica was higher than that of the free PAL due to lower total surface area and increased mass transfer resistance.

  6. Carnitine Deficiency and Pregnancy

    Directory of Open Access Journals (Sweden)

    Anouk de Bruyn

    2015-01-01

    Full Text Available We present two cases of carnitine deficiency in pregnancy. In our first case, systematic screening revealed L-carnitine deficiency in the first born of an asymptomatic mother. In the course of her second pregnancy, maternal carnitine levels showed a deficiency as well. In a second case, a mother known with carnitine deficiency under supplementation was followed throughout her pregnancy. Both pregnancies had an uneventful outcome. Because carnitine deficiency can have serious complications, supplementation with carnitine is advised. This supplementation should be continued throughout pregnancy according to plasma concentrations.

  7. Immunohistochemical expression of alpha methylacyl-coa racemase (amacr) in carcinoma prostate in pakistani population

    International Nuclear Information System (INIS)

    Tariq, H.; Ahmed, R.; Muhammad, I.; Afzal, M.S.; Hashmi, S.N.; Hamdani, S.N.R.; Shahid, A.

    2017-01-01

    Objective: To determine the frequency of expression of positive diagnostic marker alpha methylacyl-COA RACEMES (AMACR) in the examination of prostate needle biopsy specimens from patients of adenocarcinoma prostate from a subset of Pakistani population. Study design: Cross-sectional study. Place and Duration of Study: Department of Histopathology, Armed Forces Institute of Pathology, Rawalpindi from Apr 2015 to Oct 2015. Material and Methods: All specimens of adenocarcinoma prostate diagnosed at Armed forces institute of pathology on the basis of immunohistochemistry and routine histopathology irrespective of age of patient, histological type or grade of the tumor were analyzed. Mean and Standard deviation were calculated for quantitative variables like patient's age and frequencies along with percentages were calculated for qualitative variables like AMACR expression. Results: Out of the total 80 cases, 68 (85%) were positive for AMACR while 12 (15%) were negative. Among the cases that were negative 9 (11.3%) showed 1 +- staining (Weak, non-circumferential) and 3 cases (3.8%) displayed 0 staining (No cytoplasmic staining). Conclusion: Positive staining for AMACR can be used to support a diagnosis of cancer on prostate needle core biopsies when the focus in question is <1mm in maximum dimension. The results of AMACR expression in a subset of Pakistani population are comparable to the western studies. AMACR staining must be interpreted in the context of basic haematoxylin and eosin criteria for malignancy along with the results expansion of other supportive markers, such as a basal cell specific marker like p63 or 34 beta E12. (author)

  8. PECTATE LYASE-LIKE 9 from Brassica campestris is associated with intine formation.

    Science.gov (United States)

    Jiang, Jingjing; Yao, Lina; Yu, Youjian; Liang, Ying; Jiang, Jianxia; Ye, Nenghui; Miao, Ying; Cao, Jiashu

    2014-12-01

    Brassica campestris pectate lyase-like 9 (BcPLL9) was previously identified as a differentially expressed gene both in buds during late pollen developmental stage and in pistils during fertilization in Chinese cabbage. To characterize the gene's function, antisense-RNA lines of BcPLL9 (bcpll9) were constructed in Chinese cabbage. Self- and cross-fertilization experiments harvested half seed yields when bcpll9 lines were used as pollen donors. In vivo and in vitro pollen germination assays showed that nearly half of the pollen tubes in bcpll9 were irregular with shorter length and uneven surface. Aniline blue staining identified abnormal accumulation of a specific bright blue unknown material in the bcpll9 pollen portion. Scanning electron microscopy observation verified the abnormal outthrust material to be near the pollen germinal furrows. Transmission electron microscopy observation revealed the internal endintine layer was overdeveloped and predominantly occupied the intine. This abnormally formed intine likely induced the wavy structure and growth arrest of the pollen tube in half of the bcpll9 pollen grains, which resulted in less seed yields. Collectively, this study presented a novel PLL gene that has an important function in B. campestris intine formation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Molecular cloning and sequence analysis of a phenylalanine ammonia-lyase gene from dendrobium.

    Directory of Open Access Journals (Sweden)

    Qing Jin

    Full Text Available In this study, a phenylalanine ammonia-lyase (PAL gene was cloned from Dendrobium candidum using homology cloning and RACE. The full-length sequence and catalytic active sites that appear in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum are also found: PAL cDNA of D. candidum (designated Dc-PAL1, GenBank No. JQ765748 has 2,458 bps and contains a complete open reading frame (ORF of 2,142 bps, which encodes 713 amino acid residues. The amino acid sequence of DcPAL1 has more than 80% sequence identity with the PAL genes of other plants, as indicated by multiple alignments. The dominant sites and catalytic active sites, which are similar to that showing in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum, are also found in DcPAL1. Phylogenetic tree analysis revealed that DcPAL is more closely related to PALs from orchidaceae plants than to those of other plants. The differential expression patterns of PAL in protocorm-like body, leaf, stem, and root, suggest that the PAL gene performs multiple physiological functions in Dendrobium candidum.

  10. Possible mechanism for species difference on the toxicity of pivalic acid between dogs and rats

    International Nuclear Information System (INIS)

    Yamaguchi, Toshiro; Nakajima, Yoshitsugu; Nakamura, Yutaka

    2006-01-01

    In a high dose toxicity study of pivalic acid (PA), PA caused skeletal muscle disorder in dog, and a significant increase of pivaloyl carnitine (PC) was observed in canine muscle, but not in rat muscle. In order to understand species difference of the toxicity of PA, we compared the in vitro metabolism of PA among dog, rat and rabbit, especially focussing on the carnitine conjugate. Canine muscle showed low, but significant carnitine conjugating activity, while that of rat was negligible. Canine kidney mitochondria had significant activity in the pivaloyl CoA synthesis (7 nmol/mg protein/h), but muscle mitochondria showed only trace activity. Both kidney and muscle mitochondria displayed similar carnitine acyltransferase activity (2-3 nmol/mg protein/h) towards pivaloyl CoA. On the other hand, with respect to the activity of carnitine acyltransferase in the reverse direction using PC as substrate, canine muscle mitochondria showed higher activity than that of kidney mitochondria. This means that PC is not the final stable metabolite, but is converted easily to pivaloyl CoA in canine muscle. These results suggest one of the possible mechanisms for canine selective muscle disorder to be as follows. Only canine muscle can metabolize PA to its carnitine conjugate slowly, but significantly. In canine muscle, PC is not the final stable metabolite; it is easily converted to pivaloyl CoA. As carnitine conjugation is thought to be the only detoxification metabolic route in canine muscle, under certain circumstances such as carnitine deficiency, the risk of exposure with toxic pivaloyl CoA might increase and the CoASH pool in canine muscle might be exhausted, resulting in toxicity in canine muscle

  11. Crosslinked enzyme aggregates of hydroxynitrile lyase partially purified from Prunus dulcis seeds and its application for the synthesis of enantiopure cyanohydrins.

    Science.gov (United States)

    Yildirim, Deniz; Tükel, S Seyhan; Alagöz, Dilek

    2014-01-01

    Hydroxynitrile lyases are powerful catalysts in the synthesis of enantiopure cyanohydrins which are key synthons in the preparations of a variety of important chemicals. The response surface methodology including three-factor and three-level Box-Behnken design was applied to optimize immobilization of hydroxynitrile lyase purified partially from Prunus dulcis seeds as crosslinked enzyme aggregates (PdHNL-CLEAs). The quadratic model was developed for predicting the response and its adequacy was validated with the analysis of variance test. The optimized immobilization parameters were initial glutaraldehyde concentration, ammonium sulfate saturation concentration, and crosslinking time, and the response was relative activity of PdHNL-CLEA. The optimal conditions were determined as initial glutaraldehyde concentration of 25% w/v, ammonium sulfate saturation concentration of 43% w/v, and crosslinking time of 18 h. The preparations of PdHNL-CLEA were examined for the synthesis of (R)-mandelonitrile, (R)-2-chloromandelonitrile, (R)-3,4-dihydroxymandelonitrile, (R)-2-hydroxy-4-phenyl butyronitrile, (R)-4-bromomandelonitrile, (R)-4-fluoromandelonitrile, and (R)-4-nitromandelonitrile from their corresponding aldehydes and hydrocyanic acid. After 96-h reaction time, the yield-enantiomeric excess values (%) were 100-99, 100-21, 100-99, 83-91, 100-99, 100-72, and 100-14%, respectively, for (R)-mandelonitrile, (R)-2-chloromandelonitrile, (R)-3,4-dihydroxymandelonitrile, (R)-2-hydroxy-4-phenyl butyronitrile, (R)-4-bromomandelonitrile, (R)-4-fluoromandelonitrile, and (R)-4-nitromandelonitrile. The results show that PdHNL-CLEA offers a promising potential for the preparation of enantiopure (R)-mandelonitrile, (R)-3,4-dihydroxymandelonitrile, (R)-2-hydroxy-4-phenyl butyronitrile, and (R)-4-bromomandelonitrile with a high yield and enantiopurity. © 2014 American Institute of Chemical Engineers.

  12. Iron-Deficiency Anemia (For Parents)

    Science.gov (United States)

    ... Videos for Educators Search English Español Iron-Deficiency Anemia KidsHealth / For Parents / Iron-Deficiency Anemia What's in ... common nutritional deficiency in children. About Iron-Deficiency Anemia Every red blood cell in the body contains ...

  13. Iron deficiency and cognitive functions

    Directory of Open Access Journals (Sweden)

    Jáuregui-Lobera I

    2014-11-01

    Full Text Available Ignacio Jáuregui-Lobera Department of Nutrition and Bromatology, Pablo de Olavide University, Seville, Spain Abstract: Micronutrient deficiencies, especially those related to iodine and iron, are linked to different cognitive impairments, as well as to potential long-term behavioral changes. Among the cognitive impairments caused by iron deficiency, those referring to attention span, intelligence, and sensory perception functions are mainly cited, as well as those associated with emotions and behavior, often directly related to the presence of iron deficiency anemia. In addition, iron deficiency without anemia may cause cognitive disturbances. At present, the prevalence of iron deficiency and iron deficiency anemia is 2%–6% among European children. Given the importance of iron deficiency relative to proper cognitive development and the alterations that can persist through adulthood as a result of this deficiency, the objective of this study was to review the current state of knowledge about this health problem. The relevance of iron deficiency and iron deficiency anemia, the distinction between the cognitive consequences of iron deficiency and those affecting specifically cognitive development, and the debate about the utility of iron supplements are the most relevant and controversial topics. Despite there being methodological differences among studies, there is some evidence that iron supplementation improves cognitive functions. Nevertheless, this must be confirmed by means of adequate follow-up studies among different groups. Keywords: iron deficiency, anemia, cognitive functions, supplementation

  14. Mechanistic deductions from kinetic isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: Erwinia herbicola and Citrobacter freundii tyrosine phenol-lyase

    International Nuclear Information System (INIS)

    Kiick, D.M.; Phillips, R.S.

    1988-01-01

    The pH dependence of the kinetic parameters and primary deuterium isotope effects have been determined for tyrosine phenol-lyase from both Erwinia herbicola and Citrobacter freundii. The primary deuterium isotope effects indicate that proton abstraction from the 2-position of the substrate is partially rate-limiting for both enzymes. The C. freundii enzyme primary deuterium isotope effects [DV = 3.5 and D(V/Ktyr) = 2.5] are pH independent, indicating that tyrosine is not sticky (i.e., does not dissociate slower than it reacts to give products). Since Vmax for both tyrosine and the alternate substrate S-methyl-L-cysteine is also pH independent, substrate binds only to the correctly protonated form of the enzyme. For the E. herbicola enzyme, both Vmax and V/K for tyrosine or S-methyl-L-cysteine are pH dependent, as well as both DV and D(V/Ktyr). Thus, while both the protonated and unprotonated enzyme can bind substrate, and may be interconverted directly, only the unprotonated Michaelis complex is catalytically competent. At pH 9.5, DV = 2.5 and D(V/Ktyr) = 1.5. However, at pH 6.4 the isotope effect on both parameters is equal to 4.1. From these data, the forward commitment factor (cf = 5.2) and catalytic ratio (cvf = 1.1) for tyrosine and S-methyl-L-cysteine (cf = 2.2, cvf = 24) are calculated. Also, the Michaelis complex partition ratio (cf/cvf) for substrate and products is calculated to be 4.7 for tyrosine and 0.1 for S-methyl-L-cysteine

  15. In HepG2 cells, coexisting carnitine deficiency masks important indicators of marginal biotin deficiency.

    Science.gov (United States)

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography-tandem mass spectrometry. Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased by >8-fold. Our findings provide strong

  16. Iron Refractory Iron Deficiency Anaemia: A Rare Cause of Iron Deficiency Anaemia

    LENUS (Irish Health Repository)

    McGrath, T

    2018-01-01

    We describe the case of a 17-month-old boy with a hypochromic microcytic anaemia, refractory to oral iron treatment. After exclusion of dietary and gastrointestinal causes of iron deficiency, a genetic cause for iron deficiency was confirmed by finding two mutations in the TMPRSS6 gene, consistent with a diagnosis of iron-refractory iron deficiency anaemia (IRIDA).

  17. Deficiency of the Chemotactic Factor Inactivator in Human Sera with α1-Antitrypsin Deficiency

    Science.gov (United States)

    Ward, Peter A.; Talamo, Richard C.

    1973-01-01

    As revealed by appropriate fractionation procedures, human serum deficient in α1-antitrypsin (α1-AT) is also deficient in the naturally occurring chemotactic factor inactivator. These serum donors had severe pulmonary emphysema. Serum from patients with clinically similar pulmonary disease, but with presence of α1-AT in the serum, showed no such deficiency of the chemotactic factor inactivator. When normal human serum and α1-AT-deficient human sera are chemotactically activated by incubation with immune precipitates, substantially more chemotactic activity is generated in α1-AT-deficient serum. These data indicate that in α1-AT-deficient serum there is an imbalance in the generation and control of chemotactic factors. It is suggested that the theory regarding development of pulmonary emphysema in patients lacking the α1-antitrypsin in their serum should be modified to take into account a deficiency of the chemotactic factor inactivator. PMID:4683887

  18. Maternal diets deficient in folic acid and related methyl donors modify mechanisms associated with lipid metabolism in the fetal liver of the rat.

    Science.gov (United States)

    McNeil, Christopher J; Hay, Susan M; Rucklidge, Garry J; Reid, Martin D; Duncan, Gary J; Rees, William D

    2009-11-01

    Previously we have examined the effects of diets deficient in folic acid ( - F) or folate deficient with low methionine and choline ( - F LM LC) on the relative abundance of soluble proteins in the liver of the pregnant rat. In the present study we report the corresponding changes in the fetal liver at day 21 of gestation. The abundance of eighteen proteins increased when dams were fed the - F diet. When dams were fed the - F LM LC diet, thirty-three proteins increased and eight decreased. Many of the differentially abundant proteins in the fetal liver could be classified into the same functional groups as those previously identified in the maternal liver, namely protein synthesis, metabolism, lipid metabolism and proteins associated with the cytoskeleton and endoplasmic reticulum. The pattern was consistent with reduced cell proliferation in the - F LM LC group but not in the - F group. Metabolic enzymes associated with lipid metabolism changed in both the - F and - F LM LC groups. The mRNA for carnitine palmitoyl transferase were up-regulated and CD36 (fatty acid translocase) down-regulated in the - F group, suggesting increased mitochondrial oxidation of fatty acids as an indirect response to altered maternal lipid metabolism. In the - F LM LC group the mRNA for acetyl CoA carboxylase was down-regulated, suggesting reduced fatty acid synthesis. The mRNA for transcriptional regulators including PPARalpha and sterol response element-binding protein-1c were unchanged. These results suggest that an adequate supply of folic acid and the related methyl donors may benefit fetal development directly by improving lipid metabolism in fetal as well as maternal tissues.

  19. Transcriptional regulation of Saccharomyces cerevisiaeCYS3 encoding cystathionine γ-lyase

    Science.gov (United States)

    Hiraishi, Hiroyuki; Miyake, Tsuyoshi

    2008-01-01

    In studying the regulation of GSH11, the structural gene of the high-affinity glutathione transporter (GSH-P1) in Saccharomyces cerevisiae, a cis-acting cysteine responsive element, CCGCCACAC (CCG motif), was detected. Like GSH-P1, the cystathionine γ-lyase encoded by CYS3 is induced by sulfur starvation and repressed by addition of cysteine to the growth medium. We detected a CCG motif (−311 to −303) and a CGC motif (CGCCACAC; −193 to −186), which is one base shorter than the CCG motif, in the 5′-upstream region of CYS3. One copy of the centromere determining element 1, CDE1 (TCACGTGA; −217 to −210), being responsible for regulation of the sulfate assimilation pathway genes, was also detected. We tested the roles of these three elements in the regulation of CYS3. Using a lacZ-reporter assay system, we found that the CCG/CGC motif is required for activation of CYS3, as well as for its repression by cysteine. In contrast, the CDE1 motif was responsible for only activation of CYS3. We also found that two transcription factors, Met4 and VDE, are responsible for activation of CYS3 through the CCG/CGC and CDE1 motifs. These observations suggest a dual regulation of CYS3 by factors that interact with the CDE1 motif and the CCG/CGC motifs. PMID:18317767

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... your doctor may recommend you eat heart-healthy foods or control other conditions that can cause iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... from developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, eggs, lean red meat, ... signs of iron-deficiency anemia include: Brittle nails ...

  2. Fire Safety Deficiencies

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of all fire safety deficiencies currently listed on Nursing Home Compare, including the nursing home that received the deficiency, the associated inspection...

  3. Modification of Cys-418 of pyruvate formate-lyase by methacrylic acid, based on its radical mechanism.

    Science.gov (United States)

    Plaga, W; Vielhaber, G; Wallach, J; Knappe, J

    2000-01-21

    The recently determined crystal structure of pyruvate formate-lyase (PFL) suggested a new view of the mechanism of this glycyl radical enzyme, namely that intermediary thiyl radicals of Cys-418 and Cys-419 participate in different ways [Becker, A. et al. (1999) Nat. Struct. Biol. 6, 969-975]. We report here a suicide reaction of PFL that occurs with the substrate-analog methacrylate with retention of the protein radical (K(I)=0.42 mM, k(i)=0.14 min(-1)). Using [1-(14)C]methacrylate (synthesized via acetone cyanhydrin), the reaction end-product was identified by peptide mapping and cocrystallization experiments as S-(2-carboxy-(2S)-propyl) substituted Cys-418. The stereoselectivity of the observed Michael addition reaction is compatible with a radical mechanism that involves Cys-418 thiyl as nucleophile and Cys-419 as H-atom donor, thus supporting the functional assignments of these catalytic amino acid residues derived from the protein structure.

  4. Generation of 2-Furfurylthiol by Carbon-Sulfur Lyase from the Baijiu Yeast Saccharomyces cerevisiae G20.

    Science.gov (United States)

    Zha, Musu; Sun, Baoguo; Yin, Sheng; Mehmood, Arshad; Cheng, Lei; Wang, Chengtao

    2018-03-07

    2-Furfurylthiol is the representative aroma compound of Chinese sesame-flavored baijiu. Previous studies demonstrated that baijiu yeasts could generate 2-furfurylthiol using furfural and l-cysteine as precursors and that the Saccharomyces cerevisiae genes STR3 and CYS3 are closely related to 2-furfurylthiol biosynthesis. To confirm the mechanism of the STR3- and CYS3-gene products on 2-furfurylthiol biosynthesis, their encoded proteins were purified, and we confirmed their activities as carbon-sulfur lyases. Str3p and Cys3p were able to cleave the cysteine-furfural conjugate to release 2-furfurylthiol. Moreover, the characterization of the enzymatic properties of the purified proteins shows good thermal stabilities and wide pH tolerances, which enable their strong potential for various applications. These data provide direct evidence that yeast Str3p and Cys3p release 2-furfurylthiol in vitro, which can be applied to improve baijiu flavor.

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for iron-deficiency anemia. Lifestyle habits Certain lifestyle habits may increase your risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, such ...

  6. Factor VII deficiency

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000548.htm Factor VII deficiency To use the sharing features on this page, please enable JavaScript. Factor VII (seven) deficiency is a disorder caused by a ...

  7. Toward reassessing data-deficient species.

    Science.gov (United States)

    Bland, Lucie M; Bielby, Jon; Kearney, Stephen; Orme, C David L; Watson, James E M; Collen, Ben

    2017-06-01

    One in 6 species (13,465 species) on the International Union for Conservation of Nature (IUCN) Red List is classified as data deficient due to lack of information on their taxonomy, population status, or impact of threats. Despite the chance that many are at high risk of extinction, data-deficient species are typically excluded from global and local conservation priorities, as well as funding schemes. The number of data-deficient species will greatly increase as the IUCN Red List becomes more inclusive of poorly known and speciose groups. A strategic approach is urgently needed to enhance the conservation value of data-deficient assessments. To develop this, we reviewed 2879 data-deficient assessments in 6 animal groups and identified 8 main justifications for assigning data-deficient status (type series, few records, old records, uncertain provenance, uncertain population status or distribution, uncertain threats, taxonomic uncertainty, and new species). Assigning a consistent set of justification tags (i.e., consistent assignment to assessment justifications) to species classified as data deficient is a simple way to achieve more strategic assessments. Such tags would clarify the causes of data deficiency; facilitate the prediction of extinction risk; facilitate comparisons of data deficiency among taxonomic groups; and help prioritize species for reassessment. With renewed efforts, it could be straightforward to prevent thousands of data-deficient species slipping unnoticed toward extinction. © 2016 Society for Conservation Biology.

  8. Anemia, Iron Deficiency and Iodine Deficiency among Nepalese School Children.

    Science.gov (United States)

    Khatiwada, Saroj; Lamsal, Madhab; Gelal, Basanta; Gautam, Sharad; Nepal, Ashwini Kumar; Brodie, David; Baral, Nirmal

    2016-07-01

    To assess iodine and iron nutritional status among Nepalese school children. A cross-sectional, community based study was conducted in the two districts, Ilam (hilly region) and Udayapur (plain region) of eastern Nepal. A total of 759 school children aged 6-13 y from different schools within the study areas were randomly enrolled. A total of 759 urine samples and 316 blood samples were collected. Blood hemoglobin level, serum iron, total iron binding capacity and urinary iodine concentration was measured. Percentage of transferrin saturation was calculated using serum iron and total iron binding capacity values. The mean level of hemoglobin, serum iron, total iron binding capacity, transferrin saturation and median urinary iodine excretion were 12.29 ± 1.85 g/dl, 70.45 ± 34.46 μg/dl, 386.48 ± 62.48 μg/dl, 19.94 ± 12.07 % and 274.67 μg/L respectively. Anemia, iron deficiency and iodine deficiency (urinary iodine excretion iron deficient children. Iron deficiency and anemia are common in Nepalese children, whereas, iodine nutrition is more than adequate. Low urinary iodine excretion was common in iron deficiency and anemia.

  9. Crystal structure and mechanism of the Staphylococcus cohnii virginiamycin B lyase (Vgb).

    Science.gov (United States)

    Lipka, Magdalena; Filipek, Renata; Bochtler, Matthias

    2008-04-08

    The semisynthetic streptogramin antibiotic quinupristin/dalfopristin (trade name Synercid, Aventis Pharma) is a mixture of the A-type streptogramin dalfopristin and the B-type streptogramin quinupristin, a capped hexapeptide macrolactone. Quinupristin/dalfopristin was developed to combat multidrug resistant pathogens, but suffers from its own problems with drug resistance. Virginiamycin B lyase (Vgb) inactivates the quinupristin component of Synercid by lactone ring opening. Remarkably, the enzyme promotes this reaction by intramolecular beta-elimination without the involvement of a water molecule. Recently, structures of S. aureus Vgb in the presence and absence of substrate were reported and used together with detailed mutagenesis data to suggest a catalytic mechanism. Here, we report an independent determination of the S. cohnii Vgb crystal structure and a biochemical characterization of the enzyme. As expected, the S. cohnii and S. aureus Vgb structures and active sites are very similar. Moreover, both enzymes catalyze quinupristin lactone ring opening with similar rate constants, albeit perhaps with different dependencies on divalent metal ions. Replacement of the conserved active site residues His228, Glu268, or His270 with alanine reduces or abolishes S. cohnii Vgb activity. Residue Lys285 in S. cohnii Vgb is spatially equivalent to the S. aureus Vgb active site residue Glu284. A glutamate but not an alanine residue can substitute for the lysine without significant loss of activity.

  10. Control of phenylalanine ammonia-lyase gene promoters from pea by UV radiation

    International Nuclear Information System (INIS)

    Pluskota, W.E.; Michalczyk, D.J.; Gorecki, R.J.

    2005-01-01

    The gene fusion system was used to study UV light-control of PS PAL1 and PS PAL2 genes encoding phenylalanine ammonia-lyase of pea. The induction of pea PAL promoters was analysed in transgenic tobacco plants. Binary plasmids (derivatives of pBI101.2 vector) containing 5' regulatory fragments of PS PAL1 and PS PAL2 linked to reporter genes (GUS, LUC) were constructed. The analyses were performed with the use of single constructs (containing one variant of PS PAL promoter and one reporter gene) and dual constructs (containing both PS PAL1 and PS PAL2 promoters connected with different reporter genes). The use of dual constructs enabled the evaluation of both PS PAL promoters activity in the same plant. The analyses of in vitro grown plants have shown that both PAL promoters are strongly induced in leaves subjected to UV radiation. In some cases, the UV-stimulated expression exceeded the exposed areas. This phenomenon was observed more often in the leaves of plants containing the PS PAL1::GUS than PS PAL2::GUS construct. Removal of boxes 2, 4, 5 from PS PAL1 promoter and deletion of its 5' end region (-339 to -1394) decreases the level of gene expression but does not eliminate its responsiveness to UV

  11. 1H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    International Nuclear Information System (INIS)

    Esaki, N.; Nakayama, T.; Sawada, S.; Tanaka, H.; Soda, K.

    1985-01-01

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. For L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... deficiency anemia can cause serious complications, including heart failure and development delays in children. Explore this Health ... to iron-deficiency anemia include: End-stage kidney failure, where there is blood loss during dialysis. People ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... view the colon directly. What if my doctor thinks something else is causing my iron-deficiency anemia? ... deficiency anemia early in life affects later behavior, thinking, and mood during adolescence. Treating anemia in premature ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... deficiency anemia can cause serious complications, including heart failure and development delays in children. Explore this Health ... lead to iron-deficiency anemia include: End-stage kidney failure, where there is blood loss during dialysis. ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia. These conditions include: Intestinal and digestive conditions, such as celiac disease; inflammatory bowel diseases, ... iron-deficiency anemia , such as bleeding in the digestive or urinary tract or heavy menstrual bleeding, your ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... mg and women need 18 mg. After age 51, both men and women need 8 mg. Pregnant ... for iron-deficiency anemia. Learn about exciting research areas that NHLBI is exploring about iron-deficiency anemia. ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... fatigue or tiredness, shortness of breath, or chest pain. If your doctor diagnoses you with iron-deficiency ... Common symptoms of iron-deficiency anemia include: Chest pain Coldness in the hands and feet Difficulty concentrating ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... heart failure . Increased risk of infections Motor or cognitive development delays in children Pregnancy complications, such as ... for iron-deficiency anemia. Learn about exciting research areas that NHLBI is exploring about iron-deficiency anemia. ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... conditions that can cause iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen ... the size of your liver and spleen. Blood tests Based on results from blood tests to screen ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... learning how having iron-deficiency anemia early in life affects later behavior, thinking, and mood during adolescence. ... iron-deficiency anemia in blood donors affects the quality of donated red blood cells, such as how ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia in blood donors affects the quality of donated red blood cells, such as how ... Cells From Iron-deficient Donors: Recovery and Storage Quality. Learn more about participating in a clinical trial . ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... leaving cells where it is stored or from being absorbed in the duodenum, the first part of ... treatments for iron-deficiency anemia. Living With After being diagnosed with iron-deficiency anemia, it is important ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia. Search the NIH Research Portfolio Online Reporting Tools (RePORT) to learn about research that ... iron-deficiency anemia in blood donors affects the quality of donated red blood cells, such as how ...

  4. Potential Inhibitors for Isocitrate Lyase of Mycobacterium tuberculosis and Non-M. tuberculosis: A Summary

    Directory of Open Access Journals (Sweden)

    Yie-Vern Lee

    2015-01-01

    Full Text Available Isocitrate lyase (ICL is the first enzyme involved in glyoxylate cycle. Many plants and microorganisms are relying on glyoxylate cycle enzymes to survive upon downregulation of tricarboxylic acid cycle (TCA cycle, especially Mycobacterium tuberculosis (MTB. In fact, ICL is a potential drug target for MTB in dormancy. With the urge for new antitubercular drug to overcome tuberculosis treat such as multidrug resistant strain and HIV-coinfection, the pace of drug discovery has to be increased. There are many approaches to discovering potential inhibitor for MTB ICL and we hereby review the updated list of them. The potential inhibitors can be either a natural compound or synthetic compound. Moreover, these compounds are not necessary to be discovered only from MTB ICL, as it can also be discovered by a non-MTB ICL. Our review is categorized into four sections, namely, (a MTB ICL with natural compounds; (b MTB ICL with synthetic compounds; (c non-MTB ICL with natural compounds; and (d non-MTB ICL with synthetic compounds. Each of the approaches is capable of overcoming different challenges of inhibitor discovery. We hope that this paper will benefit the discovery of better inhibitor for ICL.

  5. [Vitamin deficiencies in breastfed children due to maternal dietary deficiency

    NARCIS (Netherlands)

    Kollee, L.A.A.

    2006-01-01

    Dietary deficiencies of vitamin B12 and vitamin D during pregnancy and lactation may result in health problems in exclusively breastfed infants. Vitamin-B12 deficiency in these infants results in irritability, anorexia and failure to thrive during the first 4-8 months of life. Severe and permanent

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... en español Iron-deficiency anemia is a common type of anemia that occurs if you do not ... iron-deficiency anemia and help rule out other types of anemia. Treatment will explain treatment-related complications ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... other conditions that can cause iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen ... check the size of your liver and spleen. Blood tests Based on results from blood tests to screen ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... blood cells. Iron-deficiency anemia usually develops over time because your body’s intake of iron is too ... clamping of your newborn’s umbilical cord at the time of delivery. This may help prevent iron-deficiency ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... blocks the intestine from taking up iron. Other medical conditions Other medical conditions that may lead to iron-deficiency anemia ... daily amount of iron. If you have other medical conditions that cause iron-deficiency anemia , such as ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your doctor may recommend you eat heart-healthy foods or control other conditions that can cause iron-deficiency anemia. Blood tests to screen for ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... loss and lead to iron-deficiency anemia. Common causes of blood loss that lead to iron-deficiency anemia include: Bleeding in your GI tract, from an ulcer, colon cancer, or regular use of medicines such as aspirin ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for iron-deficiency anemia. Lifestyle habits Certain lifestyle habits may increase your risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, such as meat and fish, may result in ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... anemia. Return to Signs, Symptoms, and Complications to review signs and symptoms as well as complications from iron-deficiency ... NIH]) Heavy Menstrual Bleeding (Centers for Disease Control and ... Dietary Supplement Fact Sheet (NIH) Iron-Deficiency Anemia (National Library ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... be at risk for iron-deficiency anemia. Lifestyle habits Certain lifestyle habits may increase your risk for iron-deficiency anemia, ... you are experiencing side effects such as a bad metallic taste, vomiting, diarrhea, constipation, or upset stomach. ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... how we are using current research and advancing research to prevent iron-deficiency anemia. Participate in NHLBI Clinical Trials will explain our ongoing clinical studies that are investigating prevention strategies for iron-deficiency anemia. Signs, Symptoms, and Complications ...

  16. Engineering of Escherichia coli for the synthesis of N-hydroxycinnamoyl tryptamine and serotonin.

    Science.gov (United States)

    Lee, Su Jin; Sim, Geun-Young; Lee, Youngshim; Kim, Bong-Gyu; Ahn, Joong-Hoon

    2017-11-01

    Plants synthesize various phenol amides. Among them, hydroxycinnamoyl (HC) tryptamines and serotonins exhibit antioxidant, anti-inflammatory, and anti-atherogenic activities. We synthesized HC-tryptamines and HC-serotonin from several HCs and either tryptamine or serotonin using Escherichia coli harboring the 4CL (4-coumaroyl CoA ligase) and CaHCTT [hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl)transferase] genes. E. coli was engineered to synthesize N-cinnamoyl tryptamine from glucose. TDC (tryptophan decarboxylase) and PAL (phenylalanine ammonia lyase) along with 4CL and CaHCTT were introduced into E. coli and the phenylalanine biosynthetic pathway of E. coli was engineered. Using this strategy, approximately 110.6 mg/L of N-cinnamoyl tryptamine was synthesized. By feeding 100 μM serotonin into the E. coli culture, which could induce the synthesis of cinnamic acid or p-coumaric acid, more than 99 μM of N-cinnamoyl serotonin and N-(p-coumaroyl) serotonin were synthesized.

  17. Progression from isolated growth hormone deficiency to combined pituitary hormone deficiency.

    Science.gov (United States)

    Cerbone, Manuela; Dattani, Mehul T

    2017-12-01

    Growth hormone deficiency (GHD) can present at any time of life from the neonatal period to adulthood, as a result of congenital or acquired insults. It can present as an isolated problem (IGHD) or in combination with other pituitary hormone deficiencies (CPHD). Pituitary deficits can evolve at any time from GHD diagnosis. The number, severity and timing of occurrence of additional endocrinopathies are highly variable. The risk of progression from IGHD to CPHD in children varies depending on the etiology (idiopathic vs organic). The highest risk is displayed by children with abnormalities in the Hypothalamo-Pituitary (H-P) region. Heterogeneous data have been reported on the type and timing of onset of additional pituitary hormone deficits, with TSH deficiency being most frequent and Diabetes Insipidus the least frequent additional deficit in the majority, but not all, of the studies. ACTH deficiency may gradually evolve at any time during follow-up in children or adults with childhood onset IGHD, particularly (but not only) in presence of H-P abnormalities and/or TSH deficiency. Hence there is a need in these patients for lifelong monitoring for ACTH deficiency. GH treatment unmasks central hypothyroidism mainly in patients with organic GHD, but all patients starting GH should have their thyroid function monitored closely. Main risk factors for development of CPHD include organic etiology, H-P abnormalities (in particular pituitary stalk abnormalities, empty sella and ectopic posterior pituitary), midline brain (corpus callosum) and optic nerves abnormalities, genetic defects and longer duration of follow-up. The current available evidence supports longstanding recommendations for the need, in all patients diagnosed with IGHD, of a careful and indefinite follow-up for additional pituitary hormone deficiencies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. In HepG2 Cells, Coexisting Carnitine Deficiency Masks Important Indicators of Marginal Biotin Deficiency123

    Science.gov (United States)

    Bogusiewicz, Anna; Boysen, Gunnar; Mock, Donald M

    2015-01-01

    Background: A large number of birth defects are related to nutrient deficiencies; concern that biotin deficiency is teratogenic in humans is reasonable. Surprisingly, studies indicate that increased urinary 3-hydroxyisovalerylcarnitine (3HIAc), a previously validated marker of biotin deficiency, is not a valid biomarker in pregnancy. Objective: In this study we hypothesized that coexisting carnitine deficiency can prevent the increase in 3HIAc due to biotin deficiency. Methods: We used a 2-factor nutrient depletion design to induce isolated and combined biotin and carnitine deficiency in HepG2 cells and then repleted cells with carnitine. To elucidate the metabolic pathogenesis, we quantitated intracellular and extracellular free carnitine, acylcarnitines, and acylcarnitine ratios using liquid chromatography–tandem mass spectrometry. Results: Relative to biotin-sufficient, carnitine-sufficient cells, intracellular acetylcarnitine increased by 90%, propionylcarnitine more than doubled, and 3HIAc increased by >10-fold in biotin-deficient, carnitine-sufficient (BDCS) cells, consistent with a defensive mechanism in which biotin-deficient cells transesterify the acyl-coenzyme A (acyl-CoA) substrates of the biotin-dependent carboxylases to the related acylcarnitines. Likewise, in BDCS cells, the ratio of acetylcarnitine to malonylcarnitine and the ratio of propionylcarnitine to methylmalonylcarnitine both more than tripled, and the ratio of 3HIAc to 3-methylglutarylcarnitine (MGc) increased by >10-fold. In biotin-deficient, carnitine-deficient (BDCD) cells, the 3 substrate-derived acylcarnitines changed little, but the substrate:product ratios were masked to a lesser extent. Moreover, carnitine repletion unmasked biotin deficiency in BDCD cells as shown by increases in acetylcarnitine, propionylcarnitine, and 3HIAc (each increased by >50-fold). Likewise, ratios of acetylcarnitine:malonylcarnitine, propionylcarnitine:methylmalonylcarnitine, and 3HIAc:MGc all increased

  19. Inhibition of HMG CoA reductase reveals an unexpected role for cholesterol during PGC migration in the mouse

    Directory of Open Access Journals (Sweden)

    Ewing Andrew G

    2008-12-01

    Full Text Available Abstract Background Primordial germ cells (PGCs are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors. Results We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally. Conclusion In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival.

  20. Genetic analysis of the pelA-pelE cluster encoding the acidic and basic pectate lyases in Erwinia chrysanthemi EC16.

    Science.gov (United States)

    Barras, F; Chatterjee, A K

    1987-10-01

    In Erwinia chrysanthemi (EC16) the clustered pelA and pelE genes encode an acidic (pI 4.2) and a basic (pI 10.0) pectate lyase (Pel), respectively. The pelA gene has been isolated on a 1.2 kb restriction fragment and the direction of transcription determined. DNA hybridization analysis showed that the pelE sequence shares DNA homology with pelA but not with pelB or pelC, two genes encoding other Pel species in EC16. Since Pel A and Pel E enzymes showed little similarity in terms of catalytic properties, it is proposed that pelA and pelE are duplicates which have highly diverged.

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... exploring about iron-deficiency anemia. Read more New treatments for disorders that lead to iron-deficiency anemia. We are ... and other pathways. This could help develop new therapies for conditions that ... behavior, thinking, and mood during adolescence. Treating anemia in ...

  2. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  3. Fatty acid oxidation disorders as primary cause of sudden and unexpected death in infants and young children

    DEFF Research Database (Denmark)

    Banner, Jytte; Kølvraa, S; Gregersen, N

    1997-01-01

    Disorders of fatty acid metabolism are known to be responsible for cases of sudden and unexpected death in infancy. At least 14 disorders are known at present. 120 cases of sudden infant death syndrome (SIDS) had been examined for a prevalent mutation (G985) causing medium chain acyl Co......A dehydrogenase deficiency, which is inherited in an autosomal recessive mode. No over-representation of either homozygous or heterozygous cases was found....

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Are you curious about how inflammation from chronic diseases can cause iron-deficiency anemia? Read more When there is ... DBDR) is a leader in research on the causes, prevention, and treatment of blood diseases, including iron-deficiency anemia. Search the NIH Research ...

  5. Iron deficiency anemia

    Science.gov (United States)

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  6. Genetics Home Reference: 3-hydroxy-3-methylglutaryl-CoA lyase deficiency

    Science.gov (United States)

    ... disorder have been from Saudi Arabia, Portugal, or Spain. Related Information What information about a genetic condition ... Targets Orphanet: 3-hydroxy-3-methylglutaric aciduria Screening, Technology, and Research in Genetics Virginia Department of Health ( ...

  7. An Assessment of the Selenium Status of Iodine-Deficient and Non-Iodine Deficient Filipino Children

    Directory of Open Access Journals (Sweden)

    Ma. Sofia Amarra

    2002-06-01

    Full Text Available The aim of this study is to examine and compare blood selenium levels in iodine-deficient and non-iodine deficient children. Two groups of children were examined: one group with iodine deficiency (n=31 and the other group with normal iodine status (n=32. Blood was extracted by venipuncture from children aged 6-10 years attending first grade in Commonwealth Elementary School in Quezon City. Whole blood selenium was examined by electrothermal atomic absorption spectrophotometry (AAS. Iodine status was determined by goiter palpation and urinary iodine excretion. Mean selenium levels of deficient and non-deficient children were compared using T-test. Using a cut-off value of 60 mg Se/L whole blood, the proportion of children with normal and deficient iodine status who fell below this cut-off was compared using chi-square test. Whole blood selenium values ranged from 17.6 to 133.6 mg/L. There were no significant differences in mean selenium levels between children with normal and deficient iodine status. Children with normal iodine status had a mean blood selenium level of 55.87 ± 26.3 mg/L while children with deficient iodine status had a mean level of 58.76 ± 26.4 mg/L. Sixty percent of children had blood selenium levels below the arbitrary cut-off of 60 mg/L with no significant difference between groups (p = 0.165, indicating that selenium deficiency is prevalent in this group of children regardless of iodine status. Since selenium deficiency limits the response to iodine supplementation, further investigation is needed to determine whether the same situation exists in children from other areas.

  8. [Iron deficiency and pica].

    Science.gov (United States)

    Muñoz, J A; Marcos, J; Risueño, C E; de Cos, C; López, R; Capote, F J; Martín, M V; Gil, J L

    1998-02-01

    To study the relationship between pica and iron-lack anaemia in a series of iron-deficiency patients in order to establish the pathogenesis of such relationship. Four-hundred and thirty-three patients were analysed. Pica was studied by introducing certain diet queries into the clinical history. All patients received oral iron and were periodically controlled with the usual clinico-haematological procedures. Pica was present in 23 patients (5.3%). Eight nourishing (namely, coffee grains, almonds, chocolate, ice, lettuce, carrots, sunflower seeds and bread) and 2 non-nourishing (clay and paper) substances were involved. A second episode of pica appeared in 9 cases upon relapsing of iron deficiency. Both anaemia and pica were cured by etiologic and substitutive therapy in all instances. No clear correlation was found with either socio-economic status or pathogenetic causes of iron deficiency and pica, and no haematological differences were seen between patients with pica and those without this alteration. (1) The pathogenesis of pica is unclear, although it appears unrelated to the degree of iron deficiency. (2) According to the findings in this series, pica seems a consequence of iron deficiency rather than its cause. (3) Adequate therapy can cure both conditions, although pica may reappear upon relapse of iron deficiency.

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Topics section only, or the News and Resources section. NHLBI Entire Site NHLBI Entire Site Health ... español Iron-deficiency anemia is a common type of anemia that occurs if you do not have enough iron in your body. People with mild or moderate iron-deficiency anemia ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... also are hoping to determine which iron supplements work best to treat iron-deficiency anemia in children who do not consume the daily recommended amount of iron. Read less Participate in NHLBI Clinical Trials We lead or sponsor many studies related to iron-deficiency anemia. See if you ...

  11. Preliminary structural investigations of the Eut-L shell protein of the ethanolamine ammonia-lyase metabolosome of Escherichia coli

    International Nuclear Information System (INIS)

    Nikolakakis, Kiel; Ohtaki, Akashi; Newton, Keith; Chworos, Arkadiusz; Sagermann, Martin

    2009-01-01

    Preliminary X-ray analysis of crystals of the bacterial microcompartment shell protein Eut-L from Escherichia coli is reported. The ethanolamine ammonia-lyase microcompartment is composed of five different shell proteins that have been proposed to assemble into symmetrically shaped polyhedral particles of varying sizes. Here, preliminary X-ray analysis of crystals of the bacterial microcompartment shell protein Eut-L from Escherichia coli is reported. Cloning, overexpression and purification resulted in highly pure protein that crystallized readily under many different conditions. In all cases the protein forms thin hexagonal plate-shaped crystals belonging to space group P3 that are of unusually high stability against different solvent conditions. The crystals diffracted to a resolution of 2.0 Å using synchrotron radiation but proved to be radiation-sensitive. Preparations of heavy-atom-derivatized crystals for use in determining the three-dimensional structure are under way

  12. Diagnóstico diferencial da deficiência de ferro Differential diagnosis of iron deficiency

    Directory of Open Access Journals (Sweden)

    Perla Vicari

    2010-06-01

    Full Text Available A deficiência de ferro é considerada a patologia hematológica mais prevalente no homem. Assim, é fundamental a adequada identificação de suas causas, bem como a diferenciação com outras patologias distintas para adequada abordagem da deficiência de ferro. Neste artigo são brevemente descritas outras condições que podem cursar com anemia microcítica, tais como: talassemias, anemia de doença crônica, anemia sideroblástica e envenenamento por chumbo, patologias estas que devem ser afastadas durante investigação de anemia ferropriva.Iron deficiency is considered to be the commonest hematological pathology in humans. Thus, the essential steps in an adequate approach of iron deficiency include: the proper identification of its causes and the differentiation between iron deficiency and other conditions. This article briefly describes other conditions that may present with microcytic anemia such as thalassemia, anemia of chronic diseases, sideroblastic anemia and lead intoxication. These diseases should be considered during the investigation of iron deficiency anemia.

  13. Manganese deficiency in plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund; Jensen, Poul Erik; Husted, Søren

    2016-01-01

    Manganese (Mn) is an essential plant micronutrient with an indispensable function as a catalyst in the oxygen-evolving complex (OEC) of photosystem II (PSII). Even so, Mn deficiency frequently occurs without visual leaf symptoms, thereby masking the distribution and dimension of the problem...... restricting crop productivity in many places of the world. Hence, timely alleviation of latent Mn deficiency is a challenge in promoting plant growth and quality. We describe here the key mechanisms of Mn deficiency in plants by focusing on the impact of Mn on PSII stability and functionality. We also address...... the mechanisms underlying the differential tolerance towards Mn deficiency observed among plant genotypes, which enable Mn-efficient plants to grow on marginal land with poor Mn availability....

  14. PECTATE LYASE-LIKE10 is associated with pollen wall development in Brassica campestris.

    Science.gov (United States)

    Jiang, Jingjing; Yao, Lina; Yu, Youjian; Lv, Meiling; Miao, Ying; Cao, Jiashu

    2014-11-01

    PECTATE LYASE-LIKE10 (PLL10) was previously identified as one of the differentially expressed genes both in microspores during the late pollen developmental stages and in pistils during the fertilization process in Chinese cabbage (Brassica campestris ssp. chinensis). Here, antisense-RNA was used to study the functions of BcPLL10 in Chinese cabbage. Abnormal pollen was identified in the transgenic lines (bcpll10-4, -5, and -6). In fertilization experiments, fewer seeds were harvested when the antisense-RNA lines were used as pollen donor. In vivo and in vitro pollen germination assays less germinated pollen tubes were observed in bcpll10 lines. Scanning electron microscopy observation verified that the tryphine materials were over accumulated around the pollen surface and sticked them together in bcpll10. Moreover, transmission electron microscopy observation revealed that the internal endintine was overdeveloped and predominantly occupied the intine, and disturbed the normal proportional distribution of the two layers in the non-germinal furrow region; and no obvious demarcation existed between them in the germinal furrow region in the bcpll10 pollen. Collectively, this study presented a novel PLL gene that played an important role during the pollen wall development in B. campestris, which may also possess potential importance for male sterility usage in agriculture. © 2014 Institute of Botany, Chinese Academy of Sciences.

  15. Ammonia control in children ages 2 months through 5 years with urea cycle disorders: comparison of sodium phenylbutyrate and glycerol phenylbutyrate.

    Science.gov (United States)

    Smith, Wendy; Diaz, George A; Lichter-Konecki, Uta; Berry, Susan A; Harding, Cary O; McCandless, Shawn E; LeMons, Cindy; Mauney, Joe; Dickinson, Klara; Coakley, Dion F; Moors, Tristen; Mokhtarani, Masoud; Scharschmidt, Bruce F; Lee, Brendan

    2013-06-01

    To examine ammonia levels, pharmacokinetics, and safety of glycerol phenylbutyrate (GPB; also referred to as HPN-100) and sodium phenylbutyrate (NaPBA) in young children with urea cycle disorders (UCDs). This open label switch-over study enrolled patients ages 29 days to under 6 years taking NaPBA. Patients underwent 24-hour blood and urine sampling on NaPBA and again on a phenylbutyric acid-equimolar dose of GPB and completed questionnaires regarding signs and symptoms associated with NaPBA and/or their UCD. Fifteen patients (8 argininosuccinate lyase deficiency, 3 argininosuccinic acid synthetase deficiency, 3 ornithine transcarbamylase deficiency, 1 arginase deficiency) ages 2 months through 5 years enrolled in and completed the study. Daily ammonia exposure (24-hour area under the curve) was lower on GPB and met predefined noninferiority criteria (ratio of means 0.79; 95% CI 0.593-1.055; P=.03 Wilcoxon; 0.07 t test). Six patients experienced mild adverse events on GPB; there were no serious adverse events or significant laboratory changes. Liver tests and argininosuccinic acid levels among patients with argininosuccinate lyase deficiency were unchanged or improved on GPB. Eleven of 15 patients reported 35 symptoms on day 1; 23 of these 35 symptoms improved or resolved on GPB. Mean systemic exposure to phenylbutyric acid, phenylacetic acid, and phenylacetylglutamine (PAGN) were similar and phenylacetic acid exposure tended to be higher in the youngest children on both drugs. Urinary PAGN concentration was greater on morning voids and varied less over 24 hours on GPB versus NaPBA. GPB results in more evenly distributed urinary output of PAGN over 24 hours were associated with fewer symptoms and offers ammonia control comparable with that observed with NaPBA in young children with UCDs. Copyright © 2013 Mosby, Inc. All rights reserved.

  16. The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells

    Directory of Open Access Journals (Sweden)

    Christina eNeumann

    2014-10-01

    Full Text Available Salmonella is one of the most prominent causes of food poisoning and growing evidence indicates that contaminated fruits and vegetables are an increasing concern for human health. Successful infection demands the suppression of the host immune system, which is often achieved via injection of bacterial effector proteins into host cells. In this report we present the function of Salmonella effector protein in plant cell, supporting the new concept of trans-kingdom competence of this bacterium. We screened a range of Salmonella Typhimurium effector proteins for interference with plant immunity. Among these, the phosphothreonine lyase SpvC attenuated the induction of immunity-related genes when present in plant cells. Using in vitro and in vivo systems we show that this effector protein interacts with and dephosphorylates activated Arabidopsis Mitogen-activated Protein Kinase 6 (MPK6, thereby inhibiting defense signaling. Moreover, the requirement of Salmonella SpvC was shown by the decreased proliferation of the ΔspvC mutant in Arabidopsis plants. These results suggest that some Salmonella effector proteins could have a conserved function during proliferation in different hosts. The fact that Salmonella and other Enterobacteriaceae use plants as hosts strongly suggests that plants represent a much larger reservoir for animal pathogens than so far estimated.

  17. The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells

    KAUST Repository

    Neumann, Christina

    2014-10-17

    Salmonella is one of the most prominent causes of food poisoning and growing evidence indicates that contaminated fruits and vegetables are an increasing concern for human health. Successful infection demands the suppression of the host immune system, which is often achieved via injection of bacterial effector proteins into host cells. In this report we present the function of Salmonella effector protein in plant cell, supporting the new concept of trans-kingdom competence of this bacterium. We screened a range of Salmonella Typhimurium effector proteins for interference with plant immunity. Among these, the phosphothreonine lyase SpvC attenuated the induction of immunity-related genes when present in plant cells. Using in vitro and in vivo systems we show that this effector protein interacts with and dephosphorylates activated Arabidopsis Mitogen-activated Protein Kinase 6 (MPK6), thereby inhibiting defense signaling. Moreover, the requirement of Salmonella SpvC was shown by the decreased proliferation of the ΔspvC mutant in Arabidopsis plants. These results suggest that some Salmonella effector proteins could have a conserved function during proliferation in different hosts. The fact that Salmonella and other Enterobacteriaceae use plants as hosts strongly suggests that plants represent a much larger reservoir for animal pathogens than so far estimated.

  18. Molecular characterization of FXI deficiency.

    Science.gov (United States)

    Berber, Ergul

    2011-02-01

    Factor XI (FXI) deficiency is a rare autosomal bleeding disease associated with genetic defects in the FXI gene. It is a heterogeneous disorder with variable tendency in bleeding and variable causative FXI gene mutations. It is characterized as a cross-reacting material-negative (CRM-) FXI deficiency due to decreased FXI levels or cross-reacting material-positive (CRM+) FXI deficiency due to impaired FXI function. Increasing number of mutations has been reported in FXI mutation database, and most of the mutations are affecting serine protease (SP) domain of the protein. Functional characterization for the mutations helps to better understand the molecular basis of FXI deficiency. Prevalence of the disease is higher in certain populations such as Ashkenazi Jews. The purpose of this review is to give an overview of the molecular basis of congenital FXI deficiency.

  19. Identification of a Novel HADHB Gene Mutation in an Iranian Patient with Mitochondrial Trifunctional Protein Deficiency.

    Science.gov (United States)

    Shahrokhi, Mahdiyeh; Shafiei, Mohammad; Galehdari, Hamid; Shariati, Gholamreza

    2017-01-01

    Mitochondrial trifunctional protein (MTP) is a hetero-octamer composed of eight parts (subunits): four α-subunits containing LCEH (long-chain 2,3-enoyl-CoA  hydratase) and LCHAD (long-chain 3-hydroxyacyl CoA dehydrogenase) activity, and four β-subunits that possess LCKT (long-chain  3-ketoacyl-CoA thiolase) activity which catalyzes three out of four steps in β-oxidation spiral of long-chain fatty acid. Its deficiency is an autosomal recessive disorder that causes a clinical spectrum of diseases. A blood spot was collected from the patient's original newborn screening card with parental informed consent. A newborn screening test and quantity plasma acylcarnitine profile analysis by MS/MS were performed. After isolation of DNA and Amplification of all exons of the HADHA and HADHB, directly Sequence analyses of all exons and the flanking introns both of genes were performed. Here, we report a novel mutation in a patient with MTP deficiency diagnosed with newborn screening test and quantity plasma acylcarnitine profile analysis by MS/MS and then confirmed by enzyme analysis in cultured fibroblasts and direct sequencing of the HADHA and HADHB genes. Molecular analysis of causative genes showed a missense mutation (p.Q385P) c.1154A > C in exon 14 of HADHB gene. Since this mutation was not found in 50 normal control cases; so it was concluded that c.1154A > C mutation was a causative mutation. Phenotype analysis of this mutation predicted pathogenesis which reduces the stability of the MTP protein complex.

  20. Perturbation of formate pathway for hydrogen production by expressions of formate hydrogen lyase and its transcriptional activator in wild Enterobacter aerogenes and its mutants

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan; Zhao, Hongxin; Zhang, Chong; Lai, Qiheng; Xing, Xin-Hui [Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2009-06-15

    To examine perturbation effects of formate pathway on hydrogen productivity in Enterobacter aerogenes (Ea), formate dehydrogenase FDH-H gene (fdhF) and formate hydrogen lyase activator protein FHLA gene (fhlA) originated from Escherichia coli, were overexpressed in the wild strain Ea, its hycA-deleted mutant (A) by knockout the formate hydrogen lyase repressor and hybO-deleted mutant (O) by knockout of the uptake hydrogenase, respectively. Overexpression of fdhF and fhlA promoted cell growth and volumetric hydrogen production rates of all the strains, and the hydrogen production per gram cell dry weight (CDW) for Ea, A and O was increased by 38.5%, 21.8% and 5.25%, respectively. The fdhF and fhlA overexpression improved the hydrogen yield per mol glucose of strains Ea and A, but declined that of strain O. The increase of hydrogen yield of the strain Ea with fdhF and fhlA expression was mainly attributed to the increase of formate pathway, while for the mutant A, the improved hydrogen yield with fdhF and fhlA expression was mainly due to the increase of NADH pathway. Analysis of the metabolites and ratio of ethanol-to-acetate showed that the cellular redox state balance and energy level were also changed for these strains by fdhF and fhlA expression. These findings demonstrated that the hydrogen production was not only dependent on the hydrogenase genes, but was also affected by the regulation of the whole metabolism. Therefore, fdhF and fhlA expression in different strains of E. aerogenes could exhibit different perturbation effects on the metabolism and the hydrogen productivity. (author)

  1. Vitamin B12 deficiency

    DEFF Research Database (Denmark)

    Green, Ralph; Allen, Lindsay H; Bjørke-Monsen, Anne-Lise

    2017-01-01

    , subclinical deficiency affects between 2.5% and 26% of the general population depending on the definition used, although the clinical relevance is unclear. B12 deficiency can affect individuals at all ages, but most particularly elderly individuals. Infants, children, adolescents and women of reproductive age...... remain debated. Management depends on B12 supplementation, either via high-dose oral routes or via parenteral administration. This Primer describes the current knowledge surrounding B12 deficiency, and highlights improvements in diagnostic methods as well as shifting concepts about the prevalence, causes...

  2. Mechanistic deductions from multiple kinetic and solvent deuterium isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: escherichia coli tryptophan indole-lyase

    International Nuclear Information System (INIS)

    Kiick, D.M.; Phillips, R.S.

    1988-01-01

    Analysis of the pH dependence of the kinetic parameters and competitive inhibitor Ki values for tryptophan indole-lyase suggests two enzymic groups must be unprotonated in order to facilitate binding and catalysis of tryptophan. The V/K for tryptophan and the pKi for oxindolyl-L-alanine, a putative transition state analogue and competitive inhibitor, decrease below two pK values of 7.6 and 6.0, while the Ki for L-alanine, also a competitive inhibitor, is 3300-fold larger (20 mM) than that for oxindolyl-L-alanine and increases below a single pK of 7.6. A single pK of 7.6 is also observed in the V/K profile for the alternate substrate, S-methyl-L-cysteine. Therefore, the enzymic group with a pK of 7.6 is responsible for proton abstraction at the 2-position of tryptophan, while the enzymic group with a pK of 6.0 interacts with the indole portion of tryptophan and probably catalyzes formation of the indolenine tautomer of tryptophan (in concert with proton transfer to C-3 of indole from the group with pK 7.6) to facilitate carbon-carbon bond cleavage and elimination of indole. The pH variation of the primary deuterium isotope effects for proton abstraction at the 2-position of tryptophan (DV = 2.5 and D(V/Ktrp) = 2.8) are pH independent, while the Vmax for tryptophan or S-methyl-L-cysteine is the same and also pH independent. Thus, substrates bind only to the correctly protonated form of the enzyme. Further, tryptophan is not sticky, and the pK values observed in both V/K profiles are the correct ones

  3. Monocular Elevation Deficiency - Double Elevator Palsy

    Science.gov (United States)

    ... Español Condiciones Chinese Conditions Monocular Elevation Deficiency/ Double Elevator Palsy En Español Read in Chinese What is monocular elevation deficiency (Double Elevator Palsy)? Monocular Elevation Deficiency, also known by the ...

  4. Genetics Home Reference: tyrosine hydroxylase deficiency

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions TH deficiency Tyrosine hydroxylase deficiency Printable PDF Open All Close All ... Javascript to view the expand/collapse boxes. Description Tyrosine hydroxylase (TH) deficiency is a disorder that primarily ...

  5. Genetics Home Reference: factor VII deficiency

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Factor VII deficiency Factor VII deficiency Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Factor VII deficiency is a rare bleeding disorder that varies ...

  6. Analysis of different de-esterification mechanisms for pectin by enzymatic fingerprinting using endopectin lyase and endopolygalacturonase II from A. niger

    DEFF Research Database (Denmark)

    Limberg, G; Körner, R; Buchholt, H C

    2000-01-01

    with either endopectin lyase (PL) or endopolygalacturonase II (PG II) from Aspergillus niger were analysed using matrix assisted laser desorption ionisation mass spectrometry (MALDIMS) and high-performance anion-exchange chromatography with pulsed amperometric or UV detection (HPAEC-PAD/UV). Time course......A series of pectins with different distribution patterns of methyl ester groups was produced by treatment with either plant (p-PME) or fungal pectin methyl esterases (f-PME) and compared with those obtained by base catalysed de-esterification. The products generated by digestion of these pectins...... analysis using MALDIMS was used to identify the most preferred substrate for each enzyme. For PL, this was shown to be fully methyl esterified HG whereas for PG II, long regions of HG without any methyl esterification, as produced by p-PME was the optimal substrate. The blockwise de-esterification caused...

  7. Multiple rewards from a treasure trove of novel glycoside hydrolase and polysaccharide lyase structures: new folds, mechanistic details, and evolutionary relationships.

    Science.gov (United States)

    Fushinobu, Shinya; Alves, Victor D; Coutinho, Pedro M

    2013-10-01

    Recent progress in three-dimensional structure analyses of glycoside hydrolases (GHs) and polysaccharide lyases (PLs), the historically relevant enzyme classes involved in the cleavage of glycosidic bonds of carbohydrates and glycoconjugates, is reviewed. To date, about 80% and 95% of the GH and PL families, respectively, have a representative crystal structure. New structures have been determined for enzymes acting on plant cell wall polysaccharides, sphingolipids, blood group antigens, milk oligosaccharides, N-glycans, oral biofilms and dietary seaweeds. Some GH enzymes have very unique catalytic residues such as the Asp-His dyad. New methods such as high-speed atomic force microscopy and computational simulation have opened up a path to investigate both the dynamics and the detailed molecular interactions displayed by these enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Cadmium-induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata.

    Science.gov (United States)

    Dai, Ling-Peng; Xiong, Zhi-Ting; Huang, Yu; Li, Min-Jing

    2006-10-01

    This study was designed to examine the effects of cadmium on several color-related parameters (including chlorophyll, carotenoid, and anthocyanin), total phenolics, and phenylalanine ammonia-lyase (PAL) activity in an aquatic fern species Azolla imbricate (A. imbricata). Cd accumulation and effects in the fronds were closely related with Cd concentration in the growth medium. The fronds under 0.5 mg/L Cd treatment turned red on the 3rd day, and this color change also appeared under 0.05 and 0.1 mg/L Cd treatment on the 5th day. Correlated with the color change, the contents of chlorophyll and carotenoid in the fronds significantly decreased in the presence of high Cd concentrations, while the anthocyanin content increased during the experiment. Significant increase in total phenolics content and PAL activity were also detected during Cd treatment. The results suggested that the Cd-induced change in color of fronds might be due to the decrease in chlorophyll and carotenoid and the increase in anthocyanin. Anthocyanin, total phenolics and their biosynthesis-related PAL might play a role in detoxification of Cd in A. imbricata.

  9. Iron deficiency in childhood

    NARCIS (Netherlands)

    Uijterschout, L.

    2015-01-01

    Iron deficiency (ID) is the most common micronutrient deficiency in the world. Iron is involved in oxygen transport, energy metabolism, immune response, and plays an important role in brain development. In infancy, ID is associated with adverse effects on cognitive, motor, and behavioral development

  10. Prevalence of Iron Deficiency and Iron Deficiency Anemia in High-School Girl Students of Yazd

    Directory of Open Access Journals (Sweden)

    M Noori Shadkam

    2009-07-01

    Full Text Available Introduction: It is generally assumed that 50% of the cases of anemia are due to iron deficiency. The most severe consequence of iron depletion is iron deficiency anemia (IDA, and it is still considered the most common nutrition deficiency worldwide. The main risk factors for IDA include: inadequate iron intake, impaired absorption or transport, physiologic losses associated with chronological or reproductive age, or acute or chronic blood loss, parasite infections such as hookworms, acute and chronic infections, including malaria, cancer, tuberculosis, HIV and other micronutrient deficiencies, including vitamins A and B12, folate, riboflavin, and copper deficiency. Methods: This work as a cross-sectional study was done in 2007-2008 in Yazd. Two hundred girls who participated in the study were selected randomly from eight girl high schools. Five ml venous blood was collected for determination of serum ferritin and cell blood count (CBC. Serum ferritin was determined by using ECLIA method and CBC by cell counter SYSMEX KX21N. Iron deficiency was defined as having serum ferritin values below 12 μ/l. Anemia was defined as having Hemoglobin levels below12 g/dl. Iron-deficiency anemia was considered to be the combination of both. Results: The3 mean ageyears and body mass index (kg/m2 were 15.19±0.7years and 21.5±4.2, respectively. Distribution in the 14, 15 and 16 years and more age groups were 13, 58.5 and 28.5 percent, respectively. Mean of Hemoglobin(g/dl, Hematocrit(%, MCV (fl, MCH (pg, MCHC (g/dl and ferritin(μ/l were 12.8±0.9, 38.9±3.0, 80.7±4.3, 26.6±1.8, 33.2±3.6 and 23±18.2, respectively. Of the total, 13.5% were anemic, 68% of which had Iron Deficiency Anemia (9.3% of the total. Iron deficiency was present in 34.7% of the population under study. Conclusion: According to world health organization criteria, anemia is a mild public health problem in this region, but iron deficiency is a significant problem and suitable measures for

  11. Clinical significance of enzymatic deficiencies in the gastrointestinal tract with particular reference to lactase deficiency.

    Science.gov (United States)

    Rossi, E; Lentze, M J

    1984-12-01

    The study of deficiencies of small intestinal brush-border hydrolases increased our knowledge about the specific functions of hydrolases in the digestion of smaller molecules on the microvillus surface of the absorptive cells. The sucrase-isomaltase (SI) complex has been shown to be synthesized as a precursor (pro-sucrase-isomaltase) which is then incorporated into the membrane. The hydrophobic N-terminal end of the molecule is anchored in the lipid bilayer. In SI deficiency the molecular base of the disease is still not clear. Absence of SI activity could be due to complete lack of precursor synthesis or to structural changes within the N-terminal end of the SI-complex. Deficiencies of peptide hydrolases have not been reported with the exception of enteropeptidase (EP). Here a congenital deficiency of the enzyme was observed as the primary defect in enzyme synthesis within the enterocytes and as a secondary defect due to exocrine pancreatic insufficiency. In contrast to the primary EP deficiency, the activity of EP can be restored in the cases of exocrine pancreatic insufficiency by treatment with pancreatic extracts. Primary lactase deficiency exists in various forms. Besides congenital lactase deficiency, the late onset or adult type of lactase deficiency has been observed. The latter occurs in many different ethnic groups around the world. Here, using gel electrophoresis and immunoelectrophoresis, the lack of enzyme activity could be shown to be a primary defect in enzyme protein synthesis. In man and in the rat, two different lactases have been identified. In contrast to adult lactase, fetal lactase contains sialic acid at the end of carbohydrate side chains.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. What Is Combined Deficiency of Vitamin K-Dependent Clotting Factors?

    Science.gov (United States)

    ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ...

  13. Potential role of pectate lyase and Ca(2+) in the increase in strawberry fruit firmness induced by short-term treatment with high-pressure CO2.

    Science.gov (United States)

    Wang, Mao Hua; Kim, Jin Gook; Ahn, Sun Eun; Lee, Ah Youn; Bae, Tae Min; Kim, Deu Re; Hwang, Yong Soo

    2014-04-01

    Postharvest treatment with high-pressure CO2 helps to control decay and increase firmness in strawberries. Increases in firmness occurred through modification of calcium binding to cell wall. However, the mechanism(s) involved in Ca(2+) migration to pectic polymers and other physiological events associated with the maintenance of increased firmness are not clearly understood. The focus of this study was to find potential mechanism(s) that are associated with calcium movement, increases in firmness, or maintenance of firmness in strawberry fruit after high-pressure CO2 treatment. An increase in firmness was induced by high-pressure CO2 treatment, but not by high-pressure N2 treatment. This indicates that CO2 stimulates a change in firmness. The increase in firmness induced by high-pressure CO2 seems to involve calcium efflux. Using membrane Ca(2+) -dependent ATPase inhibitors sodium vanadate (250 μM) and erythrosin B (100 μM) delayed both the increase in firmness and calcium binding to wall polymers. Exogenous application of CaCl2 (10 mM) enhanced the firmness increase of fruit slices only when they were exposed to high-pressure CO2 . The activity of pectate lyase was downregulated by CO2 treatment, but β-galactosidase activity was not affected. The increase in strawberry firmness induced by high-pressure CO2 treatment primarily involves the efflux of calcium ions and their binding to wall polymers. These physiological changes are not induced by an anaerobic environment. The downregulation of wall-modifying enzymes, such as pectate lyase, appeared to contribute to the maintenance of firmness that was induced by high-pressure CO2 treatment. © 2014 Institute of Food Technologists®

  14. Simultaneous determination of the lipoxygenase and hydroperxide lyase specificity in olive fruit pulp

    Directory of Open Access Journals (Sweden)

    Salas, Joaquín J.

    2000-06-01

    Full Text Available Olive pulp lipoxygenase regiospecificity and hydroperoxide lyase substrate specificity are important parameters in order to justify the volatile composition of olive oil. A new radiolabelling method to determine simultaneously these properties using only thin layer chromatography steps is described in the present work. The method involves incubation of an enzyme preparation from olive pulp with radiolabelled linoleate, followed by the fractionation of the resulting lipid products, previously treated with 2,4-dinitrophenyl hydrazine, on thin layer chromatography plates coated with polyethylenglycol 400. The results obtained are in agreement with previous studies carried out by other methods.La regioespecificidad de la lipoxigenasa y la especificidad del sustrato hidroperóxido liasa de pulpa de aceituna son parámetros importantes en la justificación de la composición en volátiles del aceite de oliva. En este trabajo se describe un nuevo método de marcaje radioactivo para determinar simultáneamente estas propiedades, usando solo etapas de cromatografía en capa fina. El método implica la incubación de una preparación enzimática de pulpa de aceituna con linoleato marcado, seguido del fraccionamiento de los productos lipídicos resultantes, previamente tratados con 2,4-dinitrofenil hidrazina, sobre placas de cromatografía en capa fina soportadas con polietilenglicol 400. Los resultados obtenidos están de acuerdo con estudios previos llevados a cabo con otros métodos.

  15. Arsenic Demethylation by a C·As Lyase in Cyanobacterium Nostoc sp. PCC 7120.

    Science.gov (United States)

    Yan, Yu; Ye, Jun; Xue, Xi-Mei; Zhu, Yong-Guan

    2015-12-15

    Arsenic, a ubiquitous toxic substance, exists mainly as inorganic forms in the environment. It is perceived that organoarsenicals can be demethylated and degraded into inorganic arsenic by microorganisms. Few studies have focused on the mechanism of arsenic demethylation in bacteria. Here, we investigated arsenic demethylation in a typical freshwater cyanobacterium Nostoc sp. PCC 7120. This bacterium was able to demethylate monomethylarsenite [MAs(III)] rapidly to arsenite [As(III)] and also had the ability to demethylate monomethylarsenate [MAs(V)] to As(III). The NsarsI encoding a C·As lyase responsible for MAs(III) demethylation was cloned from Nostoc sp. PCC 7120 and heterologously expressed in an As-hypersensitive strain Escherichia coli AW3110 (ΔarsRBC). Expression of NsarsI was shown to confer MAs(III) resistance through arsenic demethylation. The purified NsArsI was further identified and functionally characterized in vitro. NsArsI existed mainly as the trimeric state, and the kinetic data were well-fit to the Hill equation with K0.5 = 7.55 ± 0.33 μM for MAs(III), Vmax = 0.79 ± 0.02 μM min(-1), and h = 2.7. Both of the NsArsI truncated derivatives lacking the C-terminal 10 residues (ArsI10) or 23 residues (ArsI23) had a reduced ability of MAs(III) demethylation. These results provide new insights for understanding the important role of cyanobacteria in arsenic biogeochemical cycling in the environment.

  16. Galactose Epimerase Deficiency: Expanding the Phenotype

    NARCIS (Netherlands)

    Dias Costa, Filipa; Ferdinandusse, Sacha; Pinto, Carla; Dias, Andrea; Keldermans, Liesbeth; Quelhas, Dulce; Matthijs, Gert; Mooijer, Petra A.; Diogo, Luísa; Jaeken, Jaak; Garcia, Paula

    2017-01-01

    Galactose epimerase deficiency is an inborn error of metabolism due to uridine diphosphate-galactose-4'-epimerase (GALE) deficiency. We report the clinical presentation, genetic and biochemical studies in two siblings with generalized GALE deficiency.Patient 1: The first child was born with a

  17. Active tuberculosis patients have high levels of IgA anti-alpha-crystallin and isocitrate lyase proteins.

    Science.gov (United States)

    Talavera-Paulín, M; García-Morales, L; Ruíz-Sánchez, B P; Caamal-Ley, Á D; Hernández-Solis, A; Ramírez-Casanova, E; Cicero-Sabido, R; Espitia, C; Helguera-Repetto, C; González-Y-Merchand, J A; Flores-Mejía, R; Estrada-Parra, S; Estrada-García, I; Chacón-Salinas, R; Wong-Baeza, I; Serafín-López, J

    2016-12-01

    Mexico City, Mexico. To identify proteins synthetised by Mycobacterium tuberculosis in hypoxic culture, which resemble more closely a granuloma environment than aerobic culture, and to determine if they are recognised by antibodies from patients with active pulmonary tuberculosis (PTB). Soluble extracts from M. tuberculosis H37Rv cultured under aerobic or hypoxic conditions were analysed using two-dimensional polyacrylamide gel electrophoresis, and proteins over-expressed under hypoxia were identified by mass spectrometry. The presence of immunoglobulin (Ig) G, IgA and IgM antibodies against these proteins was determined in the serum of 42 patients with active PTB and 42 healthy controls. We selected three M. tuberculosis H37Rv proteins (alpha-crystallin protein [Acr, Rv2031c], universal stress protein Rv2623 and isocitrate lyase [ICL, RV0467]) that were over-expressed under hypoxia. Titres of anti-Acr and anti-ICL IgA antibodies were higher in patients than in healthy controls, with an area under the receiver operating characteristic curve of 0.71 for anti-ICL IgA antibodies. ICL could be used in combination with other M. tuberculosis antigens to improve the sensitivity and specificity of current serological TB diagnostic methods.

  18. Zinc: physiology, deficiency, and parenteral nutrition.

    Science.gov (United States)

    Livingstone, Callum

    2015-06-01

    The essential trace element zinc (Zn) has a large number of physiologic roles, in particular being required for growth and functioning of the immune system. Adaptive mechanisms enable the body to maintain normal total body Zn status over a wide range of intakes, but deficiency can occur because of reduced absorption or increased gastrointestinal losses. Deficiency impairs physiologic processes, leading to clinical consequences that include failure to thrive, skin rash, and impaired wound healing. Mild deficiency that is not clinically overt may still cause nonspecific consequences, such as susceptibility to infection and poor growth. The plasma Zn concentration has poor sensitivity and specificity as a test of deficiency. Consequently, diagnosis of deficiency requires a combination of clinical assessment and biochemical tests. Patients receiving parenteral nutrition (PN) are susceptible to Zn deficiency and its consequences. Nutrition support teams should have a strategy for assessing Zn status and optimizing this by appropriate supplementation. Nutrition guidelines recommend generous Zn provision from the start of PN. This review covers the physiology of Zn, the consequences of its deficiency, and the assessment of its status, before discussing its role in PN. © 2015 American Society for Parenteral and Enteral Nutrition.

  19. Electrochemistry of cytochrome P450 17α-hydroxylase/17,20-lyase (P450c17).

    Science.gov (United States)

    Martin, Lisandra L; Kubeil, Clemens; Simonov, Alexandr N; Kuznetsov, Vladimir L; Corbin, C Jo; Auchus, Richard J; Conley, Alan J; Bond, Alan M; Rodgers, Raymond J

    2017-02-05

    Within the superfamily of cytochrome P450 enzymes (P450s), there is a small class which is functionally employed for steroid biosynthesis. The enzymes in this class appear to have a small active site to accommodate the steroid substrates specifically and snuggly, prior to the redox transformation or hydroxylation to form a product. Cytochrome P450c17 is one of these and is also a multi-functional P450, with two activities, the first 17α-hydroxylation of pregnenolone is followed by a subsequent 17,20-lyase transformation to dehydroepiandrosterone (DHEA) as the dominant pathways to cortisol precursors or androgens in humans, respectively. How P450c17 regulates these two redox reactions is of special interest. There is a paucity of direct electrochemical studies on steroidogenic P450s, and in this mini-review we provide an overview of these studies with P450c17. Historical consideration as to the difficulties in obtaining reliable electrochemistry due to issues of handling proteins on an electrode, together with advances in the electrochemical techniques are addressed. Recent work using Fourier transformed alternating current voltammetry is highlighted as this technique can provide both catalytic information simultaneously with the underlying redox transfer with the P450 haem. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. High Prevalence of Vitamin B12 Deficiency and No Folate Deficiency in Young Children in Nepal

    Directory of Open Access Journals (Sweden)

    Bernadette N. Ng’eno

    2017-01-01

    Full Text Available Many children in low- and middle-income countries may have inadequate intake of vitamin B12 and folate; data confirming these inadequacies are limited. We used biochemical, demographic, behavioral and anthropometric data to describe the folate and vitamin B12 concentrations among six- to 23-month-old Nepalese children. Vitamin B12 (serum B12 < 150 pmol/L and folate deficiencies (red blood cell (RBC folate < 226.5 nmol/L were assessed. We used logistic regression to identify predictors of vitamin B12 deficiency. The vitamin B12 geometric mean was 186 pmol/L; 30.2% of children were deficient. The mean RBC folate concentration was 13,612 nmol/L; there was no deficiency. Factors associated with vitamin B12 deficiency included: (a age six to 11 months (adjusted odds ratio (aOR 1.51; 95% confidence interval (CI: 1.18, 1.92 or 12–17 months (aOR 1.38; 95% CI: 1.10, 1.72 compared to 18–23 months; (b being stunted (aOR 1.24; 95% CI: 1.03, 1.50 compared to not being stunted; (c and not eating animal-source foods (aOR 1.85; 95% CI: 1.42, 2.41 compared to eating animal-source foods the previous day. There was a high prevalence of vitamin B12 deficiency, but no folate deficiency. Improving early feeding practices, including the consumption of rich sources of vitamin B12, such as animal-source foods and fortified foods, may help decrease deficiency.

  1. Study of RNA interference inhibiting rat ovarian androgen biosynthesis by depressing 17alpha-hydroxylase/17, 20-lyase activity in vivo

    Directory of Open Access Journals (Sweden)

    Yang Xing

    2009-07-01

    Full Text Available Abstract Background 17alpha-hydroxylase/17, 20-lyase encoded by CYP17 is the key enzyme in androgen biosynthesis pathway. Previous studies demonstrated the accentuation of the enzyme in patients with polycystic ovary syndrome (PCOS was the most important mechanism of androgen excess. We chose CYP17 as the therapeutic target, trying to suppress the activity of 17alpha-hydroxylase/17, 20-lyase and inhibit androgen biosynthesis by silencing the expression of CYP17 in the rat ovary. Methods Three CYP17-targeting and one negative control oligonucleotides were designed and used in the present study. The silence efficiency of lentivirus shRNA was assessed by qRT-PCR, Western blotting and hormone assay. After subcapsular injection of lentivirus shRNA in rat ovary, the delivery efficiency was evaluated by GFP fluorescence and qPCR. Total RNA was extracted from rat ovary for CYP17 mRNA determination and rat serum was collected for hormone measurement. Results In total, three CYP17-targeting lentivirus shRNAs were synthesized. The results showed that all of them had a silencing effect on CYP17 mRNA and protein. Moreover, androstenedione secreted by rat theca interstitial cells (TIC in the RNAi group declined significantly compared with that in the control group. Two weeks after rat ovarian subcapsular injection of chosen CYP17 shRNA, the GFP fluorescence of frozen ovarian sections could be seen clearly under fluorescence microscope. It also showed that the GFP DNA level increased significantly, and its relative expression level was 7.42 times higher than that in the control group. Simultaneously, shRNA treatment significantly decreased CYP17 mRNA and protein levels at 61% and 54%, respectively. Hormone assay showed that all the levels of androstenedione, 17-hydroxyprogesterone and testosterone declined to a certain degree, but progesterone levels declined significantly. Conclusion The present study proves for the first time that ovarian androgen

  2. Zinc Deficiency in Humans and its Amelioration

    OpenAIRE

    Yashbir Singh Shivay

    2015-01-01

    Zinc (Zn) deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in ...

  3. Vitamin D/dietary calcium deficiency rickets and pseudo-vitamin D deficiency rickets

    Science.gov (United States)

    Glorieux, Francis H; Pettifor, John M

    2014-01-01

    This review describes the pathogenesis, clinical presentation and biochemical perturbations found in privational (nutritional) rickets and pseudo-vitamin D deficiency rickets (PDDR), an autosomal recessive condition with loss of function mutations in CYP27B1. It may seem strange to combine a discussion on privational rickets and PDDR as a single topic, but privational rickets and PDDR present with similar clinical signs and symptoms and with similar perturbations in bone and mineral metabolism. Of interest is the characteristic lack of features of rickets at birth in infants with PDDR, a finding which has also been reported in infants born to vitamin D-deficient mothers. This highlights the independence of the fetus and neonate from the need for vitamin D to maintain calcium homeostasis during this period. The variable roles of vitamin D deficiency and dietary calcium deficiency in the pathogenesis of privational rickets are discussed and the associated alterations in vitamin D metabolism highlighted. Although PDDR is a rare autosomal recessive disorder, results of long-term follow-up are now available on the effect of treatment with calcitriol, and these are discussed. Areas of uncertainty, such as should affected mothers breastfeed their infants, are emphasized. PMID:24818008

  4. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  5. Isolated sulfite oxidase deficiency.

    Science.gov (United States)

    Rupar, C A; Gillett, J; Gordon, B A; Ramsay, D A; Johnson, J L; Garrett, R M; Rajagopalan, K V; Jung, J H; Bacheyie, G S; Sellers, A R

    1996-12-01

    Isolated sulfite oxidase (SO) deficiency is an autosomal recessively inherited inborn error of sulfur metabolism. In this report of a ninth patient the clinical history, laboratory results, neuropathological findings and a mutation in the sulfite oxidase gene are described. The data from this patient and previously published patients with isolated sulfite oxidase deficiency and molybdenum cofactor deficiency are summarized to characterize this rare disorder. The patient presented neonatally with intractable seizures and did not progress developmentally beyond the neonatal stage. Dislocated lenses were apparent at 2 months. There was increased urine excretion of sulfite and S-sulfocysteine and a decreased concentration of plasma cystine. A lactic acidemia was present for 6 months. Liver sulfite oxidase activity was not detectable but xanthine dehydrogenase activity was normal. The boy died of respiratory failure at 32 months. Neuropathological findings of cortical necrosis and extensive cavitating leukoencephalopathy were reminiscent of those seen in severe perinatal asphyxia suggesting an etiology of energy deficiency. A point mutation that resulted in a truncated protein missing the molybdenum-binding site has been identified.

  6. Iron deficiency in blood donors

    Directory of Open Access Journals (Sweden)

    Rodolfo Delfini Cançado

    Full Text Available CONTEXT: Blood donation results in a substantial loss of iron (200 to 250 mg at each bleeding procedure (425 to 475 ml and subsequent mobilization of iron from body stores. Recent reports have shown that body iron reserves generally are small and iron depletion is more frequent in blood donors than in non-donors. OBJECTIVE: The aim of this study was to evaluate the frequency of iron deficiency in blood donors and to establish the frequency of iron deficiency in blood donors according to sex, whether they were first-time or multi-time donors, and the frequency of donations per year. DESIGN: From September 20 to October 5, 1999, three hundred blood donors from Santa Casa Hemocenter of São Paulo were studied. DIAGNOSTIC TESTS: Using a combination of biochemical measurements of iron status: serum iron, total iron-binding capacity, transferrin saturation index, serum ferritin and the erythrocyte indices. RESULTS: The frequency of iron deficiency in blood donors was 11.0%, of whom 5.5% (13/237 were male and 31.7% (20/63 female donors. The frequency of iron deficiency was higher in multi-time blood donors than in first-time blood donors, for male blood donors (7.6% versus 0.0%, P < 0.05 and female ones (41.5% versus 18.5%, P < 0.05. The frequency of iron deficiency found was higher among the male blood donors with three or more donations per year (P < 0.05 and among the female blood donors with two or more donations per year (P < 0.05. CONCLUSIONS: We conclude that blood donation is a very important factor for iron deficiency in blood donors, particularly in multi-time donors and especially in female donors. The high frequency of blood donors with iron deficiency found in this study suggests a need for a more accurate laboratory trial, as hemoglobin or hematocrit measurement alone is not sufficient for detecting and excluding blood donors with iron deficiency without anemia.

  7. Antepartum Ornithine Transcarbamylase Deficiency

    Directory of Open Access Journals (Sweden)

    Hitoshi Nakajima

    2014-11-01

    Full Text Available Ornithine transcarbamylase deficiency (OTCD is the most common type urea cycle enzyme deficiencies. This syndrome results from a deficiency of the mitochondrial enzyme ornithine transcarbamylase, which catalyzes the conversion of ornithine and carbamoyl phosphate to citrullin. Our case was a 28-year-old female diagnosed with OTCD following neurocognitive deficit during her first pregnancy. Although hyperammonemia was suspected as the cause of the patient's mental changes, there was no evidence of chronic liver disease. Plasma amino acid and urine organic acid analysis revealed OTCD. After combined modality treatment with arginine, sodium benzoate and hemodialysis, the patient's plasma ammonia level stabilized and her mental status returned to normal. At last she recovered without any damage left.

  8. Vanillin production by biotransformation of phenolic compounds in fungus, Aspergillus luchuensis.

    Science.gov (United States)

    Taira, Junsei; Toyoshima, Rin; Ameku, Nana; Iguchi, Akira; Tamaki, Yasutomo

    2018-03-13

    Vanillin is valuable and popular flavor used in foods and cosmetics. Many bacteria species have the ability to decarboxylate substituted cinnamic acids in order to form vanillin. However, the phenolic biotransformation including vanillin production in a common fungus, the Aspergillus luchuensis, which is used in distilled beverages, has not yet been clarified. This study focused on elucidating the vanillin production due to phenolic biotransformation in A. luchuensis during fermentation. The phenolic metabolites were extracted by a solid phase column and they were determined using on LC/MS and LC/MS/MS in a selective ion mode. As a result, ferulic acid, vanillin and vanillic acid, were detected in the rice koji fermentationed by A. luchuensis and also fermentated with yeast. In addition, the accurate molecular formula of vanillin glucoside (C 14 H 17 O 8 , 313.0927, (M-H) - and its production ions was also determined by HRESI-mass spectrometry. Based on the results including the phenolic metabolites and related genes found in A. luchuensis genome, this study proposed the vanillin production mechanism due to the side chain cleavage of ferulic acid through Coenzyme A (CoA) and feruloyl-CoA hydratase/lyase, to form vanillin and acetyl-COA. In this study, another possible vanillin production pathway also was proposed due to the neutral hexose hydrolysis of vanillin glucoside. The subsequent dehydrogenation of vanillin produced vanillic acid. In addition, vanillin was detected in the distilled alcohol indicating its contribution to the aroma profile of beverages. It has been unknown that the vanillin in the distilled solution is derived from the vanillin produced during rice-koji and/or moromi mash fermentations.

  9. Iron deficiency among blood donors

    DEFF Research Database (Denmark)

    Rigas, A S; Pedersen, O B; Magnussen, K

    2017-01-01

    Blood components collected from blood donors are an invaluable part of modern-day medicine. A healthy blood donor population is therefore of paramount importance. The results from the Danish Blood Donor Study (DBDS) indicate that gender, number of previous donations, time since last donation...... and menopausal status are the strongest predictors of iron deficiency. Only little information on the health effects of iron deficiency in blood donors exits. Possibly, after a standard full blood donation, a temporarily reduced physical performance for women is observed. However, iron deficiency among blood...... donors is not reflected in a reduced self-perceived mental and physical health. In general, the high proportion of iron-deficient donors can be alleviated either by extending the inter-donation intervals or by guided iron supplementation. The experience from Copenhagen, the Capital Region of Denmark...

  10. Iron deficiency and hematinic deficiencies in atrial fibrillation: A new insight into comorbidities.

    Science.gov (United States)

    Keskin, Muhammed; Ural, Dilek; Altay, Servet; Argan, Onur; Börklü, Edibe Betül; Kozan, Ömer

    2018-03-01

    Iron deficiency (ID) is the most common nutritional deficiency, and iron metabolism becomes further deteriorated in the presence of certain conditions, such as heart failure (HF). Atrial fibrillation (AF) has many similarities to HF, including a chronic inflammatory pathophysiology; however, the prevalence of ID and other hematinic deficiencies in AF patients have not been determined. In this study, the prevalence of iron (serum ferritin <100 µg/L or ferritin 100-299 µg/L with transferrin saturation <20%), vitamin B12 (<200 pg/mL), and folate deficiency (<4.0 ng/mL) was evaluated in 101 patients with non-valvular AF with preserved left ventricular ejection fraction and no signs of HF, and the results were compared with 35 age- and gender-matched controls. Anemia was detected in 26% of the patients. A total of 48 (47.6%) patients had ID, 10 (9.9%) had a vitamin B12 deficiency, and 13 (12.9%) had a folate deficiency. The prevalence of ID was similar in the controls and the paroxysmal AF patients, but increased gradually in persistent and permanent AF. Univariate logistic regression analysis demonstrated that permanent vs. paroxysmal AF [Odds ratio (OR): 2.17; 95% confidence interval (CI): 0.82-5.69; p=0.011], high sensitive C-reactive protein (OR: 1.47; 95% CI: 0.93-2.36; p=0.019), N-terminal pro b-type natriuretic peptide (OR: 1.24; 95% CI: 0.96-1.71; p=0.034), and white blood cell count (OR: 1.21; 95% CI: 0.95-1.58; p=0.041) were associated with ID. In multivariable analysis, permanent AF remained as an independent clinical associate of ID (OR: 4.30; 95% CI: 0.83-12.07; p=0.039). ID is common in permanent AF, as in HF. Inflammation and neurohormonal activation seem to contribute to its development.

  11. RegA Plays a Key Role in Oxygen-Dependent Establishment of Persistence and in Isocitrate Lyase Activity, a Critical Determinant of In vivo Brucella suis Pathogenicity

    Directory of Open Access Journals (Sweden)

    Elias Abdou

    2017-05-01

    Full Text Available For aerobic human pathogens, adaptation to hypoxia is a critical factor for the establishment of persistent infections, as oxygen availability is low inside the host. The two-component system RegB/A of Brucella suis plays a central role in the control of respiratory systems adapted to oxygen deficiency, and in persistence in vivo. Using an original “in vitro model of persistence” consisting in gradual oxygen depletion, we compared transcriptomes and proteomes of wild-type and ΔregA strains to identify the RegA-regulon potentially involved in the set-up of persistence. Consecutive to oxygen consumption resulting in growth arrest, 12% of the genes in B. suis were potentially controlled directly or indirectly by RegA, among which numerous transcriptional regulators were up-regulated. In contrast, genes or proteins involved in envelope biogenesis and in cellular division were repressed, suggesting a possible role for RegA in the set-up of a non-proliferative persistence state. Importantly, the greatest number of the RegA-repressed genes and proteins, including aceA encoding the functional IsoCitrate Lyase (ICL, were involved in energy production. A potential consequence of this RegA impact may be the slowing-down of the central metabolism as B. suis progressively enters into persistence. Moreover, ICL is an essential determinant of pathogenesis and long-term interactions with the host, as demonstrated by the strict dependence of B. suis on ICL activity for multiplication and persistence during in vivo infection. RegA regulates gene or protein expression of all functional groups, which is why RegA is a key regulator of B. suis in adaptation to oxygen depletion. This function may contribute to the constraint of bacterial growth, typical of chronic infection. Oxygen-dependent activation of two-component systems that control persistence regulons, shared by several aerobic human pathogens, has not been studied in Brucella sp. before. This work

  12. Dose and time-dependent effects of cyanide on thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, and cystathionine λ-lyase activities.

    Science.gov (United States)

    Singh, Poonam; Rao, Pooja; Bhattacharya, Rahul

    2013-12-01

    We assessed the dose-dependent effect of potassium cyanide (KCN) on thiosulfate sulfurtransferase (TST), 3-mercaptopyruvate sulfurtransferase (3-MPST), and cystathionine λ-lyase (CST) activities in mice. The time-dependent effect of 0.5 LD50 KCN on cyanide level and cytochrome c oxidase (CCO), TST, 3-MPST, and CST activities was also examined. Furthermore, TST, 3-MPST, and CST activities were measured in stored mice cadavers. Hepatic and renal TST activity increased by 0.5 LD50 KCN but diminished by ≥2.0 LD50. After 0.5 LD50 KCN, the elevated hepatic cyanide level was accompanied by increased TST, 3-MPST, and CST activities, and CCO inhibition. Elevated renal cyanide level was only accompanied by increased 3-MPST activity. No appreciable change in enzyme activities was observed in mice cadavers. The study concludes that high doses of cyanide exert saturating effects on its detoxification enzymes, indicating their exogenous use during cyanide poisoning. Also, these enzymes are not reliable markers of cyanide poisoning in autopsied samples. © 2013 Wiley Periodicals, Inc.

  13. Genetics Home Reference: X-linked creatine deficiency

    Science.gov (United States)

    ... Health Conditions X-linked creatine deficiency X-linked creatine deficiency Printable PDF Open All Close All Enable ... view the expand/collapse boxes. Description X-linked creatine deficiency is an inherited disorder that primarily affects ...

  14. Genetics Home Reference: carnitine-acylcarnitine translocase deficiency

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions CACT deficiency Carnitine-acylcarnitine translocase deficiency Printable PDF Open All Close ... Javascript to view the expand/collapse boxes. Description Carnitine-acylcarnitine translocase (CACT) deficiency is a condition that ...

  15. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes: DISCOVERY OF P450-TYPE HYDROPEROXIDE LYASE ACTIVITY IN A CATALASE.

    Science.gov (United States)

    Teder, Tarvi; Lõhelaid, Helike; Boeglin, William E; Calcutt, Wade M; Brash, Alan R; Samel, Nigulas

    2015-08-07

    In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using (18)O-labeled substrate and incubations in H2(18)O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Enzymic Dehalogenation of 4-Chlorobenzoyl Coenzyme A in Acinetobacter sp. Strain 4-CB1

    OpenAIRE

    Copley, Shelley D.; Crooks, Gwen P.

    1992-01-01

    4-Chlorobenzoate degradation in cell extracts of Acinetobacter sp. strain 4-CB1 occurs by initial synthesis of 4-chlorobenzoyl coenzyme A (4-chlorobenzoyl CoA) from 4-chlorobenzoate, CoA, and ATP. 4-Chlorobenzoyl CoA is dehalogenated to 4-hydroxybenzoyl CoA. Following the dehalogenation reaction, 4-hydroxybenzoyl CoA is hydrolyzed to 4-hydroxybenzoate and CoA. Possible roles for the CoA moiety in the dehalogenation reaction are discussed.

  17. Enzymic Dehalogenation of 4-Chlorobenzoyl Coenzyme A in Acinetobacter sp. Strain 4-CB1

    Science.gov (United States)

    Copley, Shelley D.; Crooks, Gwen P.

    1992-01-01

    4-Chlorobenzoate degradation in cell extracts of Acinetobacter sp. strain 4-CB1 occurs by initial synthesis of 4-chlorobenzoyl coenzyme A (4-chlorobenzoyl CoA) from 4-chlorobenzoate, CoA, and ATP. 4-Chlorobenzoyl CoA is dehalogenated to 4-hydroxybenzoyl CoA. Following the dehalogenation reaction, 4-hydroxybenzoyl CoA is hydrolyzed to 4-hydroxybenzoate and CoA. Possible roles for the CoA moiety in the dehalogenation reaction are discussed. PMID:16348702

  18. Molecular cloning and characterization of Polygalacturonase-Inhibiting Protein and Cinnamoyl-Coa Reductase genes and their association with fruit storage conditions in blueberry (Vaccinium corymbosum)

    KAUST Repository

    Khraiwesh, Basel

    2013-05-13

    Blueberry is a widely grown and easily perishable fruit crop. An efficient post-harvest handling is critical, and for that purpose gene technology methods have been part of ongoing programmes to improve crops with high food values such as blueberry. Here we report the isolation, cloning, characterization and differential expression levels of two cDNAs encoding Polygalacturonase-Inhibitor Protein (PGIP) and Cinnamoyl-Coa Reductase (CCR) from blueberry fruits in relation to various storage conditions. The open reading frame of PGIP and CCR encodes a polypeptide of 329 and 347 amino acids, respectively. To assess changes in the expression of blueberry PGIP and CCR after harvest, a storage trial was initiated. The northern blots hybridization showed a clear differential expression level of PGIP and CCR between freshly harvested and stored fruits as well as between fruits stored under various storage conditions. Although the prospects of exploiting such a strategy for crop improvement are limited, the results provide further insight into the control of the quality over the storage period at the molecular level.

  19. Molecular cloning and characterization of Polygalacturonase-Inhibiting Protein and Cinnamoyl-Coa Reductase genes and their association with fruit storage conditions in blueberry (Vaccinium corymbosum)

    KAUST Repository

    Khraiwesh, Basel; Harb, Jamil; Qudeimat, Enas

    2013-01-01

    Blueberry is a widely grown and easily perishable fruit crop. An efficient post-harvest handling is critical, and for that purpose gene technology methods have been part of ongoing programmes to improve crops with high food values such as blueberry. Here we report the isolation, cloning, characterization and differential expression levels of two cDNAs encoding Polygalacturonase-Inhibitor Protein (PGIP) and Cinnamoyl-Coa Reductase (CCR) from blueberry fruits in relation to various storage conditions. The open reading frame of PGIP and CCR encodes a polypeptide of 329 and 347 amino acids, respectively. To assess changes in the expression of blueberry PGIP and CCR after harvest, a storage trial was initiated. The northern blots hybridization showed a clear differential expression level of PGIP and CCR between freshly harvested and stored fruits as well as between fruits stored under various storage conditions. Although the prospects of exploiting such a strategy for crop improvement are limited, the results provide further insight into the control of the quality over the storage period at the molecular level.

  20. Iron deficiency - a global problem

    International Nuclear Information System (INIS)

    Ali, S.M.

    1993-01-01

    Iron deficiency is an important nutritional global problem. This paper contains summery of information gathered from a dietary survey as iron deficiency anaemia is major public health problem in many developing countries including Pakistan. Comparison of anaemia in different age group and sex versus various regions in the world are given. In Pakistan also anaemia is widespread. According to the report of Micro-Nutrient survey of Pakistan 40% of the population are found to have low level of haemoglobin, more than half of pregnant women suffered from marginal or deficient haemoglobin. (A.B.)

  1. Iron deficiency - a global problem

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S M [Pakistan Council for Science and Technology, Islamabad (Pakistan)

    1994-12-31

    Iron deficiency is an important nutritional global problem. This paper contains summery of information gathered from a dietary survey as iron deficiency anaemia is major public health problem in many developing countries including Pakistan. Comparison of anaemia in different age group and sex versus various regions in the world are given. In Pakistan also anaemia is widespread. According to the report of Micro-Nutrient survey of Pakistan 40% of the population are found to have low level of haemoglobin, more than half of pregnant women suffered from marginal or deficient haemoglobin. (A.B.).

  2. Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus.

    Science.gov (United States)

    Shukla, Animesh; Biswas, Avijit; Blot, Nicolas; Partensky, Frédéric; Karty, Jonathan A; Hammad, Loubna A; Garczarek, Laurence; Gutu, Andrian; Schluchter, Wendy M; Kehoe, David M

    2012-12-04

    The marine cyanobacterium Synechococcus is the second most abundant phytoplanktonic organism in the world's oceans. The ubiquity of this genus is in large part due to its use of a diverse set of photosynthetic light-harvesting pigments called phycobiliproteins, which allow it to efficiently exploit a wide range of light colors. Here we uncover a pivotal molecular mechanism underpinning a widespread response among marine Synechococcus cells known as "type IV chromatic acclimation" (CA4). During this process, the pigmentation of the two main phycobiliproteins of this organism, phycoerythrins I and II, is reversibly modified to match changes in the ambient light color so as to maximize photon capture for photosynthesis. CA4 involves the replacement of three molecules of the green light-absorbing chromophore phycoerythrobilin with an equivalent number of the blue light-absorbing chromophore phycourobilin when cells are shifted from green to blue light, and the reverse after a shift from blue to green light. We have identified and characterized MpeZ, an enzyme critical for CA4 in marine Synechococcus. MpeZ attaches phycoerythrobilin to cysteine-83 of the α-subunit of phycoerythrin II and isomerizes it to phycourobilin. mpeZ RNA is six times more abundant in blue light, suggesting that its proper regulation is critical for CA4. Furthermore, mpeZ mutants fail to normally acclimate in blue light. These findings provide insights into the molecular mechanisms controlling an ecologically important photosynthetic process and identify a unique class of phycoerythrin lyase/isomerases, which will further expand the already widespread use of phycoerythrin in biotechnology and cell biology applications.

  3. Genome-wide characterization of phenylalanine ammonia-lyase gene family in watermelon (Citrullus lanatus).

    Science.gov (United States)

    Dong, Chun-Juan; Shang, Qing-Mao

    2013-07-01

    Phenylalanine ammonia-lyase (PAL), the first enzyme in the phenylpropanoid pathway, plays a critical role in plant growth, development, and adaptation. PAL enzymes are encoded by a gene family in plants. Here, we report a genome-wide search for PAL genes in watermelon. A total of 12 PAL genes, designated ClPAL1-12, are identified . Nine are arranged in tandem in two duplication blocks located on chromosomes 4 and 7, and the other three ClPAL genes are distributed as single copies on chromosomes 2, 3, and 8. Both the cDNA and protein sequences of ClPALs share an overall high identity with each other. A phylogenetic analysis places 11 of the ClPALs into a separate cucurbit subclade, whereas ClPAL2, which belongs to neither monocots nor dicots, may serve as an ancestral PAL in plants. In the cucurbit subclade, seven ClPALs form homologous pairs with their counterparts from cucumber. Expression profiling reveals that 11 of the ClPAL genes are expressed and show preferential expression in the stems and male and female flowers. Six of the 12 ClPALs are moderately or strongly expressed in the fruits, particularly in the pulp, suggesting the potential roles of PAL in the development of fruit color and flavor. A promoter motif analysis of the ClPAL genes implies redundant but distinctive cis-regulatory structures for stress responsiveness. Finally, duplication events during the evolution and expansion of the ClPAL gene family are discussed, and the relationships between the ClPAL genes and their cucumber orthologs are estimated.

  4. Genetics Home Reference: CDKL5 deficiency disorder

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions CDKL5 deficiency disorder CDKL5 deficiency disorder Printable PDF Open All Close All ... Javascript to view the expand/collapse boxes. Description CDKL5 deficiency disorder is characterized by seizures that begin ...

  5. Iron deficiency anaemia among apparently healthy pre-school ...

    African Journals Online (AJOL)

    Background: Iron deficiency, and specifically iron deficiency anaemia, remains one of the most severe and important nutritional deficiencies in the world today. Objective: To estimate the prevalence and associated factors for iron deficiency anaemia among pre-school children in Lagos. Methodology: The study was ...

  6. Genetics Home Reference: corticosterone methyloxidase deficiency

    Science.gov (United States)

    ... hyperreninemic hypoaldosteronism steroid 18-hydroxylase deficiency steroid 18-oxidase deficiency Visser-Cost syndrome ... Potassium Test Health Topic: Adrenal Gland Disorders Health Topic: Fluid ...

  7. The "multiple hormone deficiency" theory of aging: is human senescence caused mainly by multiple hormone deficiencies?

    Science.gov (United States)

    Hertoghe, T

    2005-12-01

    In the human body, the productions, levels and cell receptors of most hormones progressively decline with age, gradually putting the body into various states of endocrine deficiency. The circadian cycles of these hormones also change, sometimes profoundly, with time. In aging individuals, the well-balanced endocrine system can fall into a chaotic condition with losses, phase-advancements, phase delays, unpredictable irregularities of nycthemeral hormone cycles, in particular in very old or sick individuals. The desynchronization makes hormone activities peak at the wrong times and become inefficient, and in certain cases health threatening. The occurrence of multiple hormone deficits and spilling through desynchronization may constitute the major causes of human senescence, and they are treatable causes. Several arguments can be put forward to support the view that senescence is mainly a multiple hormone deficiency syndrome: First, many if not most of the signs, symptoms and diseases (including cardiovascular diseases, cancer, obesity, diabetes, osteoporosis, dementia) of senescence are similar to physical consequences of hormone deficiencies and may be caused by hormone deficiencies. Second, most of the presumed causes of senescence such as excessive free radical formation, glycation, cross-linking of proteins, imbalanced apoptosis system, accumulation of waste products, failure of repair systems, deficient immune system, may be caused or favored by hormone deficiencies. Even genetic causes such as limits to cell proliferation (such as the Hayflick limit of cell division), poor gene polymorphisms, premature telomere shortening and activation of possible genetic "dead programs" may have links with hormone deficiencies, being either the consequence, the cause, or the major favoring factor of hormone deficiencies. Third, well-dosed and -balanced hormone supplements may slow down or stop the progression of signs, symptoms, or diseases of senescence and may often

  8. Optimization of oligomeric enzyme activity in ionic liquids using Rhodotorula glutinis yeast phenylalanine ammonia lyase.

    Science.gov (United States)

    Barron, Christiaan C; Sponagle, Brandon J D; Arivalagan, Pugazhendhi; D'Cunha, Godwin B

    2017-01-01

    Phenylalanine ammonia lyase (E.C.4.3.1.24, PAL) activity of Rhodotorula glutinis yeast has been demonstrated in four commonly used ionic liquids. PAL forward reaction was carried out in 1-butyl-3-methylimidazolium methyl sulfate ([BMIM][MeSO 4 ]), 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF 4 ]), 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF 6 ]) and 1-butyl-3-methylimidazolium lactate ([BMIM][lactate]). Our experiments have revealed that PAL is catalytically active in ionic liquids and the enzyme activity in ([BMIM][PF 6 ]) is comparable to that obtained in aqueous buffer medium. Different conditions were optimized for maximal PAL forward activity including time of incubation (30.0min) L -phenylalanine substrate concentration (30.0mM), nature of buffer (50.0mM Tris-HCl), pH (9.0), temperature (37°C), and speed of agitation (100 rev min -1 ). Under these optimized conditions, about 83% conversion of substrate to product was obtained for the PAL forward reaction that was determined using UV spectroscopy at 290nm. PAL reverse reaction in ([BMIM][PF 6 ]) was determined spectrophotometrically at 520nm; and about 59% substrate conversion was obtained. This data provides further knowledge in enzyme biocatalysis in non-aqueous media, and may be of importance when studying the function of other oligomeric/multimeric proteins and enzymes in ionic liquids. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Hematopoietic studies in vitamin A deficiency.

    Science.gov (United States)

    Hodges, R E; Sauberlich, H E; Canham, J E; Wallace, D L; Rucker, R B; Mejia, L A; Mohanram, M

    1978-05-01

    Recent studies of experimental vitamin A deficiency in man led the authors to conclude that anemia may result from lack of vitamin A. A review of numerous nutrition surveys in underdeveloped countries enhanced the suspicion that deficiency of vitamin A does contribute to the prevalence of anemia. Preliminary studies of vitamin A-deficient rats confirmed previous observations that anemia may result from lack of this vitamin. The livers of these animals had very low concentrations of vitamin A but normal or increased concentrations of iron. The finding of anemia is in contrast with other reports that vitamin A deficiency may cause elevated values for hemoglobin and hematocrit. The authors suggest that loss of taste and smell as a result of deficiency may account for refusal of experimental animals to eat and drink enough to prevent inanitation and dehydration. The resulting hemoconcentration may mask the true hematological picture, which is one of anemia.

  10. Common micronutrient deficiencies among food aid beneficiaries ...

    African Journals Online (AJOL)

    Results: Vitamin A and iron deficiencies were the most prevalent micronutrient deficiencies among food aid beneficiaries. Other probable deficiencies prevailing were zinc, vitamins thiamine, riboflavin, niacin folate, cyano-cobalamine, ascorbic acid vitamin D and calcium because of the low intake of dairy products and meat.

  11. Arginase-1 deficiency.

    Science.gov (United States)

    Sin, Yuan Yan; Baron, Garrett; Schulze, Andreas; Funk, Colin D

    2015-12-01

    Arginase-1 (ARG1) deficiency is a rare autosomal recessive disorder that affects the liver-based urea cycle, leading to impaired ureagenesis. This genetic disorder is caused by 40+ mutations found fairly uniformly spread throughout the ARG1 gene, resulting in partial or complete loss of enzyme function, which catalyzes the hydrolysis of arginine to ornithine and urea. ARG1-deficient patients exhibit hyperargininemia with spastic paraparesis, progressive neurological and intellectual impairment, persistent growth retardation, and infrequent episodes of hyperammonemia, a clinical pattern that differs strikingly from other urea cycle disorders. This review briefly highlights the current understanding of the etiology and pathophysiology of ARG1 deficiency derived from clinical case reports and therapeutic strategies stretching over several decades and reports on several exciting new developments regarding the pathophysiology of the disorder using ARG1 global and inducible knockout mouse models. Gene transfer studies in these mice are revealing potential therapeutic options that can be exploited in the future. However, caution is advised in extrapolating results since the lethal disease phenotype in mice is much more severe than in humans indicating that the mouse models may not precisely recapitulate human disease etiology. Finally, some of the functions and implications of ARG1 in non-urea cycle activities are considered. Lingering questions and future areas to be addressed relating to the clinical manifestations of ARG1 deficiency in liver and brain are also presented. Hopefully, this review will spark invigorated research efforts that lead to treatments with better clinical outcomes.

  12. The incidence of urea cycle disorders

    OpenAIRE

    Summar, Marshall L.; Koelker, Stefan; Freedenberg, Debra; Le Mons, Cynthia; Haberle, Johannes; Lee, Hye-Seung; Kirmse, Brian

    2013-01-01

    A key question for urea cycle disorders is their incidence. In the United States two UCDs argininosuccinic synthetase and lyase deficiency are currently detected by newborn screening. We used newborn screening data on over 6. million births and data from the large US and European longitudinal registries to determine how common these conditions are. The incidence for the United States is predicted to be 1 urea cycle disorder patient for every 35000 births presenting about 113 new patients per ...

  13. Management of Iron Deficiency Anemia

    Science.gov (United States)

    Jimenez, Kristine; Kulnigg-Dabsch, Stefanie

    2015-01-01

    Anemia affects one-fourth of the world’s population, and iron deficiency is the predominant cause. Anemia is associated with chronic fatigue, impaired cognitive function, and diminished well-being. Patients with iron deficiency anemia of unknown etiology are frequently referred to a gastroenterologist because in the majority of cases the condition has a gastrointestinal origin. Proper management improves quality of life, alleviates the symptoms of iron deficiency, and reduces the need for blood transfusions. Treatment options include oral and intravenous iron therapy; however, the efficacy of oral iron is limited in certain gastrointestinal conditions, such as inflammatory bowel disease, celiac disease, and autoimmune gastritis. This article provides a critical summary of the diagnosis and treatment of iron deficiency anemia. In addition, it includes a management algorithm that can help the clinician determine which patients are in need of further gastrointestinal evaluation. This facilitates the identification and treatment of the underlying condition and avoids the unnecessary use of invasive methods and their associated risks. PMID:27099596

  14. Dopamine beta-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Senard Jean-Michel

    2006-03-01

    Full Text Available Abstract Dopamine beta-hydroxylase (DβH deficiency is a very rare form of primary autonomic failure characterized by a complete absence of noradrenaline and adrenaline in plasma together with increased dopamine plasma levels. The prevalence of DβH deficiency is unknown. Only a limited number of cases with this disease have been reported. DβH deficiency is mainly characterized by cardiovascular disorders and severe orthostatic hypotension. First symptoms often start during a complicated perinatal period with hypotension, muscle hypotonia, hypothermia and hypoglycemia. Children with DβH deficiency exhibit reduced ability to exercise because of blood pressure inadaptation with exertion and syncope. Symptoms usually worsen progressively during late adolescence and early adulthood with severe orthostatic hypotension, eyelid ptosis, nasal stuffiness and sexual disorders. Limitation in standing tolerance, limited ability to exercise and traumatic morbidity related to falls and syncope may represent later evolution. The syndrome is caused by heterogeneous molecular alterations of the DBH gene and is inherited in an autosomal recessive manner. Restoration of plasma noradrenaline to the normal range can be achieved by therapy with the synthetic precursor of noradrenaline, L-threo-dihydroxyphenylserine (DOPS. Oral administration of 100 to 500 mg DOPS, twice or three times daily, increases blood pressure and reverses the orthostatic intolerance.

  15. Increased glucose dependence in resting, iron-deficient rats

    International Nuclear Information System (INIS)

    Brooks, G.A.; Henderson, S.A.; Dallman, P.R.

    1987-01-01

    Rates of blood glucose and lactate turnover were assessed in resting iron-deficient and iron-sufficient (control) rats to test the hypothesis that dependence on glucose metabolism is increased in iron deficiency. Male Sprague-Dawley rats, 21 days old, were fed a diet containing either 6 mg iron/kg feed (iron-deficient group) or 50 mg iron/kg feed (iron-sufficient group) for 3-4 wk. The iron-deficient group became anemic, with hemoglobin levels of 6.4 ± 0.2 compared with 13.8 ± 0.3 g/dl for controls. Rats received a 90-min primed continuous infusion of D-[6- 3 H]glucose and sodium L-[U- 14 C]lactate via a jugular catheter. Serial samples were taken from a carotid catheter for concentration and specific activity determinations. Iron-deficient rats had significantly higher blood glucose and lactate concentrations than controls. The iron-deficient group had a significantly higher glucose turnover rate than the control group. Significantly more metabolite recycling in iron-deficient rats was indicated by greater incorporation of 14 C into blood glucose. Assuming a carbon crossover correction factor of 2, half of blood glucose arose from lactate in deficient animals. By comparison, only 25% of glucose arose from lactate in controls. Lack of a difference in lactate turnover rates between deficient rats and controls was attributed to 14 C recycling. The results indicate a greater dependence on glucose metabolism in iron-deficient rats

  16. Atypical B12 Deficiency with Nonresolving Paraesthesia

    Directory of Open Access Journals (Sweden)

    S. Haider

    2013-01-01

    Full Text Available Vitamin B12 deficiency can present with various hematological, gastrointestinal and neurological manifestations. We report a case of elderly female who presented with neuropathy and vitamin B12 deficiency where the final work-up revealed polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes (POEMS. This case suggests that, although POEMS syndrome is a rare entity, it can present with vitamin-B12 deficiency and thus specific work up for early diagnosis of POEMS should be considered in patients with B12 deficiency unresponsive to therapy.

  17. Vitamin C deficiency in weanling guinea pigs

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens; Trueba, Gilberto Perez; Poulsen, Henrik E.

    2007-01-01

    Neonates are particularly susceptible to malnutrition due to their limited reserves of micronutrients and their rapid growth. In the present study, we examined the effect of vitamin C deficiency on markers of oxidative stress in plasma, liver and brain of weanling guinea pigs. Vitamin C deficiency...... increased, while protein oxidation decreased (P¼0003). The results show that the selective preservation of brain ascorbate and induction of DNA repair in vitamin C-deficient weanling guinea pigs is not sufficient to prevent oxidative damage. Vitamin C deficiency may therefore be particularly adverse during...

  18. Development of additional pituitary hormone deficiencies in pediatric patients originally diagnosed with idiopathic isolated GH deficiency

    NARCIS (Netherlands)

    W.F. Blum (Werner); C.L. Deal (Cheri Lynn); A.G. Zimmermann (Alan); E.P. Shavrikova (Elena); C.J. Child (Christopher); C.A. Quigley (Charmian); S.L.S. Drop (Stenvert); G. Cutler (Gordon); R.G. Rosenfeld (Ron)

    2014-01-01

    textabstractObjective: We assessed the characteristics of children initially diagnosed with idiopathic isolated GH deficiency (IGHD) who later developed additional (multiple) pituitary hormone deficiencies (MPHD). Design: Data were analyzed for 5805 pediatric patients with idiopathic IGHD, who were

  19. Reticulocyte maturity indices in iron deficiency anemia

    Directory of Open Access Journals (Sweden)

    Muriel Wollmann

    2014-01-01

    Full Text Available Objective: The aim of this study was to analyze the reticulocyte maturity indices (low, medium, and high fluorescence ratios in iron deficient 1- to 6-year-old children, and identify the prevalence of iron deficiency anemia in this population. Methods: The present study included 39 subjects, divided into two groups: control subjects (n = 33, and subjects with iron deficiency anemia (n = 6. The results were analyzed by Student's t-test for comparison of means. Differences were considered significant when two-tailed p-value < 0.05. Results: Subjects with iron deficiency anemia presented increases in the proportion of mean (10.3 ± 4.7% vs. 6.0 ± 3.4%; p-value = 0.003, and high fluorescence reticulocytes (2.3 ± 0.87% vs. 0.9 ± 0.9%; p-value = 0.03 compared to the control group. The prevalence of anemia in this population was 15% (n = 6. Conclusion: The indices related to immaturity of reticulocytes are higher in the presence of iron deficiency, thus demonstrating a deficiency in the raw material to form hemoglobin and are, therefore, possible early markers of iron deficiency and anemia. We emphasize the need to standardize these indices for use in clinical practice and lab test results.

  20. Japanese family with congenital factor VII deficiency.

    Science.gov (United States)

    Sakakibara, Kanae; Okayama, Yoshiki; Fukushima, Kenji; Kaji, Shunsaku; Muraoka, Michiko; Arao, Yujiro; Shimada, Akira

    2015-10-01

    Congenital factor VII (FVII) deficiency is a rare bleeding disorder with autosomal recessive inheritance. The present female patient was diagnosed with congenital FVII deficiency because of low hepaplastin test (HPT), although vitamin K was given. Heterozygous p.A191T mutation was detected in the peripheral blood, and the same mutation was also found in the mother and sister. To the best of our knowledge, this is the fourth reported case of p.A191T mutation of FVII in the literature and the first to be reported in Japan. FVII coagulation activity (FVII:C) in asymptomatic heterozygous carriers is mildly reduced. Therefore, some patients may not be accurately diagnosed with congenital FVII deficiency. In infants with low HPT without vitamin K deficiency, congenital FVII deficiency should be considered. © 2015 Japan Pediatric Society.

  1. Behavioral impairments in animal models for zinc deficiency

    Directory of Open Access Journals (Sweden)

    Simone eHagmeyer

    2015-01-01

    Full Text Available Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies.

  2. Carbohydrate metabolism in erythrocytes of copper deficient rats.

    Science.gov (United States)

    Brooks, S P J; Cockell, K A; Dawson, B A; Ratnayake, W M N; Lampi, B J; Belonje, B; Black, D B; Plouffe, L J

    2003-11-01

    Dietary copper deficiency is known to adversely affect the circulatory system of fructose-fed rats. Part of the problem may lie in the effect of copper deficiency on intermediary metabolism. To test this, weanling male Long-Evans rats were fed for 4 or 8 weeks on sucrose-based diets containing low or adequate copper content. Copper deficient rats had significantly lower plasma and tissue copper as well as lower plasma copper, zinc-superoxide dismutase activity. Copper deficient rats also had a significantly higher heart:body weight ratio when compared to pair-fed controls. Direct measurement of glycolysis and pentose phosphate pathway flux in erythrocytes using (13)C NMR showed no differences in carbon flux from glucose or fructose to pyruvate but a significantly higher flux through the lactate dehydrogenase locus in copper deficient rats (approximately 1.3 times, average of glucose and glucose + fructose measurements). Copper-deficient animals had significantly higher erythrocyte concentrations of glucose, fructose, glyceraldehyde 3-phosphate and NAD(+). Liver metabolite levels were also affected by copper deficiency being elevated in glycogen and fructose 1-phosphate content. The results show small changes in carbohydrate metabolism of copper deficient rats.

  3. Sleep transitions in hypocretin-deficient narcolepsy.

    Science.gov (United States)

    Sorensen, Gertrud Laura; Knudsen, Stine; Jennum, Poul

    2013-08-01

    Narcolepsy is characterized by instability of sleep-wake, tonus, and rapid eye movement (REM) sleep regulation. It is associated with severe hypothalamic hypocretin deficiency, especially in patients with cataplexy (loss of tonus). As the hypocretin neurons coordinate and stabilize the brain's sleep-wake pattern, tonus, and REM flip-flop neuronal centers in animal models, we set out to determine whether hypocretin deficiency and/or cataplexy predicts the unstable sleep-wake and REM sleep pattern of the human phenotype. We measured the frequency of transitions in patients with narcolepsy between sleep-wake states and to/from REM and NREM sleep stages. Patients were subdivided by the presence of +/- cataplexy and +/- hypocretin-1 deficiency. Sleep laboratory studies conducted from 2001-2011. In total 63 narcolepsy patients were included in the study. Cataplexy was present in 43 of 63 patients and hypocretin-1 deficiency was present in 37 of 57 patients. Hypocretin-deficient patients with narcolepsy had a significantly higher frequency of sleep-wake transitions (P = 0.014) and of transitions to/from REM sleep (P = 0.044) than patients with normal levels of hypocretin-1. Patients with cataplexy had a significantly higher frequency of sleep-wake transitions (P = 0.002) than those without cataplexy. A multivariate analysis showed that transitions to/from REM sleep were predicted mainly by hypocretin-1 deficiency (P = 0.011), whereas sleep-wake transitions were predicted mainly by cataplexy (P = 0.001). In human narcolepsy, hypocretin deficiency and cataplexy are both associated with signs of destabilized sleep-wake and REM sleep control, indicating that the disorder may serve as a human model for the sleep-wake and REM sleep flip-flop switches.

  4. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency

    Science.gov (United States)

    ... 5-fluorouracil and capecitabine. These drugs are not broken down efficiently by people with dihydropyrimidine dehydrogenase deficiency ... of this enzyme. Because fluoropyrimidine drugs are also broken down by the dihydropyrimidine dehydrogenase enzyme, deficiency of ...

  5. LACTASE DEFICIENCY IN BABIES AND INFANTS

    Directory of Open Access Journals (Sweden)

    E.A. Kornienko

    2006-01-01

    Full Text Available Lactose, the constituent disaccharide of milk and other dairy products, is an important nutrient in early childhood. Lactase breaks down lactose in small intestine. In most people the activity of lactase reduces with age. In infancy lactase deficiency tends to be either transient, which is more often, or secondary to intestinal diseases. Abdominal cramps, anxiety and dyspepsia are the common symptoms of lactase deficiency. Tactics of treatment should take into account a cause and severity of the condition. A specialized milk formula «enfamil lactofree», distinguished for its' optimal formulation, high clinical effectiveness and good tolerance, could be recommended for use in children with primary, transient and secondary lactase deficiency who receive formula and mixed feeding.Key words: lactose, lactase deficiency, lactose-free formula.

  6. Visual loss and optic nerve head swelling in thiamine deficiency without prolonged dietary deficiency

    Directory of Open Access Journals (Sweden)

    Gratton SM

    2014-05-01

    Full Text Available Sean M Gratton, Byron L LamBascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, USAAbstract: Visual loss due to optic neuropathy is a rare manifestation of thiamine deficiency. We report a case of a 39-year-old woman with a body mass index (BMI of 29 kg/m2 who developed visual loss and bilateral optic nerve head swelling after a short, self-limited gastrointestinal illness. She was disoriented and inattentive and had absent ankle jerk reflexes, diminished sensation in both legs below the knees, and marked truncal ataxia. Magnetic resonance imaging (MRI showed increased T2-signal in the medial thalami and mammillary bodies. The serum thiamine level was 8 nmol/L (normal 8–30. The diagnosis of thiamine deficiency was made, and the patient’s vision and neurologic symptoms improved significantly with intramuscular thiamine treatment. Thiamine deficiency can occur in the absence of an obvious predisposing factor such as alcoholism or low body weight. The clinician must be aware of the factors that govern vitamin availability and maintain a high index of suspicion to make the diagnosis in such cases.Keywords: optic neuropathy, nutritional deficiency

  7. Genetics Home Reference: iron-refractory iron deficiency anemia

    Science.gov (United States)

    ... refractory iron deficiency anemia Iron-refractory iron deficiency anemia Printable PDF Open All Close All Enable Javascript ... expand/collapse boxes. Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  8. Elimination of hydrogen sulphide and β substitution in cystein, catalyzed by the cysteine-lyase of hens yolk-sac and yolk (1961)

    International Nuclear Information System (INIS)

    Chapeville, F.; Fromageot, P.

    1961-01-01

    The yolk of incubated hen's eggs contains a pyridoxal phosphate activated enzyme, free of iron, copper, magnesium and calcium. This enzyme activates the β-carbon atom of cysteine. Its reactivity is demonstrated by the ease with which this β-carbon fixes various sulfur containing substances in which the sulfur has reducing properties: inorganic sulfide, sulfide or cysteine itself. In the absence of substances able to react with the β-carbon atom, the active complex, consisting of the enzyme and the aminated tri-carbon chain, is hydrolysed to pyruvic acid and ammonia. The liberation of hydrogen sulfide thus appears to be the consequence either of the substitution of the β-carbon atom of cysteine or of the decomposition of the complex which this aminoacid forms with the enzyme studied. The latter seems therefore to possess an activity which differs from the activity of the desulfhydrases as yet known. We suggest to call this enzyme cystein-lyase. (authors) [fr

  9. The triad of Iron deficiency anemia, hepatosplenomegaly and ...

    African Journals Online (AJOL)

    2014-12-04

    Dec 4, 2014 ... In conclusion, iron deficiency anemia occurring in the triad without zinc deficiency as .... a negative zinc balance and mask existing zinc deficiency.[10] ... erythropoiesis‑stimulating agents in men with chronic kidney disease.

  10. Iron Deficiency Anaemia In Reproductive Age Women Attending ...

    African Journals Online (AJOL)

    Iron Deficiency Anaemia In Reproductive Age Women Attending Obstetrics And ... prevalence of iron deficiency anemia in reproductive age women, and their relation to ... Thus iron deficiency anemia during pregnancy in well-educated set up ...

  11. Abiotic stress induces change in Cinnamoyl CoA Reductase (CCR) protein abundance and lignin deposition in developing seedlings of Leucaena leucocephala.

    Science.gov (United States)

    Srivastava, Sameer; Vishwakarma, Rishi K; Arafat, Yasir Ali; Gupta, Sushim K; Khan, Bashir M

    2015-04-01

    Aboitic stress such as drought and salinity are class of major threats, which plants undergo through their lifetime. Lignin deposition is one of the responses to such abiotic stresses. The gene encoding Cinnamoyl CoA Reductase (CCR) is a key gene for lignin biosynthesis, which has been shown to be over-expressed under stress conditions. In the present study, developing seedlings of Leucaena leucocephala (Vernacular name: Subabul, White popinac) were treated with 1 % mannitol and 200 mM NaCl to mimic drought and salinity stress conditions, respectively. Enzyme linked immunosorbant assay (ELISA) based expression pattern of CCR protein was monitored coupled with Phlorogucinol/HCl activity staining of lignin in transverse sections of developing L. leucocephala seedlings under stress. Our result suggests a differential lignification pattern in developing root and stem under stress conditions. Increase in lignification was observed in mannitol treated stems and corresponding CCR protein accumulation was also higher than control and salt stress treated samples. On the contrary CCR protein was lower in NaCl treated stems and corresponding lignin deposition was also low. Developing root tissue showed a high level of CCR content and lignin deposition than stem samples under all conditions tested. Overall result suggested that lignin accumulation was not affected much in case of developing root however developing stems were significantly affected under drought and salinity stress condition.

  12. Genetics Home Reference: 21-hydroxylase deficiency

    Science.gov (United States)

    ... adrenal hyperplasias that impair hormone production and disrupt sexual development. 21-hydroxylase deficiency is responsible for about 95 ... excess production of androgens leads to abnormalities of sexual development in people with 21-hydroxylase deficiency . A lack ...

  13. Genetics Home Reference: ataxia with vitamin E deficiency

    Science.gov (United States)

    ... Conditions Ataxia with vitamin E deficiency Ataxia with vitamin E deficiency Printable PDF Open All Close All Enable ... view the expand/collapse boxes. Description Ataxia with vitamin E deficiency is a disorder that impairs the body's ...

  14. Effect of coarctation of the aorta and bicuspid aortic valve on flow dynamics and turbulence in the aorta using particle image velocimetry

    Science.gov (United States)

    Keshavarz-Motamed, Zahra; Garcia, Julio; Gaillard, Emmanuel; Maftoon, Nima; Di Labbio, Giuseppe; Cloutier, Guy; Kadem, Lyes

    2014-03-01

    Blood flow in the aorta has been of particular interest from both fluid dynamics and physiology perspectives. Coarctation of the aorta (COA) is a congenital heart disease corresponding to a severe narrowing in the aortic arch. Up to 85 % of patients with COA have a pathological aortic valve, leading to a narrowing at the valve level. The aim of the present work was to advance the state of understanding of flow through a COA to investigate how narrowing in the aorta (COA) affects the characteristics of the velocity field and, in particular, turbulence development. For this purpose, particle image velocimetry measurements were conducted at physiological flow and pressure conditions, with three different aorta configurations: (1) normal case: normal aorta + normal aortic valve; (2) isolated COA: COA (with 75 % reduction in aortic cross-sectional area) + normal aortic valve and (3) complex COA: COA (with 75 % reduction in aortic cross-sectional area) + pathological aortic valve. Viscous shear stress (VSS), representing the physical shear stress, Reynolds shear stress (RSS), representing the turbulent shear stress, and turbulent kinetic energy (TKE), representing the intensity of fluctuations in the fluid flow environment, were calculated for all cases. Results show that, compared with a healthy aorta, the instantaneous velocity streamlines and vortices were deeply changed in the presence of the COA. The normal aorta did not display any regions of elevated VSS, RSS and TKE at any moment of the cardiac cycle. The magnitudes of these parameters were elevated for both isolated COA and complex COA, with their maximum values mainly being located inside the eccentric jet downstream of the COA. However, the presence of a pathologic aortic valve, in complex COA, amplifies VSS (e.g., average absolute peak value in the entire aorta for a total flow of 5 L/min: complex COA: = 36 N/m2; isolated COA = 19 N/m2), RSS (e.g., average peak value in the entire aorta for a total flow of 5

  15. Iodine deficiency and thyroid disorders.

    Science.gov (United States)

    Zimmermann, Michael B; Boelaert, Kristien

    2015-04-01

    Iodine deficiency early in life impairs cognition and growth, but iodine status is also a key determinant of thyroid disorders in adults. Severe iodine deficiency causes goitre and hypothyroidism because, despite an increase in thyroid activity to maximise iodine uptake and recycling in this setting, iodine concentrations are still too low to enable production of thyroid hormone. In mild-to-moderate iodine deficiency, increased thyroid activity can compensate for low iodine intake and maintain euthyroidism in most individuals, but at a price: chronic thyroid stimulation results in an increase in the prevalence of toxic nodular goitre and hyperthyroidism in populations. This high prevalence of nodular autonomy usually results in a further increase in the prevalence of hyperthyroidism if iodine intake is subsequently increased by salt iodisation. However, this increase is transient because iodine sufficiency normalises thyroid activity which, in the long term, reduces nodular autonomy. Increased iodine intake in an iodine-deficient population is associated with a small increase in the prevalence of subclinical hypothyroidism and thyroid autoimmunity; whether these increases are also transient is unclear. Variations in population iodine intake do not affect risk for Graves' disease or thyroid cancer, but correction of iodine deficiency might shift thyroid cancer subtypes toward less malignant forms. Thus, optimisation of population iodine intake is an important component of preventive health care to reduce the prevalence of thyroid disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Zinc Deficiency in Latin America and the Caribbean.

    Science.gov (United States)

    Cediel, Gustavo; Olivares, Manuel; Brito, Alex; Cori, Héctor; López de Romaña, Daniel

    2015-06-01

    Zinc deficiency affects multiple vital functions in the life cycle, especially growth. Limited information is available on the magnitude of zinc deficiency in Latin America and the Caribbean. To examine the latest available information on both the prevalence of zinc deficiency and the risk of zinc deficiency in Latin America and the Caribbean. The prevalence of zinc deficiency was identified through a systematic review looking for the latest available data on serum zinc concentrations from surveys or studies with national representativeness conducted in Latin America and the Caribbean. The risk of zinc deficiency in Latin America and the Caribbean was estimated based on dietary zinc inadequacy (according to the 2011 National Food Balance Sheets) and stunting in children under 5 years of age. Only four countries had available national biochemical data. Mexican, Colombian, Ecuadorian, and Guatemalan children under 6 years of age and women 12 to 49 years of age had a high prevalence of zinc deficiency (19.1% to 56.3%). The countries with the highest risk of zinc deficiency (estimated prevalence of inadequate zinc intake > 25% plus prevalence of stunting > 20%) were Belize, Bolivia, El Salvador, Guatemala, Haiti, Honduras, Nicaragua, and Saint Vincent and the Grenadines. Zinc dietary inadequacy was directly correlated with stunting (r = 0.64, p zinc deficiency in children under 6 years of age and women 12 to 49 years of age. High rates of both estimated zinc dietary inadequacy and stunting were also reported in most Latin America and Caribbean countries.

  17. Mutations and phenotype in isolated glycerol kinase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Walker, A.P.; Muscatelli, F.; Stafford, A.N.; Monaco, A.P. [Inst. of Molecular Medicine, Oxford (United Kingdom)] [and others

    1996-06-01

    We demonstrate that isolated glycerol kinase (GK) deficiency in three families results from mutation of the Xp21 GK gene. GK mutations were detected in four patients with widely differing phenotypes. Patient 1 had a splice-site mutation causing premature termination. His general health was good despite absent GK activity, indicating that isolated GK deficiency can be silent. Patient 2 had GK deficiency and a severe phenotype involving psychomotor retardation and growth delay, bone dysplasia, and seizures, similar to the severe phenotype of one of the first described cases of GK deficiency. His younger brother, patient 3, also had GK deficiency, but so far his development has been normal. GK exon 17 was deleted in both brothers, implicating additional factors in causation of the severe phenotype of patient 2. Patient 4 had both GK deficiency with mental retardation and a GK missense mutation (D440V). Possible explanations for the phenotypic variation of these four patients include ascertainment bias; metabolic or environmental stress as a precipitating factor in revealing GK-related changes, as has previously been described in juvenile GK deficiency; and interactions with functional polymorphisms in other genes that alter the effect of GK deficiency on normal development. 36 refs., 4 figs., 1 tab.

  18. Deficiência de ferro no feto e no recém-nascido Iron deficiency in the fetus and newborn

    Directory of Open Access Journals (Sweden)

    Maria Renata T. Chopard

    2010-06-01

    Full Text Available A principal causa de anemia no feto é a doença hemolítica do recém-nascido (RN. As gestantes anêmicas na sua forma moderada não acarretam baixos estoques de ferro no concepto, porém podem evoluir para o trabalho de parto prematuro e RN com baixo peso ao nascer. O ferro é transportado para o feto por via transplacentária, principalmente durante o terceiro trimestre de gestação. A deficiência de ferro não ocorre no período neonatal, porém os prematuros e ou RN com baixo peso constituem o principal grupo de risco para desenvolver a deficiência de ferro. Nos RN nascidos a termo podemos observar uma deficiência de ferro naqueles que sofreram ressecção cirúrgica do duodeno devido à malformação congênita. A fim de evitarmos a deficiência de ferro neste grupo de risco, indica-se a suplementação de ferro a partir dos 30 dias de vida. A via de administração preferencial é a enteral, apesar de sabermos que no prematuro ocorre uma deficiência do controle da absorção do ferro. O complexo de ferro polimaltosado e o ferro aminoquelado são os de escolha para a profilaxia da deficiência de ferro em prematuros. A via endovenosa é segura e não acarreta piora das lesões causadas pela ação oxidativa do ferro em prematuros.The main cause of anemia in the fetus is hemolytic disease. Mildly anemic pregnant women may evolve with premature labor and have low birth weight babies, but the baby's iron status is not influenced by the mother's iron deficiency. Iron transportation through the placenta occurs in the third trimester of gestation and premature labor results in reduced iron stores. Iron deficiency anemia does not occur during the neonatal period, but premature and low birth weight babies are at risk of developing iron deficiency. In full-term babies iron deficiency can occur due to intestinal malformation that leads to duodenal resection. To avoid iron deficiency in at-risk babies, iron supplementation is recommended from

  19. Thyroid disorders in mild iodine deficiency

    DEFF Research Database (Denmark)

    Laurberg, P; Nøhr, S B; Pedersen, K M

    2000-01-01

    Comparative epidemiologic studies in areas with low and high iodine intake and controlled studies of iodine supplementation have demonstrated that the major consequence of mild-to-moderate iodine deficiency for the health of the population is an extraordinarily high occurrence of hyperthyroidism...... endangered but the consequences of severe iodine deficiency for brain development are grave and a considerable safety margin is advisable. Moreover, a shift toward less malignant types of thyroid cancer and a lower radiation dose to the thyroid in case of nuclear fallout support that mild-to-moderate iodine...... deficiency should be corrected. However, there is evidence that a high iodine intake may be associated with more autoimmune hypothyroidism, and that Graves' disease may manifest at a younger age and be more difficult to treat. Hence, the iodine intake should be brought to a level at which iodine deficiency...

  20. Iron deficiency anemia from diagnosis to treatment in children

    OpenAIRE

    Özdemir, Nihal

    2015-01-01

    Iron deficiency is the most common nutritional deficiency worldwide and an important public health problem especially in developing countries. Since the most important indicator of iron deficieny is anemia, the terms “iron deficiency” and “iron deficiency anemia” are often used interchangeably. However, iron deficiency may develop in the absence of anemia and the tissues may be affected from this condition. The most common causes of iron deficiency in children include insufficient intake toge...

  1. Cobalamin deficiency, hyperhomocysteinemia, and dementia

    Directory of Open Access Journals (Sweden)

    Steven F Werder

    2010-04-01

    Full Text Available Steven F Werder1,21Kansas University School of Medicine – Wichita, Wichita, KS, USA; 2Community Health Center of Southeast Kansas, Pittsburg, KS, USAIntroduction: Although consensus guidelines recommend checking serum B12 in patients with dementia, clinicians are often faced with various questions: (1 Which patients should be tested? (2 What test should be ordered? (3 How are inferences made from such testing? (4 In addition to serum B12, should other tests be ordered? (5 Is B12 deficiency compatible with dementia of the Alzheimer’s type? (6 What is to be expected from treatment? (7 How is B12 deficiency treated?Methods: On January 31st, 2009, a Medline search was performed revealing 1,627 citations related to cobalamin deficiency, hyperhomocysteinemia, and dementia. After limiting the search terms, all abstracts and/or articles and other references were categorized into six major groups (general, biochemistry, manifestations, associations and risks, evaluation, and treatment and then reviewed in answering the above questions.Results: The six major groups above are described in detail. Seventy-five key studies, series, and clinical trials were identified. Evidence-based suggestions for patient management were developed.Discussion: Evidence is convincing that hyperhomocysteinemia, with or without hypovitaminosis B12, is a risk factor for dementia. In the absence of hyperhomocysteinemia, evidence is less convincing that hypovitaminosis B12 is a risk factor for dementia. B12 deficiency manifestations are variable and include abnormal psychiatric, neurological, gastrointestinal, and hematological findings. Radiological images of individuals with hyperhomocysteinemia frequently demonstrate leukoaraiosis. Assessing serum B12 and treatment of B12 deficiency is crucial for those cases in which pernicious anemia is suspected and may be useful for mild cognitive impairment and mild to moderate dementia. The serum B12 level is the standard initial test

  2. 2-Methylbutyryl-coenzyme A dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Sass, Jörn Oliver; Ensenauer, Regina; Röschinger, Wulf

    2008-01-01

    2-Methylbutyryl-CoA dehydrogenase (MBD; coded by the ACADSB gene) catalyzes the step in isoleucine metabolism that corresponds to the isovaleryl-CoA dehydrogenase reaction in the degradation of leucine. Deficiencies of both enzymes may be detected by expanded neonatal screening with tandem...... individuals showed clinical symptoms attributable to MBD deficiency although the defect in isoleucine catabolism was demonstrated both in vivo and in vitro. Several mutations in the ACADSB gene were identified, including a novel one. MBD deficiency may be a harmless metabolic variant although significant...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. Our ... more information about Donor Iron Deficiency Study - Red Blood Cells ...

  4. Sugarcane expressed sequences tags (ESTs encoding enzymes involved in lignin biosynthesis pathways

    Directory of Open Access Journals (Sweden)

    Ramos Rose Lucia Braz

    2001-01-01

    Full Text Available Lignins are phenolic polymers found in the secondary wall of plant conductive systems where they play an important role by reducing the permeability of the cell wall to water. Lignins are also responsible for the rigidity of the cell wall and are involved in mechanisms of resistance to pathogens. The metabolic routes and enzymes involved in synthesis of lignins have been largely characterized and representative genes that encode enzymes involved in these processes have been cloned from several plant species. The synthesis of lignins is liked to the general metabolism of the phenylpropanoids in plants, having enzymes (e.g. phenylalanine ammonia-lyase (PAL, cinnamate 4-hydroxylase (C4H and caffeic acid O-methyltransferase (COMT common to other processes as well as specific enzymes such as cinnamoyl-CoA reductase (CCR and cinnamyl alcohol dehydrogenase (CAD. Some maize and sorghum mutants, shown to have defective in CAD and/or COMT activity, are easier to digest because they have a reduced lignin content, something which has motivated different research groups to alter the lignin content and composition of model plants by genetic engineering try to improve, for example, the efficiency of paper pulping and digestibility. In the work reported in this paper, we have made an inventory of the sugarcane expressed sequence tag (EST coding for enzymes involved in lignin metabolism which are present in the sugarcane EST genome project (SUCEST database. Our analysis focused on the key enzymes ferulate-5-hydroxylase (F5H, caffeic acid O-methyltransferase (COMT, caffeoyl CoA O-methyltransferase (CCoAOMT, hydroxycinnamate CoA ligase (4CL, cinnamoyl-CoA reductase (CCR and cinnamyl alcohol dehydrogenase (CAD. The comparative analysis of these genes with those described in other species could be used as molecular markers for breeding as well as for the manipulation of lignin metabolism in sugarcane.

  5. Zinc Deficiency in Humans and its Amelioration

    Directory of Open Access Journals (Sweden)

    Yashbir Singh Shivay

    2015-01-01

    Full Text Available Zinc (Zn deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in blood does not decrease in proportion of the Zn deficiency. Adverse effects of Zn deficiency vary with age: low weight gain, diarrhoea, aneroxia and neurobehavioral disturbances are observed in infants, while skin changes and dwarfism are frequent in toddlers and adolescents. Common manifestations of Zn deficiency among elderly include hypogeusia, chronic non-healing ulcers and recurrent infections.Ameliorative measures of Zn deficiency in humans can be classified in two groups, namely, nutraceutical and biofortification of food grains. Nutraceutical interventions include pharmaceutical supplements, dietary supplements and dietary diversification, while biofortification of food grains can be achieved by genetic modification (GM of crops or by agronomic techniques that include soil or/and foliar fertilization of crops.The major disadvantage of nutraceutical approaches is that the major beneficiaries are urban people and the poor rural masses that need adequate Zn nutrition most are left out. Genetic biofortification of food grains requires large amounts of funds and a fairly long-period of time. Further, a large number of countries have not yet accepted genetically modified (GM foods. On the other hand agronomic biofortification of food grains yields immediate effects and rural and urban people are equally benefitted. Our studies have shown that Zn concentration in cereals (rice, wheat etc and pulses can be considerably increased by soil or/and foliar

  6. Zinc Deficiency in Humans and its Amelioration

    Directory of Open Access Journals (Sweden)

    Yashbir Singh Shivay

    2015-12-01

    Full Text Available Zinc (Zn deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in blood does not decrease in proportion of the Zn deficiency. Adverse effects of Zn deficiency vary with age: low weight gain, diarrhoea, aneroxia and neurobehavioral disturbances are observed in infants, while skin changes and dwarfism are frequent in toddlers and adolescents. Common manifestations of Zn deficiency among elderly include hypogeusia, chronic non-healing ulcers and recurrent infections. Ameliorative measures of Zn deficiency in humans can be classified in two groups, namely, nutraceutical and biofortification of food grains. Nutraceutical interventions include pharmaceutical supplements, dietary supplements and dietary diversification, while biofortification of food grains can be achieved by genetic modification (GM of crops or by agronomic techniques that include soil or/and foliar fertilization of crops. The major disadvantage of nutraceutical approaches is that the major beneficiaries are urban people and the poor rural masses that need adequate Zn nutrition most are left out. Genetic biofortification of food grains requires large amounts of funds and a fairly long-period of time. Further, a large number of countries have not yet accepted genetically modified (GM foods. On the other hand agronomic biofortification of food grains yields immediate effects and rural and urban people are equally benefitted. Our studies have shown that Zn concentration in cereals (rice, wheat etc and pulses can be considerably increased by soil or/and foliar

  7. Veganism as a cause of iodine deficient hypothyroidism.

    Science.gov (United States)

    Yeliosof, Olga; Silverman, Lawrence A

    2018-01-26

    Iodine deficiency is the most common cause of acquired hypothyroidism worldwide. Although uncommon in the Western world, the incidence of iodine deficiency may be rising due to the increased use of restrictive diets. We present a 23-month-old boy diagnosed with iodine deficiency hypothyroidism, induced by a vegan diet. This case highlights the risk for iodine deficiency in children on a vegan diet after discontinuation of breast/formula feeding that could lead to acquired hypothyroidism.

  8. Ophthalmic acid accumulation in an Escherichia coli mutant lacking the conserved pyridoxal 5′-phosphate-binding protein YggS

    OpenAIRE

    Ito, Tomokazu; Yamauchi, Ayako; Hemmi, Hisashi; Yoshimura, Tohru

    2016-01-01

    Escherichia coli YggS is a highly conserved pyridoxal 5′-phosphate (PLP)-binding protein whose biochemical function is currently unknown. A previous study with a yggS-deficient E. coli strain (ΔyggS) demonstrated that YggS controls l-Ile- and l-Val-metabolism by modulating 2-ketobutyrate (2-KB), l-2-aminobutyrate (l-2-AB), and/or coenzyme A (CoA) availability in a PLP-dependent fashion. In this study, we found that ΔyggS accumulates an unknown metabolite as judged by amino acid analyses. LC/M...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for gastrointestinal bleeding To see if gastrointestinal bleeding is causing your iron-deficiency anemia, your doctor may order the following procedures to guide treatment . Fecal ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... increased need for iron during growth spurts. Older adults, especially those over age ... athletes. Athletes, especially young females, are at risk for iron deficiency. Endurance ...

  11. Expression and enzymatic activity of phenylalanine ammonia-lyase and p-coumarate 3-hydroxylase in mango (Mangifera indica 'Ataulfo') during ripening.

    Science.gov (United States)

    Palafox-Carlos, H; Contreras-Vergara, C A; Muhlia-Almazán, A; Islas-Osuna, M A; González-Aguilar, G A

    2014-05-16

    Phenylalanine ammonia lyase (PAL) and p-coumarate 3-hydroxylase (C3H) are key enzymes in the phenylpropanoid pathway. The relative expression of PAL and C3H was evaluated in mango fruit cultivar 'Ataulfo' in four ripening stages (RS1, RS2, RS3, and RS4) by quantitative polymerase chain reaction. In addition, enzyme activity of PAL and C3H was determined in mango fruits during ripening. The PAL levels were downregulated at the RS2 and RS3 stages, while C3H levels were upregulated in fruits only at RS3. The enzyme activity of PAL followed a pattern that was different from that of the PAL expression, thus suggesting regulation at several levels. For C3H, a regulation at the transcriptional level is suggested because a similar pattern was revealed by its activity and transcript level. In this study, the complexity of secondary metabolite biosynthesis regulation is emphasized because PAL and C3H enzymes are involved in the biosynthesis of several secondary metabolites that are active during all mango ripening stages.

  12. Biochemical Assessment of Coenzyme Q10 Deficiency

    Directory of Open Access Journals (Sweden)

    Juan Carlos Rodríguez-Aguilera

    2017-03-01

    Full Text Available Coenzyme Q10 (CoQ10 deficiency syndrome includes clinically heterogeneous mitochondrial diseases that show a variety of severe and debilitating symptoms. A multiprotein complex encoded by nuclear genes carries out CoQ10 biosynthesis. Mutations in any of these genes are responsible for the primary CoQ10 deficiency, but there are also different conditions that induce secondary CoQ10 deficiency including mitochondrial DNA (mtDNA depletion and mutations in genes involved in the fatty acid β-oxidation pathway. The diagnosis of CoQ10 deficiencies is determined by the decrease of its content in skeletal muscle and/or dermal skin fibroblasts. Dietary CoQ10 supplementation is the only available treatment for these deficiencies that require a rapid and distinct diagnosis. Here we review methods for determining CoQ10 content by HPLC separation and identification using alternative approaches including electrochemical detection and mass spectrometry. Also, we review procedures to determine the CoQ10 biosynthesis rate using labeled precursors.

  13. Iron deficiency and anemia in heart failure.

    Science.gov (United States)

    Çavuşoğlu, Yüksel; Altay, Hakan; Çetiner, Mustafa; Güvenç, Tolga Sinan; Temizhan, Ahmet; Ural, Dilek; Yeşilbursa, Dilek; Yıldırım, Nesligül; Yılmaz, Mehmet Birhan

    2017-03-01

    Heart failure is an important community health problem. Prevalence and incidence of heart failure have continued to rise over the years. Despite recent advances in heart failure therapy, prognosis is still poor, rehospitalization rate is very high, and quality of life is worse. Co-morbidities in heart failure have negative impact on clinical course of the disease, further impair prognosis, and add difficulties to treatment of clinical picture. Therefore, successful management of co-morbidities is strongly recommended in addition to conventional therapy for heart failure. One of the most common co-morbidities in heart failure is presence of iron deficiency and anemia. Current evidence suggests that iron deficiency and anemia are more prevalent in patients with heart failure and reduced ejection fraction, as well as those with heart failure and preserved ejection fraction. Moreover, iron deficiency and anemia are referred to as independent predictors for poor prognosis in heart failure. There is strong relationship between iron deficiency or anemia and severity of clinical status of heart failure. Over the last two decades, many clinical investigations have been conducted on clinical effectiveness of treatment of iron deficiency or anemia with oral iron, intravenous iron, and erythropoietin therapies. Studies with oral iron and erythropoietin therapies did not provide any clinical benefit and, in fact, these therapies have been shown to be associated with increase in adverse clinical outcomes. However, clinical trials in patients with iron deficiency in the presence or absence of anemia have demonstrated considerable clinical benefits of intravenous iron therapy, and based on these positive outcomes, iron deficiency has become target of therapy in management of heart failure. The present report assesses current approaches to iron deficiency and anemia in heart failure in light of recent evidence.

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Supplement Fact Sheet (NIH) Iron-Deficiency Anemia (National Library of Medicine, MedlinePlus) ... Privacy Policy Freedom of Information Act (FOIA) Accessibility Copyright and Usage No FEAR ...

  15. Isolated Cortisol Deficiency: A Rare Cause of Neonatal Cholestasis

    Science.gov (United States)

    Al-Hussaini, Abdulrahman; Almutairi, Awatif; Mursi, Alaaddin; Alghofely, Mohammed; Asery, Ali

    2012-01-01

    For decades, congenital panhypopituitarism has been recognized to cause infantile cholestasis. However, the identity of the hormone whose deficiency causes such derangement of the liver is not clear. Here, we report four cases of isolated severe cortisol deficiency presenting with neonatal cholestasis and hypoglycemia, of whom two had familial primary glucocorticoid deficiency and the other two had isolated adrenocorticotropin deficiency. The resolution of cholestasis by hydrocortisone replacement therapy suggests a causal relationship between cortisol deficiency and the development of neonatal cholestasis. In conclusion, the presentation of a young infant with cholestasis and hypoglycemia should alert pediatricians to the possibility of cortisol deficiency and prompt investigation of adrenal function should be undertaken. PMID:23006463

  16. Screening for iron deficiency and iron deficiency anaemia in pregnancy: a structured review and gap analysis against UK national screening criteria.

    Science.gov (United States)

    Rukuni, Ruramayi; Knight, Marian; Murphy, Michael F; Roberts, David; Stanworth, Simon J

    2015-10-20

    Iron deficiency anaemia is a common problem in pregnancy despite national recommendations and guidelines for treatment. The aim of this study was to appraise the evidence against the UK National Screening Committee (UKNSC) criteria as to whether a national screening programme could reduce the prevalence of iron deficiency anaemia and/or iron deficiency in pregnancy and improve maternal and fetal outcomes. Search strategies were developed for the Cochrane library, Medline and Embase to identify evidence relevant to UK National Screening Committee (UKNSC) appraisal criteria which cover the natural history of iron deficiency and iron deficiency anaemia, the tests for screening, clinical management and evidence of cost effectiveness. Many studies evaluated haematological outcomes of anaemia, but few analysed clinical consequences. Haemoglobin and ferritin appeared the most suitable screening tests, although future options may follow recent advances in understanding iron homeostasis. The clinical consequences of iron deficiency without anaemia are unknown. Oral and intravenous iron are effective in improving haemoglobin and iron parameters. There have been no trials or economic evaluations of a national screening programme for iron deficiency anaemia in pregnancy. Iron deficiency in pregnancy remains an important problem although effective tests and treatment exist. A national screening programme could be of value for early detection and intervention. However, high quality studies are required to confirm whether this would reduce maternal and infant morbidity and be cost effective.

  17. Clinical implications of vitamin D deficiency

    Directory of Open Access Journals (Sweden)

    Beata Matyjaszek-Matuszek

    2015-06-01

    Full Text Available Vitamin D deficiency is a common medical problem worldwide and its prevalence rises along with latitude, obesity, sedentary lifestyle, limited sunlight exposure and aging. A great body of evidence has shown that patients with vitamin D deficiency have increased cardiovascular risks and total mortality. Conversely, the presence of comorbidities progressive with age such as abdominal obesity, insulin resistance, type 2 diabetes and hypertension places the patients at an increased risk of vitamin D deficiency. The multidirectional effect of vitamin D deficiency is present in different phases of the aging process. Based on the literature review, the risk factors for vitamin D insufficiency most often found in post-menopausal women include limited sun exposure and time spent outdoors, inadequate dietary vitamin D intake, winter season and increased age. Vitamin D supplementation in this group might offer prevention of falls and fractures and may be beneficial for cardiovascular health, what may be especially important in osteoporotic and elderly populations. Prevention and treatment processes involve education regarding sunlight exposure and pharmacological cholecalciferol supplementation according to the recommendations for Central Europe. This manuscript reviews the role of vitamin D and its deficiency and considers their clinical implications, with particular regard to peri- and postmenopausal women.

  18. Deficiência de ferro na criança Iron deficiency in infants and children

    Directory of Open Access Journals (Sweden)

    Josefina A. P. Braga

    2010-06-01

    Full Text Available Estima-se que dois bilhões de indivíduos sejam anêmicos e que a deficiência de ferro ocorra em cerca de quatro bilhões de indivíduos, afetando a população de países desenvolvidos e, com mais intensidade, a dos países em desenvolvimento. No Brasil, estudos apontam elevada prevalência de anemia ferropriva em crianças dependendo da região e da faixa etária. A velocidade de crescimento aumentada, determinando maior necessidade de ferro, aliada a dieta inadequada em ferro e ao desmame precoce, contribuem para a elevada prevalência de anemia, principalmente nos dois primeiros anos de vida. Outros fatores de risco são apontados, como a prematuridade, o baixo peso ao nascer, a ligadura precoce do cordão umbilical e o abandono do aleitamento materno exclusivo. O impacto da deficiência de ferro no crescimento permanece controverso, uma vez que inúmeras outras variáveis poderiam contribuir para melhora ou piora do estado nutricional. Alterações no desenvolvimento psicomotor e neurocognitivo, nos lactentes deficientes com ferro, têm sido relatadas em diversos estudos, sendo controversa a recuperação após o tratamento. Há trabalhos que demonstram queda no rendimento intelectual e nas aquisições cognitivas também no período escolar e adolescência, com reversão após a terapia marcial. Entre as medidas preventivas, a educação nutricional é a forma ideal; entretanto, frente à elevada prevalência, outras formas de prevenção devem ser também utilizadas, como a suplementação com ferro e a fortificação de alimentos com ferro.Iron deficiency anemia afflicts an estimated two billion people and iron deficiency approximately 4 billion people in developed countries and is even more common in developing countries. In Brazil, depending on the region and age, studies point to high prevalences of iron-deficiency anemia in children. The high growth speed, which requires a greater amount of iron, connected with an inadequate iron

  19. Sintomas visuais de deficiências nutricionais em pinhão-manso Visual symptoms of nutrient deficiency in physic nut

    Directory of Open Access Journals (Sweden)

    Enilson de Barros Silva

    2009-04-01

    Full Text Available O objetivo deste trabalho foi avaliar o crescimento e caracterizar os sintomas de deficiências de macro e micronutrientes em mudas de pinhão-manso (Jatropha curcas. As mudas foram cultivadas em solução nutritiva completa e, também, em soluções com omissão de N, P, K, Ca, Mg, S, B, Cu, Fe, Mn ou Zn, pelo uso da técnica do elemento faltante. Foram avaliados os sintomas visuais de deficiência de nutrientes e a massa de matéria seca da parte aérea e das raízes, respectivamente aos 90 e 120 dias após a aplicação dos tratamentos. As omissões de macro e micronutrientes provocaram sintomas visuais de deficiência nutricional comuns a outras espécies. As deficiências limitaram a produção de massa de matéria seca na seguinte ordem: Ca>Mg>K>N>P>S, para macronutrientes; e Fe>Cu>Zn>Mn>B, para micronutrientes.The objectives of this work were to evaluate the growth of physic nut (Jatropha curcas and to characterize visual symptoms of macro and micronutrient deficiencies in seedlings. The seedlings were cultivated in nutritive solution containing all required macro and micronutrients and in solutions with omission of N, P, K, Ca, Mg, S, B, Cu, Fe, Mn or Zn, using the missing element technique. Visual deficiency symptoms and seedlings dry weight were evaluated at 90 and 120 days after treatments, respectively. The absences of macro and micronutrients in physic nut caused in nutritional deficiency visual symptoms known to other species. The deficiencies restricted the dry matter production according to the following order: Ca>Mg>K>N>P>S, for macronutrients, and Fe>Cu>Zn>Mn>B, for micronutrients.

  20. Deficient and Null Variants of SERPINA1 Are Proteotoxic in a Caenorhabditis elegans Model of α1-Antitrypsin Deficiency.

    Directory of Open Access Journals (Sweden)

    Erin E Cummings

    Full Text Available α1-antitrypsin deficiency (ATD predisposes patients to both loss-of-function (emphysema and gain-of-function (liver cirrhosis phenotypes depending on the type of mutation. Although the Z mutation (ATZ is the most prevalent cause of ATD, >120 mutant alleles have been identified. In general, these mutations are classified as deficient (<20% normal plasma levels or null (<1% normal levels alleles. The deficient alleles, like ATZ, misfold in the ER where they accumulate as toxic monomers, oligomers and aggregates. Thus, deficient alleles may predispose to both gain- and loss-of-function phenotypes. Null variants, if translated, typically yield truncated proteins that are efficiently degraded after being transiently retained in the ER. Clinically, null alleles are only associated with the loss-of-function phenotype. We recently developed a C. elegans model of ATD in order to further elucidate the mechanisms of proteotoxicity (gain-of-function phenotype induced by the aggregation-prone deficient allele, ATZ. The goal of this study was to use this C. elegans model to determine whether different types of deficient and null alleles, which differentially affect polymerization and secretion rates, correlated to any extent with proteotoxicity. Animals expressing the deficient alleles, Mmalton, Siiyama and S (ATS, showed overall toxicity comparable to that observed in patients. Interestingly, Siiyama expressing animals had smaller intracellular inclusions than ATZ yet appeared to have a greater negative effect on animal fitness. Surprisingly, the null mutants, although efficiently degraded, showed a relatively mild gain-of-function proteotoxic phenotype. However, since null variant proteins are degraded differently and do not appear to accumulate, their mechanism of proteotoxicity is likely to be different to that of polymerizing, deficient mutants. Taken together, these studies showed that C. elegans is an inexpensive tool to assess the proteotoxicity of

  1. Deficient Circumferential Growth Is the Primary Determinant of Aortic Obstruction Attributable to Partial Elastin Deficiency.

    Science.gov (United States)

    Jiao, Yang; Li, Guangxin; Korneva, Arina; Caulk, Alexander W; Qin, Lingfeng; Bersi, Matthew R; Li, Qingle; Li, Wei; Mecham, Robert P; Humphrey, Jay D; Tellides, George

    2017-05-01

    Williams syndrome is characterized by obstructive aortopathy attributable to heterozygous loss of ELN , the gene encoding elastin. Lesions are thought to result primarily from excessive smooth muscle cell (SMC) proliferation and consequent medial expansion, although an initially smaller caliber and increased stiffness of the aorta may contribute to luminal narrowing. The relative contributions of such abnormalities to the obstructive phenotype had not been defined. We quantified determinants of luminal stenosis in thoracic aortas of Eln -/- mice incompletely rescued by human ELN . Moderate obstruction was largely because of deficient circumferential growth, most prominently of ascending segments, despite increased axial growth. Medial thickening was evident in these smaller diameter elastin-deficient aortas, with medial area similar to that of larger diameter control aortas. There was no difference in cross-sectional SMC number between mutant and wild-type genotypes at multiple stages of postnatal development. Decreased elastin content was associated with medial fibrosis and reduced aortic distensibility because of increased structural stiffness but preserved material stiffness. Elastin-deficient SMCs exhibited greater contractile-to-proliferative phenotypic modulation in vitro than in vivo. We confirmed increased medial collagen without evidence of increased medial area or SMC number in a small ascending aorta with thickened media of a Williams syndrome subject. Deficient circumferential growth is the predominant mechanism for moderate obstructive aortic disease resulting from partial elastin deficiency. Our findings suggest that diverse aortic manifestations in Williams syndrome result from graded elastin content, and SMC hyperplasia causing medial expansion requires additional elastin loss superimposed on ELN haploinsufficiency. © 2017 American Heart Association, Inc.

  2. Transient Ischemic Attack Caused by Iron Deficiency Anemia

    Directory of Open Access Journals (Sweden)

    Ufuk Emre

    2006-02-01

    Full Text Available Transient Ischemic Attack Caused by Iron Deficiency Anemia Transient ischemic attacks are episodes of transient focal ischemia involving the brain or brainstem. They are commonly two to thirty minutes in duration and lasting less than 24 hours. Anemia of iron deficiency isn’t frequently cause for transient ischemic attack. It has been reported as a risk factor for childhood ischemic strokes. In the iron deficiency anemia, T‹A may develop as result of hypercoagulable state and increased viscosity that is caused by anemic hypoxia that is result of reduce hemoglobine level, seconder thrombosis and microcytose As iron deficiency anemia has been reported so rarely in adult patients with transient ischemic attacks as a cause, we aimed to discuss the clinical and outcome features of two cases with iron deficiency anemia and transient ischemic attacks in this study. Materials and methods: Routine neurologic examination, biochemical screen, serological tests, vasculitic markers, thyroid function tests, vitamin B 12 level, cranial imaging, vertebral carotid doppler USG examination was conducted in the two patients. Anemia of iron deficiency was found as the only risk factor for TIA and the two patients were treated with replacement of iron and antiagregan therapy. Neurological examination revealed no abnormality through the two years of follow-up. The iron deficiency anemia may be cause of many neurologic problems such a irritability, lethargy, headache, development retardation except from T‹A. In the iron deficiency anemia, early diagnosis and treatment is important

  3. Effects of betaine supplementation and choline deficiency on folate deficiency-induced hyperhomocysteinemia in rats.

    Science.gov (United States)

    Liu, Ying; Liu, Yi-qun; Morita, Tatsuya; Sugiyama, Kimio

    2012-01-01

    The effect of betaine status on folate deficiency-induced hyperhomocysteinemia was investigated to determine whether folate deficiency impairs homocysteine removal not only by the methionine synthase (MS) pathway but also by the betaine-homocysteine S-methyltransferase (BHMT) pathway. For this purpose, we investigated the effect of dietary supplementation with betaine at a high level (1%) in rats fed a folate-deprived 10% casein diet (10C) and 20% casein diet (20C). We also investigated the effect of choline deprivation on folate deficiency-induced hyperhomocysteinemia in rats fed 20C. Supplementation of folate-deprived 10C and 20C with 1% betaine significantly suppressed folate deprivation-induced hyperhomocysteinemia, but the extent of suppression was partial or limited, especially in rats fed 10C, the suppression of plasma homocysteine increment being 48.5% in rats fed 10C and 69.7% in rats fed 20C. Although betaine supplementation greatly increased hepatic betaine concentration and BHMT activity, these increases did not fully explain why the effect of betaine supplementation was partial or limited. Folate deprivation markedly increased the hepatic concentration of N,N-dimethylglycine (DMG), a known inhibitor of BHMT, and there was a significant positive correlation between hepatic DMG concentration and plasma homocysteine concentration, suggesting that folate deficiency increases hepatic DMG concentration and thereby depresses BHMT reaction, leading to interference with the effect of betaine supplementation. Choline deprivation did not increase plasma homocysteine concentration in rats fed 20C, but it markedly enhanced plasma homocysteine concentration when rats were fed folate-deprived 20C. This indicates that choline deprivation reinforced folate deprivation-induced hyperhomocysteinemia. Increased hepatic DMG concentration was also associated with such an effect. These results support the concept that folate deficiency impairs homocysteine metabolism not only

  4. Glucose-6-phosphate dehydrogenase deficiency in Nigerian children.

    Directory of Open Access Journals (Sweden)

    Olatundun Williams

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (561 males and 561 females aged 1 month to 15 years. The mean age was 7.4 ± 3.2 years. Children of Yoruba ethnicity made up the largest group (77.5% followed by those Igbo descent (10.6% and those of Igede (10.2% and Tiv (1.8% ethnicity. G6PD status was determined using the fluorescent spot method. We found that the overall prevalence of G6PD deficiency was 15.3% (24.1% in males, 6.6% in females. Yoruba children had a higher prevalence (16.9% than Igede (10.5%, Igbo (10.1% and Tiv (5.0% children. The odds of G6PD deficiency were 0.38 times as high in Igbo children compared to Yoruba children (p=0.0500. The odds for Igede and Tiv children were not significantly different from Yoruba children (p=0.7528 and 0.9789 respectively. Mean oxygen saturation, heart rate and hematocrit were not significantly different in G6PD deficient and G6PD sufficient children. The odds of being G6PD deficient were 2.1 times higher in children with scleral icterus than those without (p=0.0351. In conclusion, we determined the prevalence of G6PD deficiency in Nigerian sub-populations. The odds of G6PD deficiency were decreased in Igbo children compared to Yoruba children. There was no association between vital parameters or hematocrit and G6PD deficiency. We found that a history of scleral icterus may increase the odds of G6PD deficiency, but we did not exclude other common causes of icterus such as sickle cell disease or malarial infection.

  5. The Evidence-Based Evaluation of Iron Deficiency Anemia.

    Science.gov (United States)

    Hempel, Eliana V; Bollard, Edward R

    2016-09-01

    Anemia is a prevalent disease with multiple possible etiologies and resultant complications. Iron deficiency anemia is a common cause of anemia and is typically due to insufficient intake, poor absorption, or overt or occult blood loss. Distinguishing iron deficiency from other causes of anemia is integral to initiating the appropriate treatment. In addition, identifying the underlying cause of iron deficiency is also necessary to help guide management of these patients. We review the key components to an evidence-based, cost-conscious evaluation of suspected iron deficiency anemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Two pectin lyase genes, pnl-1 and pnl-2, from Colletotrichum gloeosporioides f. sp. malvae differ in a cellulose-binding domain and in their expression during infection of Malva pusilla.

    Science.gov (United States)

    Wei, Yangdou; Shih, Jenny; Li, Jieran; Goodwin, Paul H

    2002-07-01

    Two pectin lyase genes, designated pnl-1 and pnl-2, were cloned from Colletotrichum gloeosporioides f. sp. malvae, a pathogen of round-leaved mallow (Malva pusilla). pnl-1 was isolated using cDNA from infected plant material; pnl-2 was isolated using cDNA from 3-day-old mycelia grown in mallow-cell-wall extract (MCWE) broth. pnl-1 is the first pectinase gene described thus far to encode a cellulose-binding domain (CBD), which is common in cellulases and xylanases, whereas pnl-2 encodes a pectin lyase that lacks a CBD. In pure culture, pnl-1 expression could be detected when purified pectin or glucose was the sole carbon source, but not when MCWE was the sole carbon source. The lack of pnl-1 expression appeared to be due to gene repression by some unknown factor(s) in the cell-wall extract. In contrast, expression of pnl-2 was detected in cultures when MCWE, but not when purified pectin or glucose, was the sole carbon source. In infected tissue, detection of pnl-1 expression by Northern-blot hybridization and by RT-PCR began with the onset of the necrotrophic phase of infection. Expression ofpnl-2 was not detectable by Northern-blot hybridization, but was observed byRT-PCR in both the biotrophic and necrotrophic phases of infection. The differences between pnl-1 and pnl-2 (i.e. pnl-1 encoding a CBD and differences in the expression patterns of both genes) may be related to the requirements of C. gloeosporioides f. sp. malvae to be able to grow in host tissue under the different conditions present during the biotrophic and necrotrophic phases of infection.

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... complications, including heart failure and development delays in children. Explore this Health ... red blood cells. Iron-deficiency anemia usually develops over time because your body’s intake of iron ...

  8. Experimental reproduction of iodine deficiency in cattle.

    Science.gov (United States)

    McCoy, M A; Smyth, J A; Ellis, W A; Arthur, J R; Kennedy, D G

    1997-11-22

    The role of iodine deficiency in stillbirth/perinatal weak calf syndrome was investigated in pregnant heifers. Five heifers were fed an iodine deficient diet (mean [sd] iodine concentration 0.06 [0.01] mg/kg dry matter [DM]) and six received an iodine sufficient diet (mean [sd] iodine concentration 1.45 [0.27] mg/kg DM). The diets consisted of wheat and soyabean meal with added minerals and vitamins (with or without iodine) and were fed to the heifers over the final four to five months of pregnancy. The iodine deficient diet produced clinicopathological changes and pathological changes in the thyroid glands of both the heifers and their offspring. However, all the calves in the iodine deficient group were born clinically normal.

  9. Isolation of a novel alginate lyase-producing Bacillus litoralis strain and its potential to ferment Sargassum horneri for biofertilizer.

    Science.gov (United States)

    Wang, Mingpeng; Chen, Lei; Liu, Zhengyi; Zhang, Zhaojie; Qin, Song; Yan, Peisheng

    2016-12-01

    Algae have long been used to augment plant productivity through their beneficial effects. Alginate oligosaccharide is believed to be one of the important components to enhance growth and crop yield. In this study, we isolated and characterized a Bacillus litoralis strain, named Bacillus M3, from decayed kelps. We further demonstrated that the M3 strain could secrete alginate lyase to degrade alginate. The crude enzyme exhibited the highest activity (33.74 U/mg) at pH 7.0 and 50°C. The M3 strain was also able to ferment the brown alga Sargassum horneri. Fermentation results revealed that a fermentation period of 8-12 hr was the best harvest time with the highest level of alginate oligosaccharides. Plant growth assay showed that the seaweed fermentation extract had an obvious promotion effect on root and seedling growth of Lycopersicon eseulentum L. Our results suggest that fermentation extract of Sargassum horneri by the novel strain of Bacillus litoralis M3 has significant development potential for biofertilizer production and agriculture application. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  10. Vitamin D deficiency in early pregnancy.

    Directory of Open Access Journals (Sweden)

    Shannon K Flood-Nichols

    Full Text Available Vitamin D deficiency is a common problem in reproductive-aged women in the United States. The effect of vitamin D deficiency in pregnancy is unknown, but has been associated with adverse pregnancy outcomes. The objective of this study was to analyze the relationship between vitamin D deficiency in the first trimester and subsequent clinical outcomes.This is a retrospective cohort study. Plasma was collected in the first trimester from 310 nulliparous women with singleton gestations without significant medical problems. Competitive enzymatic vitamin D assays were performed on banked plasma specimens and pregnancy outcomes were collected after delivery. Logistic regression was performed on patients stratified by plasma vitamin D concentration and the following combined clinical outcomes: preeclampsia, preterm delivery, intrauterine growth restriction, gestational diabetes, and spontaneous abortion.Vitamin D concentrations were obtained from 235 patients (mean age 24.3 years, range 18-40 years. Seventy percent of our study population was vitamin D insufficient with a serum concentration less than 30 ng/mL (mean serum concentration 27.6 ng/mL, range 13-71.6 ng/mL. Logistic regression was performed adjusting for age, race, body mass index, tobacco use, and time of year. Adverse pregnancy outcomes included preeclampsia, growth restriction, preterm delivery, gestational diabetes, and spontaneous abortion. There was no association between vitamin D deficiency and composite adverse pregnancy outcomes with an adjusted odds ratio of 1.01 (p value 0.738, 95% confidence intervals 0.961-1.057.Vitamin D deficiency did not associate with adverse pregnancy outcomes in this study population. However, the high percentage of affected individuals highlights the prevalence of vitamin D deficiency in young, reproductive-aged women.

  11. Structural And Biochemical Characterization of the Therapeutic A. Variabilis Phenylalanine Ammonia Lyase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Gamez, A.; Archer, H.; Abola, E.E.; Sarkissian, C.N.; Fitzpatrick, P.; Wendt, D.; Zhang, Y.; Vellard, M.; Bliesath, J.; Bell, S.; Lemont, J.; Scriver, C.R.; Stevens, R.C.

    2009-05-26

    We have recently observed promising success in a mouse model for treating the metabolic disorder phenylketonuria with phenylalanine ammonia lyase (PAL) from Rhodosporidium toruloides and Anabaena variabilis. Both molecules, however, required further optimization in order to overcome problems with protease susceptibility, thermal stability, and aggregation. Previously, we optimized PAL from R. toruloides, and in this case we reduced aggregation of the A. variabilis PAL by mutating two surface cysteine residues (C503 and C565) to serines. Additionally, we report the structural and biochemical characterization of the A. variabilis PAL C503S/C565S double mutant and carefully compare this molecule with the R. toruloides engineered PAL molecule. Unlike previously published PAL structures, significant electron density is observed for the two active-site loops in the A. variabilis C503S/C565S double mutant, yielding a complete view of the active site. Docking studies and N-hydroxysuccinimide-biotin binding studies support a proposed mechanism in which the amino group of the phenylalanine substrate is attacked directly by the 4-methylidene-imidazole-5-one prosthetic group. We propose a helix-to-loop conformational switch in the helices flanking the inner active-site loop that regulates accessibility of the active site. Differences in loop stability among PAL homologs may explain the observed variation in enzyme efficiency, despite the highly conserved structure of the active site. A. variabilis C503S/C565S PAL is shown to be both more thermally stable and more resistant to proteolytic cleavage than R. toruloides PAL. Additional increases in thermal stability and protease resistance upon ligand binding may be due to enhanced interactions among the residues of the active site, possibly locking the active-site structure in place and stabilizing the tetramer. Examination of the A. variabilis C503S/C565S PAL structure, combined with analysis of its physical properties, provides

  12. Epidemiology of SHOX deficiency.

    Science.gov (United States)

    Nicolosi, A; Caruso-Nicoletti, M

    2010-06-01

    Deletion of short stature homeobox-containing (SHOX) gene, in the pseudoautosomal region (PAR1) of X and Y chromosomes, is an important cause of short stature. Homozygous loss of SHOX results in the more severe Langer mesomelic dysplasia, while SHOX haploinsufficiency cause a wide spectrum of short stature phenotypes, including patients with Turner syndrome, Leri Weill dyschondrosteosis (LWD), and idiopathic short stature (ISS). In Turner syndrome, haploinsufficiency of SHOX gene, as well as short stature, are present in 100%; nevertheless, SHOX deficiency accounts for only two-thirds of Turner patients' short stature. In LWD the prevalence of SHOX gene anomalies varies from 56% to 100%. This wide range might be due to different factors such as selection criteria of patients, sample size, and method used for screening SHOX mutations. The real challenge is to establish the prevalence of SHOX deficiency in ISS children given that published studies have reported this association with a very broad frequency range varying from 1.5% to 15%. An important variable in these studies is represented by the method used for screening SHOX mutations and sometimes by differences in patient selection. Short stature is present by definition in 3 out of 100 subjects; if we consider a frequency of SHOX defects of 3% among ISS, we should expect a population prevalence of 1 in 1000. This prevalence would be higher than that of GH deficiency (1:3,500) and of Turner syndrome (1:2,500 females), suggesting that SHOX deficiency could be one of the most frequent monogenetic causes of short stature.

  13. [Osteomalacia and vitamin D deficiency].

    Science.gov (United States)

    Rader, C P; Corsten, N; Rolf, O

    2015-09-01

    Vitamin D and calcium deficiency has a higher incidence in the orthopedic-trauma surgery patient population than generally supposed. In the long term this can result in osteomalacia, a form of altered bone mineralization in adults, in which the cartilaginous, non-calcified osteoid does not mature to hard bone. The current value of vitamin D and its importance for bones and other body cells are demonstrated. The causes of vitamin D deficiency are insufficient sunlight exposure, a lack of vitamin D3 and calcium, malabsorption, and rare alterations of VDR signaling and phosphate metabolism. The main symptoms are bone pain, fatigue fractures, muscular cramps, muscle pain, and gait disorders, with an increased incidence of falls in the elderly. Osteopathies induced by pharmaceuticals, tumors, rheumatism or osteoporosis have to be considered as the main differential diagnoses. In addition to the recording of symptoms and medical imaging, the diagnosis of osteomalacia should be ensured by laboratory parameters. Adequate treatment consists of the high-dose intake of vitamin D3 and the replacement of phosphate if deficient. Vitamin D is one of the important hormone-like vitamins and is required in all human cells. Deficiency of vitamin D has far-reaching consequences not only for bone, but also for other organ systems.

  14. Iron deficiency anemia and megaloblastic anemia in obese patients.

    Science.gov (United States)

    Arshad, Mahmoud; Jaberian, Sara; Pazouki, Abdolreza; Riazi, Sajedeh; Rangraz, Maryam Aghababa; Mokhber, Somayyeh

    2017-03-01

    The association between obesity and different types of anemia remained uncertain. The present study aimed to assess the relation between obesity parameters and the occurrence of iron deficiency anemia and also megaloblastic anemia among Iranian population. This cross-sectional study was performed on 1252 patients with morbid obesity that randomly selected from all patients referred to Clinic of obesity at Rasoul-e-Akram Hospital in 2014. The morbid obesity was defined according to the guideline as body mass index (BMI) equal to or higher than 40 kg/m2. Various laboratory parameters including serum levels of hemoglobin, iron, ferritin, folic acid, and vitamin B12 were assessed using the standard laboratory techniques. BMI was adversely associated with serum vitamin B12, but not associated with other hematologic parameters. The overall prevalence of iron deficiency anemia was 9.8%. The prevalence of iron deficiency anemia was independent to patients' age and also to body mass index. The prevalence of vitamin B12 deficiency was totally 20.9%. According to the multivariable logistic regression model, no association was revealed between BMI and the occurrence of iron deficiency anemia adjusting gender and age. A similar regression model showed that higher BMI could predict occurrence of vitamin B12 deficiency in morbid obese patients. Although iron deficiency is a common finding among obese patients, vitamin B12 deficiency is more frequent so about one-fifth of these patients suffer vitamin B12 deficiency. In fact, the exacerbation of obesity can result in exacerbation of vitamin B12 deficiency.

  15. Hypopituitarism: growth hormone and corticotropin deficiency.

    Science.gov (United States)

    Capatina, Cristina; Wass, John A H

    2015-03-01

    This article presents an overview of adult growth hormone deficiency (AGHD) and corticotropin deficiency (central adrenal failure, CAI). Both conditions can result from various ailments affecting the hypothalamus or pituitary gland (most frequently a tumor in the area or its treatment). Clinical manifestations are subtle in AGHD but potentially life-threatening in CAI. The diagnosis needs dynamic testing in most cases. Treatment of AGHD is recommended in patients with documented severe deficiency, and treatment of CAI is mandatory in all cases. Despite significant progress in replacement hormonal therapy, more physiologic treatments and more reliable indicators of treatment adequacy are still needed. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... improved health for people with iron-deficiency anemia. Recipient Epidemiology Donor Studies program findings help to protect blood donors . NHLBI’s Recipient Epidemiology Donor Studies (REDS) program , which began in ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... also often take other medicines—such as proton pump inhibitors, anticoagulants, or blood thinners—that may cause iron-deficiency anemia. Proton pump inhibitors interfere with iron absorption, and blood thinners ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... lead to iron-deficiency anemia include: End-stage kidney failure, where there is blood loss during dialysis. People who have chronic kidney disease also often take other medicines—such as ...

  19. The incidence of urea cycle disorders.

    Science.gov (United States)

    Summar, Marshall L; Koelker, Stefan; Freedenberg, Debra; Le Mons, Cynthia; Haberle, Johannes; Lee, Hye-Seung; Kirmse, Brian

    2013-01-01

    A key question for urea cycle disorders is their incidence. In the United States two UCDs, argininosuccinic synthetase and lyase deficiency, are currently detected by newborn screening. We used newborn screening data on over 6million births and data from the large US and European longitudinal registries to determine how common these conditions are. The incidence for the United States is predicted to be 1 urea cycle disorder patient for every 35,000 births presenting about 113 new patients per year across all age groups. © 2013.

  20. Circadian behaviour in neuroglobin deficient mice

    DEFF Research Database (Denmark)

    Hundahl, Christian A; Fahrenkrug, Jan; Hay-Schmidt, Anders

    2012-01-01

    on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light...

  1. Dietary phytate, zinc and hidden zinc deficiency.

    Science.gov (United States)

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Glucose 6 phosphate dehydrogenase deficiency in adults

    International Nuclear Information System (INIS)

    Khan, M.

    2004-01-01

    Objective: To determine the frequency of glucose-6-phosphate dehydrogenase (G6PD) deficiency in adults presented with anemia. Subjects and Methods: Eighteen months admission data was reviewed for G6PD deficiency as a cause of anemia. Anemia was defined by world health organization (WHO) criteria as haemoglobin less than 11.3 gm%. G6PD activity was measured by Sigma dye decolorisation method. All patients were screened for complications of hemolysis and its possible cause. Patients with more than 13 years of age were included in the study. Results: Out of 3600 patients admitted, 1440 were found anaemic and 49 as G6PD deficient. So the frequency of G6PD deficiency in anaemic patients was 3.4% and the overall frequency is 1.36%. G6PD deficiency among males and females was three and six percent respectively. Antimalarials and antibiotics containing sulphonamide group were the most common precipitating factors for hemolysis. Anemia and jaundice were the most common presentations while malaria was the most common associated disease. Acute renal failure was the most severe complication occurring in five patients with two deaths. Conclusion: G6PD deficiency is a fairly common cause of anemia with medicine as common precipitating factor for hemolysis. Such complications can be avoided with early recognition of the disease and avoiding indiscriminate use of medicine. (author)

  3. Thyroid disorders in mild iodine deficiency.

    Science.gov (United States)

    Laurberg, P; Nøhr, S B; Pedersen, K M; Hreidarsson, A B; Andersen, S; Bülow Pedersen, I; Knudsen, N; Perrild, H; Jørgensen, T; Ovesen, L

    2000-11-01

    Comparative epidemiologic studies in areas with low and high iodine intake and controlled studies of iodine supplementation have demonstrated that the major consequence of mild-to-moderate iodine deficiency for the health of the population is an extraordinarily high occurrence of hyperthyroidism in elderly subjects, especially women, with risk of cardiac arrhythmias, osteoporosis, and muscle wasting. The hyperthyroidism is caused by autonomous nodular growth and function of the thyroid gland and it is accompanied by a high frequency of goiter. Pregnant women and small children are not immediately endangered but the consequences of severe iodine deficiency for brain development are grave and a considerable safety margin is advisable. Moreover, a shift toward less malignant types of thyroid cancer and a lower radiation dose to the thyroid in case of nuclear fallout support that mild-to-moderate iodine deficiency should be corrected. However, there is evidence that a high iodine intake may be associated with more autoimmune hypothyroidism, and that Graves' disease may manifest at a younger age and be more difficult to treat. Hence, the iodine intake should be brought to a level at which iodine deficiency disorders are avoided but not higher. Iodine supplementation programs should aim at relatively uniform iodine intake, avoiding deficient or excessive iodine intake in subpopulations. To adopt such a strategy, surveillance programs are needed.

  4. Factor V deficiency

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000550.htm Factor V deficiency To use the sharing features on ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  5. Factor II deficiency

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000549.htm Factor II deficiency To use the sharing features on ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  6. Factor X deficiency

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000553.htm Factor X deficiency To use the sharing features on ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  7. Micronutrient deficiencies and gender: social and economic costs.

    Science.gov (United States)

    Darnton-Hill, Ian; Webb, Patrick; Harvey, Philip W J; Hunt, Joseph M; Dalmiya, Nita; Chopra, Mickey; Ball, Madeleine J; Bloem, Martin W; de Benoist, Bruno

    2005-05-01

    Vitamin and mineral deficiencies adversely affect a third of the world's people. Consequently, a series of global goals and a serious amount of donor and national resources have been directed at such micronutrient deficiencies. Drawing on the extensive experience of the authors in a variety of institutional settings, the article used a computer search of the published scientific literature of the topic, supplemented by reports and published and unpublished work from the various agencies. In examining the effect of sex on the economic and social costs of micronutrient deficiencies, the paper found that: (1) micronutrient deficiencies affect global health outcomes; (2) micronutrient deficiencies incur substantial economic costs; (3) health and nutrition outcomes are affected by sex; (4) micronutrient deficiencies are affected by sex, but this is often culturally specific; and finally, (5) the social and economic costs of micronutrient deficiencies, with particular reference to women and female adolescents and children, are likely to be considerable but are not well quantified. Given the potential impact on reducing infant and child mortality, reducing maternal mortality, and enhancing neuro-intellectual development and growth, the right of women and children to adequate food and nutrition should more explicitly reflect their special requirements in terms of micronutrients. The positive impact of alleviating micronutrient malnutrition on physical activity, education and productivity, and hence on national economies suggests that there is also an urgent need for increased effort to demonstrate the cost of these deficiencies, as well as the benefits of addressing them, especially compared with other health and nutrition interventions.

  8. Myoadenylate deaminase deficiency, hypertrophic cardiomyopathy and gigantism syndrome.

    Science.gov (United States)

    Skyllouriotis, M L; Marx, M; Bittner, R E; Skyllouriotis, P; Gross, M; Wimmer, M

    1997-07-01

    We report a 20-year-old man with gigantism syndrome, hypertrophic cardiomyopathy, muscle weakness, exercise intolerance, and severe psychomotor retardation since childhood. Histochemical and biochemical analysis of skeletal muscle biopsy revealed myoadenylate deaminase deficiency; molecular genetic analysis confirmed the diagnosis of primary (inherited) myoadenylate deaminase deficiency. Plasma, urine, and muscle carnitine concentrations were reduced. L-Carnitine treatment led to gradual improvement in exercise tolerance and cognitive performance; plasma and tissue carnitine levels returned to normal, and echocardiographic evidence of left ventricular hypertrophy disappeared. The combination of inherited myoadenylate deaminase deficiency, gigantism syndrome and carnitine deficiency has not previously been described.

  9. Biochemical characterization of a novel tyrosine phenol-lyase from Fusobacterium nucleatum for highly efficient biosynthesis of l-DOPA.

    Science.gov (United States)

    Zheng, Ren-Chao; Tang, Xiao-Ling; Suo, Hui; Feng, Li-Lin; Liu, Xiao; Yang, Jian; Zheng, Yu-Guo

    2018-05-01

    Tyrosine phenol-lyase (TPL) catalyzes the reversible cleavage of l-tyrosine to phenol, pyruvate and ammonia. When pyrocatechol is substituted for phenol, l-dihydroxyphenylalanine (l-DOPA) is produced. The TPL-catalyzed route was regarded as the most economic process for l-DOPA production. In this study, a novel TPL from Fusobacterium nucleatum (Fn-TPL) was successfully overexpressed in Escherichia coli and screened for l-DOPA synthesis with a specific activity of 2.69Umg -1 . Fn-TPL was found to be a tetramer, and the optimal temperature and pH for α, β-elimination of l-tyrosine was 60°C and pH 8.5, respectively. The enzyme showed broad substrate specificity toward natural and synthetic l-amino acids. Kinetic analysis suggested that the k cat /K m value for l-tyrosine decomposition was much higher than that for l-DOPA decomposition, while Fn-TPL exhibited similar catalytic efficiency for synthesis of l-tyrosine and l-DOPA. With whole cells of recombinant E. coli as biocatalyst, l-DOPA yield reached 110gL -1 with a pyrocatechol conversion of 95%, which was comparable to the reported highest level. The results demonstrated the great potential of Fn-TPL for industrial production of l-DOPA. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Dependence of mitochondrial coenzyme A uptake on the membrane electrical gradient

    International Nuclear Information System (INIS)

    Tahiliani, A.G.

    1989-01-01

    Coenzyme A (CoA) transport was studied in isolated rat heart mitochondria. Uptake of CoA was assayed by determining [3H]CoA associated with mitochondria under various conditions. Various oxidizable substrates including alpha-ketoglutarate, succinate, or malate stimulated CoA uptake. The membrane proton (delta pH) and electrical (delta psi) gradients, which dissipated with time in the absence of substrate, were maintained at their initial levels throughout the incubation in the presence of substrate. Addition of phosphate caused a concentration-dependent decrease of both delta pH and CoA uptake. Nigericin also dissipated the proton gradient and prevented CoA uptake. Valinomycin also prevented CoA uptake into mitochondria. Although the proton gradient was unaffected, the electrical gradient was completely abolished in the presence of valinomycin. Addition of 5 mM phosphate 10 min after the start of incubation prevented further uptake of CoA into mitochondria. A rapid dissipation of the proton gradient upon addition of phosphate was observed. Addition of nigericin or valinomycin 10 min after the start of incubation also resulted in no further uptake of CoA into with mitochondria; valinomycin caused an apparent efflux of CoA from mitochondria. Uptake was found to be sensitive to external pH displaying a pH optimum at pHext 8.0. Although nigericin significantly inhibited CoA uptake over the pHext range of 6.75-8, maximal transport was observed around pHext 8.0-8.25. Valinomycin, on the other hand, abolished transport over the entire pH range. The results suggest that mitochondrial CoA transport is determined by the membrane electrical gradient. The apparent dependence of CoA uptake on an intact membrane pH gradient is probably the result of modulation of CoA transport by matrix pH

  11. Vitamin D Deficiency

    Science.gov (United States)

    ... to other diseases. In children, it can cause rickets. Rickets is a rare disease that causes the bones ... and children are at higher risk of getting rickets. In adults, severe vitamin D deficiency leads to ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... an increased risk for iron-deficiency anemia because of your age, unhealthy environments, family ... 12 months, especially if they are fed only breast milk or are fed formula that is not fortified ...

  13. Sulfur amino acids metabolism in magnesium deficient rats

    Energy Technology Data Exchange (ETDEWEB)

    Tojo, H.; Kosokawa, Y.; Yamaguchi, K.

    1984-01-01

    Effect of magnesium (Mg) deficiency on sulfur amino acid metabolism was investigated in rats. Young male rats were fed on the diet containing either 2.26 (deficient rats) or 63.18 mg Mg/100g diet (control and low protein rats) for 2 weeks. A remarkable decrease of body weight gain, serum Mg contents and a slight decreases in the hematological parameters such as Hb, Ht and RBC was observed, while the hepatic Mg and Ca was not significantly changed. Erythema and cramps were observed 5 days after feeding on the Mg-depleted diet. The hepatic glutathione and cysteine contents increased in Mg-deficient rats. However, no significant change of cysteine dioxygenase (CDO) activity and taurine content in Mg-deficient rat liver was observed. These results suggest that Mg deficiency affects the utilization and biosynthesis of hepatic glutathione but not the cysteine catabolism.

  14. Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice.

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Liu

    Full Text Available The allene oxide synthase (AOS and hydroperoxide lyase (HPL branches of the oxylipin pathway, which underlie the production of jasmonates and aldehydes, respectively, function in plant responses to a range of stresses. Regulatory crosstalk has been proposed to exist between these two signaling branches; however, there is no direct evidence of this. Here, we identified and characterized a jasmonic acid (JA overproduction mutant, cea62, by screening a rice T-DNA insertion mutant library for lineages that constitutively express the AOS gene. Map-based cloning was used to identify the underlying gene as hydroperoxide lyase OsHPL3. HPL3 expression and the enzyme activity of its product, (E-2-hexenal, were depleted in the cea62 mutant, which resulted in the dramatic overproduction of JA, the activation of JA signaling, and the emergence of the lesion mimic phenotype. A time-course analysis of lesion formation and of the induction of defense responsive genes in the cea62 mutant revealed that the activation of JA biosynthesis and signaling in cea62 was regulated in a developmental manner, as was OsHPL3 activity in the wild-type plant. Microarray analysis showed that the JA-governed defense response was greatly activated in cea62 and this plant exhibited enhanced resistance to the T1 strain of the bacterial blight pathogen Xanthomonasoryzaepvoryzae (Xoo. The wounding response was attenuated in cea62 plants during the early stages of development, but partially recovered when JA levels were elevated during the later stages. In contrast, the wounding response was not altered during the different developmental stages of wild-type plants. These findings suggest that these two branches of the oxylipin pathway exhibit crosstalk with regards to biosynthesis and signaling and cooperate with each other to function in diverse stress responses.

  15. Activities of some enzymes of lignin formation in reaction wood of Thuja orientalis, Metasequoia glyptostroboides and Robinia pseudoacacia.

    Science.gov (United States)

    Kutsuki, H; Higuchi, T

    1981-07-01

    The activities of the following five enzymes which are involved in the formation of lignin have been compared in reaction wood and in opposite wood: phenylalanine ammonia lyase (EC 4.3.1.5), caffeate 3-O-methyltransferase (EC 2.1.1.-), p-hydroxycinnamate: CoA ligase (EC 6.2.1.12), cinnamyl alcohol dehydrogenase (EC 1.1.1.-) and peroxidase (EC 1.11.1.7). The activities of the four first-named enzymes in the compression wood of Thuja orientalis L. and Metasequoia glyptostroboides Hu et Cheng were 2.8±1.4-fold and 2.6±1.5-fold higher than those in opposite wood, respectively, whereas peroxidase had the same level of activity in either type of wood. On the other hand, no differences were observed in the activities of the five enzymes between tension and opposite woods of Robinia pseudoacacia L. These findings are well in accord with the chemical structure of lignin in the compression and tension woods of the three species studied: high content of lignin rich in condensed units in compression wood, and little difference in lignin between tension and opposite woods.

  16. Early phenylpropanoid biosynthetic steps in Cannabis sativa: link between genes and metabolites.

    Science.gov (United States)

    Docimo, Teresa; Consonni, Roberto; Coraggio, Immacolata; Mattana, Monica

    2013-06-28

    Phenylalanine ammonia-lyase (PAL), Cinnamic acid 4-hydroxylase (C4H) and 4-Coumarate: CoA ligase (4CL) catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS) catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids) and roots (mainly lignin) was discussed in relation to gene expression and enzymatic activities data.

  17. Structure of the N-terminal region of Haemophilus Influenzae HI0017: Implications for function

    International Nuclear Information System (INIS)

    Yu Liping; Mack, Jamey; Hajduk, Phil; Fesik, Stephen W.

    2001-01-01

    Haemophilus influenzae is a gram-negative pathogen that causes infections ranging from asymptomatic colonization of the human upper respiratory tract to serious invasive diseases such as meningitis. Although the genome of Haemophilus influenzae has been completely sequenced, the structure and function of many of these proteins are unknown. HI0017 is one of these uncharacterized proteins. Here we describe the three-dimensional solution structure of the N-terminal portion of HI0017 as determined by NMR spectroscopy. The structure consists of a five-stranded antiparallel β-sheet and two short α-helices. It is similar to the C-terminal domain of Diphtheria toxin repressor (DtxR). The C-terminal portion of HI0017 has an amino acid sequence that closely resembles pyruvate formate-lyase - an enzyme that converts pyruvate and CoA into acetyl-CoA and formate by a radical mechanism. Based on structural and sequence comparisons, we propose that the C-terminus of HI0017 functions as an enzyme with a glycyl radical mechanism, while the N-terminus participates in protein/protein interactions involving an activase (iron-sulfur protein) and/or the substrate

  18. Structure of the N-terminal region of Haemophilus Influenzae HI0017: Implications for function

    Energy Technology Data Exchange (ETDEWEB)

    Yu Liping; Mack, Jamey; Hajduk, Phil; Fesik, Stephen W. [Abbott Laboratories, Pharmaceutical Discovery Division, D46Y, AP10/LL (United States)

    2001-06-15

    Haemophilus influenzae is a gram-negative pathogen that causes infections ranging from asymptomatic colonization of the human upper respiratory tract to serious invasive diseases such as meningitis. Although the genome of Haemophilus influenzae has been completely sequenced, the structure and function of many of these proteins are unknown. HI0017 is one of these uncharacterized proteins. Here we describe the three-dimensional solution structure of the N-terminal portion of HI0017 as determined by NMR spectroscopy. The structure consists of a five-stranded antiparallel {beta}-sheet and two short {alpha}-helices. It is similar to the C-terminal domain of Diphtheria toxin repressor (DtxR). The C-terminal portion of HI0017 has an amino acid sequence that closely resembles pyruvate formate-lyase - an enzyme that converts pyruvate and CoA into acetyl-CoA and formate by a radical mechanism. Based on structural and sequence comparisons, we propose that the C-terminus of HI0017 functions as an enzyme with a glycyl radical mechanism, while the N-terminus participates in protein/protein interactions involving an activase (iron-sulfur protein) and/or the substrate.

  19. Early Phenylpropanoid Biosynthetic Steps in Cannabis sativa: Link between Genes and Metabolites

    Directory of Open Access Journals (Sweden)

    Immacolata Coraggio

    2013-06-01

    Full Text Available Phenylalanine ammonia-lyase (PAL, Cinnamic acid 4-hydroxylase (C4H and 4-Coumarate: CoA ligase (4CL catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids and roots (mainly lignin was discussed in relation to gene expression and enzymatic activities data.

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... may be diagnosed with iron-deficiency anemia if you have low iron or ferritin levels in your blood. More testing may be needed to rule out other types of anemia. Tests for gastrointestinal ...